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ABSTRACT 

Alkali basalts on Citadel Mountain form the southern margin of the Lunar Crater 

Volcanic Field (LCVF) in the central Great Basin, Nevada. Citadel Mountain 

comprised of a faulted, nmth tilted section of Tertiary andesite and ash-flow tuff is 

capped by Pliocene and Quaternary alkali basalt flows that erupted from six major 

cinder cones. The basalt flows on Citadel Mountain can be divided into two groups 

(older and younger) based on age and isotopic signatures. The older basalt group is 

characterized by higher 87 Sr/86Sr and lower eNd and the younger group has lower 

87Sr/86Sr and higher ENd· Geochemical evidence suggestthat the older basalt group is 

contaminated by a lithospheric mantle melt. A model is presented that shows 

contamination of the older alkali basalts by magma commingling/mixing of rising 

asthenospheric melts with lithospheric mantle veinlets in the mantle lithosphere. 

Fractional crystallization of olivine and clinopyroxene can explain the chemical 

variation in the older basalt group, and although small amounts of assimilation of upper 

crustal material are permissible, assimilation is not required in the models. The 

younger basalt group evolved solely by fractional crystallization of olivine and 

clinop)TOxene and their isotopic signatures may reflect their asthenospheric mantle 

source. 
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CHAPTER I 

INTRODUCTION 

Knowledge of small volume (<150 km3
) mafic volcanic fields is limited. Although 

the petrogenetic history of many of these fields has been studied, few geochemical 

studies focus on the evolution of individual volcanoes or the detailed history of entire 

fields. Expressing mafic volcanic systems as "small" may imply they are simple in 

nature, however, recent studies have shown that small volume mafic volcanic fields in 

the Basin and Range of the western U.S. are quite complex. For example, the Pliocene 

Crater Flat volcanic field, Nevada (Figure l ), a complex polycyclic and polygenetic 

system, evolved by the mixing of at least two mafic magmas. Red Cone, one of the 

volcanoes in the field, erupted lavas that represent the entire range of composition 

between the two mafic magmas (Bradshaw eta!., 1994). The Sunset Crater Volcanic 

Chain (SCVC). Arizona (Figure I) is a complex monogenetic volcanic system where 

older and younger groups of alkali basalts formed by different degrees of contamination 

by lower crustal mafic granulites, and by clinopyroxene and olivine fractionation 

(Blaylock et a!., 1996). Mafic volcanism in the Reveille Range, Nevada (Figure I) is 

also complicated and comprised of two episodes of basalt, the earliest episode having a 

history of carbonate assimilation while the later does not (Yogodzinski et al., 1996). 
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This thesis uses stratigraphy and geochemistry to determine magmatic processes and 

chemical evolution of mafic volcanic rocks in the Lunar Crater Volcanic Field (LCVF), 

a small volun1e alkali basalt volcanic field in the central part of the Great Basin (Figure 

l ). The LCVF is a 1 00 km long north-northeast trending belt of Pliocene to Recent 

alkali basalt cinder cones, maar craters and lava flows which extends across the Pancake 

and Reveille Ranges in Nye County, central Nevada (Trask, 1969; Scott and Trask, 

1971; Bergman, 1982) (Figure 2). The total estimated volume of alkali basalt cinder 

cones and flows for the entire l 00 km long LCVF is 100 km3 (Bergman, 1982). This 

study focuses on alkali basalts on Citadel Mountain in the southern Pancake Range in 

the northern part of the LCVF. Specifically, the thesis area covers 150 km2 and includes 

volcanic centers on and around Citadel Mountain (Figure 2). Citadel Mountain is an 

ideal location to study chemical variation of mafic volcanism because lava flows and 

their vent areas are well exposed; therefore providing the unique opportunity to trace 

lava flows to their vents and to establish the volcanic stratigraphy. 

Although small in volume, the LCVF is one of the largest Pliocene to Recent 

volcanic fields in the Great Basin and is the site of some of the most recent volcanic 

activity. Because the lavas from individual cinder cones reflect comagrnatic systems 

(see Chapter 5 and 6), the abundance of cinder cones in the LCVF provides an extensive 

data set to evaluate the chemical evolution of magma chambers with time. Lavas 

erupted from cinder cones are also used as probes into the mantle. Traditionally, alkali 

basalt magma is assumed to rise from its mantle source through the crust and to the 

surface without significant modification, yet this assumption has not been rigorously 



3 

tested. This thesis will provide data that may help validate or invalidate the use of alkali 

basalt as mantle probes. 

Several studies (Perry et al., 1987: Lum et al., 1989: Farmer eta!., 1989; Daley and 

DePaolo, 1992; Feuerbach et al.. 1993) focus on the role of the lithospheric and 

asthenospheric mantle and crustal contamination in producing alkali basalt magmas in 

the western United States. This study also addresses fundamental questions that pertain 

to the role oflithospheric and asthenospheric mantle in the petrogenesis of basaltic 

magma and changing mantle source of volcanic rocks with time. Using the chemistry 

and isotopic composition of continental basalts, characteristics of magma sources 

beneath the central Great Basin can be determined. Combining mantle source data with 

stratigraphy and the age of volcanic rocks constrains the timing of transitions from a 

lithospheric to an asthenospheric mantle source. Once this is accomplished, any 

correlation of mantle source transitions with extensional periods can be explored. 

Another important reason for studying small volume mafic volcanic fields is to 

evaluate the hazard and risk associated with cinder cone eruptions. Many small volume 

mafic volcanic fields are located near populated regions or major transportation routes. 

Cinder cone eruptions may affect the safety of communities and domestic travel along 

major highways, railways and air travel routes. U.S. Highway 6, a major route between 

the Nevada towns of Ely and Tonopah, runs directly through the Pancake Range 

between sites of recent eruptions dated at 500 ka and 38 ka (Foland and Bergman, 1992; 

Shepard et al., 1995). Volcanic hazards are greatest in the western U.S., Hawaii, 



Mexico and Iceland as these areas are prime locations for future cinder cone eruptions 

(Simkin et al., 1981 ). 
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ln summary, the purpose of the thesis is to determine the volcanic stratigraphy of the 

Pliocene and Quaternary lava flows on Citadel Mow1tain, to evaluate chemical variation 

of basaltic rocks with time, to examine the role ofthe lithospheric mantle and 

asthenospheric mantle in the petrogenesis of basaltic magma, and to identifY and 

determine the timing of any mantle source transitions. 

Geologic Background 

Basaltic magmatism occurs along the margins and in the center of the Great Basin. 

Volcanic fields along the margins of the Great Basin are represented by the Big Pine 

Volcanic Field, California to the west and the Hurricane Volcanic Field, Utah (Figure I) 

to ilie east. A north-northeast trending belt of mafic volcanism referred to as ilie Deaili 

Valley-Pancake Range Basalt Zone (Vaniman et al., 1982; Farmer et al., 1989) (Figure 

3) is Pliocene to Recent in age and occurs along the axis of the Great Basin. The belt 

extends from Death Valley in the south through Crater Flat and ilie Reveille Range to 

the Pancake Range in the north. Small volwne basaltic volcanism began at Crater Flat 

in the late Miocene to early Pliocene and ended wiili five cinder cones, Quaternary in 

age, aligned along NE-SW trending fault zones (Bradshaw eta!., 1994). To the 

northeast of Crater Flat, Quaternary basalt (2.7 Ma) of Buckboard Mesa erupted mainly 

from a cinder cone but also from a 5 km long fissure (Crowe eta!., 1995). Farther 

north, basaltic volcanism in the Reveille Range began at 14 Ma and continued Wltil 3 

Ma. 



5 

In the Pancake Range at the northern end of the belt, Proterozoic crystalline 

basement is overlain by a thick section of Paleozoic carbonate and clastic rocks (Lum et 

a!., 1989). Oligocene and Miocene ash-flow tuffs that overlie the Paleozoic sedimentary 

sequences vary in composition from rhyolite to dacite (Ekren et a!., 1972). Alkali 

basalts in the LCVF (Reveille and Pancake Ranges) erupted on this thick crustal 

assemblage during the Pliocene to late Quaternary and cover an area of more than 259 

km2 (Scott and Trask, 1971; Bergman, 1982; Lum eta!., 1989; Foland and Bergman, 

1992). 

The Pliocene to Recent LCVF is composed of three maar volcanoes, 75 cinder cones 

and associated basaltic lava flows (Scott and Trask, 1971; Foland and Bergman, 1992). 

The LCVF has a vent density (3 .45 vents/km2) that is one of the highest in the world for 

basaltic volcanic fields, and it sits on the thinnest crust (25-30 km) in the western U.S. 

(Crowe eta!., 1992). The youngest eruption (38 ka) in the LCVF produced the Marcath 

flow just to the north ofU.S. Highway 6 (Trask, 1969; Scott and Trask, 1971; Shepard 

et al., 1995) (Figure 4). As suggested by Foland and Bergman (1992) volcanism 

migrated to the northeast in the LCVF. It began at 14 Ma in the Reveille Range to the 

south, averages about 4 Main the central LCVF (Rash, 1995 and this study) and 

terminates at 38 ka with the Marcath flow in the northern Pancake Range (Shepard et 

a!., 1995). 

The structural control of volcanism in the LCVF has been debated in previous 

studies. Many of the cinder cones form chains that appear to be controlled by northeast 

striking high-angle normal faults (Scott and Trask, 1971; Ekren et al., 1972), although 
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structural control by caldera margins was also proposed (Ekren eta!., 1974). The 

boundaries of the Lunar Lake caldera were located by geophysical (gravity, 

aeromagnetic, reflection seismographic) techniques (Ekren eta!., 1974), however, 

structural control by caldera margins is difficult to evaluate because the proposed 

caldera is entirely buried by younger volcanic rocks. Crowe et al. (1992) concluded that 

vent locations of cinder cone clusters in the LCVF are strongly structurally controlled by 

northeast striking faults. 

Citadel Mountain in the southem Pancake Range, a 9.3 km long north-tilted fault 

block comprised of Tertiary andesite and the Tuff of Buckwheat Rim is bounded on the 

south by a high-angle normal fault (Figure 5). TI1e Te1iiary andesite unit is Miocene in 

age and comprised of andesite lavas and flow breccias. Thirteen Pliocene and 

Quaternary basaltic cinder cones and associated lava flows produced over a three 

million year period are distributed from the top to the base of Citadel Mountain. The 

stratigraphy and chemistry of the lavas associated with these cinder cones are the 

primary focus of this thesis. 

Distributed to the north and east of Citadel Mountain are three maar volcanoes 

(Figure 4). They include Lunar Crater maar, Easy Chair Crater maar and Lunar Lake 

maar. Lunar Crater and Easy Chair Crater are approximately 1.2 km and 0.5 km in 

diameter, respectively. Lunar Lake maar is 0.4 km in diameter. The three maars have 

steep inward facing slopes with country rock exposed on the crater walls. Three lava 

flows are exposed in the Lunar Crater maar above the Tuff of Buckwheat Rim. The rim 

of Easy Chair Crater maar is formed by surge deposits exposed on the steep inward 



facing walls. Each crater is surrounded by a deposit of country rock ejecta and 

pyroclastic deposits but no juvenile magma is associated with the maar eruptions. The 

floors of the craters are lower than the surrounding topography. All three exhibit 

progression in eruptive style fi·om cinder cone to maar volcano. In each case, maar 

eruptions produced craters on the flanks of the pre-existing cinder cones. 

Previous Work 

7 

Vitaliano and Harvey (1965) completed some of the earliest work in the LCVF and 

focused their studies on the petrography and mineralogy of the Marcath Flow in the 

northern part of the volcanic field. Scott and Trask ( 1971) made contributions to 

extraterrestrial research by using the LCVF as a terrestrial analog to craters and cones on 

the moon. They concentrated their studies on the morphology of the volcanic cones and 

lava flows and to a lesser extent on the petrography, stratigraphy, and geochemistry. 

Ekren et al. ( 1972) mapped the Lunar Crater quadrangle at a scale of I :48,000. Ekren et 

a!. ( 197 4) later discussed the geologic history of the Lunar Lake caldera. Ekren 

proposed that the Lunar Lake caldera is the youngest caldera in the multiple cauldron 

complex of the central Nevada volcanic field. Bergman et al. (1981) focused on the 

origin of a mantle-derived peridotite nodule bearing an amphibole-rich vein from the 

Marcath flow, and later, Bergman (1982) discussed the general geology and petrology of 

the LCVF. Lum (1986) inferred the lithology and chemistry of the mantle beneath the 

LCVF by examining the basalt flows and ultramafic nodules. Kargel (1987) searched 

for genetic relationships between LCVF lavas and their mantle inclusions and compared 

mantle composition beneath the LCVF to the mantle beneath other parts of the Great 
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Basin. Lum et al. ( 1989) included LCVF basalts in a study questioning whether isotopic 

diversity in late Cenozoic basalts is caused by crustal contamination of magma during 

ascent or if such diversity reflects mantle heterogeneity. Foland et al. ( 1991) used 

oxygen isotopes to identifY crustal contamination as a process involved in the 

petrogenesis of basaltic magma in the LCVF; he concluded that most of the magmas had 

been contaminated but failed to identifY a contaminant. Foland et al. ( 1991) suggested 

that the only magmas not affected by crustal contamination were magmas that had short 

transit times through the crust. Most recently, Shepard et a!. ( 1995) obtained J6Cl and 

tOBe cosmogenic exposure ages of two basalt f1ows in the LCVF. They dated the Black 

Rock flow (Marcath flow) in the northern LCVF at 38.1 ± 9.7 ka and the Lunar Crater 

flow (their unofficial designation due to the flow's proximity to Lunar Crater maar) at 

600 ka. 

Summary of Conclusions 

The major contributions of this thesis are: 

• Detailed stratigraphy of alkali basalt flows on Citadel Mountain is firmly established 

(Chapter 2). 

• New 40 Ar/39 Ar dates for 4 f1ows on Citadel Mountain are presented (Chapter 2). 

• A cinder cone, scoria-dike complex and two spatter ramparts discovered during field 

studies are described in detail along with new field evidence suggesting alternating 

Strombolian and Hawaiian style activity (Chapter 3 ). 



• Three magma groups were identified that correspond to lava flows from individual 

cinder cones or closely spaced cinder cones (PI and H-cone, C and R-cone and Qc 

and Lunar Crater cone (Chapter 5). 

• The three magma groups defined by trace elements are divided into two groups of 

basalt with similar age and isotopic signatures. The older basalt group is 

characterized by higher 87 Sr/86Sr and lower ENct than the younger group which is 

typified by lower 87Sr/86Sr and higher ENct (Chapter 5). 

9 

• Two contamination events may have affected the older basalt group; one event 

occurring in the lithosphere by magma commingling/mixing of rising asthenospheric 

melts with entrained melts in the lithospheric mantle and another possible event 

occurring near the surface during fractional crystallization (Chapter 6). 

• The younger basalt group evolved solely by fractional crystallization and their 

isotopic ratios may reflect their asthenospheric mantle source (Chapter 6). 

• The timing of a mantle source transition from a lithospheric to an asthenospheric 

mantle source for alkali basalts is constrained to have occurred between 21.79 Ma 

and 3.82 Ma (Chapter 7). 

• Randomly collecting alkali basalts from a volcanic field without t1rst tmderstanding 

its stratigraphy and geochemistry is risky, because samples may be contaminated 

and magma commingling/mixing may alter isotopic ratios and fractional 

crystallization may change trace element signatures. In the LCVF, only the youngest 

lavas and those with ultramafic nodules directly reflect the isotopic and chemical 

composition of their mantle source (Chapter 8). 
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• A future eruption in the LCVF will likely occur in the vicinity of the Marcath flow 

in the northern Pancake Range. Based on the size and geometry of Quaternary and 

Recent lava flows, it is possible that U.S. Highway 6, a major transportation route 

through the Pancake Range, may be disrupted in the event of a future eruption 

(Chapter 8). 
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Figure 1. Map of the western United States showing the location of 
small volume mafic volcanic fields. 
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divided into the Reveille Range in the south and the Pancake Range 
in the north. The location of Citadel Mountain in the southern 
Pancake Range is indicated by the box. Map is modified after 
Foland and Bergman ( 1992). 

12 



' 
Cima 

~-· 

(in blo.c~) 
" Figure 3. Location of mafic volcanic fields in the western and central 

Great Basin that are less than approximately 8 Ma. Highlighted is the 
Death Valley-Pancake Range Basalt Zone from Y ogodzinski et al. ( 1996). 
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Figure 4. Index map shows the location of Lunar Crater maar, Easy Chair Crater 
maar and Lunar Lake maar. Map also shows location of the youngest flows in the 
LCVF; the Marcath Flow, flows associated with Easy Chair Crater and Lunar Lake 
maar, the South Kidney Butte flow, and flows erupted from a cone just below the 
escarpment forming the southern edge ofCitade1 Mountain: (from Ekren eta!., 1972). 
Ages of the flows are discussed in Chapter 2. 
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Figure 5. Cross-section shows the north-tilted Citadel Mountain fault block 
comprised of Tertiary andesite (TA) and the Tuff of Buckwheat Rim (TBW). 
Basaltic cinder cones erupted through the Tertiary andesites and are distributed 
from the top to the base of the mountain. 
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CHAPTER2 

SEQUENCE OF EVENTS AND GEOCHRONOLOGY 

The stratigraphy presented in this chapter was established during field studies on 

Citadel Mountain and represents the first detailed stratigraphy for any area of the LCVF. 

The cinder cones on and around Citadel Mountain were assigned letter, or letter and 

number designations for identification purposes (Figure 6). Units are described below 

from oldest to youngest (Figure 7). The volcanology of each unit is presented in 

Chapter 3 and petrography in Chapter 4. Geochronology data is tabulated on Table I 

and discussed in Appendix C. 

The PI-cone erupted at 3.82 ± 0.06 Ma (Table I) from a scoria-dike complex in the 

southern part of Citadel Mountain (Figure 8; Plate 1). The PI-cone flow covered 4.5 

krn2 flowing to the north down the dip slope of Citadel Mountain to the future site of the 

Lunar Crater maar. The P l-eone flow is the stratigraphically lowest basalt flow exposed 

in the Lunar Crater maar. The P l-eone flow is 5-6 m thick and sits directly on 

exposures of Tuff of Buckwheat Rim. It provided a platform on which most of the other 

cinder cones and flows erupted. 

The H-cone (Figure 9; Plate 1) formed at the high southernmost point on Citadel 

Mountain at 3.82 ± 0.05 Ma (Table 1); concurrent with the PI-cone. The age and 
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chemistry of H-cone are first reported in this study. Flows from H-cone extend 4.8 km 

to the north and locally cascade over tuff on the western side of the motmtain (see 

Chapter 3, Figure 17). H-cone is rather inconspicuous on aerial photographs compared 

to other cinder cones on Citadel Mountain; likely due to the lighter color of the rocks 

comprising the cone. In contrast, aerial photographs show the H-cone flow in bold 

detail compared to other flows on Citadel Motmtain. A possible explanation for slightly 

bolder relief of H-cone flows is that H-cone basalt has the highest silica content of all 

the flows on the mountain (see Chapter 5) and may have been more viscous during 

eruption. 

The Lunar Crater cone (Figure 10; Plate I) erupted at 2.97 ± 0.06 Ma (Table 1). 

Lava from the Lunar Crater cone flowed approximately 1 km to the northeast and 2 km 

to the southwest. The Lunar Crater flow also covered the future site of the Lunar Crater 

maar and is now the middle flow exposed in the crater. 

Qc-cone flows (Figure II: Plate I) extend to the north, west and east of their four 

vents that make up the Qc-cone cluster. Lava from Qc-cone flowed to the northeast and 

overlies the Lunar Crater flow and the PI-cone flow. The Qc-cone flows also covered 

the area of the Lunar Crater maar and are now the top flows exposed in the crater. The 

Qc-cone flow to the northwest of the vent was dated at 1.64 ± 0.14 Ma (K/ Ar whole 

rock date; Kargel, 1987) (Table 1 ). 

C-cone flows (Figure 12; Plate I) extend 6 km to the northeast and east of the cone 

and cascade over exposures of tuff. The C-cone flows overlie the PI-cone flow and the 



Tuff of Buckwheat Rim. The C-cone was dated at 1.15 ± 0.14 Ma (K/ Ar whole rock 

date; Kargel, 1987) (Table I). 
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R-cone (Figure 13; Plate I) erupted at 0.66 ± 0.34 Ma (Table 1). Its flows extend to 

the north 2.5 km and flow down the same channel used by H-cone flows. R-cone flows 

cover the PI-cone flow, H-cone flow and exposures of the Tuff of Buckwheat Rim. 

Other cinder cones on and around Citadel Mountain range in age from cones that are 

older than the C-cone to cones younger than the R-cone. A chain of 4 cinder cones, the 

4G-cones are aligned to the northeast and may be older than C-cone (1.15 ± 0.14 Ma; 

Kargel, 1987) (Figure 6; Plate I). This age relationship is suggested because C-cone 

lava flows on either side of the 4G-cones chain. Flows erupted from a cone just below 

the escarpment forming the southern edge of Citadel Mountain are dated at 2.82 ± 0.22 

Ma and 1.39 ± O.Q7 Ma (K/Ar whole rock date; Kargel, 1987) (see Chapter I, Figure 4; 

Plate I). Flows from the cone associated with Easy Chair Crater were dated at 1.0 and 

0.5 Ma (K/Ar whole rock date; Foland and Bergman, 1992) and flows from the cone 

associated with Lunar Lake maar were dated at 0.81 ± 0.06 Ma (K/Ar whole rock date; 

Kargel, 1987) (Plate I). South Kidney Butte (2.82 km2
) is dated at 0.82 ± 0.06 Ma 

(K/Ar whole rock date; Dohrenwend eta!., 1987) (see Chapter I, Figure 4; Plate 1). 

Although volcanism in the LCVF generally becomes younger to the northeast with 

time (Foland and Bergman, 1992) this temporal migration is not recognized at the scale 

of Citadel Mountain. 
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Figure 6. Index map shows letter or letter and number designations for cinder 
cones on and around Citadel Mountain. Cinder cones include Lc - Lunar Crater 
cone, Qc-cone, 4G-cones, J-cone, WKB- West Kidney Butte, SKB- South 
Kidney Butte, P l-eone, C-cone, LR-cone, R-cone, H-cone and B-cone. Cinder 
cones are shaded, basalt flows are outlined in thick black lines. 
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R-cone flow dated at 0.66:!: 0.34 Ma; 3.1 m thick. Unit is crystal-poor 
with few phenocrysts of plagioclase, fresh olivine and clinopyroxene . 

C-cone flow dated at 1.15 ± 0.14 Ma; Kargel (1987); 6.6 m thick. 
Unit is highly vesicular and contains abundant fresh olivine and lesser 
amounts of plagioclase and clinopyroxene. 

Qc-cone flow dated at 1.61± 0.14 Ma; Kargel (1987); 3 m thick. Unit 
contains abundant large fresh olivine, few but large plagioclase 
phenocrysts and clinopyroxene. Unit also contains xenocrysts of 
olivine, hornblende and mica. 

Lunar Crater flow dated at 2.97 ± 0.06 Ma; 4 m thick. Unit contains 
abundant large altered olivine, few but large plagioclase 
megacrysts and small clinopyroxene. Clinopyroxene also occurs as 
aglomeroporphyritic inclusions with plagioclase. 

H-cone flow dated at 3.82:!: 0.05 Ma; 7.6 m thick. Unit is similar to 
PI-cone basalt, but contains less olivine. Unit also contains large 
plagioclase phenocrysts and large, abundant clinopyroxene. 

P l-eone flow dated at 3.82 ± 0.06 Ma; 6 m thick. Unit contains 
abundant large plagioclase phenocrysts and megacrysts, small 
altered olivine and small clinopyroxene with almost no vesicles. 

Tuff of Buckwheat Rim dated at 24 Ma; Best et al. ( 1989); 
!52 m thick. Unit contains phenocrysts of quartz, alkali 
feldspar, plagioclase, biotite, hornblende, clinopyroxene and 
orthopyroxene. 

Tertiary andesite lavas and flow breccias (age unknown); 
366 m thick. Unit contains phenocrysts of plagioclase, 
clinopyroxene, hornblende, and biotite. 

Figure 7. Stratigraphic column showing the relative thickness and stratigraphy 
of basaltic lava flows on Citadel Mountain. 
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Table 1: Geochronology 

Sample A e 
P l-eone Basalt 3.82 ± 0.06 Ma 00Ar/39Ar date (this study, refer to Appendix C for details) 

H-cone Basalt 3.82 ± 0.05 Ma 40 Ar/39 Ar date (this study, refer to Appendix C for details) 

Lunar Crater cone Basalt 2.97 ± 0.06 Ma 40 Ari" Ar date (this study, refer to Appendix C for details) 

Qc-cone Basalt 1.61 ± 0.14 Ma K/Ar wholerock date; Kargel (1987). 

C-cone Basalt 1.15 ± 0.14 Ma Kl Ar wholerock date: Kargel ( 1987). 

R-cone Basalt 0.66 + 0.34 Ma 40 Ari"Ar date (this study, refer to Appendix C for details) 
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Figure 10. Distribution of Lunar Crater flows. Lunar Crater lavas erupted 
from a scoria cone (in red) at 2. 97 Ma. 
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Figure 11. Distribution of Qc-cone flows. Qc-cone lavas erupted from a cluster 
of four scoria cones (in red) at I. 61 Ma. 
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Figure 12. Distribution of C-cone flows. C-cone lavas erupted from a scoria 
cone (in red) at 1.15 Ma. 
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Figure 13. Distribution ofR-cone flows. R-cone lavas erupted from a scoria 
cone (in red) at 0.66 Ma. 

2 



28 

CHAPTER3 

PHYSICAL VOLCANOLOGY 

Three major types of volcanic morphologies on and armmd Citadel Mountain are 

cinder cones and associated lava flows, spatter ramparts and maar craters. The three 

maar craters, Lunar Crater maar, Lunar Lake maar and Easy Chair Crater are described 

in the "Geologic Background" section in Chapter I and will not be considered further 

here. In general, cinder cones consist of block and lapilli-sized fragments oflava and 

welded scoria and often include thin dikes on the summits and flanks ofthe cones. Lava 

lake material occupies the summits of several cinder cones (e.g., H-cone and J-cone, 

Figures 14 and 15). Cinder cones have an average height of 70 meters but B-e one (Plate 

I) exceeds 120 meters. The cones are moderately riled and commonly breached by lava 

flows. Lava flows are predominantly blocky a'a and range from 3 to 30m thick (Foland 

and Bergman, 1992). With the exception of the PI fissure flow, most lava flows 

erupted from small bocas at the base of the cones. Area and volumes of lava flows are 

variable (from 0.8 to 4.8 knl and 0.0025 to 0.027 km3
, respectively) and show no 

correlation of volume with location or age. 

PI-cone is a scoria dike complex in the southern part of Citadel Mountain first 

discovered during field work for this thesis (Figure 16; Plate 1 ). It includes a sinuous 
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dike 0.9 km in length surrounded by a low mound of red and black agglutinated scoria 

with individual scoria pieces up to 10 em long with semi-elongated vesicles. Pieces of 

twisted scoria that were aerodynamically sculptured during flight occur on the flank of 

the cone and suggest that some fragments remained fluid during emplacement. The 

width of the P !-dike varies from more than 10 m to less than 1 m and has distinctive 

swell and pinch geometry. Though swells may be associated with locations of vents and 

pinches with connector dikes between vents, lava may have erupted from the entire 

length of the dike (i.e., it may be a fissure vent). 

H-cone, the southernmost cone on Citadel Mountain, is 70 m high and was first 

discovered during field work for this thesis (Figures 14 and 17; Plate 1). H-cone is 

highly eroded and appears from a distance to have spines of lava projecting from its 

summit. The base of H-cone comprised predominately of red lapilli-sized scoria and 

small bombs also contains smaller amounts lapilli-sized fragments of black vesicular 

basalt and scoria. About half way up the flank of H-cone, scoria becomes 

predominantly red and the average size decreases to lapilli-size fragments, although 

bombs about l 0 em in length are still present. Toward the summit of H-cone the large 

"spines" of basalt contain few vesicles and may represent degassed fluid magma of a 

lava lake. Lava lake material is interbedded with agglutinated scoria and dips inward at 

20° forming a saucer shaped structure. Interbedding of lava lake material with 

agglutinated scoria indicates alternating explosive Strombolian activity with calmer, gas 

poor, Hawaiian style lava lake activity. 
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C and R-cones (Figures 18 and 19, respectively; Plate 1), both approximately 70 m 

high, are rounded and symmetrical with steep slopes. C-cone comprised predominantly 

of red and black angular block-sized scoria with some lapilli also contains red 

sculptured scoria and small aerodynamically sculptured bombs. The flanks of R-cone 

comprised of bombs, blocks and lapilli (exceeding 7 em) of red scoria is formed by 

material similar to that ofC-cone but coarser material than that ofH-cone. R-cone 

differs from C-cone by having agglutinated scoria near its top. 

C-cone is associated with a nearby (0.1 km in distance) parasitic cone; the LR-cone 

(see Chapter 2; Figure 6). The LR-cone comprised of red agglutinated scoria is partially 

covered by black scoria from C-cone. The LR -cone forms an obstacle to lava flows 

from the R-cone (Plate 1 ). R-cone flows erupted from the north flank ofR-cone but 

were turned to the south as they ran against the mound created by the P 1 vent. Flows 

continued to the southeast toward the LR and C-cones but were diverted to the south 

when they reached the buttress created by the LR -cone. The contact between the R-flow 

and LR-cone is well exposed and preserves the only evidence for the relative age of R

cone and LR-cone. At the contact the R-flow contains large inclusions of agglutinated 

scoria from the LR-cone that were either incorporated by the R-flow as it moved over 

LR-cone debris or as LR-cone debris tumbled on top ofR-flow (Figure 20). 

J-cone is located in the northern half of Citadel Mountain (Figure 15; Plate 1 ). It is 

40 m high and has remnants of a lava lake at its summit. Lava flows erupted at the base 

of J-cone and flowed to the north 0.8 km and abruptly terminates in exposures of blocky 

A'a lava. 
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The Lunar Crater cone is a steep, 60 m high cinder cone that sits on the southern rim 

of the Lunar Crater maar (Figure 21; Plate 1). Vertical dikes exposed on the northern 

and southern flanks of the cone extend from half-way up the cone to the summit. The 

cone is comprised of agglutinated scoria and 1-3 m long, welded blocks and bombs. 

The Lunar Crater cone pre-dates the maar eruption as indicated by large blocks (0.3 to I 

m long) of the Tuff of Buckwheat Rim ejected during the maar eruption on the summit 

and flanks of the cone. The explosive nature of a maar eruption is indicated by meter

sized blocks of tuff exposed on the south flank of the cone. These blocks were tossed 

over the 60 m high cone during the eruption. 

Qc-cone, a cluster of four coalesced cinder cones I. 7 km in length, is aligned N30E 

and sits 1 km to the west of the Lunar Crater cone at the northern tip of Citadel 

Mountain (Figure 22; Plate 1 ). Flows from the cones spread radially to the north, east, 

and west. The largest of the cones, in the middle of the cluster, is breached on its west 

side. 

The two spatter ramparts were discovered during field work for this thesis. The 

larger spatter rampart (50 m in diameter) erupted on a steep slope of the Tuff of 

Buckwheat Rim and is formed of red agglutinated scoria (Plate I). It contains a 3 m 

thick inward dipping flow capped with red scoria. The smaller spatter rampart (30 m in 

diameter) comprised of a ring of red, welded, poorly vesicular scoria preserves remnants 

of a lava lake on its walls and floor (Figure 23; Plate 1). A thin (<I m) lava flow 

breached the rim of the spatter rampart on the east side. Lava associated with the flow 

crops out on top of the breached rim and 20 m downslope to the east. 
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Compared to spatter ramparts formed during Hawaiian style eruptions, the example 

on Citadel Mountain is larger (about twice the diameter) and may be associated with 

more explosive Strombolian style eruptions. An excellent example of a spatter rampart 

occurs on the floor ofHaleakal'a Crater at the summit of West Mau'i volcano, Hawai'i 

(Sinton et al., 1997) (Figure 24). The rampart approximately 15m in diameter, is 

formed by 3 m high walls of welded spatter. Although, there are no detailed published 

studies of circular Hawaiian spatter ramparts, this feature appears to be typical in size 

and shape to other similar features produced by Hawaiian style eruptions (Sinton et a!., 

1997). The Citadel Mountain spatter rampart differs from the example in Haleakal'a 

Crater in that it is composed of welded vesicular scoria rather than fluid spatter. A 

possible explanation for this difference is the explosive Strombolian style of Citadel 

Mountain volcanism. Strombolian eruptions are cooler but more gas rich and explosive 

than Hawaiian eruptions; therefore the products are vesicular scoria rather than fluid, 

gas poor spatter. Because of the more explosive nature of Strombolian eruptions, ejecta 

travels farther from the vent; thus explaining the larger size of the Citadel Mountain 

example. 
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Figure 14. H-cone shows remnants of a lava lake at its summit. The lava lake deposits 
form a saucer shape but appear as spines from a distance. 
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Figure 15. Photograph of J-cone viewed to the northeast toward the Lunar Lake playa. 
J-cone has inward dipping lava lake deposits at its summit. 
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Figure 16. The PI-cone scoria-dike complex in the foreground shows the "S" curve of 
the dike. The dike crops out along the entire length of the Pl-cone vent. The Pl-cone 
itself is a low lying mound compared to the other cinder cones on Citadel Mountain and 
averages 24 meters high. R-cone appears in the background of this photograph. 
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Figure 17. Photograph of the H-cone flow cascading over an escarpment of the Tuff of 
Buckwheat Rim on the west side of Citadel Mountain. The vertical distance from the 
top of Citadel Mountain to the valley is approximately 300 meters. 



Figure 18. C-cone comprised of red and black scoria, lapilli and aerodynamically 
sculptured bombs is 70 meters high, rounded and symmetrical. 
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Figure 19. R-cone, comprised of red scoria, lapilli and bombs is 70 meters high, but 
differs from C-cone (see Figure 18) by having steeper slopes and agglutinated scoria 
near its top. 
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Figure 20. The contact zone between the R-cone flow and the LR-cone (near C-cone) 
shows large pieces of red agglutinated scoria from the LR-cone either fell into or were 
picked up by the R-cone flow as it passed by. The contact relationships indicate that the 
R-cone flow is younger than the LR-cone. 
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Figure 21. Lunar Crater cone sits on the southern rim of the Lunar Crater maar. The 
cone comprised of agglutinated scoria and welded blocks and bombs has three dikes 
exposed on its northern flank. 



Figure 22. Qc-cone viewed to the west from Ltu1ar Crater maar. The photograph 
shows the two northernmost cones of the Qc-cone cluster. 
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Figure 23. Small spatter rampart comprised of red, welded, poorly vesicular scoria is 
30 meters in diameter with 1-2 meter high walls. 
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Figure 24. Spatter rampart located on the floor ofHaleakal'a Crater at the summit of 
West Mau'i volcano, Hawai'i. The 15m spatter rampart is an excellent example for 
comparison to spatter ramparts located on Citadel Mountain, Pancake Range, Nevada. 
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CHAPTER4 

PETROGRAPHY 

Pliocene and Quaternary Basalts 

Individual Pliocene and Quaternary basalt flows on Citadel Mountain range in total 

thickness from 3 to 61 meters. The basalts are vitric, aphanitic, porphyritic and range 

from dense to vesicular. "The basalts are alkali olivine basalts containing phenocrysts of 

plagioclase, olivine, augite and hornblende. Some LCVF lavas and scoria in the 

northern Pancake Range contain peridotite, gabbro, anorthosite, amphibolite and syenite 

nodules (Kargel, 1987), however only one ultramafic nodule was discovered on Citadel 

Mountain in lavas from Qc-cone. 

In this study, basalts from Citadel Mountain were closely examined in the field and 

divided into six groups. Each group has a characteristic mineralogy that was helpful in 

identifying flows in the field. Each group is associated with a specific cinder cone and 

flow. 

PI-cone Basalt: PI-cone basalt is characterized by its abundance of plagioclase 

phenocrysts and megacrysts (12-21 mm). PI-cone porphyritic basalt contains 35% 

phenocrysts of plagioclase (67%), olivine (28%), clinopyroxene (3%) and iron oxide 

(2%). PI-cone basalt contains two types of plagioclase; the first is euhedral to 
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subhedral (5-8 rrun) showing albite twinning. Some plagioclase crystals are zoned, 

fractured and locally filled with CaC03• The second type of plagioclase is rounded, 

anhedral and heavily pitted. Olivine is small (1-3 rrun), subhedral to anhedral and is 

almost completely altered to iddingsite. Olivine is highly fractured and have somewhat 

corroded rims. Clinopyroxene is anhedral, light brown in color and highly fractured. 

Some clinopyroxene grains are twinned and size varies from <I mm to 1.5 rrun. The 

matrix of PI-cone basalt is composed oflaths of plagioclase, subhedral olivine and 

small irregular grains of iron oxide. PI-cone basalt is medium gray in color and has 

almost no vesicles. PI-cone basalt forms the PI-dike and its surrounding scoria and the 

PI-cone flow. 

H-cone Basalt: H-cone basalt is similar to P l-eone basalt except it contains less 

olivine and is more vesicular. H-cone porphyritic basalt contains 35% phenocrysts of 

plagioclase (69%), clinopyroxene (27%), olivine (2%) and iron oxide (2%). Plagioclase 

phenocrysts are euhedral to subhedrallaths and blocky grains showing albite twinning. 

Some crystals are zoned, and intergrown clusters of plagioclase crystals occur. Size of 

plagioclase crystals grade from phenocrysts (7 rrun) to matrix crystals. Clinopyroxene is 

abundant in the matrix, occurs in phenocryst phase (2-5 rrun) and may have 

intergranular textures with plagioclase. Olivine occurs as large (2 rrun), highly pitted 

grains with corroded margins and iron oxide occurs as small grains in the matrix. H

cone basalt also contains xenocrysts of rounded quartz. H-cone basalt is medium gray 

in color and erupted to form the H-cone and H-cone flow. 
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Lunar Crater cone Basalt: Lunar Crater cone basalt is characterized by its abundance 

of large altered olivine phenocrysts (1-4 mm) and few but large subhedral plagioclase 

megacrysts (12 mm). Lunar Crater porphyritic basalt contains 50% phenocrysts of 

olivine ( 60% ), plagioclase (30% ), clinopyroxene (8%) and iron oxide (2% ). Olivine is 

subhedral, fractured and altered to iddingsite along fractures and margins of the grains. 

Plagioclase is subhedral and shows albite twinning. Two types of plagioclase are 

present; the first shows no evidence of corrosion and has sharp contacts with the matrix 

(1-2 mm). The second type of plagioclase is zoned and contains pits that are likely 

filled with glass. The glass-filled pits occur in the core of the crystal or as a distinct 

zone. Clinopyroxene is light brown in color and occurs as aglomeroporphyritic 

inclusions with plagioclase (1-4 em) and also as isolated anhedral grains (1-3 mm). The 

matrix is composed of plagioclase laths, olivine altered to iddingsite and small iron 

oxide grains. There is no evidence for glass in the matrix. Lunar Crater cone basalt is 

medium dark gray in color and produced the Lunar Crater cone and Lunar Crater flow. 

Qc-cone Basalt: Qc-cone basalt is characterized by large fresh olivine phenocrysts 

(3-1 0 mm) and few but large subhedral plagioclase phenocrysts (5 mm). Qc-cone 

porphyritic basalt contains 20% phenocrysts of olivine (75%), plagioclase (20%), 

clinopyroxene (2.5%) and iron oxide (2.5% ). Olivine is fresh and occurs as subhedral, 

fractured grains; although, some are embayed and corroded. Qc-cone basalt shows 

strong alignment of plagioclase laths. Two types of plagioclase phenocrysts occur; the 

first are subhedral, rectangular grains showing albite twinning. The second type of 

plagioclase occur as rare anhedral, highly corroded grains up to 2 mm in size. 
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Clinopyroxene is anhedral and light brown in color. Several clinopyroxene grains 

contain numerous wormlike inclusions of iron oxide. The matrix contains aligned 

plagioclase laths, euhedral olivine and iron oxide. TI1ere is no evidence for glass in the 

matrix. Also present are large xenocrysts ( 15 mm) of olivine. hornblende and mica 

(phlogopite?). Qc-cone basalt is dark gray in color and makes up the four coalesced Qc

cones and the Qc-cone flows. 

C-cone Basalt: C-cone basalt is highly vesicular and is characterized by its 

abundance of fresh olivine (although not as abundant as Qc-cone basalt). C-cone 

porphyritic basalt contains 40% phenocrysts of olivine (50%), plagioclase (37.5%), 

clinopyroxene (7.5%) and iron oxide (5%). C-cone basalt contains two types of 

plagioclase; the first is lath shaped, euhedral to subhedral and shows albite twinning ( < 

I mm). The second type of plagioclase is large (3-7 mm) anhedral, highly corroded 

with embayed margins. Some crystals show extensive pitting along the margins. 

Olivine is fresh and subhedral (1-3 mm); some grains are embayed. Clinop)TOxene is 

anhedral and contains wormlike inclusions of iron oxide (3-4 mm). Also present are 

xenoliths of olivine-plagioclase bearing basalt. C-cone basalt is dark gray in color and 

formed the C-cone and C-cone flow. 

R-cone Basalt: R-cone basalt is characterized by being crystal-poor with small fresh 

olivine and a few phenocrysts of plagioclase (4-5 mm). R-cone porphyritic basalt 

contains 30% phenocrysts of plagioclase (50%), olivine (33%), clinopyroxene (10%) 

and iron oxide (7%). R-cone basalt shows alignment of plagioclase laths in the matrix. 

Two types of plagioclase are present; the first are small (<I mm) euhedral to subhedral 
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laths showing albite twinning. The second type of plagioclase are blocky anhedral 

grains 0.5 mm in size. One plagioclase grain (1 nun) is highly altered and clouded with 

iron oxide, yet the crystal still shows faint albite twinning. Olivine is small(! mm) and 

euhedral to subhedral; few grains have moderate to strong alteration to iddingsite, 

although, most olivine grains are fresh. Clinopyroxene is subhedral, light brown in 

color and show alteration to iron oxide. The matrix is composed of plagioclase laths, 

olivine and small iron oxide grains. R-cone basalt is medium dark gray in color and 

formed the R-cone and R-cone flow. 

Tertiary Intermediate and Felsic Rocks 

Andesite lavas and flow breccias and the Tuff of Buckwheat Rim (Ekren et al., 1972) 

form Citadel Mountain. Monotony tuff, Shingle Pass Tuff and Tuff of Lunar Cuesta are 

inferred basement rocks (Ekren et al., 1972), but are not exposed on Citadel Mountain. 

The andesites may have erupted from the southwest extension of the same northeast 

trending faults used as conduits by the Pliocene to Recent alkali basalts (Ekren eta!., 

1974). 

Monotony Tuff: The Monotony Tuff(27.3 ± 0.03 Ma; Best eta!., 1989; 27.6 Ma, 

Rash, 1995) is a simple cooling unit of dacite ash-flow tuff approximately 305 m thick. 

The unit contains quartz (10-32%), alkali feldspar (5-12%), plagioclase (46-63%), 

biotite (10-20%) and trace amounts of clinopyroxene and hornblende (Ekren et al., 

1972). The Monotony Tuff is the stratigraphically lowest unit in the Pancake Range and 

erupted from the Pancake Range caldera (Ekren et al., 1974). 



Shingle Pass Tuff: The Shingle Pass Tuff is two cooling units of rhyolite ash-flow 

tuff approximately 61 m thick that contains quartz (0-1 5% ), alkali feldspar (25-4 7% ), 

plagioclase (30-65% ), biotite ( 4-8% ), hornblende (1-2%) and trace amounts of 

clinopyroxene (Ekren et al., 1972). The upper cooling unit is 25.35 ± 0.66 Ma (Rash, 

1995). The Shingle Pass Tuff erupted from the Quinn Canyon Range caldera (Best et 

al., 1989). 
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Tuff of Lunar Cuesta: The Tuff of Lunar Cuesta is a 122 m thick, densely welded 

dacite to rhyolite cooling unit that contains quarts (12-20%), alkali feldspar (7-15%), 

plagioclase (45-75%), biotite (10-15%) and hornblende (3%) (Ekren et al., 1972). The 

Tuff of Lunar Cuesta is 22.5 ± 0. 7 Ma (K/ Ar date on sanidine) and is suggested to have 

erupted from the Lunar Lake caldera (Ekren eta!., 1974). 

Tertiary Basaltic Andesites: Basaltic andesites (Miocene) located 11 km to the east 

of Citadel Mountain are fme grained, medium dark gray in color, aphyric and contain 

2% plagioclase phenocrysts (1-2 mm). The matrix is composed of aligned plagioclase 

laths ( <0.5 mm) with intergranular clinopyroxene and iron oxide. 

Tertiary Andesite Lavas and Flow Breccias: Andesite lavas and flow breccias are 

dark gray to black and porphyritic with 40% phenocrysts of plagioclase (50%), 

clinopyroxene (37.5%), hornblende (5%), biotite (5%) and iron oxide (2.5%). 

Plagioclase is either blocky or lath shaped and euhedral to subhedral. Some plagioclase 

grains are anhedral, highly fractured and altered to calcite. Clinopyroxene is subhedral 

and brown or light green in color. Clinopyroxene also occurs as aglomeroporphyritic 

inclusions with plagioclase. Aglomeroporphyritic inclusions of hornblende, biotite and 
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plagioclase are also present. Hornblende is most likely oxyhornblende; it is pleochroic, 

light to dark brown and subhedral. Some hornblende crystals have corroded rims, but 

most are fresh. Biotite is pleochroic and light to dark brown. Biotite is euhedral to 

subhedral, forms small grains in the matrix and also occurs in inclusions. Iron oxide 

occurs as subhedral, blocky grains black in color. Some of the biotite and hornblende 

crystals are likely disaggregated crystals that have mechanically broken away from the 

aglomeroporphyritic inclusions. The matrix is glassy showing flow banding and flow 

alignment of iron oxide grains. The matrix varies in color from dark red brown to light 

red brown. The andesite lavas and flow breccias range in thickness from 0 to> 366 

meters. Tertiary andesite lava forms the entire 366 m high southern slope of Citadel 

Mountain. 

Tuff of Buckwheat Rim: The Tuff of Buckwheat Rim is formed by two moderately 

welded cooling units of rhyolite ash-flow tuff approximately 152 m thick (Ekren eta!, 

1974). The lower rhyolite unit contains phenocrysts of quartz (13%), alkali feldspar 

(30-43%), plagioclase (35-47%), biotite (2.5%), hornblende (3.5%), clinopyroxene 

(1.5%) and trace amounts of orthopyroxene. The upper cooling unit is rich in lithic 

fragments and contains phenocrysts of quartz (10-19%), alkali feldspar (0-1 %), 

plagioclase (50-60%), biotite (11-16%), hornblende (9-17%) and trace amounts of 

clinopyroxene (Ekren eta!., 1972). The upper Tuff of Buckwheat Rim is dated at 24 

Ma (K/ Ar date; Best et al., 1989). 
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CHAPTERS 

GEOCHEI\.1ISTRY 

Analytical Techniques 

Fifty-eight samples were collected for geochemical analyses. Most samples were 

collected on Citadel Mountain located in the southern part of the Pancake Range in the 

northern LCVF. Samples were also collected from flows associated with cinder cones 

surro1111ding Citadel Motmtain in the central and northern Pancake Range. 

Geochemistry of samples collected in the Reveille Range in the southern half of the 

LCVF is from Yogodzinski et al. (1996). Each sample comprised offresh rock chips 

was bagged and labeled. Samples were crushed to pea size in a Bico chipmtmk crusher 

and then powdered in a Bico shatterbox to about 200 mesh. The chipmtmk crusher is 

equipped with t1111gsten-carbide jaws and the shatterbox uses a t1111gsten-carbide ring 

inside a t1111gsten-carbide lined stainless steel bowl. Fused glass disks were prepared at 

a flux/sample ratio of5:1 using 8.50 g lithium tetraborate (LhB407), 0.2740 g 

ammonium nitrate (N}4N03) and 1. 70 g powdered rock sample. All chemicals and 

powdered rock samples were measured to± 0.0002 g. The mixture was melted at 

1100°C for 30 minutes in Au-Pt crucibles and quenched in Au-Pt molds. Fused disks 

prepared with the 5: 1 ratio provide high enough concentrations of sample so that both 



52 

major and trace element analyses are possible on a single disk. Fused glass disks were 

stored in paper envelopes in a dessicator preceding analysis. 

Major and trace element (Zr, Ba, Nb, Y, Rb, Sr, Cr and Ni) analyses were done using 

a Rigaku 3030 XRF spectrometer at the University of Nevada, Las Vegas. Additional 

trace and rare-earth element (REE) analyses (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, Lu, Th, Hf, Ta, U, Pb, Cs, and Sc) were done by Inductively Coupled 

Plasma- Mass Spectrometer (ICP-MS) at the Geoanalytical Laboratory at Washington 

State University. Precision and accuracy for XRF and ICP-MS analyses are reported in 

Appendix A. 

Sr, Nd and Pb isotopes were analyzed at the Isotope Geochemistry Laboratory, 

University of Kansas. Feuerbach eta!. (1993) provided a detailed description of 

methods of isotope analysis. Precision and accuracy are reported in Appendix B. 

Geochemistry of Mafic Rocks 

Major Elements 

Mafic rocks on and around Citadel Mountain are alkali basalts, tephrite basanites and 

trachy-basalts with Si02 ranging from 43.0 to 51.5 wt.% (Figures 25a and 25b). In 

general, basanites have higher CaO and Ti02 and lower AhOJ than alkali basalts 

(Figure 26). Magnesitun numbers (Mg#) vary from 44.8 to 60.6 showing they are 

somewhat evolved compared to the range of values of 68-75 for basalts in equilibrium 

with mantle olivine compositions (Wilson, 1989; p. 22). K20 and MnO values do not 

vary significantly and P20s changes from 0.39 to 0.85 wt.% as Si02 increases (Figure 



26). NazO and Ab03 also increase but Fe20 3, MgO, CaO, and Ti02 decrease with 

increasing Si02 (Figure 26). Alkali basalts on and around Citadel Mountain are 

chemically similar to basalts in the Reveille Range in the southern part of the LCVF 

(Yogodzinski et al., 1996). Si02, Fe20 3, K20 and MnO overlap, but Al203, Ti02, and 

Na20 are slightly higher and CaO and MgO are lower for many samples (Figure 27). 

Trace Elements and Isotopes 
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A plot of Sr vs. Cr defines three magma groups that correspond to lava flows from 

individual cinder cones or closely spaced cinder cones (PI and H-cone, C and R-cone 

and Qc and Lunar Crater cone (Figure 28). The first group of data corresponding to the 

PI and H-cone flows has low Cr (92 to 154 ppm) and low Sr (430 to 505 ppm). The 

second group corresponding to the C and R -cone flows has intermediate Cr ( 116 to 182 

ppm) and high Sr (577 to 738 ppm). The third group corresponding to the Qc and Lunar 

Crater flows has high Cr (185 to 244 ppm) and intermediate Sr (380 to 669 ppm). The 

third group appears to be continuous with the second group on Sr vs. Cr plots but is 

considered as a separate group because of differences in Zr, Y and Ni (see below; Figure 

29). 

The PI and H-cone flows of the first group are easily identified by higher silica (up 

to 49.2 and 51.5 wt. % SiOz, respectively) and higher Y ( 49 ppm) and lower Ni (69 

ppm) compared to other groups (Figure 29). The Pl-cone flow has BNd values that vary 

between +3.88 to +4.55 and 87Sr/86Sr between 0.7036 and 0.7039; 207PbP04Pb varies 



between 15.663 and 15.668 (Figures 30 and 31). H-cone flow has E:Nct of +2.49, 

87Sr/86Sr of0.7048 and 207Pb/204Pb of 15.664 (Figures 30 and 31). 
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The C and R-cone flows of the second group are identified by having the highest Sr 

(738 ppm) and Nb (66 ppm) (Figure 29). The C-cone flow group has I>Nd values that 

range from +5.55 to +5.76 and 87Sr/86Sr between 0.7033 and 0.7034; 207Pb/204Pb (15.599 

and 15.609) lies on the Northern Hemisphere Reference Line (NHRL) and is the lowest 

ratio compared to the other groups (Figures 30 and 31 ). TI1e R-cone flow has an ENct of 

+5.3, 87Sr/86Sr of0.7034 and 207PbP04Pb of 15.633 (Figures 30 and 31). C and R-cone 

lavas plot in the field of Basin and Range OIB basalts interpreted as partial melts of the 

asthenospheric mantle (Fitton et al., 1991). Cr and Ni decrease with increasing Si02 for 

both C and R-cone lavas (Figure 29). 

The Qc-cone and Lunar Crater flows of the third group contain the lowest Zr (136 

ppm), the lowest Y (27 ppm) and the highest Ni (212 ppm) (Figure 29). Qc-cone lavas 

also plot in the field of Basin and Range OIB basalts. Qc-cone flow has an ENd of +5.49, 

87Sr/86Sr of0.7033 and 207PbP04Pb of 15.621 and lies close to the NHRL (Figures 30 

and 31 ). The Lunar Crater flow is distinguished from the other third group basalts by 

lower ENd (+3.35) and higher 87Sr/86Sr (0.7047) and 207PbP04Pb (15.653) (Figures 30 and 

31). 

The three groups show slight depletion in large ion lithophile elements (LIL), 

especially Cs, Rb and Pb, slight depletion in light rare earth elements (LREE) and slight 

heavy rare earth elements (HREE) enrichment compared to OIB (Figure 32). None of 

the groups show high field strength element (HFSE) anomalies. Alkali basalts are 



55 

similar to OIB except for one sample (LC 11-96) from the B-cone flow located to the 

east of Citadel Mountain which is depleted in LIL and LREE and is slightly depleted in 

HREE. 

Alkali basalts on Citadel Mountain are for the most part lower in Sr and Zr when 

compared to other alkali basalt fields (Reveille Range and Crater Flat) in the central 

Great Basin (Figure 33). Citadel Mountain alkali basalts have 380 to 738 ppm Sr and 

136 to 229 ppm Zr. Episode I basalts in the Reveille Range contain 527 to I 098 ppm 

Sr and 298 to 505 ppm Zr. Episode 2 basalts have comparable Sr and Zr contents to 

Citadel Mountain lavas (584 to 724 ppm Sr and 186 to 366 ppm Zr). Crater Flat alkali 

basalts have the highest Sr (1204 to 1990 ppm) and Zr (363 to 435 ppm) (Bradshaw et 

a!., 1994) of the three fields. 

Geochemistry of Miocene Intermediate 
and Felsic Rocks 

Major Elements 

Miocene basaltic andesites located 11 km to the east of Citadel Mountain range from 

54.4 to 54.9 wt. % Si02• Tertiary andesites (dacites') that comprise Citadel Mountain 

range from 64.3 to 65.5 wt.% Si02 (Figures 34a and 34b). Both basaltic andesites and 

andesites are subalkaline and have lower Fe203, Ti02, CaO, MnO, PzOs, and MgO and 

have higher A!z03 and K20 than the Pliocene alkali basalts. The basaltic andesites 

located to the east of Citadel Mountain differ from those in the Reveille Range (Rash, 

' The dacitic rocks were originally mapped and classified as Tertiary andesites (Ekren et al., 1972) but 
are chemically dacites. To prevent confusion they will be referred to as the Tertiary andesites for the 
remainder of this thesis. 



1995) by having slightly higher Fe203, Al203, Ti02, Na20, P205, and slightly lower 

MgO, MnO, CaO and K20. 

Trace Elements 
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Miocene basaltic andesites and andesites (Tertiary andesites) show LIL enrichment 

(I to 8 x OIB), higher LREE, higher HREE and lower Ta, Sc, Cr, Ni, and Nb compared 

to Pliocene alkali basalts in the LCVF. Basaltic andesites and andesites (Tertiary 

andesites) have strong negative Nb and Ti anomalies and positive Pb anomalies 

compared to OIB (Figure 35). Basaltic andesites to the east of Citadel Mountain have 

similar trace element abundances to those in the Reveille Range. The only major 

difference between basaltic andesites east of Citadel Mountain and Reveille Range 

basaltic andesites is higher Sr (250 ppm higher) in Reveille Range basaltic andesites. 

Isotopes 

Basaltic andesites have ENd -7.27 to -7.63 and 87Sr/86Sr between 0.7076 and 0.7077; 

207Pb/204Pb varies slightly from 15.626 to 15.645 and 206PbP04Pb (18.75) is the lowest 

measured in the Pancake or Reveille Range. Tertiary andesites have a ENd value of-7.03 

and 87Sr/86Sr of0.7084; 207 PbP04Pb is 15.69, the highest value of all samples collected 

in this study. 
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Figure 24a. LCVF basalts are predominantly alkali basalts on the alkalies vs. 
Si02 plot. Figure 24b. The alkali basalts in the LCVF are tephrite basanites, 
trachy-basalts and basalts using the classification ofLebas et al. ( 1986). Samples 
collected around Citadel Mountain and analyzed as part of this study are included 
for comparison. Sample locations are shown on Figures D I and D2. 
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CHAPTER6 

INTERPRETATION 

Geochemical models using fractional crystallization (FC) and assimilation fractional 

crystallization (AFC) and mixing were developed to explain chemical variation within 

each magma group and between individual magma groups. Modeling was done using 

the IGPETWIN computer program written by Carr (1994). 

Observations 

Geochemical models for Citadel Mountain alkali basalts must honor the following 

chemical and field observations: 

1) Trace elements define three magmatic groups. The first group is formed by PI and 

H-cone lavas, the second by C and R-cone lavas and the third group is Qc and Lunar 

Crater cone lavas. 

2) Qc-cone, C-cone and R-cone basalts form a tight cluster at 0.7033 87Sr/86Sr and +5.5 

f>Nct· Isotopic and trace element data indicate similarities to OIB; therefore a source 

in the asthenospheric mantle is likely. 
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3) PI-cone, H-cone and Ltmar Crater cone basalts form an array on BNd vs. 87Sr/86Sr 

diagrams that extends from the Qc-cone, C-cone and R-cone cluster to higher values 

of 87 Sr/6Sr and lower values of ENd· 

4) The PI-cone, H-cone and Lunar Crater cone are the oldest cinder cones on Citadel 

Motmtain, and Qc-cone, C-cone and R-cone are among the yotmgest. PI-cone 

erupted at 3.82 ± 0.06 Ma, H-cone at 3.82 ± 0.05 Ma and the Ltmar Crater cone at 

2.97 ± 0.06 Ma. Qc-cone and C-cone erupted at 1.64 ± 0.14 Ma and 1.15 ± 0.14 

Ma, respectively (K/ Ar whole rock dates; Kargel, 1987). R-cone formed at 0.66 ± 

0.34 Ma. 

5) The most primitive rocks, defined by high Cr and Ni and low SiOz, of each magma 

group have compatible and incompatible element contents different from the most 

primitive rocks of the other groups (for example Ni, Cr and Sr). 

6) The individual magma groups display different trends on compatible element plots 

ofNi vs. Cr. 

7) Olivine, clinopyroxene and plagioclase are common phenocryst phases in all lavas. 

8) Tertiary andesites and the Tuff of Buckwheat Rim comprise Citadel Motmtain. 

Ekren et al. ( 1972) infers that the Tuff of Lunar Cuesta, Shingle Pass Tuff and 

Monotony Tuff occur in the subsurface. Tertiary volcanic rocks probably lie on 

Paleozoic carbonate rocks and Precambrian basement. Paleozoic sedimentary rocks 

are exposed in the Reveille Range to the south and in the northern Pancake Range. 

No exposures of Precambrian crystalline basement occur within I 00 km of the 

LCVF. 



9) Many LCVF alkali basalts are lower in Sr and Zr compared to other alkali basalt 

fields in the central Great Basin, except for episode 2 lavas in the Reveille Range. 

Assumptions 

Geochemical modeling is based on the following important assumptions: 
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1) Citadel Motmtain alkali basalt magmas are cogenetic; in other words, magmas share 

similar chemistry, a similar mantle source and were erupted in a relatively short time 

span in a restricted geographic region. The cogenetic magmas may or may not share 

the same magma chamber. 

2) Magmas erupted from a single cinder cone are comagmatic. This assumption is 

based on the observations that each cone erupted a small volume of lava and 

pyroclastic material over a short time span, lavas associated with each cone are 

chemically and isotopically similar, and that each cone (except for chemical 

similarities between C and R -cone lavas) has a different parent composition. 

3) The FC and AFC models use distribution coefficients compiled by the Center for 

Volcanic and Tectonic Studies (CVTS) over a five year period from the following 

sources: Luhr eta!., 1985; Wilson, 1989. Distribution coefficients change with 

composition, therefore, distribution coefficients used for the models are for mafic 

rocks (Table 2). 

4) Considering the small volume of the LCVF and its nearly 3 million year eruptive 

history, it is tmlikely that single magma chambers can survive the entire life time of 

the volcanic field. Therefore simple FC or AFC models involving a single magma 

body are probably not suitable for explaining chemical variations between magma 



groups. Production of similar parental magmas by multiple partial melting events 

over the life of the field, however, is a likely possibility. 

Model Descriptions 

Preferred Model to Explain Geochemical 
Differences Between Magma Groups 
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The preferred model to explain the isotopic differences between magmatic groups is 

the mixing of asthenospheric derived Qc, C and R -cone type magmas with a 

lithospheric mantle melt, similar to the Tertiary andesite in isotopic composition, to 

produce PI, Hand Lunar Crater cone magmas. Tertiary andesites on Citadel Mountain 

are evolved rocks with 65 wt. % Si02, elevated LIL and LREE (nearly 200 x chondrite 

in La), and relatively low Cr (13 ppm) and Ni (48 ppm) compared to typical alkali basalt 

( 150-300 ppm Cr and 100 to 200 ppm Ni). A trough at Nb on OIB normalized spider 

suggests that the Tertiary andesite was originally produced by magmas which at least in 

part were generated by melting of the lithospheric mantle. Because of its complex and 

evolved nature, the Tertiary andesite itself was probably not involved in the production 

of parent magmas for the P 1, H and Lunar Crater cone magmas. I suggest instead that 

the magma that mixed with rising asthenospheric melts was the parent magma for the 

Tertiary andesite; a typical lithospheric mantle melt with lower Si02 and Sr, higher Cr 

and Ni, and lower or equivalent incompatible element content but with similar isotopic 

signatures as the Tertiary andesite. The Si02 content of the lithospheric melt could not 
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be higher than 60 wt. %. This is based on the calculation that at least 23% by volume 

lithospheric melt must be added to the rising asthenospheric magmas to produce H-cone 

lavas, 19% to produce Lunar Crater cone lavas and about I 0% to produce P l-eone lavas 

(Figure 36). Adding this volume of lithospheric melt would produce the observed 

increase of 5 wt. % SiOz in H-c011e lavas and 2 wt. % in P l-eone lavas over the Si02 

content of Qc, C and R -cone lavas. The lower Sr required in the lithospheric melt is a 

problem; most lithospheric mantle melts (e.g., at Crater Flat) have higher Srthan 

required in the model lithospheric melt (>I 000 rather than 300-400 ppm). Possibly the 

mantle in the Citadel Mountain area is lower in Sr than in other areas. This contention 

is supported by the observation that asthenospheric melts represented by the youngest 

eruptions in the LCVF are lower in Sr than those in most other parts of the central Great 

Basin (see Chapter 5; Figure 33). 

Lithospheric melts may have formed by melting "veinlets' " in the mantle 

lithosphere. Melt metasomatism of the lithospheric mantle to produce basaltic or 

gabbroic veinlets was originally suggested by Harry and Leeman (1995). In their model 

melt metasomatism occurred in the Precambrian and produced basaltic or gabbroic 

veinlets encased by mantle peridotite. Most lithospheric mantle veinlets melted early in 

the Basin and Range extensional event resulting in large volun1es of calc-alkaline 

andesite and related intermediate volcanic rocks. Because the lithospheric mantle 

veinlets were isolated from the convecting asthenosphere since the Precambrian, their 

' The lithospheric mantle veinlets represent magmas trapped in me mantle limosphere from a previous 
melting event. The shape or geometry of me veinlet is tmknown, however, mey may take me form of 
dikes, sills or small intrusions (Harry and Leeman, !985). 
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isotopic systems evolved from OlB or MORB values to present day values of 87Sr/86Sr = 

0.7085 and ENd= -8. Therefore, by the late Cenozoic the lithospheric mantle veinlets 

would have isotopic ratios similar to the Tertiary andesite lavas comprising the 

basement rock of Citadel Mountain. Assuming some of the lithospheric mantle veinlets 

survived until Pliocene and Quaternary basaltic volcanism began in the Pancake Range, 

they may have been melted at the onset of magmatism. Rising asthenospheric melts 

mixed with the melted lithospheric mantle veinlets in the mantle lithosphere. The 

remaining lithospheric mantle veinlets would be exhausted during the early melting 

events and would not be available later; therefore, younger Citadel Mountain basalts 

would rise through the lithospheric mantle without interacting with lithospheric mantle 

veinlets and would have compositions directly representing their asthenospheric source. 

The advantage of this model is that interaction of magmas occurs in the lithospheric 

mantle were magma mixing can effectively take place. Magma interaction at high 

temperature in the lithospheric mantle would probably be thorough and the resulting 

mixed magmas would not show any petrographic or field evidence of this event. The 

model also satisfactorily explains the reason that early magmas display higher 87Sr/86Sr 

and lower ENct than younger magmas and suggests that the chemical transition between 

older PI, Hand Lunar Crater cone eruptions and the younger Qc, C and R-cone 

eruptions is related to the exhaustion oflithospheric mantle veinlets in the mantle. The 

validity of this model depends on the presence of lithospheric mantle veinlets in the 

mantle lithosphere with the proper chemistry and isotopic signature. The question of 

whether lithospheric mantle veinlets exist in the mantle lithosphere is a matter of 
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speculation. The isotopic character of the lithospheric mantle selected for LCVF 

models, however, is representative of typical lithospheric mantle in the Great Basin and 

southern Basin and Range (Fitton et al., 1991; Feuerbach et al., 1993) (Figure 36). 

Alternative Models 

Alternative models involve the melting of a laterally heterogeneous mantle and the 

contamination of asthenospheric melts with a variety of types of rocks known to exist in 

the basement on or near Citadel Mountain. Most of the proposed contaminants have the 

proper isotopic ratios to serve as a contaminant, but must be eliminated because major 

and/or trace element contents are either too high or low. Possible contaminants that 

were considered include average Archean lower crust and Precambrian upper crust 

(Taylor and McLennan, 1985), Paleozoic carbonate rocks, Tertiary volcanic rocks (ash

flow tuffs), and Miocene basaltic andesites. 

Heterogeneous Mantle 

Partial melting of a mantle with lateral compositional variability may result in lavas 

with significantly different isotopic ratios in a single volcanic field. Ifit is assumed that 

melting occurred at the same depth in the mantle, but that the mantle is compositionally 

heterogeneous at the kilometer scale at that depth, differences in isotopic ratios would 

reflect these lateral differences in mantle lithology and chemistry. The correlation of 

age with chemistry of lavas and the lack of correlation of age or chemistry with 

geographic position argue against this model. Younger Qc, C and R-cone magmas are 

distributed across the entire length of Citadel Mountain, but have similar isotopic and 
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trace element signatures. Older Pl, Hand Lunar Crater cone lavas are isotopically 

enriched and also distributed across the mountain. The observation that older lavas are 

isotopically enriched and younger lavas isotopically depleted wherever they erupt on 

Citadel Mountain suggests that random lateral compositional variations in the mantle 

are not the cause of the isotopic variations observed in the rocks. Based on these 

arguments, lateral heterogeneity of the mantle can be ruled out as the sole cause of the 

compositional variations between magma groups. 

Partial melting of the mantle at various depths may also result in lavas with different 

isotopic ratios. If it is assumed that older lavas melted shallow isotopically enriched 

mantle and younger lavas melted deeper, more depleted mantle, differences in mantle 

depth would be reflected in different isotopic ratios and trace element abundances. 

Isotopic variation occurs as a single trend from the isotopically depleted Qc, C and R

cone cluster to more isotopically enriched PI , H and Lunar Crater cone lavas (see 

Chapter 5; Figures 30 and 31); however, trace element abundances are similar (see 

Chapter 5; Figure 29) and do not suggest both enriched and depleted mantle sources. 

OlB-normalized spider diagrams for both groups are the same with only small changes 

in Nb and Pb between older and younger groups (see Chapter 5; Figure 32). 

Based on these observations, both heterogeneous mantle models are discounted. 

Crustal Contamination 

Archean lower crust is characterized by low ENd and 87Sr/86Sr, low 206PbP04Pb and 

high 207PbP04Pb compared to Proterozoic and younger basement rocks (Taylor and 
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McLennan, 1985). Archean lower crust is discounted as a possible contaminant because 

P 1, H and Lunar Crater cone alkali basalts trend to higher 201>bP04Pb toward the field of 

upper crustal material (Figure 3 7). The trace elements Zr, Sr and Nb are also too low in 

Archean lower crust to be a contaminant for Pl, Hand Lwtar Crater cone alkali basalts 

(Figure 38). 

Precambrian upper crust of intermediate or felsic composition has high 87 Sr/86Sr, low 

&Nd, and high 206PbP04Pb; therefore based on isotopes alone, Precambrian upper crust is 

a possible contaminant. Furthermore, trace element contents of average Precambrian 

upper crust (Taylor and McLennan, 1985) are suitable to consider these rocks as a 

contaminant to produce the parent magma ofPl, Hand Lunar Crater lavas (Figure 39). 

Precambrian upper crust contains 25 ppm Nb, 350 ppm Sr and 190 Zr compared to 65 

ppm Nb, 740 ppm Sr and 230 ppm Zr for the most primitive alkali basalt on Citadel 

Mountain. Pl, Hand Lunar Crater parent magmas lie between the primitive alkali 

basalts and Precambrian upper crust on Zr vs. Sr and Nb vs. Sr diagrams (Figure 39). If 

Precambrian upper crust were assumed to be a contaminant, these rocks would have to 

be mafic in composition with no more than 60 wt. % SiOz; however, there is no 

evidence that mafic crust lies beneath this area in the Great Basin. I suggest, based on 

trace element, isotopic and major element data, that Precambrian upper crust is a 

possible but unlikely contaminant. 

Paleozoic carbonates have high 87Sr/86Sr (0.7085) and low eNd (-10) and may be 

permissible contaminants (Figure 40). In the Reveille Range, episode 1 basalts produce 

a trend toward higher 87Sr/86Sr and lower ~>Nd while the episode-2 basalts cluster at low 
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87Sr/86Sr and high ENd· Yogodzinski et al. (1996) suggested that episode I basalts 

assimilated carbonate in the upper crust while episode 2 basalts represent 

uncontaminated mantle melts. Citadel Mountain alkali basalts behave in a similar 

fashion. The younger lavas cluster at low 87 Sr/86Sr and high eNd and the older lavas 

follow the trend toward the field of the carbonate rocks (Figure 41 ). Another major 

argument made by Y ogodzinski et al. ( 1996) for carbonate assimilation is the increase in 

Sr between uncontaminated (episode 2) and contaminated basalt (episode 1 ). AFC 

models developed by Yogodzinski et al. (1996) on 87Sr/86Sr vs. Sr plots suggest that 

episode I formed from episode 2 type magmas by assimilation of carbonate (r = 0.35) 

and fractional crystallization with the bulk distribution coefficient varying from 1.15 to 

0.85. Younger Citadel Mountain basalts are similar in chemistry to episode 2 magma in 

the Reveille Range, but older lavas differ by being lower in Sr and falling outside of the 

AFC envelope calculated for the episode 1 Reveille Range basalts (Figure 42). I suggest 

that carbonate assimilation is an unlikely explanation of the chemistry of the older (P 1, 

H and Lunar Crater cones) lavas on Citadel Mountain, because Sr is lower, not higher as 

expected if carbonate contamination occurred, in the more isotopically enriched older 

basalts. In addition, AFC models (to produce PI. H and Lunar Crater cone magmas 

from Qc, C and R-cone type magma) involving carbonate contamination would require 

a bulk distribution coefficient for Sr of about 1.6 (Figure 42). This value is too high 

considering that feldspar does not appear to be an important fractionated phase in 

models to explain intragroup variations (see next section). 
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Although the Shingle Pass and Monotony tuffs representative of the ash-flow section 

in the basement of Citadel Mountain have suitable isotopic and trace element 

characteristics to be contaminants (high 87 Sr/86Sr, low llNd. high 206PbP04Pb and low Zr, 

Sr and Nb; Figures 43 and 44 ), they are eliminated from consideration because nearly 

40% by volume of tuff must be added to Qc, C and R-cone magma to produce the 

isotopic and trace element abundances in PI, Hand Lunar Crater cone magmas. The 

addition of such a large amount of contaminant with Si02 ranging from 70-75 wt.% 

would require considerable heat input in the uppermost crust; an unlikely situation 

considering the low volume of the LCVF system. Furthermore, the addition of a large 

amount of tuff would significantly change the m<ijor element content of the parental 

basalts to produce andesite or dacite. Based on these observations, ash-flow tuff can be 

eliminated as a contaminant. 

The 21.79 Ma basaltic andesites which crop out II km east of Citadel Mountain have 

suitable 87Sr/86Sr and ENct and trace element concentrations (especially Zr, Sr and Nb), 

but their 206PbP04Pb is too low (Figure 45) to be a contaminant. Furthermore, the 

basaltic andesite does not occur in the basement of Citadel Mountain. For these 

reasons, I exclude the basaltic andesites as a contaminant. 

I conclude that of these alternative models only mafic Precambrian upper crust is a 

permissible contaminant. Although permissible, I consider its involvement to be 

doubtful because mafic Precambrian upper crust is not known to occur in the subsurface 

of Citadel Mountain. 
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Fractional Crystallization Models: 
Intragroup Variation 

FC models use the equation C11q' =Co F0
''

1 (Neuman eta!., 1954) where Chq' is the 

concentration of the element in the liquid phase, C0 is the original concentration of the 

element in the liquid phase before fractional crystallization, F is the fraction of liquid 

remaining after fractional crystallization, and Di is the bulk distribution coefficient for 

that element. FC models were developed using a compatible element plot ofNi vs. Cr. 

Ni is compatible in olivine and Cr is compatible in clinopyroxene. Compatible 

elements decrease in abundance with increasing fractional crystallization of mineral 

phases. Fractionation of olivine results in rapid decrease in Ni concentration until about 

20% olivine is fractionated and then in higher Cr abundances for larger amounts of 

olivine fractionation. Fractionation of clinopyroxene results in rapid decrease in Cr 

until about 30% clinopyroxene is fractionated and then in lower Ni values with 

additional fractionation (Figure 46). The olivine and clinopyroxene fractionation 

vectors define an envelope that contains all possible fractionation models that involve 

these minerals. If data points for the rocks to be modeled lie within the envelope, the 

observed chemical variation may be modeled by some proportion of olivine and 

clinopyroxene fractionation. 

Chemical variation of C-cone lavas can be explained by 9% fractionation of 60% 

clinopyroxene and 40% olivine (Figure 47). The R-cone data can be explained by 5% 

fractionation of25% clinopyroxene and 75% olivine (Figure 47). Similar age, 

geographic proximity, similar mineralogy, comparable chemistry and identical isotopic 

ratios suggest that C and R-cone lavas may have shared the same magma chamber. 
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The Qc-cone data is scattered. The scatter may be due to the fact that Qc-cone is 

composed offour coalesced cinder cones, each with a different evolution history. To 

model these complex cones, a model envelope was developed rather than a simple 

model. The boundaries of the model envelope are 5% fractionation of25% 

clinopyroxene and 75% olivine and 6% fractionation of 60% clinopyroxene and 40% 

olivine. The Qc-cone flow data points fall within this model envelope (Figure 48). 

Lunar Crater cone data can be explained by 8% fractionation of 52% clinopyroxene and 

48% olivine (Figure 48). 

Chemical variation in P l-eone lavas can be explained by 8% fractionation of 85% 

clinopyroxene and 15% olivine (Figure 49). H-cone flow data can be explained by 4% 

fractionation of 65% clinopyroxene and 35% olivine (Figure 49). 

It is concluded that magma commingling/mixing is an important event in the 

petrogenesis of older alkali basalts on Citadel Mountain, as described earlier in this 

chapter. PI-cone, H-cone and Lunar Crater cone magmas produce an array that points 

toward the Tertiary andesite isotopic composition on eNd vs. 87Srt6Sr and 207PbP04Pb vs. 

206PbP04Pb diagrams (Figure 50). PI-cone evolved magmas point toward Tertiary 

andesite trace element compositions on Cr vs. Ni and Sr vs. Nb plots (Figure 51). 

Based on trace element observations, small amounts of assimilation (r = 0.1 or less; 

<I% by volume) of Tertiary andesite are permissive, but are not required in the models 

to produce the evolved PI-cone magmas. 
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Summary 

The fractional crystallization models are based on the assumption of different 

batches of magma generated from a similar mantle source over a limited period of time. 

The lavas from individual cinder cones are co magmatic with the exception of C-cone 

and R-cone lavas which may have shared the same magma chamber. The older PI, H 

and Lunar Crater cone magmas may have originally been similar to those from Qc, C 

and R -cones but were contaminated during their rise through the mantle lithosphere. 

P l-eone magma may have w1dergone two contamination events. The first event 

involved mixing of lithospheric mantle veinlets with asthenospheric melts to produce 

the PI-cone parent magma (Figure 52). A possible second contamination event 

involved assimilation of <I% by volume of the Tertiary andesite during fractional 

crystallization to produce the evolved PI-cone rocks (Figure 52). H-cone and Lunar 

Crater cone magma underwent the first contamination event producing their respective 

parent magmas, however, additional contamination ofH-cone and Lunar Crater cone 

lavas during evolution can not be evaluated because of a lack of isotope data. The 

younger C and R-cone magmas (perhaps from the same magma chamber) and Qc-cone 

magma underwent fractional crystallization but were not contaminated, rather they 

reflect their asthenospheric mantle source (Figure 52). The alkali basalts on Citadel 

Mountain represent a simple magmatic system. Magmas of all volcanoes on Citadel 

Mountain have a similar mantle source, but older magmas underwent small amounts of 

contamination to produce P l-eone, H -cone and Lunar Crater cone parent magmas 
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followed by fractional crystallization ofless than 10%. YoWlger magmas were probably 

not contaminated and evolved solely by small amounts of fractional crystallization. 



Table 2: Bulk Distribution Coefficients 

Element Plagioclase Clinoproxene Olivine Hornblende 
Rb O.Q7 0.03 0.01 0.05 
Ba 0.16 0.02 0.01 0.22 
Sr 1.8 0.12 O.Ql 0.19 
Cr 0.01 10.0 0.1 30.0 
Ni 0.01 3.5 15.0 8.0 
Zr 0.01 0.2 0.1 0.1 
Nd 0.14 0.2 0.001 0.76 
y 0.05 0.33 0.001 2.1 

Bulk distribution coefficients compiled by the Center for Volcanic 
and Tectonic Studies (CVTS)., troiY\ tk Gl\l.l~llj ~t:.S: 
Lu.hrd aJ .(ictd'S) : Wi lsol'l (1'1~. 
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Figure 44. Tertiary volcanic rocks (ash-flow tuffs) are too low in trace 
elements Zr, Sr and Nb to be a suitable contaminant for the production of 
PI, Hand Lunar Crater cone magmas. Chemistry for Tertiary volcanic 
rocks is from Rash ( 1995). 
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in the Miocene. Tertiary andesite lavas are produced by melting and fractional 
crystallization oflithospheric mantle veinlets. 3. In the Pliocene, asthenospheric 
magmas rise and mix with the remaining lithospheric mantle veinlets. The 
resulting magma then rises to the upper crust where they fractionate and possibly 
assimilate small amounts of Tertiary andesite. 4. During the Quaternary to 
Recent, asthenospheric magmas rise through the lithospheric mantle 
uncontaminated due to no remaining lithospheric mantle veinlets. Magmas 
fractionate in the upper crust ( < 10%) and erupt. 
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CHAPTER 7 

MANTLE SOURCES 

The transition from a lithospheric mantle to an asthenospheric mantle source for Late 

Cenozoic basalts has been documented in only a tew areas in the Basin and Range 

(Livaccari and Perry, 1993) and the timing of mantle transitions are poorly constrained. 

For example, transition from a lithospheric mantle to an asthenospheric mantle source 

occurred in the Lake Mead area near Las Vegas between 12 and 5 Ma (Feuerbach eta!., 

1993) and in the Reveille Range between 14 and 6 Ma (Rash, 1995). 

A mantle transition was thought to have occurred in the LCVF between 9 and 4 Ma 

(Foland eta!., 1987; Livaccari and Perry, 1993, Rash, 1995). This was based on 9 Ma 

basalts located approximately 7 5 km south of the Lunar Crater maar having &Nd = -4 and 

87Sr/86Sr of about 0. 7080 (Foland and Bergman, !992) that were interpreted as having a 

lithospheric mantle source (Livaccari and Perry, 1993). However, Livaccari and Perry's 

(1993) conclusion that a transition from a lithospheric mantle to an asthenospheric 

mantle source occurred in the LCVF between 9 and 4 Ma is probably not correct. 

Foland and Bergman (1992) concluded that the mantle source for LCVF basalts of all 

ages resembles Offi and may be entirely asthenospheric. Additionally, they concluded 

that the isotopic variations can be explained by addition of a crustal component similar 
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to Miocene volcanic rocks with higher 87Sr/86Sr and lower ENct· Although Foland and 

Bergman ( 1992) interpreted the 9 Ma sample as contaminated by crust, Livaccari and 

Perry (1993) used the 9 Ma basalts as evidence for a lithospheric mantle source for an 

alkali basalt in the LCVF and concluded that the mantle source transition occurred in 

the LCVF with basalts having ENd = -4 at 9 Ma and +6 at 4 Ma. 

Further evidence for crustal contamination of alkali basalts is observed in the 

Reveille Range. Y ogodzinski et a!. (1996) modeled Reveille Range basalts (hawaiites 

and basanites) by developing two mixing models. The first model mixed an Om parent 

magma with a hypothetical lithospheric endmember (Sr=l400, Nd=97 ppm) and the 

second model mixed the same om parent magma with a carbonate endmember 

(Sr=850, Nd=!O ppm). Lithospheric mantle sources for alkali basalts in the Reveille 

Range were discounted. Mixing models showed Episode- I hawaiites (5-6 Ma) (high 

87Sr/86Sr and low ~>Nct) located in the southern Reveille Range are contaminated by 

carbonates in the upper crust. Episode-2 hawaiites and basanites (3-4.5 Ma) located in 

the northern Reveille Range have an asthenospheric mantle source and are not 

contaminated. The model ofYogodzinski eta!. (1996) suggests that the 9 Ma 

isotopically enriched basalt (ENd= -4 and 87Sr/86Sr = 0.7080) described by Foland and 

Bergman (1992) and incorrectly interpreted by Livaccari and Perry (1993) is probably 

contaminated by upper crustal material and does not represent a lithospheric mantle 

source. Therefore, a mantle source transition is not supported by data from Foland and 

Bergman (1992). 
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The mantle source transition in the Reveille Range proposed to have occurred 

between 14 and 6 Ma (Rash, 1995) is based on the age of Miocene basaltic andesite 

located 30 km to the southeast of the Reveille Range near Rachel, Nevada. Rash (1995) 

found that basaltic andesites in the northern tip of the Reveille Range have a 

lithospheric mantle source and concluded these rocks are of comparable age to the 

basaltic andesites 30 km to the southeast based on similar rock chemistry. The 

transition did occur but the date of the basaltic andesites in the northern Reveille Range 

is suspect because there is no stratigraphic evidence the basaltic andesite units in the 

northern Reveille Range and southeast of the Reveille Range are the same age. 

Geochemical and age data presented in this study indicates a transition in mantle 

source occurred in the LCVF, however, in a different time interval than suggested by 

Livaccari and Perry (1993). Alkali basalts on Citadel Mountain are isotopically 

depleted (87Sr/86Sr = 0.7033 to 0.7048 and eNd= +2.5 to +5.8) and were produced by 

partial melting of an Offi-type asthenospheric mantle source. Basaltic andesites (21.79 

Ma) located 11 km east of Citadel Mountain are isotopically enriched (87Srl6Sr = 

0.7076 to 0.7077 and CNd = -7.3 to -7.6) and show Nb troughs on om normalized spider 

diagrams indicating they were produced by partial melting of the lithospheric mantle. 

Therefore, I conclude that the transition from lithospheric mantle to asthenospheric 

mantle source occurred between 21.79 Ma and 3.82 Ma, the age ofthe oldest alkali 

basalt (P l-eone flow) on Citadel Mountain. 

The data presented in this study is the best age constraint for a mantle source 

transition because the basaltic andesites are located within a reasonable distance (11 
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km) of the alkali basalts on Citadel Mountain. Although this estimate for the transition 

covers a large range of time, it is the best estimate available to date. Since the 21.79 Ma 

basaltic andesites are the youngest Miocene unit exposed in the area, this time constraint 

for a mantle source transition is probably the best that can be done. 
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CHAPTERS 

IMPLICATIONS 

Alkali Basalts Used as Mantle Probes 

Alkali basalts are often considered mantle probes because their rapid transit through 

the crust precludes significant contamination or fractional crystallization (Wilson, 

1989). According to this interpretation, alkali basalts have isotopic and trace element 

signatures that directly reflect their mantle source. Several workers have taken 

precautions when using alkali basalts as mantle probes. For example, Farmer et al. 

( 1989) only used basalts with Si02 content ofless than 50% in their regional study of 

mantle heterogeneity in the western U.S. Leeman and Rogers (1970) and Foland and 

Bergman (1992) suggested that only alkali basalts containing ultramafic nodules should 

be used as mantle probes. Other authors (Best and Brimhall, 1974) only used samples 

with a Mg# greater than 60 to characterize the mantle. A Mg# of about 71 indicates that 

the alkali basalt is in equilibrium with its mantle source and that it probably was 

unmodified during its ascent from the mantle to the surface. 

My work suggests that these precautions are necessary. Based on the results of this 

thesis, it is clear that although small volume mafic volcanic systems have relatively 

simple evolutionary histories, alkali basalt can be modified by magma 
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commingling/mixing and by fractional crystallization. Contamination events will alter 

isotopic ratios and trace element characteristics and fractional crystallization will change 

trace and major element signatures. This thesis also demonstrates that there can be 

significant chemical differences between alkali basalts that erupted from cinder cones 

less than I km apart. Based on this information, random sampling of a few alkali 

basalts from a small volume mafic volcanic field with the purpose of describing the 

field or as part of a regional study of mantle heterogeneity is dangerous. Instead, 

understanding of the petrogenetic history, stratigraphy and the scale of chemical 

variability within the field is important before samples can provide meaningful results. 

My work in the LCVF suggests that only the youngest samples in the field can be used 

to obtain infonnation about the mantle. However, even in these samples, fractional 

crystallization has modified trace and major element contents. In short, alkali basalt can 

be used to gather infonnation about the mantle but only if proper care is taken. 

Future Eruptions 

Future volcanism in the LCVF will likely occur in the northern Pancake Range in the 

vicinity of the Marcath flow. Because ages of cinder cones on Citadel Mountain are not 

related to geographic position, a future volcanic eruption may occur to the north or 

south of U.S. Highway 6. The Quaternary and Recent lava flows range from 1 to 3 km 

long and flow radially or in a single direction from their source; therefore it is possible 

that U.S. Highway 6, a major transportation route through the Pancake Range, may be 

disrupted in the event of a future eruption. Recurrence rates calculated by Crowe eta!. 
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(1992) suggest that values for the LCVF fall between 4 x 10'5 events yr-1 (vent count) 

and I x 10·5 events yr'1 (cluster count) or the equivalent of the formation of a new 

volcanic center or cluster of centers every 22,000 to 100,000 years. The last eruption in 

the Pancake Range (LCVF) occurred at 38 ka, therefore based on Crowe's probability 

estimate another eruption may occur within the next 60,000 years. 
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CHAPTER9 

SUMMARY AND CONCLUSIONS 

Volcanic stratigraphy, 40Ar/39Ar dates and geochemistry suggest that alkali basalts on 

Citadel Mountain represent a simple magmatic system. The alkali basalts have an 

isotopically similar asthenospheric mantle source that produced similar parental 

magmas by multiple partial melting events. Although the alkali basalts were derived 

from the asthenospheric mantle, there may have been several individual magma bodies, 

each having evolved by different petrogenetic processes. The alkali basalts can be 

divided into older isotopically enriched lavas (PI, Hand Lunar Crater cone) and 

younger isotopically depleted lavas (Qc, C and R-cone). Two contamination events may 

have affected the older basalt group; one event occurring in the lithosphere by magma 

commingling/mixing of rising asthenospheric melts with lithospheric mantle veinlets 

and another possible event occurring near the surface during fractional crystallization. 

The preferred model to explain the isotopic differences between the two groups (old and 

young cones and flows) calls upon magma commingling/mixing of rising 

asthenospheric melts with lithospheric mantle veinlets trapped within the mantle 

lithosphere to produce the P l, H and Lunar Crater parent magmas. Further chemical 

variation of the more evolved P l-eone lavas may have resulted from assimilating very 
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small amounts of the Tertiary andesite near the surface during fractional crystallization 

of olivine and clinopyroxene. The younger isotopically depleted lavas evolved by 

fractional crystallization of olivine and clinopyroxene and have isotopic ratios that may 

reflect their asthenospheric mantle source. 

A transition from a lithospheric mantle source to an asthenospheric mantle source 

occurred in the LCVF between 21.79 Ma (age of basaltic andesites) and 3.82 Ma (age of 

the P l-eone). The transition is postextensional because basaltic andesites east of 

Citadel Mountain are faulted and tilted while the earliest basaltic PI-cone flow is not 

faulted. Although the time constraint for a mantle transition in the LCVF reflects a 

large range of time, fmding a better time constraint may not be possible. 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances 

Major elements Pl-cone Basalt 
in wt.% LC16-96 LC19-96 LC21-96 LC24-96 LC26-96 LC40-96 LC44-96 
Si02 48.51 47.73 47.54 48.22 48.34 49.24 48.33 
At,o, 15.77 15.56 15.24 15.07 15.35 15.38 14.62 
TiO, 2.59 2.62 2.68 2.66 2.65 2.72 2.82 
Fe20, 13.34 12.85 13.03 13.18 13.34 13.29 13.48 
MgO 5.59 5.48 5.40 5.86 5.47 5.76 5.70 
CaO 8.56 8.41 8.59 8.54 8.58 8.44 8.60 
Na,o 3.42 3.58 3.58 3.51 3.35 3.70 3.35 

K20 1.15 1.16 1.25 1.25 1.24 1.36 1.27 

MnO 0.17 0.16 0.16 0.17 0.16 0.16 0.17 
P10 5 0.53 0.51 0.54 0.54 0.51 0.51 0.61 

Tota1* 1 99.61 98.04 98.02 98.99 98.97 100.56 98.96 

Mg# 45.4 45.8 45.1 46.8 44.8 46.2 45.6 

Trace elements 
ineem LC16-96 LC19-96 LC21-96 LC24-96 LC26-96 LC40-96 LC44-97 

Zr (XRF)*2 192.6 200.3 208.1 202.6 198.8 212.6 209.1 

La (ICP-MS)*3 25.15 

Ce (ICP-MS) 50.27 

Pr (ICP-MS) 6.12 

Nd (ICP-MS) 27.40 

Sm (ICP-MS) 7.08 

Eu (ICP-MS) 2.39 

Gd (ICP-MS) 7.18 
Tb (ICP-MS) 1.14 

Dy (ICP-MS) 6.77 

Ho (ICP-MS) 1.28 

Er (ICP-MS) 3.28 

Tm (ICP-MS) 0.43 
Yb (ICP-MS) 2.62 

Lu (ICP-MS) 0.40 

Ba (XRF, ICP-MS) 307.0 

Th (ICP-MS) 2.29 

Nb (XRF) 30.14 39.05 43.80 43.96 41.81 46.18 33.74 
y (XRF) 34.34 44.58 48.74 44.21 45.49 48.61 48.38 

Hf (ICP-MS) 5.11 

Ta (ICP-MS) 2.31 

U (ICP-MS) 0.75 

Pb (ICP-MS) 1.45 

Rb (XRF) 23.30 15.20 18.08 19.35 17.54 35.48 26.87 

Cs (ICP-MS) 0.14 

Sr (XRF) 505.0 462.8 449.7 437.7 451.0 430.4 474.6 

Sc (ICP-MS) 23.58 

Cr (XRF) 98.37 92.35 98.16 127.8 147.9 147.7 150.5 

Ni (XRF) 75.00 70.86 69.20 78.07 90.66 89.43 78.67 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements H-coge Basalt 
in WI.% LC38-96 LC47-97 LC48-97 LC49-97 

SiOz 50.64 50.09 50.36 51.51 
AI,O, 15.35 15.41 15.28 15.74 

TiO, 2.28 2.25 2.33 2.33 
Fe,o, 12.36 12.21 12.52 12.46 
MgO 6.26 9.34 9.12 8.43 

CaO 8.50 1.07 1.06 1.17 

Na,o 3.41 0.16 0.17 0.16 

K20 1.06 0.45 0.40 0.40 

MnO o. 16 3.13 3.15 3.20 
P,o, 0.42 5.65 5.95 5.52 
Total 100.43 99.76 100.33 100.93 

Mg# 50.1 47.8 48.5 46.7 

Trace elements 
ineem LC38-96 LC47-97 LC48-97 LC49-97 

Zr (XRF) 181.7 180.9 180 191 

La (ICP-MS) 22.19 
Ce (ICP-MS) 43.67 
Pr (ICP-MS) 5.35 
Nd (ICP-MS) 23.82 
Sm (ICP-MS) 6.41 
Eu (ICP-MS) 2.09 
Gd (ICP-MS) 6.45 
Tb (ICP-MS) 1.05 
Dy (ICP-MS) 6.14 
Ho (ICP-MS) 1.20 
Er (ICP-MS) 3.03 
Tm (ICP-MS) 0.41 
Yb (1CP-MS) 2.41 
Lu (ICP-MS) 0.37 
Ba (XRF, ICP-MS) 359 
Th (ICP-MS) 1.89 
Nb (XRF) 21.52 22.69 22.80 23.20 
y (XRF) 31.62 41.32 41.90 46.20 

Hf (ICP-MS) 4.74 
Ta (ICP-MS) 1.92 
U (ICP-MS) 0.58 

Pb (ICP-MS) 2.11 
Rb (XRF) 17.30 18.23 16.1 18.30 
Cs (ICP-MS) 0.15 
Sr (XRF) 448 443.4 434 439 

Sc (ICP-MS) 22.84 

Cr (XRF) 133.5 145.4 152.7 153.7 

Ni (XRF) 82.15 93.9 91.9 96.4 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements Lunar Crater cone Basalt Qc-cone Basalt 
in wt.% LCl0-96 LC17-96 LC54-97 LC18-96 LC33-96 
Si02 47.51 48.10 49.11 45.25 45.93 

AJ,O, 14.21 14.30 14.92 14.58 14.89 

TiO, 2.33 1.88 1.81 2.67 2.75 
Fe,o, 13.89 12.76 12.22 13.10 13.16 

MgO 6.15 8.89 8.92 8.75 8.18 

CaO 8.45 8.90 1.16 9.77 8.80 

Na20 2.81 2.87 0.17 2.83 3.33 

K20 1.01 1.04 0.44 1.24 1.28 

MnO 0.17 0.17 3.05 0.17 0.16 
r,o, 0.45 0.39 9.34 0.58 0.57 

Total 96.98 99.29 101.15 98.95 99.06 

Mg# 46.7 58 60.2 57 55.2 

Trace elements 
in m LCl0-96 LC17-96 LC54-97 LC18·96 LC33·96 

Zr (XRF) 199.6 162.7 180.3 162.5 

La (ICP-MS) 21.98 30.91 

Ce (ICP-MS) 43.02 61.43 

Pr (ICP-MS) 5.06 7.20 

Nd (ICP-MS) 22.22 30.06 

Sm (ICP-MS) 5.52 7.14 

Eu (ICP-MS) 1.87 2.41 

Gd (ICP-MS) 5.40 6.68 

Tb (ICP-MS) 0.88 1.06 

Dy (ICP-MS) 5.47 5.81 

Ho (ICP-MS) 1.05 1.10 

Er (ICP·MS) 2.75 2.84 

Tm (ICP-MS) 0.37 0.39 

Yb (ICP-MS) 2.21 2.29 

Lu (ICP-MS) 0.35 0.34 

Ba (XRF, JCP-MS) 297.3 300 411 

Th (ICP-MS) 1.98 2.72 

Nb (XRF) 23.81 24.84 44.12 51.95 
y (XRF) 3!.66 27.41 28.12 34.56 

Hf (ICP-MS) 4.10 4.33 

Ta (ICP-MS) 1.90 3.29 

U (ICP-MS) 0.64 089 

Pb (ICP-MS) 1.36 1.36 

Rb (XRF) 13.55 20.60 27.60 16.60 

Cs (ICP-MS) 0.11 0.30 

Sr (XRF) 380.5 479 669 660.5 

Sc (ICP-MS) 26.17 25.92 

Cr (XRF) 196.7 243.7 269.7 185.4 191.6 

Ni (XRF) 119.1 179.3 212.4 135.0 120.5 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elemellts Qc-cone Basalt 
in wt.% LC34-96 LC55-97 LC56-97 LC57-97 LC58-97 

Si02 47.27 47.45 46.47 46.04 46.33 
Al20, 14.66 15.08 15 52 15.46 14.66 

Ti02 2.40 2.46 2.89 2.88 2.47 
Fe,o, 13.46 13.47 13.62 13.56 12.76 

MgO 8.33 9.52 9.\7 9.27 9.98 

CaO 8.77 0.91 1.41 1.40 1.24 

Na20 3.05 0.17 0.18 0.19 0.19 

K20 1.01 0.38 0.60 0.63 0.46 

MnO 0.17 3.13 3.31 3.07 2.94 

P,o, 0.43 8.35 7.68 7.48 9.90 

Total 99.55 100.93 100.85 99.98 100.92 

Mg# 55.1 55.1 52.8 52.2 60.6 

Trace elemellts 
ini!Pm LC34-96 LC55-97 LC56-97 LC57-97 LC58-97 

Zr (XRF) 149.1 136 !56 

La (ICP-MS) 21.75 

Ce (ICP-MS) 42.59 
Pr (ICP-MS) 5.18 

Nd (ICP-MS) 22.77 

Sm (ICP-MS) 5.98 

Eu (ICP-MS) 2.07 

Gd (ICP-MS) 5.91 
Tb (ICP-MS) 0.94 

Dy (ICP-MS) 5.52 

Ho (ICP-MS) 1.02 

Er (ICP-MS) 2.55 
Tm (ICP-MS) 0.33 

Yb (ICP-MS) 2.03 

Lu (ICP-MS) 0.31 

Ba (XRF, ICP-MS) 358 

Tb (ICP-MS) 1.88 

Nb (XRF) 29.29 25.30 35.60 
y (XRF} 26.96 34.10 30.70 

Hf (ICP-MS) 3.74 

Ta (ICP-MS) 2.17 

U (ICP-MS) 0.49 

Pb (!CP-MS) 1.01 

Rb (XRF) 18.80 13.80 22.30 

Cs (ICP-MS) 0.18 

Sr (XRF) 505 471 571 

Sc (ICP-MS) 24.31 

Cr (XRF) 194.0 231.7 190.6 215.2 243.8 

Ni (XRF) 134.1 137.8 121.0 122.8 199.2 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements C-cone Basalt 
in wt.% LC14-96 LC22-96 LC27-96 LC28-96 LC29-96 
Si02 45.60 46.93 47.07 46.64 46.48 
AI,Ol 14.43 16.37 16.40 15.59 15.21 

Ti02 2.68 2.59 2.58 2.59 2.54 
Fe,03 12.52 12.37 12.19 12.36 12.57 
MgO 8.10 6.24 6.34 7.18 8.23 
CaO 10.01 8.90 8.78 8.92 9.07 
Na,o 3.46 3.66 3.70 3.49 3.36 

K20 !.52 1.67 1.75 152 1.21 

MnO 0.17 0.17 0.17 0.17 0.16 
P20 5 0.73 0.62 0.59 0.59 0.52 

Total 99.21 99.53 99.55 99.06 99.35 
Mg# 56.2 50 50.7 53.5 56.5 

Trace elemefltS 

in ppm LC14-96 LC22-96 LC27-96 LC28-96 LC29-96 

Zr (XRF) 191.0 218.3 228.8 192.8 175.1 

La (ICP-MS) 

Ce (ICP-MS) 
Pr (ICP-MS) 
Nd (ICP-MS) 
Sm (ICP-MS) 
Eu (ICP-MS) 
Gd (ICP-MS) 
Th (ICP-MS) 

Dy (ICP-MS) 
Ho (ICP-MS) 
Er (ICP-MS) 
Tm (ICP-MS) 

Yb (ICP-MS) 
Lu (ICP-MS) 
Ba (XRF, ICP-MS) 
Th (ICP-MS) 
Nb (X.R.F) 48.82 66.37 65.56 43.17 52.31 
y (XRF) 39.04 40.64 39.54 39.92 37.86 

Hf (ICP-MS) 
Ta (ICP-MS) 
U (ICP-MS) 

Pb (ICP-MS) 
R.b (XRF) 26.44 25.92 28.54 31.82 17.35 

Cs (ICP-MS) 

Sr (XRF) 738.0 665.2 663.2 652.1 597.6 

Sc (ICP-MS) 
Cr (XRF) 156.3 122.2 116.4 160.5 163.4 
Ni (XRF) 109.9 79.99 82.91 98.28 135.2 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements C-cone Basalt 
in wt.% LC30-96 LC36-96 LC39-96 LC45-96 LC46-96 

Si02 46.52 46.31 46.41 46.94 45.03 

A1,03 15.65 15.57 15.62 15.02 14.56 

Ti02 2.58 2.66 2.67 2.48 2.76 
Fe201 12.69 12.72 12.49 13.29 13.37 

MgO 7.30 6.95 7.43 8.44 8.43 

CaO 8.99 9.10 9.12 9.20 9.50 

Na20 3.68 3.47 3.80 3.50 3.30 

K20 1.42 1.52 1.48 1.17 1.49 

MnO 0.17 0.18 0.17 0.17 0.18 

P20s 0.60 0.64 0.61 0.54 0.69 

Total 99.57 99.12 99.79 100.74 99.31 

Mg# 53.3 52 54.1 55.7 55.6 

Trace elements 

in eem LC30-96 LC36-96 LC39-96 LC45-96 LC46-96 

Zr (XRF) 191.3 198.6 190.4 160.1 197.1 

La (ICP-MS) 25.53 

Ce (1CP-MS) 50.12 

Pr (ICP-MS) 6.09 
Nd (ICP-MS) 26.76 

Sm (ICP-MS) 6.64 

Eu (ICP-MS) 2.28 

Gd (ICP-MS) 6.46 

Tb (ICP-MS) 1.00 

Dy (ICP-MS) 5.97 

Ho (ICP-MS) 1.13 
Er (!CP-MS) 2.87 

Tm (ICP-MS) 0.38 

Yb (ICP-MS) 2.26 

Lu (!CP-MS) 0.35 

Ba (XRF, !CP-MS) 385 

Th (ICP-MS) 1.96 

Nb (XRF) 54.89 46.51 63.57 37.88 61.27 
y (XRF) 39.71 40.70 40.94 29.49 41.56 

Hf (ICP-MS) 4.00 

Ta (ICP-MS) 2.64 

U (ICP-MS) 0.64 

Pb (ICP-MS) 1.08 

Rb (XRF) 17.06 28.17 22.23 21.30 21.40 

Cs (JCP-MS) 0.18 

Sr (XRF) 637.6 685.4 650.3 613 729.4 

Sc (ICP-MS) 25.91 

Cr (XRF) 134.0 144.9 139.9 182 151.4 

Ni (XRF) 102.7 80.15 96.46 140.2 128.5 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements R-cone Basalt 
in wt.% LC23-96 LC37-96 LCS0-97 LCSI-97 LC52-97 
Si02 46.54 48.41 48.95 48.87 48.75 
AhOJ 15.46 15.84 16.09 16.27 16.29 
no, 2.57 2.23 2.25 2.28 2.37 

Fez OJ 13.07 12.20 12.14 12.21 12.45 
MgO 7.68 7.05 8.51 8.43 8.44 
CaO 9.21 8.49 1.75 1.75 1.74 
Na,o 3.39 3.93 0.17 0.17 0.17 
K20 1.27 1.62 0.59 0.60 0.63 
MoO 0.17 0.17 3.93 3.96 3.82 
P20, 0.52 0.62 6.55 6.69 6.38 
Total 99.87 100.6 100.9 101.2 101.0 
Mg# 53.8 53.4 51.7 52.1 50.4 

Trace elements 
in e.e.m LC23-96 LC37·96 LCS0-97 LCSl-97 LC52-97 

Zr (XRF) 174.9 212.7 217 216 213 
La (ICP-MS) 32.06 
Ce (ICP-MS) 60.99 
Pr (ICP-MS) 7.14 
Nd (ICP-MS) 29.56 
Sm (lCP-MS) 7.05 
Eu {ICP-MS) 2.33 
Gd (ICP-MS) 6.49 
Tb (ICP-MS) 1.03 

Dy (ICP-MS) 6.03 
Ho (ICP-MS) 1.15 
Er (ICP-MS) 2.96 
Tm (ICP-MS) 0.40 
Yb (ICP-MS) 2.35 
Lu (ICP-MS) 0.36 
Ba (XRF, ICP-MS) 451 
Th (ICP-MS) 3.09 
Nb (XRF) 50.92 44.41 46.00 46.50 46.40 
y (XRF) 36.32 30.56 40.90 42.10 4!.60 
Hf (ICP-MS) 5.08 
Ta (ICP-MS) 3.21 
U (ICP-MS) 0.80 

Pb (JCP-MS) 1.84 
Rb (XRF) 16.51 31.70 32.50 33.10 32.00 
Cs (ICP-MS) 0.33 
Sr (XRF) 605.9 577 597 577 596 
Sc (ICP-MS) 22.09 
Cr (XRF) 158.5 150.8 155.6 159.9 139.3 
Ni (XRF) 134.1 97.80 126.9 114.8 65.62 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Cinder cones around Citadel Mountain {Fif:ures 4 and 6) 
Major elements Marcath Flow SKB Blue Jay cone N of LC B-cone 
in wt.% LCS-96 LC7-96 LCS-96 LC9-96 LCU-96 
Si02 42.95 43.84 44.92 43.25 43.50 
Al20 3 14.33 14.39 15.49 14.19 13.50 
Ti02 2.56 2.83 3.19 2.86 2.66 
Fe,o, 12.80 13.86 11.84 13.60 15.39 
MgO 8.03 7.64 6.74 8.48 10.42 
CaO 10.08 9.73 8.85 10.03 9.42 
Na20 3.59 3.16 2.87 2.80 2.69 
K20 1.93 1.49 1.59 1.32 0.71 
MnO 0.19 0.18 0.16 0.17 0.18 
P20, 0.76 0.65 0.59 0.63 0.39 

Total 97.22 97.79 96.24 97.33 98.85 
Mg# 55.4 52.2 53 55.3 57.3 

Trace elements 
in eJ!.m LC5-96 LC7-96 LCS-96 LC9-96 LCll-96 
Zr (XRF) 269.2 213.5 262.7 186.9 123.7 

La (ICP-MS) 16.72 
Ce (lCP-MS) 34.03 
Pr (ICP-MS) 4.23 
Nd (ICP-MS) 19.16 
Sm (ICP-MS) 5.26 
Eu (JCP-MS) 1.88 
Gd (ICP-MS) 5.38 
Tb (ICP-MS) 0.84 

Dy (ICP-MS) 4.77 
Ho (ICP-MS) 0.92 
Er (ICP-MS) 2.24 
Tm (ICP-MS) 0.30 
Yb (ICP-MS) 1.75 
Lu (ICP-MS) 0.26 
Ba (XRF, ICP-MS 580.5 424.8 340.1 385.6 227 
Tb (ICP-MS) 1.16 
Nb (XRF) 68.64 47.25 47.88 46.69 24.64 
y (XRF) 25.07 24.18 20.64 21.32 23.78 
Hf (ICP-MS) 2.82 
Ta (JCP-MS) 1.85 
U (ICP-MS) 0.36 

Pb (ICP-MS) 0.95 
Rb (XRF) 39.08 23.72 17.48 19.73 12.5 
Cs (ICP-MS) 0.16 
Sr (XRF) 946.2 722.2 802.4 702.3 518 
Sc (ICP-MS) 26.62 
Cr (XRF) 288.5 248.8 
Ni (XRF) 168.3 260.7 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Cinder cones around Citadel Mountain (Fie;ures 4 and 6) 
Major elements Smith Twins coneS ofCM J-cone J-cone WKB Smith Twins 

in wt.% LC12-96 LC13-96 LClS-96 LC20-96 LC25-96 LC32-96 
SiO, 43.42 45.05 47.36 48.24 49.05 45.13 

Al20 3 14.32 14.82 14.98 15.45 15.89 14.02 

Ti01 3.11 2.54 2.39 2.24 2.24 2.76 
Fe,o, 14.05 14.28 13.79 12.09 11.71 13.80 

MgO 8.12 7.18 7.82 6.01 5.83 9.48 
CaO 10.11 8.96 8.77 8.14 7.90 9.67 

Na,O 2.83 3.26 3.27 4.00 3.72 2.92 

K 20 1.29 1.37 1.14 1.58 1.73 1.25 
MnO 0.17 0.19 0.17 0.17 0.16 0.18 
P,O, 0.52 0.62 0.49 0.59 0.59 0.55 

Total 97.94 98.26 100.2 98.49 98.83 99.75 

Mg# 53.4 49.9 52.9 49.6 49.7 57.7 

Trace elements 

ineJ!.m LCl2-96 LCl3-96 LC15-96 LC20-96 LC25-96 LC32-96 

Zr (XRF) 178.2 185.8 158.6 229.0 240.3 156.5 

La (ICP-MS) 
Ce (ICP-MS) 
Pr (JCP-MS) 
Nd (ICP-MS) 
Sm (ICP-MS) 

Eu (ICP-MS) 
Gd (ICP-MS) 
Tb (ICP-MS) 

Dy (ICP-MS) 
Ho (ICP-MS) 
Er (ICP-MS) 
Tm (ICP-MS) 
Yb (ICP-MS) 

Lu (ICP-MS) 
Ba (XRF, ICP-MS) 360.3 317.7 

Tb (ICP-MS) 
Nb (XRF) 40.82 40.50 33.51 57.24 45.21 39.! 7 
y (XRF) 22.97 22.99 37.07 43.10 43.79 36.88 

Hf (ICP-MS) 
Ta (ICP-MS) 

U (ICP-MS) 

Pb (ICP-MS) 

Rb (XRF) !8.33 19.66 19.27 26.93 31.31 22.60 

Cs (ICP-MS) 
Sr (XRF) 655.9 535.5 544.4 514.9 547.0 628.6 

Sc (ICP-MS) 
Cr (XRF) 186.5 117.3 122.9 219.0 

Ni (XRF) 123.5 82.27 81.57 160.3 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Cinder cones around Citadel Mountain {Fi~:ures 4 and 6} 
Major elements cone E ofLC ECC Lunar Lake maar Spanet Rampart 

in wt. % LC35-96 LC41-96 LC42-96 LC53-97 
Si02 46.27 45.87 46.26 49.64 
A!,O, 14.93 14.99 15.08 15.65 

Ti02 2.63 2.43 2.46 2.69 
Fe,o, 13.32 !1.62 14.74 13.33 
MgO 7.49 8.10 7.37 8.48 
CaO 8.88 9.03 8.90 1.21 
Na,o 3.58 3.59 3.62 0.17 
K20 1.33 1.65 1.19 0.55 
MoO 0.17 0.16 0.19 3.58 
P,o, 0.58 0.59 0.85 5.83 

Total 99.17 98.02 100.6 101.1 

Mg# 52.7 58 49.8 46.4 

Trace elements 

in eem LC35-96 LC41-96 LC42-96 LC53-97 

Zr (XRF) 185.8 200.8 168.5 

La (ICP-MS) 
Ce (ICP-MS) 
Pr (ICP-MS) 
Nd (ICP-MS) 
Sm (ICP-MS) 

Eu (ICP-MS) 

Gd (ICP-MS) 
Tb (ICP-MS) 

Dy (ICP-MS) 
Ho (ICP-MS) 
Er (ICP-MS) 
Tm (ICP-MS) 
Yb (ICP-MS) 

Lu (ICP-MS) 
Ba (XRF, ICP-MS) 
Tb (!CP-MS) 
Nb (XRF) 49.04 65.35 55.15 
y (XRF) 38.78 36.53 43.68 

Hf (ICP-MS) 

Ta (ICP-MS) 
U (ICP-MS) 

Pb (ICP-MS) 

Rb (XRF) 18.62 29.50 14.95 

Cs (ICP-MS) 

Sr (XRF) 594.7 657.7 748.9 

Sc (ICP-MS) 
Cr (XRF) 132.3 171.1 128.1 155.5 

Ni (XRF) 104.3 134.4 100.7 100.4 
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APPENDIX A: GEOCHEMICAL DATA 
Major and Trace Element Abundances (continued) 

Major elements Tertiar:y Andesites Tuff of Lunar Cuesta Basaltic Andesites 
in WI. % LC2-95 LC3-95 LC6-96 LC31-96 LC43-96 
SiO, 64.34 65.49 72.48 54.94 54.38 
Al20 3 15.47 15.90 14.94 16.94 16.73 
Ti02 0.85 0.68 0.36 1.60 1.58 
Fe,o, 5.10 5.18 2.37 9.44 9.49 
MgO 1.59 1.53 0.75 4.11 4.25 
CaO 3.78 3.71 2.53 7.89 7.84 
Na,o 3.24 3.44 3.21 2.97 2.93 
K20 3.83 3.84 4.19 1.57 1.62 
MnO 0.10 0.10 0.05 0.13 0.13 
P20, 0.31 0.30 0.09 0.43 0.39 
Total 98.60 100.2 101.0 100.0 99.33 
Mg# 38.1 36.9 38.6 46.3 47 

Trace elements 
in vvm LC2-95 LC3-95 LC6-96 LC31-96 LC43-96 
Zr (XRF) 298.8 309.0 211.2 233.5 233.3 
La (ICP-MS) 55.09 35.93 
Ce (ICP-MS) 105.2 71.09 
Pr (ICP-MS) 11.7 8.65 
Nd (ICP-MS) 44.64 35.37 
Sm (JCP-MS) 9.03 7.81 
Eu (ICP-MS) 2.08 2.11 
Gd (ICP-MS) 7.03 6.79 
1b (ICP-MS) 1.06 1.00 
Dy (ICP-MS) 6.10 5.79 
Ho (ICP-MS) 1.16 1.14 
Er (ICP-MS) 3.01 2.97 
Tm (ICP-MS) 0.44 0.41 
Yb (ICP-MS) 2.71 2.57 
Lu (ICP-MS) 0.43 0.41 
Ba (XRF, ICP-MS) 1092 718 
Th (ICP-MS) 12.16 4.79 
Nb (XRF) 18.90 19.19 7.62 12.75 16.36 
y (XRF) 32.41 44.99 16.67 30.64 34.88 
Hf (ICP-MS) 7.36 5.76 
Ta (ICP-MS) 2.14 1.21 
U (ICP-MS) 3.04 1.11 
Pb (ICP-MS) 20.00 6.22 
Rb (XRF) 117.5 127.4 138.4 42.90 53.62 
Cs (ICP-MS) 2.88 0.81 
Sr (XRF) 630 626.2 510.4 659 610.4 
Sc (ICP-MS) 9.63 24.01 
Cr (XRF) 13.72 12.61 8.85 38.42 8.83 
Ni (XRF) 48.41 48.41 48.41 48.41 ND 
*1. Totals do not mclude LOI. 
*2. XRF"" X~ray Fluorescence Spectrometer 

•3. ICP~MS =Inductively Coupled Plasma~ Mass Spectrometer 



APPENDIX A: GEOCHEMICAL DATA 
Precision and Accuracy 

Primary calibration standards for the Rigaku 3030 X-ray Fluorescence 
Spectrometer. Standards are United States Geological Survey, National 
Bureau of Standards and French standards. 

MajQr Elements Trace Elements 
DNC-1 G-2 
BHV0-1 W-2 
PCC-1 BIR-1 
AGV-1 BHV0-1 
GS-N DNC-1 
GA RGM-1 
W-2 QL0-1 

BR PCC-1 
SCo-1 SCo-1 
STM-1 AGV-1 
GSP-1 GSP-1 
RGM-1 AN-G 
QL0-1 DR-N 
AL-l GS-N 

MAG-I 
MicaMg 
NBS-688 

Accuracy for the Rigaku 3030 X-ray Fluorescence Spectrometer using 
NBS standard NBS-688 (major elements), USGS standard MAG-I 
(trace elements) and Rh X-ray tube installed Aug. 1994. 

Element %error 
Si02 0.7 
AlzO, 0.5 
Ti02 0.7 
Fe203 2.6 
MgO 2.4 
CaO 1.5 
NazO 0.9 
KzO 2.3 
MnO 8.2 

I \ 
PzOs 18.6....:--- . -
Rb 0.9 
Sr 2.1 
Zr 1.8 
y 11.2 
Nb 13.3 
Cr 27.5 
Ni 3.5 



APPENDIX A: GEOCHEMICAL DATA 

Precision and Accuracy (continued) 

Precision for the Rigaku 3030 X-ray Fluorescence Spectrometry. 
Precision is determined using NBS standard NBS-688 (major elements), 
USGS standard MAG-! (trace elements) and Rh X-ray tube installed Aug. 1994. 

Published Meanof4 Standard •t, ~'· f'l"" 
Element concentration reElicate anal~ses deviation uncertainty "'1 t.:i.>c • ~ 

Si02 50.36 47.99 0.45 0.9 

Ah03 16.37 17.44 0.2 1.2 
Ti02 0.751 1.16 0.02 1.8 
Fe203 6.8 10.07 0.14 1.3 
MgO 3.0 8.66 0.15 1.7 
CaO 1.37 11.99 0.11 0.9 

NazO 3.83 2.14 0.06 2.6 
K20 3.55 0.186 0.003 1.4 
MnO 0.098 0.153 0.005 3.2 

P20s 0.163 0.158 0.018 11.4 
Rb 149 150.4 4.33 2.9 

Sr 146 143 3.11 2.2 

Zr 126 128.3 2.22 1.7 
y 28 31.14 2.65 8.5 ;. I r ~""" -z 0 " 

Nb 12 13.6 2.44 17.9 ~ 7 
Cr 97 70.3 4.57 6.5 
Ni 53 51.1 2.39 4.7 



APPENDIX A: GEOCHEMICAL DATA 

Precision and Accuracy (continued) 

Accuracy for the Inductively Coupled Plasma- Mass Spectrometer (ICP-MS). 
U.S.G.S. standard BHV0-1 was used as a reference. 

Element Published WSU ICP- %error 

1m!!! value MS value 
Ba 139 133 4.32 
La 15.8 15.65 0.95 
Ce 39 37.07 4.95 
Sm 6.2 6.2 0 
Eu 2.06 2.12 2.91 
Tb 0.96 0.96 0 
Yb 2.02 2.02 0 
Lu 0.29 0.28 3.45 
Hf 4.38 4.34 0.91 
Ta 1.23 1.25 1.63 
Th 1.08 1.25 15.74 

Precision for the Inductively Coupled Plasma - Mass Spectrometer (ICP-MS). 
Data reported is from twenty-four replicate analysis of Washington State 
in-house standards BCR-P. 

Element Mean of 24 rei!- Standard Mean relative 

1m!!! licate analysis deviation %error 
Ba 670 13 1.89 
La 26.26 0.49 1.86 

Ce 51.67 0.62 1.2 
Sm 7.03 0.15 2.07 
Eu 2.13 0.05 2.48 
Tb 1.17 0.01 1.12 
Yb 3.36 0.03 0.94 
Lu 0.52 0.01 1.9 
Hf 4.67 0.07 1.47 
Ta 0.82 0.02 2.7 
Th 5.13 0.49 9.5 



APPENDIX B: GEOCHEMICAL DATA 
Sr, Nd and Pb Isotopic Ratios 

Sample Nd (ppm) 147Sm/144Nd Error t4JNd/144Nd Error ENd Error s7Sr/st>sr %error 

~ LC2-95 37.9048 0.10789 ±0.00111 0.512278 ±0.000027 -7.03 ±0.37 0.708368 0.0014 
if LCII-96 21.7192 0.14586 ±0.00139 0.512905 ±0.000025 5.20 ±0.34 0.703200 0.0013 
f'J LC16-96 23.6129 0.14139 ±0.00146 0.512871 ±0.000018 4.55 ±0.25 0.703650 0.0010 

l.c. LC17-96 23.1495 0.13484 ±0.00140 0.512810 ±0.000015 3.35 ±0.21 0.704728 0.0011 
Uc LC18-96 26.3975 0.12740 ±0.00142 0.512928 ±0.000015 5.66 ±0.21 0.703253 0.0010 
ft LC24-96 31.1509 0.14009 ±0.00149 0.512837 ±0.00001 5 3.88 ±0.21 0.703910 0.0015 
C LC27-96 35.7237 0.12527 ±0.00146 0.512922 ±0.000015 5.55 ±0.21 0.703379 0.0013 

'-"~ LC31-96 36.3462 0.12066 ±0.00138 0.512247 ±0.000015 -7.63 ±0.21 0.707650 0.0010 
&, LC34-96 25.9124 0.14140 ±0.00156 0.512919 ±0.000015 5.49 ±0.21 0.703313 0.0009 

RLC37-96 33.7308 5.29 ±0.23 0.703351 0.0016 
1/ LC38-96 25.8101 0.14419 ±0.00139 0.512766 ±0.000015 2.49 ±0.21 0.704802 0.0017 

~'J LC43-96 37.6565 0.11820 ±0.00121 0.512265 ±0.000015 -7.27 ±0.21 0.707617 0.0013 
:::. LC45-96 23.0977 0.13384 ±0.00140 0.512933 ±0.000015 5.76 ±0.21 0.703311 0.0010 

~~ 



APPENDIX B: GEOCHEMICAL DATA 
Sr, Nd and Pb Isotopic Ratios (continued) 

Sample Pb (ppm) 206pbP04Pb Error(±%) 207PbP04Pb Error(±%) 208PbP04Pb Error(±%) 
LC2-95 18.715 19.291 0.1 15.690 0.15 39.142 0.2 
LC11-96 827.39 19.482 0.101 I 5.634 0.151 38.948 0.201 
LCI6-96 1.6643 19.400 0.108 15.663 0.156 39.043 0.204 
LC17-96 1.6021 19.375 0.101 15.653 0.151 39.005 0.201 
LCI8-96 1.2462 19.370 0.101 15.614 0.151 38.825 0.201 
LC24-96 1.9147 19.404 0.101 15.668 0.151 39.071 0.201 
LC27-96 1.8956 19.422 0.103 15.599 0.152 38.852 0.202 
LC31-96 6.7581 18.753 0.101 15.626 0.15 38.976 0.2 
LC34-96 1.3096 19.431 0.128 15.621 0.171 38.938 0.216 
LC37-96 2.0286 19.475 0.101 15.633 0.151 38.999 0.201 
LC38-96 2.2282 19.354 0.101 15.664 0.151 39.033 0.201 
LC43-96 5.5268 18.761 0.101 15.645 0.15 39.037 0.2 
LC45-96 1.3914 19.428 0.107 15.609 0.155 38.857 0.204 

~~ 
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APPENDIXC 

GEOCHRONOLOGY 

40 ArP9 Ar Analytical Techniques 

The following description of analytical techniques was provided by Richard Esser 
and Matthew Heizler of New Mexico Geochronological Research Laboratory 
(NMGRL).~~e whole rock samples were crushed, sieved, treated with dilute HCL, 
washed in dtstt led water and hand-picked to remove phenocrysts, weathered material, 
etc., leaving as pure a groundmass concentrate as possible. They were then placed in a 
machined AI disc and sealed in an evacuated Pyrex tube along with interlaboratory 
standard Fish Canyon Tuff(Age ~ 27.84 Ma). The standard was used to monitor the 
neutron dose received during the I hour irradiation in the D-3 position of the reactor at 
the Nuclear Science Center, College Station, TX. The whole rock samples were step
heated in a double vacuum Mo resistance furnace. The gas was cleaned during heating 
with a SAES GP-50 getter, and additionally cleaned following heating with another GP-
50. The flux monitor crystals were placed in a copper planchet and fused within an 
ultra-high vacuum argon extraction system with a 1 OW Synrad C02 continuous laser. 
Evolved gases were purified for two minutes using a SAES GP-50 getter operated at 
-450° C. Argon isotopic compositions for both samples and monitors were determined 
with a MAP 215-50 mass spectrometer operated in electron multiplier mode with an 
overall sensitivity of approximately 3.0 x 10'17 moles/pA. Extraction system and mass 
spectrometer blanks and backgrounds were measured numerous times throughout the 
course of the analyses. Typical blanks (including mass spectrometer backgrounds) 
were; 570, 4, 0.3, 0.8, 2.6 x 10'18 moles at masses 40, 39, 38, 37, 36 respectively. J
factors were determined to a precision of 0 .I 0% by analyzing 4 single-crystal aliquots 
from each of 4 radial positions around the irradiation vessel. Correction for interfering 
nuclear reactions were determined using K-glass and CaF2. These values are 
(
40 Ar/39 Ar)K = 0.0002±0.0002, e6 Ar/37 Ar)c. = 0.00026±0.00002 and e9 ArP7 Ar)c. = 

0.00070±0.00005. All errors are reported at the two sigma confidence level and the 
decay copstant and isotopic abundances are those suggested by Steiger and Jager 
(1977)." J 



131 

Summary of 40 ArP9 Ar Results 

The following results and discussion were provided by Richard Esser and Matthew lAS C 
Heizler of New Mexico Geochronological Research Laboratory (NMGRL).('Age ~ 
spectra diagrams are given for each sample and a table of the analytical data is also 'l<,l <>"-K 

provided. The age spectrum is generated by incrementally heating the sample starting at Q v- 6-rc 
relatively low temperature and raising the temperature until the sample is fused. The 
argon isotopic composition of each gas increment is measured in a mass spectrometer 
and an apparent age is calculated. The apparent age of each gas fraction is plotted 
versus the cumulative %39 Ar. When all apparent ages are the same within analytical 
error, the sample is said to have a plateau spectrum. A plateau age spectrum usually 
indicates that the sample is homogeneous with respect to K and Ar and has had a simple 
thermal and geological history. Commonly, not all heating steps will yield identical 
ages, but a plateau is defined if 3 or more contiguous heating steps, comprising at least 
50% of the 39Ar agree within error (Fleck, eta!., 1997). The plateau age is calculated in 
various ways, but in this report is given by weighting each step on the plateau by the 
inverse of its variance (Samson and Alexander, 1987). This insures that the heating 
steps with the lowest analytical error will dominate the fmal age calculation. Excess 
argon (initial argon trapped within the sample which has an 40 ArP6 Ar ratio greater than 
the atmospheric value of 295.5) contributed by one or more phases of a wholerock or 
groundmass separate can result in disturbed age spectra particularly at the lowest and 
highest temperature steps. In order to test for excess argon, the analyses were plotted on 
isochron diagrams. The diagram plots the measured 36 Ar/40 Ar versus the 39 Ar/40 Ar ratio 
and is often a better method (relative to the age spectrum) of data handling as there is no 
need to assume an initial argon composition. In fact, the isochron can provide a 
quantitative measure of the initial argon composition. However, in the case of the LC 
wholerocks, isochron analysis does not indicate significant excess argon contamination. 
Therefore, in each case, the plateau age is interpreted to represent the eruption age of the 
basalts.J 

age 
Sample analysis n %39 Ar MSWD 40Ari"Ar, ±Err K/Ca Age ±20' 

LC37-96 isochron 7 0.5 306.7 7.0 0.5 0.66 0.34 
LC40-96 plateau 4 73.6 0.5 3.82 0.06 
LC17-96 isochron 8 1.2 298.7 2.6 0.3 2.97 0.06 
LC43-96 isochron 7 0.7 291.2 3.6 0.2 21.79 0.36 
LC38-96 plateau 5 74.5 0.3 3.82 0.05 
LC!8-96 N.A. N.A. N.A. N.A. 
LC45-96 plateau 5 86.9 0.5 1.56 0.64 

Where n =number of steps in step heating of the sample. 



Results and Discussion 

LC37-96 (R-cone flow) has a discrepancy between its plateau age and isochron age. 
The lowest (step A) and highest (step I) temperature steps have higher apparent ages 
forming a "saddle-shaped" age spectrum. Almost 91% of the 39 Ar was released 
during steps B through H, and each step yields concordant age data. The apparent age 
of the inverse isochron is 0.66 ± 0.34 Ma. The larger margin of error is due to the 
clustering of data points on the inverse isochron, however because a "saddle-shaped" 
age spectrum indicates excess argon, the inverse isochron age is the best estimate for the 
eruption of the R-cone flow. 
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LCAD40-96 (P l-eone flow) also has a saddle-shaped age spectrum, however the 
isochron does not indicate significant quantities of trapped 36Ar. The trapped Ar 
appears to be essentially equal to that of atmosphere (295.5) so the plateau and isochron 
ages are equivalent. The isochron data points are scattered so the plateau age (3 .82 ± 
0.06 Ma) is the best estimate for the eruption of the PI-cone flow. 
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LC 17-96 (Lunar Crater flow) shows a saddle-shaped age spectrum but the inverse 
isochron suggests that the trapped 40 Ar/36 Ar component is not significantly above 
atmosphere. The goodness of fit measure, MSWD is below 2.0, which indicates 
statistically meaningful results. Therefore. the isochron age of2.97 ± 0.06 Ma is the 
preferred eruption age ofthe Lunar Crater flow. 
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LCAD43-96 (Basaltic andesite) has a much more discordant age spectrwn than other 
Lunar Crater samples. Although the age spectrwn is disturbed, a plateau age of21.43 ± 
0.32 Ma can be calculated. This apparent age is analytically equivalent to the isochron 
age of21.79 ± 0.36 Ma indicating that excess argon is not present in significant 
quantities. The isochron age is the preferred age estimate for the eruption of the basaltic 
andesites. 
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LC38-96 (H-cone flow) has an age spectrum and isochron very similar to those for 
LCAD40-96 (P l-eone flow). The isochron has a MS WD greater than two so the plateau 
age (3.82 ± 0.05 Ma) is the preferred estimate for the eruption of the H-cone flow. 
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LC18-96 (Qc-cone flow) has extreme atmospheric contamination and was aborted after 
two heating steps. 

LC45-96 (C-cone flow) has an age spectrum and isochron that appear reasonable with 
respect to plateau and MSWD, however the 40Ar/39Ar analysis itself was poor. Some 
basalts contain large quantities of atmospheric argon that can be detrimental to the mass 
spectrometer. Six steps were obtained for the sample, but the data quality did not 
improve and the sample was aborted. The six steps yield a plateau age of 1.56 ± 0.64 
Ma and an isochron age of0.39 ± 0.64 Ma, however due to the large uncertainty, it is 
not appropriate to assign an eruption age for the C-cone flow. 

i 
:;; 
• 

I 

" 
0 

)4 

I' . 
II I 

' 
"' 

0 
' "'' ' 

10 20 

00035 

0 0030 

()002.'i 

0Jl02U 

!) (X)l~ 

!)().')10 

ft(KIIJ5 

L# 7403• LCAD45·96 Wholerock 

I 

30 

I 

01 

1 56±0_64 Ma 

I 
' • ' ,., F 

·~ "' .,, 
Integrated Ag~: "'3.8 ± lO Ma 

40 so 60 10 so 90 100 

Cumulative %3~Ar Released 

L# 7403 (B·F): LC4S-96 Wholerock 
lsochron nge = 0.39 ± 1.3 Ma 
fOAr/'JfJAr = 299,6 ± 7.6 
MSWD•O I 

000110 030 040 050 0.60 070 080 0.90 100 110 
OJlO 0 HI 0 zo 



lJ: 
APPENDIX }t SAMPLE LOCATIONS FOR GEOCHEMICAL DATA 

Sample# Sample Description Latitude Longitude 
LC2-95 Tertiary andesites 
LC3-95 Tertiary andesites 
LC5-96 Marcath Flow 
LC6-96 Tuff of Lunar Cuesta 
LC7-96 South Kidney Butte 
LC8-96 BlueJay basalt flow 
LC9-96 cone north of Lunar Crater 
LCI0-96 Lunar Crater flow 
LCJI-96 B-cone flow 
LC12-96 Smith Twins flow 
LC13-96 cone south of Citadel Mountain 
LC14-96 C-cone flow 
LC15-96 J-cone lava lake material 
LC16-96 P l-eone flow at Lunar Crater 
LC17-96 Lunar Crater flow in crater 
LC18-96 Qc-cone flow at Lunar Crater 
LC19-96 PI-cone flow 
LC20-96 J-cone flow 
LC21-96 PI-cone at vent (dike) 
LC22-96 C-cone flow 
LC23-96 R-cone flow 
LC24-96 PI-cone flow 
LC25-96 West Kidney Butte 
LC26-96 P l-eone flow 
LC27-96 C-cone flow 
LC28-96 C-cone flow 
LC29-96 C-cone flow 
LC30-96 C-cone flow 
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APPENDIX.It SAMPLE LOCATIONS FOR GEOCHEMICAL DATA 

Sample# Sample Description Latitude Longitude 
LC31-96 Basaltic andesite 
LC32-96 Smith Twins flow 
LC33-96 Qc-cone flow 
LC34-96 Qc-cone flow 
LC35-96 cone east of Lunar Crater 
LC36-96 C-cone flow 
LC37-96 R-cone flow 
LC38-96 H-cone flow 
LC39-96 C-cone flow 
LCAD40-96 P l-eone flow 
LC41-96 Easy Chair Crater maar 
LC42-96 Lunar Lake maar 
LCAD43-96 Basaltic andesite 
LC44-96 P l-eone flow 
LC45-96 C-cone flow 
LC46-96 C-cone flow 
LC47-97 H-cone flow 
LC48-97 H-cone flow 
LC49-97 H-cone flow 
LC50-97 R-cone flow 
LCSI-97 R-cone flow 
LC52-97 R-cone flow 
LC53-97 Small spatter rampart 
LC54-97 Lunar Crater cone basalt 
LC55-97 Qc-cone flow 
LC56-97 Qc-cone flow 
LC57-97 Qc-cone flow 
LC58-97 Qc-cone flow 
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Figure G. Lunar Crater quadrangle map after Ekren eta!. (1972). Map shows the 
location of samples collected in the LCVF for geochemical data. 
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Figure D. Map shows the location of samples collected on Citadel Mountain 
for geochemical data, after Ekren et al. ( 1972). 
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