UNIVERSITY LIBRARIES

UNLV Theses, Dissertations, Professional Papers, and Capstones

12-1990

Hydrogeology and Hydrogeochemistry of the Shallow Alluvial Aquifer Zone, Las Vegas Valley, Nevada

Harry Stephen Wild Jr. University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

Part of the Geochemistry Commons, Geology Commons, Hydrology Commons, and the Water Resource Management Commons

Repository Citation

Wild, Harry Stephen Jr., "Hydrogeology and Hydrogeochemistry of the Shallow Alluvial Aquifer Zone, Las Vegas Valley, Nevada" (1990). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1114. http://dx.doi.org/10.34917/2493756

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

HYDROGEOLOGY AND HYDROGEOCHEMISTRY OF THE

SHALLOW ALLUVIAL AQUIFER ZONE,

LAS VEGAS VALLEY, NEVADA

by

Harry Stephen Wild Jr.

A thesis submitted in partial fulfillment of the requirements for the degree of

> Master of Science in Geoscience

Department of Geoscience University of Nevada, Las Vegas December, 1990

ABSTRACT

In Las Vegas Valley, Nevada, the shallow alluvial aquifer zone is a possible source of contamination to the principal alluvial aquifers that provide 30% of the public drinking water supply for the valley. Development of the principal aquifers has lowered pressure head in the principal aquifers and created the potential for downward seepage from the shallow aquifer zone. This study was undertaken to characterize the hydrogeology and hydrogeochemistry of the shallow alluvial aquifer zone and to compare the hydrogeochemistry of the shallow and principal alluvial aquifer zones

A 37 well shallow ground water monitoring network was established and water-level, water-quality, and isotopic data were collected between June, 1988 and December, 1989. Water levels fluctuate seasonally and are influenced by land use practices. Irrigation influenced water levels are higher in fall and lower in winter while the natural water level pattern has lows in the fall and highs in the winter. Water temperature, pH, and EC appear to be unaffected by local land use practices. Temperatures are high in fall and low in spring. pH remains fairly constant near neutrality throughout the year. EC appears to be controlled by alternating varible length cycles of concentration and dilution of saline water near the water table.

Water quality evolves along flow path from a fresh $Ca^{2+}-Mg^{2+}-HCO_3^{-}$ type water with TDS around 300 mg/l in the north to a moderately saline $Ca^{2+}-Mg^{2+}-SO_4^{2-}$ type water with TDS around 8000 mg/l in the southeast near Las Vegas Wash. TDS varies temporally but does not follow a seasonal pattern. Ion ratios remain constant throughout the year. Water samples are generally oversaturated with respect to calcite, dolomite, and quartz, but are undersaturated with respect to gysum and amorphous silica. Delta D and δ^{18} O indicate that the water in the shallow aquifer zone originated as principal aquifer zone water.

Comparison of shallow to principal aquifer zone data reveals that Ca^{2+} , Mg^{2+} , Cl^- , SO_4^{2-} , TDS, SiO_2 , TOC, PO_4^{3-} , B, Mn, Se, and tritium are all suitable for use as natural tracers for tracing the downward leakage of water from the shallow to the principal aquifer zone.

Comparison of historical shallow aquifer zone data to the data generated during this investigation reveals that water levels in the shallow aquifer zone rose by an average of about 0.5 meter from 1972 to 1989 and that TDS increased by around 570 mg/l between 1981 and 1989.

Table of Contents

ABSTRACT	Fj
LIST OF FIGURES	<u>V</u>
LIST OF TABLES	<u>viii</u>
LIST OF ABBREVIATIONS	<u>i×</u>
ACKNOWLEDGMENTS	<u>×i</u>
INTRODUCTION	1
Historical Background	
Purpose	5
Objectives	6
Previous Works	_7_
ENVIRONMENTAL SETTING	16
Physiography	10
Climate	12
Geology	14
Bedrock	14
Valley-fill	14
Structure	18
Hydrogeology	20
METHODOLOGY	28
Literature Review	28
Monitoring Network	29
Well Numbering System	24
Ground-water Sampling	<u>3</u>]
Chemical Analyses	38
Isotopic Analyses	39
Land Use Practices	39
RESULTS AND DISCUSSION	
Water Levels	42
Temperature, pH, and Electrical Conductivity	48

Ground-water Geochemistry	<u> </u>
Major Ions	51
Spatial Variations	<u>51</u>
Temporal Variations	<u>65</u>
Nutrients	67
Geochemical Modeling	70
Summary Statistics and Water Quality Standards	<u>73</u>
Environmental Isotopes	78
Tritium Analyses	<u>50</u>
Stable Isotope Analyses	
Natural Tracers	33
Historical Trends	<u> </u>
SUMMARY AND CONCLUSIONS	<i>27</i>
FURTHER RESEARCH	103
	<u> </u>
REFERENCES CITED	<u>106</u>
	106
REFERENCES CITED	<u>106</u> 117
REFERENCES CITED	<u>106</u> 117 _117
REFERENCES CITED APPENDICES A. Well Location and Construction Data	106 117 _117 _122
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data	106 117 117 122 136
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data	106 117 117 122 136 136 143 149
REFERENCES CITED	106 117 117 122 136 136
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data D. Nutrient, Minor Constituent, and Isotope Data E. Trace Metal Data	106 117 117 122 136 136 143 149
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data D. Nutrient, Minor Constituent, and Isotope Data E. Trace Metal Data F. Pesticide and Herbicide Data	106 117 117 122 136 136 149 149 154
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data D. Nutrient, Minor Constituent, and Isotope Data E. Trace Metal Data F. Pesticide and Herbicide Data G. Water Level Hydrographs	106 117 117 122 136 136 143 144 152 154 154 164
REFERENCES CITED APPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data D. Nutrient, Minor Constituent, and Isotope Data E. Trace Metal Data F. Pesticide and Herbicide Data G. Water Level Hydrographs H. Time Series Temperature Plots	106 117 117 122 126 126 126 126 126 152 154 164 171
REFERENCES CITED A. PPENDICES A. Well Location and Construction Data B. Water Level and Physical Parameter Data C. Major Ion Data D. Nutrient, Minor Constituent, and Isotope Data E. Trace Metal Data F. Pesticide and Herbicide Data G. Water Level Hydrographs H. Time Series Temperature Plots I. Time Series pH Plots	106 117 117 122 136 136 143 144 152 154 154 164 164 178

ł

LIST OF FIGURES

Figure	Title	Page
1	Graph of Las Vegas Valley, Nevada population growth from 1910 to 2000.	ų T
2	Graph of Las Vegas Valley, Nevada water use from 1900 to 1987.	
3	Topographic map of southern Nevada and location of Las Vegas Valley study area.	
4	Map of major cultural features in southern Nevada and Las Vegas Valley study area.	2
5	Generalized geologic map of surficial valley-fill deposits in Las Vegas Valley, Nevada.	
6	Generalized cross section of the Las Vegas Valley, Nevada alluvial aquifer system.	24
7	Location and identification of shallow monitoring wells used in this investigation.	<u>30</u>
8	Map of surficial land use patterns in Las Vegas Valley, Nevada.	
9	Computer generated depth to water isobath map of the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	43
10	Computer generated generalized equipotential surface contour map of the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u></u> 4
11	Example of water level hydrographs of wells displaying Pat- tern 1 of seasonal water level fluctuations in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u></u> 5
12	Example of water level hydrographs of wells displaying Pat- tern 2 of seasonal water level fluctuations in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>46</u>

Figure	Title	Page
13	Trilinear diagram (% meq/l) of ground water from the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	
14	Computer generated isogram map of TDS of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>54</u>
15	Computer generated isogram map of Na ⁺ concentrations of ground water in the Las Vegas Valley, Nevada shallow allu- vial aquifer zone.	<u>50</u>
16	Computer generated isogram map of K^+ concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>5</u> 7
17	Computer generated isogram map of Ca^{2+} concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u> </u>
18	Computer generated isogram map of Mg ²⁺ concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	57
19	Computer generated isogram map of Cl ⁻ concentrations of ground water in the Las Vegas Valley, Nevada shallow allu- vial aquifer zone.	<u>60</u>
20	Computer generated isogram map of SO_4^{2-} concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	61
21	Computer generated isogram map of HCO_3^- concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	62
22	Computer generated contour map of Ca^{2+}/Mg^{2+} ratios of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	63
23	Computer generated contour map of log P_{CO_2} of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>64</u>
24	Trilinear diagram (% meq/l) of 5 quarterly samples from each of 4 shallow wells in the Las Vegas Valley, Nevada shal- low alluvial aquifer zone.	66
25	Computer generated isogram map of NO_3^- concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	62

γi

Figure	Title	Page
26	Sample locations and tritium activities (TU) of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	51
27	Sample locations and average δD of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u> 84</u>
28	Sample locations and average δ^{18} O of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>85</u>
29	δD vs. δ^{18} O plot of ground-water samples from the Las Vegas Valley, Nevada shallow and principal aquifer zones and Colorado River water from the SNWS.	<u>%</u> 7
30	Changes in the TDS concentrations, 1981-1989, of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>44</u>
31	Changes in water levels, 1981-1989, in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>45</u>
32	Generalized diagram of a conceptual model illustrating the hydrogeologic system of the Las Vegas Valley, Nevada shal- low alluvial aquifer zone.	<u>48</u>

LIST OF TABLES

Table	Title	Page
1	Types, volumes, and treatment methods of ground-water samples collected from the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	25
2 - ³ ∧	Water level flux pattern versus land use for shallow monitor- ing wells in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	217
3.2	Types and number of data collected from wells in the Las Vegas Valley, Nevada shallow alluvial aquifer zone monitor- ing well network.	<u> 2</u> 6
4	Summary statistics for major ions, nutrients, and isotopes of ground-water in the Las Vegas Valley, Nevada shallow allu- vial aquifer zone.	<u>75</u>
5	Summary statistics for trace metals of ground-water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.	<u>76</u>
6	Maximum contaminant levels (MCLs) and number of ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone that exceeded the MCLs for inorganic chemicals.	77
7	Secondary maximum contaminant levels (SMCLs) and number of ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone that exceeded the SMCLs for inorganic chemicals.	77
8	Results of Student's t-test between major ion, nutrient, and isotope concentrations in ground-water samples from the Las Vegas Valley, Nevada shallow and principal alluvial aquifer zones	<u> 37</u>
9	Results of Student's t-test between trace metal concentrations in ground-water samples from the Las Vegas Valley, Nevada shallow and principal alluvial aquifer zones	<u>40</u>
10	Results of Student's t-test between major ion and TDS con- centrations in historical (1971-73) and current (1988-89) ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone	92

LIST OF ABBREVIATIONS

Basic Magnesium, Incorporated	BMI
Colorado River Water	CRW
cubic meters	m^3
cubic meters per second	m^3/s
cubic meters per year	m ³ /year
degrees Celsius	$^{\circ}$ C
degrees Fahrenheit	°F
delta deuterium	δ D
delta oxygen-18	δ ¹⁸ O
Desert Research Institute Water Resources Center	DRIWRC
dissolved organic carbon	DOC
electrical conductivity	EC
hydrogen ion concentration	$_{ m pH}$
kilograms per second	kg/s
kilograms per year	kg/yr
kilometers	km
kilometers per hour	km/hr
Las Vegas Valley Water District	LVVWD
maximum contaminant level	MCL
meters	m
meters per second	m/s
meters per year	m/yr
micromhos per centimeter	μ mhos/cm
milliequivalents per liter	meq/l
milligrams per liter	mg/l

North Las Vegas Water District	NLVWD
partial pressure of dissolved carbon dioxide	$\mathrm{P}_{\mathrm{CO}_2}$
percent	%
per mil	⁰ /00
polyvinyl chloride	PVC
saturation index	SI
secondary maximum contaminant level	SMCL
Southern Nevada water system	SNWS
square kilometers	km^2
total organic carbon	TOC
total dissolved solids	TDS
tritium units	TU
U.S. Environmental Protection Agency	EPA
U.S. Geological Survey	USGS
University of Nevada, Las Vegas	UNLV

INTRODUCTION

Historical Background

Since its founding in 1855, Las Vegas, Nevada has grown from a population of 30 people to approximately 750,000 people in 1990. Las Vegas currently has the fastest growth rate of any city in the United States and is growing by 3,000 to 6,000 new residents per month (Las Vegas Review-Journal, September 07, 1990) The combination of a large population and an arid climate has lead to the importation of large quantities of Colorado River water to supplement the limited ground-water supply.

The large volume of water used for landscape irrigation in excess of consumptive use currently recharges the shallow alluvial aquifer zone. The generally poor quality of the shallow aquifer zone water has been further degraded by this secondary recharge which mobilizes soluble salts, fertilizers, organics, and other undesirable chemical constituents. This poor quality water in the shallow aquifer zone has the potential to percolate downward, through the underlying leaky confining beds, and contaminate the principal production aquifers in the valley.

Under predevelopment conditions, the alluvial aquifer system is assumed to have been in steady state equilibrium, with discharge equalling recharge. Recharge to the shallow aquifer zone occurred by upward movement of water under artesian pressure and by infiltration of spring and seep flows discharging from the principal aquifers along fault and fracture planes (Maxey and Jameson, 1948). Discharge from the shallow aquifer under these conditions was primarily from evaporation and transpiration from the water table (Dettinger, 1987). Development of ground-water resources in Las Vegas Valley began with the completion of the first successful well in 1907. The majority of the early wells drilled in the valley were completed in the deep confined aquifers and were flowing artesian wells. Most of these wells were uncapped and allowed to flow continuously. By the early 1940's, the rate of ground-water withdrawal exceeded the rate of natural recharge (Maxey and Jameson, 1948; Brothers and Katzer, 1988).

Mining of water from the principal aquifer zone that began in the 1940's has continued to the present. As the population of Las Vegas Valley has grown from approximately 10,000 in 1940 to approximately 750,000 in 1990 (Figure 1), the rate of ground-water pumpage has increased from 37,000,000 m³/yr to 85,000,000 m³/yr (Figure 2). Average annual natural recharge is approximately 43,000,000 m³ (Maxey and Jameson, 1948; Brothers and Katzer, 1988). The principal aquifer zone of the Las Vegas Valley alluvial aquifer system currently provides approximately 29% of the public water supply for the valley (Brothers and Katzer, 1988).

Overdrafting of the principal aquifers for nearly 50 years has resulted in the loss of natural artesian pressure from most of the valley and has caused a decline in the potentiometric surface of the confined principal aquifer zone, in excess of 100 meters, in the northwestern part of the valley (Brothers and Katzer, 1988). Loss of natural upward artesian pressure and potentiometric surface decline has reversed the vertical hydraulic gradient in the shallow aquifer zone. Reversal of the natural hydraulic gradient has created the potential for downward percolation of poor quality water from the shallow aquifer zone into the underlying zone of principal production aquifers.

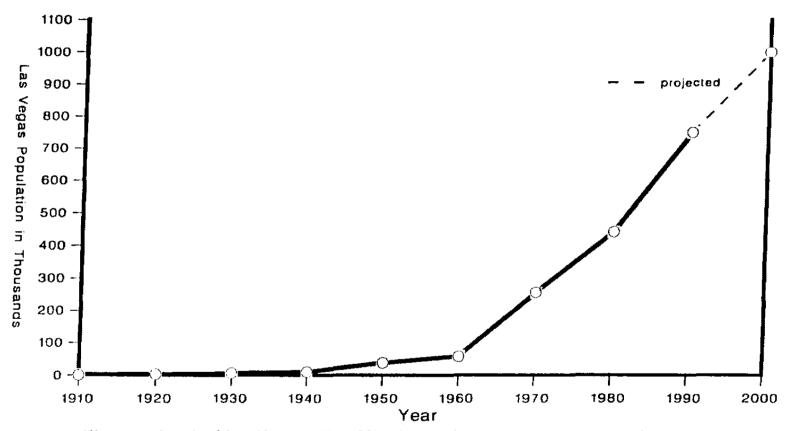


Figure 1. Graph of Las Vegas Valley, Nevada population from 1910 to 2000 (sources: Maxey and Jameson, 1918; Brothers and Katzer, 1988).

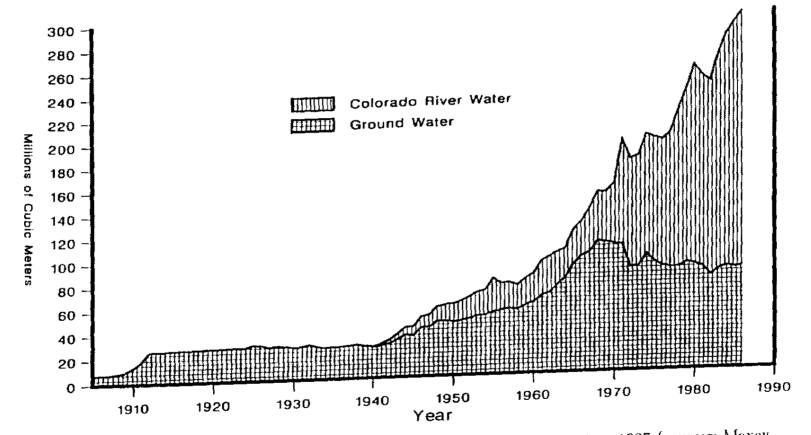


Figure 2. Graph of Las Vegas Valley, Nevada water use from 1900 to 1987 (sources: Maxey and Jameson, 1918; Malmberg, 1965; Harrill, 1976a; and Brothers and Katzer, 1988).

 \sim

Beginning in 1942 with deliveries to the Basic Magnesium Incorporated (BMI) complex in Henderson, increasing amounts of Colorado River water have been imported into the valley to meet the water needs of the rapidly growing population. In 1964, the U.S. Supreme Court upheld the previously allocated 370,000,000 m³/yr of Colorado River water for the State of Nevada. Delivery of Colorado River water has been made possible by the Southern Nevada Water System (SNWS), a series of pipelines and pumpstations between Lake Mead on the Colorado River and the Las Vegas Valley. The volume of Colorado River water delivered to Las Vegas Valley in 1986 was 207,000,000 m³, approximately 71% of the public water supply (Brothers and Katzer, 1988).

Shallow aquifer zone water quality, which was generally poor under predevelopment conditions due to saline soils and high evapotranspiration rates, has been further degraded by the overapplication of landscape irrigation water to lawns and golfcourses in the valley. In 1986, secondary recharge to the shallow aquifer zone from over irrigation was estimated to be about 62,000,000 m³ (Brothers and Katzer, 1988), 1.4 times the natural recharge rate for the entire Las Vegas Valley alluvial aquifer system. Since 1970, secondary recharge to the shallow aquifer zone has caused a water table rise of 1.5 to 4 m.

Purpose

In May, 1988, a comprehensive study of the Las Vegas Valley shallow alluvial aquifer zone was undertaken jointly by the Las Vegas Valley Water District's (LVVWD's) Department of Research, the Desert Research Institute Water Resources Center (DRIWRC), and the Geoscience Department of the University of Nevada, Las Vegas (UNLV). This research project was divided into five phases or stages with specific objectives for each stage. These five stages of the project are are: (1) the physical, hydrogeochemical, and isotopic characterization of the shallow aquifer zone, (2) the quantification of secondary recharge to the shallow zone from over irrigation, (3) the evaluation of the hydraulic properties of the shallow aquifer zone and any hydraulic connections between the shallow and deep aquifers, (4) the calculation of the volume of leakage from the shallow to the underlying principal aquifers, and (5) the evaluation of the impact of this leakage upon water quality in the principal aquifer zone. This document summarizes the results of work performed during Stage 1, the physical, chemical, and isotopic analysis of the shallow aquifer zone. This research will increase the understanding of both the hydrogeology of the Las Vegas Valley alluvial aquifer system and of other alluvial aquifer systems in the Basin and Range physiographic province.

Objectives

The specific objectives of Stage 1 of the research project were to:

- 1. Assemble ground-water quality data and and relevant well data for the Las Vegas Valley alluvial aquifer system and compile a database for future reference,
- 2. Establish a monitoring well network for the Las Vegas Valley shallow alluvial aquifer zone,
- 3. Characterize the physical properties, ground-water chemistry, and isotopic composition of the Las Vegas Valley shallow alluvial aquifer zone both spatially and temporally,
- 4. Determine the effects of land use practices upon the physical properties, groundwater chemistry, and isotopic composition of the Las Vegas Valley shallow alluvial aquifer zone,

- 5. Identify possible natural tracers present in the ground water of the Las Vegas Valley shallow alluvial aquifer zone to be used for tracing the downward migration of water from the shallow to the principal aquifer zone,
- Identify any historical trends in the water quality and water level data of the Las
 Vegas Valley shallow alluvial aquifer zone, and
- 7. Develop a conceptual model that explains the spatial and temporal variations in the physical properties, ground-water chemistry, and isotopic composition of the Las Vegas Valley shallow alluvial aquifer zone.

Previous Investigations

The first investigation of the hydrogeology and geology of southern Nevada was performed by Gilbert in 1875. The earliest hydrologic studies in the valley were made by Mendenhall (1909), Carpenter (1915), Hardman and Miller (1934), and Miller and others (1953). All were water resources surveys concerned with determining the suitability of ground water for irrigation and domestic use.

The first in-depth hydrogeologic investigation of the study area was performed by Maxey and Jameson (1948). Malmberg (1965) modified some of the findings of Maxey and Jameson using data not available to them. Loeltz (1963) conducted an investigation of ground-water conditions in the Lake Mead Base area in the northeastern corner of the valley. Domenico and others (1964) used an electric analog model of the principal alluvial aquifers which was used to predict water level changes between 1963 and 1969. Orcutt and Cochran (1967) used a computer model of the principal aquifers to evaluate the feasibility of artificially injecting waste water. Harrill (1976) modeled the responses of the principal aquifers to a variety of stress conditions. Cochran *et al.*, (1977) developed an interdisciplinary water resource management plan. Westphal (1977) attempted to model the nearsurface zone with poor results due to lack of data. A detailed investigation of the relationship between surficial geology and shallow ground water quality was made by Dinger (1977). Kaufmann (1978) made an in depth study of the effects of land use practices upon water quality in the first 90 m of alluvial aquifers in the valley. A study by Patt (1978) evaluated the relationships between water distribution, uses, and recharge to the shallow ground water system. Woessner (1980b) evaluated the economic impacts of the rising water table in the shallow aquifer zone.

Weaver (1982) conducted a study to predict the effects of artificially recharging Colorado River water into the principal alluvial aquifer. In a pilot project designed to test Weaver's hypotheses, Brothers and Katzer (1987) artificially recharged the principal alluvial aquifers of the valley. Broadbent (1980) developed a numerical model of the principal aquifer zone to estimate the effects of artificial recharge. In 1982, Van Denburgh and others (1982) developed general design criteria for a water quality monitoring program and then defined a ground-water quality monitoring network for the valley. Dettinger (1987) developed the monitoring network described by Van Denburgh and others (1982).

In 1984, Converse Consultants performed an investigation of the shallow ground water system in a small area of the southeast portion of the valley (Converse Consultants, 1985). Noack (1988) conducted an investigation of the sources of water recharging the principal alluvial aquifer zone. Brothers and Katzer (1988) resampled the network established by Dettinger and defined ground water chemistry changes resulting from stressed aquifer conditions in Las Vegas valley.

The possible relationships between a large regional carbonate aquifer ground-water flow system and the Las Vegas Valley ground-water system have been investigated by Mifflin (1968), Naff *et al.*, (1974), Hess and Mifflin (1978), and Noack (1988).

The problems in the lower Las Vegas Wash, i.e., salinity loading of the Colorado River, headward erosion of Las Vegas Wash, and the large contaminant plume of highly saline ground-water and hazardous organic compounds between the BMI complex and the wash have been studied by the U.S. Federal Water Pollution Control Administration (1963), URS (1977a,b), Kaufmann (1978), Bierly and Associates (1980), Geraghty and Miller (1980), Woessner (1980a), JRB Associates (1981), French *et al.*, (1982), Stauffer Chemical Company (1982), Kleinfelder and Associates (1983), Technos, Inc. (1983), Desert Research Institute Water Resources Center (1984), Ecology and Environment, Inc. (1984), and Roline and Sartoris (1988).

The geology of the Las Vegas Valley area has been described by Longwell and others (1965), Price (1966), Haynes (1967), Tabor (1970), Dinger (1977), Bingler (1977), Bell and Smith (1980), Bell (1981), Bohannon (1984), and Quade (1986). Land subsidence in the valley has been investigated by Maxey and Jameson (1948), Malmberg (1964 and 1965), Domenico and others (1964), Mindling (1965, 1971), Harrill (1976), and Bell (1981).

Water level data for Las Vegas Valley have been published in Maxey and Jameson (1948), Harrill (1976a, 1976b, and 1977), Katzer (1977), Wood (1979, 1988a, and 1988b), and Maurer (1989).

ENVIRONMENTAL SETTING

Physiography

Las Vegas Valley is an alluvium filled intermontain topographic and structural basin in the Basin and Range physiographic province of the western United States. The valley lies between 35°30'00'' and 37°15'00'' north latitude and 115°00'00'' and 116°00'00'' west longitude, and is bordered on the west by the Spring Mountains, on the north by the Sheep and Las Vegas Ranges, on the east by Frenchman and Sunrise Mountains, and on the south by the McCullough Range and the River Mountains. Covering approximately 4100 km² of Clark County in southeastern Nevada, the urbanized areas of metropolitan Las Vegas, North Las Vegas, and Henderson and Nellis Air Force Base are the population centers of the valley.

Las Vegas Valley can be divided into three physiographic units: mountains, piedmont surfaces, and valley lowlands. Surrounding mountains are separated from valley lowlands by wide, gently sloping alluvial fans collectively referred to as piedmont surfaces. Valley lowlands slope gently to the east and southeast, except in the vicinity of fault scarps, where relief is locally as much as 30 meters or, at Whitney Mesa, approximately 60 meters. The valley floor ranges in altitude from 730 meters on the west side to 460 meters in the southeast corner at Las Vegas Wash (Figure 3).

Las Vegas Wash in the southeast corner of the valley carries urban surface runoff, sewage-treatment plant effluent, and ground water from the valley to Lake Mead on the Colorado River (Dettinger, 1987). The study area lies

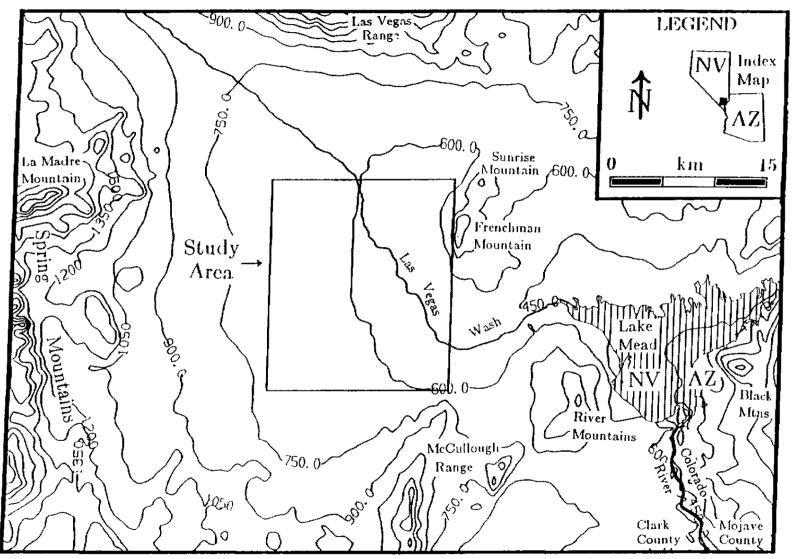


Figure 3. Topographic Map of southern Nevada and location of Las Vegas Valley study area. Contour interval = 150 meters.

predominantly within the urbanized areas in the central valley (Figure 4).

Climate

The climate of the Las Vegas Valley area ranges from arid in the valley lowlands to semi-arid on the piedmont surfaces to sub-humid at higher elevations in the mountains (Maxey and Jameson, 1948; Domenico and others, 1964). Low relative humidity, low rainfall, and a wide range of diurnal temperature fluctuations characterize the arid climate of the valley lowlands. Summers are long and hot with maximum temperatures in the 38-46 °C (100-115 °F) range and minimum temperatures usually falling between 21 ° and 24 °C (70 ° and 75 °F). Winters are generally short and mild with average daytime temperatures near 16 °C (60 °F) and minimum temperatures averaging about 2 ° C (35 °F) (Houghton *et al.*, 1975). Strong winds are common, especially during the spring. Usually there is at least one wind storm per month with wind velocities in excess of 50 kilometers per hour and as high as 100 kilometers per hour.

Potential evaporation rate in the valley is extremely high, exceeding 2 meters per year. Average annual precipitation is less than 13 centimeters (Houghton *et al.*, 1975). Most rainfall occurs during the winter months and during July and August. Precipitation increases with elevation and approaches 80 centimeters per year in the Spring Mountains where storms are more frequent and of longer duration. Precipitation that occurs as rain and snowfall in the Spring Mountains represents the majority of water available for recharging the alluvial aquifer system of Las Vegas Valley.

 $\mathbf{2}$

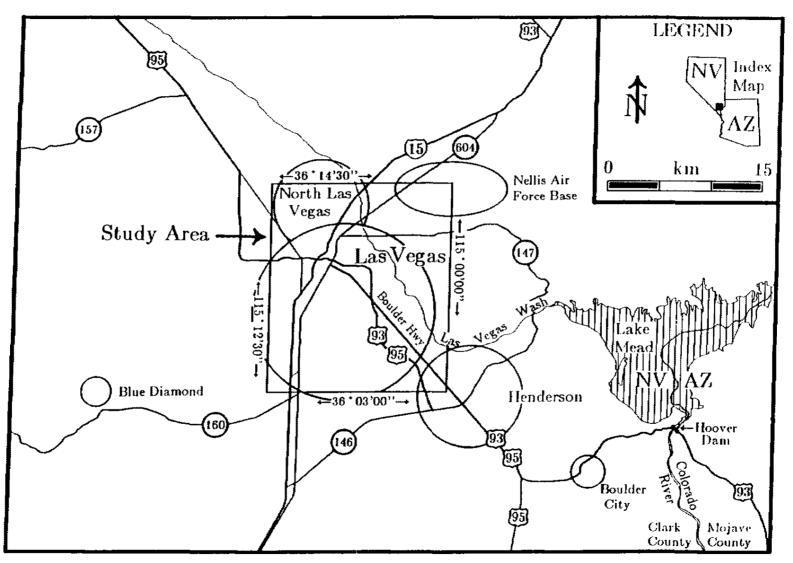


Figure 4. Map of major cultural features in southern Nevada and location of Las Vegas Valley study area.

Geology

Bedrock

The geologic units in the Las Vegas Valley are basal bedrock and alluvial valley-fill with alluvium predominating at the surface. Bedrock makes up the mountain areas surrounding the valley and the structural basin in which the alluvium was deposited. Bedrock ranges in age from Precambrian to Miocene and consists of carbonate and clastic sedimentary rocks, metamorphic rocks, and volcanic and intrusive sedimentary rocks (Plume, 1989).

The most common bedrock unit in the Las Vegas Valley area consists of Precambrian and Paleozoic carbonate rocks, but clastic rocks such as conglomerate, quartzite, sandstone, and shale are locally common. Carbonate rocks predominate in the Spring Mountains, Frenchman Mountain, and the Las Vegas and Sheep Ranges. Igneous rocks in the valley consist primarily of volcanic rocks in the McCullough Range and River Mountains, but also include scattered dikes in the River Mountains (Plume, 1989).

Valley-fill

The Las Vegas Valley structural basin has accumulated 900-1500 meters of alluvial and lacustrine sediments derived from the adjacent fault block mountain ranges (Dettinger, 1987). These valley-fill deposits consist of Miocene clastic deposits, the Miocene Muddy Creek Formation, and Tertiary and Quaternary sedimentary deposits (Plume, 1989). Coarse-grained deposits suggest proximity to source area, with progradation to finer sediments basinward. Because of the complex relationships between the alluvial, fluvial, and lacustrine deposition of the valley-fill deposits, beds are both laterally and vertically discontinuous.

Miocene clastic deposits occur on the lower slopes of Frenchman Mountain, the River Mountains, and the Las Vegas Range. This unit includes the Thumb Formation and unnamed clastic rocks in the Las Vegas Range. The Thumb Formation consists of interbedded siltstone, sandstone, conglomerate, claystone, freshwater limestone, gypsum beds, and lava flows (Bell and Smith, 1980; Plume, 1989). Miocene clastic rocks at the southern end of the Las Vegas Range consist of conglomerate interbedded with sandstone and tuffaceous sediments (Longwell and others, 1965). Thickness of Miocene clastic deposits is estimated to range from 1800 to 2100 meters east of the study area, and is more than 1500 meters north of the study area (Longwell and others, 1965; Plume, 1989).

The Muddy Creek Formation of Miocene and Pliocene age occurs as valleyfill deposits that are coarse-grained near mountains and progressively finer grained toward the center of the valley (Longwell and others, 1965; Plume, 1989). In the study area, the Muddy Creek Formation outcrops in several places as: (1) clavey silt and silty clay northwest of Whitney Mesa (Bingler, 1977); (2) weakly bedded silt on the face of Whitney Mesa (Bingler, 1977); (3) interbedded gravel, sand, silt, and clay south and west of Frenchman Mountain (Bingler, 1977; Bell and Smith, 1980;); (4) a fanglomerate east of Henderson (Bell and Smith, 1980); and (5) fine sandstone, siltstone, and clay north of Sunrise Mountain (Longwell and others, 1965; Plume, 1989). Exposures of the Muddy Creek Formation range from 12 meters northwest of Whitney Mesa to 100 meters north and east of Henderson (Bingler, 1977; Bell and Smith, 1980; Plume, 1989). Total thickness of the Muddy Creek Formation in the valley is uncertain due to the difficulty in distinguishing the formation from other Tertiary and Quaternary valley-fill deposits. Estimates of the thickness range from about 100 meters northeast of Henderson (Bell and Smith, 1980) to about 900 meters east of Whitney Mesa (Malmberg, 1965; Plume, 1989).

Quaternary deposits of gravel, sand, silt, clay, and Tertiary and Quaternary conglomerates overlie older valley-fill. These deposits are surficial and may represent only the upper 10-15 meters of the valley-fill (Plume, 1989). Dinger (1977) conducted a detailed investigation of grain size distributions and mineralogic compositions of surficial geological deposits in Las Vegas Valley. The surficial deposits identified in Plate 1 of Dinger's (1977) study were grouped on the basis of mineralogic composition to form Figure 5. As shown in Figure 5, the surficial deposits in the western, northern, and central valley are composed primarily of carbonate materials while the deposits in the southern and eastern valley contain carbonate materials, gypsum, and igneous clasts (Maxey and Jameson, 1948; Dinger, 1977).

Coarse grained deposits are found on alluvial fans and pediments along Las Vegas Wash in the southeast part of the study area. Most of the deposits are Quaternary age poorly sorted, unconsolidated to cemented gravel and sandy gravel on alluvial fans and pediments of fine sand. Tertiary and Quaternary conglomerates are also locally exposed along Las Vegas Wash (Haynes, 1967; Bingler, 1977; Bell and Smith, 1980; Matti and Bachhuber, 1982; Matti and Morton, 1982a,b; Plume, 1989).

Light colored, heterogeneous deposits occur in the valley lowlands from Corn Creek Springs southeast to the Paradise Valley area (Plume, 1989). They are a mixture of coarse- and fine-grained deposits south of Whitney Mesa (Bingler, 1977); interbedded silt, sand, and gravel from Paradise Valley to North Las Vegas (Matti and Bachhuber, 1982; Matti and Morton, 1982a,b); and silt, sand, and gravel in the north and northwest parts of Las Vegas Valley (Haynes, 1967; Plume, 1989).

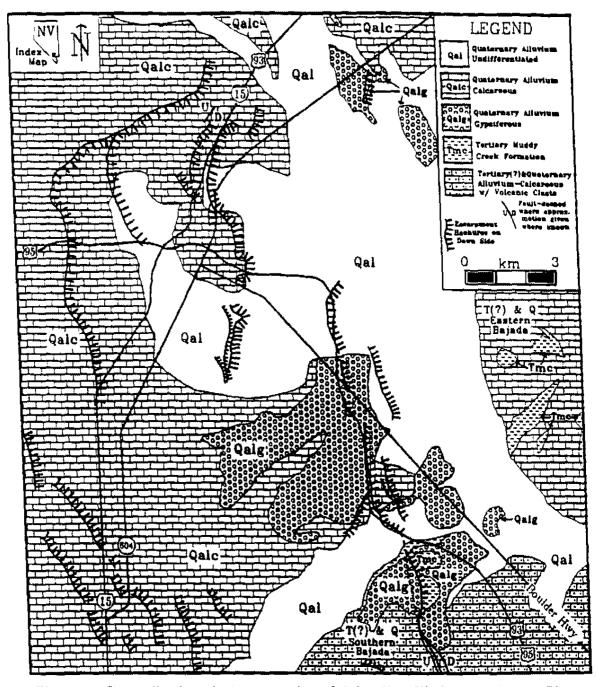


Figure 5. Generalized geologic map of surficial valley-fill deposits in Las Vegas Valley, Nevada (after Dinger, 1977).

In the northwest and north-central parts of the study area, the valley lowlands are underlain by fine-grained deposits of sandy silt and mudstone that range in age from 14,000 to 30,000 years (Haynes, 1967; Plume, 1989). Originally thought to be lacustrine deposits (Longwell and others, 1965; Haynes, 1967), these deposits were named the Las Vegas Formation (Longwell and others, 1965). More recent evidence suggests, however, that the formation was deposited within a playa (Mifflin and Wheat, 1979; Plume, 1989).

Since carbonate lithologies dominate in the mountains surrounding Las Vegas Valley, the clastic valley fill deposits are rich in carbonate clasts. The abundance of carbonate material, in combination with historical climatic and hydrologic conditions, has led to the widespread formation of caliche horizons in the valley-fill deposits (Orcutt and Cochran, 1967).

Structure

The Paleozoic carbonate rocks and the Permian, Triassic, and Jurassic clastic rocks were largely undisturbed prior to the late Mesozoic. These rocks were folded and offset by thrust faulting in late Mesozoic and by block and strike-slip faulting in the Miocene and Pliocene (Plume, 1989). The Las Vegas Valley structural basin was formed during the Pliocene by normal faults at the base of Frenchman Mountain. The structural basin beneath the valley consists of two parts: a deep (600 to 1500 meter) depression beneath most of the valley and a shallow bedrock surface on the west side that slopes gently toward the east (Plume, 1989).

Boundaries of the deep depression generally coincide with the margins of the valley on the north, south, and east sides. On the west side, the deep part of the basin terminates 11-13 kilometers east of the valley margin (Plume, 1989). Valley-fill deposits covering the eastern sloping shallow bedrock surface that

underlies the western part of the valley from La Madre Mountain to the McCullough Range ranges in thickness from near zero at the valley margin to around 300 meters along the west side of the Las Vegas city limits (Plume, 1989).

The Las Vegas shear zone is a major structural feature in southern Nevada and may serve as a conduit for movement of water through a large regional carbonate aquifer flow system (Mifflin, 1968; Naff and others, 1974; Hess and Mifflin, 1978; Noack, 1988). The shear zone is a strike-slip fault along which right lateral movement of as much as 72 kilometers is thought to have occurred (Fleck, 1970; Plume, 1989). The zone trends northwest north of the study area from Sunrise Mountain past Corn Creek Springs and roughly coincides with the deepest part of the bedrock basin (Plume, 1989).

Fault scarps as high as 30 meters occur in the valley-fill deposits of Las Vegas Valley. The scarps are believed to be the result of normal faulting although some of the scarps may have receded due to erosion and no longer mark the fault lines (Bell, 1981; Plume, 1989). The scarps trend north to northwest in southern parts of the valley, but change trend toward the northeast in the northern parts of the valley (Plume, 1989). The most common explanation for the origin of these faults is differential compaction of valley-fill deposits (Maxey and Jameson, 1948; Domenico and others, 1964). This explanation was proposed because of the coincidence of scarps on the west side of the valley with abrupt lateral changes in grain sizes between interfingering coarse-grained alluvial fan deposits and fine-grained valley lowland deposits. Other investigators, however, believe that the presence of scarps on the east side of the valley that do not coincide with changes in grain-size distributions indicate that the scarps are controlled by the shape of the structural basin and are therefore of tectonic origin (Plume, 1989). Faults in the valley-fill are possibly related to both differential compaction and to structural displacement of bedrock (Bell, 1981; ¢

Plume, 1989).

Hydrogeology

The ground-water system of Las Vegas Valley has been described as an alluvial reservoir, as much as 1500 meters thick, contained within a basin formed by surrounding and underlying consolidated rocks (Plume, 1984). One of the characteristics of the hydrogeologic units in the valley is that they vary in depth, thickness, and hydrologic impact. The valley-fill deposits occur in discontinuous, irregular, and lenticular beds typical of alluvial deposition in arid and semi-arid climates (Maxey and Jameson, 1948). Differentiation between units at any particular site is difficult. Therefore, a single range of depths that corresponds to these units cannot be defined.

The hydrogeology of Las Vegas Valley has, in the past, been discussed in terms of a shallow unconfined zone and deeper zones of alternating high permeability deposits of gravels, sands, and fractured cemented deposits interfingered with low permeability leaky confining beds of silts, clays, evaporites, and caliche. Summarizing from numerous previous investigators, the following hydrogeologic units have been defined in the valley: (1) a shallow unconfined zone that consists of the water table and the first 10 meters of saturated sediments (Brothers and Katzer, 1988); (2) an intermediate zone, or "near surface reservoir", composed of fine grained deposits that range from 10-60 meters below the water table (Malmberg, 1965; Brothers and Katzer, 1988); (3) the deep zone of production aquifers that are composed of thick beds of coarse- and intermediate-grained deposits that range from 60-300 meters below the water table (Dettinger, 1987; Brothers and Katzer, 1988); (4) the untapped deep zone of basin-fill sediments that is below most of the deepest production wells in the valley (Dettinger, 1987); and (5) the deep carbonate bedrock aquifer thought both to be part of a large regional ground-water flow system and to be separated from the deep zone of production aquifers by approximately 1000 meters of aquitards (Maxey and Jameson, 1948; Mifflin, 1968; Naff and others, 1974; Hess and Mifflin, 1978; Noack, 1988). The intermediate and deep zones of production aquifers are often collectively referred to as the "zone of principal production aquifers", the "principal aquifer zone", or simply the "principal aquifers". The range in depths presented above should only be considered as general guidelines due to the great lithologic variability in the valley-fill deposits.

Prior to development of ground-water resources in the early 1900's, the Las Vegas Valley ground-water system is assumed to have been in steady-state equilibrium, with discharge generally equaling recharge. Primary recharge areas for the alluvial aquifer system are the Spring Mountains to the west and, to a lessor degree, the Sheep Range to the north. Recharge to the deeper zones of the system occur primarily as bedrock transmits ground-water from the recharge areas to the valley-fill deposits (Plume, 1989). Water in the alluvial aquifer generally flows from west to east driven by higher hydraulic heads in the recharge areas. The average annual natural recharge rate to the alluvial aquifer is estimated to be between 37,000,000 and 43,000,000 m^3 (Maxey and Jameson, 1948).

Noack (1988) identified two, and perhaps three, water masses of separate origin in the principal aquifer zone. An isotopically heavier mass of calciumsulfate type water in the alluvial fans of the relatively shallow western basin represents low altitude mountain front recharge that reaches the principal aquifers along short flow paths. An isotopically lighter mass of calciumbicarbonate type water in the northern neck of the valley is thought to be a mixture of waters recharged to the Spring Mountains during the Pleistocene and waters discharged from a regional carbonate aquifer flow system along the Las

Vegas Shear Zone. Carbon isotope data indicated that ground-water discharge from a regional carbonate aquifer source may be occurring in the vicinity of the LVVWD's main well field. Noack (1988) also suggested that ground-water discharge from this regional source may be recharging the alluvial aquifer all along the axis of the valley.

Under natural conditions, discharge from the alluvial aquifer system occurred from springs and seeps fed by upward leakage of water from the deeper confined artesian zones through leaky confining layers and along fault planes. Large natural springs in the central valley sustained aboriginal peoples of the area for thousands of years and attracted the first white explorers and settlers to the valley (Maxey and Jameson, 1948).

Under predevelopment conditions, the shallow aquifer zone was recharged by the upward movement of water from the deeper confined zones and by the infiltration of artesian spring and seep flows. The primary means of discharge from the shallow zone was evapotranspiration (Maxey and Jameson, 1948). Las Vegas Wash, a tributary of the Colorado River, was an ephemeral stream with an estimated annual discharge of 300,000 m^3/yr (Kaufmann, 1978).

Development of ground-water resources in the valley began with the completion of the first successful well in 1907. Most of the early wells drilled in the valley were flowing artesian wells completed in the confined principal aquifer zone. The majority of these flowing wells were uncapped and were allowed to flow continuously. Large volumes of water were wasted due to residents' beliefs that the valley was underlain by an inexhaustible water supply and that restricting the flow from these flowing artesian wells was a needless and expensive chore (Maxey and Jameson, 1948).

Overdraft conditions were established by the early 1940's, when the rate of ground-water withdrawal first exceeded the rate of natural recharge (Maxey and Jameson, 1948). Figure 6 is a generalized cross section of the Las Vegas Valley alluvial aquifer system prior to establishment of overdraft conditions. Overdrafting of the principal aquifer zone at rates 2-3 times the natural recharge rate has continued from the 1940's to the present (1990). Mining of water from the principal aquifers for nearly fifty years has had a number of adverse effects upon the Las Vegas Valley ground-water system. These effects are: (1) the loss of natural artesian pressure from the principal aquifers in most of the valley; (2) potentiometric surface declines of around 90 meters in the principal aquifers near the LVVWD's main well field (Brothers and Katzer, 1988); (3) aquifer compaction resulting in both widespread land subsidence and loss of around 120,000,000,000 m³ of ground-water storage capacity (Terry Katzer, LVVWD, personal communication, 1988); and (4) the reversal of the natural vertical hydraulic gradient for the shallow and intermediate aquifer zones resulting in the creation of a perched shallow zone in the northwest and central parts of valley (Brothers and Katzer, 1988). Reversal of the natural gradient for the shallow and intermediate zones has created the potential for the contamination of the public water supply by the downward percolation of extremely poor quality water from the perched shallow zone into the underlying principal production aquifers.

About the time that overdraft conditions were first established in the early 1940's, importation of Colorado River water from Lake Mead into the valley began with deliveries to the Basic Magnesium Incorporated (BMI) complex in Henderson in 1942. In 1964, the United States Supreme Court upheld the previously allocated 370,000,000 m^3/yr (300,000 acre-feet/yr) of Colorado River water for Southern Nevada. In 1971, Stage I of the Southern Nevada Water System (SNWS), a series of pipelines and pumpstations designed to supply this water

11

à

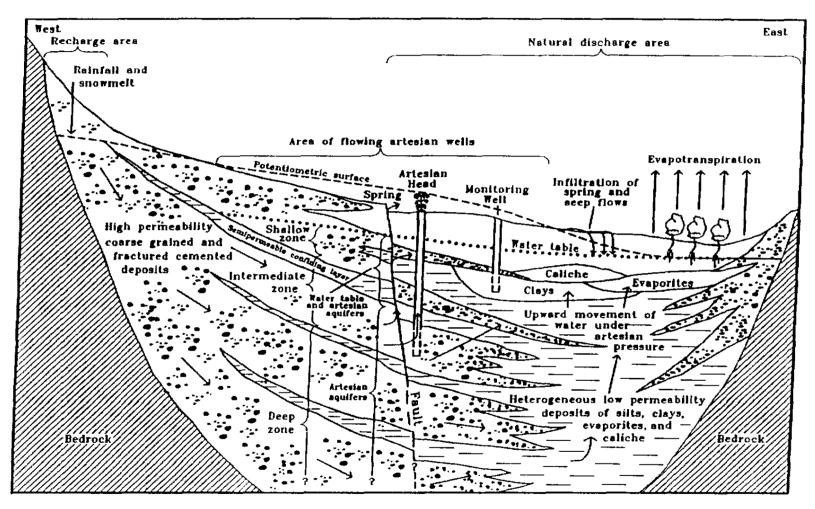


Figure 6. Generalized cross section of the Las Vegas Valley, Nevada alluvial aquifer system under steady-state conditions (after Malmberg, 1965).

from Lake Mead to Las Vegas Valley, came on-line. Stage II of the SNWS became operational in 1981, thereby providing the capacity for importation of the entire allocation. Since completion of the SNWS, ground-water pumpage has declined from a 1967-71 average rate of 99,000,000 m^3/yr to a 1986 rate of 85,000,000 m^3/yr (Harrill, 1976; Brothers and Katzer, 1988).

Currently, the principal aquifers of the valley are being recharged by the natural sources discussed above, by artificial recharge of Colorado River water, and presumably by secondary recharge from the downward leakage of water from the shallow aquifer zone (Brothers and Katzer, 1987). For the last three years, 1987-1990, the LVVWD has been artificially recharging Colorado River water into the principal aquifers in their main well field in the winter for withdrawal during the summer peak water demand season (Brothers and Katzer, 1987; Kay Brothers, LVVWD, personal communication, 1988).

Discharge from the principal aquifers today (1990) is primarily from ground-water pumpage. However, secondary recharge and artificial recharge have slowed the historical rate of declines in water levels in the principal aquifers. The 1987 rate of decline was about 60-90 centimeters per year (Brothers and Katzer, 1988). In 1986, 42,000,000 m³ of the total 85,000,000 m³ of ground water pumped from the principal zone originated from secondary recharge and storage (Brothers and Katzer, 1988).

While water levels have been declining in most of the principal aquifers in the valley, water levels in the shallow aquifer have been rising. The shallow aquifer zone is currently recharged by a combination of upward leakage from underlying confined aquifers and by secondary recharge from overirrigation and infiltration of urban surface runoff. The potentiometric surface of the principal aquifers beneath Henderson and south and east of Whitney Mesa is still above

land surface, thus indicating that recharge to the shallow zone by upward leakage from the principal aquifers is still occurring in these areas (Kay Brothers, LVVWD, personal communication, 1988).

Application of landscape irrigation water in excess of the consumptive use rate caused a water table rise of 1.5 - 5 meters in the shallow aquifer zone between 1970 and 1985 (Converse Consultants, 1985). Patt (1976) estimated a consumptive use rate for Las Vegas Valley of approximately 1.7 m/yr. The average application rate of landscape irrigation water is estimated to be 3-4 m/yr (Terry Katzer, LVVWD, personal communication, 1988). This excess water infiltrates past the root zone into the shallow aquifer and causes a rise in the water table. Secondary recharge to the shallow zone from over irrigation was estimated at 62,000,000 m³ in 1986, 1.4 times the natural recharge rate for the entire Las Vegas Valley alluvial aquifer system (Brothers and Katzer, 1988). Secondary recharge also degrades shallow ground-water quality by mobilizing soluble salts stored in the unsaturated zone as well as fertilizers, organics, and other undesirable chemical constituents.

Ground water is currently discharged from the shallow aquifer zone by evapotranspiration, ground-water inflow into Las Vegas Wash, and possibly by ground-water inflow into Tropicana and Flamingo Washes. Las Vegas Wash is now a perennial stream carrying both treated effluent from the Clark County and City of Las Vegas sewage treatment plants and ground-water from the valley into Lake Mead at the approximate rate of 3.4 m³/s (107,000,000 m³/yr) (Roline and Sartoris, 1988). Based upon projections in the work of Westphal and Nork (1972), Bateman (1976), and the U.S. Bureau of Reclamation (1982), the current rate of shallow ground-water inflow into Las Vegas Wash is estimated to be approximately 0.51 m³/s (16,000,000 m³/yr). With an average total dissolved solids (TDS) concentration of 6,600 mg/l (Bateman, 1976) the shallow ground-

water discharging into Las Vegas Wash carries approximately 3.4 kg/s or 110,000,000 kg/yr of dissolved salts from Las Vegas Valley into the Colorado River. Thus, problems associated with Las Vegas Valley shallow alluvial aquifer zone not only have the potential to impact the lives of Southern Nevadans but also have the potential to impact the lives of the other water users in the lower Colorado River Basin in Arizona, California, and Mexico.

METHODOLOGY

Literature Review

A literature review was conducted for published water quality and relevant well location and construction data for the Las Vegas Valley alluvial aquifer system in order to satisfy Objective 1 of this investigation, the compilation of existing water quality and well data for Las Vegas Valley. The data was compiled into a computerized data base using the UNIFY[®] Relational Database Management System developed by the Unify Corporation for computers utilizing the UNIX[®] computer operating system. UNIFY[®] is a menu-driven program that was essential for the organization, storage, and retrieval of the large amount of data assembled.

Published water quality data was obtained from the following investigations: Dinger (1977), Kaufmann (1978), Weaver (1982), Dettinger (1987), and Brothers and Katzer (1988). Water level data was compiled both from the investigations listed above and from the following sources: Maurer (1989), unpublished data collected by the Las Vegas Valley Water District (LVVWD), and unpublished data collected by the Desert Research Institute Water Resources Center (DRIWRC). The data compiled in the database was supplemented by field and laboratory data collected for this investigation. The data assembled into the database is contained in Appendices A-F of this report.

Monitoring Network

Shallow well location and construction data compiled into the database was evaluated in order to judge the suitability of existing wells for inclusion in a monitoring network, thus adressing Objective 2 of this investigation, the establishment of a shallow aquifer zone ground-water monitoring network. Suitability for inclusion in the monitoring network was judged not only on the basis of spatial location and well construction, but also upon the surficial land use practices at each well site, this permitted Objective 4 of this investigation, the determination of the effects of land use practices upon ground-water parameters in the shallow aquifer zone, to be addressed. Wells were included in the monitoring network from each of the four land use categories in Las Vegas Valley: undeveloped, residential (single family dwellings and apartment complexes), commercial (businesses other than apartment complexes), and large turf areas (golfcourses, parks, and schools). Thirty-two wells were judged to be suitable for inclusion in the original network.

During the course of the investigation, 1 new well, NLVWD College Park #2b, was drilled and 4 existing wells were added to the monitoring network, bringing the total number of wells in the final monitoring network to 37. The location and construction data for the wells in the final monitoring network, cross referenced to earlier published investigations that utilized these same wells, is contained in Appendix A. Figure 7 is a map of the final monitoring well network.

Well Numbering System

The system of numbering wells in this report is based upon the cadastral land survey system of the U.S. Government referenced to the Mount Diablo

 $\mathbf{2}$

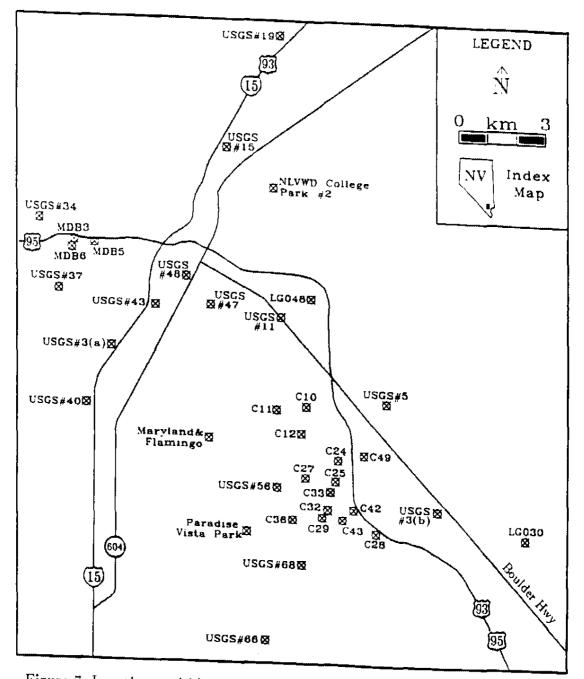


Figure 7. Location and identification of shallow monitoring wells used in this investigation.

.

baseline. Due to the lack of a consistent well numbering system in the previous investigations of water quality in Las Vegas Valley, each site in the database was assigned a site number. The site number, in addition to designating the well, describes its position in the land net. Each well's site number includes the township, range, section, subdivision of the section, and well sequence number.

For example, well site number 20613024301 designates the well in section 30 of township 20 south, range 61 east. Subsequent numbers indicate specifically where the well is in section 30. The northeast quarter section is represented by the number "1", and the other three quarter sections in a counter clockwise direction are designated "2", "3", and "4", respectively. Each quarter can be similarly subdivided; the usual limit is 4 letters, which define an area of 2.5 acres (approximately 1 hectare). The first number in the sequence indicates the largest subdivision in the section and the last number the smallest. A zero indicates that the precise position of the well in that subdivision is unknown. The last digit in the site number is a well sequence number, which is useful when two wells are so close together that they would otherwise have the same number. Thus, the well just discussed is the first well in the southwest quarter of the southeast quarter of the northwest quarter of section 30, township 20 south, range 61 east.

Sites are also identified in this report by a local name given to each site by the owner or original investigator. Two wells drilled by the U.S. Geological Survey (USGS) for which no local site name could be found, "Maryland & Flamingo" and "Paradise Vista Park", were named according to their geographic location. The one well drilled for this study next to the North Las Vegas Water District's "College Park #2" well was named "NLVWD College Park #2b".

Ground-water Sampling

A ground-water sampling program was designed and implemented, thus addressing Objective 3 of this investigation, the spatial and temporal characterization of the physical properties, chemical composition, and isotopic composition of ground-water in the shallow alluvial aquifer zone of Las Vegas Valley. Beginning in June, 1988, water levels were measured monthly in all wells in the monitoring network. Ground-water samples for water quality and environmental isotope analysis were collected quarterly from wells in the monitoring network in June, September, and December, 1988 and in March and June, 1989. Temperature, pH, and electrical conductivity data was collected from 12 wells on a monthly basis from June, 1988 to December, 1989 and from an additional 9 wells on a quarterly basis from June, 1988 to September, 1989. These field and laboratory data are contained in Appendices B through F.

Ground-water sampling protocol was based upon Wood (1976) and Claasen (1982). Prior to sampling, static water level in the well was measured with either a steel tape or an electric water level probe and the volume of water in the casing was calculated. All of the wells utilized in this investigation are used only for ground-water monitoring, it was therefore necessary to purge the stagnant water from the well bore prior to sampling.

Before submersing the pump in the well, the pump was cleaned by rinsing the exterior with deionized water and by pumping 4-8 liters of deionized water through the pump interior and discharge line. The decontamination procedure prior to sampling for pesticides and herbicides in September, 1988 was more thorough than the normal decontamination procedure. During this procedure, the exterior of the pump was cleaned by successive submersion in three 1.5 m long sections of PVC pipe capped on one end and filled respectively with: (1) a mixture of non-phosphate soap and deionized water, (2) a mixture of 10% acetone and deionized water, and (3) pure deionized water. The exterior of the

pump was scrubbed while setting in each solution. The interior of the pump was cleaned by placing the discharge line of the pump into the solution in which the pump was submersed and allowing the solution to circulate for several minutes prior to immersion in the next solution. Deionized water was obtained from the Chemistry Department of the University of Nevada, Las Vegas (UNLV).

After decontamination, the pump was lowered to within the screened interval of the well and purging began. The wells were sampled using a nitrogen driven bladder pump, a submersible electric turbine pump, or a peristaltic pump. One sample, sample # 444, was collected with a bailer. Soon after pumping began, initial temperature, pH, and specific electrical conductivity (EC) measurements were recorded. Subsequent measurements were made at regular time intervals corresponding to the time required for the removal of one well volume of water. When these parameters were stable for two consecutive measurements, the sample was collected.

Two to ten well volumes were purged from each well prior to sample collection, with the exceptions of 6 wells that are completed in low hydraulic conductivity deposits. Due to the length of time required for full recovery after purging, it was not feasible to remove 2 or more well volumes of water from these wells prior to sampling. These 6 wells, C28, Maryland & Flamingo, Paradise Vista Park, USGS#15, USGS#34, and USGS#47, were purged dry, allowed to recover to the approximate pre-pumping static water level, and then sampled. Samples were collected directly from the pump discharge line to limit the amount of time available for degassing of $CO_{2(xq)}$.

Sample containers were prewashed in the laboratory with deionized water and were twice rinsed with filtered or unfiltered formation water, depending upon the sample being collected, prior to the introduction of the sample into the container. Sample containers for pesticide and herbicide samples were decontaminated by washing with non-phosphate soap and hot tap water and then rinsed with: tap water, (1:1) hydrochloric acid, tap water, and deionized water. The sample containers were then baked in an oven overnight at 110° C.

Samples for major ion, ortho phosphate (OPO_4^{3-}), dissolved organic carbon (DOC), pesticide, herbicide, and trace metals analyses were all pressure filtered with a nitrogen gas driven barrel filter unit fitted with a 0.45 μ m membrane filter. Samples for total phosphate (TPO_4^{3-}), total organic carbon (TOC), and isotope analyses were unfiltered. All samples were sealed immediately after collection with Parafilm[®] paraffin film and electrical tape. All samples, except isotope samples, were then immediately packed in ice and were shipped cold to the Desert Research Institute's analytical laboratory in Reno, Nevada within 24 hours of collection.

Table 1 summarizes the sample types collected, sample volumes, filtered/unfiltered status, container types, preservatives, and preservative volumes for all samples collected for this study.

Quality assurance requirements were met during the sampling procedure by the collection of blanks and duplicates. To determine the precision of the laboratory analyses, 10% of all samples submitted to the laboratories for every type of analysis were blind duplicates. To check the pump decontamination procedure, equipment blanks of deionized water were collected from the pump discharge line after the last step of the decontamination process. To check the sample container decontamination and sample handling procedures, trip blanks of deionized water were prepared in the laboratory and then taken into the field and subjected to the same handling procedures as the other sample containers before submission to the laboratory. Both types of blanks were blind to the analytical

Table 1. Types, volumes, and treatment methods of ground-water samples
collected from the Las Vegas Valley, Nevada shallow alluvial aquifer zone
for this investigation.

Sample Type	Filtered?	Sample Volume	Container Type	Preservative	Preservative Volume
Major Cation	yes	500 ml	polyethylene		
Major Anion	yes	500 ml	polyethylene		
Ortho Phosphate	yes	250 ml	polyethylene	$H_2SO_4(1:1)$	0.5 ml
Total Phosphate	no	250 ml	polyethylene	$H_2SO_4(1:1)$	0.5 ml
DOC	yes	250 ml	glass		
TOC	no	250 ml	glass		
Trace Metals	yes	500 ml	polyethylene	HNO ₃	10 drops
Pesticide	y es	11	tinted glass		
Herbicide	yes	11	tinted glass		
Stable Isotopes	no	12 ml	glass		
Tritium	no	1 /	glass		
Alkalinity	yes	250 ml	polyethylene		

Site Name	Water Level (# measurements)	Temp., pH. EC (# measurements)	Chemistry & Isotopes (# samples)
	(# measurements)	(# measurements)	(1# samples)
C10	16	1	
C11	18	16	5
C12	4	1	
C24	15	1	
C25	15	11	
C27	19	17	5
C28	16	4	4
C29	19	17	5
C32	18	5	5
C33	19	17	
C36	19	17	
C42	19	17	5
C43	16	1	
C49	17	5	5
LG030	15	5	5
LG048	17	5	5
M.Pkwy&Flam.	17	5	5
MDB3	1	1	1
MDB5	1	I	1
MDB6	1	1	1
NLV C. Park #2b	5	1	1
P.Vista Park	17	5	5
USGS #3a	16		
USGS #3b	16		
USGS #5	19	16	5
USGS #11	18	16	5
USGS #15			5
USGS #19	16	1	1
USGS #34	18	6	6
USGS #37	17	5	5
USGS #40	18	16	5
USGS #43	19	17	5
USGS #47	19	14	1
USGS #48	15		
USGS #56	16	·····	
USGS #66	10		
USGS #68	15	1	

2 Table 3. Types and number of data collected from wells in the Las Vegas Valley, Nevada shallow alluvial aquifer zone monitoring well network.

laboratory.

Several unstable chemical and physical parameters were measured in the field immediately after samples were withdrawn in order to minimize the effects of $CO_{2(xq)}$ degassing and temperature changes. These parameters were temperature, pH, specific electrical conductivity, and alkalinity.

Sample temperatures were measured with one of the following pieces of equipment: (1) a Presto-Tek[®] Poly-Pram pH-EC-temperature meter (accuracy: ± 0.15 °C), (2) an Orion[®] SA230 pH-temperature meter (accuracy: ± 0.1 °C), or (3) a FisherScientific[®] 14-983-17M mercury thermometer (accuracy: ± 0.1 °C).

Sample pH was measured with one of the following pieces of equipment: (1) a Corning[®] 103 Hand Held pH Meter, (2) an Orion[®] model 211 digital pH meter, or (3) an Orion[®] model SA230 digital pH meter. All of the above pH meters were equipped with Orion[®] gel-filled combination pH electrodes and had an accuracy of ± 0.01 pH units. Prior to measuring sample pH, the meter and probe were calibrated according to the manufacturer's instructions with laboratory prepared FisherScientific[®] Buffer Salt solutions (accuracy: ± 0.02 pH at 25° C) of pH 4.01 and pH 7.41. Sample pH was then measured to the nearest 0.01 pH units. After measurement of sample pH, meter calibration was re-checked and was considered acceptable if buffer pH measured within ± 0.05 pH units of the original calibration.

Measurements of specific electrical conductivity (EC) were made with either a Presto-Tek[®] Poly-Pram pH-EC-temperature meter or a Cole-Parmer[®] model 1481-60 EC meter. EC standards of 500, 1000, 5000, and 10000 μ mhos/cm were prepared by dissolving 0.2620, 0.5265, 2.78, and 5.75 grams, respectively, of oven dried potassium chloride (KCl) in one liter of deionized water. Meter calibration and calculation of correction factors were performed in one of two possible

 $\overline{7}$

manners. For the samples collected in June, September, and December, 1988, EC standards were allowed to thermally equilibrate to the formation temperature by being bathed with formation water in a flow-through box. After thermal equilibration, conductivity standards (500, 1000, 5000, and 10000 μ mhos/cm) were measured for meter calibration. After March, 1989 meter calibration was performed in the laboratory at the beginning and checked at the end of each sampling day using the same conductivity standards listed above.

Alkalinity was measured by utilizing a Hach[®] Digital Titrator and one of the pH meters described above. Sulfuric acid (1.6N) was slowly titrated into a filtered 100 ml sample until a sample pH of less than 3.5 was obtained. Alkalinity was determined by plotting pH versus titrant volume and selecting an appropriate end point from the resulting curve. Bicarbonate was then determined with a simple calculation. Alkalinity was measured in the field for the samples collected between June 1-13, 1988. After June 13, 1988, samples were collected in 250 or 500 ml polyethylene bottles, sealed with Parafilm[®] paraffin film and electrical tape, and packed in ice. The alkalinity titration was then performed in the laboratory at the end of the day after each sample had been warmed to within 1°C of its temperature at the time of collection.

Chemical Analyses

Chemical analyses of water samples for major ions, phosphate, fluoride, organic carbon, total dissolved solids, and trace metals were conducted at the Desert Research Institute's analytical laboratory in Reno, Nevada. The samples were prepared in accordance with methodology described in "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020 (U.S. Environmental Monitoring and Support Laboratories, 1979). Analyses of water samples for pesticides and herbicides were performed by Alpha Analytical, Inc. in Sparks,

Nevada. These samples were analyzed according to the methods found in "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", EPA-600/4-82-057 (U.S Environmental Monitoring and Support Laboratories, 1982). Appendix K lists the species analyzed, methods of analysis, equipment used, and appropriate references.

Isotopic Analyses

Isotopic analyses for oxygen-18 (¹⁸ O) and deuterium (² H or D) were conducted at the Desert Research Institute's environmental isotope laboratory in Las Vegas, Nevada. Samples analyzed for deuterium were prepared by the uranium oxidation method described by Friedmund (1953). The resulting hydrogen gas was analyzed with a 3-60-HD Nuclide (Nier type) mass spectrometer for ² H/¹ H ratios. Samples were prepared for ¹⁸ O analysis following the guanidine hydrochloride extraction method described by Dugan *et al.*, (1985). The resulting carbon dioxide gas was analyzed for ¹⁸ O/¹⁶ O ratios with a Finnigan-Matt Delta E (Nier type) mass spectrometer.

Tritium analyses were performed at the Desert Research Institute's tritium laboratory in Reno, Nevada. Samples were prepared according to the method described by Johns (1975).

Land Use Practices

As stated above, in order to help achieve Objective 4 (the determination of the effects of land use practices upon the physical, chemical, and isotopic parameters of ground-water in the shallow aquifer zone), wells were selected for inclusion in the final monitoring network not only on the basis of construction and location, but also on the basis of the surficial land use at each site. A map

10

4

showing the general spatial distribution of the four kinds of surficial land uses and the locations of the wells in the final monitoring network, Figure 8, was prepared in order to better evaluate the effects of land use upon shallow aquifer zone ground-water parameters.

Land use data used in preparing Figure 8 was obtained from the February, 1988 1:126,720 scale (1 inch:2 miles) large aerial photomozaic of Las Vegas Valley photographed and sold by Cooper Aerial of Nevada. The photomozaic was divided into 914.4 meter (3000 foot) grid squares that corresponded to the grid mesh of the Las Vegas Valley Water District's three dimensional finite difference computer model of the Las Vegas Valley alluvial aquifer system. Each grid square on the photograph was subdivided to the nearest 1% into the four different types of general land use categories in Las Vegas Valley: undeveloped, residential (single family dwellings and apartment complexes), commercial (businesses other than apartment complexes), and large turf areas (golfcourses, parks, and schools). This data was then randomly field checked for accuracy. The photomozaic and the data extracted from the photomozaic was then used in conjunction with the U.S. Geological Survey's four 1:24,000 7.5 minute quadrangle maps of Las Vegas Valley (Las Vegas NE, NW, SE, and SW) to prepare Figure 8.

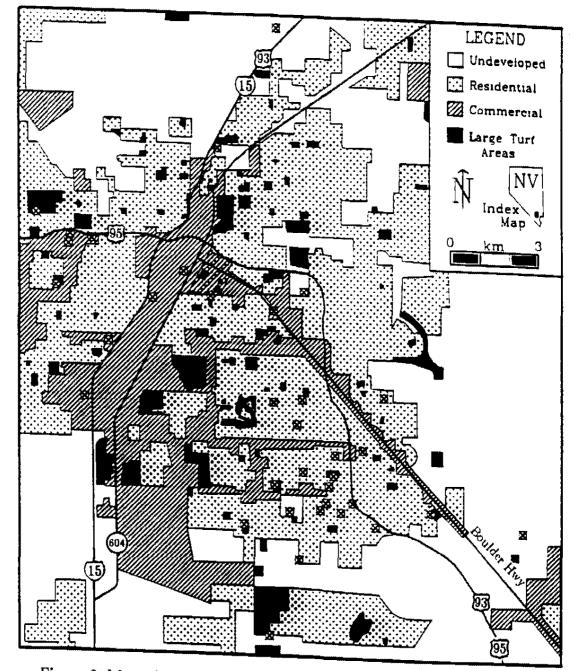


Figure 8. Map of surficial land use patterns in Las Vegas Valley, Nevada, February, 1988.

RESULTS AND DISCUSSION

Water Levels

Water levels were measured monthly in the wells and piezometers in the shallow aquifer zone monitoring network. These data are tabulated in Appendix B. A computer generated depth to water isobath map was prepared from these data (Figure 9). Depth to water is generally within 4 meters and locally within 2 meters of land surface in the central and southeastern portions of the study area. Depth to water increases progressively with increasing distance from the central and southeastern parts of the valley.

An equipotential contour map of the shallow aquifer zone water table (Figure 10) indicates that water generally flows from the higher elevation areas of the valley in the west and northwest toward the lower elevation areas in the east and southeast before discharging into Las Vegas Wash.

Water level hydrographs prepared from the water level data in Appendix B and grouped by land use category are contained in Appendix G. These hydrographs display two distinct patterns of cyclical annual water level fluctuations. Sites displaying Pattern 1 (Figure 11) generally have water table lows in the fall and highs in the late winter to spring. Pattern 1 is 180° out of phase with Pattern 2, which generally has annual water table highs in the fall and annual water table lows in the late winter to spring (Figure 12). There is a strong correlation between surficial land use practices and observed patterns of annual water table fluctuations.

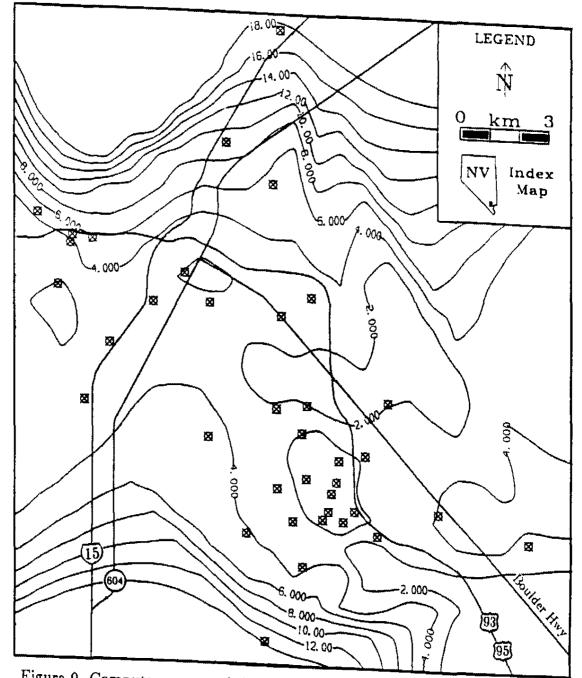


Figure 9. Computer generated depth to water isobath map of the Las Vegas Valley shallow alluvial aquifer zone, 1988-89. Contour interval = 2 meters.

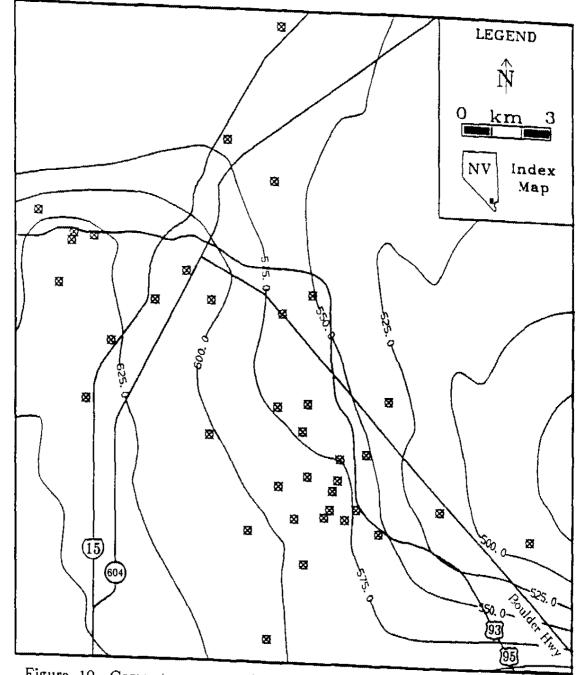


Figure 10. Computer generated generalized equipotential surface contour map of the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 25 meters.

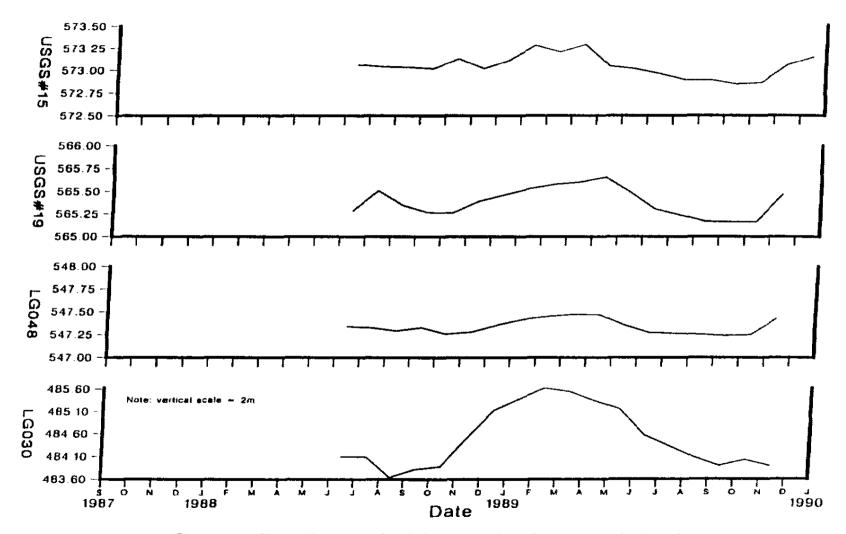


Figure 11. Example water level hydrographs of wells displaying Pattern 1 of seasonal water level fluctuations in the Las Vegas Valley shallow alluvial aquifer zone. All four plots are from wells in the "undeveloped" land use category.

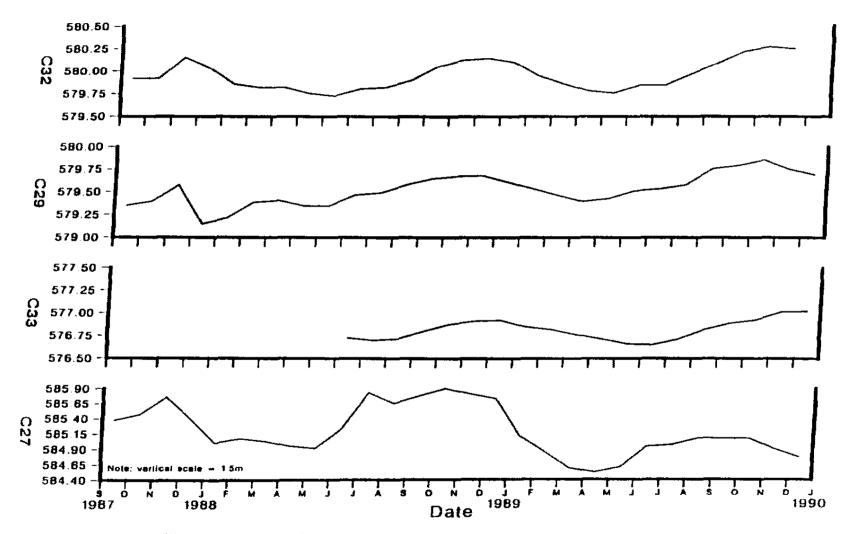


Figure 12. Example water level hydrographs of wells displaying Pattern 2 of seasonal water level fluctuations in the Las Vegas Valley shallow alluvial aquifer zone. All four plots are from wells in the "residential" land use category.

Table \hat{z} . Water level flux pattern versus land use for shallow monitoring wells in the
Las Vegas Valley, Nevada shallow alluvial aquifer zone.

Ċ.

······································			
Site	Pattern 1	Pattern 2	No Pattern
C10		residential	
C11		residential	
C24	residential		
C25	residential		
C27		residential	
C28		residential	
C29		residential	
C32		residential	
C33		residential	
C36		residential	
C42		residential	
C43		residential	
C49		residential	
LG030	undeveloped		
LG048	undeveloped		
M.Pkwy&Flam.		commercial	
P.Vista Park		turf areas	
USGS #3a		commercial	
USGS #3b			turf areas
USGS #5	residential		
USGS #11			commercial
USGS #15	undeveloped		
USGS #19	undeveloped		
USGS #34		turf areas	
USGS #37		turf areas	
USGS #40		commercial	
USGS #43	commercial		
USGS #47			undeveloped
USGS #56		turf areas	
USGS #68	undeveloped		

Sites displaying Pattern 1 appear to follow the intuitive cycle of water table fluctuations in the valley. Pattern 1 sites experience a declining water table during the summer due to the high summer evapotranspiration rate. The water table rise observed at these sites in the winter is due to either low winter evapotranspiration rates decreasing discharge, year round irrigation practices, increased upward leakage from the principal aquifers caused by lower pumpage rates in winter, or some combination of the three factors. Of the 10 sites exhibiting Pattern 1: 5 are from the "undeveloped" category, 3 are from the "residential" category, and 2 are from the "commercial" category.

Sites displaying Pattern 2 are strongly influenced by turf grass irrigation practices. Pattern 2 sites display a water table rise during the heavy summer turf irrigation season in spite of the extremely high summer evapotranspiration rates. Of the 17 sites exhibiting Pattern 2 behavior: 10 are from the "residential" category, 4 are from the "turf areas" category, and 3 are from the "commercial" category.

The effects of irrigation practices upon water levels in the Las Vegas Valley shallow alluvial aquifer zone are similar to the irrigation effects documented in other studies of shallow unconfined alluvial aquifers in the Basin and Range physiographic province conducted by Seiler and Waddell (1984), Peter (1987), Lico *et al.* (1987), and Garn (1988).

Temperature, pH, and Electrical Conductivity

Water temperature, pH and specific electrical conductivity (EC) data were collected monthly at 12 wells and quarterly at an additional 9 wells. These data are tabulated in Appendix B. The mean annual shallow ground water temperature is 21.6 °C, which is elevated with respect to the mean annual air temperature of Las Vegas Valley of 18.6 °C (Houghton *et al.*, 1975). The maximum range

 $\mathbf{2}$

Ĺ.

of water temperatures is 10.2 °C, from a minimum of 15.7 °C to a maximum of 25.9 °C, while the average annual range of temperature fluctuations is 2.9 °C. The average annual range of water temperatures is considerably less than the average annual range of air temperatures of 7.8 °C (Houghton *et al.*, 1975).

Water temperature versus time plots grouped by land use category in Appendix H reveal that land use practices have little, if any, effect upon the annual cycle of temperature fluctuations. Twenty of the twenty-one sites at which time series data was collected display the same pattern of cyclical annual temperature variations. Water temperatures reach their annual low in late winter to spring, rise during the summer, and then reach their annual high in late summer to fall. There is a one to three month lag between the annual highs and lows in air temperature and the annual highs and lows in water temperatures.

This lag between annual air and water temperature highs and lows and the relatively lower range of water temperature fluctuations are as expected. The resistance of soil to heat conduction from the atmosphere tends to damp the amplitude of thermal waves propagated from air to soil. Because a temperature gradient must develop in the soil before heat begins to flow to depth and because of the relatively low thermal conductivity of water, there is a time lag between maximum and minimum air temperatures, soil temperatures, and shallow ground water temperatures. The decrease of amplitude and increase of phase lag are typical phenomena in the propagation of periodic temperature waves through soil and water (Hanks and Asheroft, 1980; Hillel, 1980).

The pH of shallow aquifer zone waters sampled for this study are all near neutrality with a mean of 7.04 and range of 6.73-7.68. Time series plots of pH in Appendix I indicate that there is little seasonal variation in the pH of shallow 4

zone waters at the majority of sites sampled. pH appears to remain relatively constant at most (15 of 21) sites with only minor monthly fluctuations. Of the 6 sites that display significant variations in pH, 4 of 6 have a pattern of high pH in the fall and spring and low pH's in summer and winter. The other 2 sites that display significant variations in pH exhibit random variations.

Specific electrical conductivity (EC) or specific conductance of shallow aquifer zone waters ranges from 544-9640 μ mhos/cm (eqiuvalent to μ Siemens/cm) and has a mean value and standard deviation of 4920 and 2120 μ mhos/cm, respectively. EC is generally lowest in the north and northeast and increases along flow path toward the highest values in the southeast near Las Vegas Wash. The waters at site C36, several kilometers upgradient from Las Vegas Wash, had the highest recorded EC values, due to the possible presence of a local gypsum deposit.

Plots of EC versus time in Appendix J reveal that waters at 18 of 21 wells display similar patterns of temporal variations in EC. EC appears to follow a seasonal pattern of semi-annual highs in mid-summer and late fall to early winter for the first 6-7 months of the study. However, after approximately January, 1989, all 18 of these wells experienced a steady decline in EC values through the conclusion of the study in December, 1989. The steady decline in EC values from January to December, 1989 indicates that factors other than those with annual cycles such as water temperature or dilution/concentration from a rising and falling water table effect the EC value of shallow aquifer zone waters. One explanation for the observed pattern of EC variations is that there are alternating periods of dissolution of salts from the unsaturated zone and mixing of saline waters near the water table with less saline water at greater depths. ε

High secondary recharge rates from overirrigation and the associated rising water table result in the leaching of salts from the unsaturated zone into waters of the shallow aquifer zone. These two factors, in concert with the high rate of evapotranspiration in the valley, contribute to the formation of a zone of highly saline water near the water table. Dettinger (1987) noted that the poorest quality water everywhere in Las Vegas Valley was extracted from near the water table. This highly saline zone of water near the water table then becomes less saline due to mixing by diffusion and hydrodynamic dispersion effecting a more uniform distribution of salinity in the shallow aquifer zone. Thus the observed patterns of EC variations are the result of periods of dissolution and concentration alternating with periods of diffusion and dispersion. Data indicating that neither mineral precipitation nor ion exchange reactions are affecting EC variations are presented in the following section.

Ground-water Major Ion Geochemistry

Spatial Variations

Ground-water quality was evaluated spatially and temporally using analyses from 24 and 18 wells, respectively. Wells used in the temporal analysis of water quality were sampled 5 times, on a quarterly basis, between June, 1988 and June, 1989. Ninety-nine samples were collected and analyzed for major ions. Samples from the Meadows Detention Basin (MDB wells) were not included in the evaluation of ground-water chemistry because these wells were contaminated with drilling fluids. Figure 7 shows the sample points used.

Chemistry of ground waters in the study area is strongly influenced by lithology. A trilinear (Piper) diagram (Piper, 1944) (Figure 13) shows the majority of samples lying within the Ca²⁺-Mg²⁺-SO₄²⁻ hydrochemical facies as defined by Back (1966). This is the result of the large amounts of gypsum

 $\mathbf{5}$

Ξ

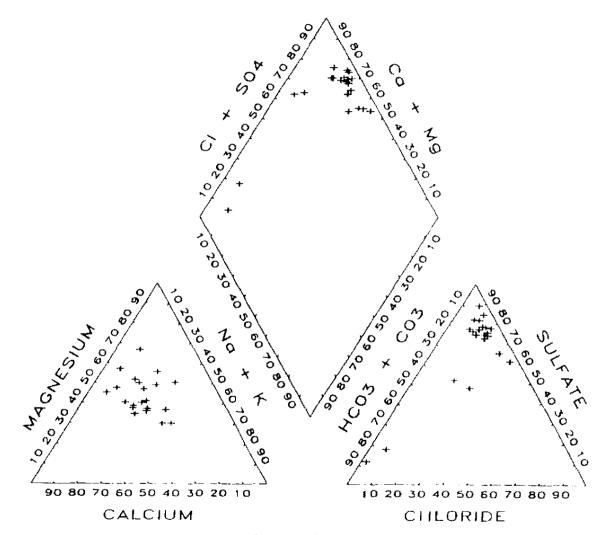


Figure 13. Trilinear diagram (% meq/l) of ground water from the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Plot symbols represent 1988-89 average for each site sampled.

calcite $(CaCO_3)$, and dolomite $((Ca,Mg)CO_3)$ present in the surficial alluvial deposits in the study area.

Water quality in the study area is generally poor as indicated by TDS (Figure 14). TDS concentrations in the study area ranged from 319 milligrams per liter (mg/l) at site USGS#15 to 8680 mg/l at site C27 and had a mean value and standard deviation of 3760 mg/l and 1950 mg/l, respectively. Water-type and total dissolved solids (TDS) content are not only a function of the lithology of the study area, but are also a function of position along the ground-water flow path.

Figure 14 illustrates the increase in TDS content along the general northwest-southeast ground-water flow path in the study area. The highest TDS waters in the valley are generally found at the terminus of the ground-water flow path in the southeast near Las Vegas Wash. However, site C27, with the highest TDS content observed, is several kilometers (km) upgradient from Las Vegas Wash. This anomalously high value is most likely due to well completion in or near a gypsum deposit.

Water-types appear to evolve along flow path from a $Ca^{2+}-Mg^{2+}-HCO_3^{-}$ type water in the north and northwest parts of the study area to a $Ca^{2+}-Mg^{2+}-SO_4^{2-}$ type water in the rest of the study area. Ground-water moving along a flow path tends to evolve chemically from the composition of pure atmospheric precipitation to that of seawater (Chebotarev, 1955). The apparent evolution of water types in the Las Vegas Valley shallow aquifer zone is due to a number of factors besides natural evolution of waters along a flow path. These factors are: (1) the relative predominance of carbonate materials and lack of gypsum in the

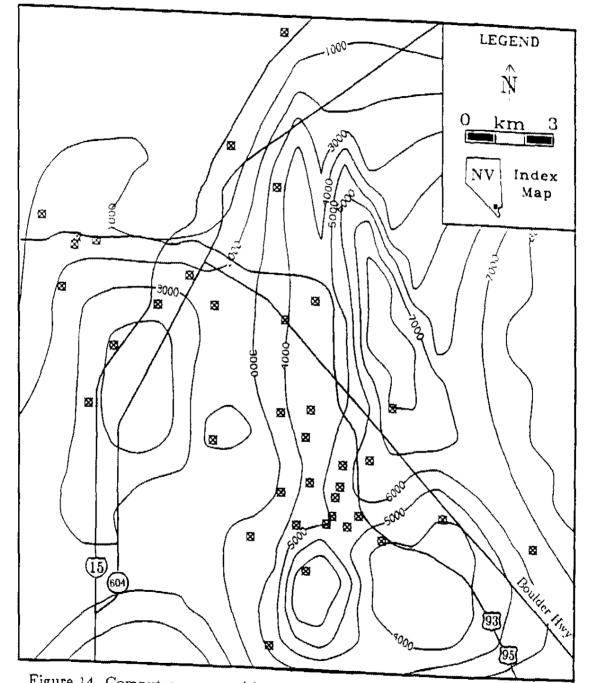


Figure 14. Computer generated isogram map of TDS of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 1000 mg/l.

valley-fill deposits of the northwest, (2) the greater solubility of the highly gypsiferous soils in the central and southeastern parts of the valley, (3) the increased residence time of the water in the soluble deposits of the central and southeastern valley due to the relatively finer-grained nature of the deposits in those areas and (4) the progressive salt loading of shallow ground water as it

those areas, and (4) the progressive salt loading of shallow ground water as it moves along flow path due to the leaching of salts by overapplication of irrigation water (Dinger, 1977; Kaufmann, 1978). Isogram concentration contour maps for individual major ions (Figures 15-

21) are also useful for the evaluation of spatial changes in ground-water chemistry in the study area. Concentrations of all major cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺) increase along flow path from northwest to southeast. Ca²⁺/Mg²⁺ ratios generally decreased along flow path from around 1.7 to around 1.0 (Figure 22). Concentrations of Cl⁻ and SO₄²⁻ also increase along flow path, reflecting the dissolution of gypsum and halite (NaCl) due to the factors outlined above.

Bicarbonate (HCO₃⁻) concentrations do not appear to follow a spatial trend across the study area. Bicarbonate concentrations range from a high of 584 mg/l at site USGS#37 to a low of 154 mg/l at site C32 in the southeast. Bicarbonate concentrations appear to be controlled more by the partial pressure of dissolved $CO_{2(so)}$ (P_{CO₂}) than by lithology. All of the sites in the study area had P_{CO_2s} that were elevated relative to the atmospheric value of 10^{-3.5} atmospheres. Figure 23 is a contour map of log (to the base 10) P_{CO_2} in the shallow aquifer zone. Note the similarities between Figures 21 and 23, the contour maps of HCO₃⁻ and P_{CO_2} values, respectively. If HCO₃⁻ concentrations are controlled more by P_{CO_2} than lithology, then P_{CO_2} variations across the study area could help account for the apparent evolution of shallow zone waters from a Ca²⁺-Mg²⁺-HCO₃⁻ type water in the north to a Ca²⁺-Mg²⁺-SO₄²⁻ type water in the

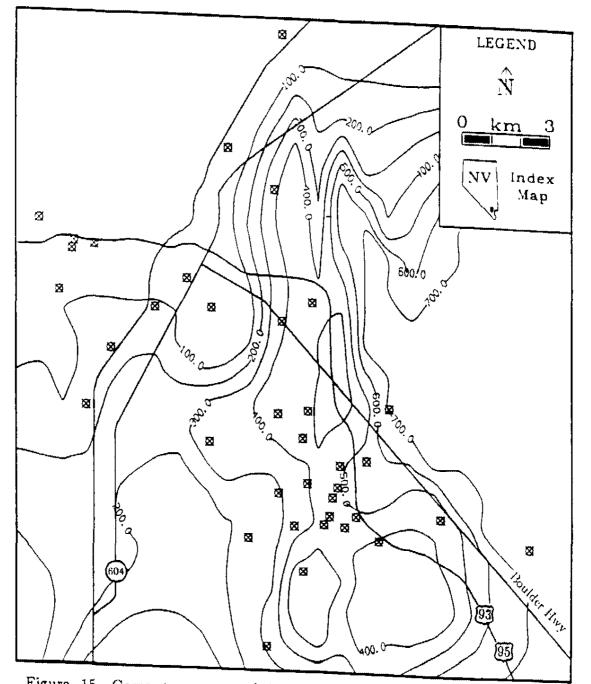


Figure 15. Computer generated isogram map of Na⁺ concentrations of ground water in the Las Vegas Valley. Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 100 mg/l.

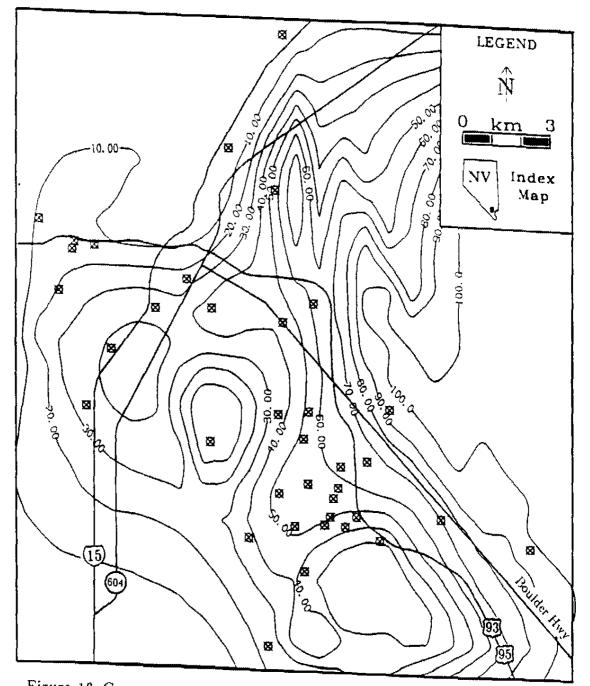


Figure 16. Computer generated isogram map of K^+ concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 10 mg/l.

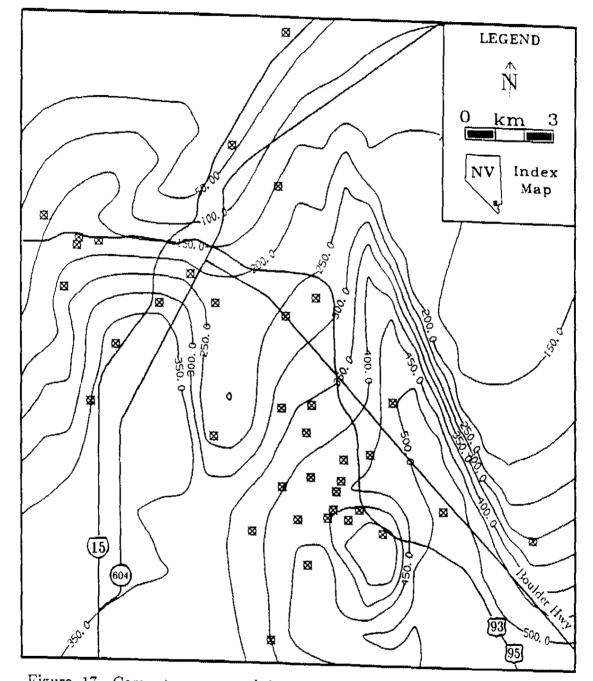
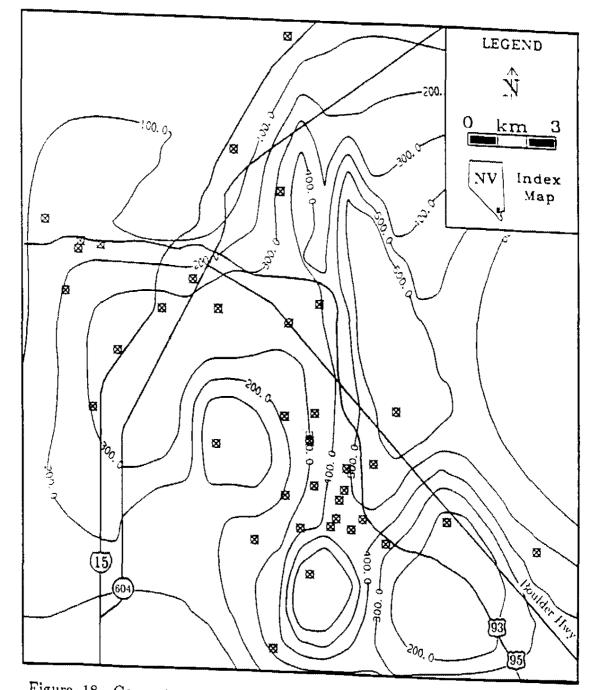



Figure 17. Computer generated isogram map of Ca^{2+} concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 50 mg/l.

,

Figure 18. Computer generated isogram map of Mg^{2+} concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 100 mg/l.

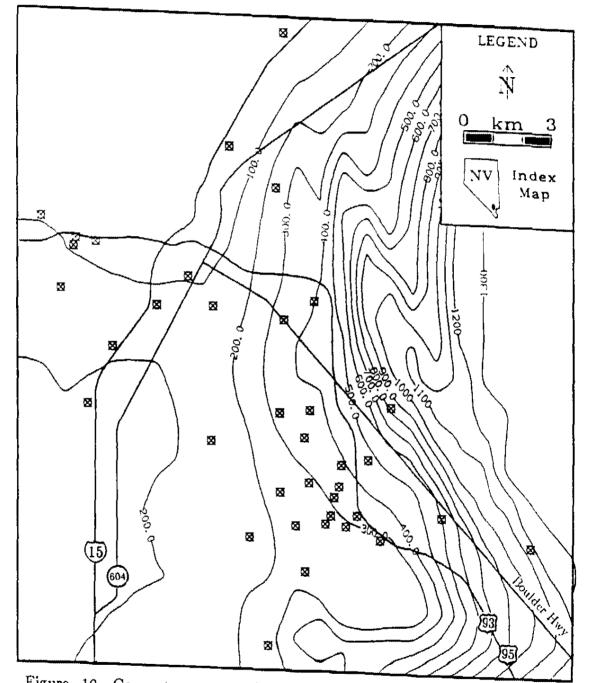


Figure 19. Computer generated isogram map of Cl⁻ concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 100 mg/l.

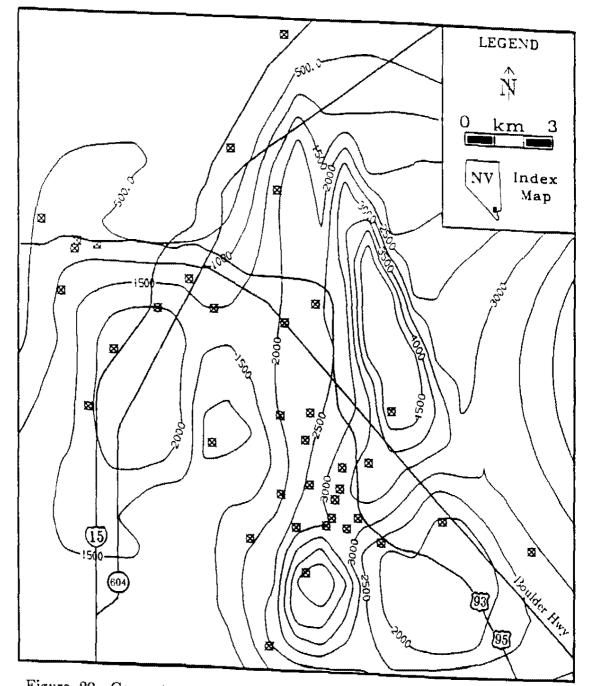


Figure 20. Computer generated isogram map of SO_4^{2-} concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 500 mg/l.

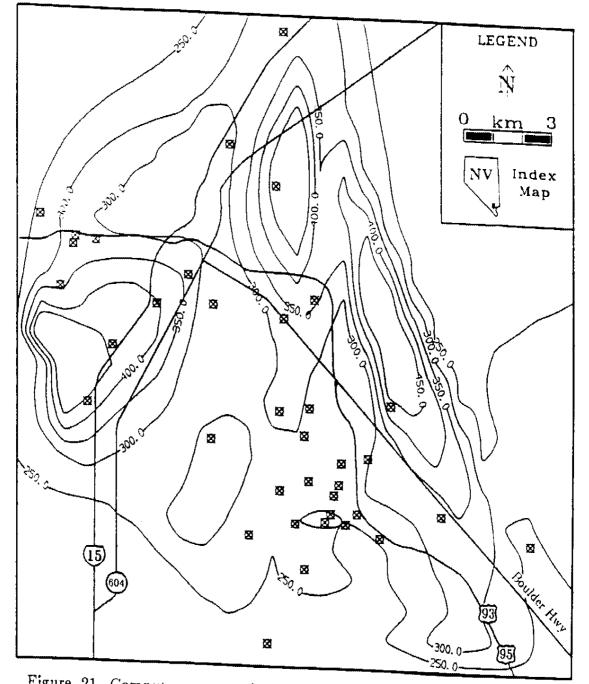


Figure 21. Computer generated isogram map of HCO_3^- concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 50 mg/l.

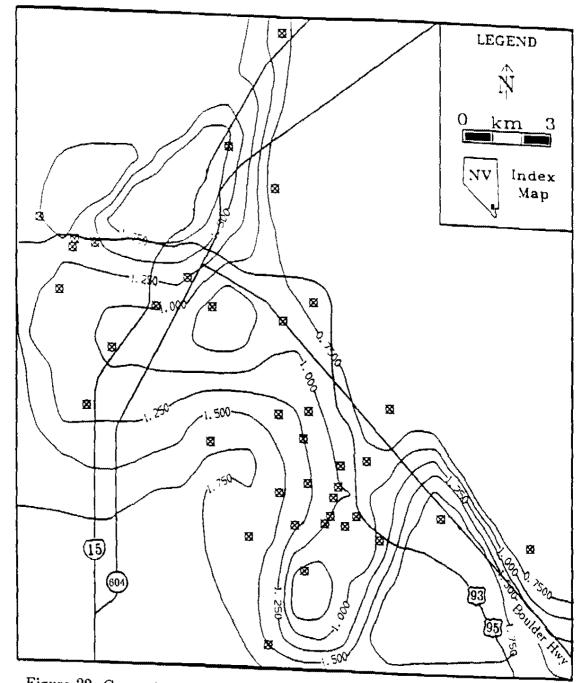


Figure 22. Computer generated contour map of Ca^{2+}/Mg^{2+} ratios of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 0.25.

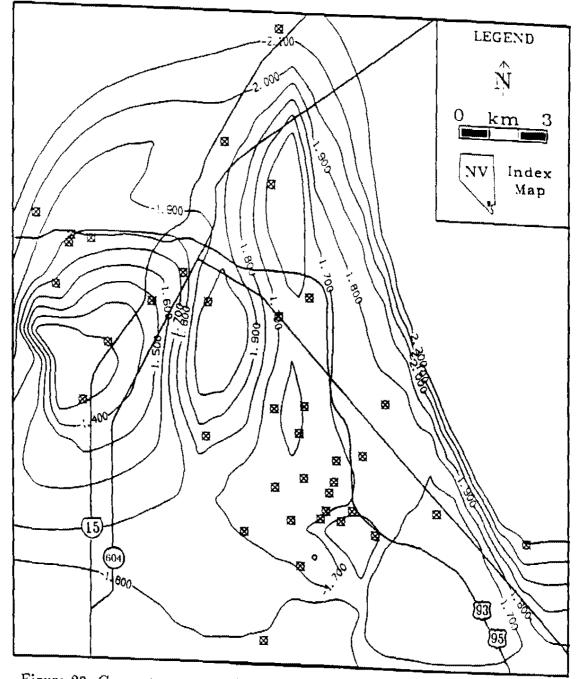


Figure 23. Computer generated contour map of log P_{CO_2} of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89. Contour interval = 0.1.

rest of the study area.

Temporal Variations

The difference between the maximum and minimum total dissolved solids (TDS) concentration observed at each site range from 39 mg/l at site USGS#15 to 1570 mg/l at site C27 and averages 400 mg/l valley-wide. Temporal variations in TDS as a percentage of average TDS concentrations at each site ranges from 3% at sites C42, C49, and USGS#43 to 20% at site C27 and averages 10% valley-wide. There is no discernable cyclical annual pattern of TDS fluctuations; TDS highs and lows are distributed fairly uniformly throughout the year. Neither is there any indication that land use practices are affecting short-term TDS variations.

Although TDS concentrations vary temporally at each site, ion ratios remain fairly constant throughout the year. Successive sample analyses from a single site plotted on a trilinear diagram almost invariably plot directly on top of each other. Figure 24, a trilinear diagram with 20 sample analyses plotted, 5 analyses from each of 4 sites, illustrates the lack of temporal variation in the ion ratios of shallow zone waters. This lack of temporal variation in ion ratios suggests that neither mineral phase precipitation nor ion-exchange processes are occurring or that they are relatively minor processes in the shallow aquifer zone.

The most likely explanation for the observed temporal variations in TDS concentrations is therefore one of alternating cycles of dissolution causing TDS rises and diffusion and dispersion causing TDS drops. Dissolution of aquifer material results from dissolution along flow path, secondary recharge, and water table rises. Secondary recharge and a rising water table, in concert with the high evapotranspiration rate in the valley, result in the formation of a zone of highly saline water near the water table. Dettinger (1987) noted that the worst quality

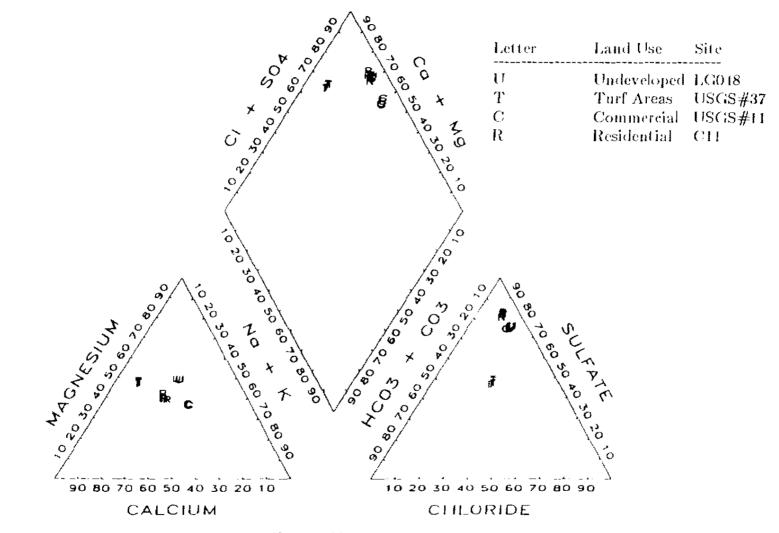


Figure 24. Trilinear diagram (% meq/l) of 5 quarterly samples from each of 4 shallow wells in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

water everywhere in the valley was near the water table. This zone of highly saline water then apparently becomes less concentrated in time as diffusion and hydrodynamic dispersion mix the less saline water at depth in with the saline zone.

Nutrients

 NO_3^- concentrations in the study area ranged from 0.4 mg/l at site USGS#19 to 80.2 mg/l at site USGS#40 and averaged 22.2 mg/l valley-wide. Nitrate concentrations do not appear to be controlled by lithology, but rather by the presence of septic tanks in the valley, by the application of sewage effluent to golfcourses, and primarily by fertilization practices and overirrigation of turf grass (Hess and Patt, 1977; Kaufmann, 1978; Robert Morris, Nevada Cooperative Extension, personal communication, 1990). Overirrigation of turf grass in the valley increases nitrate transport to ground water six fold, independent of fertilization rates (Morton *et al.*, 1988).

Total organic carbon (TOC) concentrations (expressed as carbon) ranged from 0.50 to 9.4 mg/l and averaged 2.6 mg/l while dissolved organic carbon (DOC) concentrations ranged from 0.90 to 9.4 mg/l and averaged 2.6 mg/l. TOC data collected by Dettinger (1987) in 1981 and 1982 indicated that TOC values in shallow ground water ranged from <0.10 mg/l to 13.0 mg/l and had a mean concentration of 5.1 mg/l. The difference between the average TOC concentrations observed in this investigation and those observed by Dettinger (1987) suggests that TOC concentrations may be decreasing in the study area.

TOC content is a semi-quantitative measurement of organic water quality which can indicate the presence of a multitude of organic compounds from either natural or artificial sources. TOC concentrations have been used in Las Vegas Valley and elsewhere as a general indicator of more specific organic

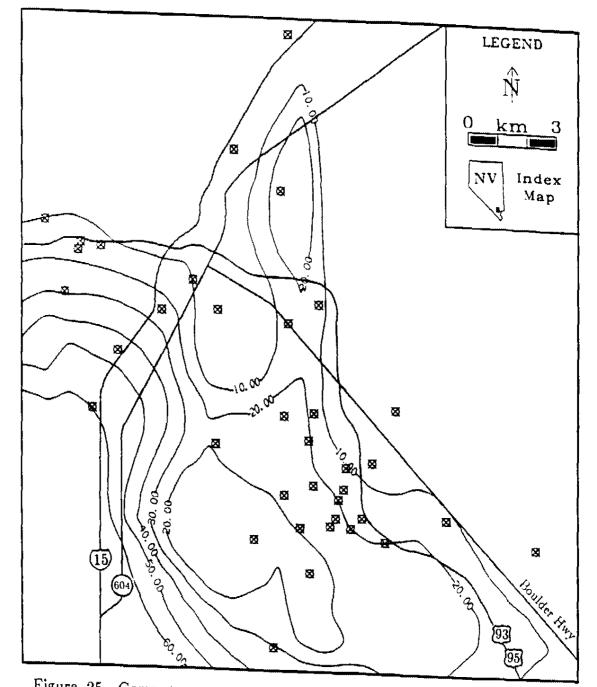


Figure 25. Computer generated isogram map of NO_3^- concentrations of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89. Contour interval = 10 mg/l.

contamination problems (Dettinger, 1987). Both the Nevada Division of Environmental Protection and the industries involved in the mitigation of the large contaminant plume between the BMI complex in Henderson and the Las Vegas Wash have used the 5 mg/l TOC contour as an informal indicator of the aereal extent of the contaminated ground-water (Dettinger, 1987). Using this method, only one site, USGS#37, located in Rotary Park near Charleston Boulevard and Valley View Boulevard, exceeded the 5 mg/l TOC concentration indicative of contamination. However, because this site is located in a large city park and depth to water is only 2-3 meters, the high 9.4 mg/l TOC and DOC concentrations are most likely due to the close connection of shallow ground water to the reservoir of organic matter in the unsaturated zone (Dettinger, 1987).

Thirty-six samples were analyzed for both total and dissolved concentrations of the orthophosphate ion (PO_4^{3-}). Total PO_4^{3-} concentrations ranged from <0.005 mg/l to 0.14 mg/l and averaged 0.026 mg/l while dissolved PO_4^{3-} concentrations ranged from <0.005 to 0.065 mg/l and averaged 0.029 mg/l. Dissolved PO_4^{3-} data was collected by both Kaufmann (1978) and Dettinger (1987) who reported average values of 0.79 and 0.09 mg/l, respectively. Based upon these two previous values and the current average value of 0.029 mg/l dissolved PO_4^{3-} , it appears that PO_4^{3-} concentrations have been decreasing over the last 16-18 years.

 PO_4^{3-} in ground water can come from weathering of calcium phosphate (apatite), from calcium phosphate fertilizer, from human or animal wastes, and from household detergents (Hem, 1985). Septic tank leachate of human waste and household detergent is the source of most of the PO_4^{3-} in shallow aquifer zone waters. Fertilizers are only a minor source of PO_4^{3-} in Las Vegas Valley due to the extremely low mobility of PO_4^{3-} in soils and sediments (Hem, 1985).

Therefore, the decreasing concentrations of both total and dissolved PO_4^{3-} in shallow ground water is most likely due to the decreasing number of septic tanks in the valley. Based upon this hypothesis, it is expected that PO_4^{3-} concentrations in shallow ground water in Las Vegas Valley will continue to fall as more houses using septic tanks connect to the Clark County Sanitation District's water treatment system.

Geochemical Modeling

All ground-water samples with major ion, pH, and temperature data were analyzed using the geochemical computer model WATEQDR (Bohm and Jacobson, 1981). WATEQDR is an modified version of WATEQF, a FORTRAN IV program developed by Plummer *et al.* (1976) that models the thermodynamic speciation of inorganic ions and complex species for a given water sample. WATEQDR was used to calculate activity coefficients, ionic activity products, saturation indices of minerals, and partial pressures of gases. The saturation indices (SI's) of calcite, dolomite, gypsum, and quartz were examined because these minerals have all been indentified by numerous previous authors as major components of the surficial valley-fill deposits in the study area. P_{CO_2} and SI values are given as the common logarithm (log) in the following discussion and in Appendix L.

Log P_{CO_2} values ranged from -2.18 to -1.14 atmosphere (atm) in the study area with an average value of -1.74 atm. A contour map of the average log P_{CO_2} of the shallow aquifer zone (Figure 23) may be explained by plant respiration and aerobic decay resulting in localized areas of high CO₂ concentrations in the soil atmosphere, which in turn are causing localized areas of ground-water with elevated log P_{CO_2} values. P_{CO_2} values in the shallow aquifer zone are generally high in the summer and winter and low in the fall and spring. Roughly two thirds of the samples collected were oversaturated with respect to calcite. This oversaturation indicates that ground waters in the west and north are dissolving calcite from the predominant carbonate valley-fill deposits in these areas while waters farther along the flow path are at equilibrium or are precipitating this mineral. The lack of seasonal variations in ion ratios of shallow zone waters noted in the previous section suggests that calcite precipitation is not occurring in the study area. However, it is possible that calcite is being dissolved from the unsaturated zone at the same rate that it is precipitating in the waters of the shallow zone. A dynamic equilibrium between dissolution and precipitation of calcite would then explain both the oversaturation of shallow zone waters with respect to calcite, which indicates mineral precipitation, and the constancy of ion ratios throughout the year, which contraindicates mineral precipitation.

Calcite SI's are 180° out of phase with P_{CO_2} variations with highs in the fall and spring and lows in winter and summer. The decrease of P_{CO_2} in fall and spring increase the state of saturation of this mineral. High summer CO₂ concentrations in the soil atmosphere from both evaporation and higher rates of plant root and microorganism respiration cause elevated P_{CO_2} s (Hillel, 1980), thus allowing more calcite to be dissolved. Since more calcite can be dissolved, an apparent drop occurs in the saturation index of calcite (Drever, 1982).

Seventy-nine out of 92 samples collected were undersaturated with gypsum, suggesting that this mineral is being dissolved in the study area. Three sites, C27, C29, and LG030, had waters that were at or near equilibrium with gypsum. Saturation of gypsum at site LG030 was expected since this site is at the terminus of the shallow ground-water flow path near Las Vegas Wash. Saturation of gypsum at sites C27 and C29 plus the high TDS and sulfate (SO_4^{2-})

13

concentrations at these two sites indicates that these wells are completed in gypsum deposits or in highly gypsiferous soils; the drilling logs in Converse Consultants (1985) report are unclear in regard to the lithology of the screened interval of these two sites.

SI values for gypsum are higher in summer and winter and lower in fall and spring. This pattern is in phase with P_{CO_2} variations and 180° out of phase with calcite SI variations. The P_{CO_2} -calcite-gypsum system in the shallow aquifer zone is driven by annual temperature variations and the common-ion effect. As stated above, high summer temperatures cause higher rates of evaporation and respiration, which increase the CO₂ content of the soil atmosphere and the P_{CO_2} in shallow ground water (Brook *et al.*, 1983). Higher P_{CO_2} s, in concert with the lower solubility of calcite at elevated temperatures (Stumm and Morgan, 1981), cause a drop in the saturation state of calcite in summer (Drever, 1982). Although the solubility of gypsum also decreases as a function of increasing temperature (Stumm and Morgan, 1981), as the saturation state of calcite drops in the summer, more gypsum is dissolved as a result of the common-ion effect. Therefore, the SI of gypsum rises in summer.

If water contains an ion which is also present in a salt, then the commonion effect will lower the solubility of that salt in the water. In the current study, the solubility of calcite, in water at equilibrium or oversaturated with calcite, is reduced by the addition of Ca^{2+} ions, the common ion, from the dissolution of gypsum. Thus, dissolution of gypsum may cause calcite to precipitate out of solution due to the common-ion effect (Freeze and Cherry, 1979; Drever, 1982). Likewise, the solubility of gypsum will be lowered by the addition of Ca^{2+} ions to the solution from the dissolution of gypsum.

14

In the waters of the Las Vegas Valley shallow alluvial aquifer zone, high temperatures and P_{CO_2} 's in summer decrease the solubility and saturation state of calcite, allowing dissolution of gypsum and an increase in gypsum saturation due to the common-ion effect. In winter, lower temperatures increase gypsum solubility (Wigley, 1973; Stumm and Morgan, 1981) which results in dissolution of gypsum, a decrease in the saturation state of calcite (Wigley, 1973), and the production of $CO_{2(aq)}$ (Drever, 1982).

All samples collected were oversaturated with respect to quartz, but the majority were undersaturated with respect to amorphous silica. The amorphous silica equilibrium value (SI = 0), rather than the quartz equilibrium value, is considered to be the upper limit for silica solubility in natural waters (Stumm and Morgan, 1981; Hem, 1985). Therefore, with the exception of sites C28, C49, LG030, USGS#5, USGS#19, and USGS#43 all sites were undersaturated with respect to dissolved amorphous silica. Although unlikely due to the extremely low reaction kinetics (Stumm and Morgan, 1981; Hem, 1985), the waters at these 6 sites may be precipitating silica. In general, dissolved silica concentrations are higher in summer and lower in winter, most likely due to the effects of temperature on silica solubility (Hem, 1985) and possibly due to the effects of evapotranspiration.

As previously stated, the lack of temporal variations in the ion ratios of shallow zone waters suggests that precipitation of mineral phases, if occurring at all, is a relatively minor process.

Water Quality Standards

Water samples were evaluated for compliance with federal drinking water quality standards. Water quality regulations are enforced by the U.S. Environmental Protection Agency (EPA) in accordance with the 1974 Safe Drinking Water Act. Drinking water regulations are defined in the National Interim Primary Drinking Water Regulations of 1975 and are published in the Code of Federal Regulations (CFR) title 40, parts 100 to 149.

Water samples were evaluated with respect to both maximum contaminant levels (MCL's) and secondary maximum contaminant levels (SMCL's). MCL's are enforceable regulations which stipulate water purity standards for human public water supplies (PWS's). A PWS has to have at least 15 service connections or serve 25 people on a daily basis at least 60 days per year (Dixon, 1990). None of the wells sampled for this investigation qualify as a PWS. However, studies are currently being performed to determine possible alternative uses for shallow aquifer zone waters, such as for irrigation of salt-tolerant plants (Dale Devott, University of Nevada, Las Vegas Environmental Research Center, personal communication, 1990).

MCL's were exceeded 22 times while SMCL's were exceeded 241 times. MCL's were exceeded twice for arsenic, 11 times for selenium, and 9 times for nitrate. SMCL's were exceeded twice for iron, 3 times for manganese, and twice for pH. Sites LG030 and LG048 exceeded the SMCL's for both iron and manganese; this is most likely due to the deterioration of the mild steel casing used at these two sites. The 2 excedences for pH were from sites MDB3 and MDB6, both of which were contaminated with drilling fluids. The majority of SMCL excedences were for chloride (58), sulfate (87), and total dissolved solids (89). These excedences are due to the highly soluble nature of the gypsum and halite that are present in the surficial valley-fill deposits of the study area and the extremely high evapotranspiration rate in the valley. Table 4 gives the summary statistics for major ions, nutrients and isotopes; Table 5 gives the summary statistics for trace metals. Tables 6 and 7 give the water quality standards and

Analysis	Minimum	inimum Maximum	
pH	6.73	11.76	7.09
TDS	252	8680	3780
sodium	6.34	992	328
potassium	2.36	104	35.3
calcium	27	570	354
magnesium	0.24	831	278
bicarbonate	55	584	281
chloride	4.1	1370	347
sulfate	34.2	5250	2015
silica	13.1	71	36.5
nitrate (as N)	0.01	18.1	5.1
TOC	0.50	9.4	2.6
DOC	0.90	9.4	2.6
ortho phosphate	< 0.005	0.065	0.029
total phosphate	< 0.005	0.14	0.026
tritium	<5 TU	30 TU	21.1 TU
ை	-104 per mil	-89 per mil	-97 per mil
δ ¹⁸ Ο	-14.0 per mil	-11.2 per mil	-12.6 per mil

Table 4. Summary statistics of major ions (mg/l), nutrients (mg/l), and isotopes of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

Ion	Ion Number of > Detection Samples Limit		Maximum	Mean	
arsenic	17/19	< 0.002	0.060	0.015	
b arium	19/19	0.007	0.183	0.028	
boron	19/19	0.05	5.00	1.98	
cadmium	0/19	< 0.005			
chromium	1/19	< 0.02	0.04	0.04	
copper	18/19	< 0.005	0.062	0.020	
fluoride	37/37	0.06	6.03	0.57	
iron	4/19	< 0.01	8.40	2.33	
lead	0/19	< 0.02			
manganese	5/19	< 0.01	0.13	0.08	
mercury	0/19	< 0.0002			
nickel	0/19	< 0.01			
selenium	17/19	< 0.002	0.045	0.019	
silver	0/19	< 0.005			
zinc	6/19	< 0.005	0.059	0.019	

Table 5. Summary statistics of trace element concentrations (mg/l) for ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

Contaminant	EPA MCL	# Samples	# Exceeding		
arsenic	0.05 mg/l	19	0		
barium	<u>1 mg/l</u>	19	0		
cadmium	0.010 mg/l	19	0 O		
chromium	0.05 mg/l	19	0		
lead	0.05 mg/l	19	0		
mercury	0.002 mg/l	19	0		
nitrate (as <u>N)</u>	10 mg/l	95	9		
selenium	0.01 mg/l	19	11		
silver	0.05 mg/l	19	0		

Table 8. Maximum contaminant levels (MCLs) and number of concentrations in ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone that exceeded the MCL for selected inorganic chemicals.

Table 7. Secondary maximum contaminant levels (SMCLs) and number of concentrations in ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone that exceeded the SMCL for selected inorganic chemicals.

Contaminant	EPA MCL	# Samples	# Exceeding		
<u></u>					
<u>chloride</u>	250 mg/l	95	58		
copper	<u>1 mg/l</u>	19	0		
fluoride	2.0 mg/l	37	0		
iron	0.3 mg/l	19	2		
manganese	manganese 0.05 mg/l		33		
pH	6.5-8.5	251	2		
sulfate 250 mg/l		95	87		
TDS 500 mg/l		95	89		
zinc	5 mg/l	19	0		

number of excedences for constituents on the MCL and SMCL lists, respectively.

Environmental Isotopes

Environmental isotopes of hydrogen and oxygen were used to ascertain the source and relative age of water in the shallow aquifer zone. The radioactive isotope tritium $(^{3}$ H) and the stable isotopes deuterium $(^{2}$ H or D) and oxygen-18 $(^{18}$ O) were used in this investigation.

Water (H₂O) molecules are composed of \forall arious combinations of hydrogen and oxygen isotopes and the physical behavior of these molecules is dependent upon the resulting molecular weights. During phase changes, heavier molecules tend to occupy the lower energy state while lighter molecules occupy the higher energy state. Fractionation of isotopes during phase changes is the basis for the use of stable isotope ratios as fingerprints of waters from different sources. Concentrations of the different isotopes are reported as the ratio of heavy to light isotopes relative to a standard. The resulting delta (δ) values are defined by:

$$\delta^{18}O = \left[\frac{(^{18}O / ^{16}O)_{\text{sample}}}{(^{18}O / ^{16}O)_{\text{standard}}} - 1\right] \times 1000$$

$$\delta D = \left[\frac{(^{2}H / ^{1}H)_{\text{sample}}}{(^{2}H / ^{1}H)_{\text{standard}}} - 1 \right] \times 1000.$$

Delta values are reported in per mil (°/ ∞) units. The V-SMOW (Vienna Standard Mean Ocean Water) standard was used to report δ values of oxygen-18 and deuterium. Tritium values are reported in tritium units (TU), which is defined

as one tritium atom per 10^{18} hydrogen atoms, the equivalent of 7.2 decays/minute/liter of H₂O or 3.2 Picocuries per liter (pCi/l) (Fritz and Fontes, 1980).

Stable hydrogen and oxygen isotopes are regarded as conservative tracers since they are part of the water (H₂O) molecule and are therefore unaffected by chemical reactions. Once water has been recharged into an aquifer, there are only two means by which its δD or δ^{18} O content can be altered. Evaporation from the water table is the first way that the isotopic content of water may be altered as lighter isotopes are driven off and the water shifts toward a heavier isotopic composition. Mixing of two waters with different isotopic signatures is another means by which the δD or δ^{18} O value of water can be altered after recharge into an aquifer.

The presence of tritium in the hydrologic cycle is due to both natural and anthropogenic processes. Prior to the above-ground testing of thermonuclear hydrogen bombs, the natural level of tritium was estimated to be about 1-10 tritium units (TU) (Fritz and Fontes, 1980). Atmospheric testing of thermonuclear devices increased tritium levels in precipitation to as high as 9000 TU at Socorro, New Mexico (Rabinowitz *et al.*, 1977). Currently, tritium values in precipitation are usually below 100 TU (Drever, 1982). Tritium is used in groundwater studies today to distinguish between water that recharged an aquifer prior to the atmospheric detonation of nuclear devices (prior to 1952) and water that was recharged after 1952. Tritium follows the law of radioactive decay:

$$A_{\text{sample}} = A_{\text{initial}} e^{-\lambda T}$$

where

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$t_{1/2} = \frac{1}{2}$ life = 12.35 years.

and

This law indicates that given an initial tritium activity in water in a closed system, after time T, the tritium activity can be calculated by this equation. Tritium Analyses

Analysis of 19 samples for tritium revealed the presence of tritium above the background level/detection limit of 5 TU in 16 samples (Figure 26). The mean tritium value, excluding those sites with less than 5 TU, is 21.1 TU. Kaufmann (1978) reported the 1971-73 average tritium value in the Las Vegas Valley shallow alluvial aquifer zone to be 50.1 TU, which was a composite value obtained both from wells purposely located in or near irrigated areas (average = 54.7 TU) and from springs, seeps, and underdrains (average = 45.4 TU). Working through the radioactive decay equation for tritium, an original activity of 50.1 TU will decay to 20.4 TU after 16 years' (1972 to 1988) decay. The projected value of 20.4 TU and the measured mean of 21.1 are essentially identical since the 0.6 TU difference is well within the measurement error of $\pm 2-3$ TU.

The match of projected and measured tritium values suggests that no tritium, and, therefore no modern water, has been added to the shallow aquifer zone since Kaufmann (1978) collected his samples in 1971-73. However, this is contrary to the known facts. Converse Consultants (1985) reported a 1.5-3 meter rise in the shallow aquifer zone water table between 1970 and 1985. This rise was due to the accumulation of secondary recharge waters in the shallow zone (Converse Consultants, 1985). The match of projected and measured tritium values could also be explained by the secondary recharge of non-tritiated water in the shallow aquifer zone. In view of the known facts regarding the rising shallow zone water table and the fact that tritiated Lake Mead water has only recently

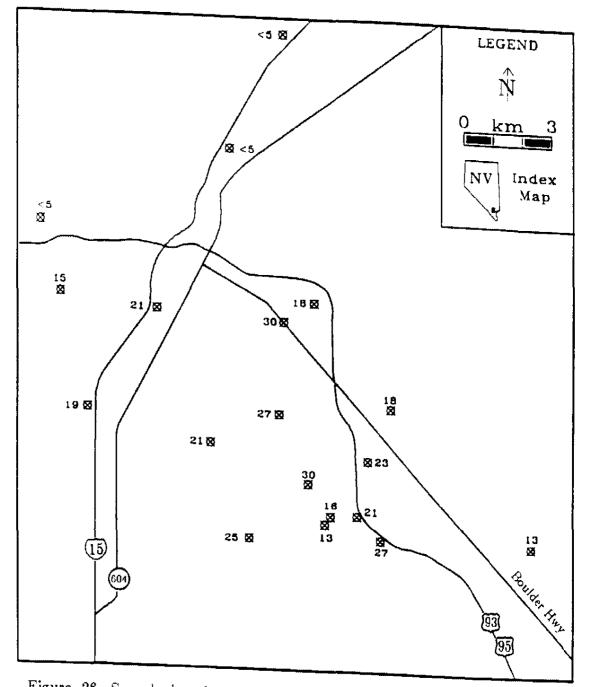


Figure 26. Sample locations and tritium activities (TU) of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89.

been used on a widespread basis in the valley, the past use of principal aquifer water for landscape irrigation is the most plausible explanation for the match between projected and observed tritium values.

Similarly, the lack of tritium above background levels in the northern study area indicates that no modern recharge has occurred in this area. However, this area of the valley is still served primarily by ground water from the principal aquifers which was recharged in the Spring Mountains during the Pleistocene (Noack, 1988). Therefore, irrigation and secondary recharge waters in this area should contain only background levels of tritium.

Interpretation of tritium data in the shallow aquifer zone is complicated by a number of factors. These are: the unknown tritium activity of Colorado River water, the mixing of tritiated Colorado River water and untritiated ground water in the public water supply distribution system, and the lack of quantitative secondary recharge rates for the various parts of the valley. Both tritiated and untritiated water are mixed at different ratios in reservoirs in the valley before the water is distributed. Thus, the tritium activity of irrigation and associated secondary recharge waters varies both spatially and temporally in the valley. Even if the tritium content of Colorado River water and secondary recharge waters were known conclusively, without a quantitative evaluation of the spatial variations in secondary recharge rates, there is no way to determine the input of tritium into the ground water of the shallow aquifer zone. Therefore, waters of unknown tritium activity are being recharged into the shallow aquifer zone at unknown rates, making the interpretation of tritium data virtually impossible.

Stable Isotope Analyses

Ninety-nine ground-water samples were analyzed for stable isotope ratios of δ^{18} O and δ D. The factors that complicated the interpretation of the tritium

87

data, i.e., the spatial and temporal variations in the isotopic signatures of secondary recharge waters and the lack of quantitative secondary recharge data, also make the interpretation of the stable isotope data difficult, if not impossible.

Delta deuterium in the shallow zone ranges between -89 per mil ($^{\circ}/_{00}$) and -104 $^{\circ}/_{00}$ and has a mean value of -97 $^{\circ}/_{00}$. Delta oxygen-18 ranges from -11.2 $^{\circ}/_{00}$ to -14.0 $^{\circ}/_{00}$ and averages -12.6 $^{\circ}/_{00}$. Average values of δD and δ^{18} O plotted on the study area basemap (Figures 27 and 28) reveal that the isotopically lightest waters are generally found in the northern part of the study area while the isotopically heaviest water is found at the terminal end of the shallow groundwater flow path near Las Vegas Wash. This suggests that the water in the shallow zone is becoming progressively enriched in both D and ¹⁸ O along flow path due to the fractionation effects of evaporation. However, Figures 27 and 26 do not show a spatial trend toward progressive enrichment in either D of ¹⁸ O along flow path.

The observed pattern of the lightest water in the north and the heaviest water near Las Vegas Wash can be attributed to the widespread use of isotopically light principal aquifer zone water in the north and to the extremely high evaporation rate at Las Vegas Wash due to the shallow water table and low elevation in the vicinity of the wash. Summer water levels at site LG030, the site with the isotopically heaviest water in the shallow aquifer zone, are more than 3 meters lower than the winter water levels.

Evaluation of the temporal variations in δD and $\delta^{18} O$ indicated that although there are seasonal shifts in both isotope ratios, no consistent seasonal trend can be discerned. for example, of the 18 wells from which time series isotope data was collected, between June and September, 1988;

3 sites shifted toward heavier compositions of δD and $\delta^{18} O$,

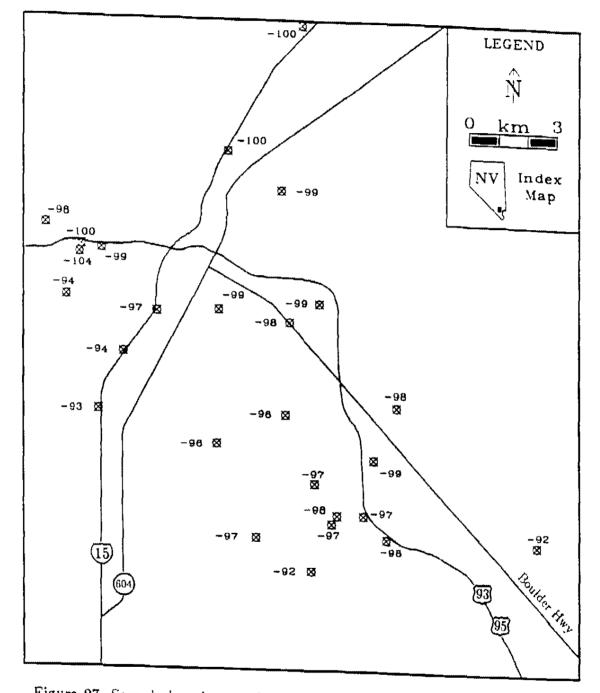


Figure 27. Sample locations and average δD of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone. 1988-89.

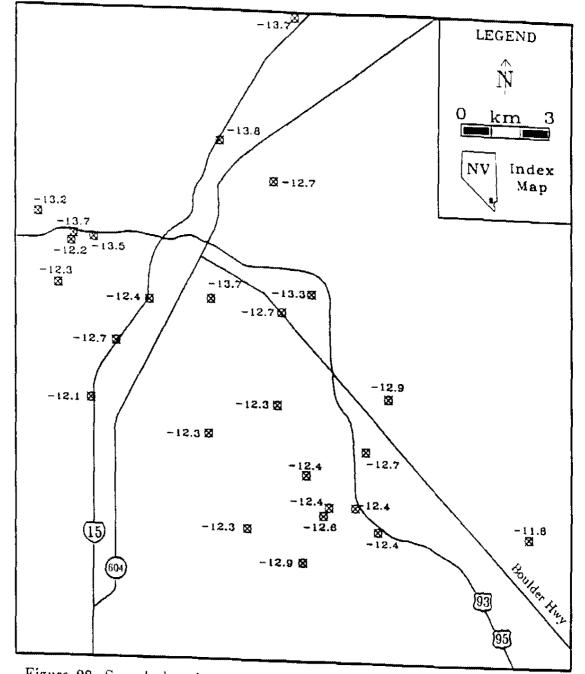


Figure 28. Sample locations and average δ^{18} O of ground-water samples in the Las Vegas Valley, Nevada shallow alluvial aquifer zone, 1988-89.

3 sites shifted toward lighter compositions of δD and $\delta^{18} O$,

3 sites shifted toward a heavier composition of δD and a lighter composition of δ^{18} O,

4 sites shifted toward a heavier composition of δD and had no change in δ^{18} O, 4 sites had no change in δD and shifted toward a lighter composition of δ^{18} O, and

1 site had no change in either δD or δ^{18} O.

Thus, during any given time period, some sites are shifting toward heavier compositions, some sites are shifting toward lighter compositions, some sites have a shift in one ratio but not the other, and some sites do not change at all. The factors affecting this system are depth to water, evapotranspiration rates, secondary recharge rates, isotopic signature of source waters, and mixing of source waters before distribution. Without the knowledge of the spatial and temporal variations in the isotopic signature of secondary recharge waters and the rate of secondary recharge, it is impossible to quantify the individual effects of these factors.

Figure 29 is a scatter plot of waters from the shallow aquifer zone, the principal aquifer zone, and Lake Mead via the Southern Nevada Water System (SNWS). The ratio of $\delta D: \delta^{18} O$ ($\delta D = 8*\delta^{18} O + 10$) for global ground water, surface water, and precipitation, defined by Craig (1961) and referred to as the Craig Meteoric Water Line (MWL) is also shown on Figure 29. Figure 29 reveals that shallow zone waters plot in a relatively tight cluster within a low humidity evaporation envelope of principal aquifer zone waters. The similarity between shallow zone waters and principal zone waters is not suprizing in light of the fact that the principal aquifer zone was the sole source of water in the valley, except in Henderson, until completion of Stage 1 of the SNWS in 1971. If current water use trends in the valley (Figure 2) continue, it is expected that the isotopic

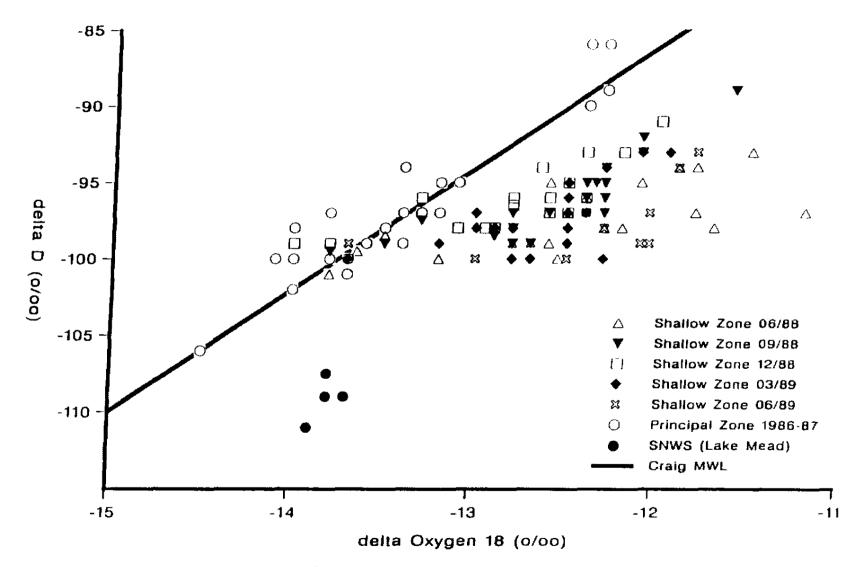


Figure 29. δD vs. δ^{18} O plot of ground-water samples from the Las Vegas Valley, Nevada shallow and principal aquifer zones and Colorado River water from the SNWS.

composition of the shallow aquifer zone will gradually shift toward the lighter composition of Lake Mead or evaporated Lake Mead water.

Natural Tracers

In order to meet Objective 5 of this investigation, the identification of possible natural tracers in the shallow aquifer zone, a comparison was made between the dissolved constituents and isotopes of the shallow zone and those in the principal aquifer zone. The shallow and principal zone data were treated as groups of samples from the population of Las Vegas Valley alluvial aquifer system water samples and were assumed to have normal distributions. Principal aquifer data from Kaufmann (1978), Weaver (1982), Dettinger (1987), Brothers and Katzer (1988), and Noack (1988) was compared both to shallow aquifer zone data from these same previous investigations, except Weaver (1982), and to the data gathered during this investigation. Student's t-test was used to determine whether there was a significant statistical difference between the two groups of samples. Tables 8 and 9 summarize the results of Student's t-test for chemical and isotopic variables between the shallow and principal alluvial aquifer zones.

The t-test results indicate that there is a significant difference between the shallow and principal zones for the majority of variables tested. There was no difference between the shallow and principal zone data for bicarbonate, phosphate, deuterium, arsenic, copper, and zinc. All other variables tested showed a significant difference between the shallow and principal zones.

Other varibles which were shown to differ significantly between the shallow and principal zones are: total dissolved solids (TDS), silica (sio2), fluoride (F⁻), nitrate (NO₃⁻), total organic carbon (TOC), tritium, $\delta xygen-18$ (δ^{18} O), boron (B), barium (Ba), iron (Fe), manganese (Mn), and selenium (Se). From this list

Variable	Shallow Zo Mean (#Samples)	ne o	Principal Z Mean (#Samples)	one o	Degrees of Freedom	t	Signific- ant Diff- erence?
Na ⁺	417 (285)	1100	27.5 (161)	47.8	444	4.49	yes
K ⁺	65.7 (286)	351	4.39 (161)	4.28	445	2.21	yes
Ca ²⁺	326 (288)	182	63.8 (161)	36.7	447	18.11	yes
Mg^{2+}	254 (286)	241	33.6 (161)	15.8	445	11.55	yes
HCO ₃ ⁻	251 (256)	106	244 (120)	292	374	0.32	no
C1-	479 (288)	1005	26.5 (161)	46.2	447	5.71	yes
SO42-	1900 (287)	2580	143 (161)	164	446	8.61	yes
SiO ₂	40.0 (158)	34.0	20.4 (127)	14.6	283	6.05	yes
TDS	3740 (285)	5310	470. (146)	294	429	7.42	yes
F-	0.75 (183)	0.51	0.43 (157)	0.43	338	6.17	yes
NO ₃	18.2 (242)	26.4	9.2 (107)	35.8	347	2.63	yes
тос	3.70 (59)	2.94	0.54 (18)	0.30	75	4.51	yes
OPO4	0.38 (38)	1.46	0.04 (60)	0.04	96	1.79	no
δD	-97 (109)	2.74	-97 (31)	4.21	138	0.16	no
δ ¹⁸ Ο	-12.6 (109)	0.58	-13.5 (31)	0.55	138	7.20	yes

Table 8. Results of Student's t-test for ions (mg/l) and stable isotopes $(^{\circ}/_{oo})$ from the Las Vegas Valley, Nevada shallow and principal alluvial aquifer zones.

	Shallow Zone Principal Zone		lone	Degrees		Signific-	
Variable	Mean		Mean		of		ant Diff-
	(#Samples)	σ	(#Samples)	σ	Freedom	t	erence?
As	0.012 (44)	0.016	0.043 (52)	0.162	94	1.26	no
В	1.31 (46)	1.22	0.25 (81)	0.24	125	7.54	yes
Ba	0.055 (29)	0.063	0.084 (71)	0.039	98	2.79	yes
Cu	0.022 (31)	0.019	0.014 (20)	0.022	49	1.48	no
Fe	0.691 (37)	1.609	0.056 (63)	0.168	98	3.11	yes
Mn	0.082 (36)	0.079	0.010 (45)	0.020	79	5.90	yes
Se	0.013 (30)	0.012	0.002 (12)	0.001	40	3.16	yes
Zn	0.061 (32)	0.082	0.111 (51)	0.174	81	1.54	по

Table 9. Results of Student's t-test for trace metals (mg/l) from the Las Vegas Valley, Nevada shallow and principal alluvial aquifer zones.

only TDS, SiO₂, TOC, PO₄³⁻, B, Mn, Se, and tritium are suitable for use as natural tracers. Fluoride, nitrate, δ^{18} O, barium, and iron are all unsuitable because of the large standard deviations of these variables in the principal aquifers. Barium was also excluded because it is more concentrated in the principal zone than in the shallow zone.

In summary the variables that are suitable for use as possible natural tracers are Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, TDS, SiO₂, TOC, PO₄³⁻, B, Mn, Se, and tritium. Tritium is an ideal tracer because it is part of the water molecule and is therefore unaffected by chemical reactions. However, if no new tritium is added to the waters of the shallow aquifer zone in the future, the current average tritium content of 21 TU will decay to below background levels (<5 TU) within 25-30 years. The presence of one of the suitable tracers in water samples from the principal aquifers, in a concentration more than 1.96 standard deviations above the mean principal zone concentration for that constituent, should be considered indicative of contamination from the shallow aquifer zone, within a 95% confidence interval.

Historical Trends

Historical shallow aquifer zone water quality data from Kaufmann (1978) and Dettinger (1987) and historical water level data from Wood (1988b) were compared to the data generated during this investigation in order to identify historical trends in the data. The historical and current water quality data were treated as groups of samples from the population of Las Vegas Valley shallow alluvial aquifer zone waters. Student's t-test was used to determine if there were significant statistical differences between shallow zone water quality data collected by Kaufmann (1978) in the early 1970's and the data collected for this investigation in 1988 and 1989. Table 8 summarizes the results of Student's t-

Table 10. Results of Student's t-test for major ions and TDS of historical
(1971-73) and current (1988-89) ground-water samples from the Las Vegas
Valley, Nevada shallow alluvial aquifer zone.

Variable	Historical (1971 Mean (#Samples)	l-73) σ	Current (1988 Mean (#Samples)	3-89) σ	Degrees of Freedom	t	Signific- ant Diff- erence?
TDS	3380 (121)	2110	3950 (92)	1890	211	2.06	yes
Na ⁺	378 (121)	341	344 (92)	226	211	0.82	no
K ⁺	42.4 (121)	36.3	36.4 (92)	23.7	211	1.37	no
Ca^{2+}	318 (121)	168	366 (92)	142	211	2.21	yes
Mg ²⁺	240.(121)	129	293 (92)	157	211	2.69	yes
HCO ₃	233 (121)	90.2	285 (92)	87.4	211	4.16	yes
CI	442 (121)	432	357 (92)	278	211	1.64	no
SO42	1780 (121)	1110	2110 (92)	1090	211	2.19	yes
F-	0.99 (77)	0.61	0.50 (37)	0.39	112	4.55	yes
NO3	11.0 (121)	23.5	23.7 (92)	18.4	211	4.30	yes

test for major ions between the historical and current data.

Total dissolved solids (TDS) data generated by Dettinger (1987) in the early 1980's was compared to the 1988-89 data gathered from the same shallow wells that Dettinger (1987) used. Water level data collected from these same wells during the late 1970's and early 1980's in Wood (1988b) was compared to the 1989 water levels gathered from these wells for this investigation. Figures 30 and 31 are computer contoured maps which display the changes in TDS concentrations and water levels, respectively, between 1981 and 1989.

Student's t-test indicated that there were significant differences between the 1971-73 and 1988-89 concentrations of Ca^{2+} , Mg^{2+} , HCO_3^- , SO_4^{2-} , NO_3^- , F^- , and TDS. With the exception of fluoride, all of the varibles showed an increase during this time period. TDS concentrations have increased from a 1971-73 average of 3380 mg/l to a 1988-89 average of 3950 mg/l, an increase of 570 mg/l. Figure 30 indicates that the areas that have experienced the largest increases in TDS concentrations are the central and eastern parts of the valley. These results are not unexpected since the overapplication of irrigation waters and the rising shallow aquifer zone water table have long been qualitatively understood to leach salts from the unsaturated zone.

Net water level change in the Las Vegas Valley shallow alluvial aquifer zone between 1981 and 1989 is +0.5 meters. Water levels have risen by about 1 meter in the parts of the valley that have experienced a water table rise between 1981 and 1989. Figure 31 shows that the areas of the valley that have experienced the greatest water table rises are the southwest and southeast. Water levels in the northeastern, eastern, and south-central valley appear to have declined by about 1 meter between 1981 and 1989. Converse Consultants (1985) noted that the shallow zone water table was rising in the south-central valley between

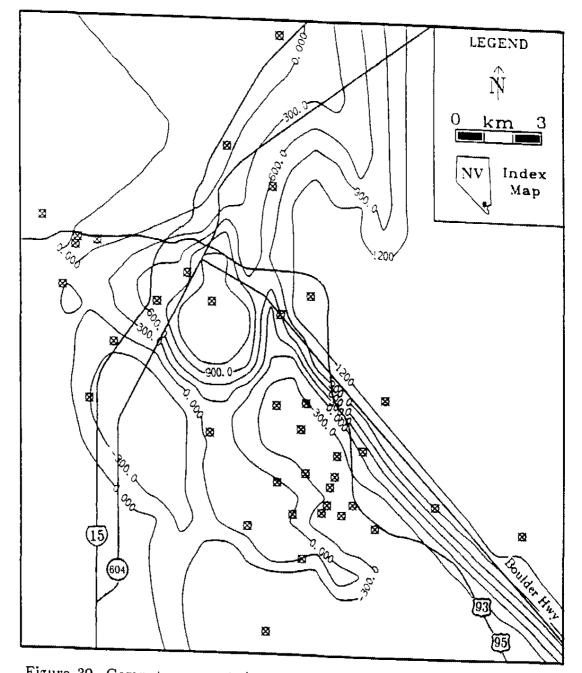


Figure 30. Computer generated contour map showing changes in the TDS concentration of ground water in the Las Vegas Valley, Nevada shallow alluvial aquifer zone between 1981 and 1989. Contour interval = 300 mg/l.

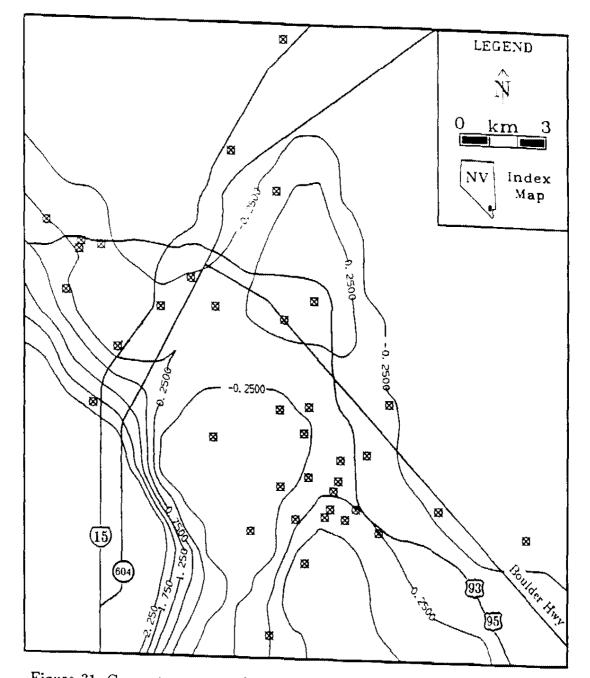


Figure 31. Computer generated contour map showing changes in water levels in the Las Vegas Valley. Nevada shallow alluvial aquifer zone between 1981 and 1989. Contour interval = 0.25 meters.

1970 and 1980 and stabilized after 1980. If current water use trends (Figure 2) and irrigation practices continue, it is expected that both the TDS concentration and the water table of the shallow aquifer zone will continue to rise.

SUMMARY AND CONCLUSIONS

The Las Vegas Valley shallow alluvial aquifer zone is a possible source of contamination to the public drinking water supply of the valley, a known source of contamination to the Colorado River, and a possible future resource to be exploited by the residents of the valley. Therefore, a thorough understanding of the recharge processes, hydraulics, and chemical nature of the shallow aquifer zone are essential to adequately plan for future water needs. This research indicates that shallow aquifer zone water quality is poor due to a combination of natural and anthropogenic causes and that water quality will further degrade if current water use trends in the valley continue. Figure 32 is a diagram of the conceptual model illustrating the hydrogeologic systems in the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

Depth to water in the study area is generally less than 4 meters. A generalized equipotential water table map suggests that ground-water flow is from west to east toward the Las Vegas Wash. There are two distinct patterns of annual water level fluctuations in the valley, both of which are controlled by surficial land use practices. The natural pattern of seasonal fluctuations has water table lows in the fall and highs in the late winter to spring. The second pattern of annual water table fluctuations is influenced by irrigation practices in the valley and has water table highs in the fall and lows in the late winter to spring.

Water temperature is unaffected by land use practices and follows an annual cycle of highs in the fall and lows in the late winter to spring. The pH of shallow zone waters is near neutrality valley-wide and remains fairly constant throughout the year with only minor monthly variations. EC variations followed a similar pattern in the majority of wells sampled, experiencing semi-annual highs in mid-summer and late fall, 1988, followed by a steady decline through

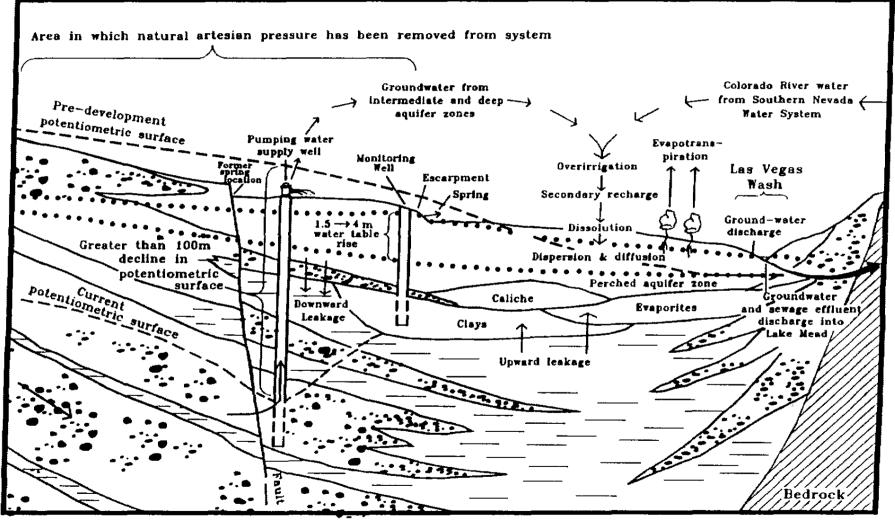


Figure 32. Generalized diagram of a conceptual model illustrating the current hydrogeologic systems of the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

the end of 1989. This pattern may be explained by alternating periods of variable duration during which saline water is concentrated at the water table and diluted by diffusion and hydrodynamic dispersion.

Ground-water quality changes along flow path from a fresh $Ca^{2+}-Mg^{2+}-HCO_3^{-}$ type water to a moderately saline $Ca^{2+}-Mg^{2+}-SO_4^{2-}$ type water. This evolution along flow path is due to natural dissolution, evapotranspiration, greater solubility of the gypsiferous soils in the eastern valley, decreasing aquifer permeability from west to east, and addition of salts from secondary recharge. Concentrations of all major ions, except bicarbonate, increase along flow path. Bicarbonate concentrations appear to be controlled by P_{CO_2} rather than lithology.

TDS concentrations vary temporally but do not appear to follow an annual pattern. TDS highs and lows are distributed fairly uniformly throughout the year. There is no evidence indicating that surficial land use practices are affecting short term TDS fluctuations. Trilinear diagram plots indicate that as TDS concentrations fluctuate, ion ratios remain constant. This suggests that ion ratios, and therefore, water-types, are unaffected by the chemical composition of secondary recharge waters and are controlled by the mineralogy of the surficial valley-fill deposits.

Constancy of ion ratios also supports the model proposed to explain the observed temporal EC variations. According to the proposed model, the variations in EC/TDS are caused by a cycle of dissolution of aquifer material by secondary recharge, concentration of saline water near the water table from this dissolution and from evapotranspiration, and dilution of the saline zone from mixing due to diffusion and hydrodynamic dispersion. The lack of temporal variations in ion ratios supports the proposed model because it indicates that

3

neither mineral precipitation or ion-exchange processes are occurring to a noticeable extent in the shallow aquifer zone, thereby eliminating these two processes from consideration as factors controlling temporal EC/TDS variations.

 NO_3^- concentrations do not follow a spatial trend across the study area and appear to be strongly controlled by land use, *e.g.*, septic tank use, irrigation with treated sewage effluent, and primarily by fertilization practices and overirrigation of turf grass. PO_4^{3-} concentrations have been declining in shallow ground water over the last 16-18 years, most likely as a result of the decreasing use of septic tanks.

Geochemical modeling with WATEQDR indicates that most of the samples collected were oversaturated with respect to calcite and dolomite, undersaturated with respect to gypsum, and had elevated P_{CO_2} values relative to atmospheric P_{CO_2} . Temporal analysis of the P_{CO_2} -calcite-gypsum system indicates that the saturation index (SI) of calcite varies inversely with $P_{\rm CO_2}$ and gypsum SI variations. The SI of gypsum and P_{CO_2} have sinusoidal cycles with semi-annual peaks in summer and winter and lows in fall and spring, which is 180° out of phase with calcite SI variations. This system is driven by annual temperature variations and the common-ion effect. According to the proposed model, higher CO_2 concentrations in the soil atmosphere in summer leads to higher P_{CO_2} 's in the water. High summer P_{CO_2} 's in summer coupled with the lowered solubility of calcite at elevated temperatures causes a drop in the SI of calcite in summer. As the SI of calcite drops, more gypsum can be dissolved due to the common ion effect and the SI of gypsum rises. In the winter, lower temperatures increase the solubility of gypsum, which results in dissolution of gypsum. a decrease in the saturation state of calcite, and the production of $CO_{2_{fau}}$.

All samples were oversaturated with respect to quartz but were undersaturated with respect to amorphous silica. Silica saturation is higher in summer and lower in winter, most likely due to the effects of temperature upon silica solubility.

MCL's were exceeded 22 times: twice for arsenic, 11 times for selenium, and 9 times for nitrate. SMCL's were exceeded 241 times, the majority of which were for chloride (58 excedences), sulfate (87 excedences), and total dissolved solids (89 excedences.

Tritium activity averaged around 21 TU and suggested that no tritium had been added to the shallow aquifer zone since 1971-73. Tritium was below background levels in the northern valley because untritiated principal aquifer zone water is the main source of the public water supply in this part of the valley. Delta deuterium and δ^{18} O plot within a low humidity evaporation envelope of principal aquifer zone water, indicating that the water in the shallow aquifer zone originated as principal aquifer zone water. There is no spatial trend across the valley for either δD or δ^{18} O. The interpretation of isotopic data was severely restricted by both the unquantified spatial and temporal variation in the isotopic signature of secondary recharge waters and the lack of data on secondary recharge rates.

Suitable natural tracers present in the shallow aquifer zone that might be used to trace the downward leakage of water from the shallow to the principal zone are chloride, sulfate, total dissolved solids (TDS), silica, flouride, nitrate, total organic carbon (TOC), orthophosphate (PO_4^{3-}), boron, manganese, selenium, and tritium.

Comparison of the data gathered during this investigation indicates that TDS concentrations rose by around 570 mg/l from 1971-73 to 1988-89. The ions

responsible for this increase are Ca^{2+} , Mg^{2+} , HCO_3^- , SO_4^{2-} , and NO_3^- . The central and eastern parts of the valley that experienced rapid population growth between the early 1970's and late 1980's also experienced the greatest increase in TDS content of shallow zone waters, suggesting that the initiation of overirrigation in these areas may have caused TDS to rise. Water levels rose in the valley by an average of around 0.5 meter between 1981 and 1989. The areas experiencing the greatest water level rises are the southwest and west while water levels appear to have declined in the northeastern, eastern, and south-central parts of the valley. If current water use practices in the valley continue, it is expected that water levels in the Las Vegas Valley shallow alluvial aquifer zone will continue to rise and that water quality will continue to degrade.

 $\mathbf{5}$

FURTHER RESEARCH

Spatial and temporal variations of the physical parameters, hydrogeology, and isotopic composition of the Las Vegas Valley shallow alluvial aquifer zone need to be better quantified through expansion of the monitoring well network and continued data collection. The areal extent of the monitoring well network used in this investigation was defined by the presence of previously existing wells. Consequently, there are few wells in and little hydrogeological data from most of the areas of the valley that are experiencing rapid development, such as the northwest, southwest, and southeast (Henderson). Shallow monitoring wells should be drilled to at least several meters below the water table in these areas. Water-level, physical parameter, hydrogeochemistry, and isotopic data should then be gathered from the entire shallow zone monitoring network annually in order both to establish base lines for these parameters in areas with no previous hydrogeological data and to quantify long-term valley-wide trends in these parameters.

As stated in the introduction, this document describes the results of the first phase of a five phase long-term research project. The other four stages of this research project also need to be completed to increase the understanding of the Las Vegas Valley shallow alluvial aquifer zone. The four uncompleted phases are: (1) the quantification of secondary recharge rates from over irrigation, (2) the evaluation of the hydraulic properties of the shallow aquifer zone and the hydraulic connection between the shallow and principal aquifers, (3) the calculation of the leakage rate between the shallow and principal aquifer zones, and (4)

changes caused by artificial recharge of UKW may be difficult to separate from changes caused by downward leakage of water from the shallow aquifer zone.

Effects upon water levels and water quality due to the large man-made lake and adjacent development on the Las Vegas Wash in Henderson, named the "Lake at Las Vegas", need to be determined. The Lake at Las Vegas is going to be lined with a layer of compacted clay and filled with 123,000,000 m³ of potable water. Although the developer of the Lake at Las Vegas project claims that the clay liner will not leak, it is likely that some water will leak from the lake into the surrounding soil. It is also quite likely that new residents of the area will over-irrigate and secondary recharge to the shallow ground-water system in the area will occur.

A monitoring network should be designed and installed in this area during the construction phase of the project and baseline water level and water quality data should be collected. Data collection should continue after completion of the Lake at Las Vegas to determine if there are any long-term impacts of leakage from the lake and secondary recharge from the adjacent development upon water levels and water quality in this area.

REFERENCES

- Back, W., 1966, Hydrochemical facies and ground-Water flow patterns in the northern part of the Atlantic Coastal Plain: U. S. Geological Survey Professional Paper 498A.
- Bateman, R.L., 1976, Analysis of effects of modified waste-water disposal practices on lower Las Vegas Wash: Reno, Nevada, Desert Research Institute Water Resources Center, project report no. 39, 60 p.
- Bell, John W., and Smith, E.I., 1980, Geologic map of the Henderson quadrangle, Nevada: Nevada Bureau of Mines and Geology Map 67
- Bell, J.W., 1981, Subsidence in Las Vegas Valley, Nevada: Nevada Bureau of Mines and Geology Bulletin 95, 84 p.
- Bierly and Associates, 1980, Las Vegas Wash environmental assessment for Clark County Wetlands Park: Las Vegas, Nevada, The Office of Robert Perron, EDCON and Montgomery Engineers of Nevada, unpublished consulting report, 103 p.
- Bingler, E.C., 1977, Geologic map, Las Vegas SE quadrangle: Nevada Bureau of Mines and Geology Urban Maps Series, Las Vegas SE Folio, Map 3 Ag.
- Bohannon, R.G., 1984, Nonmarine sedimentary rocks of Tertiary Age in the Lake Mead region, southeastern Neveda and northwestern Arizona: U. S. Geological Survey Professional Paper 1259, 72 p.
- Bohm, B., and Jacobson, R.L., 1981, WATEQDR, An updated version of WATEQF-A computerized chemical model of natural waters: M.S. Thesis, University of Nevada, Reno and Desert Research Institute, 79 p.

- Brook, G.A, Folkoff, M.E., and Box, E.O., 1983, A world model of soil carbon dioxide: Earth Surface Processes and Landforms 8, p. 79-88.
- Brothers, Kay, and Katzer, Terry, 1987, Artificial recharge to the Las Vegas Valley ground-water system, Clark County, Nevada: Geological Society of America, Abstracts with Programs, 1987 Annual Meeting and Exposition, p. 602.

resulting from stressed aquifer systems in Las Vegas Valley, Clark County, Nevada: Nevada Division of Environmental Protection, 66 p.

- Carpenter, E., 1915, Ground water in southeastern Nevada: U.S. Geological Survey, Water Supply Paper 365, 86 p.
- Chebotarev, I.I., 1955, Metamorphism of natural waters in the crust of weathering: Geochemica et Cosmochemica Acta, vol. 8, p. 22-48, 137-170, 198-212.
- Claasen, H.C., 1982, Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer: U.S. Geological Survey Open-File Report 82-1024, 49 p.
- Cochran, G.F., Fitzsimmons, D.L., Fowler, D.D., Garrett, J.R., Leland, J., and Reichert, L., 1977, Management of water quality in an arid urban environment: A study of Las Vegas Valley, Nevada: Desert Research Institute Water Resources Center Technical Report Series H-W #33, 215 p.
- Converse Consultants, 1985, Shallow ground water and geotechnical investigation: unpublished consulting report prepared for the Clark County Department of Comprehensive Planning, 107 p.
- Craig, H., 1961, Standard for reporting concentrations of deuterium and oxygen-18 in natural waters: Science, v. 133, p. 1833-1834.
- Desert Research Institute Water Resources Center, 1984, Review of site hydrogeology and existing monitoring network, TIMET, Inc., Henderson, Nevada: Reno, Nevada, Desert Research Water Resources Center,

- Dettinger, M.D., 1987, Ground-water quality and geochemistry of Las Vegas Valley, Clark County, Nevada, 1981-1983: implementation of a monitoring network: U.S. Geological Survey, Water Resources Investigations Report 87-4007, 69 p.
- Dinger, J.S., 1977, Relation between surficial geology and near-surface groundwater quality, Las Vegas Valley, Nevada: University of Nevada, Reno, unpublished Ph.D. dissertation, 215 p.
- Dixon, E.C., 1990, Hydrogeology and ground-water quality in the Sanders area, western Puerco River Basin, Arizona: M.S. thesis, University of nevada, Las Vegas, 157 p.
- Domenico, P.A; Stephenson, D.A.; and Maxey, G.B., 1964, Ground water in Las Vegas Valley: Desert Research Institute, Technical Report No. 7, 53 p.
- Drever, J.I., 1982, The Geochemistry of Natural Waters: Englewood Cliffs, New Jersey, Prentice-Hall, 388 p.
- Dugan, J.P. Jr., Borthwick, J., Harmon, R.S., Gagnier, M.A., Glahn, J.E., Kinsel, E.P., MacLeod, S., Viglino, J.A., and Hess, J.W., 1985, Guanidine hydrochloride method for the determination of water oxygen isotope ratios and the oxygen-18 fractionation between carbon dioxide and water at 24 degrees Celcius: Analytical Chemistry, vol. 57, p. 1734-1736.
- Ecology and Environment Inc., 1985, Technical summary of soil and in situ gas sampling, Basic Management, Inc., Henderson, Nevada: San Francisco, Ecology and Environment, Inc., unpublished consulting report, 18 p.
- Fleck, R.J., 1970, Age and possible origin of the Las Vegas Valley Shear Zone, Clark and Nye Counties, Nevada: Geological Society of Americal Abstracts with Programs, v. 2, no. 5, p. 333.
- French, R.H., Mifflin, M.D., and Edkins, J., 1982, Salt storage in lower Las Vegas Valley: Desert Research Institute Water Resources Center, Las Vegas, Nevada, 312 p.

- Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, New Jersey, Prentice-Hall, 604 p.
- Fritz, P., and Fontes, J.Ch., 1980, Handbook of Environmental Isotope Geochemistry, Volume 1, The Terrestrial Environment: New York, Elsevier, 545 p.
- Garn, H.S., 1988, Seasonal changes in ground-water levels in the shallow aquifer near Hagerman and the Pecos River, Chaves County, New Mexico: U.S. Geological Survey Open-File Report 88-197, 19 p.
- Geraghty & Miller, Inc., 1980, Ground-water investigation, Stauffer Chemical Company, Henderson, Nevada: Syosset, New York, Geraghty and miller, Inc., unpublished consulting report, 41 p.
- Gilbert, G., 1875, Report on the geology of portions of Nevada, Utah, California, and Arizona: U. S. Geological Survey, 100th Mer. Rpt., vol. 3.
- Hanks, R.J., and Ashcroft, G.L., 1980, Applied Soil Physics, Soil Water and Temperature Applications: New York, Springer-Verlag, p. 132-135.
- Hardman, G., and Miller, M.R., 1934, The quality of waters of southeastern Nevada: University of Nevada, Agricultural Experiment Station, Bulletin 136, 62 p.
- Harrill, J.R., 1976a, Pumping and depletion of ground-water storage in Las Vegas Valley, Nevada, 1955-74: Nevada Department of Conservation and Natural Resources Division of Water Resources, Water Resources Bulletin No. 44, 69 p.
 - 1976b, Water-level changes associated with ground-water development in Las Vegas Valley, Nevada, 1971-75, fourth progress reportsummary of data: Nevada Department of Conservation and Natural Resources in cooperation with U.S. Geological Survey, Water Resources-Information Series, Report 22, 46 p.

1977, Water-level changes associated with ground-water development in Las Vegas Valley, Nevada, 1971-75: Nevada Department of Conservation and Natural Resources in cooperation with U.S. Geological Survey, Water Resources-Information Series, Report 26, 31 p.

- Haynes, C.V., 1967, Quaternary geology of the Tule Springs Area, Clark County, Nevada: Pleistocene Studies in Southern Nevada, Nevada State Museum Anthropological Papers, no. 13, p. 15-104.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 836-B, 263 p.
- Hess, J.W., and Mifflin, M.D., 1978, A feasibility study of water production from deep carbonate aquifers in Nevada: Desert Research Institute, Water Resources Center, Publication No. 41054, 125 p.
 - _____, and Patt, R.O., 1977, Nitrogen contamination sources in shallow ground water, Las Vegas Area, Nevada: Desert Research Institute, Water Resources Center, Technical Report Series HW-32, 60 p.
- Hillel, D., 1980, Fundamentals of Soil Physics: New York, Academic Press, p. 303-308.
- Houghton, J.G., Sakamoto, C.M., and Gifford, R.O., 1975, Nevada's weather and climate: Nevada Bureau of Mines and Geology, Special Publication 2, 78 p.
- Johns, F.L., 1975, Handbook of radiochemical analytical methods, program element 1HA325: National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, Nevada, 5 p.
- JRB Associates, 1981, Henderson indutrial complex hazardous waste investigation: Ann Arbor, Michigan, JRB Associates, Environmental Research Group, unpublished consulting report, 47 p.
- Kaufmann, R., 1978, Land and water use effects of ground-water quality in Las Vegas Valley: U.S. Environmental Protection Agency, EPA-600/2-78-179,

- Katzer, T., 1977, Water-level changes associated with ground-water development in Las Vegas Valley, Nevada, March 1976 to March 1977: NV Dept. Cons. and Nat. Res., Water Res. Info. Series Rept. 27, 35 p.
- Kleinfelder & Associates, 1983, Geology/hydrogeology evaluation, TIMET, Henderson, Nevada; Las Vegas, Nevada, J.H. Kleinfelder and Associates, unpublished consulting report, 18 p.
- Lico, M.S., Welch, A.H., and Hughes, J.L., 1987, Geochemistry of ground water in the shallow alluvial aquifer, Carson Desert, western Nevada in Chemical Quality of Water and the Hydrologic Cycle (R.C. Averett and D.M. McKnight, eds.): Chelsea, Michigan, Lewis Publishers, p. 89-109.
- Loeltz, Ground-water conditions in the vicinity of Lake Mead Base, Las Vegas Valley, Nevada: U.S. Geological Survey Water Supply Paper 1669-Q, 17 p.
- Longwell, C.R., Pampeyon, E.H., Bowyer, Ben, and Roberts, R.J., 1965, Geology and mineral deposits of Clark County, Nevada: Nevada Bureau of Mines and Geology, Bulletin 62, 218 p.
- Malmberg, G.T., 1964, Land subsidence in Las Vegas Valley, Nevada, 1935-63: Nevada Department of Conservation and Natural Resources Information Report 5, 10 p.
 - ______ 1965, Available water-supply of the Las Vegas ground water basin, Nevada. U.S. Geological Survey, Water Supply Paper 1780, 116 p.
- Matti, J.C., and Bachhuber, F.C., 1982, Preliminary geologic map of the Las Vegas SW quadrangle: Nevada Bureau of Mines and Geology Open-File Map 82-6.
- Matti, J.C., and Morton, D.M., 1982a, Preliminary geologic map of the Las Vegas NW quadrangle: Nevada Bureau of Mines and Geology Open-File Map 82-4.

_____ 1982b, Preliminary geologic map of the Las Vegas NE quadrangle: Nevada Bureau of Mines and Geology Open-File Map 82-5.

- Maurer, D.K., 1989, Water-level data for Las Vegas Valley, Clark County, Nevada, 1986-87: U.S. Geological Survey, Open-File Report 88-200, 45 p.
- Maxey, G.B., and Jameson, C.H., 1948, Geology and water resources of Las Vegas, Pahrump and Indian Spring Valleys, Clark and Nye Counties, Nevada: Nevada Department of Conservation and Natural Resources, Water Resources Bulletin No. 5, 121 p.
- Mendenhall, W.C., 1909, Some desert watering places in southeastern California and southwestern Nevada: U.S. Geological Survey, Water Supply Paper 224.
- Mindling, Anthony, 1965, An investigation of the relationship of the physical properties of fine-grained sediments to land subsidence in Las Vegas Valley, Nevada: Reno, Nev., University of Nevada, M.S. thesis, 90 p.
 - ______ 1971, A summary of data relating to land subsidence in Las Vegas Valley: University of Nevada, Desert Research Institute Report, 55 p.
- Mifflin, M.D., 1968, Delineation of ground-water flow systems in Nevada: Desert Research Institute, Water Resources Center, Technical Report Series H-W, Publication No. 4, 110 p.
 - _____, and Wheat, M.M., 1979, Pluvial lakes and estimated climates of Nevada: Nevada Bureau of Mines and Geology Bulletin 94, 57 p.
- Miller, M.R.; Hardman, George; and Mason, H.G., 1953, Irrigation waters of Nevada: University of Nevada, Reno, Agricultural Experiment Staion Bulletin 187, 63 p.
- Morton, T.G., Gold, A.J., and Sullivan, W.M., 1988, Influence of overwatering and fertilization on nitrogen losses from home lawns. Journal of Environmental Quality, vol. 17, p. 124-130.

- Naff, R.L., Maxey, G.B., and Kaufmann, R.F., 1974, Interbasin ground-water flow in southern Nevada: Nevada Bureau of Mines and Geology Report 20, 28 p.
- Noack, R.E., 1988, Sources of ground-water recharging the principal alluvial aquifers in Las Vegas Valley, Nevada: M.S. thesis, University of Nevada, Las Vegas, 160 p.
- Orcutt, R.G., and Cochran, G.F., 1967, A reconnaissance of the technology for recharging reclaimed waste water into the Las Vegas Valley ground-water basin. Water Resources Center, Desert Research Institute, Report No. 42002, Reno, Nevada, 123 p.
- Patt, R.O., 1978, Las Vegas Valley water budget: relationship of distribution, consumptive use, and recharge to shallow ground water: U.S. Environmental Protection Agency, EPA-600/2-78-159, 60 p.
- Peter, K.D., 1987, Ground-water flow and shallow-aquifer properties in the Rio Grande inner valley south of Albuquerque, Bernalillo county, New Mexico: U.S. Geological Survey Water Resources Investigations Report 87-4015, 26 p.
- Piper, A.M., 1944, A graphical procedure in the geochemical interpretation of water analysis: Transactions of the American Geophysical Union, vol. 25, p. 914-923.
- Plume, R.W., 1984, Ground-water conditions in Las Vegas Valley, Clark County, Nevada: Part I. Hydrogeologic Framework: U.S. Geological Survey Open-File Report 84-130, 25 p.

_____ 1989, Ground-water conditions in Las Vegas Valley, Clark County, Nevada: Part I. Hydrogeologic Framework: U.S. Geological Survey Water-Supply Paper 2320-A, 14 p.

Plummer, L.N., Jones, B.F., and Truesdell, A.H., 1976, WATEQF - A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U.S. Geological Survey Water Resources Investigations 76-13, 61 p.

- Price, C.E., Jr., 1966, Surficial geology of the Las Vegas quadrangle, Nevada: Salt Lake City, Utah, University of Utah, unpublished M.S. thesis, 60 p.
- Quade, J., 1986, Late Quaternary environmental changes in the upper Las Vegas Valley, Nevada: Quaternary Research, vol. 26, p. 340-357.
- Rabinowitz, D.D., Gross, G.W., and Holmes, C.H., 1977, Environmental tritium as hydrometric tool in the Roswell Basin, New Mexico, I. Tritium input function and precipitation-recharge relation: Journal of Hydrology, vol. 32, p. 3-17.
- Roline, R.A., and Sartoris, J.J., 1988, Changes in the morphometry of Las Vegas Wash and the impact on water quality: Lake and Reservoir Management, v. 4, pp 135-142.
- Seiler, R.L., and Waddell, K.M., 1984, Reconnaissance of the shallow-unconfined aquifer in Salt Lake Valley, Utah: U.S. Geological Survey Water Resources Investigations Report 83-4272, 24 p.
- Stauffer Chemical Company, 1982, Henderson groundwater investigation project--1981, Las Vegas, Nevada, 37 p.
- Stiff, H.A., Jr., 1951, The Interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, vol. 3, no. 10, p. 15-17.
- Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry: New York, John Wiley & Sons, 780 p.
- Tabor, L.L., 1970, Geology of the Las Vegas area: John A. Blume and Associates, Research Division, San Francisco, California, 65 p.
- Technos Inc., 1983, Geophysical investigation of the Henderson site plume, Henderson (Las Vegas), Nevada: Miami, Florida, Technos, Inc., unpublished consulting report prepared for Lockheed Engineering and Management Services Company, Inc. and the U.S. EPA, 35 p.
- URS Company, 1977a, Subsurface water management interim report #1: Las Vegas, Nevada, URS Company, unpublished consulting report, 52 p.

1977b, Water policies for Clark county and the Colorado River Basin water quality report series: Las Vegas, Nevada, URS Company, unpublished consulting report, 93 p.

- U.S. Bureau of Reclamation, 1982, Hydrogeoloic analysis of lower Las Vegas Valley: Boulder City, Nevada, U.S. Bureau of Reclamation, Colorado River Basin Salinity Control Project Title II, 260 p.
- U.S. Federal Water Pollution Control Administration, 1967, Report on pollution in Las Vegas Wash and Las Vegas Bay: Cincinnati, Ohio, U.S. Federal Water Pollution Control Administration, 18 p.
- Van Denburgh, A.S., Seitz, H.R., Durbin, T.J., and Harrill, J.R., 1982, Proposed monitoring network for ground-water quality, Las Vegas Valley, Nevada: U.S. Geological Survey Open-File Report 80-1286, 25 p.
- Weaver, S.C., 1982, The hydrogeochemistry of the principal alluvial aquifers in Las Vegas Valley, Nevada and the chemical effects of artificial recharge of Colorado River water, M.S. thesis, University of Nevada, Reno, 159p.
- Westphal, J.A., 1977, Simulation modeling of the shallow ground water system in Las Vegas Valley, Nevada: University of Nevada, Desert Research Institute Project Report 41047C, 57 p., appendix 1, 137 p.
- White, W.B., 1988, Geomorphology and Hydrology of Karst Terrains: New York, New York, Oxford University Press, 464 p.
- Wigley, T.M.L., 1973, Chemical evolution of the system calcite-gypsum-water: Canadian Jour. Earth Sci., vol. 10, p. 306-315.
- Woessner, W.W., 1980a, Qualitative assessment of the economic impact of a rising water table, Las Vegas, Nevada: Las Vegas, Nevada, Desert Research Institute Water Resources Center Publication no. 41068, 23 p.
 - 1980b, Reconnaissance evaluation of water quality- salinty loading relationship of intermittent flow events in a desert environment-Las Vegas, Nevada: Las Vegas, Nevada, Desert Research Institute Water Resources Center Report YA-512-CT-200.

10

- Wood, D.B., 1979, Water-level changes associated with ground-water development in Las Vegas Valley, Nevada, March 1977 to March 1978: NV Dept. Cons. and Nat. Res., Water Res. Info. Series Rept. 29, 38 p.
- 1988a, Water-Level changes associated with ground-water development in Las Vegas Valley, Nevada, 1978-79: NV Dept. Cons. and Nat. Res., Water Res. Info. Series Rept. 30, 34 p.
- ______ 1988b, Water-level changes associated with ground-water development in Las Vegas Valley, Nevada, 1979-81: NV Dept. Cons. and Nat. Res., Water Res. Info. Series Rept. 31, 41 p.

APPENDIX A.

Well Location and Construction Data

Site Number	Site Name(S)	Latitude ddmmss	Longitude dddmess	Elev meters (ft)	Depth meters (ft)	Screen meters (ft)	Owner	Water Use	Data Source(s)
ttrrssqqqqq# 20610113341	#19		1150615	584.9 (1919)	25.60 (84.0)	25-25.6 (82-84)	USGS	1)	Wild, 1990 Maurer, 1989 B & K, 1988 Wood, 1988b
	#8 Craig & 1-15 520 661 DIACC 1 #8			500 D	14.02	<u>}</u>].]-]4	USG5	U	Dettinger, 1987 Wild, 1990
20611433333	#15 #10 Carey & I-15 Carey & I-15 Well	J61212	1150659	582.2 (1910)	(46.0)	(43-46)			Maurer, 1969 B & K, 1988 Noack, 1988 Dettinger, 1987
20612433122	110 NLVWD CollegePark12-Shall	361131	1150644	561.1 (1041)	9.14 (30.0)	5.1.9.1 (20-30)	LVVWI)	U	wild, 1990
20612933341	Tonopah Park MDBJ Meadows Detention Basin J	361026	1151110	643.1 (2110)	9.11 (29.9)	308.9 (9.929.9)	TAAM)	Ų	Wild, 1990
2061 1024 301	USGS #34 #34 #15 Municipal Golf Course	361053	1151205	609.6 (2000)	9,14 (30,0)	7.6-9.1 (25-30)	USGS	IJ	Wild, 1990 Maurer, 1989 B & K, 1988 Wood, 1988b Dettinger, 1987
	S20 E61 30ACC 1 #15	361018	1151113		10.06	4-7 (13-23)	TAAMD	U	wild, 1990
20613111411 20613143401	Meadows Detention Basin B	360937	1151134	(2130) 656.8 (2155)	(33.0) 5.49 (18.0)	4.3-5.5	USGS	U	Wild, 1990 Maurer, 1989 B & K, 1988 Noack, 1988 Noack, 1988
	Hinson Park Well S20 E61 31DCD 1 #46							U	Dettinger, 1987 Wild, 1990
20613221121		361023	1151043	640.4 (2101)	16.22 (53.2)	13,2-16,2 (43,2-53,2)		U	wild, 1990
20613431101	#48 \$20 E61 34CAA 1	360837	1150955	612.6 (2010)	6.71 (22.0)	5.5-6.7 (10-24)	USGS	Ε2	Maurer, 1989 Wood, 1988b
20613644402	#19 DRI LG048	360933	1150551	550.877 (1807.34)	12.19 (40.0)	11-11.9 (36-39)	DRIWRC	ţI	Wild, 1990 B & K, 1988 Dettinger, 1987 Kaufmann, 1978
21610113331	LG048 Charleston Blvd 40	360908	1150629	560.8 (1840)	7.16 (23.5)	5.9-7.2 (19.5-23.5)	USGS	ţJ	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1988b Dettinger, 1987

site Name(s)	Jatítude	Longitude	Elev meters (ft)	Depth meters (ft)	Screen meters ((t)	Owner	Water Use	Data Source(s)
USGS #47 #47 Circle Park Well S21 E61 03AAA 1 #49	360924	1150811	606.6 (1990)	4.57 (15.0)	3,4-4,6 (11 15)	USGS	IJ	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1988b Dettinger, 1987
Maryland & Charleston USGS 143 143 124 Wall & I-15 Wall Street Well S21 E61 04ABC 1	360921	1150936	623.9 (2047)	5.18 (17.0)	4.0-5.2 {13-17}	USGS	U	Wild, 1990 Maurer, 1989 B & K, 1988 Noack, 1988 Wood, 1988b Dettinger, 1987
#24 USGS #Ja #3 Sahara & I-15 Well \$21 E61 09888 1 #50	360838	1151018	632.5 (2075)	7,62 (25.0)	6.4-7.6 (21-25)	USGS	U	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1988b Dettinger, 1987
Sahara & 1-15	360734	1150640	575_715 (1888.83)	7.62 (25.0)	2.7-5.2 (9-17)	Clark Co.	U	Wild, 1990 Converse, 1985
C12	360708	1150606	578.510 (1898.00)	9.14 (30.0)	7.6-9.1 (25-30)	Clark Co.	U	Wild, 1990 Converse, 1985
Converse Well II Maryland Phway & Plamingo S21 E61 15DDDD1	360701	1150813	609.6 (2000)	7.35 (24.1)	6.4-7.3 (21-24)	Clark Co.	U	Wild, 1990 Maurer, 1989 Dettinger, 1987
#51 USGS #40 #40 #28 Spring Mtn & I-15 Spring Mtn & I-15 Well S21 F61 17BAD 1	360735	1151052	646.2 (2120)	13.72 (45.0)	12.5 13.7 (41~45)	USGS	υ	Wild, 1990 Maurer, 1989 B & K, 1988 Noack, 1988 Wood, 1988b Dettinger, 1987
128 USGS 156 156 Paradise Val.Co.Park Well S21 E61 24CAD 1	360617	1150638	594.4 (1950)	7,32 (24,0)	6,1-7,3 (20-24)	USGS	IJ	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1986b Dettinger, 1987
Paradise Park	360534	1150617	596.356	8.23 (27.0)	6 1 7.9 (20 26)	Clark Co.	E)	Wild, 1990 Converse, 1985
Converse Well 136 Paradise Vista Park 521 E61 26DDBB1 Roan 6 Stirrup	360522			9.05	7891	Clark Co.	U	Wild, 1990 Maurer, 1989 Noack, 1988
	USGS #47 #47 Circle Park Well S21 E61 03AAA 1 #49 Maryland & Charleston USGS #43 #43 #43 #44 Maryland & Charleston USGS #14 #43 #44 #43 #44 #44 #44 #44 #4	USGS #47 #47 Circle Park Well S21 E61 03AA 1 #49 Maryland & Charleston USGS #43 #43 124 Wall & I-15 Wall Street Well S21 E61 04ABC 1 #24 USGS #3a #3 Sahara & I-15 Well S21 E61 09BB8 1 #50 Sahara & I-15 C11 C12 Converse Well #11 C12 Converse Well #12 Maryland Pkway & Flamingo S21 E61 15DDDD1 #51 USGS #40 #60735 #40 #28 Spring Mtn & I-15 Well #15 Spring Mtn & I-15 Spring Mtn & I-15 Well #28 USGS #56 Paradise Val.Co.Park Well S21 E61 24CAD 1 #53 Paradise Park C36 Paradise Vista Park J60522 S21 E61 26DDB1 Paradise Vista Park J60522 S21 E61 26DDB1	Site Name(s) ddmmass dddmmass USGS #47 160924 1150811 #47 Circle Park Well 1150811 Site 61 03AAA 1 #49 Maryland 4 Charleston 150936 USGS #43 360921 1150936 #43 #24 360921 1150936 #43 #24 Wall 4 I-15 1150936 1150936 #13 E61 04ABC 1 124 1150936 #24 USGS #3a 360938 1151018 #3 Sahara 6 I-15 Well 160734 1150640 Converse Well #11 360708 1150640 1150640 Converse Well #11 360708 1150640 1150613 S21 E61 J5D0DD1 360701 1150813 321 E61 J5D0D01 #51 USGS #40 360735 1151052 #40 360735 1151052 140 #28 USGS #56 360617 1150638 #53 Paradise Val.Co.Park Well 360534 1150617 USGS #56 360534 1150617 150617 USGS #56 360534 1150617	Site Name(S) Latitude Longitude dddmwss meters (ft) USGS #47 160924 1150811 606.6 #47 150924 1150811 606.6 147 150924 1150811 606.6 147 150936 623.9 (2047) 124 1511 150936 623.9 (2047) 124 Wall & I-15 (2047) (2047) (2047) 124 Wall & I-15 (2047) (2047) (2047) 124 Wall & I-15 (2075) (2047) (2047) 124 Wall & I-15 (2075) (2075) (2075) Sahara & I-15 Well 1150640 575.715 (2075) Sahara & I-15 1150640 576.510 (1898.00) (1898.00) Maryland Pkway & Flamingo 360701 1150813 609.6 (2000) S1 1500001 150052 646.2 (2120) Wall & I-15 160735 1150052 646.2 (2120) Wall & I-15 <td>Site Name(s) Latitude Longitude ddmmas meters (t) meters (t)</td> <td>Site Name(s) Latitude Longitude dddmmss Deters ddfmss meters (tt) meters (tt) meters (tt) meters (tt) <t< td=""><td>Site Name(s) Latitude Longitude meters dadamas Deters meters (t) Deters meters (t) Owner USGS H47 160924 1150911 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 5128 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 150911 (1990) (15.0) (11 15) USGS 143 144 149 Namas 160921 1150916 623.9 5.18 4.0-5.2 USGS 124 Wall & I-15 Mail Street Well 150916 612.5 7.62 6.4-7.6 USGS 124 Wall & I-15 150036 1151018 612.5 7.62 2.7-5.2 Clark Co. 121 SEI 098B 1 150040 575.715 7.62 2.7-5.2 Clark Co. Converse Well 111 160708 1150640 575.715 7.62 2.7-5.2 Clark Co. Canverse Well 211 360708 1150640 578.510 9.14 7.6-9.1 Clark Co. Canverse Well 216 3607</td><td>Site Name(s) Jatitude Longitude meters ddmmss Interes ddmmss Interes (11) meters (11) meters (12) meters (11) meters (12) meters (12)</td></t<></td>	Site Name(s) Latitude Longitude ddmmas meters (t) meters (t)	Site Name(s) Latitude Longitude dddmmss Deters ddfmss meters (tt) meters (tt) meters (tt) meters (tt) (tt) <t< td=""><td>Site Name(s) Latitude Longitude meters dadamas Deters meters (t) Deters meters (t) Owner USGS H47 160924 1150911 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 5128 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 150911 (1990) (15.0) (11 15) USGS 143 144 149 Namas 160921 1150916 623.9 5.18 4.0-5.2 USGS 124 Wall & I-15 Mail Street Well 150916 612.5 7.62 6.4-7.6 USGS 124 Wall & I-15 150036 1151018 612.5 7.62 2.7-5.2 Clark Co. 121 SEI 098B 1 150040 575.715 7.62 2.7-5.2 Clark Co. Converse Well 111 160708 1150640 575.715 7.62 2.7-5.2 Clark Co. Canverse Well 211 360708 1150640 578.510 9.14 7.6-9.1 Clark Co. Canverse Well 216 3607</td><td>Site Name(s) Jatitude Longitude meters ddmmss Interes ddmmss Interes (11) meters (11) meters (12) meters (11) meters (12) meters (12)</td></t<>	Site Name(s) Latitude Longitude meters dadamas Deters meters (t) Deters meters (t) Owner USGS H47 160924 1150911 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 5128 606.6 4.57 3.4-4.6 USGS 147 Circle Park Well 150911 (1990) (15.0) (11 15) USGS 143 144 149 Namas 160921 1150916 623.9 5.18 4.0-5.2 USGS 124 Wall & I-15 Mail Street Well 150916 612.5 7.62 6.4-7.6 USGS 124 Wall & I-15 150036 1151018 612.5 7.62 2.7-5.2 Clark Co. 121 SEI 098B 1 150040 575.715 7.62 2.7-5.2 Clark Co. Converse Well 111 160708 1150640 575.715 7.62 2.7-5.2 Clark Co. Canverse Well 211 360708 1150640 578.510 9.14 7.6-9.1 Clark Co. Canverse Well 216 3607	Site Name(s) Jatitude Longitude meters ddmmss Interes ddmmss Interes (11) meters (11) meters (12) meters (11) meters (12) meters (12)

Site Number ttrrssggggl		Latitude dommas	Longitud dddmms:		Depth meters (ft)	Screen meters (ft)	Owner	Water Use	Data Source(s)
2161361430	3 USGS 168 168 Patrick 6 Pecos S21 E61 36ADC 3	360449	1150612	1 593,8 (1948)	7.89 (25.9)	7.0-7.9 (22.9 25.		U	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1988b
2162)711201	USGS \$5 \$5 \$30 Desert Inn Estates DI & Nellis Trailer Park S21 E62 17DAB 1 \$30	360749	1150506) 527.3 (1730)	3.35 (11.0)	2.1-3.4 (7-11)	USGS	U	Wild, 1990 Maurer, 1989 B 4 K, 1988 Noack, 1988 Wood, 1988b Dettinger, 1987
21621822321	Cl0 Converse Well #10	360738	1150559	565.755 (1856.15)	5,18 (17.0)],4-4,3 (11-14)	Clark Co.	U	Wild, 1990 Converse, 1985
21621913111	C24 Converse Well #24	360640	1150516	570.482 (1871.66)	7.77 (25.5)	6.1-7.6 (20-25)	Clark Co.	U	Wild, 1990 Converse, 1985
21621932321	C27 Converse Well #27	360620	1150600	590.574 (1937.58)	8.99 (29.5)	7-9 (23-29.5)	Clark Co.	U	Wild, 1990 Converse, 1985
21621942431	C25 Converse Well #25	360617	1150519	577.060 (1893.24)	7.92 (26.0)	6.4-7.9 (21-26)	Clark Co.	U	Wild, 1990 Converse, 1985
21621943321	C]] Converse Well #]]	360506	1150527	582.473 (1911.00)	7,32 (24-0)	5.8-7.3 (19.24)	Clark Co.	U	Wild, 1990 Converse, 1985
21622022411	C49 Converse Well #49	360646		539.014 (1768.43)	7.62 (25.0)	6.1-7.6 (20-25)	Clark Co.	U	Wild, 1990 Converse, 1985
21622642102	LG030 Duck Ck @ LV Wash30 #31 DRI LG030 521 E62 26DBA 2 #31 LG030 Duck Ck @ LV Wash30	360529		486.769 (1597.01)	9,14 (30,0)	8 2-8,8 (27 29)	DR 1 WRC	U	Wild, 1990 B 4 K, 1988 Hood, 1988b Dettinger, 1987 Kaufmann, 1978
21622911301	USGS #3b #3 Bast Las Vegas Well \$21 £62 28AAC i #54 Boulder Hwy & Missouri	360548	1150246	507.4 (1665)	0.23 (27.0)	7-8,2 (23-27)	USGS	U	Wild, 1990 Maurer, 1989 Noack, 1988 Wood, 1988b Dettinger, 1987
21622931441	C28 Converse Well #28	360521	1150 422 (549.414 1002.54}	6.10 (20.0)	4.3-5.B (14-19)	Clark Co.	U	Wild, 1990 Converse, 1985
21623014111	C42 Converse Well #42	360547	1150454 {	557.464 1828.95)	9.45 (31.0)	5.8 9 1 {19 30}	Clark Co.	U	Wild, 1990 Converse, 1985
21623014331	C4) Converse Well #43	360535	1150509	570.509 1071.75)	6.10 (20.0)	4.3-5.5 (14-18)	Clark Co.	U	Wild, 1990 Converse, 1985

Site Number ttrrssqqqq f	Site Name(s)	Latitude ddmmss	Longitude dddmmss	Elev e meters (ft)	Depth meters (ft)	Screen meters (it)	Owner	Water Use	Data Source(s)
21623024111	C32 Converse Well #32	360546	1150530	585.018 (1919.35)	9.75 (32.0)	7.3-8.8 (24-29)	Clark Co.	IJ	Wild, 1990 Converse, 1985
21623024341	C29 Converse Well #29	360537	1150537	582.994 (1912.71)	7.62 (25.0)	5.2-7.0 (17-23)	Clark Co.	U	Wild, 1990 Converse, 1985
22610133301	USGS 166 166 Warm Springs & Eastern	360328	1150655	619.4 (2032)	16.76 (55.0)	15.5-16.8 (51-55)	USGS	U	Wild, 1990 Maurer, 1989

*B & K, 1988 - Brothers and Katzer, 1988

•

APPENDIX B.

Water Level and Physical Parameter Data

	Sample		tic Level	Fiel		Тепр	Data	Sam- plei	Sample Date yymndd	Water (m)	tic Level (ft)			Temp (C)	Data Source	
Sam-	Date yymodd						Source			8 900	29.20	7,05	572	24.8	Noack,	
								914 441	880620	9,110	29.89	7.46	693	21.4	Rild, Wild,	
Site	Number	site Nam	e 					764	880700	9.132	29.96				Wild,	1990
20610	113341	0262 #13					Wood, 1988b	705	880800	9.138	29.98 30.03	7.68	544	21.3	Wild,	
1485	790920	18.882	61.95				Wood, 1988b		880926 881014	9,153	29.67	7.40	559	21.5	Wild,	
1486	791022	10.812	61.72				Hood, 1988b	953 954		9 153	30.03	5.92	653	20.9	Wild, Wild,	
1487	800226		61.26				Wood, 1988b	955	981212		29.73	7.42	588	21.0	wild,	
	800610 800929		61,44 62,40				Hood, 1988b	995	890118	8.894	29.18	7,20	689 598	21.0	wild,	1990
1489	810501	18.575	60.94			<u>.</u>	Wood, 1988b Dettinger, 1987	1029	890200	8 967 a 805	29.42 29.15	7 37	637	21.6	wild,	1990
15	812110				670	21.0	Dettinger, 1987	1115	890322 890422	8.085 9.129	29.95	7.40	575	21.6	wild,	
507	830000	18.898	62	7 80	600	23.5	Dettinger, 1987	1111	890525		30 05	7.42	594	21.6	wild, wild,	
	820517			7.50		25.0	Dettinger, 1987	1197	890626	9.214	30.23	6.81	571 558	21.6	wild,	
17	820823 860314	18 459	62.20				Maurer, 1989	1268	690729	9 281	30.45	7.31	330	81 · P	wild,	1990
1387	860630	19.163	62.87				Maurer, 1989 Maurer, 1989	1235	890800	9.281	30.45 30.60				wild,	
1389	860915	19.617	64.36				Maurer, 1989	1280	890915 891000	9.327	30.55				Wild,	
1 390	861217	19.272	63.23				Maurer, 1989	1 346	691130	9.114	29.90	7.41	590	21.0 20.9	Wild, Wild,	1990
	870317	19.139	62.75	7.29	501		B & K, 1988*	1 378	891218	9.028	29.62	7.41	582	ZU. F	,,, , , , , , , , , , , , , , , , , ,	•••
388 444	871100 880630	19 629	64.40	7.65		23.5	Wild, 1990 Wild, 1990			rite Nam						
698	880700		63.66				wild, 1990	Site	Numper	Site Nam	nc illegePa	rk#2-5h	all			
699	980800	19.565	64.19				wild, 1990	20012	433244	101112 00					wild,	1990
700	880900	19.644	54.45 64.47				wild, 1990	1227	890627	5.038		7.09	4030	21.2	Bild.	
	881000 881100		54.04				WI14, 1990	1266	890800	5.075	16.65				Wild,	1990
1009	890100		63.58				WI1d, 1990 Wi1d, 1990	1311	890915	5.0/5	16.65				Wild,	
1041	890200		63.43				W11d, 1990	1354	891000 891124	5.063	16.61				Wild,	1990
1114	890317		63.35				wild, 1990	13//	021161	3.001						
	890421	19.257	63.18 63.71				wild, 1990	Site	Number	Site Nam	ie –					
3164 1196	890524 890600		64, 33				WIId, 1990 WIId, 1990	20612	933341	MD83			- 			
1234	890800		64.78				wita 1990	1030	000493	£ 615	22 36	11.16	1201	20.6	Wild,	1990
1279	890915	19,751	64.80				W11d, 1990 W11d, 1990	1230	890024	0.010						
1312		19.751	64,80 63,79				Wild, 1990	Site	Number	Site Nam	ie –					
1345	891124	[9,443	03.72					20613	024301	USGS 134						
site	Number	Site Nam	e								11.92				wood,	
20611	433331	USGS #15						1491	810302 810425	3 243	10.64				Hood,	19885 iger, 1987
						21.0	Dettinger, 1987	13	811021				1190	21.0	Dettin	iger, 1907
	811022	8,534	28		201	_	Dettinger, 1987	509	820000	2 74]	9	7.50		20.0	pettin	ger, 1987
508	820000 820824	U,337	<u></u>	7.60	525	22.5	Dettinger, 1987 Maurer, 1989	34	820517			7.40	1200	20.0	Dettin	ger, 1987
1 397		8.925	29.28				Maurer, 1989	35	820824	3.100	10.17				Maurer Maurer	1989
1 398	860626	9.053	29.70				Maurer, 1989	1408	860630	2 585	0 90				Mainer	, 1909
1399	860916	9.056 9.019	29.71 29.59				Maurer, 1989	1409	860910	- 21 4DL	8.04				Manrer	, 1989
1400 1401	870106 870317	8.967	29.42			.	Maurer, 1989 B 4 K, 1988	1410	870107	2.417	7.93					
	870500			7.56	528	25.0	D = A/ 1700									

	Cample	stat	tic	Field	đ		Data Source Maurer, 1989
_	Salepie	Water	Level	pH	-EC	Temp	
Sain-	Date	(m)	(ft)	-	umhos/om	(C)	
pier							Maurer, 1989
	076220	2.798	9.18				[[00:0-]
1411	870500			7.16	1270	20.U	B & K, 1988
393	A46688	2.743	9,00				FAAMD B.F.K' 1200
510	870600	2.704	8.87				
709	880100	2.704 2.679 2.576	8 79				TAAMD
710	860200	2.075	8 45				LVVMD
711	980300	4.370	8 71				FAAMD
712	880100	2.033	0.71 8.31				TAAMD
713	880500	2.333	9.57	7 39	1340	17.7	wild, 1990
440	880620	2.597	8.52 8.77		_		wild, 1990
715	890700	2.613	8.83				WI1d, 1990
716	880800	2.691	8.01				wild, 1990
717	880900	2.670	8.70	2 20	1312	20.7	wild, 1990
967	861004	2.704	9.87	1.35	1312		wild, 1990
718	881100	2.768 2.816 2.795	9.08	< 54	1350	18.7	Wild, 1990
968	881207	2.816	9.24	b.94	1230	10.1	Wild, 1990
1010	890100	2.795	9.17				Wild, 1990
1042	890200	2.971	9.42	0	1 390	10.4	wild, 1990
1116	890122	2.804	9.20	1 49	1390	13.4	W11d, 1990
1145	890421	2 765	9.07				wild, 1990
1166	890524	2.777	9.11			15 7	
1198	0.00(1.3	2.728	8.95	7.22	1416	15.7	Wild, 1990
1236	890800	2.347	7.70				wild, 1990
1716	890915	2 256	7.40				Wild, 1990
1701		2 116	<i>.</i>				
	B31000	2.271	2 45			_	Wild, 1990
1347	891144	2.454	8 05	7.25	1320	19.0	wild, 1990
1385	891710	2.131	0.02				
- • •	nh	Site Nam	ρ				
Site	Number	MD86					
20613	111411	mbau					
	200600	1 067	a 50	11.76	2150	19.4	Rild, 1990
1233	890624	1.001	3. 20				
		cito Nam	•				
Site	Number	site Nam USGS #37					
20613	143401	0262 #27					10.003
		4 036	13 23				Wood, 1988b
1493	810105	4.026 3.608	11.41				Wood, 1988b
1494	810405	3,680	14.10		2230	22.0	Dettinger, 1987
93	811019						Dettinger, 1967
511	820000	3.353	13				Maurer, 1989
1412	660313	2.932	9.62				Maurer, 1989
1413	860625	2.810	9,22 8,17				Maurer, 1989
1414		2.490	8.17				
1415	861218	2.640	8.66				Haurer, 1989
1415	870302	2.777	9.11	1 00	2010		B ≰ K, 1988
422	870600	2.621	8.60	0,77	2010	20.3	Noack, 1988
909	870623	2.621	8.60	1.13	4/30		LVVND
719	880100	2.444	8.02		2810 2750		LVVWD
720	880200	2.478	8.13				

				ni e	ld EC umhos/cm			
	Sample	Sta	tic .	FIE		Term	Data	
Sam	Date	Water	Level	Би	EC	(C)	Source	
plet	y yandd	(m)	(1E)		Generos/Gi			
							TAAMD	
721	R88 600	4.111	U. V.				LVVND	
722	880400	2.438	0.00				LVVWD	
723	880500	2.274	7.46	2 01	2290	17 9	Wild, 1990	
438	880615	2.252	7.39 7.52	1.01	44/4	••••	Wild, 1990	
725	880700	2.292	1.34					
726	880800	2.118	6.90	6 97	2160	20.5	WI1d, 1990	
921	880920	1.972	D.9/	0.77	A100		Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990	
728	881000	2.201	1.44				Wild, 1990	
729	881100	2.295	7.53 7.62 8.02	£ 00	2650	19 7	W114, 1990	
960	981207	2,323	1.64	€.6⊍	40.30	12.1	Nild, 1990	
1011	000100	2.444	0.02				wild 1990	
1043	890200	2.423	7,95	1 01	2490	17 #	Wild, 1990	
1117	890322	2 443	1.37	6.05	3430	11.1	Wild, 1990	
1146	890421	2.390	7.84				wild, 1990	
1167	807524	2 323	7.62	1 75	3200	18 5	NI1d, 1990	
1199	890615	2 316	7.60	6.75	2 390	10.1	Wild, 1990	
1237	890800	2.713	8.90				wild, 1990	
1282	890915	2.761	9.06				10001 1111	
1315	891000	2 316 2.713 2.761 2.774	9.10				Wild, 1990	
1348	891124	3.008	9.87				M1347 1374	
-								
Site	Number	Site Nam	e				_	
20513	221121	MD85						
			15.63	7 98	1430	19.8	Wild, 1990	
1535	890626	4.701	13.04	1.50	1120			
		etta Nam	a					
Site	Numper	SILE 148						
20613	431101	0303 #10					1 16081	
1 405	010415	2.100	6.89				Mood, 1988b	
1495	010113	2.057	6.75				Maurer, 1989	
1417	ACAE36	2 201	1.33				Maurer, 1969	
	100010	2 185	7.17				Maurer, 1989 Maurer, 1989	
1419	000310	2.185	5.11				MAUXEE, 1303	
1420	870316	1 594	5.23				Maurer, 1989 LVVWD	
1421	880100	2 210	7.25					
730	880100	1 815	6.02				LVVWD	
731	860300	1 862					LVVND	
732	880400	1 911	6.11 6.27				LVVND	
733	880400	3 817	5.96 6.27				LVVND	
734		1.017	6 27				wild, 1990	
735	880600	3.714	6 65				Wild, 1990	
736	880100	2.027 2.118 2.019 2.155	6.95				Wild, 1990	
737	880800	2 019	6.69				Wild, 1990	
738	600300	3 155	7.07				Wild, 1990	
739	501000	2 012	6.60				Wild, 1990	
1012	900200	2.155 2.012 1.957	6.42				NEED, 1990	
1044	890200 890317	1 915	6.35				WIId, 1990	
1110	020311							

Sam-	Sample Date		tic Level	Fiel pH	EC	Temp	Data Source		Sam- ple∦	Sample Date yymmdd	Water	atic r Level (ft)	-	d EC umbos/am	(C)	liata Source
plet	y ymndd		(Ít)		umhos/cm	+	-					11.93				Wild, 1990
							wild, P		1286	890915	3 627	11.90				Wild, 1990
1147	890421	1,920	6.30 6.30				Nild, 19	990	1319		3 450	11.32				wild, 1990
1170	890524	1.920	6.72				Wild, 1	990	1352	871127	1.1.0	11.00				
1201	890600	2.048	6.15				wild, 1		cito	Number	Site Nam	ne				
1239	890800	1.792	5.88				Wild, 1		21610	113331	USCS #1					
1284	890915 891000	1.829	6.00				wild, J		81VI0	11 3331						Wood, 1988b
1317	891124	1.701	5.58				Wild, 1	930	1507	790913	2.332	7.65				Wood, 1988b
1326	07144.		-						1508	790923		7.73				Wood, 1988b
Site	Number	site Nam	ne						1509	800226	2.140	7.02				Wood, 1988b
20611	644402	LG048 Ch	arleston	Blvd	40				1510	800611	2.298	7.54				Nood, 1988b
20013							Kaufmaß	in, 1978	1511		2.399	7.87				Wood, 1988b
290	710609			7.50	2765	22.2	Kaufman	in, 1979	1512					6000	25.0	Dettinger, 1987
291	710913			1.50	2723	18.9	Kautman	in, 1978		811021		8		0000		Dettinger, 1987
292	711203				2487	21.0	Kaulman	un, 1970	520	820000	2 4 18	0 7.59				Maurer, 1909
293	720201			7 90	2578	23.3	Kaufman	in, 1978	1422	860313	2.313	7.60				Maurer, 1989
294	720731			6 96	2838	20.6	Kaufman	in, 1978	1423	860625		7.75				Maurer, 1989
	721101				2302	20.6	Kautmati	m, 1978	1424	860915 870107		7.23				Maurer, 1989
296	730212				2051	22.2	Raulman	in, 1978	1425	870316	2 210	7.25				Naurer, 1989
297	730504			7.37	2482	23.3	Kauiman	in, 1978	1426 911			6.99	6.86	4990	23.4	Noack, 1988
298	730802	3.993	13.10				Nood, 1	9800	716	860100	2 234	7.33				LVVWD
1496	800205	4.048	13.20				stood, 1	200D	247	880200	2.213	7.26				LVVWD
1497	800303	3.895	12.78				Wood, 1 Nood, 1	3800	748	860300	2.240	7.35				TAAND TAAND
1499	800402	3.789	12,43				Nood, 1	9000 928h	749	680400	2.243	7.36				LVVND
1500	801105	4.301	14.11				Wood, 1	GRAN	750		2.225	7.30		5 60 6	23.4	Wild, 1990
1501	801208	4.093	13.43				Hood, 1	9885	434	880613	2 271	7.45	7.04		23.2	Wild, 1990
1502	810105	3.917	12.85				Wood, 1	9885	456	680707	2.298	7.54	7.02	3049	24.5	wild, 1990
1503	810212	3.776	12.39				wood, 1	988b	471		2.323	7.62			24.0	W11d, 1990
1504	810306	3.716	12.19				Nood, 1	988b	949	880929		7.57	7.03		24.4	Wild, 1990
1505	810416	3.648	11.97				wood, l	988b	950		2.304	7,56 7,57	6.95		23.1	Wild, 1990
1506	810505	3.706	12,16				Detting	er, 1987	951	881114		7.51	6.95		23.6	Wild, 1990
512	820000	3,962	13	6.90	3800	24.0	Detting	er, 1987			2.320	7.61	7.01		23.5	wild, 1990
40	820825	2 626	11.60	6.98		25.0	B & K,	1986	994			7 59	6.92	4960	22.6	Wild, 1990
399	870600	3.536	11.60		5250	25.9	Wild, P	990	1028	890322	2 310	7.58	6.95		22.6	wild, 1990
443	880628	3.536 3.551	11.65	,			Wild, 1	990	1120	890420		7.64	6.99	4850	23.2	Wild, 1990
741	680700	3.584	11.76				wild, 1		1173	890526		7.67	6.89		23.0	W11d, 1990
742	880800 880926	3.548	11.64	7.01	4710	24.0	wild, 1	990	1204	890613	2.347	7.70			23.3	Wild, 1990
926	681000	3.618	11.07				wild, 1	930	1267	890727		8.20	6.91		23.9	Wild, 1990 Wild, 1990
744	B81100	3.597	11.80			_	wild, l	370	1242	890831	2.393	7.85	6.98	4760	23.9	Wild, 1990
745 969	881211	3.520	11.55	7.03	5360	24.2	Wild, 1 Wild, 1	990	1287	890915	2 380	7.01				Wild, 1990
1013	690100	3.459	11.35				Wild, 1	996	1320	891000	2.377	7.60	1 00	1770	23.8	wild, 1990
1015	890200	3.426	11.24		5 3 8 8	33.0	Wild, l	990	1353	891201	2.332	7.65	6.99	4110	6J.V	
1119	890323	3.405	11.17	7.02	5390	23.0	wild, 1	990								
1148	890421	3.408	11.18				wild, l									
1172	690524	3.520	11.55	6.00	4600	23.1	wild, 1	990								
1201	890621	3.603	11.82	0.95	4620		wild, 1									
1241	890800	3.521	11.88													

_	Sample	Sta Nator		Fie pH	FC	Temp	Data	Sa	an- #1	Sample Date yymndd	Wate	atic er Leve (ft	1 рн	ld EC umhos/cm	(C)	lata Source
Sam.	Date yymndd	(m)	(it)	•	unhos/on	(C)	Source									Maurer, 1909
								14	33	860625	2.944	9.6 10.0				Maurer, 1989
									34	860910 861218	3,054	9.5				Maurer, 1989
site	Number	Site Nam	e 					14	35	870318	2 786	9.1	4			Maurer, 1989 B & K, 1980
2161(311141	0365 117						14 988b 14 988b 5 988b 9 988b 7 9889 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1989 7 1980 4 990 9 990 10 990 12 990 13 990 13 990 13 990 13 990 15 990 <td< td=""><td>-20 -25</td><td>870500</td><td></td><td></td><td>6.75</td><td>4770</td><td>23.0</td><td>B & K, 1988</td></td<>	-20 -25	870500			6.75	4770	23.0	B & K, 1988
1613	791022	2 265	7 43				Wood, 19	986D 9	64	870600	2.804	9.2	0		24.1	Noack, 1988
1514	800226	2.185	7.17				- MOOG, 19 Mood 19	988b 9	10	870623	2.560	8.4		4550	24.1	TAAMD
	800609	2.566	8.42		1750		Mood, 19	988b 7	68	870900	2.801	9.1	-			LVVWD
1516	800930	2.201	7.22				Wood, 19	9805 7	69	871100	2.746	9.0 8.8				LVVND
	810405	2.259	7.41		1750	22.0	Dettinge	er, 1987 7	70	871200	2.080	8.5				LAAMD
	811019	2 4 2 0	8		11.54		Dettinge	er, 1987 7	21	880100	2.010	9.4				TAAMD
545		2,438 2,259	7.41				Maurer,	1989 /	2.2	000400	2 536	8.1				TAAMD
	860314 860626	2.286	7.50				Maurer,	1989 /	24	880400	2,563	8.4	1			FAAMD FAAMD
1420 1429	860910	2.316	7.60				Maurer,	1989 7	75	880500	2.566	B.4		5000	20.6	Wild, 1990
1430	861230	2,289	7.51				Maurer,	1989 4	36	880614	2.557	8.3		5990 5110	21.0	Wild, 1990
1431	970318	2.249	7.38		2590	31.0	Noack, 1	1988 4	54	980707	2.609	8.5		4710	23.2	Wild, 1990
912	870624	2,131	6.99	7.16	1230	41.0	LYVND	·	72	880805	2.641	8.6 8.6		4580	23.3	WIId, 1990
757	880100	2.252	7.39				LVVND	9	22	880920	2 813	8.4	2 6.84	4520	23.3	W11d, 1990
750	680200	2.237	7.34 7.36				LVVND	9)/b 	001114	2 2 3 2 3 2	8.9			22.6	Wild, 1990
759	880300	2.243	7.35				LYVHD	3	173 129	991211	2.758	9.0	5 6.92	4760	22.3	Wild, 1990 Wild, 1990
760 761	880400 880500	2.256	7.40				LVVWD	900 Q	99	890118	2.728	8.9	-	5380	21.7	wild, 1990
451	880617	2.271	7.45	7.37	2700	19.1	- <u>Wil</u> d, 17	990 10		890200	2.676	8.7	8 6.7	4770	21.1 20.9	wild, 1990
763	880700	2.295	7.53				wi14, 19	990 11	22	890322	2.661	6.7		4750	21.6	H114, 1990
	880800	2.256	7.40				wild, 19	990 11	43	890420	2.664	6.7		4590	21.5	W11d, 1990
765	880900	2.219	7.28	2 22	2630	21.2	wild, 19	990 11	68	890525	2.697	B.8 9.0	-	4450	21.7	Wild, 1990
964	881014	2.262	7,42	7.24	2760	20.0	Wild, 19	990 12	00	890520	2.700	9.2	5 6.77	4260	22.7	W11d, 1990
	881114	2.274 2.271	7.45	7.36	2580	19.8	wild, 19	990 12	10	990720	2 768	9.0	8 6.74	1210	23.1	Wild, 1990
966	881212 890118	2.265	7.43		3010	17.7	Wild, 19	990 14	100	890915	2 768	9.0	8			wild, 1990 Wild, 1990
997	890200	2.252	7.39	7.34	2730	18.2	WI10, 19		116	891000	2.774	9.1	0	1000	22.8	Wild, 1990
1121	890331	2.246	7.37		2720	18.6		990 13	49	891130	2.768	9.0		4290	22.3	WI1d, 1990
1141	890422	2.228	7.31	7.25	2630	20.0 18.2	wild, 19	990 13	86	891218	2.755	9.0	4 0.61	4170		,
1171	890525	2.265	7.43	7.10	3080 2110	19.7	wild, 19	990			A					
	890627	2.286	7.50 7.18	7 21	2040	20.8	wild, 19	990 Si	tel	umber	3108 84 JICC 81	284C }a−				
1276	890728	2.188	7.23	7.25	1977	21.3	Wild, 19	990 21	0103	14441						1000b
1240	890801 890915	2.210	7.25				Wild, 19	990	00	790914	5.227	17.1	5			Wood, 1988b Wood, 1988b
1318	891000		7.13				Wild, 19	13 1900 15	21	791022	3.776	12,3	9			Hood, 1968b
1351	891130	2.265	7.43	7.21		19.7	19130, 19 19130, 19	aen 15	22	800226	3.414	11.2	0			Nood, 1988b
1384	891218	2.262	7.42	7.23	2400	10.4	MILU, 19	15	23	800612	3.231	10.6	0			Wood, 1988b
								15	24	800930	3.639	11.9	4			Wood, 1988b
Site	Number	Site Nam	e					15	25	810327	4.206	11.0	U	2780	21.0	Dettinger, 1987
21610	412301	USGS #43						15 968b 5 968b 14 er, 1967 14 1987	9/	011044	1 962	13		2780		Dettinger, 1987 Maurer, 1989
1 5 1 0	810302	2 908	9.54				Wood, 19	C G996	65 	860226	j 755	12.3	2			Maurer, 1989 Maurer, 1989
1510	810302	2.835	9,30		5930		- Wood, 19		66	860626	3.871	12.7	0			nauter, iter
52	611022				5930	23.0	Dettinge	er, 1987								
563	820000	2.743	9		CE10	22.0	Dettinge	er, 1987								
53	820517		9	5.90	1040	23.0	Dettinge	er, 1987								
E A	820824 860314	* 703	n 16	8.0U	4749		Maurer,	1989								
1432	860314	2.194	9.10													

54 820824 1432 860314 2.792 9.16

.

									_
	Sample	Sta	tic	Field	0	Temp	Data		Sam-
5am-	Date	Water	Level	- pH	EL umbos /01	n (C)	Source		plet
-1-8	yymndd	(m)	(ft)						928
							Haures	r, 1989	929
1467	860912	3,161	10.37				Maure	r, 1989	
1468	861218	3.588	11.77				Haurel	r, 1989	930
1469	870318	3,676	12.06		2140	26 7	Noack	, 1988	989
916	870708	3,380	11.09	7.21	1140	20.7	LVVID		1022
782	870900	3.021	9.91				LYVND		1102
783	B71100	2.667	8.75				LYVND		1134
784		2.737	8.90				LYVND		1192
785	880100	2.365	7.76				LVVND		1222
786	880200	2.557	8.39 8.95				LVVND		1269
787	880300	2.728	8.95				LVVND		1261
788	880400	2.804	9.20				LVVHD		1 3 0 6
789	880500	2.256	7.40				wild,	1990	1 3 3 9
790	880600	1.908	6.26				wild,	1990	1372
791	880700	2.444	8.02				wild,		
792		2.432	7.98				wild,		Site
793	880900	2.332	7.65				wild,		21611
	881000	2.377	7.80				wild,	1990	
794		2.411	7.91				Wild,	1990	450
795		2 600	8.53				Wild,		513
1014		2.697	8.85				Wild,	1990	514
1046		2,939	9.31				Wild,	1990	515
1123	890421	2.920	9.58				Wild,	1000	
1161		2.896	9.50				Wild,	1990	Site
1193	890541		9,32				Wild, Wild,	1000	Site 21611
1223	890800	2,469	8.10						
1262		2.484	8.15				wild,	1000	98
1307		2,454	8,05				wild,	1990	565
1340		2,536	0.32				Wild,	1334	1470
1373	891204	4.000	•						1471
- • •	Number	Cifa Nam	ne				_		1472
Site	324121	C)1							1473
31011	344141	C11							1474
	850400	2 865	9.40				I VYNO		796
494	850500	2.005	9.50				LVVND		797
495		2.908	9.54				LVVID		798
196	870200	2.900	9.54 9.99				LVVND		799
497	870900	3,033	9.95				LVVND		800
498	871000		9 02				LVVWD		439
499	671100	2.749	9.56				LVVND		802
500	871200	2.914	9.72				(VVND		803
501	000400	2,963	9,72				LVVWD		924
502	000200	2.963	9.01				LVVND		805
503	880300	2.990	9,88				LVVND		805
504	880400	3.011	10.11				LAAMD	1000	963
505	880500	3.082	9.92	7.05	4740	19.4	wild,	1220	1015
429	880609	1.024	10.36	7.07	4700	22.1	wild,	1930	1047
463	880712	3.158	10.35	7.06	4360	22.1	wild,	1990	1124
464	880805	3.155	10.33		4260	23.9	wild,	1330	
927	880928	3.121	34-67						

	_	(* 1 -	4 5.05	Fiel	đ		
	Sample	514	tic Level			Temp	Data
Sam-	Date	Water	Level (64.)	umbos/cm	(Ċ)	Source
plet	y ymmdid	(m)	(14)			~ ~ ~ ~ ~	
			10 14	7 04	4500	23.7	Wild, 1990 Wild, 1990
928		3.152	10.31	2.05	5110	23.2	wild, 1990
929			10.15	6 05	1290	22 5	WIId, 1990
930	801211	3.124	10.25	6.95 6.94	4690	20 7	WIId, 1990
989	890118	2.957	9.70	6.98	1070	20.0	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
1022	890200	2.975	9.76 9.92	0.70	4300	19 ?	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
1102	890321	3,024	9,92	1.01	4300 4240 4130 4180	20.8	Wild, 1990
1134	890420		10.02	7.00	1210	20.5	wita, 1990
1192	890526		10.25	1.01	4130	20.5 21.4 23.0	Wild, 1990
1222	890615	3.150	10.36	7.02	3100		Wild, 1990
1269	890727	3 231	10.60	6.89	3940 3890	24.5	Wild, 1990
1261	690831	3 170		6.94	1830	24.3	Wild, 1990
1306	990915	3.185	10.45				Wild, 1990
1 2 2 0 0		3.170	10.40			53 7	Wild, 1990
1372	891201	3.078	10.10	6.99	3860	22.7	WIIG, 1990
12/4	071001						
	Number	Site Nan	ne -				
Sice	Number 341341	-c12					
31911	341341						
	000117	4 523	21 40	7.28	6020	18.6	Wild, 1990
		6 1 A A	20.29				Wild, 1990
513	880800	6 075	19.80				wild, 1990
		£ 019	19.42				wild, 1990
515	880300	3.919	1.7.14				
		cito Nam					
Site	Number	Sile na	i Divav i	Flami	ngo		
21011	244441	narying					
	011010				1320	24.5	Dettinger, 1987
98		5 182	17				Dettinger, 1987
566		4.706	15.44				Maurer, 1989
	860228		15.16				Maurer, 1989
1471	860626	4.621	15.27				Maurer, 1989
	860912		14.36				Maurer, 1989
1473	861229	4.377	15.75				Maurer, 1989
1474	870302	4.801	13.44				TAAMD
796	880100	4.706					LVVWD
797		4.724	15.50				LVVND
798	880300	4.755	15.60				LVVMD
799	880400	4.749	15.50				LYVND
600	880500	4.709	15.45	3 46	3710	19 3	Wild, 1990
439	880615	4 642		1.10	5/10	***	Wild, 1990
802	880700	4.575	15.01				wild, 1990
803	880800	4 548	14.92	7 30	3280	22.8	WELd, 1990
924		4 514		1.33	1200		W(1d, 1990
805	881000	4 569	14.99				Wild, 1990
805	881100	4 645	15 24		3020	22 /	W11d, 1990
963	881212	4,700	15.42	1.03	2020	£ £ . ?	Wild, 1990
1015	890100	4.770	15 65				W11d, 1990
1047	890200	4 807	15.77			20.4	Wild, 1990
1124	890323	4.810	15.78	7.20	3100	20.3	
1141							

Sam− ple#	Sample Date yymndd	Sta Water (m)	tic Level (ft)	Field pHEC umbo	Temp) s∕cm (C)	Data Source	
1162 1195 1225	890421	4.746 4.633 4.581 4.450	15.57 15.20 15.03 14.60	7.17 280	0 21.6	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990	
1264 1309 1342 1375	890915 891000 891124	4.432 4.420	14.54 14.50 14.66			Wild, 1990 Wild, 1990 Wild, 1990	
Site	Number	Site Nam	e 				
21611		USGS #40		341	0 21.0	Dettinger, 1987	
62 567	811022 820000	7.010	23			Dettinger, 1987 Dettinger, 1987	
63	820517			7.30 330	0 25.0 0 25.0	Dettinger, 1987	
64 1437 1438 1439	860625 860916	5,236	20.02			Haurer, 1989 Haurer, 1989 Haurer, 1989 Haurer, 1989 Haurer, 1989	
1440 1441	870107 870318	4.295	16.03 14.09			Maurer, 1989 B & X, 1988	
	870600 870625 870900	3.770	13.20 12.37 11.10	7.10 306	0 24.1	Noack, 1988 LVVWD	
807 808 410	871100 871100	3,106	10.19	6.98 335	0	LVVND B4 K, 1988 LVVND	
809 810	871200 880100	3.033	10.05 9.95			LVVND	
011 812	880200 880100	3.139 3.210	10.30 10.53			FAAND FAAND	
813 814	880400 880500	3.210 3.018	10.53 9.90			LVVND Wild, 1990	
437	880614	3.127	10.26 10.10	6.98 425 6.98 374	0 22.0	wild, 1990	
455 473	890707 880805	3.021	9.91	7.00 464	0 23.5	W11d, 1990 W11d, 1990	
972	880929	2.993	9.82 9.74	7.04 355 7.03 348	·	wild, 1990	
973 974	211188	2.969 2.941	9.65	7.02 397	0 22.7	WIId, 1990 Wild, 1990	
975	881207	2.990		6.80 371 6.98 386	0 22.4	Wild, 1990	
998 1032	890119 890200	3.161	10.37	5,84 373	0 22.3	wild, 1990 wild, 1990	
1125	090323].158].109	10.36 10.20	6.96 413 6,99 364	0 22.9	wiid, 1990	
1142	690525	3.115	10.22	7.00 365	0 23 0	Wild, 1990 Wild, 1990	
1224	890621	3.088	10.13	6,94 349 6,98 345	0 23.1 0 23.0	Wild, 1990	
1277 1263	890728 890801	2.926	9.60 9.59	6,89 347	0 23.0	Wild, 1990 Wild, 1990	
1308	890915	2.923	9.59 9.60			WILd, 1990	

Sam-	Sample Date	Sta Water	tic Level	Fiel pH	d −−EC umbos/Cma	Temp (C)	Data Source Wild, 1990
ple∦	AAumqq	(m)	[[[]				
1374	891204	2.978	9.77	6.99	3410	22.9	W11d, 1990
site	Number-	Site Nam	ne:	_			
21612	431401	-USG5 15t					
	010707	4.359	14 30				Wood, 1988b
1220	010304	4,356	14 29				Wood, 1988b
1527	811020				6480	22.0	Dettinger, 1987
	820000		13				Dettinger, 1987
281	840000	4 225	11.86				Maurer, 1989
1944	000011	4.151	13.62				Maurer, 1989
1441	060043	1 001	11.10				Maurer, 1989
1414	000314	3,993 3,923	12.87				Maurer, 1989
							Maurer, 1989
1440	870304	3 833	12 57	7.05	5750	22.5	Noack, 1988
905	8/0044	7 6 7 7	12 00				LVVND
821	000000	3.743	12.00				LVVND
833	880200	3.610	12 50				TAAMD
		3.810	12.67				LVVND
824	880400	3 004	12 68				FAAMD
845	880200	3.865 3.856	13 65				wild, 1990
	880200	3,000	12 64				Wild, 1990
827	880100	3.853 3.609	13 54				WI1d, 1990
828	880800	3 503	11 42				wild, 1990
829	880300	3.481	11 03				Wild, 1990
830	881000	3.359 3.261	11.04				Wild, 1990
831	881100	101.1	12.01				Wild, 1990
	890100	3.661					wild, 1990
1048	890200	3 807	14.97				Wild, 1990
1126	890317	3 719	12.20				Wild, 1990
1156	830431	3 709	14.17				Wild, 1990
1185	890524	3 703	11 17				Wild, 1990
1216	890600	1.655 3.338 3.237	11.37				Wild, 1990
1254	890800	3 138	10.93				Wild, 1990
1299	890915	3.237	10.04				WI14, 1990
1332	891000	3.216	10.55				W11d, 1990
1365	891204	3.252	10 67				
Site	Number	Site Nam	e				
21612	542111	C36	•				
697	850400	3 414 3,475 3 773	11.20				FAAM)
628	850500	3.475	11.40				TAAME)
629	B70200	3 773	12 38				PAAMD
610	870900	2 899 3 210	9.51				EAAMD
631	871000	3 210	10.53				TAAM
430	031130	1 4 7 1	3.73				TAAND
212	871200	3 100	10.17				TAAPO
634	990100	3 164	10.38				1'AA99)
019	100100						

\$.

		Ch.a.		Fiel	d		
	Sample	Sta Water	tic	74	EC	Temp	Data
Sam-		water	LEVEL	5	unhos/am	(CĴ	Source
ple∦	yynendd	(m)	(ft)				
		3,136	10.30				LVVND
635	880200		10.32				TAAHD
636	880300		10.45				EAAMD
637	980400		10.41				TAAMD
638	880500	3.173	10.91	7 11	9260	20.2	wild, 1990
445	880610		10.31	7.08	9260 8650	22.0	Wild, 1990
462	880712		10.24	7.15	_	22.7	Wild, 1990
469	880805	3.078	10.10	7.13		22.8	wild, 1990
475	880908		9.84	7.15	8510	22.9	wild, 1990
942	861017	3.024	9.92	7.19		22 3	Wild, 1990
943	861115		10.02	7.03	8830	21.7 21.6	Wild, 1990
944	861232	3.094	10.15			21 6	Wild, 1990
992	890119	3.155	10.35	7.06	9230	20.5 21.2 21.5	wild, 1990
1026	890200	3.170	10.40	7.05	9240	31 3	Wild, 1990
1110	89033L	3.185	10.45	7.09	9190	21.5	Wild, 1990
1138	890420	3.210	10.53	6.96	9190	21.2	Wild, 1990
1182	690526	3.164	10.38	7.04	9080	21.2 21.9	W11d, 1990
1213	690627		10.31	6.99	8820	41.7	Wild, 1990
1273	890727		10.20	7.06	9200 8660	41.0	wild, 1990
1251	890831	3.033	9.95	7.07	800V	4 4 . 3	wild, 1990
1296	890915	3.011	9.88				wild, 1990
1 1 2 9	001000	2.987	9.80			a) 6	wild, 1990
1 362	691201	3.018	9.90	7.11	8640	41.9	wild, 1990
1382	891219	3.018	9.95	7.08	8470	21.3	WING, 1970
Site	Number	Site Nam	e				
21612	644221	Paradise	Vista	Parx			
							Maurer, 1989
1475	860226	5.151	16.90				Maurer, 1989
1476			16.00				Maurer, 1989
1477	860911	4.459	11.63				Maurer, 1989
1478	861229	4.545	14.91				Maurer, 1989
1479	870302	4.724	15,50			ol 1	Noack, 1980
905	870618			7.10	3740	21.4	LVVND
832	880100	4.270	14.01				LVVND
833	880200	4.356	14.29				TAAMD
834	880300	4.343	11.25				LVVWD
835	880400	4.285	14.06				LYYND
836	880500	4.246	13.93			a) (Wild, 1990
435	880613		13.61	7.08	3870	21.6	W11d, 1990
878	880700	4.231	13.88				Wild, 1990
839	880800	4.064	13.40				Wild, 1990
840	880900	3,898	12.79			~~ ^	Wild, 1990
970	881003		13.16	7.30	3800	24,U	wild, 1990
842	881100		11.09			a) (Wild, 1990
971	861208	4.097	13.44	6.90	3950	21.6	Wild, 1990
1017	890100		14.29				Wild, 1990
1049	890200	4 426	14.52				Wild, 1990
1127	890317	4.407	14.46	7.21	3160	20.3	MIIN, LANG
4							

		54	at in	Fie	1.d		
_	Sampie	31 101	atic r Level	DH	50	Temp	Data
Sam-	Date	mate	(it)	5	umhos/cm	(C)	Source
ple#	yyandd	[11]					
	600431	4.185	13.73				Wild, 1990
1154	070141	▲ 178	11 58				Wild, 1990
1189	090341	4 330	14 20	6 88	3220	20.6	Wild, 1990
1413	890613 890800	4 300	74 40				Wild, 1990
1400	890915	1.303	14 02				Wild, 1990
1498	831000	1.417	12.90				Wild, 1990
	831000	4,313	13.00				Wild, 1990
1364	891304	4.313	19-1-2				
Site	Number	-Sile Na	ne				
21611	614303	USGS 16	B				
1528		5 182	17.00				Wood, 1988b
1529	780223	5.730	18.80				Wood, 1988b
1530	780710	6.276	20.59				Wood, 1988b
1531	781025	6.523	21.40				Wood, 1988b
1532	790123	5.895	19.34				Nood, 1988b
1533	790227	5 855	19.21				Nood, 1988b
1534	790605	5.965	19.21				Wood, 1988b
1535	791109	6.529	21.47				Wood, 1988b
1536	800301	5.867	19.25				Wood, 1988b
1517	800611	6.050	19.65				Nood, 1988b
1538	800930	6.757	22.17				Wood, 1988b
1539	800930 810226	6.066	19.90				Nood, 1988b
1 4 4 7	960207	6 480	21 26				Maurer, 1989
1448	860625	7.056	23.15				Maurer, 1989
1449	860625 860911	7.739	25.39				Maurer, 1989 Maurer, 1989
1450	861229	6.748	22.14				Maurer, 1989
1451	870302	6.349	20,83			A	Noack, 1988
915	870708	6.459		7.10	3030	25.4	LAAMO
843	880100 880200	5.745	18.85				LAAND
844	680200	5.633	18.48				TAAMD
845	880300	5.645	18.52				LVVND
846	880400	5.553	19.22				LYYND
	880500	5.508	18.07	7 00	2600	23 8	wild, 1990
	880617	5.593 5.681	18.30	1.29	2000	41.0	NIId, 1990
		5.681	18.04				Wild, 1990
850		5 715					Wild, 1990
851		5.572	16.28 17.60				WELd, 1990
	001188	5 425 5 066					wild, 1990
		5 060	16.71				Wild, 1990
1050			16.60				NIId, 1990
			16.03				wild, 1990
			17.0)				WIId, 1990
		5.316	17.44				WIId, 1990
1214	890600 890800		17.45				Wild, 1990
1252		5.307	17 41				. WEId, 1990
1297	890915 891000		17.40				wild, 1990
1330	031000	3.30%	11.14				

	Sample	Sta	tic	Fiel pH	FC	Temp	Data	Sam-	Sample Date yymmdd		Lic [æve] (ft)	Fiel pH	ld EC umhos/cm	Temp (C)	Data Source	
sam-	Date	Water	Level	pa			Source	pier	YYMANG -						LVVWD	
ple#	y yandd	(m)	(ft)				wild, 1990	478	870200	2.070	6.79				LVVWD	
	891204	5 066	16.62				WIIG, TOTA	479	870900	1.871	6.14				LVVWD	
1363	871401	1.000						480	971000	1 850	6.07 5.37				TAAMD	
وااه	Number	site Nam	e	_			Wood, 1988b Wood, 1988b Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 Maurer, 1989 Maurer, 1989 Maurer, 1989 Maurer, 1989	481	871100	1.637 1.695	5.56				LVVWD	
21621	711201	usgs #5-			_			482	8/1700	1 902	6.24				LVVWD	
			6.79				Wood, 1988b	404	860100	1.948	6.39				TAAMO	
1540	810302	2.070	6.40		5620	_	Wood, 1988b Dettinger, 1987	405	880300	1.996	6.55				TAAMD TAAMD	
1541		1.901	-		5620	22.0	Dettinger, 1987	486	680400	2.060	6.76				TAA MD	
66	811020			7,10	5050	20 0	Dettinger, 1987	487	880500	2,106	6.91	P C 1	45.30	23.6	wild, 19	90
67	820518 820518			7.10	2020	20.0 23.0	Dettinger, 1987	488	880617	2 134	7.00	1.03	6530	~ . ~	wild, 19	
68 69	820824			7,10	4470	4J.0	Maurer, 1989	489	880707	2.124	6.97 7.01				Wild, 19	
1452		2.149	7.05				Maurer, 1989	490 491 492	880800	2,137	6.68				Wild, 19	990
1453	860626	2.225	7.30				Maurer, 1989	491	880900	2.036 1.969	6.46				Wild, 19	990
1454	860911	2.536	8.32				Maurer, 1989	494	891000 891100	1.948	6.39				Wild, 19	190
1455	870107	2.231	7.32				Naurer, 1989	1001	890100	2.176	7.14				- W[10], 12	770 593
1456	870316	1.911	0.41	7.03	5480	29.5	B 4 K, 1988 Noack, 1988	1034	890200	2,210	7.25				wite, 17	90
412	870500	1.951	6.40	7.22	5600	20.8	LAAND	1101	890317	2.246	7.37				Wild, 19 Wild, 19	90
908	870622	2.030	6.66				LAAND	1160	890421	2.231	7.32				Wild, 19	190
853	880100 880200	1.875	6.15				LVVWD	1191	890524	2.198	7.21				WI1d, 19	190
854 855	880300	1.759	5.77				LVYND	584	890600	2.249	7.38 7.15				wild, 19	90
856		1.588	5.21				TAAMD		890800	2.179	7.10				W11d, 19	190
857		1.737	5.70	7.18	5560	18.5	wild, 1990 -	1305	890915	2.164 2.164	7.10				Wild, 19	90
433	880613	1.899	6.23	7.10		20.3	wild, 1990	1338	891000 891124	2 010	6.66				Wild, 19	190
457	880707	2.118	6.95 7.75	7.11		21.3	Wild, 1990 Wild, 1990	13/1	071161	0.000	-					
470	880805	2.362	8,16	7.09		23.0	W110, 1990 W110, 1990	site	Number	Sile Nam	e					
956	880929	2.487	8,55	7.05	4980	23.0	Wild, 1990	21621	913111	-c24						
957			8.46	7.14		20.6 20.2	wild, 1990								TAAMD	
958 959			8.30	7.00	5470	10.0	wild, 1990	516	850400	4.298	14.10				LAAMD	
1019			7,84	- 17	5290	17.8	wild, 1990	517	850500	4.511	14.80 15.17				LVVND	
996		2.390	7.84	7.13		16.6	Wild, 1990	510	970200	4.624	15.19				LYYND	
1030		2.246	7.37	7.11		16.5	wild, 1990	519	970900 871000	4.633	15.20				LYVND	
1129	890321		6,90 6,60	7.12		17.4	Wild, 1990	540	871100	4.398	14.43				Tanid Tanid	
1140	890420		6.94		5030	18.2	Wild, 1990 Wild, 1990	522	871200	4.346	14.26				TAAMD	
1174			7,30	2.07	4910	19.3	Wild, 1990 Wild, 1990	523	880100	4.346	14.26				LVVWD	
1205	890613		8,60	6.85	5080	21.3	wild, 1990	524	880200	4 319	14.17				LVVWA)	
1275			8.70	6.99	4900	21.9	wild, 1990	525	880300	4 264	13.99				LVVWD	
1243			8.75				WIId, 1990	526	880400	4.210 4.237	1384 1390				LVVND	0 B
1321		2.652	8.70	7 49	4700	19.0	wild, 1990	527	880500	4.285	14 06	6.97	6020	21.2	Wild, 19	
1354			8.12	1.08	4100	••••		449	680610 880700	4 267	14.00				WELD, 19 WELD, 19	
								529 530	880800	4.490	14 73				Wild, 17 Wild, 19	
Site	Number	-Site Na	яю 					531	880900	4.487	14.72				Wild, 19	
2162	1822321-	-010					FAAMD	532	881000	4 447	11.59				wild, 19	
	850400	2.103	6.90				FAAMD FAAMD	1003	890100	4 343	14.25					
476	850500	2,103	6.90				5.4 · 1.76.									
4//	030300															

Sam- ple∦	Sample Date yymndd	(m) 		Field pH u	~BC	Temp (C)	Data source wild,	1990
	890200	4.310	14.14					1000
1035	890317	4.270	14.01				Wild, Wild, Wild, Wild, Wild, Wild, Wild,	1990
1103	890421	4 249	13.94				wild.	1990
		4.343	14.25				wild,	1990
		4.724	15.50				wild,	1990
1220		4.572	15.00				wild.	1990
1258	890915	4.554	14.94				wild.	1990
1 303	B91000	4 542	14.90				wild.	1990
	891124	4.398	14.43					
1 369	891124	4.000						
site	Number	Site Nam	e					
21621	Number 932321	C27						
							I,VVWD	
551	850400	6.431	20.50				LAAMD	
552	850500	6.298	20.42				TAAMD	
553	870200		17.07				TAAMD	
554	870900		16.75				TAAMD	
555	871000						TAAMD	
556	871100		15,60				LVVHD	
557	671200		17.02 18.28				LVVMD	
558	880100						FAAMD	
559	880200	5.504	18.05 18.20				TAAMD	
560	980300	5.54/	18.46				TAAMO	
561	680400		18,58				LVVND	2000
562	880500	5.663	17.53	7 12	7200	21.5	wild,	1990
430	880609			714	2600	21.4 21.6		1990
458	880712	4.752	15.59 16.19 15.78 15.38 15.67	7 11	7370		wild,	1440
465	880805	4 935	10.17	7 12	7810	22.2	Wild,	1330
917	880919	4.910	15.78	7 17	7490	22.2	MIT 1 41 1	
931	881017	4.688	13.30	7 18	8800	22.2	Wild,	1990
932	881115		15.93	7 04	8510	22.2 22.5	Wild,	1990
933	881208		17.94	7.04	7740	22 5	WEIG,	1990
990	890119	5 468	17.71	7.05	6040	22.5	Wild,	1440
1023	890200	5.721		6.98	6760	21.8 22.3	wild,	1990
1105	890321	5.986	19.64	7 05	6470	22.3	Wild, Wild, Wild, Wild,	1990
1135	890420	6.050	19.85	7.05	6540	21.7	Wild,	1440
1186	890526	5.968	19.58	7.01	6690	21.5	Wild,	1990
1217	890615	5.639	18.50	f.41 4 07	6150	22.4	wild.	1990
1270	890729		18.40	7.03	6130	22.1	wiid,	1990
1255	890831	5.502	18.05	1.03	- •		Wild	, TAAR
1 300	890915	5.505	18.06				Wild.	, 1990
1333	891000	5.502	18.05	7.06	5840	21.8	Wild,	1930
1366	891201	5.669	18.60 19.05	7.12	5710	21.8 22.0	Wild,	, 1930
1 3 7 9	891219	5.806	13.03	7.14				

	Gamla	\$1.a	tic	Fiel	l di			
	Date	Witer	Level	pH	EC	Temp	Data	
Sam-	Date	(m)	(ft)	•	umhos/cm	(C)	Source	
ple∦	yyamera				idi BC umahos∕om 			
Site								
21621	942451	C23-						
	050100	4.511	14.80				I'AAMD	
533	850400 850500		15.00				LVVWD	
534	870200		18.50				LVVWD	
535		4.986	16.03				evynd)	
536	870900		15.72				LAAMD	
537	871000	4 609	15 12				I.VVND	
538	871100		14.80				TAAND	
539	871200	4.511 4.523	14 84				TAAMD	
540	880100		14.80				FAAMD	
541	880200	4 511	14.82				T'AAMD	
542	880300	4.517	14.91				LVVND	
543	890400		15.02				LVVWD	
544	880500		15.02	7 12	7480	20.8	Wild,	1990
447	880610	4.633	15 47				Wild,	1990
546	880700		15.68				Wild,	1990
547	880800						Wild,	1990
548	880900	4.712	15.46				Wild.	1990
549	891000	4.712	15.46				Wild,	
550	961100		15.25				Wild,	
1004	890100	4.618	15.15				Wild,	
1036	890200	4.618	15.15				Wild,	1990
1104	890317	4.602	15.10				Nild,	
1157	890421		15.05				wild,	
1108	890524	4.651	15.26				wild.	
1257	890800	4 740	15.55				wild,	
1302	890915		15.47				NILd.	
1335	691000		15.35				wild,	
1368	891124	4.572	15.00					-
Site 21621	Number 943321	Site Nam C]3	æ					
						21.8	wild,	1990
448	880610	5.745	18.85	7.08		21.0	Wild,	
159	880712			6.92		22.5	wild,	
455	880805		18.89	7.09		23.0	wild,	
474	860908		18.61	7.01 7.06	7590	23.2	wild,	
939	681000	5.596		7.00	7520	22.2	WIId,	
940	881115	5.560	18.24	7.12	8100 7650	22.9	wild.	1990
941	861212		18,21	7.01		22.9	wild,	1990
1000	890119		10.45	7,02 6.98	7280	22.4	Nild,	1990
1025	890217	5 651				22.6		
1109	890331	5.709	10.73	6.99	6600	22.7	Wild,	
1137	890420	5.755	4 -	6.96		22.1	wild,	
1187	890526	5.809	****	6.94		22.3	wild,	
1218	890627	5 822	19.10	7.03		22.8	Wild.	
1272	890729				6170	23.3	wild,	
1256	890831	5.654		6.96	6280		wild,	
1301	890915	5.584	18.32				wild,	
1334	891000	5.547	18.20					
A 4 5 4								

iv

.

Sam	Sample Date		tic Level (ft)	Fiel pH		Temp n. (C)	Data Source		Sam- plei	Sample Date yyamdd	Water (m)	lic Level (ft)	Fiel pH		Temp (C)	Data Source Wood, 1988b
1 367 1 381		(m) 5,456 5,450	17.90 17.88	7.02 6.97	6300	23.1 22.9	wild, wild,	1990 1990	1542 1543 1544 1545	600212	1.615 1.759 2.009 1.963 1.838	5.30 5.77 6.59 6.44 6.03				Wood, 1988b Wood, 1988b Wood, 1988b Wood, 1988b Wood, 1988b
Site 21622	Number	Site Nam C49	e 						1546 1547	B00402	1.896	6.22 10 29				Nood, 1988b Nood, 1988b
680 681 683 683 684 685 686 687 688 689 690 691 431 693 694 920 694 920 697 948 1040 1113 1159 1190	850400 850500 870200 871000 871100 880100 880200 880200 880500 880500 880609 880609 880600 880919 881000 881208 89100 891208	2.652 2.743 2.691 2.560 2.539 2.320 2.411 2.548 2.548 2.560 2.499 2.621 2.606 2.832 2.838 2.804 2.755 2.816	8.70 9.60 8.63 8.40 8.31 7.91 8.36 8.29 8.20 8.20 8.20 8.20 8.20 9.31 9.20 9.31 9.24 9.24 9.24 9.25 9.24 9.25 9.24 9.25 9.24 9.25	6.96 7.10 6.85 6.99	3310 3610 3970 3760 3490	22.2 23.9 23.2 22.0 22.8	LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND LYVND Hild, Wild, Wild, Wild, Wild, Wild,	1990 1990 1990 1990 1990 1990	1551 1552 1553 506 70 71 413 442 864 865 866 961 962 1051 1130 1150 1176 1207 1245 1290	810310 810416 810504 820000 820519 820825 870600 880600 880700 880800 880800 880800 880900 981004 881211 890200 89323	2.341 2.042 1.829 1.960 2.112 3.353 2.134 2.619 2.673 3.124 2.944 2.944 2.944 2.944 2.944 1.420 1.222 1.430 1.609 2.198 2.682 2.971 2.743	10 29 8.89 7.68 6.70 6.00 6.43 6.93 11 7.00 9.25 8.77 10.25 9.66 9.47 5.40 3.74 4.01 4.69 5.28 7.21 8.80 9.42	7.00 7.13 7.12 7.08 6.99 7.05	9050 9230 9230 8430	19:0 21:0 22:0 22:0 21:7 20:7 18:9 17:3	<pre>Wood, 1988b Wood, 1988b Wood, 1988b Wood, 1988b Wood, 1988b Wood, 1988b Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 B 6 K, 1988 Wild, 1990 Wild,</pre>
1259	890915	2.621	8,60 9,11				Wild, Wild,	1990 1990	Site	Number	Site Nam	e 				
1 337 1 370 2162 174 175 176 177 170 179 180 180	891000 891124 Number- 2642102- 710609 710914 711203 720203 720731 721103 730208	2.755	9.00 9.07 nee ack Ck @	7.70 7.70 7.18 7.28 7.55	6737 8369 8000 8395 8608 8379 8057 7908	19.4 17.8 17.0 23.3 18.9 17.8 25.6 22.2	Wild, Kaufa Kaufa Kaufa Kaufa Kaufa Kaufa Kaufa	1990	1555 1556 101 599 1457 1458 1459 1460 1461 1461	810302 810317 811020 820000 860307 860625 860915 860915 861219 870302 880100 880200	6.050 5.267 5.486 5.837 5.685 5.483 5.645	19 85 17.28 18 19.15 18.65 17.99 18.52 18.52 18.09 18.67 18.53			23 0	Wood, 1988b Wood, 1988b Dettinger, 1987 Dettinger, 1987 Maurer, 1989 Maurer, 1989 Maurer, 1989 Maurer, 1989 Maurer, 1989 Maurer, 1989 LVVWD LVVWD

	- 1-	ct.	tia	Fiel	d EC umbos/EtB			
	Sample	DLC Date:	Taual	DH	EC	Temp	Data	
Sam-	Date	wate:	/ft)	2	umhos/cm	(C)	Source	
ple≇	yymndd							
~~~	000+60	5.575	18 29				LVVWD	
981	880500	5 550	18.21				LVVWD	
982	880600	5 700	18.70				Wild,	
983			19.40				wild,	
984	980700 880800		18.51				Wild,	
985		5.617	18.43				Wild,	1930
986	880900		18,45				Wild,	1930
987	881000		18.49				wild,	
980	881100	5.724	19.78				Wild,	
1021	890100		18.83				wild,	1990
1052	890200		18.87				wild,	1990
1131	890317		18.72				wild,	1990
1149	890421		18.70				wild,	1990
1175	890524	5.700	19.77				Wild,	1990
1206	890600		18.60				wild,	1990
1244	890800		18.63				wild,	1990
1289	890915	5.678					wild,	1990
1 3 2 2	891000	5.685	18.65				Wild,	1990
1355	891124	5.614	19.42					
	Number	cito Nam	n P					
Site	931441	2115 148						
21622	931441	1.20						
<b></b>	050400	3.048	10 00				LAAMD	
569	850500	3.040	10.20				TAAMD	
570	970200		9.62				LVVND	
571	870900	2.778	9.27				LVVHD	
572	871000	2.049	8.86				LYVHD	
573	871100	3 725	8.94				TAAHD	
574	071100	3 739	8,95				LVVND	
575	871200	2.120	8.99				<b>LAAMD</b>	
576	890100	2.740	8.95				LAAMD	
577	880200		8.85				LVVND	
578	880300	2.697	8,70				LVVND	
57 <del>9</del>	860400	2.652					TAAMD	
58 <b>0</b>	880500	2.588	8,49 8,34	7 18	7140	21.7	wild,	
432	880613	2.542	8.08	1.14	* • • •		wild,	1990
582	880700						wild,	1990
583	880800		7.99	6 00	6120	21.8	wild,	1990
923	860920	2.195		6,90	0120		wi1d,	1990
585	681000		8.46				Wild,	1990
586	881100		8.31				Wild,	
1005	690100		8. <u>2</u> 8				wild,	
1037	890200		8,60	7 12	5810	21.2	Wild,	1990
1106	690320	2.603	8.54	2.112	U 1 U 2		wild,	1990
1151	890421	2.557	8.39				wild,	1990
1177	890524		8.28	1 00	5590	22.4	Wild,	
1208	890614	2.521	8.27	6.91	0,000		wild,	
1246	B90800	2.423	7.95				Wild.	
1291	890915	2.320	7.61					

	Sample	Sta	atic	Fie	id EC umbos/cm			
6 3-00-	Date	Water	r Level	pH	EC	Temp	Data	
പങ്	vymodd	(m)	(ft)	•	umbos/cm	(C)	Source	
1 3 2 4	891000	2.301	<i>4.33</i>					
1357	891124	2.374	7.79				Wild,	1330
-								
Site	Number-	-Site Nam	ne					
2162	3014111-	-C42						
e . <del>.</del>	A E A # A A	3.231	10.60				LVVWD	
645	830400	3.231	10.60				LYVWD	
646	830300	3.036	9.96				LAAM)	
647	870200	2.993	9 R7				LVVWD	
648	0110300	2 978	9.77				<b>TAAMD</b>	
649	8/1000	3 7/4	9.12				TAAMD	
650	B11100	2 780	5.42				LVVWD	
651	8/1200	2.871	9.42 9.42				LVVND	
652	880100	2.071	10.07				LVVWD	
653	880200	3.009	10.09				LVVWD	
654	880300	3.073	10.05				LVVWD	
655	880400	1.130	10.34				LVVWD	
656	880500		10.31	6 76	5040	20.1		1990
426	860608			e	4860	20.1 21.4	MILA.	1000
460	880712	3,191	10.47	1.07	4860	22.1	wild,	1990
467	880805	3.139	10.30	7.00	4860	23 0	Wild.	1990
919	880919	3.014	9.89	1.00	4640	215	wild.	1990
945	881017	3 109	10.20	0.30	4040	23.6	wild	1990
946	881115	2.926	9.80	0.70	4300 E100	111	wild.	1990
947	981208	2.969	9.71	6.04	5160	22.7	wild.	1990
993	890119	2 963	9.74	0.70	4760	32.2	Wild.	1990
1027	890200	3.091	10.14	2.00	4780	21 6	wild.	1990
1111	890320	3.121	10.24	0,73	4440	21 6	wild.	1990
1139	690420	3 103	10.18	0.71	4470	21 3	wild.	1990
1178	890526	3.042	9.95	2.00	4400	21 7	wild.	1990
1209	890514	3.030	9.94	0.01	4360	22 1	wild.	1990
1274	890727	3.200	10.50	0.04	4350	221	wild.	1990
1247	890831	1 027	9,93	9.07	1230		wild.	1990
1292	890915	J 045	2.23		4860 4600 4640 4980 5100 5160 4780 4780 4780 4780 4400 4400 4360 4350		wild	1990
1325	891000	1.018	9.90	C 74	4220 4040	22 B	ษแล่	1990
1350	891201	3.078	10.10		1440	23.7	wild.	1990
1 383	691219	3.094	10.12	0.73	1010	22.1		
Cite	Numbus r— -	Sile Nam	e					
21623	014331	C43						
							LVVND	
	850400	2 012	6 60				LVVHD)	
	850500	2 073	6.80				LVVMD	
		1.957	6.42 6.45				LYVND	
							LVVND	
667	871000	1.960	6.43				LVVWD	
668	971100		5.81				LVVND	
669			7 30				T'A LUCT	

	Sample	Stat	ic	Fiel	ld SC	Tend	Data	
Sam-	Date	Water	Level	рн	EC umhos∕cm	(C)	Source	
ple∦		(a) 	(ft)					
			6 99				LVVWD	
670	880100 880200	2.131	6 68				LVVWD	
671			5.63				LVVWD	
672	880300 880500	2.012	6.60				LVVND	1000
673 446	B80610	1.987	6.52	7.15	5880	19.0	Wild,	
675	880700	1 990	6.53				Wild,	
676	880800	1.981	6.50				Wild, Wild,	1000
677	880900	1 905	6.25				wiid, Wild,	
678	B81000	1.948	6.39 6.39				wild,	1990
679	881100	j.948					wild,	1990
1007	890100	1.911	6.27				Wild,	
1039	890200	2.045	6.71				wild,	1990
1112	890317	2.042	6.70				wild,	1990
1152	890421	2.045	6.71				Wild,	
1179	890524	2.039	<b>5</b> . 53				wild,	1990
1210	890600	2.067	6.78 6.70				wild,	
1248	690800		6.70				Wild,	
1293	890915	1.935	6.35				Wild,	1990
1326	891000		6.20				Wild,	1990
1359	891124	2.003	6.57					
Site 21623	Number 024111	Site Nam C32	e 					
6.05	050500	5.334	17 50				LVVHD	
605	870200	5.206	17.08				LAAMD	
606 607	870900		16.74				LYVND	
608	871000		16.73				LVVHD	
609	871100	4.868	15.97				LVVWD	
610	871200	4.983	16.35				LVVWD	
611	860100	5.163	16.94				LVVND	
612	880200	5.197	17.05				LYVND	
613	880300	5.197	17.05				LVVND	
614	680400	5.264	17.27				LVVND	
615	B80500		17.35		6.005	<b>A</b> 1 <b>A</b>	Wild,	
428	80608		17.11	7.25	5085	21.7	WIId,	
617	880700	5.197	17.05				wild,	1990
618	880800	5.121	16.80	~ ~~	4304	22.3	wild,	
937	880928			7.22	4780	24.3	Híld,	
620	881000		16.07				Wild,	
621	881100	4,980	16.01	2 00	5400	21.3	wild,	
938	681209			7.09	2400		wiid,	1990
1006	890100		16.65				Wild,	1990
1038	890200		16.93 17.18	7.10	4900	21.2	Wild,	1990
1108	890320		17.10	3.10			wild,	
1153	890421		17.20				Wild,	
1180	890524		16.98	7 00	4450	22.1	wild,	1990
1211	890614	3.110	10.30					

Sam-	Sample Date	sta Water	tic Level	Fiel pH	ld EC	Temp (C)	Data Source	
ple∦	y ymndid	(m)	{IC} +-+-					
1240	00800	4 9 7 6	16.20					
1243	690915	4 807	15.77				₩ild, l	990
1 7 7 7	891000	4 755	15.60				Wild, 1 Wild, 1	990
	890800 890915 891000 891124							990
Site	Number	Site Nam	e					
21623	024341	C29						
607	950400	4.481	14 70				TAAMD	
587 508							LVVND	
589	870200	3 786	12.42				TAAMD)	
590	876960	3.645	11.96				TAAMD	
591	850500 870200 870900 871000 871100 871200	3.597	11 80				LVVND	
592	B71100	3.417	11.21				LVVWD	
593	871200	3.847	12.62				LVVND	
594	880100 880200	3.780	12.40				LVVND	
595	880200	3.609	11.84					
596	A 6 6 1 6 0	3 EQQ	11 77				LVVWD LVVWD	
597	880300 880400 880500 880608 880712 880905	3.648	11.97				LVVND	
598	880500	3.648	11.97	3 65	FOLD	30 4	with h	990
427	880608	3.527	11.57	7.03	2820	20.5		990
461	860712	3.502	11.49	7.10	5530	20.5	WIN. P	990
468	660905	3.414	10.00	7.10	5580	21 9	wita, 1	990
918	880919	1.347	10.30	2.09	5760	22 0	Wild, 1	990
934	861017	1.117	10.07	7.00	6150	21 2	wild, 1	990
935	881111	J. JI J 3 396	10.01	6 96	6270	21.5	wild, l	990
936	881200	3,300	11.11	7 02	6460	21.1	Nild, 1	990
991	000317	3.130	11 58	6.98	6130	20.9	wild, 1	990
1044	000217	3 597	11 80	6.91	6000	20.2	wild, I	390
1136	800430	3 555	11 70	7.01	5780	21.0	wild, 1	<del>9</del> 90
110)	890120	3 481	11.42	6.99	5640	21.1	- Wild, 19	990
1212	890614	1.459	11.35	7.03	5490	21.2	wiid, 19	990
1271	890727	3.414	11.20	6.98	5430	21.2	LVVWD Wild, F Wild, F Wild, G Wild, 1 Wild, 1	190
1250	890811	3.237	10.62	7.03	5350	21.3	RIId, 1	190
1295	890915 891000	3.200	10.50				wild 1	990
1329	891000	3.139	10.30				wiid, 19	190
1 361	891201	3.243	10.64	7.03	5370	21.2	Wild, 19 Wild, 19	190 190
1380	891219	3.301	10.83	7.07	5140	21.2	WIIG, IS	
Site   22610]	Number5 1333010	ite Name ISGS #66-	: 		<b>-</b>			
1462	860307	4.944	49.03				Maurer,	
1104	860307 I	5.517	50.91				Maurer,	
	060676 1	< 050	52 77				Maurer,	
1163	890421	5.380	50.46				Wild, 19	
1169	890421 l 890524 l	5 603	51.19				WEId, 19	30

W

Sam-	Sample Date		atic r Level	Field pHEC	Temp	Data	
plež	yyaradd	(m) 	(ft)	unhos/cm		Source	
1226	890600	15.773	51.75			Wild,	1990
1265	890800	dry				Wild,	1990
1310	890915	dry				Wild,	1990
1343	891000	dry				Wild,	
1376	891204	dry				wild,	1990

*B & K, 1988 - Brothers and Katzer, 1988 LVVWD - unpublished data from the Las Vegas Valley Water District

.

# APPENDIX C.

Major Ion Data

Sang)	¥ Date yymndd	Lab pH	Lab EC	Field HCO3- mg/l		C1- mg/1	504~~ mg/1	Catt mg/l	Mg++ mg∕l		κ∔ ng/1 	SiO2 mg/l	17D8 mg/	EPM 1 bal	-	Data Source
Site   20610]	Number	-Site -USGS	Name #19						· · · • • •					- <b>-</b>		
16 17	812110 820517 820823 871100 880630	7.59		290 310 303 326	281 303	4.7 14.0 3.0 3.8 4.1	41.0 25.0 34.4	30.0 37.0 33.0 27.2 27.0	44.0 42.0 41.0 47.2 46.8	11 00 10 00 11 00 10 50 10 90	4.70 4.20 3.00 3.53 3.90	64.0 65.0 92.0 64.0 64.0	321 300 328 308 322		32017 DRIWRC	Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 B & K, 1980* Wild, 1990
Site N 206114	umber	-Site -USGS	Name ∦15		<b></b>	<u>-</u> -										
22 390 441 925 955 1115	880926 881212	9.11 8.00 8.24 7.84 7.87 7.66	533 482 567 588 554 592	280 304 280 290 277 290 298	268 291 294 295 297 292 301	7.5 7.0 3.9 11.9 13.1 15.7 17.8 14.5 17.5	63.0 34.0 37.7 47.7 47.2 51.4 62.9 52.7 65.0	59.0 63.0 28.1 58.4 61.2 55.2 58.0 60.1 66.0	30.0 31.0 47.3 33.5 29.3 34.6 35.9 34.7 36.1	8.60 8.00 11.40 9.26 9.34 8.40 10.00 8.25 6.53	2 30 3.86 2 97 2.40 2.36 2.71 2.38 2.40	21.0 18.0 66.0 21.0 20.0 20.3 20.6 20.3 20.1	358 336 322	1.051 1.057 1.057 1.008 1.016	32017 DR IWRC DR IWRC DR IWRC DR IWRC DR IWRC DR IWRC	Dettinger, 1987 Dettinger, 1987 B & K, 1988* Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
Site N 2061243	mber 33122	Site   NLVWD	Name Colleg	ePark#2	b-Shall	<u> </u>	+									
1227	890627	7.62	4710	476	451	302.0	2220.0	197.0	376.0	441.00	62,80	63.9	4130	1.017	DRIWRC	Wild, 1990
	mber 3341				<b></b>	·				••••		<b></b>		<b></b>		
1230	890622-1	1.55	1100			40.0	214.0	132.0	.)	33.70	8.73	9.4	548	1.038	DRIWRC	Wild, 1990
Site Nu 2061302	mber: 4301i	Site N USGS #	lame   34													
34 35 395 440 967 1 968 1	880620 7 881004 7 881207 7 890322 8 890613 7	. 14 . 98 . 58 . 82 . 00	1 300 1 2 30 1 3 4 0 1 3 6 0 1 3 6 0	230         440         241         224       2         241       2         238       2         243       2         232       2         232       2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94.0 10.0 30.0 25.0 27.0 29.0 30.0 30.0 31.0 12.0	333.0 323.0 351.0	97.0 130.0 170.0 125.0 120.0 118.0 129.0 127.0 129.0 129.0 135.0		26.00 27.00 26.00 31.60 30.70 33.00 33.00 33.30 37.20 36.80	4 98 5 12	24.0 21.0 17.0 19.0 19.0 19.1 c 19.1 19.0 19.4	904 900 959	0.981 0.992 1.001	32017 D 32017 D DRIWRC DRIWRC DRIWRC DRIWRC DRIWRC	<pre>&gt;ettinger, 1987 &gt;ettinger, 1987 &gt;ettinger, 1987 B &amp; K, 1988 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990</pre>

-

Sanı	∍# Date yyamdo		Lab BC	Field HCO3- mg/l			SO4 l mg/l	Ca++ mg/l	Hg+1 mg/1		K⊧ mg/l	sio2 mg/l	TDS mg/l	EPM bal	Lab Code	Data Source
Site 2061	Number	Site	e Name												•	
	890622					63.0		105.0	.2	55.10	22.40	5.0	728	1.057	DRIWRC	Wild, 1990
Site 2061)	Number 143401	Site USGS	e Name i #37										<del></del>			
422 438	880615 880920 881207 890322	7.75 7.74 7.32 7.46 7.75	2170 2090 2740 2490	606 584 561 515 550 512	403 579 581 556 557 563	120.0 170.0 118.0 138.0 217.0 178.0 172.0	802.0 590.0 592.0 850.0 713.0	130.0 191.0 141.0 158.0 216.0 186.0 175.0	120.0 193.0 147.0 148.0 202.0 183.0 165.0	85.00 140.00 141.00 138.00 160.00 144.00 145.00		36.7	c 1779 1920	0.974	DRIWRC DRIWRC DRIWRC DRIWRC DRIWRC	Dettinger, 1987 B & K, 1988 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	Number 221121															
	890626			55	58	14.5	747.0	255.0	20.7	33.20	39.00	18.5	1185	1.004	DRIWEC	Wild, 1990
	Number 544402			eston B	31vd 40											
291 292 293 294 295 295 295 295 297 298 40 399 443 926 969	880628 880926 881211 890323	7.66		225 175 216 196 120 92 157 127 127 217 217 217 262 253 304 287		129.0 126.0 125.0 126.0 126.0 113.0 120.0 124.0 3.7 408.0 422.0 422.0 447.0 441.0	1308.0 1258.0 1110.0 1181.0 1185.0 1168.0 1090.0 1083.0 1140.0 1500.0 2370.0 2460.0 2370.0 2510.0 2510.0	202.0 196.0 192.0 171.0 150.0 136.0 136.0 143.0 290.0 347.0 336.0 336.0 333.0 344.0 324.0	208.0 200.0 173.0 192.0 190.0 184.0 171.0 180.0 184.0 290.0 383.0 382.0 387.0 411.0 420.0 400.0	148.00 168.00 135.00 135.00 125.00 127.00 137.00 129.00 240.00 338.00 348.00 364.00 364.00 364.00 369.00 379.00	26.00 28.00 23.00 68.00 24.00 21.00 20.00 20.00 43.00 55.60 57.80 61.20 67.00 61.70	64.0 24.0 29.0 30.0 29.9 c 35.5	4580 1 4740 0	1.035 ).984	DRIWRC DRIWRC DRIWRC DRIWRC DRIWRC	Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Dettinger, 1987 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	mber 13331												• • <b>- •</b> • •			
434 949 952 1120	880929 881208	7.70 7.51 7.53 7.60	4840 4920	354 360 284 306	305 303 301 301	420.0 368.0 372.0 380.0 394.0 410.0	2250.0 2270.0 2300.0 2250.0	370.0 331.0 320.0 324.0 328.0 345.0	276.0 274.0 276.0 278.0	530.00 512.00 512.00 491.00 511.00 522.00	43.10	28.0 28.5 c 28.1	4230 1 4280 1	011 043 012	DRIWRC DRIWRC DRIWRC DRIWRC	ettinger, 1987 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990

Samp	i Date yymrdd	Lab PH		Field HCO3- mg/l		cl- mg/1		Ca++ mg≠l	Mg++ mg/1		Кі люд/1	5102 mg/1	11DS mg/l	EIM bal	Lab Code	pata Source
Site 21610	Number 311141	Site USG <b>S</b>	Name #47													~ <b>_</b> .
	811019 881212			247	232 255	130.0 166.0	480.0 1240.0	130.0 218.0	67.0 211.0	120.00 141.00	22.00 14.90		1130 2360	1.001		Dettinger, 1987 Wild, 1990
Site   21610-	vumber 112301	Site USGS	Name #43													
53 54 405 436 922 978 1122 1200 Site N	890322 890620 unber	7.67 7.55 7.55 7.21 7.65 7.39 Site	4010 4690 4730 4720 4660 Name	390 380 377 410 366 362 361 360	390 388 379 382 391 387	230.0 250.0 206.0 214.0 214.0 214.0 214.0 210.0 208.0	2800.0 2700.0 3500.0 2810.0 2660.0 2840.0 2640.0 2760.0	480.0 480.0 520.0 470.0 447.0 444.0 443.0 449.0 433.0	510.0 430.0 460.0 447.0 435.0 435.0 435.0 435.0 429.0 \$23.0	230.00 200.00 230.00 225.00 229.00 227.00 234.00 229.00 222.00	14.00 50.00 40.00 41.90 43.60 46.10 41.60 41.20	48.0 52.0 50.0 48.0 51.0 49.0 50.0 c 50.2 49.5		1.042	32017 32017 DRIWRC DRIWRC DRIWRC DRIWRC DRIWRC	Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 B & K, 1988 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	22221 811022						1000.0	170.0		230.00	14.00	23.0	2050		80020	Dettinger, 198
Sita N	mhar	-Site	Name													
927 930 1102	880928 881211 890321	7.68 7.74 7.60 7.75 7.62	4430 4280 4260	255 247 272	266 267 268	236.0 224.0 219.0	2510.0 2370.0 2350.0 2230.0 2320.0	442.0 434.0 411.0 408.0 411.0	309.0 294.0 281.0 280.0 304.0	368.00 331.00 306.00 297.00 292.00	57.10 53.50 56.00 51.30 49.60	44.0 42.9 c 40.2	3990 3970	1.020 0.996	DR IWRC DR IWRC DR IWRC	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
Site Nu 2161154	mber 4441	Site Maryla	iame Ind Pikwa	ay & Fla	amingo											
439 924 963 1124	880616 880921 881212 890323	7.83 7.69	3030 2970	273 293 318	017 1 309 1 313 1 119 1	53.0	1420.0 1620.0 1510.0 1360.0	420.0 329.0 366.0 341.0 326.0 317.0	195.0 217.0 196.0 196.0	130.00 140.00 177.00 156.00 144.00 146.00	28.00 20.70 26.20 27.60 22.80 20.80	36.0 37 0 37.1 c 34.9	2720 1	.022 970	DRIWRC DRIWRC DRIWRC DRIWRC	Dettinger, 1987 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990

Sanı:	)∦ Date yymmdd	Lab pH	Lab EC	Fiel HCO3 mg/1				- Cai+ mg/l	Mg+ mg/l		K+ mg/l	SiO2 mg/l	TDS mg/		i.ab Codie	Data Source
Site 21611	Number	Site USGS	Name #40												<b>.</b> .	
63	880514 880929 881207 890323	7.02 7.50 7.53 7.45 7.72	3480 3600 3640	180 230 246 242 253 336 256 256	183 251 255 255 258 260	210.0 240.0 224.0 268.0 288.0 296.0 307.0	<pre>1500.0 1400.0 1600.0 1440.0 1530.0 1590.0 1620.0 1620.0 1690.0</pre>	350.0 340.0 310.0 340.0 360.0 359.0 380.0 367.0 357.0	210.0 200.0 220.0 194.0 212.0 219.0 218.0 221.0 221.0 223.0	180.00 120.00 210.00 167.00 198.00 222.00 239.00 249.00 254.00	7.40 8.10 9.00 14.40 17.50 17.50 17.30 17.90 18.60	16.0 17.0 22.0 22.0 22.0	c 3100 3190	1.011	32017 32017 DRIWRO 	
	Number 131401			···-												
100	811020	7.40			183	650.0	2900.0	610.0	410.0	340.00	20.00	38.0	5400		10020	Dettinger, 1987
	lumber  44221			sta Pa	rk										<b></b>	
435 970 971 1127 1215	881003 881208 890320		3720 3710 3300	217 210 207 201	217 220 221 208 216	251.0 225.0	2250.0 1790.0 1850.0 1580.0 1750.0	379.0 371.0 370.0 351.0 394.0	225.0 227.0 225.0 185.0 203.0	247.00 253.00 250.00 212.00 225.00	18.80 19.30 19.70 15.50 17.20	24.0 24.0 24.7 c 22.8 22.8	3280 2920	1.031	DRIWRC DRIWRC DRIWRC	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	umber 11201															
68 69 412 433 956 959 i129	880613 880929 881208	7.63 7.67 7.54 7.73 7.98	5410 5320 5190 5300	270 300 323 310 322 323 317 299	281 281 319 320 323 319 321	340.0 350.0 350.0 457.0	2540.0 2480.0	490,0 500.0 500.0 403.0 526.0 505.0 487.0 480.0 485.0 513.0	260.0 260.0 305.0 308.0 298.0 303.0 314.0 320.0	440.00 370.00 410.00 458.00 458.00 447.00 422.00 437.00 437.00 446.00	61.00 57.00 63.00 56.50 61.00 68.40 58.40 58.40 60.70 67.20	61.0 54.0 52.0 57.0 58.0 62.0 60.3 55.9 57.2	4680	1.040	80020 32017 32017 DRINRC DRINRC	Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 Dettinger, 1987 B 6 K, 1988 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	mber: 2321(							<del>-</del> -								
917 933 1105 1217	880919 881208 890321 890615	7.59 7.62 7.77 7.76	7220 7960 8210 6770 6920 6570	348 497 259 247 223	267 250 256	374.0 483.0 502.0 337.0 359.0 272.0	5000.0 5250.0 4180.0 4490.0	476.0 475.0 480.0 453.0 464.0 464.0	831.0 796.0 661.0 715.0	509.00 527.00	24 40 31.40 35.00 30.30 33.60 39.20	30.0 с 29.7 29.0	8680 1 7110 1	009	DRIWRC	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990

<b>зан</b> р.	i Date yymmdd		EC	HCO3- mg/l		3- Cl-	so4 mg/l	Ca++ mg/l	Mg+1 mg/1		K∔ mg/l	sio2 mg/l	1DS mg/l	EPH bal	Бађ Codie	Data Source
	Number 022411															
920 948 1113 1221	881208 890321 890614	7,48 7,47 7,86 7,71	3730 3710 3670 3620	265 265 240 253 232	255 255 256 257 258	274.0 264.0 272.0	1640.0 1720.0 1740.0 1650.0 1640.0	316.0 315.0 319.0 315.0 315.0 314.0	210.0 213.0 213.0 209.0 202.9	297.00 300.00 306.00 297.00 286.00	23.40 23.40 22.40	37.0 36.9 36.1	c 3200 3160	1.020	DRIWRO DRIWRO DRIWRO	2 Wild, 1990 2 Wild, 1990 2 Wild, 1990 2 Wild, 1990 2 Wild, 1990 2 Wild, 1990
Site N 216226	iumber i42102	-Site -LG030	Name Duck	CK @ LI	/ Wast	i 30										
175 176 177 178 180 181 182 70 71 413 442 961 962 130	880628 881004 881211 890323	7.27 7.49 7.44 7.53 7.65	8330 8400 7650	270 260 229 259 263 190 198 213 290 290 290 290 290 290 241 241 246 255 244	258 261 250	1346.0	3285.0 3082.0 3184.0 2958.0 2903.0 2500.0 2400.0 3280.0 3280.0 3040.0 3160.0 2670.0	632.0 616.0 597.0 588.0 588.0 581.0 512.0 512.0 512.0 545.0 590.0 619.0 561.0 570.0 558.0 545.0 510.0	456.0 433.0 482.0 459.0 438.0 424.0 414.0 397.0 377.0 370.0 370.0 370.0 370.0 370.0 370.0 370.0 370.0 370.0 370.0 378.0 378.0 375.0	897.00 958.00 922.00 903.00 903.00 921.00 862.00 875.00 890.00 1130.00 992.00 992.00 992.00	126.00 109.00 111.00 109.00 104.00 113.00 120.00 120.00 111.00 102.00 97.10	7.0 72.0 71.0 70.0 70.1 c 68.8 69.4	6370 7640 7030 6940 7420 6370	1.000 1.046 1.016	DR IWRC DR IWRC DR IWRC DR IWRC DR IWRC DR IWRC	Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Kaufmann, 1978 Baufmann, 1978 Dettinger, 1987 Dettinger, 1987 B & K, 1988 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990
	mber 1301															
101	811020	7.00			525	650.0	2400.0	570.0	240.0	520.00	55.00	55.0	4970		80020	Dettinger, 1987
	nber														<b></b>	
923 1 1106 1	080613 800920 890320 890320	7.60 ( 7.84 (	6410 5890	313 296			2520.0 2360.0	530.0 495.0 458.0 464.0	269.0	758.00 721.00 621.00 610.00	54 20 54 20 50 60 31 00	55 O 55 1	5640 5480 5000 I 4930 I	.020	DR IWRC DR IWRC	Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990 Wild, 1990

Lab Lab Field Lab

•

		La		ib Fie						_						<b></b>
Sampi	i Date yymndd	pH	EC	HCO3- mg/l	HCO 3- ing/1	- Cl- mg/l	SO4 mg/l	Ca++ mg/l	Mg++ mg/l	Na+ mg∕l	K+ mg∕l	SiO2 mg/l	TDS mg/l	EPM bal	Lab Code	Data Source
Site M	lumber	Site	Name													
216230	14111															
426	890608	7.55	4790	240	248	356.0	2340.0	520.0	262.0	362.00	29.10	28.0	4460	0.989	DRIWRC	Wild, 1990
919	880919	7.55	7960	207	253	354.0		502.0	265.0	352.00	33.10	29.0	4340	1.037	DRIWRC	Wild, 1990
947	881208	7.35	4730	240	255	346.0	2480.0	517.0	269.0	351.00	33.70	29.9 c	4370	1.032	DRINRC	Wild, 1990
1111	890320			241	252	351.0	2320.0	517.0	265.0	338.00	34.20	29.1	4400	0.993	DRINKC	Wild, 1990
1209	890614	7.58	4700	220	254	351.0	2390.0	513.0	265.0	335.00	34.50	20.3	4360	1.025	DRIWRC	WI1d, 1990
Site N	mber	Site	Name													
216230	24111	C32			•						<b></b>					
428	880608	7.67	4960	154	165	298.0	2740.0	432.0	398.0	343.00	19.70	30.0	4790	0.985	DRIWRC	Wild, 1990
937	860928	7.70	5060	167	170	292.0	2820.0	423.0	410.0	353.00	24.60	31.0	4920	0.991	DRIWRC	Wild, 1990
938	661309	7.59	5070	165	168	294.0	3010.0	434.0	403.0	370.00	21.60	31.2 c	4910	1.039	DRIWRC	Wild, 1990
1108	890320	7.84	4950	168	171	276.0	2840.0	431.0	390.0	343.00	21.00	31.1	4860	1.016	DRIMRC	Wild, 1990
1211	890614	7.64	4780	165	176	248.0	2780.0	420.0	380.0	317.00	19.60	30.3	4650	1.027	DRIWRC	WI1d, 1990
Site No	mber	-Site	Name													
2162302	4341	-c29	<u>_</u>										· · · · · · · · · ·			
427	890608	7.58	5830	217	207	510.0	2960.0	525.0	396.0	449.00	51.60	44.0	5520	1.000	DRIWRC	Wild, 1990
918	880919	7.72	5800	207		497.0	3040.0	518.0	392.0	453.00	52.10	44 0		1 023	DRIWRC	Wild, 1990
936	881208	7.49	5980	192		538.0	3170.0	531.0	415.0	489.00	56.50			1.017		Wild, 1990
1107	890321	7.82	6100	200		567.0	3030.0	544.0	420.0	478.00	54.40	44.9		0.985		Wild, 1990
1212	890614	7.57	5820	184	205	500.0	3050.0	518.0	390.0	460.00	52,90	44.2		1,025	DRIWRC	Wild, 1990

*B & K, 1988 - Brothers and Katzer, 1988 c - TDS calculated from electrical conductivity

### APPENDIX D.

Nutrient, Minor Constituent, and Isotope Data

.

Sam ple Num ber	Sample	F mg/l	NO] mg/l	NO3 as N mg/l			NH4 mg∕l	DOC mg/1	TOC mg/.		PO4 Total ng/l		a Bet PCi as	a /1	tium Enri-	Delt Deut eriu per mil	n 18 pei	jen r Da	uta Irce
Site 2061(	NumberS: )113341U:	ite Nam SGS #19	e 																
16 444	820517 880630	0.95	0.44	0.10	D				8.40	נ		< 16.0	9.3		5	-100	-13.6	*1Dett *2Wild	
Site 20611	NumberSi 433331US	te Nam GS #15	e 					+				<b>~_</b>							
441 925 955 1115 1197	880620 880926 881212 890322 890627	0.20 0.22	1,24 1,15 1,55 2,22 1,82	0,28 0,26 0,35 0,50 0,41				0.95 1.20						< 5		-100 - 99 -100	-13.8 -13.8 -14.0 -13.7 -13.7	Wild Wild Wild	, 1 , 1 , 1
Site 20612	NumberSi 4331 <b>22</b> NL	te Name VWD Col	e 1egePar	tk∦2-Sha	11														
1227	890627	0.52	26.80	6.04				2.40	2.20							- 99	-12.7	Wild,	, 1
5ite   206129	NumberSi 933341MD	te Name BJ			<b>_</b>		<u>-</u>		• <b>-</b>			• • • •							
1230	890622		0.04	0.01												-100	-13.7	Wild,	1
Site 1 206130	winderSi 024301US	te Name 35 #34-	<del>-</del>		-·														
34 440 967 968 1116 1198	820517 880620 881004 881207 890322 890613		19.80 18.30 21.04 21.20 24.50	4,25 4,14 4,73 4,78 5,53	<b>(</b> 0.02	1.70			2.00	<0.005	<0.005 <0.005	< 23.0		₹5	•	- 90 - 96 - 97	-13.5 -13.3 -13.3 -13.0 -12.7	Wild, Wild, Wild,	Í 1 1
Site N 206131	umberSit 11411MDB	e Name 16				<b></b>		•											<b>-</b> -
1233	890622		1.69	0.38											-	104	12.2	Wild,	1
Site N 206131	umberSit 43401USG	e Name S #37										·		• <b>-</b>		·			
438 921 960 1117 1199	880615 880920 881207 890322 890615			9.27 9.25 16.60 12.20 13.60				8.10 9.40	8.50 9.40	<0,005 <0.005				15+7	- - -	92 - 93 - 94 -	12.6 -12.1 -12.4 -12.3 -11.9	Wild, Wild, Wild,	1 1 1

Sam- ple Num- ber	Sample	F mg/l	NO3 mg/1	NO3 as N mg/l	NO2 as N mg/1	NO2 +NO3 as N mg/1		DOC mg/l	TOC mg/1	PO4 Dis- sol- ved mg/l	mg/l		35	tium Enri- ched TU	Deut- erium per mil	18 per mil	n Data Sourc
Site	Numbers 221121M	ite Nam	ne														
1232	890626		0.97	0.22								****					wild,
	0.0020		0.11	0.22													and,
	NumberS 644402L			Blvd 40	)	<b></b>											
290	710609	0.40	<b>(</b> 0.10							<b>&lt;0.100</b>				4			Kaufman
443	880628		2.92	0.66										-	-100	-13.2	Wild. ]
926	880926		3.28	0.74						<0.005	<0.005			• •			Wild, ]
969	881210		3.06	0.69						<0.005	(0.005				- 99	-13.8	Wild, ]
1119	890323	0.31	5.14	1.16				2.70	2.80						- 99	-13.2	wild,
1203	890621	0.30	3.59	0.81				].90	1.90						-100	-13.0	Wild, 1
434 949 952 1120 1204 Site N	880613 880929 881208 890322 890613	0.23	23.20 22.90 24.00 25.30 16.30	5.24 5.19 5.42 5.72 3.68			2		2.70 2.80		(0.005 (0.005		3(	-	- 99 - 98 - 99	-12.9 -12.9 -12.5	Wild, 1 Wild, 1 Wild, 1 Wild, 1 Wild, 1 Wild, 1
216104	12301US	G <b>S 14</b> 3-		• <b>-</b>							<b></b>						
53	820517	0.25			(0.02	9.80			3 60	0.020		(200.0	aa n				Detting
436	880614	0.40	43.70	9.86	19.02	2.00			3.00	0.020		1200.0		∔ /- <b>3</b>	- 97		Wild, 1
922	880920		42.80	9.67						0.005	0 005			., .	- 97 -	-12 6	Wild, 1
978	881210		45.60	10,30							<0.005				- 97 -	-12.6	wild, i
1122	890322	0.21	44.10	9.95			3	.40	3.40								wild, ]
1200	890620	0.21	41.30	9.32					3.30								wild, 1
	umberSit 24121C11											• <b>-</b> -		<b>.</b>			
429	880609		23.30	5.26									21.	47- <b>A</b> -	- 94 -	11 4	vild, 1
927	880928		20,70	4.67						<b>(0</b> 005	0 005		2.1			12.3	
930	861210		22,40	5.05						<0.005						12.6 1	
102	890321	0 59	22.50	5.07			1	. 80	1.70	10.002	10.001			-	- 95 -	12.5	514 1
222	890615		16.80	3.79					1.60							12.3 1	
** ** **	0.0013	9.99	10.00	3,37			1.		T.00						26	ا تز بغد	usu, t

Sam- ple Num- ber	Sample	F mg/l	NO3 mg/1	NO3 as N mg/l	mg/l		NH4 mg/1		TOC mg/1		mg/1	as U-Nat	PCi/l	tium Enri- ched TU	Deut- erium per mil	18 per mil	Data Source
Site	Number5 544441M	ite Nam	e														
31911	544441M	aryland	Pkway 6	Flaming	<b>j</b> o												
439	880616		4.56	1.03										21+/-3			Wild, 1
924 963	880921 881212		13,20 14,20	2.99						0.065					- 95	-12.4	wild, 1
1124	890323	0.76	4.47	1.01				2.60	2.80	0.020	0.047				~ 94	-12.7	Wild, 1 Wild, 1
1225	890615		3.72	0.B4				2.60 2.00	2.00						- 97	-12.1	Wild, 1
Site a	NumberSi 721441US	te Nam	е														
21011	/2144109	GS <b>1</b> 40												•=			
63	820517	0.31			(0.02	2.80			3.10	0.020		< 79.0		0			Detting
437	890614			14.00									1				Wild, Í
972	880929			15.70						€0.005	0.005						Wild, 1
975 1125	881207 890323	0 10		16.90 18.10				2 00	2.00	CQ.005	CU. UU 5						Wild, 1
1224	890621			16.50				1,90	1.90						- 93 - 94	-12.1	Wild, 1 Wild, 1
Site N 216126	lumberSi 44221Pa	te Name radise	e Vista Pa	ark					<b>_</b>	••							
435	880613		37.80	8.54									2	5+/-3	- 98	-11 7	wild, l
970	881003		40,10	9.05						<0.005	<b>&lt;0.005</b>		-		- 97	-12.3	Wild, 1
971	891 208		38.50	8.70						<b>&lt;0.005</b>	<0.00S				- 95	-12.5	Wild, 1
127	890320		32.60	7.35				2.20	2.10						- 98	-12.8	Wild, 1
215	890613	0.26	36.70	8.29				2.30	2.60						- 99	-12.1	Wild, 1
	umberSi 11201US																
67	820518	0.50			0.02					0.030		(140.0					Detting
433	980613	0,00	11.00	2.48	0.02	2.20			9.90	0.030				3+/-3	- 98 -		Wild, 1
956	860929		9.70	2.19						<0.005	0.005		-				Wild, I
959	801208		11.30	2.56						<0,005	0.016				- 98 -	-13.1	Wild, 1
129	890321		17.40	3.92					3.80					-	- 98 -	-13.0	Wild, 1
205	890613	0.50	20.70	4.67				4.40	4,20					-	- 99 -	·12.8	wild, 1
ite Nu 162193	mberSit 2321C27	e Name				· •										· · ·	
430	880609		15.50	3.51									30	+/-4 -	96 -	12.4	aild, 1
	880919		20.20	4.56						<0.005				-	96 -	12.3 5	A11d, 1
	881208		22.10	4.98						<0.005	<0.005					12.5 \$	
	890321	0.46	11.60	2.62				3.00	3.40					-	95 -	12.5	vild, 1
	890615	0.46		4.36				2.80	2.80							12.1	

Num-	Sample	F mg/l			NO2 as N mg/1	NO2 +NO3 as N mg/1	NH4 I mg/1 r	oc g∕ì		PO4 Dis- sol- ved mg/l	Total	Alpha ug/l as	PCi/l	tium Enri- ched	Deut- erium per	Oxyga 18 per	n
	Number5																
	022411C	<b>4</b> 9									<b></b>						
431			22.20 22.90	5.00 5.17						0 007	0.006		2				Wild,
920 948			26.40														Wild, Wild,
1113		0 44	24.50	5 5 3			1	.80	1.60	10.005	0.007						Wild,
1221			29.80	6.72			1	. 60	1.50								Wild,
Site	NumberSi	ite Nam	e														
216220	642102LA	3030 Du	ck Ck (d	LV Wash3	10												
70	820519	1.70			(0.02	4.70			5.10	0.020		<230.0 1	10.0				Dettin
442	890629		6.91	1.56									1	3+/-3	- 93	-11.5	Wild,
961				1.74						<0.005	0.007 <0.005				- 89	-11.6	Wild,
962	681210		6.91	1.56			_			<0.005	<0.005				- 91	-12.0	Wild,
1130 1207	890323 890621	1.67	5.90	1.31			2 2	60	2.90								Wild, 1 Wild, 1
Site N 216229	lumberSi 31441C2	te Name 8	2														
432	880613		12.00	2.70									27	+/-3	- 98	-12.2	Wild, 1
923	880920		10.70							0.032	0.003				- 96	-12.4	Wild, 1
			10.10				1.								-100	-14-1	WIICI, 1
1208	890614	1.40	11.30	2.56			0.	90	2.00						- 97	-12.4	wild, I
Site N 216230	umberSi 14111C42	te Name 2				*				····						<b></b>	
426	880608		24.50	5.52									21	+/-2	-100	-12.6	Wild. 1
	891208			5.96						(0.005	<0.005						Wild, 1
1111	890320	0.37	25.60	5.78			2.	50							- 98 -	-12.5	Wild, 1
1209	890614	0.39	37.20	8.40			2.	10	2.30						- 97 -	-12.4	Wild, 1
919	890919		24.20	5.46						<b>&lt;0.005</b>	<0.005				- 94 -	12.3	wild, 1
5ite Nu 2162302	umberSit 24111C32	e Name												·			••••
428	880608		31.20	7.04									16+	/-3 -	- 97 -	11.2 1	41d, 1
	880928		27.40	6.19							<0.005					12.7 1	
			30.70	6.94						(0.005	<d.005< td=""><td></td><td></td><td></td><td></td><td>12.0</td><td></td></d.005<>					12.0	
938	861208																
938 108	891208 890320 890614	0.51 0.51		6.32 7.93			1.1	0 1								12.8 ¥	

Sam- ple Num- ber	Sample Date yymndd	F mg/l	NO3 trag/l	NO3 asN mg/l	NO2 as N mg/l	NO2 +NO3 as N mg/1	NH4 mg/1	DOC mg/l	TOC mg/l	PC4 Dis- sol- ved mg/l	PO4 Total mg/l	Gross Alpha ug/l as U-Nat	Gross Beta PCI/1 ås Cs-137	Tri- tium Enri- ched TU	Delta Deut- erium per mil	Delta Oxygen 18 per mil	Data Source
	lumber5:  24341C		•••••														
427 936 1107	880608 881208 890321	0.49	14.00 17.00 16.70	3.17 3.83 3.78				2.50	2.20	<b>(0.00</b> 5	<0.005		]	3+/-2	- 96	-12.8	Wild, 1 Wild, 1 Wild, 1
1212 918	890614 890919	0.52	17.80 14.00	4.02 3.16				1.90	2.30	<0.005	<b>(0.005</b>						Wild, 1 Wild, 1

.

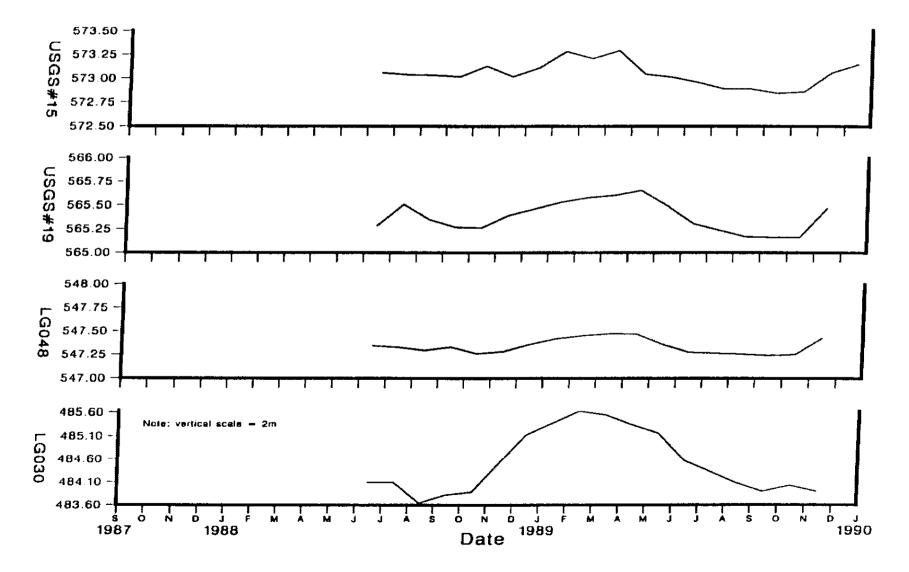
*1 Detting - Dettinger, 1987 *2 Wild, 1 - Wild, 1990

# APPENDIX E.

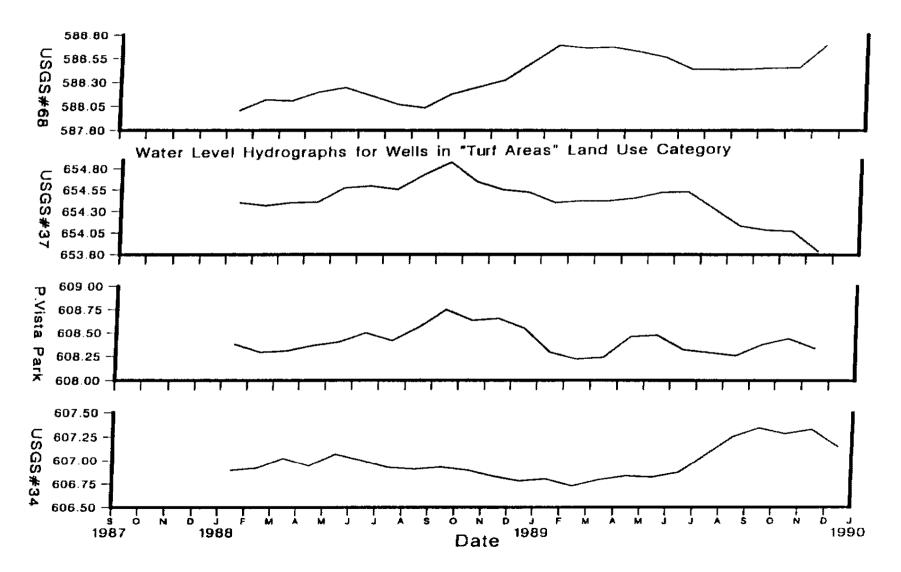
Trace Metal Data

Sample Date Ba Cđ Cr NÍ Ph 2n Data Sam Āσ As р Cu Pe Ha Mn Sec mq∕l ple# yymndd mq/l mq/1 mq/1 mq/1ma/1ma/l Source  $m\alpha/1$ mq/l mq/lmq/l ang∕l mg/i ng/i 21611721441--USGS #40 820517 (0.120 0.001 (0.25 (0.050 0.0003 (0.002 (0.025 0.02 (0.0010 0.02 (0.00 (0.005 0.0006 0.020 Detting 63 64 820823 (0.012 0.001 0.37 (0.250 (0.0010 (0.002 (0.020 0.02 0.02 0.06 0.15 0.046 (0.0020 (0.050 Detting 0.014 <0.0050 0.040 0.014 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0160 <0.005 wild, 1 1224 890621 <0.005 <0.002 1.10 21612644221--Paradise Vista Park 1215 890613 <0.005 0.007 0.90 0.017 <0.0050 <0.020 0.019 0.06 <0.0002 <0.01 <0.01 <0.020 0.0150 0.008 Wild, 1 21621711201--USGS #5 0.010 2.60 <0.100 <0.0010 0.002 0.001 0.09 0.0001 0.02 0.00 0.001 0.0050 0.020 Detting 0.006 <0.25 <0.050 <0.0001 <0.002 <0.025 0.02 0.020 0.010 0.01 <0.00 <0.005 <0.0005 0.020 Detting 67 820518 (0.001 68 820518 (0.012 820824 (0.012 69 0.002 0.58 (0.250 (0.0010 (0.002 (0.020 0.30 0.01 0.20 0.048 (0.0020 (0.050 Detting 412 870500 (0.005 0.012 2.20 0.000 <0.0050 <0.020 0.018 0.02 (0.0002 (0.01 (0.01 (0.050 0.0060 (0.010 B & K) 1205 890613 <0.005 0.010 2.60 0.011 <0.0050 <0.020 0.020 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0090 <0.005 Wild, 1 21621932321--C27 1217 890615 <0.005 0.016 3.50 0.009 <0.0050 <0.020 0.025 <0.01 <0.002 <0.01 <0.01 <0.020 0.0450 <0.005 Wild, 1 21622022411--C49 1221 890614 (0.005 0.013 1.70 0.012 (0.0050 (0.020 0.013 (0.01 (0.002 (0.01 (0.020 0.0190 (0.005 wild, 1 70 820519 (0.012 0.030 <0.050 <0.0001 <0.002 <0.025 0.46 0.0010 0.11 <0.02 <0.005 <0.0005 0.030 Detting</p> 0.63 (0.250 (0.0010 0.007 0.060 1.00 0.06 7.00 0.032 (0.0020 0.140 Dettin 3.50 0.000 (0.0050 (0.020 0.023 0.64 (0.0002 0.18 (0.01 (0.050 0.0070 0.026 Β ± Κ, 71 820825 (0.012 0.017 0.06 7.00 0.032 (0.0020 0.140 Detting 413 870600 <0.005 0.070 1207 890621 (0.005 0.060 3.20 0.007 (0.0050 (0.020 0.024 0.61 (0.0002 0.09 (0.01 (0.020 0.0080 (0.005 Wild, 1 21622931441--C28 1208 890614 K0.005 0.055 2.00 0.013 <0.0050 <0.020 0.018 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0060 <0.005 Wild, 1 21623014111--C42 1209 890614 K0.005 0.010 3.00 0.012 <0.0050 <0.020 0.020 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0360 <0.005 Wild, 1 21623024111--C32 1211 890614 <0.005 0.021 5.00 0.009 <0.0050 <0.020 0.017 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0210 <0.005 Wild, 1 21623024341--c29 1212 890614 (0.005 0.040 3.30 0.009 (0.0050 (0.020 0.020 (0.01 (0.0002 (0.01 (0.01 (0.020 0.0400 (0.005 Wild, 1 *1 Detting = Dettinger, 1987 *2 B & K, - Brothers and Katzer, 1988 *3 Wild, 1 - Wild, 1990

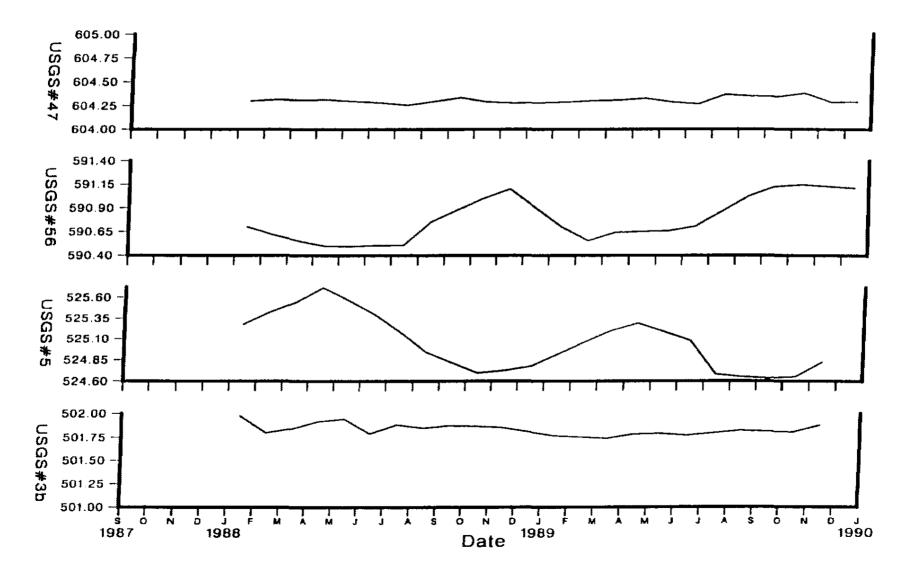
Sample в Sam-Date Aa As Ba Cd Cr Cu Fe 161 Mn NÎ Ph Se 2.0 Data mg/l ple∦ yymmdd mg/l mq/1mq/l ma/l mq/1 mg/l mq/1akj/1 mq/1mg/1 mg/1 anci∕ E mg/l Source -----------_____ 20610113341--USGS #19 820517 (0.012 0.003 0.19 0.090 (0.0001 (0.002 (0.025 0.08 0.0010 0.01 (0.02 (0.005 (0.0005 0.050*1Detting 16 820823 <0.012 0.002 0.19 <0.250 <0.0010 0.003 <0.020 0.48 17 0.05 (0.02 0.012 (0.0020 (0.050 Detting 20611433331--USGS #15 22 820824 (0.012 (0.001 0.34 <0.250 <0.0010 <0.002 <0.020 0.03 <0.250 <0.0010 <0.002 <0.020 0.03 0.04 0.02 <0.003 <0.0020 <0.050 Detting
0.110 <0.0050 <0.020 <0.005 0.03 <0.0002 0.01 <0.01 <0.050 <0.0020 0.006*28 s.k.</pre> 390 870500 (0.005 0.06 0.008 0.183 <0.0050 <0.020 <0.005 <0.01 <0.0002 0.03 <0.01 <0.020 <0.0020 0.005*3Wild, 1 1197 890620 (0.005 0.002 0.05 1227 899627 (0.005 0.007 2.60 0.025 (0.0050 (0.020 0.016 (0.01 (0.002 (0.01 (0.01 (0.020 0.0300 0.007 wild, 1 20613024301--USGS #34 820517 (0.012 0.004 0.37 (0.050 (0.0001 (0.002 (0.025 0.01 0.0010 0.00 (0.02 (0.005 0.0010 0.020 Detting 74 35 820824 0.012 0.008 0.39 0.250 0.0010 0.002 0.020 2.50 0.08 0.04 0.003 0.0020 0.050 Detting 395 870500 (0.005 (0.002 0.14 0.110 <0.0050 <0.020 <0.005 0.01 <0.002 <0.01 <0.01 <0.050 0.0070 0.160 B&K. 890613 (0.005 0.002 0.10 1198 0.043 (0.0050 (0.020 0.006 (0.01 (0.0002 (0.01 (0.01 (0.020 0.0080 (0.005 Wild, 1 20613143401--USGS #37 422 870600 K0.005 0.005 0.27 0.080 (0.0050 (0.020 0.015 0.02 (0.0002 0.06 (0.01 (0.050 (0.020 0.030 B & K, . 890615 (0.005 0.30 0.029 (0.0050 (0.020 0.015 (0.01 (0.0002 0.03 (0.01 (0.020 0.0020 0.059 Wild, 1 1199 0.002 40 820525 <0.012 <0.001 0.44 <0.250 <0.0010 <0.002 <0.020 4.60 0.03 0.16 0.040 (0.0020 0.050 Detting 1.30 0.070 <0.0050 <0.020 0.013 2.80 <0.0002 0.19 <0.01 <0.050 <0.0020 0.017 B & K, 1.30 0.024 <0.0050 <0.020 0.016 8.40 <0.0002 0.13 <0.01 <0.020 <0.020 0.029 wild, 1 399 870600 <0.005 <0.002 1201 890621 <0.005 <0.002 21610113331--USGS #11 1204 890613 (0.005 0.002 2.70 0.018 (0.0050 (0.020 0.017 (0.01 (0.0002 (0.01 (0.01 (0.020 0.0190 (0.005 wild, 1 21610412301--USGS #43 53 820517 <0.012 0.002 0.60 <0.050 0.0010 <0.002 <0.025 0.02 0.0010 0.02 <0.02 0.005 0.0005 0.220 Detting 820824 (0.012 0.49 (0.250 (0.0010 (0.002 (0.020 0.03 0.01 0.28 0.005 (0.0020 (0.050 Detting 54 <0.001 870500 (0.005 0.160 <0.0050 <0.020 0.020 0.03 0.0017 <0.01 <0.050 0.0270 0.014 B & K, 405 0.004 2.16 1200 890620 (0.005 0.003 1.90 0.019 <0.0050 <0.020 0.022 <0.01 <0.0002 <0.01 <0.01 <0.020 0.0230 <0.005 Wild, 1 21611324121--CI1 1222 890615 (0.005 0.003 1.60 0.014 (0.0050 (0.020 0.016 (0.01 (0.0002 (0.01 (0.01 (0.020 0.0220 (0.005 Wild, 1 1225 890615 (0.005 0.004 0.80 0.022 (0.0050 (0.020 0.062 0.23 (0.0002 0.10 (0.01 (0.020 0.0080 0.005 Wild, 1


## APPENDIX F.

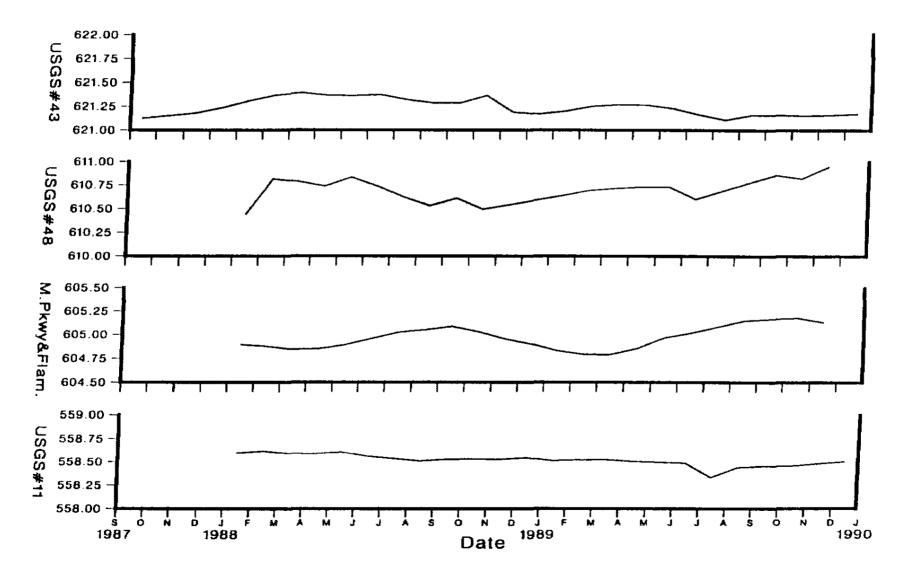
Pesticide and Herbicide Data


Samplet	Sample Date yysmdd	Silvex ug/l	2,4-D ug/l	Toxaphene ug/l	Endrin ug/l	Methoxychlor ug/l	Lindane ug/l	Analyzing Lab	Data Source
2061302	43010	5G5 134				·			
967	881004	K0.05	<b>KO.5</b>	¢0.5	K0.01	¢0,5	<b>(0.01</b>	alpha	Wild, 1990
2161011	3331U	SG <b>S #</b> 11					· · ·		
949	880928	<b>&lt;0.05</b>	<0.5	(0.5	<b>(0.01</b>	<b>&lt;</b> 0.5	(0.01	alpha	Wild, 1990
21611324	121Ca	mverse W	ell #11						
927	880928	(0.05	(0.5	<0.5	K0.01	<b>(0,5</b>	(0.01	alpha	Wild, 1990
21611721	441US	GS #40							
972	880929	<b>&lt;0.05</b>	K0.5	(0.5	(0.01	<0.5	<b>(0.01</b>	alpha	Wild, 1990
21612644	221- <b>-</b> Pa	radise Vi	ísta Park						
970	681003	<0.05	∢0.5	<b>(</b> 0.5	<b>&lt;0.01</b>	<0.5	<b>&lt;0.01</b>	alpha	wild, 1990
1621711	201US	GS #5							
956	880929	(0.05	<b>(0.5</b>	(0.5	<0.01	(0.5	(0.01	alpha	wild, 1990
1622642	02LG	030 Duck	Ck @ LV +	(ash)0					
961	881004	(0.05	(0.5	(0.5	<0.01	<b>(0.5</b>	<0.01	alpha	Wild, 1990
16230241	11Cor	werse We	11 #32					·	
937	880928	(0.05	<b>(0.5</b>	<b>(0.5</b>	<0.01	<b>K0.5</b>	<0.01	alpha	Wild, 1990

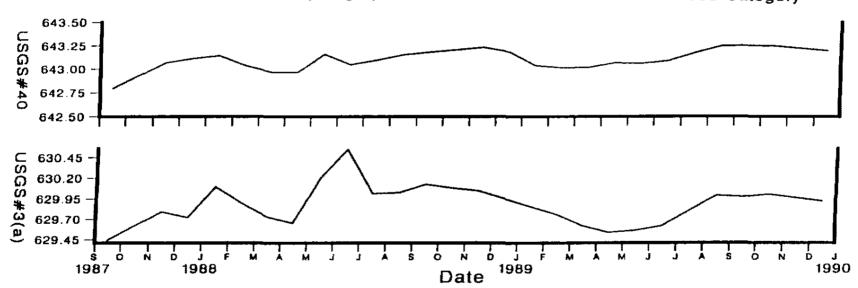
# APPENDIX G.


Water Level Hydrographs

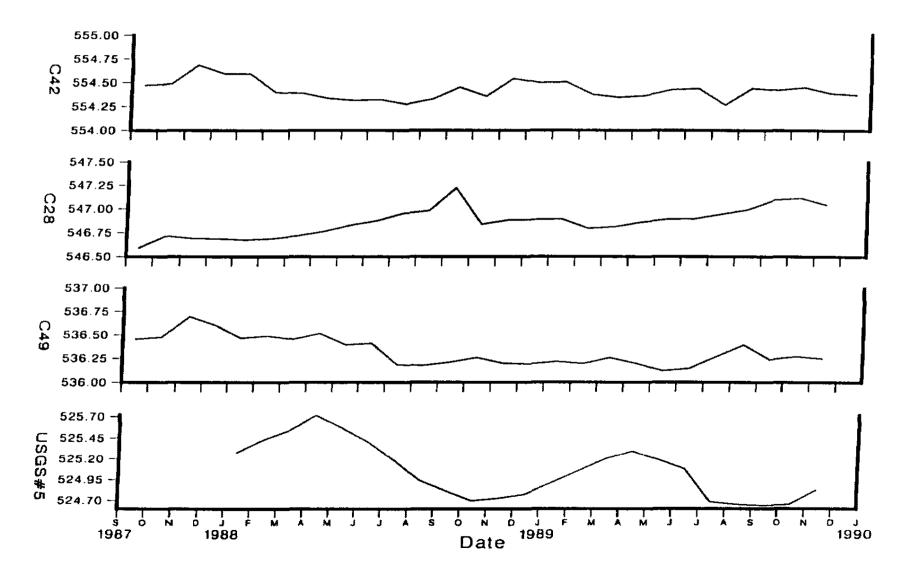



### Water Level Hydrographs for Wells in "Undeveloped" Land Use Category

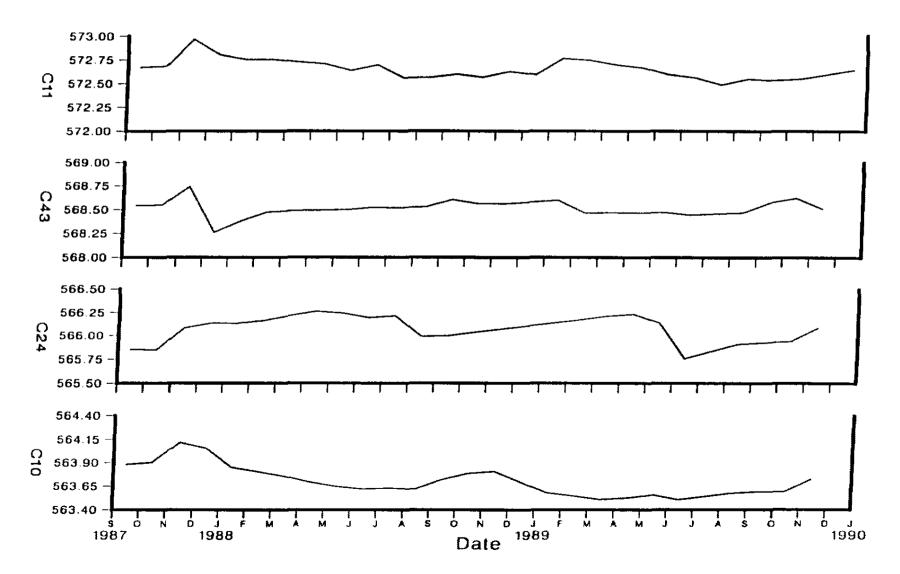



#### Water Level Hydrographs for Wells in "Undeveloped" Land Use Category

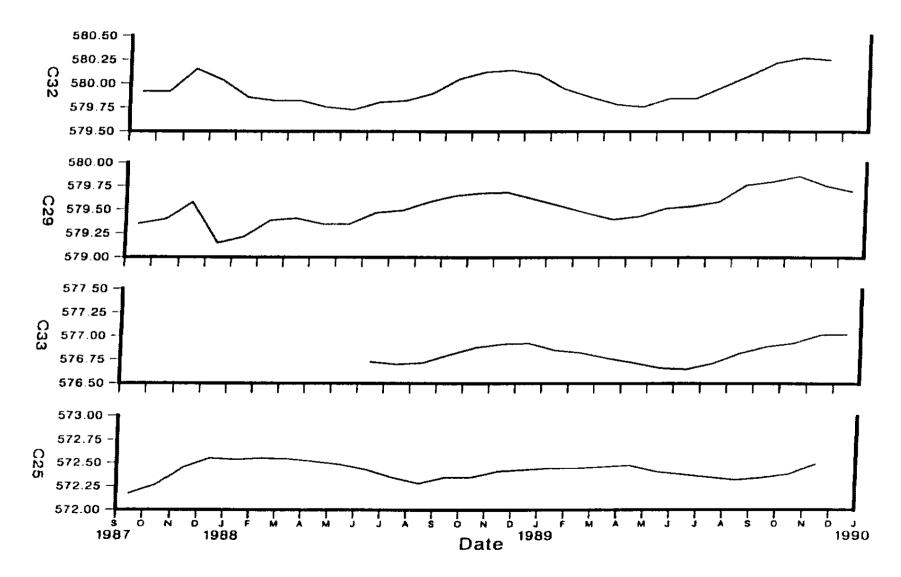



Water Level Hydrographs for Wells in "Turf Areas" Land Use Category

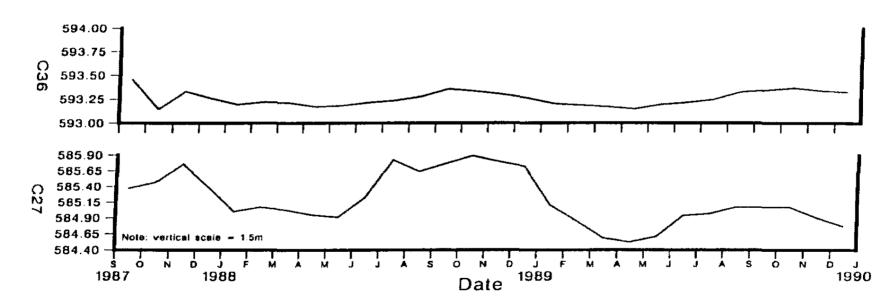



Water Level Hydrographs for Wells in "Commercial" Land Use Category




Water Level Hydrographs for Wells in "Commercial" Land Use Category



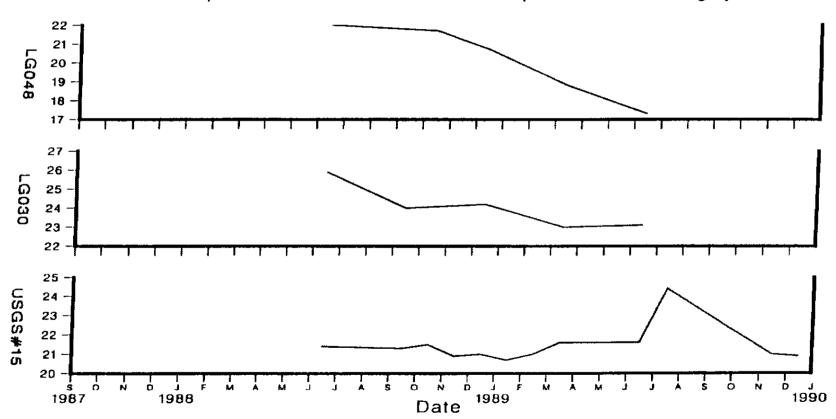

Water Level Hydrographs for Wells in "Residential" Land Use Category



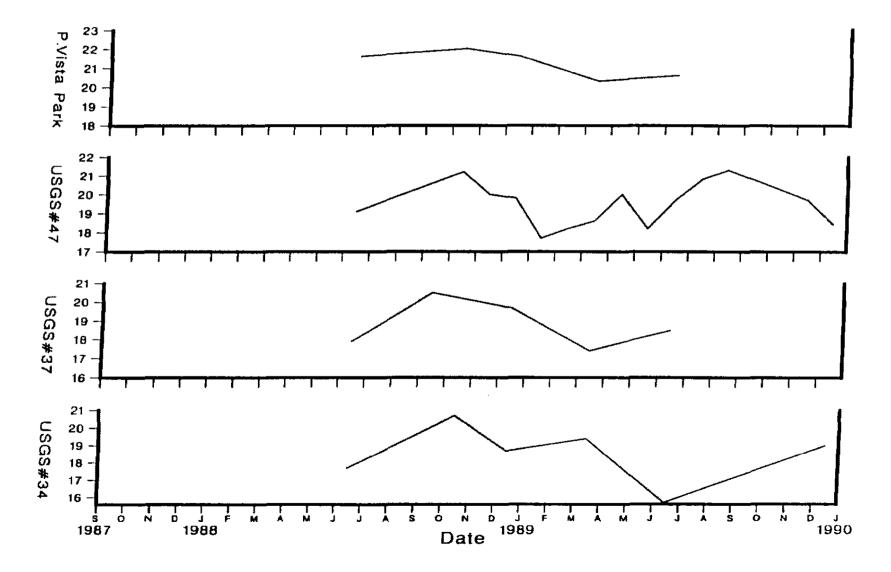
Water Level Hydrographs for Wells in "Residential" Land Use Category



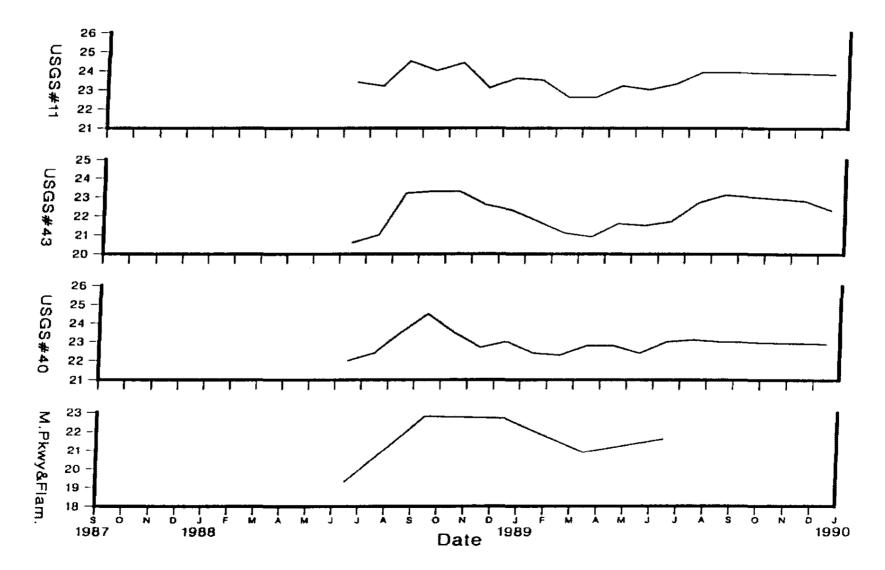
Water Level Hydrographs for Wells in "Residential" Land Use Category



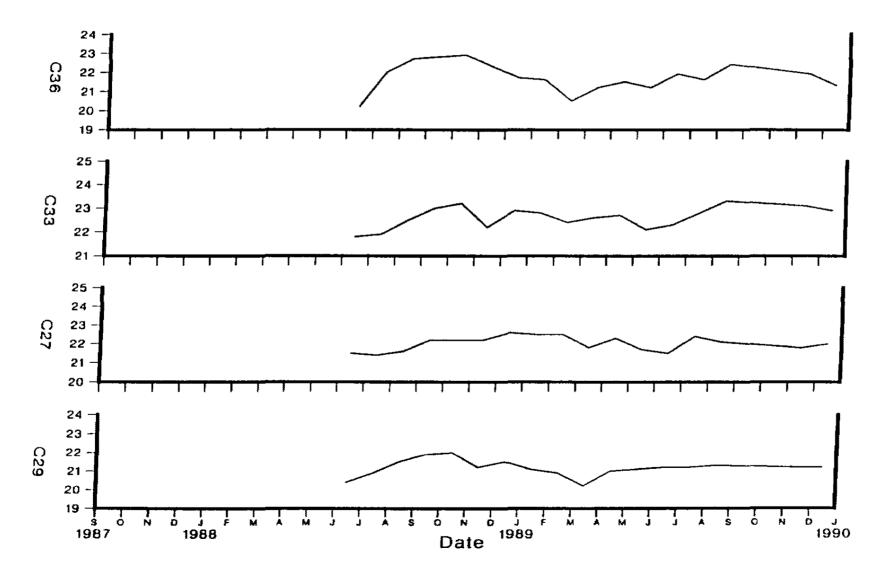

Water Level Hydrographs for Wells in "Residential" Land Use Category


ì

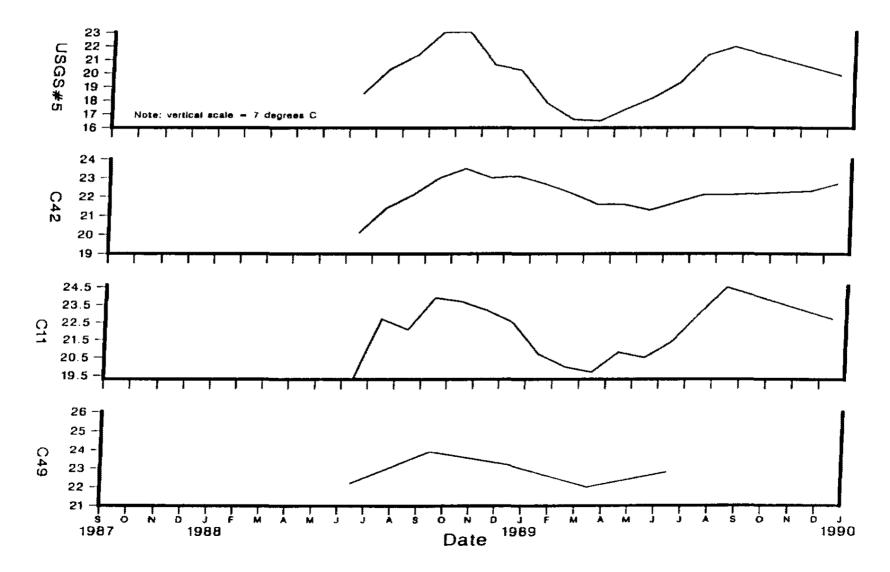
## APPENDIX H.


Time Series Temperature Plots

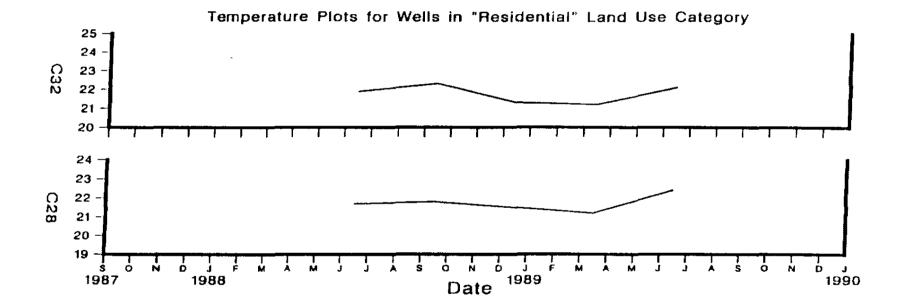



Temperature Plots for Wells in "Undeveloped" Land Use Category




### Temperature Plots for Wells in "Turf Areas" Land Use Category



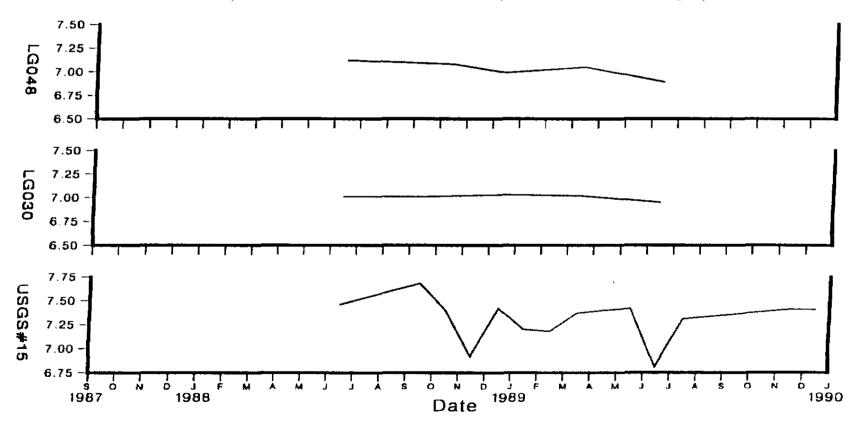

Temperature Plots for Wells in "Commercial" Land Use Category



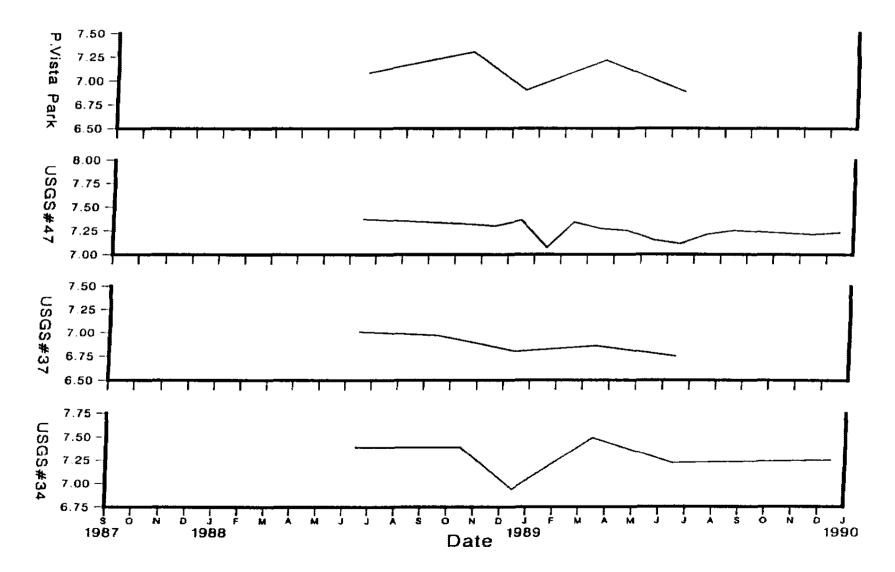
Temperature Plots for Wells in "Residential" Land Use Category



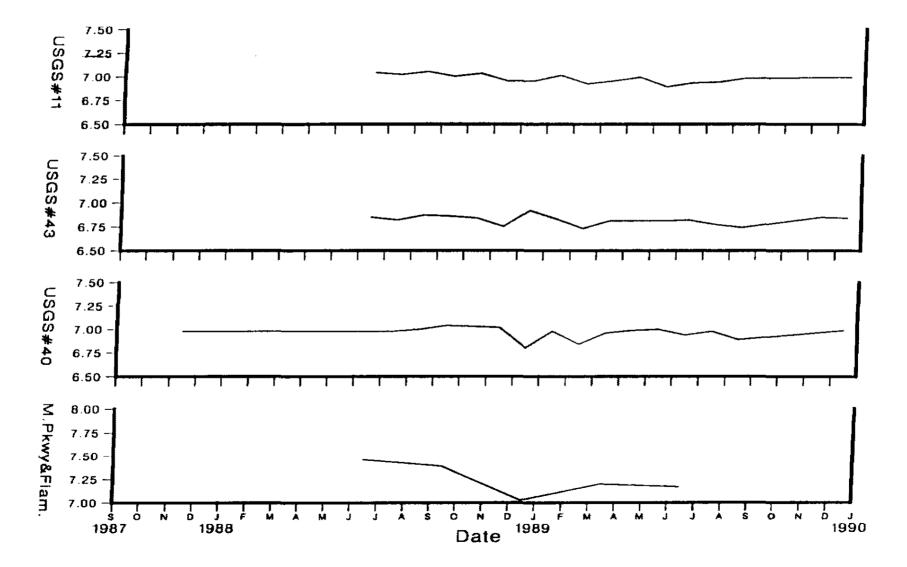
#### Temperature Plots for Wells in "Residential" Land Use Category



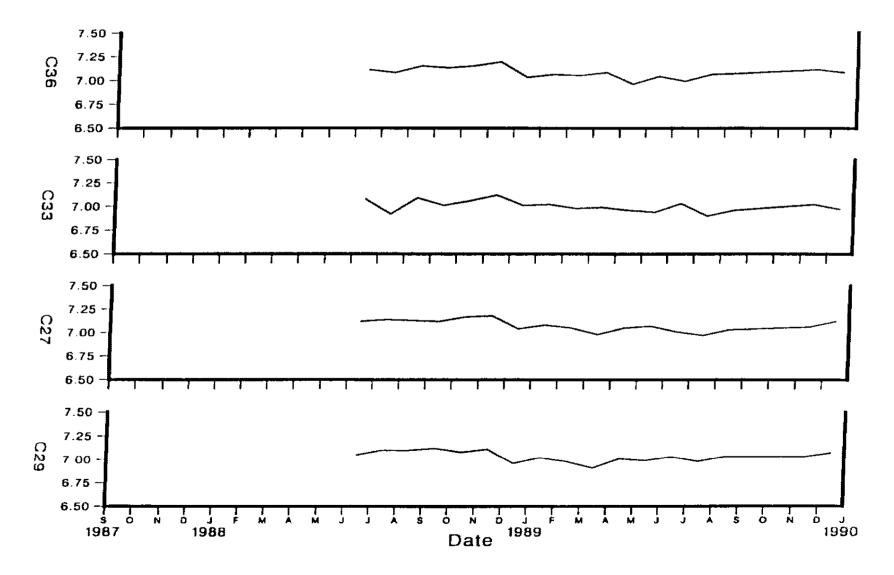

# APPENDIX I.


*

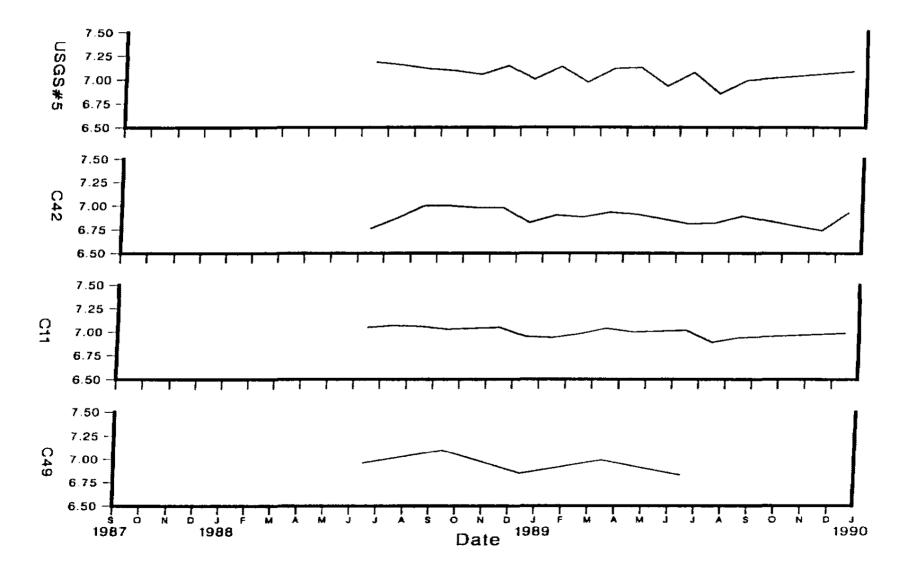
Time Series pH Plots


-

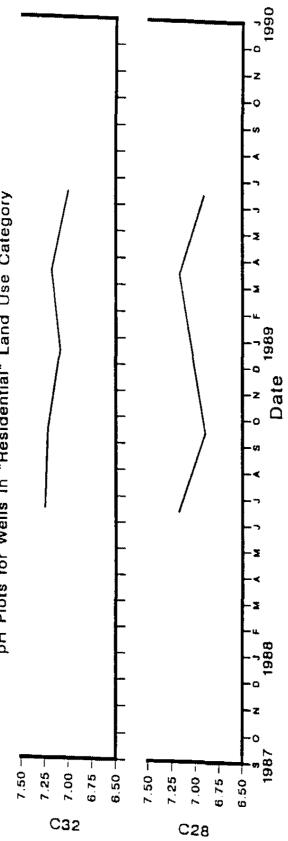



# pH Plots for Wells in "Undeveloped" Land Use Category




pH Plots for Wells in "Turf Areas" Land Use Category

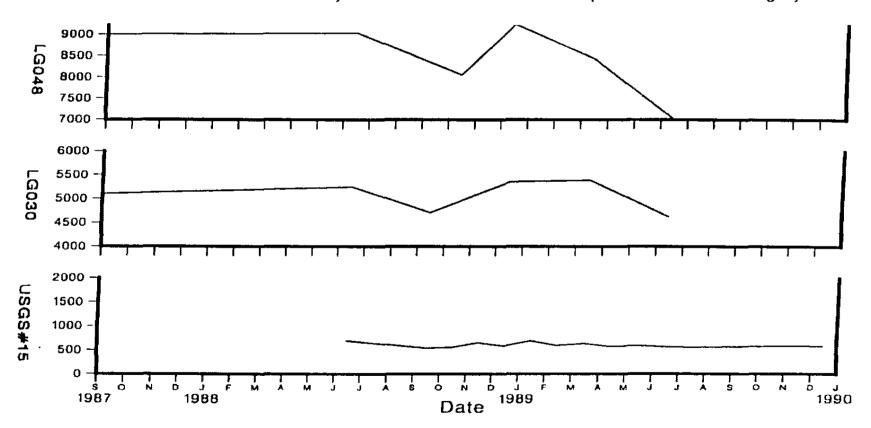



pH Plots for Wells in "Commercial" Land Use Category

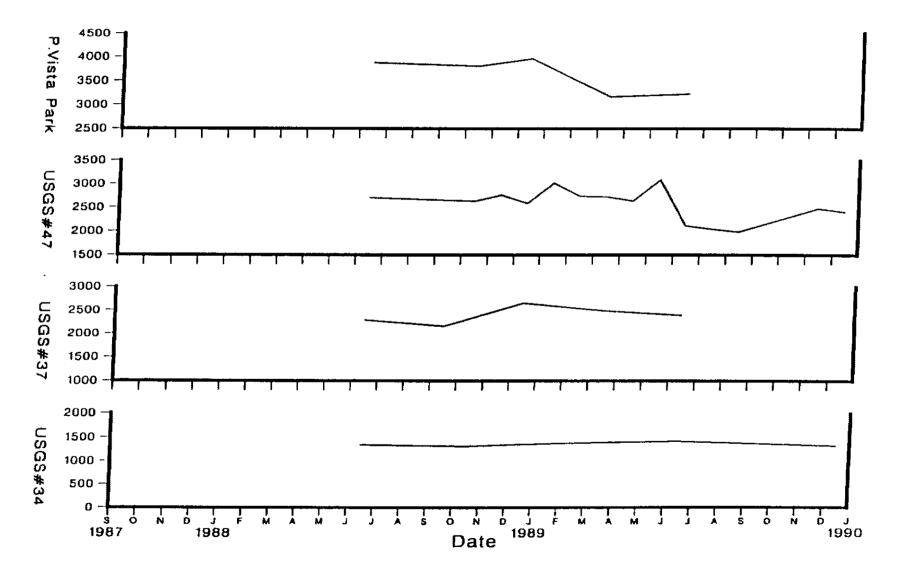


pH Plots for Wells in "Residential" Land Use Category

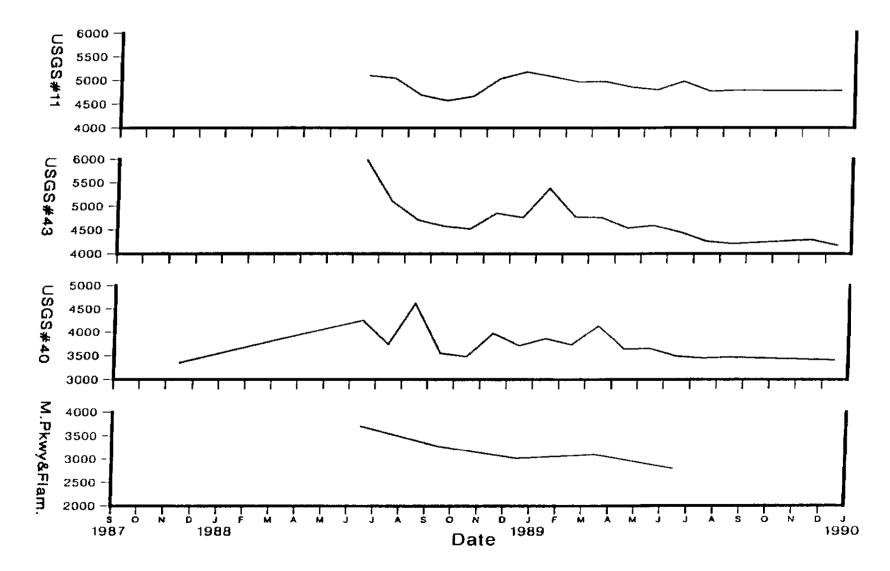



pH Plots for Wells in "Residential" Land Use Category

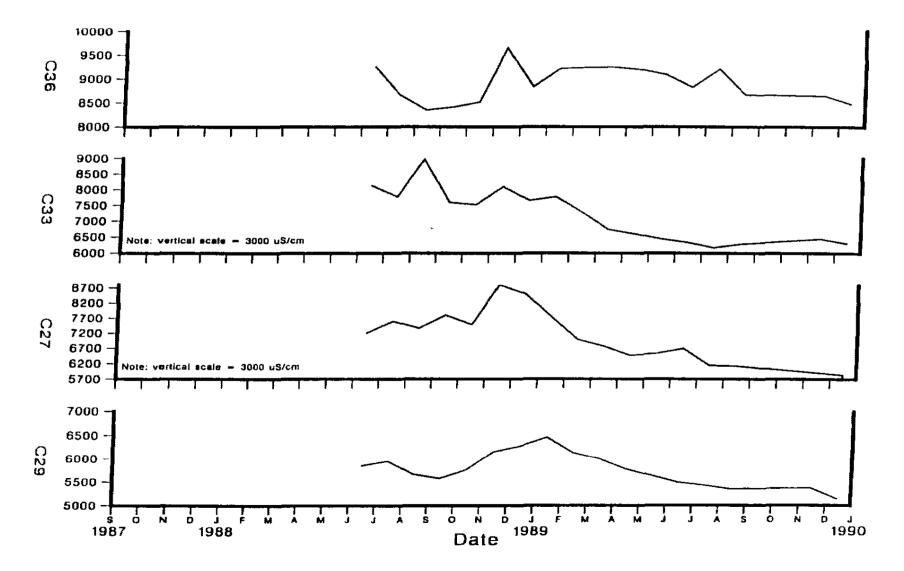




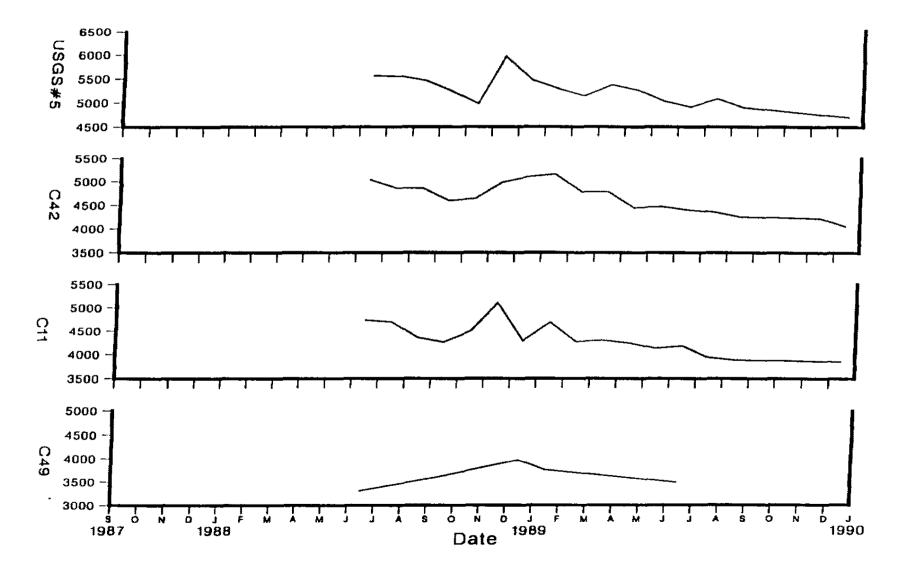

# APPENDIX J.


Time Series EC Plots

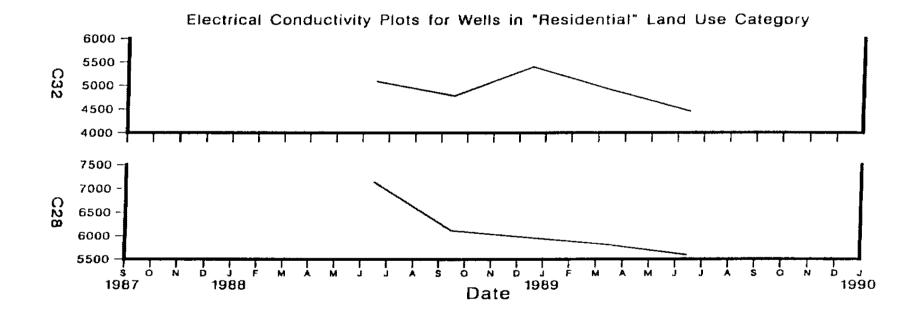



Electrical Conductivity Plots for Wells in "Undeveloped" Land Use Category




Electrical Conductivity Plots for Wells in "Turf Areas" Land Use Category




Electrical Conductivity Plots for Wells in "Commercial" Land Use Category



Electrical Conductivity Plots for Wells in "Residential" Land Use Category



Electrical Conductivity Plots for Wells in "Residential" Land Use Category



# APPENDIX K.

# Laboratory Chemical Analysis Methods

# Water Analysis Laboratory Water Resources Center Desert Research Institute

### **REFERENCE LIST**

#### STANDARD WATER ANALYSIS

pН

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 150.1 (Electrometric)

#### ELECTRICAL CONDUCTIVITY

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 120.1 (Specific Conductance,  $\mu$ mhos at 25°C)

### ALKALINITY

Techniques of Water-Resources Investigations of the United States Geological Survey, Methods for the Determination of Inorganic Substances in Water and Fluvial Sediments, Book 5, Chapter A1, 1979, Editors: Marvin W. Skougstad, Marvin J. Fishmann, Linda C. Friedman, David E. Erdmann, and Saundra S. Duncan. U.S. Government Printing Office, Washington D.C. 20402, Pages 519, 520 (Alkalinity, electrometric titration, automated) (I-2030-78)

#### CHLORIDE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 325.1 (Colorimetric, Automated Ferricyanide AAI)

Test Method EPA-600/4-84-017 March 1984, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 300.0 ( The Determination of Inorganic Anions in Water by Ion Chromatography)

## SULFATE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979. Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 375.4 (Turbidimetric)

Test Method EPA-600/4-84-017 March 1984, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 300.0 ( The Determination of Inorganic Anions in Water by Ion Chromatography)

### SODIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 273.1 (Atomic Absorption, direct aspiration)

### POTASSIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 258.1 (Atomic Absorption, direct aspiration)

#### CALCIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 215.1 (Atomic Absorption, direct aspiration)

#### MAGNESIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 242.1 (Atomic Absorption, direct aspiration)

Techniques of Water-Resources Investigations of the United States Geological Survey, Methods for the Determination of Inorganic Substances in Water and Fluvial Sediments, Book 5, Chapter A1, 1979, Editors: Marvin W. Skougstad, Marvin J. Fishmann, Linda C. Friedman, David E. Erdmann, and Saundra S. Duncan. U.S. Government Printing Office, Washington D.C. 20402, Pages 519, 520 (Silica, dissolved, colorimetric, molybdate blue, automated) (I-2700-78)

SILICA

3

## NITRATE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 353.2 ( Colorimetric, Automated, Cadmium Reduction )

Test Method EPA-600/4-84-017 March 1984, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 300.0 ( The Determination of Inorganic Anions in Water by Ion Chromatography)

### METALS

## SILVER

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 272.1 (Atomic Absorption, direct aspiration)

ARSENIC

Techniques of Water-Resources Investigations of the United States Geological Survey, Methods for the Determination of Inorganic Substances in Water and Fluvial Sediments, Book 5, Chapter A1, 1985, Editors: Marvin J. Fishmann and Linda C. Friedman, Open-File Services Section, Western Distribution Branch, U.S. Geological Survey, MS 306, Box 24525, Denver Federal Center, Denver, Colorado 80225, Pages 119, 124 (Arsenic, atomic absorption, hydride) (I-1062-85) and (I-3062-85)

### BARIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 208.1 (Atomic Absorption, direct aspiration)

## CADMIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 213.1 (Atomic Absorption, direct aspiration)

## CHROMIUM

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 218.1 (Atomic Absorption, direct aspiration)

#### COPPER

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 220.1 (Atomic Absorption, direct aspiration)

#### IRON

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 236.1 (Atomic Absorption, direct aspiration)

#### MERCURY

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 245.1 (Manual Cold Vapor Technique)

### MANGANESE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 243.1 (Atomic Absorption, direct aspiration)

### NICKEL

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 249.1 (Atomic Absorption, direct aspiration)

#### LEAD

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 239.1 (Atomic Absorption, direct aspiration)

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 239.2 (Atomic Absorption, furnace technique)

5

## SELENIUM

Techniques of Water-Resources Investigations of the United States Geological Survey, Methods for the Determination of Inorganic Substances in Water and Fluvial Sediments, Book 5, Chapter A1, 1985, Editors: Marvin J. Fishmann and Linda C. Friedman, Open-File Services Section, Western Distribution Branch, U.S. Geological Survey, MS 306, Box 24525, Denver Federal Center, Denver, Colorado 80225, Pages 534, 539 (Selenium, atomic absorption, hydride) (I-1667-85) and (I-3667-85)

ZINC

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 289.1 (Atomic Absorption, direct aspiration)

## NUTRIENTS

## TOTAL PHOSPHOROUS

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 365.1 (Colorimetric, Automated, Ascorbic Acid)

Techniques of Water-Resources Investigations of the United States Geological Survey, Methods for the Determination of Inorganic Substances in Water and Fluvial Sediments, Book 5, Chapter A1, 1979, Editors: Marvin W. Skougstad, Marvin J. Fishmann, Linda C. Friedman, David E. Erdmann, and Saundra S. Duncan. U.S. Government Printing Office, Washington D.C. 20402, Pages 491, 493 (Phosphorous, total, colorimetric, phosphomolybdate, automated) (I-4600-78)

## ORTHO PHOSPHOROUS

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 365.1 (Colorimetric, Automated, Ascorbic Acid)

# NITRATE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 353.2 ( Colorimetric, Automated, Cadmium Reduction )

#### MISCELLANEOUS

#### BORON

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 212.3 (Colorimetric, Curcumine)

### BROMIDE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-84-017 March 1984, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 300.0 (The Determination of Inorganic Anions in Water by Ion Chromatography)

#### FLUORIDE

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 340.2 (Potentiometric, Ion Selective Electrode)

### ORGANIC CARBON TOTAL

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020 March 1979, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Method 415.1 (Combustion or Oxidation).

> Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431

### **REFERENCE LIST**

#### PESTICIDES

TOXAPHENE

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 608.

#### ENDRIN

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support 19

7

10

Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 608.

# METHOXYCHLOR

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 608.

# LINDANE

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 608.

# HERBICIDES

# SILVEX

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 615.

# 2,4-D

Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 1982, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protestion Agency, Cincinnatti, Ohio 45268, Method 615.

# APPENDIX L.

*

WATEQDR Output

ų

	Sample Collection Date					
Site	06/88	09/88	12/88	03/89	06/89	Mean
USGS #19	-2.17					-2.17
USGS #15	-2.05	-2.26	-2.02	-1.95	-1.38	-1.93
NLVWD-CP#2b					-1.52	-1.52
USGS #34	-2.13	-2.08	-1.66	-2.18	-1.95	-2.00
USGS #37	-1.34	-1.31	-1.19	-1.23	-1.14	-1.24
LG048	-1.67	-1.70	-1.73	-1.65	-1.60	-1.67
USGS #11	-1.59	-1.54	-1.60	-1.57	-1.59	-1.58
USGS #47			-2.07			-2.07
USGS #43	-1.36	-1.41	-1.48	-1.35	-1.38	-1.40
C11	-1.34	-1.72	-1.66	-1.73	-1.76	-1.65
M.Pkwy&Flam.	-1.36	-2.05	-1.65	-1.80	-1.81	-1.74
USGS #40	-1.70	-1.72	-1.37	-1.65	-1.63	-1.61
P.Vista Park	-1.70	-2.07	-1.68	-2.00	-1.68	-1.83
USGS #5	-1.83	-1.69	-1.62	-1.75	-1.73	-1.72
C27	-1.73	-1.57	-1.77	-1.73	-1.80	-1.74
C49	-1.63	-1.77	-1.56	-1.68	-1.56	-1.64
LG030	-1.87	-1.83	-1.74	-1,79	-1.65	-1.78
C28	-1.80	-1.53		-1.82	-1.57	-1.68
C42	-1,50	-1.79	-1.55	-1.66	-1.58	-1.62
C32	-2.18	-2.12	-2.00	-2.08	-1.90	-2.05
C29	-1.85	-1.93	-1.80	-1.74	-1.89	-1.84

Table L1. WATEQDR calculated log  $P_{\rm CO_2}$ 's of ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone.

Table L2. WATEQDR calculated log SI calcite of groundwater samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone. A SI of 0 represents saturation while positive and negative SI's represent over- and undersaturation, respectively.

	Sample Collection Date					
Site	06/88	09/88	12/88	03/89	06/89	Mean
USGS #19	0.09					0.09
USGS #15	0.13	0.38	0.06	0.05	0.048	
NLVWDCP#2b					0.06	0.06
USGS #34	0.09	0.16	0.31	0.27	0.07	0.18
USGS #37	0.10	0.13	0.01	0.01	0.14	0.08
LG048	0.04	0.02	0.02	0.05	0.07	0.04
USGS #11	0.15	0.11	0.04	0.02	0.06	0.08
USGS #47			0.20			0.20
USGS #43	0.84	0.08	0.11	0.03	0.00	0.21
C11	0.09	0.12	0.01	0.09	0.03	0.07
M.Pkwy&Flam.	0.55	0.49	0.15	0.32	0.25	0.35
USGS #40	0.02	0.12	0.02	0.03	0.00	0.04
P.Vista Park	0.02	0.28	0.15	0.15	0.16	0.15
USGS #5	0.32	0.29	0.17	0.23	0.21	0.24
C27	0.21	0.35	0.01	0.07	0.10	0.15
C49	0.03	0.13	0.17	0.02	0.21	0.11
LG030	0.20	0.17	0.06	0.12	0.11	0.13
C28	0.39	0.08		0.30	0.05	0.21
C42	0.15	0.04	0.06	0.04	0.12	0.08
C32	0.06	0.06	0.09	0.01	0.17	0.08
C29	0.06	0.12	0.08	0.11	0.03	0.08

Table L3. WATEQDR calculated log SI gypsum of ground-water samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone. A SI of 0 represents saturation while positive and negative SI's represent over- and undersaturation, respectively.

**************************************	Sample Collection Date					
Site	06/88	09/88	12/88	03/89	06/89	Mean
USGS #19	-2.46					-2.46
USGS #15	-1.99	-1.97	-1.98	-1.88	-1.94	-1.95
NLVWD-CP#2b					-0.46	-0.46
USGS #34	-1.07	-1.09	-1.03	-1.04	-1.00	-1.05
USGS #37	-0.87	-0.83	-0.63	-0.71	-0.73	-0.75
LG048	-0.23	-0.24	-0.22	-0.21	-0.23	-0.23
USGS #11	-0.23	-0.24	-0.23	-0.23	-0.20	-0.23
USGS #47			-0.49		_	-0.49
USGS #43	-0.08	-0.09	-0.08	-0.09	-0.09	-0.09
C11	-0.08	-0.11	-0.12	-0.13	-0.12	-0.11
M.Pkwy&Flam.	-0.30	-0.24	-0.28	-0.32	-0.32	-0.29
USGS #40	-0.26	-0.26	-0.23	-0.25	-0.25	-0.25
P.Vista Park	-0.14	-0.21	-0.20	-0.24	-0.18	-0.19
USGS #5	-0.03	-0.05	-0.05	-0.05	-0.02	-0.04
C27	0.01	0.02	0.04	-0.01	0.01	0.01
C49	-0.29	-0.29	-0.28	-0.29	-0.29	-0.29
LG030	0.01	0.00	0.01	0.00	-0.02	0.00
C28	-0.03	-0.07		-0.10	-0.10	-0.08
C42	-0.03	-0.04	-0.02	-0.04	-0.03	-0.03
C32	-0.09	-0.09	-0.06	-0.07	-0.09	-0.08
C29	0.00	0.00	0.02	0.01	0.00	0.01

Table L4. WATEQDR calculated log SI quartz of groundwater samples from the Las Vegas Valley, Nevada shallow alluvial aquifer zone. A SI of 0 represents saturation while positive and negative SI's represent over and undersaturation, respectively.

	Sample Collection Date					
Site	06/88	09/88	12/88	03/89	06/89	Mean
USGS #19	1.05					1.05
USGS #15	0.61	0.58	0.60	0.59	0.59	0.59
NLVWDCP#2b					1.10	1.10
USGS #34	0.62	0.57	0.61	0.60	0.66	0.61
USGS #37	0.93	0.92	0.91	0.92	0.90	0.92
LG048	0.69	0.73	0.73	0.82	0.74	0.74
USGS #11	0.71	0.70	0.71	0.72	0.71	0.71
USGS #47			0.70			0.70
USGS #43	1.01	0.95	0.98	1.00	0.98	0.98
C11	0.08	0.94	0.90	0.91	0.92	0.89
M.Pkwy&Flam.	0.88	0.84	0.84	0.84	0.81	0.84
USGS #40	0.62	0.58	0.61	0.62	0.62	0.61
P.Vista Park	0.67	0.66	0.68	0.66	0.66	0.67
USGS #5	1.10	1.06	1.09	1.12	1.08	1.09
C27	0.80	0.77	0.76	0.76	0.76	0.77
C49	0.83	0.82	0.83	0.84	1.12	0.89
LG <b>030</b>	1.14	1.14	1.16	1.18	1.20	1.16
C28	1.02	1.03		1.04	1.01	1.03
C42	0.76	0.73	0.74	0.75	0.74	0.74
C32	0.76	0.77	0.79	0.79	0.76	0.77
C29	0.95	0.93	0.95	0.97	0.94	0.95