A study to determine the minimum AutoCad command set for computer-aided drafting in the Las Vegas area

David John Brodersen

University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Part of the Higher Education Commons

Repository Citation
Brodersen, David John, "A study to determine the minimum AutoCad command set for computer-aided drafting in the Las Vegas area" (1999). UNLV Retrospective Theses & Dissertations. 996.
https://digitalscholarship.unlv.edu/rtds/996
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A STUDY TO DETERMINE THE MINIMUM AUTOCAD COMMAND SET FOR COMPUTER AIDED DRAFTING IN THE LAS VEGAS AREA

By

David John Brodersen

Associate in Applied Science
Community College of Southern Nevada 1985

Associate of General Studies
Community College of Southern Nevada 1989

Associate of Arts
Community College of Southern Nevada 1990

Bachelor of Science
University of Nevada, Las Vegas 1993

Associate in Applied Science
Community College of Southern Nevada 1995

A thesis submitted in partial fulfillment of the requirements for the

Master of Science Degree
Department of Educational Leadership
College of Education

Graduate College
University of Nevada, Las Vegas
May 1999
Thesis Approval
The Graduate College
University of Nevada, Las Vegas

February 24, 1999

The Thesis prepared by
David John Brodersen

Entitled
A Study To Determine The Minimum AutoCAD Command Set For
Computer Aided Drafting in the Las Vegas Area

is approved in partial fulfillment of the requirements for the degree of
Master of Science

Examination Committee Chair

Dean of the Graduate College

Examination Committee Member

Examination Committee Member

Graduate College Faculty Representative
ABSTRACT

A Study To Determine The Minimum AutoCAD Command Set
For Computer Aided Drafting In The Las Vegas Area

By

David John Brodersen

Dr. Clifford McClain, Examination Committee Chair
Assistant Professor of Education
University of Nevada, Las Vegas

The purpose of this study was to identify the computer aided drafting (CAD) commands most frequently used in the industrial application of the thirteenth release of the software product AutoCAD, vended by AutoDES. Respondents were located within the Las Vegas drafting community and nearby areas. The outcome of this study was used to identify commands needed to operate the software at a desired level of competency and to identify any relationship between the release thirteen commands used by the respondents and commands available in the previous release of the software.

A questionnaire was delivered to 90 businesses engaged in drafting in a variety of disciplines. Twenty-two usable questionnaires were returned. The respondents rated the use of each command on a five-point likert type scale based on the likelihood of use every time a respondent opened a drawing session. Frequency distributions and descriptive statistics were calculated on each command to determine the percentage of respondents that indicated actual use of the command(s) each time they opened a drawing.
session. The command list was then sorted in descending order based on percentage of respondent usage.

Surveys showed that all of the respondents selected seven commands that all twenty-two respondents used each time a drawing session was opened. All of the respondents selected forty-five commands that were never used when a drawing session was opened. All forty-five commands not used involved three-dimensional drafting and solid modeling. Furthermore, analysis of the surveys revealed 50% or more of the respondents used 95 of the available commands. This amounted to less than 35% of the total commands available in AutoCAD R13. All 95 of the commands involved two-dimensional drafting. Of the number of commands identified, 91% of them were available in release twelve of AutoCAD. Results of the surveyed sample suggested that AutoCAD R13 system variables were seldom used.

It was recommended that those commands selected by 50% or more of the respondents be presented to students in beginning level CAD classes. It was further recommended that the remaining commands not addressed in beginning level CAD classes be presented to students in advance level CAD classes.
TABLE OF CONTENTS

ABSTRACT .. iii

LIST OF TABLES .. vii

ACKNOWLEDGMENTS .. viii

CHAPTER 1 INTRODUCTION OF THE PROBLEM ... 1
 Introduction ... 1
 Problem Statement .. 3
 Purpose of the Study ... 3
 Significance of the Study ... 4
 Definitions of Terms .. 6
 Limitations of the Study .. 9
 Delimitation of the Study .. 10
 Outcomes ... 10

CHAPTER 2 REVIEW OF LITERATURE ... 11
 Introduction ... 11
 A Brief History of CAD .. 11
 Training on CAD .. 14
 Summary of Literature .. 15

CHAPTER 3 METHODS AND PROCEDURES .. 17
 Introduction ... 17
 Identification of the Population ... 17
 Development of the Questionnaire ... 18
 Validation of the Instrument ... 19
 Collection of the Data ... 20
 Analysis of the Data .. 20
 Summary of Methods and Procedures .. 22

CHAPTER 4 FINDINGS ... 24
 Introduction ... 24
 Findings Regarding AutoCAD Commands .. 24
 Selection of commands ... 26
 Non-selection of commands .. 27
 AutoCAD R13 command usage and availability in AutoCAD R12. ... 27
 Findings Regarding AutoCAD System Variables .. 28
 Years of Experience Versus Percentage of Total Commands Used .. 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 Command Usage and Third Party Packages

CHAPTER 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

Extent of AutoCAD R13 Command Usage

Conclusions

Recommendations

APPENDIX A QUESTIONNAIRE

APPENDIX B COVER LETTER

APPENDIX C COMMANDS CHOSEN BY RESPONDENTS

BIBLIOGRAPHY

VITA
LIST OF TABLES

Table 1 Descriptive Statistics: Percentage of Commands Used25
Table 2 Descriptive Statistics: Percentage of System Variables Used29
ACKNOWLEDGMENTS

This graduate student wishes to express his appreciation to Dr. Cliff McClain for his hard work and devotion to his students. He encouraged me to enroll in the graduate program at UNLV and calmed all my fears concerning my abilities of completing such a program. I also wish to thank Leslie Shipp for her encouragement in this project. When the work seemed overwhelming, she helped me to see how close to the finish line I was and gave me the support that I needed to complete my goal. She also proofread my material for syntax and grammar. Furthermore, I wish to thank David Roebke for his encouragement, supplying a sample thesis, and prayers towards the completion of this project. Special thanks to Eugene Bond and Jean Roebke who were instrumental in my transition from Corel Word Perfect to Microsoft Word. Lastly, I wish to thank the committee members for their service on the Examining Committee. As the student population grows, life in the university community is increasingly fast-paced and arduous. Adjusting one's time schedule to meet the needs of the student body demonstrates commitment and loyalty to the same.
CHAPTER 1

INTRODUCTION OF THE PROBLEM

Introduction

As our society moves away from this century of automation through information based systems and into the new millennia, education must change at a faster pace (Merickel, 1990). Because of the rapid influx of technological innovations, computer technology has had a pronounced effect on nearly every facet of society especially industry and education (Wang, 1993). Computer-Aided Design (CAD) is especially undergoing rapid growth and change (Goss, 1990).

The use of Computer-Aided Design and Drafting (CADD) in technology with increased competitiveness and improved quality and efficiency has proliferated throughout the drafting industry (Wang 1993). Drafting is a fundamental communication technique used in the construction industry to visually demonstrate, exemplify or elucidate projects (Hales, 1991). Consequently, competitive companies and institutions that use drafting as a form of communication have been watching the growing field of CADD looking for a CADD system that will best fulfill their needs. However, some organizations have been unwilling to implement the use of a CADD system, which raises concerns regarding the following:

1. Difficulties in estimating the rate of return on the relatively high initial capital costs involved in setting up CADD workstations.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2. Training employees in the use of a CADD workstation.
3. Upgrading software.
4. Providing upgrade training for the operators.

With these difficulties, companies can not afford to ignore the challenge of technological change (Beatty, 1986).

Gow's (1991) prediction that CADD would replace traditional drafting in many diverse industries and that the changeover from traditional drafting to CADD would reach the 90% to 100% level has come to pass. Consequently, university/college programs are utilizing computer graphics and computer applications in an effort to keep pace with advancing technology. However, as software upgrades and revisions are produced, drafting technology educators must adjust the CADD curriculum to encompass new developments in the field (Diez, 1990; Pedras & Hoggard, 1985). Simply outlining a textbook or copying the CADD curriculum from another university/college program is not enough for developing a curriculum that will meet unique local drafting community needs.

As demand for CADD operators increases within the community, effective CADD instruction becomes more important. Volumes of literature are available informing the instructor about the capabilities of CADD and its varying degrees of effectiveness, however, there are few works produced in professional journals or research studies that provide clear direction regarding curriculum development in the CADD discipline (Wang, 1993).

In 1985 the Community College of Southern Nevada (CCSN) began the process of implementing a Computer Aided Drafting (CAD) curriculum. By 1990 the program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
was in place. DACUM studies within the community surrounding CCSN and advisory committee members from that community suggested that in order to adequately prepare the CADD operator of tomorrow, the AutoCAD software product itself would be the best choice from which to develop a curriculum. Holloway (1987) and Laird (1985) identified problems that plagued successful development of CADD programs at universities and colleges as a consequence of shortcomings in experience and technical expertise of advisors, inadequate facilities and funding, as well as difficulties in finding qualified instructors. CCSN was not an exception to Laird's observation.

Problem Statement

At the time of this study, factors affecting the success of the Computer Aided Drafting and Design (CADD) program at the Community College of Southern Nevada (CCSN) had not been systematically identified and described. Administrators and instructors lacked much of the information needed to make decisions about local CADD curriculum. One of those factors was minimum competent knowledge of the command set used in the operation of the AutoCAD software product.

The minimum AutoCAD command set required for successful operation of this software package must be identified to adequately prepare the AutoCAD operator for employment within the local community. Once identified it should be provided to those responsible for the CADD curriculum as a tool to aid in curriculum development.

Purpose of the Study

This study was intended to provide data for the Community College of Southern Nevada computer aided drafting program for use in curriculum development. Specifically, this study was to identify and analyze those commands used in the industrial
application of AutoCAD, within the local drafting community, which were needed to reach a desired level of competency with regard to the use of the AutoCAD software product. Furthermore, a secondary purpose of this study was to stimulate the development of a mechanism within the CCSN CADD curriculum development process that would regularly identify command sets used within the industrial community at large.

Significance of the Study

Investigating the AutoCAD help files reveals that there are 533 various commands and system variables used in the operation of the software package. Competency in the use of all of these commands and system variables is not a requirement for the entry-level operator. However, if a list of the commands required for entry level operation of AutoCAD could be developed, then this list could be used to expedite the development of a competency based curriculum at the Community College of Southern Nevada. Moreover, having such a list available would streamline articulation agreements between local high schools and the college as well as transfer credits between the college and the University of Nevada, Las Vegas.

At the time of the study there was no record available that would indicate that a survey of the local drafting community has ever been accomplished by the Community College of Southern Nevada. Such a survey should be implemented on a regular basis due to the constant changes and upgrades in the AutoCAD software product. As Addison (1988) stated:

For the drafting instructor, it is an exciting and challenging time of new theory and new techniques which must be continually woven into the course of
instruction. While embracing these changes, those responsible for the curriculum must develop appropriate curriculum goals and objectives, must continue to focus on the real competencies required by their graduates in industry, and must choose those instructional processes which will best help students reach their goals.

(p. 20)

During the past ten years, the rapid deployment of CADD software releases has not slowed. The popularity of CADD use in the drafting community has made its instruction in engineering and technology schools a high priority. Unfortunately, very few schools have cohesive CADD curricula. Students, who graduate from those schools without a good understanding of fundamental command knowledge in the operation of CADD, may find themselves at a disadvantage in the job market (Hsu & Sinha, 1992).

Educational accountability has focused on the quality of teaching. Muller (1986) indicated that an educator should ask, "Am I as current as I could be? Are my courses sharply focused on those content areas which relate to the student's needs? How can I catch up?" In relation to the rapid development of CADD releases, these questions became significant.

Upgrade classes, sabbatical leaves for work-study and the identification of commands used in the operation of AutoCAD are key factors to improve CADD instruction. Staying one step ahead of the students in knowledge of the operation of AutoCAD is an inappropriate method with regard to the conduct of an instructor. The instructor must have an understanding of what it takes to operate AutoCAD in the work environment before he or she can provide competent instruction in the use of AutoCAD.
Kicklighter (1985) indicated that industrial technology programs such as CADD can grow and improve, even if university enrollments are declining, by constantly revising and updating the curriculum. Identifying a current list of the commands needed for minimum competency in the operation of AutoCAD would be paramount in the revision and updating process of the CADD curriculum at the Community College of Southern Nevada.

Definitions of Terms

The following terms were defined to clarify their usage(s) in the context of this study.

Artificial dichotomy: An artificial dichotomy results when scaled responses are placed into two categories (Borg & Gall, 1989).

AutoCAD: A general purpose Computer Aided Design and Drafting software application used on a computer system and vended by AutoDESK.

AutoCAD R12: AutoCAD release 12, the twelfth software release of AutoCAD

AutoCAD R13: AutoCAD release 13, the thirteenth software release of AutoCAD

AutoCAD Training Center (ATC): A training center sponsored by AutoDESK for specialized training regarding AutoCAD. Training is restricted to curriculum supplied by AutoDESK. Instructors must prove minimum qualification. Including but not limited to several years operating AutoCAD in a professional environment, successfully passing the AutoCAD Level II certification examination, and several years of experience providing training with respect to AutoCAD.
AutoCAD Level II Certification Examination: An examination that tests proficiency with the latest release of AutoCAD software. These examinations measure one’s mastery of AutoCAD concepts and drawing skills using AutoCAD.

AutoLISP: A version of a widely used programming language known as LISP. LISP is an acronym for LIST Processing. AutoLISP is used within AutoCAD for creating custom commands and automated procedures.

Computer Aided Design and Drafting (CADD): A combination of design methodology and drafting technology facilitated through the use of a computer system with appropriate software.

Command Set: The body of commands available within AutoCAD that the drafter can use to complete a set of drawings.

Computer Aided Drafting: Synonymous with Computer Aided Design and Drafting.

CAD: An acronym for Computer Aided Drafting or Computer Aided Design, which was defined as computer hardware, software and peripheral devices used to produce graphic images (Hsu & Sinha, 1992).

CADD System: The combination of a computer, software, and related peripheral equipment used for computer aided design and drafting.

DACUM: Developing a curriculum; a formalized process for curriculum development by which a panel of experts, in the discipline for which the curriculum is being developed, are interviewed and a list of outcomes generated.

Drawing session: A period of time in which a CADD operator accesses drawing files for creation or making changes using AutoCAD.
Entity: A line, arc, circle, or other element drawn in CADD. Entities are elements or parts of a drawing that make up the whole.

Greater Las Vegas Area: The area defined by occupation of the city of Las Vegas, Las Vegas townships, City of Henderson, and Boulder City, all of which are in Clark County, Nevada.

Hardware: The mechanical, magnetic, electrical, and electronic devices from which a computer is constructed.

Industrial Technology (IT) programs: Two and four year programs industry designed to prepare the student for employment within industry with an appropriate balance of studies drawn from a variety of related disciplines.

Local Community: Synonymous with greater Las Vegas area.

Operator: A person who uses the AutoCAD software product to produce CAD drawings.

Primitive Entities: Those entities created through (a) the use of the following AutoCAD commands: “Line”, “Arc”, and “Circle” or (b) the use of editing commands that make changes in lines, arcs, and circles.

Primitive Commands: The AutoCAD commands “Line”, “Arc”, and “Circle”.

Software: Synonymous with Computer Software.

Solid Modeling: A process whereby AutoCAD is used to create a three dimensional solid model of an object. Materials are assigned to different parts of the model as required. Simulations are then performed to extract engineering information.

Third Party Software: Software produced by vendors other than the vendor of AutoCAD that work in conjunction with AutoCAD in order to increase productivity and efficiency in the operation of AutoCAD towards a drafting goal. For example AutoArchitect is a
software product, produced by SoftDESK, that plugs into AutoCAD in order to provide tools that streamline the production of drawings in the field of architecture.

Three-Dimensional Drafting: Drafting that results in placing objects along the X, Y, and Z-axis of the AutoCAD drafting environment.

Limitations of the Study

The following limitations were applied to guide this study in completion of the investigation:

1. This survey was limited to a defined time frame and administered one time for the singular purpose of gathering information used to generate a list tabulating the frequency of usage of each AutoCAD command and system variable.

2. This study did not generate a methodology for the purpose of identifying why a particular AutoCAD command or system variable was or was not used.

3. This study did not identify what type of hardware the operator used.

4. The study was limited to the implementation of AutoCAD software usage within the greater Las Vegas area.

5. The geographic domain of the study was limited to the local drafting community. Surveys or questionnaires targeting other communities, universities, or colleges were neither developed nor implemented.

6. The questionnaire depended upon self-reported data as well as subjective opinions.

7. The respondents to the questionnaire were limited to those who were identified as CADD operators with one or more years of experience in the use of AutoCAD.
Delimitation of the Study

The number of surveys returned was far lower than anticipated. There was less than a 30% response. Some surveys were not included in analysis because the respondents filling them were not using release thirteen. Consequently, only twenty-two surveys were analyzed.

Many of the businesses contacted indicated that they were using the latest release of AutoCAD but were not using release thirteen. At the time of the survey, release thirteen had been available to the general public for less than six months. Consequently, several businesses were not using release thirteen because opportunities for upgrade training, as yet, had not been developed. Because so few businesses had upgraded to release thirteen, it limited the number of potential respondents.

Outcomes

The study identified the frequency of usage for each AutoCAD command and system variable by the respondents. A list was generated that ordered the commands from most used to least used. In addition to a ranked order of the commands the list supplied information regarding percentage of usage of each command and whether or not that command was a carryover from AutoCAD R12.

The results of the study will be used by instructors and administrators of the CADD program at the Community College of Southern Nevada to modify CADD curriculum in such a way to help insure degree program relevance to the local community. The results will also be supplied to the Clark County School District, Occupational Education Division, as an aid to develop CADD curriculum that will articulate with the Community College of Southern Nevada CADD program.
CHAPTER 2

REVIEW OF LITERATURE

Introduction

The purpose of this study was to identify commands used in the industrial application of AutoCAD, through respondents to the survey instrument, within the local drafting community, which were needed to reach a minimum desired level of competency with regard to the use of the AutoCAD software product. Previous reviews of literature in this area of study have significantly stimulated the initial development of this review. Consequently, they deserved to be mentioned here. They are works done by Wang (1993), Huang (1988), Laird (1988), and Spann (1990). The focus of this literature review has been divided into four sections: a brief history of CAD, research on CAD competencies, training on CAD, and the summary.

A Brief History of CAD

Byles (1985) indicated that CAD had its beginnings in the mid 1950s through a consortium of aerospace companies called the Aircraft Industries Association. Engineers at General Motors used the program tool generated by Aircraft Industries Association to create CAD batch language for producing loft lines. He further pointed out that the next generation of CAD software did not appear until CAD systems became commercially available during the late 1960s. Jefferis and Jones (1994) wrote that
computers started becoming available to large firms that could afford their hefty price tags in the early 1980s. While mechanical and electrical engineering firms started using CAD, architects did not because computers could not produce drawings with an artistic flair. However, by the mid 1980s, prices had dropped and programs had been developed that could produce drawings with enough artistic flair to satisfy many architectural firms. Consequently, by the late 80s many architects had discovered that computers would have a place in their office. Bertoline (1985) reported that:

Since the late 70s there has been a dramatic increase in the number of CAD systems on the market and in the number of industries using them. No one event produced this increase in CAD, but there are a number of important reasons. Contributing to the increased use of CAD by industry are the rapid developments in the microcomputer due to improved microprocessor technology, the dropping cost of memory, and the increased number of vendors supplying CAD. Another major reason for the growth in CAD is competition among rival companies both in the United States and abroad. Industries are finding that CAD must be used in order to remain competitive in such fields as electronics.

The decrease in turnaround time in design and increases in productivity are two ways that CAD can make a company more competitive. CAD is and will continue to be the most productive method for drafter-designers to perform their job. (p. 26-27)

Eiteljorg (1996) agreed with Bertoline in that, with the advent of IBM's AT desktop computer system in the early 1980s, software packages designed to run on these systems came into being. AutoCAD was one such software package. Later, as computer...
technology became increasingly sophisticated, more powerful computer processing hardware was created permitting the development of complicated functions within AutoCAD that were not possible in earlier versions of the software package. When major changes in features and operation of AutoCAD were produced, a new revision of the software was presented to the public. At the time of this study, the AutoCAD software product had undergone thirteen revisions. Research on CAD Competencies

Because of the changes in AutoCAD, it became necessary to insure that operators be provided with education regarding a list of commands needed in order to keep up with competition. Furthermore, one of the ways to increase the likelihood of gaining a reasonable rate of return on an investment in a CAD workstation would be to insure that operators would be able to perform at some minimum level of competence. Bell & Erekson (1991) pointed out that to accomplish this goal, contemporary curriculum must reflect technology while meeting the educational needs of a diverse student population.

Wang (1993) indicated that there were three approaches to teaching CAD, each requiring its own set of competencies. The first approach was in regard to programming, concentrating on data structures and the design of user interfaces. The second approach concerned the mathematical principles used in representation of curves and surfaces. The last approach was based on current CAD systems and the need to provide appropriate training on that system. According to Michell and Ligget (1986), this approach would be the most desired methodology for operators of CAD, CAD educators, and CAD system venders.

Wang (1993) further pointed out that a competent CAD operator must be able to effectively use the working commands of a CAD system as well as customize the CAD
working environment by developing macros for later use allowing increased productivity of the system. Developing macros is a process by which an operator would link several AutoCAD commands together under a new command name. In order to accomplish this, a clear understanding of the AutoCAD command structure would be required. Addison (1988) stated that:

For the drafting instructor, it is an exciting and challenging time of new theory and new techniques, which must be continually woven into the course of instruction. While embracing these changes, those responsible for the curriculum must develop appropriate curriculum goals and objectives, must continue to focus on the real competencies required by their graduates in industry, and must choose those instructional processes in which will best help students reach their goal.

(p 20)

Flechsig and Seamans (1987) pointed out that the purpose of each computer aided drafting class was to teach students to select, modify, and apply the computer commands necessary to draw the required assignment.

Training on CAD.

Wang (1993) pointed out that several members of the education community (MIT, Iowa State, and the University of Pennsylvania) responded to the development of computer-aided design and drafting systems by beginning to develop programs in the early 1960s. According to Wang (1993):

Rensselaer Polytechnic Institute established its Center for Interactive computer graphics; Carnegie-Mellon University started both the Design Research Center and the robotics Institute in 1974; Cornell University developed a
computer graphics instructional facility; and Brigham Young, Lehigh, and Purdue
Universities excelled in computer aided manufacturing education and research
devotees. Carnegie-Mellon University began offering a Master’s degree
program in computer aided design in the late 1970s. (p 19,20)

Bollinger (1987) related that CAD instruction in colleges and universities
throughout the United States had advanced significantly in the decade of the '80s and the
advancement was due to the development of microcomputer CAD. According to Wang
(1993), Bollinger confirmed the results of two surveys implemented by the Association
of Computer Aided Design in Architecture in which all schools and colleges of
architecture in North America were polled about their use of CAD in 1984 and 1986. In
the 1984 poll sixty percent of the institutions had CAD capabilities, whereas in 1986,
eighty-four percent of the schools had CAD capabilities.

Summary of Literature

The review of literature suggested that the need for colleges and universities to
constantly update the curriculum is vital to the success of their CADD programs.
Moreover, teachers should keep the focus of the curriculum on the particular skills and
competencies that are required by industry from the CAD operator (Addison, 1988). With
the proliferation of more complicated computer systems into the industrial society comes
the spawning of more revisions of AutoCAD, each of which are increasingly more
sophisticated. Moreover, expecting a student to become competent in the use of all of the
AutoCAD commands available to the user is unrealistic. Furthermore, providing
instruction in the use of all of the available commands within a timeline that would
permit timely graduation from a degree program regarding CAD operation is just as
unrealistic. Consequently, a subset of the available commands was identified as a list of commands in which an operator should have competency in order to perform at entry level in a vocation as a draftsperson.
CHAPTER 3

METHODS AND PROCEDURES

Introduction

The primary purpose of this study was to identify commands most frequently used in the industrial application of AutoCAD, among respondents to the survey instrument, within the local drafting community, which were needed to reach a desired level of competency with regard to the use of the AutoCAD R13. Consequently, a descriptive research design was utilized. Descriptive research involves collecting data in order to answer questions concerning the current status of the subject of the study; it determines and reports the way things are (Gay 1992). The chapter is divided into five major areas of interest: population identification, development of the questionnaire, validation of the questionnaire, collection of the data, and analysis of the data.

Identification of the Population

The population for this study included 120 businesses located in the greater Las Vegas area to include Las Vegas townships, Henderson, and Boulder City. The businesses included in the population were those businesses which indicated through telephone interview that they had AutoCAD operators in their employ. The names and phone numbers of businesses were obtained by researching the local telephone directory yellow pages under the following subjects: architects, general contractors, civil,
structural, mechanical and electrical engineers, research and development organizations, gaming development organizations, and major hotels. Also some names and phone numbers of businesses were solicited from students enrolled in the CAD program at the Community College of Southern Nevada who were willing to provide them.

Development of the Questionnaire

One survey was used for this study. It was designed to determine the frequency each command and system variable available in the AutoCAD software product was used by AutoCAD operators. The survey instrument consisted of a multiple page questionnaire divided into three major areas of interest. The first area concerned AutoCAD command usage. The second area concerned AutoCAD system variable usage. The third area concerned the use of third party software applications available for use with AutoCAD.

Items for the instrument were generated from a list of all of the AutoCAD commands and system variables obtained from the computer help files. The list of items was then compared with the software operation manual to insure that no commands or system variables were missed. Each command and system variable was individually placed in a question format asking the subject to respond to a Likert-type format, ranging from “agree strongly” to “strongly disagree” (Appendix B).

After the command list questions, questions were posed regarding the following:

1. The type of drafting discipline performed.
2. The use of third party software.
3. The type of operating system used.
4. The use of AutoLISP. The use of AutoLISP would be an indicator of advanced skills in the operation of AutoCAD.

Validation of the Instrument

The survey was presented to a panel of five members who were asked to check for ambiguity, confusion, and poorly prepared items. The panel members were selected from the following criteria:

1. They were not in the population to be sampled in the survey.

2. Their professional responsibility was in the area of CADD in that they not only provided instruction in this area, but worked as draftspersons in the community as well.

3. They had been employed as operators of AutoCAD software for at least five years.

4. They had been employed as instructors of AutoCAD software for at least one year at a certified AutoCAD Training Center.

A memo was sent to each member asking that they attend a meeting concerning the validation of a survey instrument that was to be presented to the local drafting community. The questionnaire was distributed to each member during the meeting. They were asked to review each item on the questionnaire and return it at their earliest convenience. The members were asked to provide comments and suggestions regarding content relevance, clarity, and appropriateness of the items.

The panel members chose to examine the survey immediately and offered their suggestions at the close of the meeting. The only negative comment regarding the instrument was that it was lengthy. However, the members of the panel agreed that it
would be impossible to provide a short survey that would provide items addressing each of the available commands in AutoCAD. The instrument was approved for final printing and distribution to the population (Appendix B).

Collection of the Data

Once the sampling population was identified, supervisors at the business locations were called and asked if they would permit the senior AutoCAD operator to fill out the survey. If the supervisors were willing to permit the employee to fill out the survey, then the senior operator was contacted and asked if he/she would be willing to be a subject in a survey. Nearly all of the businesses were willing to permit their employees to fill out the survey. However, less than 100 operators were willing to fill it out due to time constraints.

The survey was distributed to the subjects. A cover letter was included to provide instructions as to how to fill out the survey and indicate a timeline for its return. None of the surveys were returned within the requested timeline. The timeline was adjusted to allow for return of questionnaires. Over the course of the adjusted time period, several follow up calls were made. At the close of the adjusted time period, 22 of the 90 surveys distributed were returned adequately filled out for use in data analysis.

Analysis of the Data

A value was assigned to each response on the scale in order to determine the likelihood that a command was used during a drawing session. Values were set as follows: Agree strongly = 1, Agree = 2, Undecided = 3, Disagree = 4, Strongly disagree = 5 (Appendix B). Data were tabulated into Microsoft Excel, compiled and analyzed. Microsoft Excel is a spread sheet program with a statistical analysis package similar to
the Statistical Package for the Social Sciences (SPSS). This analysis software package was chosen over SPSS because its user interface permitted greater ease for entering data. A frequency distribution was used for each item. The information presented the absolute frequency (number of responses) and the relative frequency (percentage of usage) of all data. Mean, median, standard deviation, variance, kurtosis, and skew were calculated on all data. A ranked order was then generated producing a listing of all AutoCAD commands and system variables from most used to least used by the respondents.

This list was then compared to a list of the AutoCAD commands from the previous release of the software product to determine if the command was available to the respondent before they upgraded to AutoCAD R13. The list from the previous release of AutoCAD was generated from help files and operation manuals in the same way as the list of commands from the current release.

Furthermore, each survey was analyzed to determine what percentage of the available command set each respondent used in order to provide an indicator as to the number of commands required for minimum competency. In order to accomplish this, an artificial dichotomy of the survey items was generated. An artificial dichotomy results when scaled responses are placed into two categories (Borg & Gall, 1989). Any answer that resulted in a choice of “Agree” or “Agree strongly” was considered as being a selected command and choices in the remaining three possibilities were considered as being a non selected command. The dichotomized results were then analyzed using the statistical analysis features available in Microsoft Excel.

The frequency analysis feature of Microsoft Excel was used to organize the command list in ranges of percentage of operator usage. The ranges were set in 10%
intervals 0% to 100%. That is, any command that was identified as being a selected command by all of the respondents was placed into the 100% category. If the command was identified as a selected command by 90% to 99% of the respondents, it was placed in the 90% category. This pattern continued down through the 10% category. Any command that was identified as never being selected was placed in the 0% category.

All of the commands that fell in a particular percentage range were then identified to determine whether or not they were a carryover from the previous release of AutoCAD. Once the commands were identified, then a percentage of commands carried over from the previous release of AutoCAD was calculated. For example, several commands fell in the range where 90% to 99% of the operators agreed or agreed strongly that the command was used each time they opened a drawing session in AutoCAD R13. Of those several commands, what percentage of them were carryovers from the previous release of AutoCAD?

The methods that were used to analyze the AutoCAD R13 commands were also applied to AutoCAD R13 system variables.

Summary of Methods and Procedures

Based on panel member comments no revisions were made on the survey instrument. The surveys were distributed to the population. No follow up letters were mailed. However, follow up phone calls were made in order to recover as many surveys as possible. Of all of the business that indicated they used AutoCAD R13 and had employees that were willing to fill out the survey, twenty-two of them returned the survey within the adjusted time period. The data obtained from the responses to the
survey were compiled through Microsoft Excel, a spreadsheet program, and statistical calculations were applied to each response.
CHAPTER 4

FINDINGS

Introduction

The primary purpose of this study was to identify commands most frequently used in the industrial application of AutoCAD among respondents to the survey instrument within the local drafting community. Identifying commands most frequently used would aid the development of a minimum competency list of commands. A secondary purpose was to identify the relationship, if any, between the release thirteen commands used by the respondents and commands carried over from release twelve. As the operation of AutoCAD requires the use of commands and system variables, the findings have been divided into two sections, the findings regarding AutoCAD commands, and the findings regarding AutoCAD system variables.

Findings Regarding AutoCAD Commands

Out of all of the possible AutoCAD R13 commands available for use, none of the respondents used all of them. Microsoft Excel was used to generate descriptive statistics regarding the percentage of commands used by each respondent out of the total commands available. Any commands that the respondent chose “Agree Strongly” or “Agree” was considered a selected command. The total number of selected commands by respondents were then divided by the total number of available commands. The result
was then multiplied by 100 to produce a percentage. The descriptive statistics regarding the percentage of commands selected by the respondents are listed in Table 1.

Table 1 Descriptive Statistics: Percentage of Commands Used

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>34.11%</td>
</tr>
<tr>
<td>Standard Error</td>
<td>2.36%</td>
</tr>
<tr>
<td>Median</td>
<td>34.63%</td>
</tr>
<tr>
<td>Mode</td>
<td>23.70%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.1107</td>
</tr>
<tr>
<td>Sample Variance</td>
<td>0.0122</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.1546</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.0353</td>
</tr>
<tr>
<td>Range</td>
<td>42.59%</td>
</tr>
<tr>
<td>Minimum</td>
<td>12.22%</td>
</tr>
<tr>
<td>Maximum</td>
<td>54.81%</td>
</tr>
<tr>
<td>Count</td>
<td>22</td>
</tr>
</tbody>
</table>

The respondent that used the most commands only used 55% of those available. The respondent that used the least percentage of commands available used 12%. On the average, respondents used only 34% of all of the AutoCAD R13 commands available to them.
Selection of commands

Out of all of the possible AutoCAD R13 commands available, selection was indicated by 100% of the respondents with regard to using the Line, Zoom, Save, Erase, Fillet, Pan, and Insert commands each time they engaged in a drafting session. All of the commands in the aforementioned list are available in the AutoCAD R12 command set. 77% of the respondents chose “Agreed strongly” concerning the use of the Zoom and line commands while 23% chose “Agreed.” Of the respondents, 68% chose “Agreed strongly” with regard to the use of Erase, Fillet, Pan and the Insert commands in every drafting session while 32% “Agreed” that they used those commands each time they entered a drawing session. Since drawings generally have many arcs and circles it was surprising that the primitive commands, “Arc”, and “Circle” were not unanimously chosen in the “Agree” or “Agree strongly” categories.

A frequency distribution was generated placing the number of commands in ranges of percentage of respondents selecting the command. There were only seven commands in which 100% of the respondents selected the command. Twenty-six commands fell in the range where 90% to 99% of the respondents selected the command. Fourteen commands fell in the range where 80% to 89% of the respondents selected the command. Ten commands fell in the range where 70% to 79% of the respondents selected the command. Fourteen commands fell in the range where 60% to 69% of the respondents selected the command. Twenty-four commands fell in the range where 50% to 59% of the respondents selected the command. Twenty-two commands fell in the range where 40% to 49% of the respondents selected the command. Twelve commands fell in the range where 30% to 39% of the respondents selected the command. Twenty-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
four commands fell in the range where 20% to 29% of the respondents selected the command. Twenty-five commands fell in the range where 10% to 19% of the respondents selected the command. Forty-seven commands fell in the range where 1% to 9% of the respondents selected the command. Forty-five commands fell in the range where none of the respondents selected the command (Appendix C).

Fifty percent or more of the respondents indicated selection of 95 AutoCAD R13 commands used during a drafting session. This amounted to 34% of the available commands.

Non-selection of commands

If none of the respondents chose “Agree strongly” or “Agree” with respect to a command then the command was considered not selected. Out of all of the possible AutoCAD R13 commands, forty-five of them were not selected. Of those commands, only nine of them were carryovers from release twelve. All of the commands not chosen were commands required to perform three-dimensional drafting and solid modeling.

AutoCAD R13 command usage and availability in AutoCAD R12.

A relationship between the percentage of operators using a particular command from AutoCAD R13 and the likelihood of that command being a carryover from the previous release of AutoCAD was established.

If the respondent choose “Agreed strongly” or “Agreed” with respect to a particular command being used each time a drawing session was opened, then that command was considered as being selected by the respondent. For each command, a percentage indicating the number of respondents out of the 22 respondents that selected the command was calculated.
Of all of the commands that fell within the 100% range, all of them were available in the previous release of AutoCAD. Of all of the commands that fell within the 90% to 99% range, 96% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 80% to 89% range, 100% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 70% to 79% range, 90% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 60% to 69% range, 92% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 50% to 59% range, 79% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 40% to 49% range, 64% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 30% to 39% range, 41% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 20% to 29% range, 58% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 10% to 19% range, 46% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 1% to 9% range, 36% of them were carryovers from the previous release of AutoCAD. Of all of the commands that fell within the 0% range, 20% of them were carryovers from the previous release of AutoCAD.

Findings Regarding AutoCAD System Variables

Out of all of the possible AutoCAD R13 system variables available for modification, none of the respondents used all of them. Microsoft Excel was used to generate descriptive statistics regarding the percentage of system variables used by each respondent out of the total number of variables available for modification. Any system
variable that the respondent chose "Agree Strongly" or "Agree" was considered a selected variable. The total number of selected variables were then divided by the total number of variables available to the respondent. The result was then multiplied by 100 to produce a percentage. The descriptive statistics regarding the percentage of system variables selected by the respondents are listed in Table 2.

Table 2 **Descriptive Statistics: Percentage of System Variables Used**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>9.11%</td>
</tr>
<tr>
<td>Standard Error</td>
<td>2.73%</td>
</tr>
<tr>
<td>Median</td>
<td>6.11%</td>
</tr>
<tr>
<td>Mode</td>
<td>6.29%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.1281</td>
</tr>
<tr>
<td>Sample Variance</td>
<td>0.0164</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>10.9624</td>
</tr>
<tr>
<td>Skewness</td>
<td>3.1109</td>
</tr>
<tr>
<td>Range</td>
<td>58.51%</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0%</td>
</tr>
<tr>
<td>Maximum</td>
<td>58.52%</td>
</tr>
<tr>
<td>Count</td>
<td>22</td>
</tr>
</tbody>
</table>

The respondent that used the most system variables used 59% of those available. This respondent indicated the employment of AutoLISP programming in the modification.
of the AutoCAD command set. Since the manipulation of AutoCAD system variables are a critical part of AutoLISP programming, it would be expected that response regarding the use of system variables, with regard to this respondent, would be high. The respondent that used the least percentage of commands available did not use any of them. On the average, respondents used only 9% of all of the AutoCAD R13 system variables available to them.

Only five of the system variables available in AutoCAD R13 were selected. All five of the system variables selected had to do with display control, annotation and plotting of drawings. Sixteen of the 22 respondents used less than 10% of the system variables available to them. Consequently, extensive analysis was not performed on the system variable responses because of low usage by the respondents.

Years of Experience Versus Percentage of Total Commands Used

There was minimal correlation between the percentage of total AutoCAD R13 commands used and the years of experience using AutoCAD reported by the respondents. All of the respondents had experience in using both AutoCAD R12 and release thirteen. A respondent who reported using the software for one year reported indicated the use of only 15% of the available commands, while another one-year veteran reported using 30% of the command set. A respondent who reported using AutoCAD for four years had used only 12% of the command set. One respondent who reported using AutoCAD for two years indicated the use of 44% of the available commands in AutoCAD R13. The highest percentage of command use, 58%, was derived from the survey that a five-year user of AutoCAD had returned. The data do not support a correlation between the percentage of commands used versus years of experience.
AutoCAD R13 Command Usage and Third Party Packages.

The relationship between percentage of total AutoCAD commands used and the usage of third party packages added to AutoCAD by the respondents is as follows. Seven of the twenty-two respondents used third party packages. The range of percentage of AutoCAD commands used for those who used third party packages was from 26% to 55%. The range of percentages for those who did not use a third party package was from 12% to 54%.

With one exception, all of those using a third package indicated having five years of experience using AutoCAD. This would suggest that there may be a relationship between years of experience in the use of AutoCAD and the likelihood of using a third party package. Further investigation into this potential relationship would seem to be warranted. The one respondent that was the exception indicated two years of experience using AutoCAD and employed thirty one percent of the available AutoCAD commands and one percent of the available system variables.
CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This chapter summarizes the procedures followed for this study, presents the
findings of the study along with the associated conclusions made by the researcher, and
makes recommendations based on the findings and conclusions of this report.

Summary

The primary purpose of this study was to identify commands most frequently used
in the industrial application of AutoCAD among respondents to the survey instrument,
within the local drafting community, which were needed to reach a desired level of
competency with regard to the use of the AutoCAD software product. A secondary
purpose was to identify the relationship, if any, between the release thirteen commands
used by the respondents and commands carried over from release twelve.

Information for this study was obtained through the use of surveys sent to 90
businesses located in the greater Las Vegas area. The names and phone numbers of
business were obtained by researching the local telephone directory yellow pages under
the following subjects: architects, general contractors, civil, structural, mechanical and
electrical engineers, research and development organizations, gaming development
organizations, and major hotels. Names and numbers of business were also obtained
from students enrolled in the CAD program at the Community College of Southern
Nevada who were willing to provide them. Twenty-two usable surveys were returned within one year from the date of initial distribution.

Extent of AutoCAD R13 Command Usage.

None of the respondents used all of the available AutoCAD R13 commands. Mean percentage of command usage of all of the respondents was 34%. This amounted to slightly more than one-third of the entire command set. A single respondent used just over 10% of the available commands while another respondent used 55% percent of them. With one exception, all respondents indicated that they used less than half of the available release thirteen commands each time they opened a drawing session.

100% of the respondents indicated that they used the Line, Zoom, Save, Erase, Fillet, Pan, and Insert commands each time they opened a drawing session. All of these commands were available in the previous release of AutoCAD. It was interesting to note that neither “Quit” nor “End” was selected. Use of these of one of these two commands would be required in order to end a drafting session. “Quit” was selected by 82% of the respondents and “End” was selected by 68% of the respondents. Furthermore, it was interesting to note that the primitive commands “Arc” and “Circle” were not in the list. However, they do appear in the range discussed in the following paragraph.

Ninety to ninety-nine percent of the respondents selected the following as commands used each time they opened a drawing session: Break, Copy, Layer, Leader, Linetype, Mirror, Move, Open, Osnap, Plot, Purge, Redraw, Regen, Scale, Trim. Arc, Change, Chprop, Extend, List, Ltscale, Offset, Ortho, Pline, Stretch, and Wblock. Only one of these commands was not a carryover from the previous release of AutoCAD.
Therefore, 96% of the commands used by 90% to 99% of the respondents were carryover from release twelve.

Eighty to eighty-nine percent of the respondents selected the following as commands used each time they opened a drawing session: Block, Circle, Dtext, Explode, Pedit, Rotate, Style, Undo, Dist, Hatch, Menu, Oops, Quit, Quit, and Saveas. All of them are available in release twelve.

Seventy to seventy-nine percent of the respondents selected the following as commands used each time they opened a drawing session: Ddinsert, Dim, Intersect, Redo, Snap, Array, Chamfer, Load, U, and Xplode. Ninety percent of these commands were available in AutoCAD R12.

Sixty to sixty-nine percent of the respondents selected the following as commands used each time a drawing session is encountered: Attedit, Bhatch, Color, Ddedit, Dimedit, End, Files, Limits, New, Qsave, Point, Text, View, and View. Ninety-two percent of them were available in AutoCAD R12.

Fifty to fifty-nine percent of the respondents selected the following as commands used each time they opened drawing session: Area, Blipmode, Config, Ddatte, Ddmodify, Ddosnap, Dimcontinue, Dimstyle, Dimtedit, Divide, Dragmode, Donut, Ellipse, Grid, Polygon, Pspace, Redrawall, Regenall, Rename, Select, Setvar, Shell, Ucsicon, and Units. Seventy-nine percent of them were available in release twelve.

Of the commands selected by 40% to 49% of the respondents 64% of them were carried over from release twelve. Of the commands selected by 30% to 39% of the respondents, 42% were available in release twelve. Of the commands selected by 20% to 29% of the respondents, 58% of them were available in release twelve. Of the commands
selected by 10% to 19% of the respondents, 46% were available in release twelve. Of the commands selected by 1% to 9% of the respondents, 36% were available in release twelve. Of the 45 commands not selected by any of the respondents, 20% of them were carried over from release twelve.

Conclusions

On the basis of the data presented in the study the following conclusions appear warranted:

1. None of the respondents used the entire command set available to them.
2. On the average, respondents used less than 35% of the command set available to them.
3. Respondents were more likely to use a command from the previous release of AutoCAD than use a new one available in release thirteen.
4. Respondents tended to choose two-dimensional drafting commands over three-dimensional drafting commands.
5. Time in service using AutoCAD had little impact on the respondent’s choice of commands use during a drafting session.
6. The use of third party software had little impact on the choices of commands used during a drafting session.

Recommendations

Of the respondents, the average user of AutoCAD used less than 35% of the commands available in release thirteen. It is interesting to note that 50% or more of the respondents chose 95 commands that they would use each time they opened a drafting session. This amounts to 35% of the available command set. Commands analyzed as
most used by the respondents were commands required for two-dimensional drafting. Consequently, the following recommendations are presented:

1. Instruction should be provided for all of the commands available in AutoCAD R13. However, the 95 most commonly used commands could be introduced to the learner in beginning level classes. By doing so, it could increase the likelihood of employability in the drafting community within the greater Las Vegas area. Lesser-used commands could be taught in upper level classes.

2. Analysis of the data indicated that the commands used by the respondents during a drawing session were more likely to be ones carried over from release twelve than commands unique to AutoCAD R13. Of the 95 commands selected by 50% of the respondents, 92% of those commands were carried over from AutoCAD R12. If a curriculum were in place to provide training in AutoCAD R12, any curriculum changes required for training in AutoCAD R13 would be minimal. Updating the curriculum on regular intervals would not be difficult and would be in the best interest of the learner.

3. A study of CADD programs at other colleges and universities should be performed.

4. A population should be identified and surveyed on a regular schedule in order to follow trends in AutoCAD command usage. The survey used in this study would work, but there is a better way. AutoCAD has a mechanism by which it automatically keeps a log of all commands used during a drafting session. With proper programming technique, this log can be gathered automatically, tabulated, and data stored for later analysis. Consequently, the operator of the
CAD station would not have to take time out of his/her schedule to fill out a survey. Moreover, the researcher could avoid pitfalls involving the ability of the respondent to remember frequency of command usage and pitfalls involving respondent bias.

1. The information provided in this study should be made available to all instructors and administrators of the CADD program at the community college.

2. The information provided in this study should be made available to all secondary education drafting instructors and to the curriculum department of the Clark County School District.
APPENDIX A

QUESTIONNAIRE
AutoCAD R13 Command Use Survey

By

David J. Brodersen

Graduate Student

University of Nevada, Las Vegas
AutoCAD Curriculum Research Project

Survey

Prepared by

David J. Brodersen

Graduate Student

University of Nevada, Las Vegas
TABLE OF CONTENTS

HOW TO USE THIS BOOK .. iii
SAMPLE ANSWERS .. iv
PRELIMINARY SURVEY ... 1
AUTOCAD COMMAND USE SURVEY ... 2
AUTOCAD VARIABLE USE SURVEY .. 13
HOW TO USE THIS BOOK

Thank you for taking the time out of your busy schedules to fill out this survey. The following instructions will need to be followed explicitly in order to assure an accurate response.

♦ Do Not Sign This Survey.

♦ There are two types of response methods in this survey; see the next page for directions

♦ Please circle appropriate responses completely.

♦ Circle each response individually when more than one answer is offered.

♦ Please answer all questions.

♦ Avoid "guessing" at the answer(s).

♦ If you cannot answer a question fully, please follow up as much as practical to obtain an answer.

♦ Since I am a graduate student, I have been given a deadline to complete this study and compile the results. Therefore I ask that you return this questionnaire as soon as possible in the envelope provided.

♦ Questions that ask you to agree or disagree are seeking out your personal experience with the use of AutoCAD drafting software. Do not base your response on the experience or opinion of another AutoCAD user.

♦ Company and Personal information are optional and should be placed only in the areas requesting that information at the end of the survey.
AUTOCAD COMMAND USE SURVEY

SAMPLE ANSWERS

Please circle one response only. Base your answer on your personal experience with AutoCAD only. Do not use an opinion other than your own.

Every time that I work on a drawing with AutoCAD I use the ______ command.

1. Frog

Agree Strongly.........Agree Undecided.... DisagreeStrongly Disagree

For those answers that require a written response, please print clearly.

If you need to contact me you may do so at:

Dave Brodersen
CCSN
700 College Dr.
Henderson, NV 89015

Voice: (702) 564-7484
Fax: (702) 564-7596

Email.......................... daveb@nevada.edu
AUTOCAD PRELIMINARY SURVEY

Please Circle the Correct answer or fill in the blanks as required.

1. How many years have you been using AutoCAD?
 0.1-1.9 2-2.9 3-3.9 4-4.9 5 and over

2. What kind of drafting do you do?
 Mechanical Architectural Civil Electronic
 Other: __________________________

3. Do you use a third party add on to AutoCAD? (Such as LandCADD, AutoArchitect, etc.)
 Yes No If yes, what is the package called?

4. Do you use AutoLISP?
 Yes No

5. What operating system do you use?
 DOS Windows NT Windows 3.1x UNIX OS2
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the _________ command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3darray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dmesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dpoly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dsin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3dsout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>About</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acisin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acisout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Align</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameconvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Ase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aseadmin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aseexport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aselinks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aserows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aeselect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aeselect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Asesqled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Aseunload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Attdef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>Attdisp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strongly Disagree</td>
</tr>
</tbody>
</table>
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ___________ command.

28. Attedit........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
29. Attext........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
30. Attref........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
31. Audit..........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
32. Base............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
33. Bhatch..........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
34. Blipmode.........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
35. Block.............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
36. Boundary........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
37. Box.................................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
38. Break............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
39. Cal.................................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
40. Chamfer.........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
41. Change..........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
42. Chprop...........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
43. Circle............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
44. Toc.................................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
45. Color..............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
46. Compile..........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
47. Cone..............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
48. Config...........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
49. Copy...............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
50. Cylinder..........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
51. Dblist.............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
52. Ddattdef.........................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
53. Ddatte............................Agree StronglyAgreeUndecidedDisagree Strongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ____________ command.

54. Ddatext Agree Strongly Agree Undecided Disagree Strongly Disagree
55. Ddchprop Agree Strongly Agree Undecided Disagree Strongly Disagree
56. Ddcolor Agree Strongly Agree Undecided Disagree Strongly Disagree
57. Ddedit Agree Strongly Agree Undecided Disagree Strongly Disagree
58. Ddemodes Agree Strongly Agree Undecided Disagree Strongly Disagree
59. Ddgrips Agree Strongly Agree Undecided Disagree Strongly Disagree
60. Ddim Agree Strongly Agree Undecided Disagree Strongly Disagree
61. Ddinsert Agree Strongly Agree Undecided Disagree Strongly Disagree
62. Ddlmodes Agree Strongly Agree Undecided Disagree Strongly Disagree
63. Ddltype Agree Strongly Agree Undecided Disagree Strongly Disagree
64. Ddmodify Agree Strongly Agree Undecided Disagree Strongly Disagree
65. Ddosnap Agree Strongly Agree Undecided Disagree Strongly Disagree
66. Ddptype Agree Strongly Agree Undecided Disagree Strongly Disagree
67. Ddrename Agree Strongly Agree Undecided Disagree Strongly Disagree
68. Ddsmodes Agree Strongly Agree Undecided Disagree Strongly Disagree
69. Ddselect Agree Strongly Agree Undecided Disagree Strongly Disagree
70. Dducs Agree Strongly Agree Undecided Disagree Strongly Disagree
71. Dducsp Agree Strongly Agree Undecided Disagree Strongly Disagree
72. Ddunits Agree Strongly Agree Undecided Disagree Strongly Disagree
73. Ddview Agree Strongly Agree Undecided Disagree Strongly Disagree
74. Ddvpoint Agree Strongly Agree Undecided Disagree Strongly Disagree
75. Delay Agree Strongly Agree Undecided Disagree Strongly Disagree
76. Dim Agree Strongly Agree Undecided Disagree Strongly Disagree
77. Dimaligned Agree Strongly Agree Undecided Disagree Strongly Disagree
78. Dimangular Agree Strongly Agree Undecided Disagree Strongly Disagree
79. Dimbaseline Agree Strongly Agree Undecided Disagree Strongly Disagree
Every time that I work on a drawing with AutoCAD I use the ________ command.

80. Dimcenter Agree Strongly Agree Undecided Disagree Strongly Disagree
81. Dimcontinue Agree Strongly Agree Undecided Disagree Strongly Disagree
82. Dimdiameter Agree Strongly Agree Undecided Disagree Strongly Disagree
83. Dimedit Agree Strongly Agree Undecided Disagree Strongly Disagree
84. Dimlinear Agree Strongly Agree Undecided Disagree Strongly Disagree
85. Dimordinate Agree Strongly Agree Undecided Disagree Strongly Disagree
86. Dimoverride Agree Strongly Agree Undecided Disagree Strongly Disagree
87. Dimradius Agree Strongly Agree Undecided Disagree Strongly Disagree
88. Dimstyle Agree Strongly Agree Undecided Disagree Strongly Disagree
89. Dimtedit Agree Strongly Agree Undecided Disagree Strongly Disagree
90. Dist Agree Strongly Agree Undecided Disagree Strongly Disagree
91. Divide Agree Strongly Agree Undecided Disagree Strongly Disagree
92. Dlgcolor Agree Strongly Agree Undecided Disagree Strongly Disagree
93. Donut Agree Strongly Agree Undecided Disagree Strongly Disagree
94. Dragmode Agree Strongly Agree Undecided Disagree Strongly Disagree
95. Dtext Agree Strongly Agree Undecided Disagree Strongly Disagree
96. Dview Agree Strongly Agree Undecided Disagree Strongly Disagree
97. Dxbin Agree Strongly Agree Undecided Disagree Strongly Disagree
98. Dxfin Agree Strongly Agree Undecided Disagree Strongly Disagree
99. Dxfout Agree Strongly Agree Undecided Disagree Strongly Disagree
100. Edge Agree Strongly Agree Undecided Disagree Strongly Disagree
101. Edgesurf Agree Strongly Agree Undecided Disagree Strongly Disagree
102. Elev Agree Strongly Agree Undecided Disagree Strongly Disagree
103. Ellipse Agree Strongly Agree Undecided Disagree Strongly Disagree
104. End Agree Strongly Agree Undecided Disagree Strongly Disagree
105. Erase Agree Strongly Agree Undecided Disagree Strongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the __________ command.

106. Explode Agree Strongly Agree Undecided Disagree Strongly Disagree
107. Extend Agree Strongly Agree Undecided Disagree Strongly Disagree
108. Extrude Agree Strongly Agree Undecided Disagree Strongly Disagree
109. Files Agree Strongly Agree Undecided Disagree Strongly Disagree
110. Fill Agree Strongly Agree Undecided Disagree Strongly Disagree
111. Fillet Agree Strongly Agree Undecided Disagree Strongly Disagree
112. Filter Agree Strongly Agree Undecided Disagree Strongly Disagree
113. Giffin Agree Strongly Agree Undecided Disagree Strongly Disagree
114. Gloss Agree Strongly Agree Undecided Disagree Strongly Disagree
115. Gloss Trans Agree Strongly Agree Undecided Disagree Strongly Disagree
116. Graphscr Agree Strongly Agree Undecided Disagree Strongly Disagree
117. Grid Agree Strongly Agree Undecided Disagree Strongly Disagree
118. Group Agree Strongly Agree Undecided Disagree Strongly Disagree
119. Hatch Agree Strongly Agree Undecided Disagree Strongly Disagree
120. Hatchedit Agree Strongly Agree Undecided Disagree Strongly Disagree
121. Help Agree Strongly Agree Undecided Disagree Strongly Disagree
122. Hide Agree Strongly Agree Undecided Disagree Strongly Disagree
123. Id Agree Strongly Agree Undecided Disagree Strongly Disagree
124. Insert Agree Strongly Agree Undecided Disagree Strongly Disagree
125. Interfere Agree Strongly Agree Undecided Disagree Strongly Disagree
126. Intersect Agree Strongly Agree Undecided Disagree Strongly Disagree
127. Isoplane Agree Strongly Agree Undecided Disagree Strongly Disagree
128. Layer Agree Strongly Agree Undecided Disagree Strongly Disagree
129. Leader Agree Strongly Agree Undecided Disagree Strongly Disagree
130. Lengthen Agree Strongly Agree Undecided Disagree Strongly Disagree
131. Light Agree Strongly Agree Undecided Disagree Strongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ____________ command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>132. Limits</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>133. Line</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>134. Linetype</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>135. List</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>136. Load</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>137. Logfileoff</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>138. Logfileon</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>139. Ltscale</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>140. Makepreview</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>141. Massprop</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>142. Matlib</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>143. Measure</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>144. Menu</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>145. Minsert</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>146. Mirror</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>147. Mirror3d</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>148. Mledit</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>149. Mline</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>150. Mlstyle</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>151. Move</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>152. Mslide</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>153. Mspace</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>154. Mtext</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>155. Mtprop</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>156. Multiple</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>157. Mview</td>
<td>Agree Strongly</td>
<td>Agree</td>
<td>Undecided</td>
<td>Disagree</td>
<td>Strongly Disagree</td>
</tr>
</tbody>
</table>
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ____________ command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>158. Moveup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159. New</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160. Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161. Oops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162. Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163. Ortho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164. Osnap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165. Pan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166. Pcxin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167. Pedit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168. Pface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169. Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170. Pline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171. Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172. Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173. Polygon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174. Preferences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175. Psdrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176. Psfill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177. Psin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178. Psout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179. Pspace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180. Purge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181. Qsave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182. Qtext</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183. Quit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ___________ command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>184. Ray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185. Rconfig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186. Recover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187. Rectang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188. Redefine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189. Redo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190. Redraw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191. Redrawall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192. Regen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193. Regenall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194. Regenauto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195. Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196. Reinit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197. Rename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198. Render</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199. Renderunload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200. Rendscr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201. Replay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202. Resume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203. Revolve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204. Revsurf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205. Rmat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206. Rotate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207. Rotate3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208. Rpref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209. Rscript</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the __________ command.

210. Rulesurf Agree Strongly Agree Undecided Disagree Strongly Disagree
211. Save Agree Strongly Agree Undecided Disagree Strongly Disagree
212. Saveas Agree Strongly Agree Undecided Disagree Strongly Disagree
213. Saveasr12 Agree Strongly Agree Undecided Disagree Strongly Disagree
214. Saveimg Agree Strongly Agree Undecided Disagree Strongly Disagree
215. Scale Agree Strongly Agree Undecided Disagree Strongly Disagree
216. Scene Agree Strongly Agree Undecided Disagree Strongly Disagree
217. Script Agree Strongly Agree Undecided Disagree Strongly Disagree
218. Section Agree Strongly Agree Undecided Disagree Strongly Disagree
219. Select Agree Strongly Agree Undecided Disagree Strongly Disagree
220. Setvar Agree Strongly Agree Undecided Disagree Strongly Disagree
221. Shade Agree Strongly Agree Undecided Disagree Strongly Disagree
222. Shape Agree Strongly Agree Undecided Disagree Strongly Disagree
223. Shell Agree Strongly Agree Undecided Disagree Strongly Disagree
224. Sketch Agree Strongly Agree Undecided Disagree Strongly Disagree
225. Slice Agree Strongly Agree Undecided Disagree Strongly Disagree
226. Snap Agree Strongly Agree Undecided Disagree Strongly Disagree
227. Solid Agree Strongly Agree Undecided Disagree Strongly Disagree
228. Spell Agree Strongly Agree Undecided Disagree Strongly Disagree
229. Sphere Agree Strongly Agree Undecided Disagree Strongly Disagree
230. Spline Agree Strongly Agree Undecided Disagree Strongly Disagree
231. Splinedit Agree Strongly Agree Undecided Disagree Strongly Disagree
232. Stats Agree Strongly Agree Undecided Disagree Strongly Disagree
233. Status Agree Strongly Agree Undecided Disagree Strongly Disagree
234. Stlout Agree Strongly Agree Undecided Disagree Strongly Disagree
235. Stretch Agree Strongly Agree Undecided Disagree Strongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the ______ command.

236. Style..................................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
237. Subtract..............................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
238. TabletAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
239. TabsurfAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
240. Text..................................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
241. TextscrAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
242. TiffinAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
243. TimeAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
244. Tolerance..............................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
245. TorusAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
246. TraceAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
247. Treestat..............................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
248. TrimAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
249. U..................................Agree StronglyAgreeUndecidedDisagreeStrongly Disagree
250. UcsAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
251. UcsiconAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
252. UndefineAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
253. UndoAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
254. UnionAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
255. UnitsAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
256. ViewAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
257. ViewresAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
258. VlconvAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
259. VplayerAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
260. VpointAgree StronglyAgreeUndecidedDisagreeStrongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I use the __________ command.

261. Vports Agree Strongly Agree Undecided Disagree Strongly Disagree
262. Vslide Agree Strongly Agree Undecided Disagree Strongly Disagree
263. Wblock Agree Strongly Agree Undecided Disagree Strongly Disagree
264. Wedge Agree Strongly Agree Undecided Disagree Strongly Disagree
265. Xbind Agree Strongly Agree Undecided Disagree Strongly Disagree
266. Xline Agree Strongly Agree Undecided Disagree Strongly Disagree
267. Xplode Agree Strongly Agree Undecided Disagree Strongly Disagree
268. Xref Agree Strongly Agree Undecided Disagree Strongly Disagree
269. Xrefclip Agree Strongly Agree Undecided Disagree Strongly Disagree
270. Zoom Agree Strongly Agree Undecided Disagree Strongly Disagree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the ____________ variable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>271. Acadprefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272. Acadver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273. Aflags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274. Angbase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275. Angdir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276. Aperture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>277. Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278. Attdia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279. Attmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280. Attrq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281. Auditctl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282. Aunits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283. Auprec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284. Backz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285. Blipmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286. Cdate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287. Cecolor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288. Celtscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289. Celtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290. Chamfera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291. Chamferb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>292. Chamferc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293. Chamferd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294. Chammode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295. Circlerad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296. Claye r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AUTOCA D R13 - COMMAND USE SURVEY

EVERY TIME THAT I WORK ON A DRAWING WITH AUTOCA D I MANIPULATE THE ____________ variable.

297. Cmdactive........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
298. Cmddia.............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
299. Cmdecho...........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
300. Cmdnames.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
301. Cmljust...........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
302. Cmlscale..........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
303. Cmlstyle..........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
304. Coords............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
305. Cvport............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
306. DateAgree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
307. Dbmod............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
308. Dectcust.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
309. Dctmain..........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
310. Delobj............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
311. Diastat...........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
312. Dimalt............Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
313. Dimalttld........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
314. Dimalttf...........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
315. Dimaltttd.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
316. Dimaltzn.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
317. Dimaltzu.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
318. Dimaltz.........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
319. Dimaltzp........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
320. Dimalsz...........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
321. Dimaunit........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree
322. Dimaunitz........Agree Strongly.........AgreeUndecidedDisagreeStrongly Disagree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the ________ variable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agreement Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimblk</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimblk1</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimblk2</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimcen</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimclrd</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimclre</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimclrt</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimdec</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimdle</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimdl1</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimexe</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimexo</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimfit</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimgap</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimjust</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimlfac</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimlim</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimpost</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimrnd</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimsah</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimscale</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimsd1</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimsd2</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimse1</td>
<td>Agree Strongly</td>
</tr>
<tr>
<td>Dimse2</td>
<td>Agree Strongly</td>
</tr>
</tbody>
</table>
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the ___________ variable.

348. Dimsho Agree Strongly Agree Undecided Disagree Strongly Disagree
349. Dimsoxd Agree Strongly Agree Undecided Disagree Strongly Disagree
350. Dimstyle Agree Strongly Agree Undecided Disagree Strongly Disagree
351. Dimtad Agree Strongly Agree Undecided Disagree Strongly Disagree
352. Dimtdec Agree Strongly Agree Undecided Disagree Strongly Disagree
353. Dimtfac Agree Strongly Agree Undecided Disagree Strongly Disagree
354. Dimtih Agree Strongly Agree Undecided Disagree Strongly Disagree
355. Dimtix Agree Strongly Agree Undecided Disagree Strongly Disagree
356. Dimtm Agree Strongly Agree Undecided Disagree Strongly Disagree
357. Dimtofl Agree Strongly Agree Undecided Disagree Strongly Disagree
358. Dimtoh Agree Strongly Agree Undecided Disagree Strongly Disagree
359. Dimtol Agree Strongly Agree Undecided Disagree Strongly Disagree
360. Dimtolj Agree Strongly Agree Undecided Disagree Strongly Disagree
361. Dimtp Agree Strongly Agree Undecided Disagree Strongly Disagree
362. Dimtsz Agree Strongly Agree Undecided Disagree Strongly Disagree
363. Dimtpv Agree Strongly Agree Undecided Disagree Strongly Disagree
364. Dimtxsyt Agree Strongly Agree Undecided Disagree Strongly Disagree
365. Dimtxt Agree Strongly Agree Undecided Disagree Strongly Disagree
366. Dimtzin Agree Strongly Agree Undecided Disagree Strongly Disagree
367. Dimunit Agree Strongly Agree Undecided Disagree Strongly Disagree
368. Dimupt Agree Strongly Agree Undecided Disagree Strongly Disagree
369. Dimzin Agree Strongly Agree Undecided Disagree Strongly Disagree
370. Dispsilh Agree Strongly Agree Undecided Disagree Strongly Disagree
371. Distance Agree Strongly Agree Undecided Disagree Strongly Disagree
372. Donutid Agree Strongly Agree Undecided Disagree Strongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the __________ variable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>373. Donutod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>374. Dragmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375. Dragp1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376. Dragp2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377. Dwgcodepage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378. Dwgname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>379. Dwgprefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380. Dwgtitled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381. Dwgwrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382. Edgemode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>383. Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384. Expert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385. Explmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386. Extmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>387. Extmin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>388. Facetres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389. Ffillimit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390. Filedia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391. Filetread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>392. Fillmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>393. Fontalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>394. Fontmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395. Frontz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>396. Gridmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>397. Gridunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398. Gripblock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the __________ variable.

399. Gripcolor Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
400. Griffhot............. Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
401. Grips.................. Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
402. Gripsize............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
403. Handles............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
404. Highlight............. Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
405. Hpang............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
406. Hpbound............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
407. Hpdoubl............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
408. Hpname............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
409. Hpscale............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
410. Hpspace............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
411. Insbase............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
412. Insname............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
413. Isolines............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
414. Lastangle............ Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
415. Lastpoint............ Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
416. Lenslength......... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
417. Limcheck............. Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
418. Limmmax............ Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
419. Limmin............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
420. Locale................ Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
421. Loginname........... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
422. Ltscale............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
423. Lunits............... Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
424. Luprec................ Agree Strongly..........Agree.....UndecidedDisagreeStrongly Disagree
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the __________ variable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>425. Maxactvp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426. Maxsort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427. Menuctl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428. Menuecho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429. Menuname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430. Mirrtext</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431. Modemacro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432. Mtexted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433. Offsetdist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434. Orthomode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435. Osmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436. Pdmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437. Pdsize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438. Pellipse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>439. Perimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440. Pfacevmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441. Pickadd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442. Pickauto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443. Pickbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444. Pickdrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445. Pickfirst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446. Pickstyle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447. Platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>448. Plinegen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>449. Plinewid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450. Plotid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time I work on a drawing with AutoCAD I manipulate the ____________ variable.

451. Plotrotmode........ Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
452. Plotter................. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
453. Polysides............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
454. Popups.................. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
455. Projmode............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
456. Psitstdscale............. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
457. Psprolog................ Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
458. Psquality............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
459. Qtextmod............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
460. Rasterpreview........... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
461. Re-init.................. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
462. Regenmode.............. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
463. Riaspect............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
464. Ribackg............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
465. Riedge.................. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
466. Rigamut............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
467. Rigrey.................. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
468. Rithresh............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
469. Savefile............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
470. Savename............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
471. Savetime............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
472. Screenboxes............ Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
473. Screenmode............. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
474. Screensize.............. Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
475. Shadedge............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree
476. Shadediff............... Agree Strongly...........AgreeUndecidedDisagreeStrongly Disagree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the __________ variable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>477. Shpname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>478. Sketchinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479. Skpoly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480. Snapang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481. Snapbase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>482. Snapisopair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>483. Snapmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484. Snapstyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>485. Snapunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>486. Sortents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>487. Splframe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488. Splinesegs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>489. Splinetype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490. Surftab1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>491. Surftab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>492. Surfstyle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>493. Surfp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>494. SurfV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>495. Syscodepage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>496. Tabmode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497. Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>498. Tdcreate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>499. Tdindwg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500. Tdupdate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501. Tdusrtimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502. Tempprefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Every time that I work on a drawing with AutoCAD I manipulate the ________ variable.

503. Texteval............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
504. Textfill............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
505. Textqlty............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
506. Textsize............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
507. Textstyle............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
508. Thickness............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
509. Tilemode............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
510. Tracewid............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
511. Treedepth............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
512. Treemax.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
513. Trimmode............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
514. Ucsfollow............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
515. Ucsicon.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
516. Ucsname.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
517. Ucsorg.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
518. Ucsxdir.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
519. Ucsydir.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
520. Undoctl.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
521. Undomarks.......... Agree Strongly............ Agree Undecided Disagree Strongly Disagree
522. Unitmode............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
523. Viewctr.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
524. Viewdir.............. Agree Strongly............ Agree Undecided Disagree Strongly Disagree
525. Viewmode............ Agree Strongly............ Agree Undecided Disagree Strongly Disagree
526. Viewsiz...
AutoCAD R13 - Command Use Survey

Every time that I work on a drawing with AutoCAD I manipulate the __________ variable.

<table>
<thead>
<tr>
<th></th>
<th>Agree Strongly</th>
<th>Agree</th>
<th>Undecided</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>529. VMAX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530. VMIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>531. WorldUCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>532. WorldVIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>533. XREFCTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optional Information

The following items are optional. You need not answer if you wish.

1. My position and duties:

2. Company Name and Mailing Address:

3. Where you learned to use AutoCAD:

4. Additional Comments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Computer Aided Drafting Survey of AutoCAD R13 command usage.

Date~
Name~
Address~
City~, State~ Zip~

One of the key issues when developing curriculum is identifying a set of outcomes to be achieved by the end of a given class. In order to identify outcomes that are up to date, research is performed regarding AutoCAD command usage in the local community. In order to accomplish this end, the following survey has been delivered to you for completion as per our telephone conversation. A four week time line has been budgeted for the distribution, completion, and return of all surveys. When you have completed your survey, place it in the envelope provided and contact me. I will come and pick it up.

Thank you for volunteering to fill out this survey. Information gleaned from the survey will help tremendously in curriculum development within the CAD program at the Community College of Southern Nevada.

David J. Brodersen,
Professor CCSN

cc: Dr. James Pomeroy,
Department Chair

ENCLOSURES: AUTOCAD RELEASE THIRTEEN SURVEY.
APPENDIX C

COMMANDS CHOSEN BY RESPONDENTS
COMMANDS CHOSEN BY RESPONDENTS

The following is a list of commands chosen by the respondents broken down by percentages of respondents choosing the command. Any command that is a carryover from the previous release of AutoCAD is underlined.

100% of the respondents selected the following as commands used each time a drawing session is encountered:

Erase, Fillet, Insert, Line, Pan, Save, and Zoom.

90% to 99% of the respondents selected the following as commands used each time a drawing session is encountered: Break, Copy, Layer, Leader, Linetype, Mirror, Move, Open, Osnap, Plot, Purge, Redraw, Regen, Scale, Trim, Arc, Change, Chprop, Extend, List, Ltscale, Offset, Ortho, Pline, Stretch, and Wblock.

80% to 89% of the respondents selected the following as commands used each time a drawing session is encountered: Block, Circle, Dtext, Explode, Pedit, Rotate, Style, Undo, Dist, Hatch, Menu, Oops, Quit, Quit, and Saveas.

70% to 79% of the respondents selected the following as commands used each time a drawing session is encountered: Ddinsert, Dim, Intersect, Redo, Snap, Array, Chamfer, Load, U, and Xplode.

60% to 69% of the respondents selected the following as commands used each time a drawing session is encountered: Attedit, Bhatch, Color, Ddedit, Dimedit, End, Files, Limits, New, Qsave, Point, Text, View, and View.
50% to 59% of the respondents selected the following as commands used each time a drawing session is encountered: Area, Blipmode, Config, Ddatte, Ddmodify, Ddosnap, Dimcontinue, Dimstyle, Dimtedit, Divide, Dragmode, Donut, Ellipse, Grid, Polygon, Pspace, Redrawall, Regenall, Rename, Select, Setvar, Shell, Ucsicon, and Units.

40% to 49% of the respondents selected the following as commands used each time a drawing session was encountered: Appload, Attdef, Attext, Ddim, Ddlmodes, Dimaligned, Dimangular, Dimcenter, Dimdiameter, Dimlinear, Dimradius, Dview, Hatchedit, Id, Measure, Mspace, Multiple, Mview, Solid, Ucs, Viewrres, and Vports.

30% to 39% of the respondents selected the following as commands used each time a drawing session was encountered: Aperture, Ddchprop, Ddgrips, Ddltype, Ddview, Dimbaseline, Filter, Preferences, Qtext, Regenauto, Saveasrl2, and Spline.

20% to 29% of the respondents selected the following as commands used each time a drawing session was encountered: Attredef, Audit, Base, Box, Cal, Ddattdatdef, Ddattext, Ddemodes, Ddptype, Ddselect, Ddunits, Dimordinate, Fill, Hide, Mtext, Mvsetup, Recover, Script, Spell, Splinedit, Status, Tablet, and Time.

10% to 19% of the respondents selected the following as commands used each time a drawing session was encountered: Align, Attdisp, Boundary, Ddcolor, Ddrename, Dducsp, Ddypoint, Dimoverride, Dxfin, Dxfout, Extrude, Help, Lengthen, Minsert, Mline, Mslide, Ray, Rectang, Redefine, Reinit, Shape, Tolerance, Vpoint, Vslide, and Xrefclip.

10% to 19% of the respondents selected the following as commands used each time a drawing session was encountered: 3d, 3dpoly, Ameconvert, Ase, Aseadmin, Aseexport, A selinks, Aserows, Aseselect, Asesqled, Aseunload, Compile, Dblist.
Ddmmodes, Dducs, Dlgcolor, Edgesurf, Graphscr, Group, Interfere, Isoplane, Mledit, Mlstyle, Mtprop, Plan, Psdrag, Psfill, Psin, Psout, Rconfig, Render, Rotate3d, Section, Shade, Sketch, Sphere, Stats, Subtract, Textscr, Tiffin, Toc, Trace, Undefine, Union, Vplayer, Wedge, and Xline.

None of the respondents selected the following as commands used each time a drawing session was encountered: 3darray, 3dface, 3dmesh, 3dsin, 3dsout, About, Acisin, Acisout, Cone, Cylinder, Delay, Dxbin, Edge, Gifin, Gloss Transparent Command, Gloss Command Line Area, Light, Logfileoff, Logfileon, Makepreview, Massprop, Matlab, Mirror3d, Pxin, Pface, Region, Renderunload, Rendscr, Replay, Resume, Revolve, Revsurf, Rmat, Rpref, Rscript, Rulesurf, Saveimg, Scene, Slice, Stlout, Tabsurf, Torus, Treestat, Vlconv, and Xbind.
BIBLIOGRAPHY

74

VITA

Graduate College
University of Nevada, Las Vegas

David John Brodersen

Home Address:
770 Anne Ln
Henderson, NV 89015

Degrees:
Associate in Applied Science, Electronic Engineering Technology, 1985
Graduated with High Honors
Community College of Southern Nevada

Associate of General Studies, 1989
Graduated with High Honors
Community College of Southern Nevada

Associate of Arts, 1990
Graduated with High Honors
Community College of Southern Nevada

Bachelor of Science, Secondary Education, 1993
Graduated Magna Cum Laude
University of Nevada, Las Vegas

Associate in Applied Science, Drafting Technology, CAD Emphasis, 1995
Graduated with High Honors
Community College of Southern Nevada

Special Honors and Awards:
Awarded AutoCAD Software R12 from AutoDESK, 1992
Winner of the Program Partner Training Competition in Lecture Delivery

Certificate of Appreciation – Clark County School District, 1988
For aid rendered to Drafting Students

Biographee in Who's Who in America, 48th Edition

Induction into Phi Theta Kappa National Honor Society, 1988

Induction into the Golden Key National Honor Society, 1985

Publications:

Brodersen, D. J. (1994) The Wonderful World of Internet, AutoDESK Learning Curve, March/April Issue

Thesis Title: A Study To Determine The Minimum AutoCAD Command Set For Computer Aided Drafting In The Las Vegas Area.

Thesis Examination Committee:

Chairperson, Dr. Clifford McClain, Ph. D.
Committee Member, Dr. Paul Meacham, Ph. D.
Committee Member, Sterling Saddler, Ph. D.
Graduate Faculty Representative, Porter Troutman, Ed. D.