Comparative study of zinc bis-quinolates and lithium mono-quinolates: Investigation of the effect of coordination geometry on electroluminescence performance

Flocerfida Lalo Endrino
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation
https://digitalscholarship.unlv.edu/rtds/1242

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
COMPARATIVE STUDY OF ZINC BIS-QUINOLATES AND LITHIUM MONO-QUINOLATES: INVESTIGATION OF THE EFFECT OF COORDINATION GEOMETRY ON ELECTROLUMINESCENCE PERFORMANCE

by

Flocerfida Endrino

Bachelor of Science
University of Nevada, Las Vegas
1999

A thesis submitted in partial fulfillment of the requirements for the

Master of Science Degree
Department of Chemistry
College of Sciences

Graduate College
University of Nevada, Las Vegas
May 2001
The Thesis prepared by

Flocerfida Lalo Endrino

Entitled

Comparative study of Zinc Bis-Quinolinolato and Lithium Mono-Quinolinolates: Investigation of the Effect of Coordination Geometry on Electroluminescence Performance.

is approved in partial fulfillment of the requirements for the degree of

Master of Science

Examination Committee Chair

Examination Committee Member

Examination Committee Member

Graduate College Faculty Representative
ABSTRACT

Comparative Study of Zinc Bis-Quinolates and Lithium Mono-Quinolates: Investigation of the Effect of Coordination Geometry on Electroluminescence Performance

By

Flocrefida Endrino

Dr. Linda S. Sapochak, Examination Committee Chair
Assistant Professor of Chemistry
University of Nevada, Las Vegas

Metal (8-quinolinolato) (Mq₈) chelates have proven to be viable for use in organic light-emitting devices (OLEDs), both as the active emitter layer and as the electron-transporting host in dye-doped OLEDs. Whether serving as the emitter layer or host material the energy level-alignment affecting charge injection efficiency and charge mobility properties are of equal importance. Substitution of the 8-quinolinolato ligand or substitution of different metal ions has been shown to shift absorption and emission energies, which can modify the relative energy level alignments of the HOMO and LUMO levels at charge injection interfaces in an OLED. Furthermore, substitution of metal ions of different oxidation states will result in differing coordination geometries of the resulting metal chelates. For Alq₃, the electron transport properties and the good thermal stability of vapor-deposited films have been attributed to its octahedral geometry. In this work, we present a comparative study of the photophysical (absorption and emission) properties and thermal stability properties of methylated zinc bis-quinolates and lithium mono-quinolates.
Results are related to aluminum tris-quinolates and implications on electroluminescence performance will be discussed.
TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

ACKNOWLEDGEMENTS ... x

CHAPTER 1 ORGANIC ELECTROLUMINESCENCE .. 1
 1.1 Introduction .. 1
 1.2 Background .. 3
 1.3 Previous Studies of Znq and Liq Materials ... 10

CHAPTER 2 MATERIAL SYNTHESIS AND CHARACTERIZATION 16
 2.1 Synthesis of metal 8-quinolinolato chelates ... 16
 2.2 Material characterization ... 20
 2.3 Synthetic procedures ... 35

CHAPTER 3 X-RAY ABSORPTION SPECTROSCOPIC CHARACTERIZATION 42
 3.1 Background .. 42
 3.2 Introduction .. 43
 3.3 Experimental method .. 45
 3.4 Results and discussions ... 47

CHAPTER 4 PHOTOPHYSICAL STUDIES OF METAL CHELATES 57
 4.1 Introduction .. 57
 4.2 Experimental .. 59
 4.3 Absorption spectroscopic results .. 60
 4.4 Photoluminescence spectroscopic results ... 65
 4.5 Discussion and conclusions ... 69

CHAPTER 5 ELECTROLUMINESCENCE DATA ... 72
 5.1 Device fabrication ... 72
 5.2 Device testing ... 74
 5.3 Calculation of electroluminescence and power efficiencies 74
 5.4 Electroluminescence results ... 75

CHAPTER 6 CONCLUSIONS .. 87
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Aluminum Tris (8-Quinolinolato) (Alq$_3$)</td>
</tr>
<tr>
<td>1.2</td>
<td>Organic Light Emitting Device</td>
</tr>
<tr>
<td>1.3</td>
<td>Proposed mechanism of organic electroluminescence</td>
</tr>
<tr>
<td>2.1</td>
<td>General synthetic scheme for zinc bis (8-quinolinolato) chelates</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesized zinc (8-quinolinolato) chelates</td>
</tr>
<tr>
<td>2.3</td>
<td>General synthetic scheme for lithium bis (8-quinolinolato) chelates</td>
</tr>
<tr>
<td>2.4</td>
<td>Synthesized lithium (8-quinolinolato) chelates</td>
</tr>
<tr>
<td>2.5</td>
<td>Interpretation for 2 sets of quinolate ligands arising in different solvents</td>
</tr>
<tr>
<td>2.6</td>
<td>FT-IR spectra of Znq$_2$</td>
</tr>
<tr>
<td>2.7</td>
<td>FT-IR spectra of Liq</td>
</tr>
<tr>
<td>2.8</td>
<td>DSC scans of Alq$_3$ and Znq$_2$ showing endothermic and exothermic scans</td>
</tr>
<tr>
<td>2.9</td>
<td>First and second heating cycles of Zinc bis (8-quinolinolato) chelates</td>
</tr>
<tr>
<td>2.10</td>
<td>Cyclic voltammograms for Alq$_3$ and Znq$_2$</td>
</tr>
<tr>
<td>3.1</td>
<td>Cls NEXAFS spectra of Alq$_3$ and Znq$_2$</td>
</tr>
<tr>
<td>3.2</td>
<td>Illustration of the effects of metal ion substitution on the electron distribution of the quinolate ligand</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic representation of the metal ligand (M-q) bonding character</td>
</tr>
<tr>
<td>3.4</td>
<td>C 1s and N 1s NEXAFS spectra of nMeq$_2$ Zn$_2$</td>
</tr>
<tr>
<td>3.5</td>
<td>C 1s and N 1s NEXAFS spectra of nMeqLi</td>
</tr>
<tr>
<td>3.6</td>
<td>O 1s NEXAFS spectra of nMeqLi</td>
</tr>
<tr>
<td>4.1</td>
<td>Absorption spectra of Mq$_n$ in CH$_2$Cl$_2$ and DMF</td>
</tr>
<tr>
<td>4.2</td>
<td>Absorption spectra of nMeq$_2$Zn and nMeqLi in CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>4.3</td>
<td>Absorption spectra of Nmeq$_2$Zn and nMeqLi in DMF</td>
</tr>
<tr>
<td>4.4</td>
<td>Emission spectra of nMeq$_2$Zn in DMF</td>
</tr>
<tr>
<td>4.5</td>
<td>Emission spectra of nMeqLi in DMF</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic representation of an organic light emitting device</td>
</tr>
<tr>
<td>5.2</td>
<td>α-NPD</td>
</tr>
<tr>
<td>5.3</td>
<td>IV Curve for nMeq$_2$Zn and Alq$_3$ as a reference</td>
</tr>
<tr>
<td>5.5</td>
<td>Light output vs. current for nMeq$_2$Zn and Alq$_3$ as a reference</td>
</tr>
<tr>
<td>5.5</td>
<td>IV Curve for nMeq$_3$Al</td>
</tr>
<tr>
<td>5.6</td>
<td>Light Output vs. current for nMeq$_3$Al</td>
</tr>
<tr>
<td>A-1</td>
<td>FT-IR spectra of Znq$_2$</td>
</tr>
<tr>
<td>A-2</td>
<td>FT-IR spectrum of 2Meq$_2$Zn</td>
</tr>
<tr>
<td>A-3</td>
<td>FT-IR spectra of 4Meq$_2$Zn</td>
</tr>
<tr>
<td>A-4</td>
<td>FT-IR spectra of 5Meq$_2$Zn</td>
</tr>
<tr>
<td>A-5</td>
<td>FT-IR spectra of Liq</td>
</tr>
<tr>
<td>A-6</td>
<td>FT-IR spectra of 4MeqLi</td>
</tr>
<tr>
<td>A-7</td>
<td>FT-IR spectra of 5MeqLi</td>
</tr>
<tr>
<td>B-1</td>
<td>Decomposition Temperature for Znq$_2$</td>
</tr>
<tr>
<td>B-2</td>
<td>Decomposition Temperature for 2Meq$_2$Zn</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LIST OF TABLES

2.1 1H NMR Chemical shifts in ppm for Znq$_2$... 22
2.2 1H-NMR Chemical shifts in ppm for nMeq and nMeqLi in DMSO-d$_6$ 22
2.3 1H-NMR Chemical shifts in ppm for Liq and q in CDC$_3$ 23
2.3 Chemical Shift change between 8-quinolinol and Liq in DMSO-d$_6$ and CDC$_3$. 24
2.4 Assignments of FT-IR peaks for zinc bis(8-quinolinolato)................................. 26
2.5 Assignments of FT-IR peaks for zinc bis(8-quinolinolato)................................. 26
2.6 Thermal analysis results ... 28
2.7 HOMO/LUMO levels and redox potentials of Alq$_3$ and Znq$_2$ 34
3.1 C 1s NEXAFS Data for Mq$_n$ chelates ... 50
3.2 C 1s NEXAFS Data for nMeq$_2$Zn chelates ... 52
3.3 N 1s NEXAFS Data for nMeq$_2$Zn chelates ... 52
3.4 C 1s NEXAFS Data for nMeqLi chelates ... 55
3.5 N 1s NEXAFS Data for nMeqLi chelates ... 55
3.6 O 1s NEXAFS Data for nMeqLi chelates ... 55
4.1 Absorption Data for nMeq$_2$Zn in different solvents ... 62
4.2 Absorption Data for nMeqLi in different solvents .. 62
4.3 Absorption λ_{max} and energy shifts from Mq$_n$... 64
4.4 Photophysical Data of Mq$_n$ in CH$_2$Cl$_2$. ... 65
4.5 Photophysical Data of Mq$_n$ in DMF ... 66
4.6 Photophysical Data of nMeq$_n$M in CH$_2$Cl$_2$. .. 66
4.7 Photophysical Data of nMeq$_n$M in DMF ... 67
5.1 EL spectral data .. 75
5.2 EL device data .. 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGEMENTS

I would like to give my deepest thanks to Prof. Linda Sapochak, who have given me insurmountable support throughout my undergraduate, as well as graduate years. She has given me encouragement and taught me valuable skills and knowledge. Since she supported and trusted my independence laboratory, she has allowed me to think on my own, therefore, I have learned greatly from my own imagination, as well as mistakes. Thank you for allowing me to be in your group, it is an absolute pleasure working for and with you.

I wish to thank Prof. Lydia McKinstry, Prof. Dave Hatchett and Prof. Malcolm Nicol for being on my examination committee, and for providing invaluable advice and suggestions regarding my thesis.

A special mention must be made of Prof. Dennis Lindle and his post-doctorates, Dr. Oliver Hemmers and Dr. Ponnusamy Nachimuthu whose valuable guidance is deeply appreciated in carrying out NEXAFS experiments and in interpreting data.

I must thank Dr. Paul Burrows at Pacific Northwest National Laboratories for fabricating and testing my devices for the Znq₂ materials and also Prof. Stephen Forrest of Department the Electrical Engineering, Princeton University for fabricating and testing Alq₃ devices which was used in this thesis.

I wish to thank the faculty and staff of Department of Chemistry, UNLV for making my six years stay here both pleasant and enjoyable. Special thanks to the Department
Chair, Prof. Kathleen Robins, Graduate Coordinator, Prof. Spencer Steinberg, and Office Manager, Ms. Juanita Lytel and Mark Miyamoto, for their support and assistance. Special thanks to the staff of the Graduate College: Carol Hoefle, Beverly Petrelis and Dr. Harriet Barlow for their kind hearted assistance throughout my graduate coursework.

I must thank my fellow graduate students Asanga Padmaperuma, Sanjini Nanayakkara and Asanga Ranasinghe along with undergraduates, Nancy Washton, Jeff Marshall, John Thornton, Daniel Fogarty, Greg Schmett, Shino Magaki, Joe Baker and James Cebe for all the assistance they gave me in my research and in writing this thesis.

Special thanks for the funding from NSF/CAREER – DMR, Research Corporation, ORAU, NSF/EPSCoR-Interface Science Program and DOE for the thermal analysis equipment in carrying out my research. I would also like to express my gratitude to Graduate College and the Department of Chemistry for financial support, which was most essential for my stay in USA.

I would like to thank my family. Since I left Philippines 8 years ago, even though I am almost 5,000 miles away from home, their spirits are always and forever within me. Edgardo Endrino and Florliza Endrino, my parents, who have provided their love, guidance and financial support. My sisters, Celeste, Florida, and Cassandra Mayer, although we have missed the company of one another, their love will always be cherished.

Finally, I would like to thank my soul mate, my best friend, my partner, and my love, Jasper Benincasa. Thank you for your unconditional love and for always believing in me, and supporting my dreams. You complete me.
CHAPTER 1

ORGANIC ELECTROLUMINESCENCE MATERIALS

1.1. Introduction

In the past decade there have been significant developments in the advancement of
display technologies. Two of the most common types of displays that are found in almost
every household are the cathode ray tube (CRT) and liquid crystal display (LCD). CRTs
used for television sets and computer monitors are somewhat limited because they
consume relatively large amounts of electricity. The single electron beam design is prone
to misfocus. The CRTs high voltage electric circuits and strong electromagnetic fields
can produce harmful electromagnetic radiation. Finally, CRTs are simply heavy and
bulky. These downfalls have led to a continuous evolution of display technology and
ultimately to the development of the first flat panel display based on LCD technology in
the 1970's. Although LCD's are relatively lightweight and have low power
consumption, they are beset by high prices, poor viewing angles, and low contrast and
low luminance. A new technology that can be used in flat panel displays is based on
organic electroluminescence (EL). Although organic electroluminescence from
anthracene and other polymers was demonstrated much earlier, the rebirth of this
technology marked by the demonstration of Tang and Van Slyke that efficient
electroluminescence can be achieved with an organic material, aluminum tris(8-quinolinolato) (Alq3) (see Figure 1.1).\(^{(4)}\) By preparing organic materials as very thin films on a transparent anodic substrate (indium tin oxide coated glass) capped with a low work function metal cathode, these investigators showed that organic light-emitting devices (OLED’s) can provide high brightness at drive voltages less than 10V (see Figure 1.2).

\[\text{Figure 1.1. Aluminum tris-(8-quinolinolato) (Alq}_3\text{).}\]

\[\text{Figure 1.2. Organic Light-Emitting Device (OLED).}\]
One of the advantageous properties of OLED’s is that organic materials can be synthetically modified to provide light emission of all colors throughout the visible spectrum. Also, OLED’s are relatively easy to fabricate, have low power consumption and high brightness, without high cost.\(^{(5)}\) Since the report by the Kodak researchers over a decade ago, advancements of research and developments of new materials and device architectures has led to products currently available in the marketplace based on organic EL.\(^{(1)}\) However, the realization of a full-color flat-panel display requires a better understanding of the phenomenon of organic EL including optimization of the necessary properties of the constituent organic materials.

1.2 Background

OLED’s can be fabricated in several ways. The most common configuration is still the one proposed by Tang and Van Slyke, which provided the first efficient electroluminescence from Alq₃ as shown in Figure 1.2. A hole-transporting layer (HTL) composed of a tertiary aromatic amine is deposited by thermal evaporation onto an indium-tin oxide (ITO) coated glass substrate, serving as the transparent anode. This is followed by thermal evaporation of the emissive layer, which also serves as the electron transport layer (ETL). The OLED is completed by capping with a low work function cathodic material, typically a Mg/Ag alloy. Electroluminescence (EL) occurs when electrons and holes are injected and transported through the device under an applied voltage and form excitons near the organic heterojunction, which decay to give light emission. The proposed mechanism of organic electroluminescence is depicted in Figure 1.3.
For efficient EL the emissive material requires the optimization of several properties including: 1) high PL efficiency; 2) sublimation without chemical degradation; 3) appropriate energy-level alignment with the cathode and hole-transport layer (HTL) for efficient charge injection and transport; and 4) ability to form structurally stable films. All of these material properties depend on the molecular and electronic structure of the emitter molecule, as well as how it packs in the solid state. In fact all these material properties are so closely interrelated that often one property will be enhanced while another is sacrificed. Systematic studies of closely related materials are required to understand which properties are most important and to guide the design of optimized materials.

Many derivatives of Alq$_3$ have been investigated as emitter materials, including those in which with the metal ion has been substituted with other trivalent metals (M$^{3+}$ =
Ga, In, and Sc)\(^{(6)}\) and with the 8-quinolinol ligands replaced with other substituents (F, Cl, NO\(_2\))\(^{(7)}\), CN\(^{(8)}\) and alkyl\(^{(9,10)}\) groups). Kido and Iisumi, recently showed that aluminum tris(4-methyl-8-quinolinolato) (4Meq\(_3\)Al) exhibited a larger EL efficiency\(^{(11)}\) than Alq\(_3\).\(^{(4)}\) Also, this material was later shown to exhibit both a higher photoluminescence (PL) quantum efficiency than Alq\(_3\) both in solution and in the solid state.\(^{(12)}\) However, despite many experimental and theoretical studies of the archetypal Alq\(_3\),\(^{(13)}\) systematic analyses of the effects of small chemical changes are sparse and we lack a roadmap for improving on the overall electroluminescence (EL) device performance of Alq\(_3\).

We recently reported a systematic study on the effect of methylation at different positions of the 8-quinolinol ligand in metal tris(n-methyl-8-quinolinolato) chelates (nMeq\(_3\)M: \(n = 0, 3, 4, 5; M = \text{Al}^{3+} \text{and Ga}^{3+}\)) on their photophysical, thermal and electroluminescence properties.\(^{(14)}\) In a series of homologous family of metal chelates where the metal ion is the same, we showed that methylation of the 8-quinolinol ligand decreased the crystalline melting point of the metal tris-chelates and increased the glass transition temperature of the amorphous materials, compared to the unsubstituted analogues; in both cases this was indicative of reduced intermolecular interactions. Although the 4Meq\(_3\)M chelates exhibited the highest PL and EL efficiencies, these characteristics were accompanied by higher EL device operating voltages in the corresponding OLED’s.

The differences in EL performance of the nMeq\(_3\)M chelates was related to the changes in material properties caused by methylation of the ligand. The substantially larger PL efficiencies (\(\phi_{\text{PL}}\)) for C-4 methylated derivatives contributed to their larger EL efficiencies (\(\eta_{\text{EL}}\)). However, for all methylated derivatives, if charge injection and
transport were similar and ϕ_{PL} was the dominating factor for high EL efficiencies, then the ratio of relative EL and PL efficiencies ($\eta_{\text{EL}} / \phi_{\text{PL}}$) should all be close to 1.0. Indeed, this ratio was < 1.0 for 4Meq$_3$Al, but > 1.0 for 5Meq$_3$Al. For the gallium series, all ratios were > 1.0, with 4Meq$_3$Ga showing the smallest ratio. This data suggested that charge injection and/or transport efficiencies were not the same for these materials and was reduced by methylation of the pyridyl ring for both Alq$_3$ and Gaq$_3$, as compared to the other methylated derivatives. This effect was less so for the nMeq$_3$Ga. Higher operating voltages required for OLED's utilizing 4Meq$_3$Al is also consistent with this data.

Since methylation of the pyridyl ring (C-4 position) causes only very small shifts in the absorption energy and thus does not significantly shift the energy of either the HOMO or LUMO compared to the unsubstituted analogues, it seemed likely that energy level matching of the M_{q_n} with the metal cathode and the HTL were similar to the unsubstituted analogues. As a result, it was less likely that charge-injection efficiency would be significantly affected by C-4 methylation. Therefore, the reason for the higher operating voltages was due to poorer electron transport through the metal/organic interface region.

The efficiency of charge-transport in organic molecular crystals is enhanced by strong intermolecular interactions of the polarizable π-system. There are two strong interactions in the solid state that must be accounted for: $\pi-\pi$ stacking interactions and hydrogen bonding through the phenolic oxygen with the adjacent molecules. Although vapor-deposited films of Alq$_3$ and Gaq$_3$ are amorphous, crystallographic data for single crystals provided important information about their molecular packing preferences. For
example, Alq₃ and Gaq₃ showed strong dipolar π–π stacking interactions (3.5–3.9 Å) of the 8-quinolinol ligands between adjacent molecules with preferential overlap of the pyridyl rings.¹⁵,¹⁶,¹⁷ Since the pyridyl ring is the location of the LUMO, this explains the higher electron versus hole mobility in Alq₃ and related metal(8-quinolinolato) chelates. Therefore, it is expected that methylation of the 8-quinolinol ligand will decrease π–π stacking because of steric factors thereby reducing the cohesive forces between molecules.

On the other hand, hydrogen-bonding interactions between the phenolic oxygen with H-atoms at the C-5 and C-4 positions on adjacent molecules also have been identified for Gaq₃.¹⁷ Therefore, it is not unexpected that a decrease in π–π stacking due to steric factors, changes in polarity (via changes in the dipole moment of the ligand)¹⁸ and loss of hydrogen-bonding interactions of the metal chelates, will result upon methylation of the 8-quinolinol ligand. These changes will reduce the cohesive forces between molecules and analysis of the homologous series of methyl-substituted derivatives by thermal analysis revealed these differences.

In fact, 4Meq₃M chelates exhibited the lowest (~60°C vs. Alq₃) melting points of the series, clearly indicative of weaker intermolecular interactions. Glass transition temperatures were ~20°C higher than the unsubstituted analogues with no recrystallization of the amorphous state. This fact suggests that the entropic difference between the crystalline and amorphous states is small compared to Mq₃ materials. These differences in thermal properties result because C-4 methyl-substitution of the ligand acts to eliminate one of the H-bonding interactions, as well as to decrease the overlap between pyridyl rings of adjacent molecules. For 4Meq₃M chelates, a decrease in pyridyl ring
overlap therefore leads to inefficient electron transport properties since the pyridyl ring of the 8-quinolinol ligand is the site of the LUMO and, hence, the location of injected electrons.

The device operating voltage for 5Meq₃Al was also greater than that of Alq₃ but less so than for 4Meq₃Al chelates. The crystalline melting point of 5Meq₃Al was slightly lower than Alq₃, but it exhibited a high glass transition temperature with no recrystallization of the amorphous state, similar to 4Meq₃Al. C-5 methylation of the phenoxide ring will also result in decreased π–π stacking compared to Alq₃ with loss of the C-5 H-bonding interaction, but will not prevent preferential overlap of the pyridyl rings. Furthermore, unlike the 4Meq₃M chelates, in an OLED, hole-injection may be improved because the HOMO energy of Alq₃ is raised upon C-5 methylation. Therefore, 5Meq₃Al may also have closer energy level alignment with the HOMO of the HTL. We speculated, therefore, that both charge transport and hole injection efficiencies may be higher in 5Meq₃Al OLED's explaining why ηₑL/ΦₚL is much larger for 5Meq₃Al compared to 4Meq₃Al.

The effect of methylation of Gaq₃ on the thermal properties was similar to the aluminum series. However, the EL properties could not be explained in the same manner as Alq₃ and its methylated derivatives. Although the gallium series exhibited a decrease, approximately four times, in relative PL quantum efficiencies compared to the nMeq₃Al analogues, ηₑL/ΦₚL ratios were substantially larger for all nMeq₃Ga chelates. The gallium series were red-shifted in absorption energy, compared to the aluminum chelate analogues because of a higher HOMO energy resulting in improved energy level alignment and more efficient hole injection at the HTL/nMeq₃Ga interface.
operating voltage depends on both charge injection and charge transport efficiencies, enhancement of the former may outweigh the effects of reduced charge transport caused by methylation of the ligand.

Our results suggested that by a judicious choice of both the type of substituent group and the position on the 8-quinolinol ligand it may be possible to improve overall EL efficiency of metal tris(8-quinolinolato) chelates and achieve a balance between high \(\phi_{PL} \), charge injection efficiency and charge transport ability. The conclusions drawn from the thermal analysis data are important for understanding how methylation affects the physical properties of the metal chelates. However, such an interpretation is only valid when comparing a homologous series of compounds, and similar comparisons of unrelated materials would not be as useful.

In this thesis work, these systematic studies have been extended to investigate the effect of ligand methylation in zinc bis(8-quinolinolato) (Znq₂) and lithium mono(8-quinolinolato) (Liₗ) chelate materials. Since the photophysical property of metal (8-quinolinolato) chelates is centered on the ligand (i.e., metal ion is not directly involved in the PL transition), we expected that the effect of methylation on PL energies and efficiencies should be similar. However, the oxidation state of Zn and Li are +2 and +1 respectively and the number of ligands in the resulting metal chelates are reduced, which significantly modifies how these materials pack in the solid state due to these changes in the coordination geometry. Therefore, we expected to observe significant differences in device performance with these materials compared to the metal tris(8-quinolinolato) chelates if indeed charge transport is the dominating property for enhancing EL efficiencies in OLED’s.
1.3 Previous Studies of Znq₂ and Liq Materials

Although there are several reports on the photophysical,\(^{(19,20,21,22,23)}\) as well as
electroluminescence properties\(^{(22,23,24)}\) of Znq₂ and its 2Meq₂Zn derivative, the results are
inconsistent. One reason for the discrepancies in the photophysical data is that the
structure of the metal chelate was in question. No purification of the resulting metal
chelate had been performed, and elemental analysis suggested contamination from both
unreacted ligand and partially chelated metal salt. More recent studies of Znq₂ have also
lead to inconsistent reports of its absorption and photoluminescence energies in both
solution and in the solid state.\(^{(23)}\) One of the major obstacles in working with Znq₂
materials is their insolubilities and failed attempts to confirm the structure by single-x-
ray crystallography, as has been done for the metal tris(8-quinolinolato) chelates of
aluminum and gallium.\(^{(15)}\) Only the crystal structure for the dihydrate form of Znq₂ has
been reported showing that the 8-quinolinolato rings were mostly planar because of
repulsion by the water molecules coordinated to the zinc ion.\(^{(25)}\) On the other hand, Kai
reported structures for crystals grown by slow vacuum sublimation of Znq₂, as a
tetrameric structure\(^{(26)}\) rather than the bis-quinolate chelate. To date, it has not been
confirmed whether this was an anomaly due to the method of crystal growth, or indeed the
true form of Znq₂ anhydrous. Even molecular modelling of Mq₂ complexes using
ZINDO and ESSF methods provided conflicting results as one supporting a distorted
tetrahedral while the latter supports a planar structure for Znq₂.\(^{(27)}\) ZINDO is a semi-
empirical approach, while ESSF (Extensive Systematic Force Field) is a molecular
mechanics approach.
The photoluminescence efficiency of Znq₂ is known to be inferior to that of Alq₃ because of the more ionic nature of the bonding of the metal ion with the ligand. However, some researchers have reported that Znq₂ exhibits higher luminance output compared to Alq₃ therefore surmising that Znq₂ may be a better electron transporting material. However, no systematic studies of identical OLED devices or charge mobility studies have been reported.

Investigations of the electroluminescence device properties of Znq₂ have been previously reported by Hamada, who reported that the luminance output of Znq₂ was higher and voltage requirement lower than for Alq₃ when both were used as emitter materials in OLEDs. It was inferred that the electron mobility in Znq₂ might be higher than in Alq₃. However, it was not clear whether a direct comparison of identically prepared OLED’s of Znq₂ and Alq₃ was conducted. Because the device properties are very sensitive to: the thickness of the layers; cleaning protocol of the ITO glass coated substrate; and exposure time to air; therefore, it is important to fabricate all devices such that the common layers of the device (HTL and cathode layers) are deposited simultaneously, as done here. For a systematic study, this eliminates any variation in device performance due to fabrication.

Although fewer studies on the Liq chelate materials are available, Kido has suggested that this material could be used to enhance electron injection into Alq₃ – based OLED’s when deposited as a thin layer between the top cathode and the Alq₃ emitter layer. More recently, Schmitz reported results for Liq and 2MeqLi materials as both electron injection materials for Alq₃-based OLEDs and as blue emitter materials in OLED’s. However, material purity was again in question due to their inability to
obtain adequate elemental analysis. Thus, it is difficult to draw conclusions with regard to structure/function relationships.

The synthesis and characterization of anhydrous methylated zinc bis(n-methyl-8-quinolinolato) (nMeq₂Zn) and methylated lithium mono (n-methyl-8-quinolinolato) (nMeqLi), where n = 2, 4, 5 and their unsubstituted analogues, Znq₂ and Liq are presented in Chapter 2. After careful purification by high-vacuum temperature-gradient sublimation all materials were obtained with adequate elemental analyses. In the remaining chapters, analyses of differences in electronic structures via x-ray absorption spectroscopy (Chapter 3); photophysical properties (Chapter 4); and electroluminescence device performance (Chapter 5) are presented. In each chapter, the results for the zinc bis(8-quinolinolato) and lithium mono(8-quinolinolato) chelates will be compared and contrasted with the results obtained previously for the metal tris(8-quinolinolato) derivatives. We show that the metal ion, although not directly involved in the electronic transition responsible for PL and EL, has significant effects on EL performance of these materials via changes in coordination geometry of the resulting metal chelate. These effects also occur via electronic structure differences imparted by the character of the metal-ligand bond.

References

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

MATERIALS SYNTHESIS AND CHARACTERIZATION

2.1 Syntheses of Metal 8-Quinolinolato Chelates

Starting materials, 8-quinolinol, 8-hydroxyquinaldine, and reference materials, aluminum tris(8-quinolinolato) (Al₃q) and zinc bis(8-quinolinolato) (Znq₂) were obtained from Aldrich Chemical Co. The 4- and 5-methyl- 8-quinolinol ligands were prepared according to the published procedures reported previously by our research group. We synthesized zinc bis(8-quinolinolato) (Znq₂) and lithium mono(8-quinolinolato) chelates, as well as its 4C- and 5C- methylated derivatives. Zinc bis(2-methyl-8-quinolinolato) (2Meq₂Zn) was also synthesized.

2.1.a Syntheses of Zinc Bis(8-Quinolinolato) Chelates

There are several published procedures for synthesizing Znq₂. Utilization of diethyl zinc(II) in dry ether, as described by Hopkins was found to be impractical because of the moisture sensitive nature of diethyl zinc. Although this synthetic approach is reported to lead directly to anhydrous Znq₂, it provided low yields of product.

On the other hand, hydrated zinc salts, such as Zn(OAc)₂, ZnCl₂ and Zn(NO₃)₂, were more practical starting materials. All zinc chelates in this thesis were prepared by modifications of the synthetic procedure described by Nakamura, utilizing Zn(OAc)₂ dihydrate, as depicted in Figure 2.1. In general, the zinc salt and ligand were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
dissolved separately in methanol in a 1:2 molar ratio. The zinc salt solution was then added dropwise to the warm ligand solution with constant stirring to form a yellow amorphous precipitate. The resulting heterogeneous solution was then refluxed for 3 hours to complete the reaction. The metal chelate was isolated by filtration of the cooled reaction mixture and the resulting solid was washed first with a warm 50% aqueous solution of NaHCO₃ followed by warm methanol and then hexane. The crude dihydrate forms of the zinc bis(8-quinolinolato) chelates were isolated as solids in high yields (~80%), with the exception of 4Meq₂Zn. The low yield in this case was most likely due to loss of product during washings, because of the higher solubility of the 4-methyl derivative, as reported previously for 4Meq₃Al. The anhydrous metal chelates, identified by infrared spectroscopy and thermal analysis, were then obtained by heating the crude material at 110°C under vacuum for 24 hrs.

![Chemical structure](image)

Figure 2.1. General synthetic scheme for zinc bis (8-quinolinolato) chelates.

The zinc bis(8-quinolinolato) chelates synthesized and characterized in this thesis are depicted in Figure 2.2. Elemental analyses were within standard publication limits which is ± 0.4%, for all materials with the exception of 2Meq₂Zn. For this material, steric hindrance is imposed by the methyl group substituted at the 2-position of the 8-
quinolinol ring and significantly decreases the stability of the chelate as evidenced by the substantially lower thermal decomposition temperature compared to the other methylated zinc chelates. Therefore, this material may be less amenable to elemental analysis. Regardless, photophysical characterization was still performed and will be discussed. The exact structure of 2Meq2Zn is still in question.

![Chemical structures](image)

Figure 2.2. Synthesized zinc bis (8-quinolinolato) chelates: a) zinc bis(8-quinolinolato) (Znq₂); b) zinc bis(2-methyl-8-quinolinolato) (2Meq₂Zn); c) zinc bis(4-methyl-8-quinolinolato) (4Meq₂Zn); d) zinc bis(5-methyl-8-quinolinolato) (5Meq₂Zn).

2.1.b Syntheses of Lithium Mono (8-Quinolinolato) Chelates

There are few published procedures for synthesizing lithium mono(8-quinolinolato) chelates. Initial attempts to prepare Liq using the hydrated salts of LiCl or LiNO₃ were unsuccessful. A new synthetic procedure for preparing Liq and its methyl substituted derivatives from LiOH hydrate is described here. As illustrated in Figure 2.3, a 10% by wt. solution of LiOH hydrate in deionized water was added dropwise to a solution of the appropriate ligand dissolved in minimum amount of
absolute ethanol. The ligand solution was warmed and then was allowed to cool to room temperature before the lithium hydroxide solution was added. When a 1:1 molar ratio of the ligand to Li salt was used, the pH of the resulting solution was ~8, and a precipitate formed almost immediately, except in the case of the, 4MeqLi which took ~30 min. The crude product was then filtered and washed with a minimum amount of warm deionized water and 90 % ethanol, air-dried, then recrystallized from absolute ethanol. The recrystallized Liq was subjected to vacuum sublimation at 150°C (~10⁻² Torr) to remove the unreacted ligand, and the crude sublimate was further purified by high-vacuum temperature-gradient sublimation (~10⁻⁷ Torr) over a three-day period.

![Diagram](image)

Figure 2.3. General synthetic scheme for lithium mono(8-quinolinolato) chelates.

For this thesis, all methyl-substituted lithium chelates, as depicted in Figure 2.4, were prepared and purified in a similar manner and gave adequate elemental analyses. In contrast to our results, Schmitz reported that adequate elemental analysis could not be achieved for Liq and 2MeqLi because of the hydroscopic nature of the materials.¹² Schmitz prepared Liq from anhydrous LiOH in dry CH₂Cl₂, which resulted in a white crystalline solid that was dried under vacuum but was not further purified. Their TGA
analysis gave two weight-loss steps identical to our results for the recrystallized Liq. However, they attributed the first weight loss to dehydration rather than sublimation of unreacted ligand, which is likely the reason for their elemental analysis discrepancies.

![Synthesized lithium (8-quinolinolato) chelates: a) lithium(8-quinolinolato) (Liq); b) lithium (2-methyl-8-quinolinolato) (2MeqLi); c) lithium (4-methyl-8-quinolinolato) (4MeqLi); d) lithium (5-methyl-8-quinolinolato) (5MeqLi).]

2.2 Material Characterization

The structures and physical properties were characterized by 1H NMR (when possible), infrared spectroscopy, thermal analysis and elemental analysis obtained from NuMega Resonance Laboratories. The exact masses of the C, N, and H that was used to calculate the theoretical %C, %N and %H for elemental analysis was derived from the average mass from the % abundance of all the isotopes. The results are found to be adequate and they are within ± 0.4%, except for 2Meq$_2$Zn. The oxidation and reduction potentials of Alq$_3$ and Znq$_2$ were also determined by cyclic voltammetry.

2.2.a NMR Spectroscopic Characterization

There are limited reports of the 1H-NMR characterization of zinc and lithium (8-quinolinolato) chelates.(2,12,13) The 1H-NMR spectrum of Znq$_2$ synthesized in this thesis work was obtained using a Bruker AMX 400 MHz NMR by heating Znq$_2$ in DMSO-d$_6$.
directly in the NMR tube to dissolve the material. The resulting NMR spectrum exhibited broad peaks, but the chemical shift values were consistent with those previously reported by Baker (Table 2.1). Peak broadening at elevated temperatures has been observed previously by Schmidbauer for aluminum and gallium tris(8-quinolinolato) chelates. This broadening was attributed to a ligand-equilibrating process, where the more labile metal-nitrogen bond was believed to break and reform. However, more recently, Hopkins reported that Znq₂ exhibited two sets of aromatic protons in CDCl₃ but only one set of broad peaks in DMSO-d₆. This was explained by suggesting that Znq₂ may exist as a tetramer in the solid-state, as reported previously. According to single crystal x-ray analysis of crystals formed by high-vacuum sublimation of Znq₂, four Zn ions were shown to be coordinated with a total of eight ligands via bridging by the phenoxide oxygens of the ligand. Two of the Zn ions were hexacoordinate, and the other two were pentacoordinate, which could give rise to two different sets of aromatic protons in the ¹H NMR spectrum. Therefore, Hopkins surmised that the tetramer may be stable in the less polar CDCl₃ and partially dissociated to the bis-quinolinolato form in DMSO-d₆. As described in chapter 4 of this thesis, Znq₂ materials have strong interactions with the solvents. We believe this result is more consistent with an equilibrium between a tetrahedral and octahedral in solution. (See Figure 2.5)

Figure 2.5. Two sets of peaks for quinolate ligands may arise in different solvents due to solvent (S) coordination thus allowing equilibrium between a hexacoordinate (planar) and pentacoordinate (tetrahedral) metal.
Table 2.1 1H NMR Chemical Shifts in ppm for Znq$_2$.

<table>
<thead>
<tr>
<th></th>
<th>Znq$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baker$^{(13)}$</td>
</tr>
<tr>
<td>DMSO-d$_6$</td>
<td>+0.01 ppm</td>
</tr>
<tr>
<td>δH2</td>
<td>8.44</td>
</tr>
<tr>
<td>δH3</td>
<td>7.33</td>
</tr>
<tr>
<td>δH4</td>
<td>8.22</td>
</tr>
<tr>
<td>δH5</td>
<td>6.91</td>
</tr>
<tr>
<td>δH6</td>
<td>7.21</td>
</tr>
<tr>
<td>δH7</td>
<td>6.82</td>
</tr>
<tr>
<td>δHMe</td>
<td>----</td>
</tr>
</tbody>
</table>

Unfortunately, attempts to obtain 1H NMR spectra of the methylated derivatives of Znq$_2$ chelates in CDCl$_3$ and DMSO-d$_6$ were unsuccessful, because of the insolubility of the materials and the inability to conduct variable temperature NMR analysis. Even the most soluble material, 4Meq$_2$Zn would precipitate out of solution during the experiment giving poor results.

Table 2.2 1H NMR Chemical Shifts in ppm for nMeq and nMeqLi in DMSO-d$_6$.

<table>
<thead>
<tr>
<th></th>
<th>Na$^+/q^-$ Baker$^{(13)}$</th>
<th>q</th>
<th>Liq</th>
<th>4Meq</th>
<th>4MeqLi</th>
<th>5Meq</th>
<th>5MeqLi</th>
</tr>
</thead>
<tbody>
<tr>
<td>δH2</td>
<td>8.39</td>
<td>8.91</td>
<td>8.45</td>
<td>8.31</td>
<td>8.71</td>
<td>8.87</td>
<td>8.44</td>
</tr>
<tr>
<td>δH3</td>
<td>7.16</td>
<td>7.59</td>
<td>7.30</td>
<td>7.15</td>
<td>7.41</td>
<td>7.60</td>
<td>7.34</td>
</tr>
<tr>
<td>δH4</td>
<td>7.92</td>
<td>8.36</td>
<td>8.07</td>
<td>----</td>
<td>----</td>
<td>8.40</td>
<td>8.14</td>
</tr>
<tr>
<td>δH5</td>
<td>6.48</td>
<td>7.45</td>
<td>6.62</td>
<td>6.68</td>
<td>7.49</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>δH6</td>
<td>7.09</td>
<td>7.50</td>
<td>7.20</td>
<td>7.20</td>
<td>7.48</td>
<td>7.28</td>
<td>7.01</td>
</tr>
<tr>
<td>δH7</td>
<td>6.47</td>
<td>7.19</td>
<td>6.54</td>
<td>6.54</td>
<td>7.10</td>
<td>6.99</td>
<td>6.35</td>
</tr>
<tr>
<td>δHMe</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>2.53</td>
<td>2.66</td>
<td>2.54</td>
<td>2.38</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Not all lithium mono(8-quinolinolato) chelates were sufficiently soluble in CDCl₃ to obtain ¹H NMR spectra, but all were soluble in DMSO-d₆. However, as indicated by UV-Vis absorption spectroscopy experiments (see Chapter 4), the Liq chelates seem to dissociated to the Li⁺ cation and quinolate⁻ anion in the polar DMSO solvent, therefore the ¹H NMR of these materials is more representative of the solvated ion-pair rather than the actual chelate. The ¹H NMR spectra of all n-methyl-8-quinolinol (n = 0, 2, 4, and 5) ligands and lithium chelates were obtained in DMSO-d₆, and the chemical shift values, referenced from TMS = 0.00 ppm, and coupling constants are reported in Table 2.2

Table 2.3 ¹H NMR Chemical Shifts in ppm for Liq and 8-quinolinol (q) in CDCl₃.

<table>
<thead>
<tr>
<th></th>
<th>q</th>
<th>Liq</th>
</tr>
</thead>
<tbody>
<tr>
<td>δH₂</td>
<td>8.78</td>
<td>8.45</td>
</tr>
<tr>
<td>δH₃</td>
<td>7.38</td>
<td>7.30</td>
</tr>
<tr>
<td>δH₄</td>
<td>8.10</td>
<td>8.07</td>
</tr>
<tr>
<td>δH₅</td>
<td>7.30</td>
<td>6.62</td>
</tr>
<tr>
<td>δH₆</td>
<td>7.44</td>
<td>7.20</td>
</tr>
<tr>
<td>δH₇</td>
<td>7.21</td>
<td>6.54</td>
</tr>
<tr>
<td>δHMe</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

The proton resonances of Liq and 5MeqLi were shielded compared to the corresponding neutral ligands, 8-quinolinol (q) and 5Meq. The largest shielding effects (0.4-0.8 ppm upfield shifts) occurred for protons H₂, H₅, and H₇ for Liq and H₂ and H₇ for 5MeqLi. These chemical shift values are consistent with those reported by Baker for 8-quinolinol and the 8-quinolinol anion prepared by addition of aqueous NaOH in DMSO (Table 2.2).(13) The anionic form of the ligand can donate electron density into the aromatic ring system via the lone pair electrons on oxygen, thus shielding the aromatic...
protons. In contrast, all protons, including the methyl group are deshielded in the 4MeqLi NMR spectrum compared to the neutral ligand where the largest deshielding effects were observed for H2, H5 and H7.

Table 2.4 **Chemical Shift Change in ppm between 8-quinolinol and Liq in DMSO-d6 and CDCl3.**

<table>
<thead>
<tr>
<th>Sample</th>
<th>δH2 (ppm)</th>
<th>δH3 (ppm)</th>
<th>δH4 (ppm)</th>
<th>δH5 (ppm)</th>
<th>δH6 (ppm)</th>
<th>δH7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO-d6</td>
<td>0.46</td>
<td>0.29</td>
<td>0.29</td>
<td>0.83</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>CDCl3</td>
<td>0.32</td>
<td>0.08</td>
<td>0.12</td>
<td>0.78</td>
<td>0.24</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table 2.4 lists the difference of the chemical shift of 8-quinolinol (q) and Liq in DMSO-d6, more polar, and CDCl3, less polar (See Table 2.3), solvents. The larger difference observed for DMSO-d6 indicates that the aromatic protons are more shielded in the more polar solvent, indicative of stronger solvent interaction. As presented in chapter 3 and 4, there is more ionic character in the metal quinolate ligand bond in Liq than in Znq2 and Alq3. The more shielded aromatic protons suggest that there is delocalization of the lone pair on the phenoxide oxygen into the quinolate ligand.

2.2.b Infrared Spectroscopic Characterization

The infrared spectra of the following metal (8-quinolinolato) chelates have been previously reported: Znq2,2,15,16,17,18 2Meq2Zn,15,16 4Meq2Zn,16 Liq12 and 2MeqLi.12 In this thesis work, FT-IR spectra for zinc- and lithium- (8-quinolinolato) chelates were recorded as KBr pellets and as vapor-deposited films on NaCl plates on a Nicolet 210 FT-IR spectrometer. Consistent with the literature, metal (8-quinolinolato) chelates exhibit similar IR spectra with only small shifts in the peaks because of the metal ion and
change in coordination geometry. A comparison of the IR spectra of Znq₂ and Liq as a KBr pellets and as a vapor deposited films are shown in Figure 2.6 and 2.7. For all metal chelates reported here, no new peaks were observed in the film samples suggesting that no deleterious structural changes occur upon vapor deposition. IR spectra of the other metal chelates are presented in Appendix I and peak assignments are tabulated in Tables 2.5 and 2.6.

![Figure 2.6. FT-IR spectra of Znq₂: a) KBr pellet; b) vapor deposited film.](image1)

![Figure 2.7. FT-IR spectra of Liq: a) KBr pellet; b) vapor deposited film.](image2)
Table 2.5 Assignments of FT-IR Peaks in cm\(^{-1}\) for Zinc bis(8-quinolinolato) Chelates.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Znq(_2)</th>
<th>2Meq(_2)Zn</th>
<th>4Meq(_2)Zn</th>
<th>5Meq(_2)Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-O str + C-H bend</td>
<td>1110</td>
<td>1112</td>
<td>1101</td>
<td>1093</td>
</tr>
<tr>
<td>C-N str + C-H bend</td>
<td>1242</td>
<td>1238</td>
<td>1250</td>
<td>1242</td>
</tr>
<tr>
<td>Ring str + C-O str + C-H bend</td>
<td>1328</td>
<td>1329</td>
<td>1316</td>
<td>1319</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1605</td>
<td>1608</td>
<td>1605</td>
<td>1602</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1577</td>
<td>1571</td>
<td>1578</td>
<td>1577</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1468</td>
<td>1465</td>
<td>1468</td>
<td>1466</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1500</td>
<td>1506</td>
<td>1510</td>
<td>1506</td>
</tr>
<tr>
<td>CH-wag</td>
<td>790</td>
<td>790</td>
<td>802</td>
<td>853</td>
</tr>
<tr>
<td>M-O str + ring deformation</td>
<td>643</td>
<td>617</td>
<td>669</td>
<td>645</td>
</tr>
</tbody>
</table>

Table 2.6 Assignments of FT-IR Peaks in cm\(^{-1}\) for Lithium Mono(8-quinolinolato) Chelates.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Liq</th>
<th>2MeqLi</th>
<th>4MeqLi</th>
<th>5MeqLi</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-O str + C-H bend</td>
<td>1105</td>
<td>1101</td>
<td>1105</td>
<td>1089</td>
</tr>
<tr>
<td>C-N str + C-H bend</td>
<td>1240</td>
<td>1243</td>
<td>1245</td>
<td>1240</td>
</tr>
<tr>
<td>Ring str + C-O str + C-H bend</td>
<td>1321</td>
<td>1333</td>
<td>1326</td>
<td>1322</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1608</td>
<td>1589</td>
<td>1590</td>
<td>1571</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1573</td>
<td>1563</td>
<td>1572</td>
<td>1572</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1465</td>
<td>1460</td>
<td>1464</td>
<td>1467</td>
</tr>
<tr>
<td>Ring Stretching</td>
<td>1498</td>
<td>1504</td>
<td>1509</td>
<td>1504</td>
</tr>
<tr>
<td>CH-wag</td>
<td>792</td>
<td>799</td>
<td>802</td>
<td>832</td>
</tr>
<tr>
<td>M-O str + ring deformation</td>
<td>648</td>
<td>653</td>
<td>668</td>
<td>671</td>
</tr>
</tbody>
</table>

2.2.4 Thermal Analysis Characterization

As discussed in Chapter 1, the morphological stability of an organic material in an OLED is a crucial property for device reliability and long operating lifetimes. Ideally, formation of stable glassy films with high glass transition temperatures (T\(_g\)) well above
room temperature, where recrystallization at higher temperatures does not occur is desired. The morphological stability of Alq$_3$ has been attributed to its intrinsic polymorphic (multiple packing behavior), racemic nature and strong dipolar interactions,$^{(19)}$ giving rise to a large T$_g$ (175°C).$^{(20)}$ We recently reported the thermal analysis characterization of Alq$_3$, Gaq$_3$ and methyl-substituted derivatives.$^{(9)}$ Only thermal decomposition properties of Zn bis(8-quinolinolato) dihydrate have been reported previously.$^{(21)}$ Here we report the first detailed thermal analysis characterization of anhydrous zinc and lithium (8-quinolinolato) chelates.

Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed simultaneously using a Netzsch Simultaneous Thermal Analyzer (STA) system. Pure polycrystalline samples (5-8 mg) were placed in aluminum pans and heated at a rate of 20°C/min under a flow of N$_2$ gas at a rate of 50 mL/min. The temperatures of all phase transitions were measured including the melting temperature (T$_m$). Indium metal was used as the temperature standard. After the first heating, melted samples were cooled at a rate of 20°C/min to form glasses. The glass transition (T$_g$) and the crystallization point (T$_c_l$) were measured from a second heating of the glassy state. The T$_c_l$ is exothermic transitions and T$_m$ is endothermic transitions. The maximum weight loss temperature (decomposition temperature) was determined for each sample and reported as the maximum peak of the DTG (derivative of the TGA curve), as well as the onset of the TGA curve.

The thermal properties of Znq$_2$ and Liq and their methyl-substituted derivatives are presented in Table 2.7. A comparison of the results with the metal tris-chelates including the effect of coordination geometry on metal chelate stability, melting behavior
and glass transition is discussed below. The thermal gravimetric analysis (decomposition temperatures) of all materials studied are in Appendix II.

Table 2.7 Thermal Analysis Results.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>T_m (°C)</th>
<th>ΔH_{fusion} (kJ/mol)</th>
<th>T_g (°C)</th>
<th>$T_{\text{el Onset}}$ (°C)</th>
<th>$\text{Max. Wt. Loss Temp. (°C)(onset)}$</th>
<th>Max. DTGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znq_2</td>
<td>366</td>
<td>26.14</td>
<td>177</td>
<td>272</td>
<td>402</td>
<td>435</td>
</tr>
<tr>
<td>2Meq_2Zn</td>
<td>362</td>
<td>40.73</td>
<td>149</td>
<td>240</td>
<td>357</td>
<td>390</td>
</tr>
<tr>
<td>4Meq_2Zn</td>
<td>333</td>
<td>24.09</td>
<td>191</td>
<td>n.o.</td>
<td>416</td>
<td>449</td>
</tr>
<tr>
<td>5Meq_2Zn</td>
<td>371</td>
<td>24.05</td>
<td>202</td>
<td>324</td>
<td>411</td>
<td>445</td>
</tr>
<tr>
<td>Liq</td>
<td>366</td>
<td>14.32</td>
<td>n.o.</td>
<td>n.o.</td>
<td>477</td>
<td>518</td>
</tr>
<tr>
<td>4Meq_2Li</td>
<td>397</td>
<td>19.53</td>
<td>n.o.</td>
<td>n.o.</td>
<td>484</td>
<td>524</td>
</tr>
<tr>
<td>5Meq_2Li</td>
<td>423</td>
<td>21.36</td>
<td>n.o.</td>
<td>n.o.</td>
<td>505</td>
<td>527</td>
</tr>
</tbody>
</table>

*n.o. = not observable

Znq_2 exhibits several endothermic and exothermic transitions prior to a strong endothermic melting transition (T_m) at 364°C (see Figure 2.7). Similar transitions prior to T_m were observed for metal tris-quinolate chelates (Alq_3 and Gaq_3) and were attributed to polymorphic behavior. It is not unlikely that Znq_2 may exhibit polymorphic behavior because at least three polymorphic forms have been observed for copper bis(8-quinolinolato). Liq, on the other hand, exhibits a single melting transition at 397°C.

For all Alq_3 and Gaq_3 chelates, T_m transitions were accompanied by 2-13% weight losses. This weight loss is due to sublimation of the sample prior to decomposition at temperatures approaching 500°C. Znq_2 also exhibits a weight loss immediately following T_m, but it is much smaller (~2%) compared to the metal tris-chelates. Liq shows no detectable weight loss. Similar trends are observed when comparing the methyl-substituted derivatives of the metal tris- and bis-(8-quinolinolato)
chelates suggesting that, in general the Znq2 and Liq chelates are more difficult to sublime than the metal tris-chelates.

Upon methyl-substitution the T_m of the zinc bis(8-quinolinolato) chelates increases in the order $4\text{Meq}_2\text{Zn} < 2\text{Meq}_2\text{Zn} < \text{Znq}_2 < 5\text{Meq}_2\text{Zn}$. All the zinc chelates exhibit lower melting temperatures than the metal tris-chelates, but the effects of methyl-substitution on T_m are similar. For example, both $4\text{Meq}_3\text{Al}$ and $4\text{Meq}_3\text{Ga}$ melt at ~60°C lower temperature than the unsubstituted analogues, similarly $4\text{Meq}_2\text{Zn}$ melts at a ~40°C lower temperature compared to Znq2. In addition, multiple phase transitions were observed for $2\text{Meq}_2\text{Zn}$ and $5\text{Meq}_2\text{Zn}$, suggesting that these materials also exhibit polymorphism (see Figure 2.8).

For lithium mono(8-quinolinolato) chelates T_m increases in the order Liq$< 4\text{MeqLi} < 2\text{MeqLi} < 5\text{MeqLi}$. In this series, the 4Meq derivative does not exhibit the lowest melting transition, instead the unsubstituted material, Liq melts ~30°C lower than the methylated derivatives. Furthermore, both 4MeqLi and 5MeqLi melt at higher temperatures (~20-40°C higher) than the corresponding methylated materials in the zinc bis- and aluminum tris-chelates. The T_m of nMeqLi follows similar trend as the corresponding ligands.

The thermal stability trends for the Znq2 chelates increases in the order $2\text{Meq}_2\text{Zn} << \text{Znq}_2 < 5\text{Meq}_2\text{Zn} \leq 4\text{Meq}_2\text{Zn}$, which is similar to what is observed for the corresponding metal tris-chelates. On the other hand, Li chelates exhibit the highest stability with thermal decomposition temperatures (maximum of DTGA) exceeding 500°C for all materials.
Formation of the glassy state was accomplished by controlled cooling (20°C/min) of the crystalline material immediately following the melting transition in the first heating cycle. Figure 2.9 illustrates the first and second heating cycle of Znq₂ chelates. In the second heating cycle, Znq₂ revealed a glass transition (Tg) at 177°C, a recrystallization exotherm (Tc₁) at 272°C followed by three strong endothermic melting transitions. It is not known whether the three Tm peaks are due to polymorphism of the crystalline material or due to other species formed during the thermal experiment. Upon methyl substitution of Znq₂, Tg increase in the order 2Meq₂Zn << Znq₂ < 4Meq₂Zn < 5Meq₂Zn. Interestingly, the glass transition temperatures of Znq₂ and the methylated derivatives are almost identical to those of Alq₃, Gaq₃ and its methylated derivatives. Furthermore, all Znq₂ chelates recrystallized upon heating beyond Tg, except 4Meq₂Zn. Lithium mono(8-quinolinolato) chelates did not exhibit Tg nor other transitions in the second heating cycle.

![DSC scans showing distinct endothermic and exothermic transitions due to polymorphism for a) Alq₃ and less distinct transitions observed for b) Znq₂.](image)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 2.9. a) First heating cycle for nMeq\textsubscript{2}Zn chelates showing 4Meq\textsubscript{2}Zn with lowest T_m; and b) second heating cycle showing that 4Meq\textsubscript{2}Zn forms a stable glass with no T_c or T_m transitions.

2.2.d Electrochemical Characterization

The use of solution electrochemical processes to describe electron transfer reactions in the condensed phase is based upon the assumption that the difference in ionization potentials and electron affinities of these molecules in solution are equal to or smaller than those same energy differences in the condensed phase. Although this is not the case, provided that we maintain constant experimental conditions for all the samples tested, results may be related to the material properties through the relative differences of oxidation and reduction within a series of sample.

In order to correlate the HOMO/LUMO energies of the metal quinolate chelates it was assumed that the relative difference of the HOMO/LUMO energies is approximately
equal to the difference of the oxidation/reduction potential. Since the reduction process is similar to electron injection (e- put into LUMO) and the oxidation process is similar to hole injection (e- taken out of HOMO).

\[E^{0'} = V_{\text{red}} - V_{\text{ox}} \approx \Delta(\text{HOMO-LUMO}) \]

(1)

All non-aqueous electrochemical measurements were performed using CH Instruments Model CH1660 and CH1680 potentiostat/galvanostat connected in series and controlled by the electrochemical software. The experiments were made in a one-compartment cell. The potential of the working electrode was measured against a 0.1 M Ag/Ag+ reference electrode, and the counter electrode was a platinum sheet (6 cm2). Solutions of Alq\textsubscript{3} and Znq\textsubscript{2} in dry acetonitrile (MeCN) at a 10-4 M concentration were prepared with 0.1 M tetrabutylammonium trifluoromethanesulfonate (TBATf) as a supporting electrolyte. The electrochemical cell was degassed at 5 min. with UHP nitrogen prior to analysis. The width of the potential window used for each experiment was selected such that the voltammetric peaks corresponding to oxidation and reduction processes were observed. Alq\textsubscript{3} and Znq\textsubscript{2} cyclic voltammograms were recorded with a scan rate of 1V/sec and 2V/sec, respectively.

Alq\textsubscript{3} and Znq\textsubscript{2} were investigated under similar experimental conditions (i.e., concentration and degassing processes). At a single scan, Alq\textsubscript{3} exhibit a single oxidation reduction process. However, in order to acquire a CV scan that is representative of the solution, the sample must be allowed to equilibrate. Upon equilibration of Alq\textsubscript{3} and Znq\textsubscript{2} samples, these materials exhibited more than one redox process. Other reduction processes were not identified of its character or type of species. However, it is possible that they might be due to other oxidation processes for Alq\textsubscript{3} that have not been identified.
or over oxidation which can lead to decomposition/speciation. The CV's for Alq₃ and Znq₂, which shows multiple scans, are depicted in Figure 2.10, where the oxidation and reduction peaks are emphasized. The oxidation and reduction potentials for Alq₃ were 2.40 V and +0.78 vs. Ag/Ag⁺ and were +2.4 V and −1.359 V vs. Ag/Ag⁺ for Znq₂. Other peaks are not identified. The peak potentials were used to estimate the differences in E° (= $V_{\text{red}} - V_{\text{ox}}$) values for the reduction and oxidation processes of Alq₃ and Znq₂ realizing that the peak potentials may deviate from the true E°'s by ±0.05 V, because of the sweep rate dependence of the position of these voltammetric peaks.

Different authors have reported cyclic voltammogram and HOMO/LUMO energies for Alq₃ and Znq₂, but no direct comparison of their electrochemical analysis have been reported. It is important that samples are run under the same conditions in order to correlate the results, since cyclic voltammetry is diffusion dependent. Therefore, differences in concentrations, scan rates and instrumentation can significantly change the redox potentials. Anderson et al. and Hopkins et al. reported the HOMO and LUMO energies for Alq₃ and Znq₂ determined from thin film and solution ultraviolet photoelectron spectroscopy (UPS) and absorbance/luminance data. The difference between the LUMO and the HOMO states should be the same or close to the value of the difference between the reduction and oxidation potentials based on the first assumption. The potential differences between the oxidation and reduction processes ($V_{\text{ox}} - V_{\text{red}}$) were very similar to the difference of the reported value for the ΔHOMO/LUMO for Alq₃, but results for Znq₂ are not in agreement with the published ΔHOMO/LUMO differences via UPS (See Table 2.8). 1H-NMR and UV-Vis spectroscopy experiments suggest that (see chapter 4), Znq₂ has strong solvent interactions, especially with polar solvents, such
as acetonitrile (which was used for CV characterization) that the oxidation and reduction potentials are probably not representative of a single Znq2 species. However, if we look at the relative differences of the ΔG (Gibbs' Free Energy) values of Alq3 and Znq2 using the following equation:

$$\Delta G = -nFE^o'$$ \hspace{1cm} (2)

where n is the number of electrons transferred ($=1$); F (Faraday's Constant) = 9.64846×10^4 C/mol; and $E^o' = V_{\text{red}} - V_{\text{ox}}$. The values found for Alq3 and Znq2 are -3.0682×10^5 J and -3.6278×10^5 J, respectively. These values, if compared in terms of energies, might suggest that the variation for Znq2 may be within the experimental error. Since this experiment was performed in solution, cyclic voltammetry may not be the best representation of the HOMO/LUMO energies of metal quinolates. However, if the experiment was carried out carefully and efficiently, results may be used to determine the relative differences and similarities in the reduction potentials that can be correlated to the charge injection properties of these materials. If accessible, a more accurate technique to extract HOMO/LUMO energies would be through x-ray spectroscopic experiments, which are carried out in the solid state.

Table 2.8 HOMO/LUMO Levels and Redox Potentials of Alq3 and Znq2.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>HOMO (eV) ± 0.15 eV</th>
<th>LUMO (eV) ± 0.15 eV</th>
<th>V_{red} vs. Ag/Ag$^+$ Expt.c</th>
<th>V_{ox} vs. Ag/Ag$^+$ Expt.c</th>
<th>$V_{\text{ox}} - V_{\text{red}}$ Expt.c</th>
<th>$\Delta_{\text{HOMO-LUMO}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alq3</td>
<td>6.65a</td>
<td>3.43a</td>
<td>-2.4</td>
<td>+0.78</td>
<td>3.18</td>
<td>3.22a</td>
</tr>
<tr>
<td>Znq2</td>
<td>6.42b</td>
<td>3.16b</td>
<td>-2.4</td>
<td>+1.3</td>
<td>3.76</td>
<td>3.26b</td>
</tr>
</tbody>
</table>

aAnderson, et. al.$^{(23)}$ bHopkins, et. al.$^{(23)}$ Results from experiments.
2.4 Synthetic Procedures

Zinc bis-(8-quinolinolato) (Znq): 0.89 g (4.0 mmol) of zinc acetate dihydrate was placed in a 150 mL Erlenmeyer flask and dissolved in 50 mL of methanol. In a separate flask, 1.16 g (8.0 mmol) of 8-quinolinol was dissolved in 200 mL of methanol. With stirring, the zinc salt solution was added to the ligand solution dropwise over a period of 5 minutes. Formation of a bright yellow precipitate was observed after the addition of ~5 mL of the zinc solution. The mixture was refluxed for three hours. After cooling, the precipitate was vacuum filtered and washed with concentrated sodium bicarbonate. It was then washed 3 times with alternating 20 mL increments of hot methanol and then warm deionized water. The crude material was air dried then dried under vacuum in the presence of desiccant at 110°C for 24 hours. The yield for the crude bright yellow amorphous dihydrated product was 1.41 g (88%). The material was purified by high-
vacuum gradient-temperature sublimation over a 3-day period (~10^{-7} Torr, up to 350°C).

1H NMR (DMSO-d$_6$, 25°C) δH2 = 8.47(s); δH3 = 7.34 ; δH4 = 8.27(d); δH5 = 7.04; δH6 = 7.25(s); δH7 = 6.87. C$_{18}$H$_{12}$O$_2$N$_2$Zn (353.70), Calculated: C-61.13%; H-3.42%; N-7.92%; Experimental for purified compound: C-61.39%; H-3.55%; N-7.96%.

Zinc bis(2-methyl-8-quinolinolato) (2Meq$_2$Zn): Prepared according to a similar procedure described for Znq$_2$, using 0.55 g (2.5 mmol) zinc acetate dihydrate dissolved in 25 mL methanol and 0.87 g (5.0 mmol) 2-methyl-8-quinolinol dissolved in 100 mL of methanol to yield 98% of an amorphous bright yellow precipitate. 2Meq$_2$Zn was purified by high-vacuum temperature-gradient sublimation in a three-day period (10^{-7} torr, up to 350°C). C$_{20}$H$_{16}$O$_2$N$_2$Zn (381.74), Calculated: C-62.93%; H-4.22%; N-7.34%; Experimental for purified compound: C-62.80%; H-4.25%; N-7.32%.

Zinc bis(4-methyl-8-quinolinolato) (4Meq$_2$Zn): Prepared according to a similar procedure as described for Znq$_2$, using 0.86 g (3.9 mmol) zinc acetate dihydrate dissolved in 50 mL methanol and 1.20 g (7.4 mmol) 4-methyl-8-quinolinol, as a ligand, dissolved in 200 mL of methanol. The mixture was refluxed for 3 hours. The precipitate was vacuum filtered and washed in similar manner as described for Znq$_2$ to yield 30% of an amorphous pale yellow powder. 4Meq$_2$Zn was purified by high-vacuum temperature-gradient sublimation over a three-day period (10^{-7} torr, up to 300°C). At 200°C, we observed a thin yellow film formation before crystal formation. As yellow crystal formed in the third cold zone, a purple colored microcrystals formed in the second zone which structural property was not identified. C$_{20}$H$_{16}$O$_2$N$_2$Zn (381.74), Calculated: C-62.93%; H-4.22%; N-7.34%; Experimental for purified compound: C-62.80%; H-4.25%; N-7.32%.
Zinc bis(5-methyl-8-quinolinolato) (5Meq₂Zn): Prepared according to a similar procedure as described for Znq₂, using 0.28 g (1.3 mmol) zinc acetate dihydrate dissolved in 12.5 mL methanol and 0.40 g (2.5 mmol) 5-methyl-8-quinolinol, as a ligand, dissolved in 50 mL of methanol. The crude amorphous orange-yellow dihydrate 5Meq₂Zn was isolated in 92% yield. Purification by high-vacuum temperature-gradient sublimation was performed over a three-day period (10⁻⁷ torr, up to 320°C). As yellow-orange crystal formed in the third coldest zone, a red colored powder formed in the second zone which structural property was not identified. Samples that did not sublime and remained in the aluminum boat were also brownish-red powder. C₂₀H₁₆O₂N₂Zn (381.74), Calculated: C-62.93%; H-4.22%; N-7.34%; Experimental for purified compound: C-62.69%; H-4.10%; N-7.24%

Lithium (8-hydroxyquinoline) (Liq): 1.61 g (38 mmol) of LiOH hydrate was dissolved in 16 mL of deionized water to make a 10% w/w solution. In a separate Erlenmeyer flask 5.57 g (38 mmol) of the ligand, 8-hydroxyquinoline, was dissolved in 20 mL absolute ethanol with warming. The LiOH solution was added slowly to the cooled ligand solution. The ligand solution changed from brown to yellow after the addition of the LiOH solution. A white clumpy solid precipitate formed almost immediately. The heterogeneous solution was vacuum filtered immediately and the solid was washed with warm water and warm ethanol, alternately, to give a 95% crude yield. The crude solid material was recrystallized from absolute ethanol to give white needle-like crystal, which were subjected to a low vacuum sublimation and heated to 150°C in order to remove unreacted ligand. Final purification by high vacuum temperature-gradient was performed over a three-day period (10⁻⁷ torr, 350°C). The pure Liq was light yellow in color.
Lithium (4-methyl-8-quinolinolato) (4MeqLi): 4MeqLi was prepared according to a similar procedure as described for Liq, using 0.8 g (3.6 mmol) LiOH dissolved in 8 mL deionized water to make 10% solution (w/w) and 0.6 g (3.5 mmol) 4-methyl-8-quinolinol, as a ligand, dissolved in 10 mL of absolute ethanol. LiOH solution was added dropwise into the ligand solution. A brownish precipitate formed ~30 minutes after all the LiOH solution was added. The precipitate was vacuum filtered and washed in similar manner as described for Liq to yield 28% of an amorphous greenish yellow precipitate. The resulting crude product was further purified by high-vacuum temperature-gradient sublimation in three-day period (10^-7 torr, up to 350°C).

Lithium (5-methyl-8-quinolinolato) (5MeqLi): 5me-Liq was prepared according to a similar procedure as described for Liq, using 1.3 g (31 mmol) LiOH dissolved in 13 mL deionized water to make 10% solution (w/w) and 5 g (31 mmol) 5-methyl-8-quinolinol, as a ligand, dissolved in 15 mL of absolute ethanol. LiOH solution was added dropwise into the ligand solution. Almost immediately, a yellow-orange precipitate formed. The precipitate was vacuum filtered and washed in similar manner as described for Liq to yield 88% of a crude amorphous yellow-orange precipitate. 5MeqLi was recrystallized from absolute ethanol and the orange micro crystalline solid was placed under low vacuum and heated to 150°C to remove unreacted ligand, then further purified by high-vacuum temperature-gradient sublimation in three day period (10^-7 torr, up to 350°C) to.
give a yellow microcrystalline solid. C_{10}H_{12}ONLi (165.12), Calculated: C—72.74%; H—4.88%; N—8.48%; Experimental for purified compound: C—72.35%; H—4.70%; N—8.52%.

References

18. Charles, Robert G; Freiser, Henry; Friedel, Robert; Hillyard, Leland E.; and Johnston, William D. Infra-red Absorption Spectra of Metal Chelates Derived

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
from 8-hydroxyquinoline, 2-methyl-8hydroxyquinoline, and 4-methyl-8-

CHAPTER 3

X-RAY ABSORPTION SPECTROSCOPIC CHARACTERIZATION

3.1 Background

In one of the most common x-ray spectroscopic techniques, x-ray absorption spectroscopy (XAS), promotion of atomic core electrons by selective photon absorption into bound valence states (or unoccupied states) maps normally unoccupied electronic states. A complementary technique, x-ray emission spectroscopy (XES), monitors x-rays emitted as the sample relaxes to fill a core hole created by x-ray absorption. If the electrons that fill this core hole come from the valence shell of the sample, then XES will directly probe the occupied valence states in a way analogous to the simple picture, in which molecular orbitals are built up using a linear combination of atomic orbitals (the LCAO-MO picture). Together, XAS and XES are useful techniques for determining the energies of the HOMO and LUMO levels in organic materials, which are important for understanding charge injection processes at OLED interfaces.

Important chemical information can be derived from the distinctive spectral features of the absorption cross-section in the region of an x-ray absorption edge. This technique is known as near-edge x-ray absorption fine-structure spectroscopy (NEXAFS, but sometimes called XANES for x-ray absorption near-edge spectroscopy). If the
excitation energy is near an absorption edge, an electron excited from a core level by x-ray absorption can make a transition to an unoccupied valence state at energies near the ionization threshold. If the core-hole long lifetime, then the intrinsic energy width of a core level is narrow, and the absorption spectrum (peak position, shape, and intensity) maps the energy distribution of unoccupied states to which the electron is excited.

The density of states is a signature of the chemical bonding and surrounding crystal structure of the absorbing atom. For example, in the metal (8-quinolinolato) chelate materials, there may be distinctive differences in the absorption into orbitals determined by the chemical bonds in which the atoms are participating that might reflect differences in the electronic structure of the ligand, because of the bonding interaction with different metal ions. The near-edge x-ray absorption spectrum therefore serves as a chemical and structural fingerprint.

3.2 Introduction

Curioni reported the first detailed electronic-structure characterization of Alq$_3$ using NEXAFS.$^{(1)}$ Since there are three 8-quinolinolato ligands in Alq$_3$, the carbon-edge of Alq$_3$ was very complicated and the peaks were broad because of the overlapping contributions from more than one orbital set. Curioni compared the NEXAFS spectrum of Alq$_3$ with the calculated photoabsorption spectrum and assigned only the first three spectral peaks at lowest energy as transitions from the 1s core orbital to various unoccupied states corresponding to four different LUMO "sets" (I-IV) generated by the theoretical treatment of the molecule. The lowest energy LUMO state [LUMO (I)] was shown to contain the majority of electron density (available unoccupied states) mainly on...
the pyridyl ring. The higher energy unoccupied orbital sets included: the LUMO+1 state (II) containing a symmetric distribution of electron density on the carbon atoms of both rings; LUMO+2 state (III) containing electron density mainly on the phenoxide ring oxygen and carbons but with some density on the pyridyl nitrogen; and LUMO+3 state (IV) containing an almost symmetric distribution of electron density over both rings and all atoms.

The experimental carbon edge spectrum reported by Curioni$^{(1)}$ and later by Padmapperuma$^{(2)}$ for Alq$_3$ contained three dominant peaks. (See Figure 3.1) The lowest energy transition was well defined in the NEXAFS spectrum and assigned to a single transition, C 1s to LUMO(I) with the major contribution from C4 of the pyridyl ring. Two higher energy peaks were broadened and assigned as mixtures of contributions from the C 1s to LUMO (I), LUMO+1 (II) and LUMO+2 (III) orbital sets. For the lower energy of the two peaks, the maximum relative intensity was assigned to the C 1s to LUMO +2 (III) mainly from C5 of the phenoxide ring. The higher energy peak was assigned to the C 1s to LUMO +2 (III) of the carbon atoms at position 8 (directly bonded to the phenolic oxygen). Padmapperuma showed that there was no change in the C 1s spectrum upon substitution of the heavier ion, Ga$^{+3}$ for aluminum, except for a shift to higher energy of peaks not assigned by Curioni.

For the nitrogen edge, three dominant peaks were assigned to the following transitions and are listed in order of increasing energy: N 1s to LUMO (I) (highest intensity transition); N 1s to LUMO +2 (III); and N 1s to LUMO +3 (IV). As predicted by theory, no peak was observed for the N 1s to LUMO +1(II) set because the electron density is distributed primarily on the carbon atoms.
For the oxygen-edge, similar peaks from the N-edge spectrum were observed. These three peaks were assigned as: O 1s to LUMO (I) (highest intensity transition); O 1s to LUMO + 2 (III); and O 1s to LUMO + 3 (IV). Unlike the N-edge spectrum, the highest intensity was the transition O 1s to LUMO + 3 (III) state as predicted by the electron distributions of the LUMO sets.

Since electroluminescence is based on electron injection and transport, we use NEXAFS spectroscopy to determine differences and similarities of the electronic structures of the materials under study. This tool is crucial to our understanding of the device performance, as well as device operation. In this thesis the NEXAFS spectra of the C-, N- and O- edge for the nMeq₂Zn and nMeqLi chelates are presented and compared with the results previously obtained by Padmaperuma for Alq₃ and its methylated derivatives.² By reducing the number of 8-quinolinol ligands from 3 (Alq₃) to 2 (Znq₂) to (1) Liq, we hoped to simplify the NEXAFS spectra and to determine the orbital contributions of the higher energy transitions. However, we show that the NEXAFS spectra of both Znq₂ and Liq are similar to those of the metal tris-(8-quinolinolato) chelates but with significant changes in intensity of the transitions. For the Liq materials additional peaks are observed in all spectra. We interpret this data in terms of the increased in ionic character of the metal-ligand bond for Liq than in Znq₂ and much less so for Alq₃.

3.3 Experimental Method

X-ray absorption spectroscopy experiments were performed at the Advanced Light Source (ALS), Lawrence Berkeley National Lab (LBNL). The storage ring at the
ALS has a stored electron beam with energy of 1.9 GeV. The available photon energies extend from the far IR to x-rays (15 KeV). The ring is optimized for extremely high brightness in the vacuum UV and soft x-ray ranges. All experiments were performed on beamline 6.3.2 which is a bending magnet beamline dedicated to extreme ultraviolet (EUV) and soft x-ray reflectometry and scattering with high spectral purity and wavelength accuracy. The beamline has a photon energy range from 50 to 1300 eV and photon flux of 10^{11} photons/sec/0.01%BW at 100 eV.\(^{(1)}\)

Unoccupied electronic states of metal chelates were probed using NEXAFS with a reflectometer chamber at the beamline 6.3.2. The order sorter was set at the off position during the experiments and exit slits were set to 50x50 micrometer. The sample was placed at 90° angle to the beam. The 600 lines/mm gratings were selected for all studies. Data was collected at a rise time of 100 ms and presample decay of 300 ms. All samples were run at single scan.

X-ray absorption was performed via the total electron yield method. When the x-ray beam impinges on the sample a core level electron (1s) is promoted to a higher unoccupied level. This gives rise to an excited molecule, which does not bear a charge, thus a core hole is created. This excited state can decay in many ways, including: recombination of the hole and the excited electron, production of photoelectrons, and Auger emission, the latter being the major pathway of decay. Depending on the penetration depth, these electrons can escape from the sample and are measured using detectors placed close to the sample. The current necessary to balance the charge, referred to as the drain current is proportional to the total amount of electrons emitted by the molecule. The total electron yield method is preferred over XAS via transmission.
because there is no need to have a transparent substrate and there may be less charging up of the organic material that can lead to decomposition during the experiment.

NEXAFS spectra were generated as the change in drain current as a function of photon energy of the x-ray beam. There must be an electrical connection between the sample and the detector; thus the sample must be in contact with a conducting substrate. Vapor-deposited films on copper substrates were used. All absorption spectra were normalized to the incident photon flux, which was measured with a photodiode. The energy calibration was not done using standards; rather, an internal energy calibration was made through carbon dip observed in the incident photon flux (I_0). This may have shifted the energies of all the spectra by a constant amount. The resolution of the peak energies is ±0.1 eV. All the samples were run in the similar instrument; therefore general statement on the differences of the relative intensities of the peaks within the same spectra should be viable.

3.4 Results and Discussion

3.4.1 Effect of Metal Ion Substitution

The NEXAFS carbon K-edges of Alq$_3$, Znq$_2$ and Liq are shown in Figure 3.1, where four major peaks are labeled (1)C - (3)C with a fourth peak observed only for Liq, labeled (4)C. The peak energies and intensities are listed in Table 3.1. Compared to Alq$_3$, the lower energy peaks, (1)C and (2), of both Znq$_2$ and Liq were less intense than the higher energy peak (3)C. The most significant decrease in intensity was observed for peak (1)C, this peak was assigned by Curioni as the transition from C1s to LUMO (I) state, where theoretical treatment of Alq$_3$ showed that LUMO (I) has the majority of the
available unoccupied states distributed over the pyridyl ring.\(^{(1)}\) A decrease in intensity of this transition suggests that the electronic distribution on the pyridyl ring changes upon metal ion substitution to make this transition less probable. This may occur if the metal-ligand bonding becomes more ionic, so that the lone pair electrons on the phenoxide oxygen are delocalized into the quinolate ligand providing a more even electron distribution between the two ring systems, as shown by the resonance structures in Figure 3.1. The effect is largest for Liq, which is expected to exhibit the most ionic character. Figure 3.2 depicts a cartoon of the probable electron distribution on the quinolate ligands for the Mq\(_n\), where darker shading means more electron distribution and lighter shade means less electron density. Figure 3.3 ranks the Mq\(_n\) according to the nature of the metal ligand (M-q) bond.

Interestingly, Liq exhibits an additional strong peak observed at 290 eV ((4)C), which was not observed for Alq\(_3\) or Znq\(_2\). Previous investigations of smaller organic molecules suggests that a peak appearing at 290 eV is characteristic of a transition to the unoccupied anti-bonding states of the \(\pi\) electrons present in the C=O functional group\(^{(4)}\), which could be possible if Liq is truly ionic (see Figure 3.1).
Figure 3.1 C 1s NEXAFS spectra of a) Alq3; b) Znq2 and c) Liq, and resonance structures of anionic 8-quinolinolate.

Electron density is primarily on the phenoxide ring.

Electron density is evenly distributed on the phenoxide and pyridyl rings.

Figure 3.2. Illustration of the effects of metal ion substitution on the electron distribution of the quinolate ligand, where the circles within the aromatic rings represent electron density. A Dark shaded circle indicates high electron density, whereas a light shaded circle indicates low electron density.
Figure 3.3. Schematic representation of the metal ligand (M-q) bonding character.

Table 3.1 C Is NEXAFS Data for Mqn Chelates.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Alq₃</th>
<th>Znq₂</th>
<th>Liq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy (eV)</td>
<td>Intensity</td>
<td>Energy (eV)</td>
</tr>
<tr>
<td>(1)C</td>
<td>284.5</td>
<td>1.322</td>
<td>284.4</td>
</tr>
<tr>
<td>(2)C</td>
<td>285.6</td>
<td>1.342</td>
<td>285.4</td>
</tr>
<tr>
<td>(3)C</td>
<td>287.8</td>
<td>0.882</td>
<td>287.6</td>
</tr>
<tr>
<td>(4)C</td>
<td>n.o.</td>
<td>n.o.</td>
<td>n.o.</td>
</tr>
</tbody>
</table>

n.o = not observed

3.4.2 Effect of Methyl Substitution

3.4.2.a Zinc Bis-Quinolinolato Chelates

The NEXAFS C 1s and N 1s spectra for the nMeq₂Zn chelates are shown in Figures 3.4. The corresponding peak energies and relative intensities of the labeled peaks are listed in Tables 3.2 and 3.3.

The effect of ligand methylation of Znq₂ on the C 1s spectra were similar to that reported by Padmaperuma for Alq₃ and Gaq₃ methylated derivatives. The lowest energy peak ((1)C) was shifted to higher energy only for 4Meq₂Zn. However, for both 4Meq₂Zn and 5Meq₂Zn, the peak (2)C was shifted to lower energy, with an appearance of a
shoulder on the high energy side, and peak (3)C was shifted to higher energy compared to Znq₂.

The N 1s spectra for nMeq₂Zn chelates was also similar to what was observed for all nMeq₃Al chelates previously. The lowest energy peak, (1)N was sharpest and had the highest intensity, and peak (3)N for 4Meq₂Zn was slightly shifted to lower energy compared to Znq₂. Previously, Padmaperuma proposed two possible explanations for the shifts upon methylation at the C4-position. One, the electron donating character of methyl group may stabilize the nitrogen K-hole due to an increase of electron density on the nitrogen and two, upon methyl substitution, the electron distribution of this LUMO set is no longer similar to that of unsubstituted analogue. A theoretical treatment of the methyl-substituted metal chelates is necessary before answers can be established.

![Figure 3.4. C 1s and N 1s NEXAFS spectra for a) Znq₂; b) 4Meq₂Zn and c) 5Meq₂Zn. showing the effects of methylation of the ligand on peak energies.](image-url)
Table 3.2 C Is NEXAFS Data for nMeq₂Zn chelates.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Znq₂</th>
<th>4Meq₂Zn</th>
<th>5Meq₂Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy (eV)</td>
<td>Intensity</td>
<td>Energy (eV)</td>
</tr>
<tr>
<td>(1)C</td>
<td>284.4</td>
<td>0.932</td>
<td>284.6</td>
</tr>
<tr>
<td>(2)C</td>
<td>285.4</td>
<td>1.042</td>
<td>285.3</td>
</tr>
<tr>
<td>(3)C</td>
<td>287.6</td>
<td>0.934</td>
<td>288.1</td>
</tr>
</tbody>
</table>

Table 3.3 N Is NEXAFS Data for nMeq₂Zn Chelates.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Znq₂</th>
<th>4Meq₂Zn</th>
<th>5Meq₂Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy (eV)</td>
<td>Intensity</td>
<td>Energy (eV)</td>
</tr>
<tr>
<td>(1)N</td>
<td>398.6</td>
<td>2.208</td>
<td>398.6</td>
</tr>
<tr>
<td>(2)N</td>
<td>400.8</td>
<td>0.117</td>
<td>400.8</td>
</tr>
<tr>
<td>(3)N</td>
<td>402.1</td>
<td>0.296</td>
<td>401.9</td>
</tr>
</tbody>
</table>

3.4.2.b Lithium Quinolinolato Chelates

The C 1s and N 1s NEXAFS spectra for nMeqLi chelates are shown in Figure 3.5 and the relative energies and intensities of the peaks are listed in Tables 3.4 and 3.5.

All nMeqLi exhibited the same peaks as shown for Liq. In addition, trends upon methyl substitution on the C 1s and N 1s spectra for Liq are similar to what was observed for all nMeq₃Al and nMeq₂Zn chelates as discussed above for Znq₂ materials, except for new peaks identified only for nMeqLi. Where methylation on the 4C- position shifts the (1)C peak to higher energy and (3)N peak to lower energy vs. Liq. Also, substitution on the 4C- and 5C- position shifts (3)C to lower energy, relative to the unsubstituted analogue. Compared to the metal tris- and bis- quinolates, new peaks were observed at higher energy (~290 eV) for C 1s NEXAFS and lower (~396.7 eV) and higher (~404.1
eV) for N 1s NEXAFS of nMeqLi chelates. Also, for Alq$_3$ and Znq$_2$, there were no observable changes in the relative intensities of the peaks upon methyl substitutions unlike nMeqLi chelates. In figure 3.5, C 1s NEXAFS for Liq shows that peaks for (1)C and (2)C have similar and higher intensity than (3)C. However, both 4MeqLi and 5MeqLi shows that peaks for (1)C and (2)C have lower intensities than (3)C. The reasons for the relative differences in intensities are not known. Therefore, theoretical treatment of this molecule is required in order to present different possibilities. Previous attempts to acquire the O 1s NEXAFS for Alq$_3$ and Znq$_2$ were unsuccessful due to the oxidation of the aluminum substrates used, which is known to cause interference in the data acquisition. Now that we are using copper substrates, we are more successful in performing these experiments. The O 1s NEXAFS spectra of nMeqLi are depicted in Figure 3.6 and the peak energies and intensities are listed in Table 3.6. The only reference used to compare our results was the O 1s NEXAFS and calculated photoabsorption of Alq$_3$ reported by Curioni et al. Our O 1s NEXAFS for nMeqLi are very different (peak shapes and intensities) from the reported Alq$_3$. Peak energies and intensities are listed in Table 3.6. There were no significant shifts in the energies, as well as intensities upon methyl substitution of Liq.
Figure 3.5. C 1s and N 1s NEXAFS of a) Liq; b) 4MeqLi; and c) 5MeqLi showing the effects of methylation of the ligand on the peak energies.

Figure 3.6. O 1s NEXAFS of a) Liq; b) 4MeqLi; and c) 5MeqLi showing no effects of methylation of the ligand on the peak energies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.4 C 1s NEXAFS nMeqLi.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Liq Energy (eV)</th>
<th>Energy (eV)</th>
<th>4MeqLi Energy (eV)</th>
<th>Energy (eV)</th>
<th>5MeqLi Energy (eV)</th>
<th>Intensity</th>
<th>Intensity</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)C</td>
<td>284.0</td>
<td>284.7</td>
<td>284.4</td>
<td></td>
<td>0.628</td>
<td>0.524</td>
<td>0.464</td>
<td></td>
</tr>
<tr>
<td>(2)C</td>
<td>285.5</td>
<td>285.3</td>
<td>285.3</td>
<td></td>
<td>0.808</td>
<td>0.587</td>
<td>0.571</td>
<td></td>
</tr>
<tr>
<td>(3)C</td>
<td>287.7</td>
<td>288.2</td>
<td>288.2</td>
<td></td>
<td>0.695</td>
<td>0.740</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>(4)C</td>
<td>290.0</td>
<td>290.0</td>
<td>290.0</td>
<td></td>
<td>1.025</td>
<td>1.227</td>
<td>1.092</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5 N 1s NEXAFS nMeqLi.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Liq Energy (eV)</th>
<th>Energy (eV)</th>
<th>4MeqLi Energy (eV)</th>
<th>Energy (eV)</th>
<th>5MeqLi Energy (eV)</th>
<th>Intensity</th>
<th>Intensity</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)N</td>
<td>398.1</td>
<td>398.6</td>
<td>398.6</td>
<td></td>
<td>1.000</td>
<td>0.999</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>(2)N</td>
<td>400.8</td>
<td>400.9</td>
<td>400.9</td>
<td></td>
<td>0.089</td>
<td>0.086</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>(3)N</td>
<td>402.0</td>
<td>401.9</td>
<td>402.0</td>
<td></td>
<td>0.128</td>
<td>0.123</td>
<td>0.119</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6 O 1s NEXAFS nMeqLi

<table>
<thead>
<tr>
<th>Peak</th>
<th>Liq Energy (eV)</th>
<th>Energy (eV)</th>
<th>4MeqLi Energy (eV)</th>
<th>Energy (eV)</th>
<th>5MeqLi Energy (eV)</th>
<th>Intensity</th>
<th>Intensity</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)O</td>
<td>530.6</td>
<td>530.6</td>
<td>530.6</td>
<td></td>
<td>0.124</td>
<td>0.098</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>(2)O</td>
<td>533.2</td>
<td>533.2</td>
<td>533.2</td>
<td></td>
<td>1.089</td>
<td>1.173</td>
<td>1.022</td>
<td></td>
</tr>
<tr>
<td>(3)O</td>
<td>536.7</td>
<td>536.7</td>
<td>536.7</td>
<td></td>
<td>0.762</td>
<td>0.708</td>
<td>0.698</td>
<td></td>
</tr>
<tr>
<td>(4)O</td>
<td>538.6</td>
<td>538.7</td>
<td>538.7</td>
<td></td>
<td>1.116</td>
<td>1.070</td>
<td>1.045</td>
<td></td>
</tr>
<tr>
<td>(5)O</td>
<td>542.1</td>
<td>542.3</td>
<td>542.4</td>
<td></td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>(6)O</td>
<td>543.8</td>
<td>543.9</td>
<td>543.8</td>
<td></td>
<td>0.960</td>
<td>0.978</td>
<td>0.971</td>
<td></td>
</tr>
</tbody>
</table>
Reference

2. Padmaperuma, A. Substitution Effects of Metal Quinolate Chelate Materials for Organic Electroluminescence Applications. M.S. in Chemistry, University of Nevada Las Vegas, **2000**.

CHAPTER 4

PHOTOPHYSICAL CHARACTERIZATION OF METAL-QUINOLINOLATO CHELATES

4.1 Introduction

The optical transition responsible for photoluminescence in metal (8-quinolinolato) chelates is centered on the organic ligands. This transition is due to a $\pi-\pi^*$ charge-transfer from the electron rich phenoxide ring (location of the HOMO) to the electron deficient pyridyl ring (location of the LUMO).\(^{(1)}\) Theoretical calculations of the excited state energies suggest that substitution on the ligand moiety significantly change the photophysics of these materials.\(^{(2)}\) For example, substitution of an electron donating group on the pyridyl ring will raise the energy of the LUMO and that on the phenoxide ring will raise the energy of the HOMO. These effects will result in a blue- and red-shift of the absorption energies, respectively.

These energy shifts were confirmed experimentally through investigation of the photophysics of nMeq\(_3\)M chelates. Upon methyl-substitution (weak electron donor) on the quinolate ligands of Alq\(_3\), the absorption energy shifts were largest for C-5 methylation (red-shift, >1000 cm\(^{-1}\)) and very small for C-3 and C-4 methylation (blue-shift, <350 cm\(^{-1}\)).\(^{(3,4)}\) Substitution of the heavier metal ion Ga\(^{3+}\) caused a red-shift of absorption compared to the nMeq\(_3\)Al chelates because of the heavy atom effect discussed
previously,\(^5\) but the trends in absorption shifts upon methylation of the 8-quinolinol ligand were identical to the aluminum series. The effect of methyl-substitution on the photoluminescence (PL) emission energies were similar to those observed for absorption. 4Meq\(_3\)M (3 times Mq\(_3\)) had the highest PL efficiency (ϕ_{PL}), whereas the 5Meq\(_3\)M chelates exhibited significantly lower ϕ_{PL} (approximately 3 times less than Mq\(_3\)).

The large enhancement in ϕ_{PL} by C-4 methylation of the ligands in Al and Ga tris (8-quinolinolato) chelates was attributed to reduced energy loss in the excited state vibrational manifold, as indicated by the smaller Franck-Condon shifts (Δ's) and narrower full width maxima (FWHM). This was supported by a study of the infrared absorption and photoluminescence of matrix-isolated and thin-film samples of Alq\(_3\) and 4Meq\(_3\)Al compared to vibrational spectra based on density functional calculations.\(^6\) There, the PL spectra of matrix-isolated molecules revealed vibronic bands characterized as a combination of ring breathing and metal-ligand stretching modes. Kushto, noted that there was a lack of metal-ligand character in the vibrations for 4Meq\(_3\)Al as compared to Alq\(_3\). This suggests that the stronger coupling of the metal-ligand stretching coordinates to the electronic transition in Alq\(_3\) may provide additional paths for nonradiative decay. This pathway is less available for 4Meq\(_3\)Al, giving rise to a higher ϕ_{PL}.

Since photoluminescence results from an electronic transition centered on the 8-quinolinolato ligand, upon methyl substitution similar trends in the absorption energies, as well on relative ϕ_{PL}, were observed for nMeq\(_2\)Zn and nMeqLi. However, even though the metal ion is not directly involved in the electronic transition responsible for PL, the metal ion affects the photophysical properties through differences in coordination geometry and metal-ligand bonding character as compared to the tris-chelate series. For example, the
absorption energies of nMe₃Al chelates are almost identical in solvents of different polarities.⁴ For nMe₃Zn and nMe₃Li chelates, on the other hand, because the number of ligands coordinated to the metal ion is reduced, and therefore solvents are more susceptible to interact with both the ligand and the metal ion, thereby inducing strong solvent effects on the photophysical properties.

Furthermore, Chen have suggested that the metal ligand (M-q) bonding character of Znq₂ was more ionic than Alq₃ since the PL λ_max for Znq₂ was red shifted compared to Alq₃.² No additional experimental evidence was provided to support this conclusion. For Liq, it has not been well established whether the nature of the M-q bonding is covalent or ionic.⁷ Results from the x-ray spectroscopic experiments reported in chapter 3 of this thesis suggested that the electronic structure of the quinolinolato ligand changes upon metal ion substitution, and it was inferred that the electrons of the ligand are more evenly distributed over both the pyridyl and the phenoxide rings going from Alq₃ to Znq₂ to Liq (See Figure 3.2). The solvent dependences of the absorption spectra for Znq₂ and Liq chelates presented below provide additional support for the more ionic nature of the M-q bonding character of Znq₂ and Liq vs. Alq₃.

4.2 Experimental

Absorption and photoluminescence (PL) characterization were performed on dilute (~10⁻⁵ M) methylene chloride (CH₂Cl₂), dimethyl formamide (DMF), and methanol (MeOH) solutions. Absorption spectra were recorded with a Varian Cary 3Bio UV-vis spectrophotometer and PL spectra were obtained with a SLM 48000 spectrofluorimeter. Extinction coefficients, ε(λ_max) for the lowest energy absorption peak (λ_max) in Alq₃,
nMeq₂Zn and nMeqLi chelates were determined from solutions in CH₂Cl₂ at 10⁻⁵-10⁻⁴ M concentrations where the absorbance at λ_max was <0.5. Relative PL quantum efficiencies (ϕ_pl) were determined from DMF and CH₂Cl₂ solutions by adjusting the concentration of the sample so that the optical densities at 390 nm (excitation wavelength) were ~0.2. Quantum efficiencies (ϕ_pl) were also determined at 365 nm excitation wavelength and the differences are within the instrument's experimental error (λ_max = ± 3 nm). PL quantum yields were calculated relative to the known value for Alq₃ in DMF (ϕ_pl = 0.116)⁸ and CH₂Cl₂ are reported normalized to Alq₃ (Alq₃ = 1.0). The emission maxima (λ_pl), full width half maxima (FWHM), and the area under the emission spectra were calculated using the graphing software, Origin. Samples were run on the same day and all the instrument parameters were held constant. Each series of samples were measured in triplicate.

4.3 Absorption Spectroscopic Results

4.3a Effect of Metal Ion Substitution: Solvent Dependences of Absorption Spectra

Absorption spectra of Alq₃, Znq₂ and Liq in CH₂Cl₂ and DMF are depicted in Figure 4.1. All metal (8-quinolinolato) chelates exhibit a broad absorption peak accompanied by higher energy bands appearing as shoulders. The shapes of the absorption spectra of Alq₃, Znq₂ and Liq were virtually identical in CH₂Cl₂, but the longest wavelength transition (λ_max) was blue shifted (682 cm⁻¹ and 1928 cm⁻¹, respectively).

There were no differences between the absorption spectra of Alq₃ and all other metal tris(8-quinolinolato) chelates in CH₂Cl₂ and the more polar solvent, DMF.³
However, Znq\textsubscript{2} and Liq exhibited large red shifts for the longest wavelength transition with a decrease in intensity relative to the shortest wavelength transitions, which no longer appeared as shoulders in DMF. These results are depicted in Figure 4.1.

To further investigate the differences between the tris- and bis- chelates, the absorption spectra of Alq\textsubscript{3} and Znq\textsubscript{2} chelates were obtained in methanol (MeOH) (See Appendix III). Alq\textsubscript{3} and 2Meq\textsubscript{2}Zn exhibited a large blue shift relative to the \(\lambda_{\text{max}} \) (CH\textsubscript{2}Cl\textsubscript{2}) (965 cm-1 and 1327 cm-1, respectively), whereas Znq\textsubscript{2} and 4Meq\textsubscript{2}Zn exhibited a small red shift (279 cm-1 and 213 cm-1, respectively). There were no differences between the absorption spectra for 5Meq\textsubscript{2}Zn in MeOH and CH\textsubscript{2}Cl\textsubscript{2}. The solvent dependence of the absorption energies were also observed for all methylated zinc and lithium chelate derivatives (See Tables 4.1 and 4.2).

Absorption spectra of the nMeq\textsubscript{2}Znq and nMeqLi chelates were also obtained for vapor-deposited films grown on quartz slides. The spectral features are very similar to those run in CH\textsubscript{2}Cl\textsubscript{2} solution; therefore the PL properties in CH\textsubscript{2}Cl\textsubscript{2} are more representative of the solid state.

The extinction coefficient (\(\varepsilon \)) for \(\lambda_{\text{max}} \) in CH\textsubscript{2}Cl\textsubscript{2}, was also determined by using Beer's law (1), where \(A = \) absorption units at \(\lambda_{\text{max}} \); \(b = \) path length (= 1 cm); and \(c = \) concentration (mol/L).

\[
A = bce
\]

(1)

\(\varepsilon \) is indicative of the probability of the longest wavelength transition (\(\lambda_{\text{max}} \)) and decreases in the order: Liq < Znq\textsubscript{2} < Alq\textsubscript{3}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.1 Absorption Data for nMeqZn in Different Solvents.

<table>
<thead>
<tr>
<th>Metal Chelate nMeqZn</th>
<th>Absorption CH₂Cl₂ λ<sub>max</sub> (nm)</th>
<th>Absorption DMF λ<sub>max</sub> (nm)</th>
<th>Absorption MeOH λ<sub>max</sub> (nm)</th>
<th>Absorption Film λ<sub>max</sub> (nm)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znq₂</td>
<td>341, 378</td>
<td>327<sup>s</sup>, 339, 402</td>
<td>321<sup>s</sup>, 324, 381</td>
<td>342, 381</td>
<td>4.559E+03</td>
</tr>
<tr>
<td>2Meq₂Zn</td>
<td>321, 340, 385</td>
<td>326<sup>s</sup>, 340, 386</td>
<td>321<sup>s</sup>, 340, 369</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4Meq₂Zn</td>
<td>340, 371</td>
<td>326<sup>s</sup>, 339, 398</td>
<td>321<sup>s</sup>, 334, 377</td>
<td>342, 378</td>
<td>5.705E+03</td>
</tr>
<tr>
<td>5Meq₂Zn</td>
<td>346, 393</td>
<td>346, 419</td>
<td>328<sup>s</sup>, 341, 393</td>
<td>345, 355<sup>s</sup>, 397</td>
<td>4.716E+03</td>
</tr>
</tbody>
</table>

^s = shoulder.

Table 4.2 Absorption Data for nMeqLi in Different Solvents.

<table>
<thead>
<tr>
<th>Metal Chelate nmeqLi</th>
<th>Absorption CH₂Cl₂ λ<sub>max</sub> (nm)</th>
<th>Absorption DMF λ<sub>max</sub> (nm)</th>
<th>Absorption Film λ<sub>max</sub> (nm)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liq</td>
<td>331<sup>s</sup>, 361</td>
<td>309<sup>s</sup>, 330, 412</td>
<td>338, 346, 359</td>
<td>1.249E+03</td>
</tr>
<tr>
<td>4MeqLi</td>
<td>334<sup>s</sup>, 357</td>
<td>307<sup>s</sup>, 329, 406</td>
<td>336<sup>s</sup>, 346, 361</td>
<td>n.d.</td>
</tr>
<tr>
<td>5MeqLi</td>
<td>n.d.</td>
<td>340, 428</td>
<td>344, 376</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

^s = shoulder; n.d. = not determined because of insolubility.

Figure 4.1. Absorption spectra of Mqₙ in CH₂Cl₂ and DMF showing the effects of solvent polarity on the absorption energies and intensities.
4.3b Effect of Methylation of the 8-Quinolinolato Ligand on Absorption Energies

Figures 4.2 and 4.3 show the absorption spectra of nMeq₂Zn and nMeqLi chelates in CH₂Cl₂ and DMF, respectively. Consistent with the absorption energy shifts upon methylation of the ligand for metal tris-chelates, the lowest energy absorption band was blue-shifted for C4-methylation and red-shifted for C5-methylation relative to the unsubstituted analogues for both the zinc and lithium chelates (see Table 4.3).

Figure 4.2. Absorption spectra of A. nMeq₂Zn and B. nMeqLi in CH₂Cl₂ showing the effects of methyl substitution on the absorption energies and intensities.
Figure 4.3. Absorption spectra of A. nMeq₂Zn and B. nMeqLi in DMF showing the effects of methylation of the ligand on the peak energies.

Table 4.3 Absorption λ_{max} and Energy Shifts from Mqₙ.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>Absorption CH₂Cl₂ λ_{max} (nm)</th>
<th>Absorption Energy Shift from Mqₙ (cm⁻¹)</th>
<th>Absorption DMF λ_{max} (nm)</th>
<th>Absorption Energy Shift from Mqₙ (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znₙ₂</td>
<td>378</td>
<td></td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>2Meq₂Zn</td>
<td>385</td>
<td>-481</td>
<td>386</td>
<td>1031</td>
</tr>
<tr>
<td>4Meq₂Zn</td>
<td>371</td>
<td>499</td>
<td>399</td>
<td>187</td>
</tr>
<tr>
<td>5Meq₂Zn</td>
<td>393</td>
<td>-1010</td>
<td>419</td>
<td>-1009</td>
</tr>
<tr>
<td>Liq</td>
<td>361</td>
<td></td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>4MeqLi</td>
<td>357</td>
<td>310</td>
<td>406</td>
<td>359</td>
</tr>
<tr>
<td>5MeqLi</td>
<td>n.d.</td>
<td>n.d.</td>
<td>428</td>
<td>-907</td>
</tr>
</tbody>
</table>

n.d. = not determined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
4.4 Photoluminescence Spectroscopic Results

4.4a Effect of Metal Ion Substitution: Solvent Dependencies of PL Properties

Tables 4.4 and 4.5 show the PL emission energies and relative ϕ_{PL} data for Alq$_3$, Znq$_2$ and Liq in CH$_2$Cl$_2$ and DMF, respectively. The full-width-at-half-maxima (FWHM) of PL emissions and the Franck-Condon (F-C) energy shifts (energy difference between absorption and emission) (Δ) are also included. Relative to Alq$_3$, in both solvents the λ_{max}(emission) was red shifted for Znq$_2$ (1681 cm$^{-1}$/DMF and 1240 cm$^{-1}$/CH$_2$Cl$_2$) and blue shifted for Liq, (869 cm$^{-1}$/DMF and 2193 cm$^{-1}$/CH$_2$Cl$_2$). The FC-shifts increased in the order Znq$_2$ > Liq > Alq$_3$ and FWHM increased in the order Znq$_2$ > Alq$_3$ > Liq, suggesting that Znq$_2$ is the most vibrationally distorted in the excited state. Alq$_3$ exhibited essentially no change of F-C shifts in different solvents, whereas Znq$_2$ and Liq showed >1000 cm$^{-1}$ difference, with the larger shift observed in the less polar, and thus less interacting solvent.

In both solvents, ϕ_{PL} increased in the order Liq > Alq$_3$ > Znq$_2$. The reported quantum efficiencies of Alq$_3$ in DMF and CH$_3$Cl are 0.116$^{(8)}$ and 0.02$^{(9)}$ respectively. Unlike Alq$_3$, both Znq$_2$ and Liq exhibited higher quantum efficiencies in the less polar solvent.

<table>
<thead>
<tr>
<th>Table 4.4 Photophysical data of Mqn in CH$_2$Cl$_2$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Chelate</td>
</tr>
<tr>
<td>Alq$_3$</td>
</tr>
<tr>
<td>Znq$_2$</td>
</tr>
<tr>
<td>Liq</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.5 Photophysical data of Mqₙ in DMF.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>Absorption DMF λ_max (nm)</th>
<th>Emission DMF λ_max (nm)</th>
<th>Emission Energy Shift from Mqₙ (cm⁻¹)</th>
<th>FWHM (nm)</th>
<th>Δ (cm⁻¹)</th>
<th>Relative ϕ_pl Alq₃ =1.0 (Mqₙ = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alq₃</td>
<td>388</td>
<td>521</td>
<td></td>
<td>105</td>
<td>6623</td>
<td>1.0</td>
</tr>
<tr>
<td>Znq₂</td>
<td>402</td>
<td>571</td>
<td>-1681</td>
<td>110</td>
<td>7362</td>
<td>0.18</td>
</tr>
<tr>
<td>Liq</td>
<td>412</td>
<td>544</td>
<td>869</td>
<td>98</td>
<td>5889</td>
<td>1.1</td>
</tr>
</tbody>
</table>

4.4b Effect of Methylation of the 8-Quinolinolato Ligand on PL Properties

The photophysical data for the methylated derivatives of Znq₂ and Liq in CH₂Cl₂ and DMF are tabulated in Tables 4.6 and 4.7. Consistent with Mq₃ series, the effect of methyl-substitution on the PL emission energies was similar to those observed for absorption. However, where 5Meq₃Al and 4Meq₃Al exhibited the largest and smallest F-C shifts, respectively. However, for the methylated derivatives of Znq₂ and Liq the same result was not observed. Furthermore, all F-C shifts were significantly larger in the less interacting solvent, CH₂Cl₂, with the exception of 2Meq₂Zn.

Table 4.6 Photophysical Data of nMeqₙM in CH₂Cl₂.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>Absorption CH₂Cl₂ λ_max (nm)</th>
<th>Emission CH₂Cl₂ λ_max (nm)</th>
<th>Emission Energy Shift from Mqₙ (cm⁻¹)</th>
<th>FWHM (nm)</th>
<th>Δ (cm⁻¹)</th>
<th>Relative ϕ_pl Alq₃ =1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znq₂</td>
<td>378</td>
<td>549</td>
<td>0</td>
<td>111</td>
<td>8240</td>
<td>0.33</td>
</tr>
<tr>
<td>2Meq₂Zn</td>
<td>385</td>
<td>541</td>
<td>269</td>
<td>116</td>
<td>7490</td>
<td>0.42</td>
</tr>
<tr>
<td>4Meq₂Zn</td>
<td>371</td>
<td>530</td>
<td>653</td>
<td>102</td>
<td>8086</td>
<td>1.5</td>
</tr>
<tr>
<td>5Meq₂Zn</td>
<td>393</td>
<td>553</td>
<td>-132</td>
<td>134</td>
<td>7362</td>
<td>0.11</td>
</tr>
<tr>
<td>Liq</td>
<td>361</td>
<td>490</td>
<td>0</td>
<td>92</td>
<td>7293</td>
<td>2.6</td>
</tr>
<tr>
<td>4MeqLi</td>
<td>357</td>
<td>472</td>
<td>778</td>
<td>82</td>
<td>6825</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.7 Photophysical Data of nMeqₙM in DMF.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>Absorption DMF λ_max (nm)</th>
<th>Emission DMF λ_max (nm)</th>
<th>Emission Energy Shift from M_qₙ (cm⁻¹)</th>
<th>FWHM (nm)</th>
<th>Δ (cm⁻¹)</th>
<th>Relative φ_pl, Alq₃ = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znq₃</td>
<td>402</td>
<td>571</td>
<td>0</td>
<td>110</td>
<td>7362</td>
<td>0.18</td>
</tr>
<tr>
<td>2Meq₂Zn</td>
<td>386</td>
<td>541</td>
<td>971</td>
<td>112</td>
<td>7422</td>
<td>0.5</td>
</tr>
<tr>
<td>4Meq₂Zn</td>
<td>399</td>
<td>546</td>
<td>802</td>
<td>103</td>
<td>6748</td>
<td>1.2</td>
</tr>
<tr>
<td>5Meq₂Zn</td>
<td>419</td>
<td>575</td>
<td>-122</td>
<td>169</td>
<td>6475</td>
<td>0.05</td>
</tr>
<tr>
<td>Liq</td>
<td>412</td>
<td>544</td>
<td>0</td>
<td>98</td>
<td>5889</td>
<td>1.1</td>
</tr>
<tr>
<td>4MeqLi</td>
<td>406</td>
<td>516</td>
<td>997</td>
<td>91</td>
<td>5251</td>
<td>3.3</td>
</tr>
<tr>
<td>5MeqLi</td>
<td>428</td>
<td>569</td>
<td>-808</td>
<td>106</td>
<td>5790</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figures 4.4 and 4.5 show the photoluminescence (PL) spectra obtained in DMF solution (see the Appendix III for PL spectra in CH₂Cl₂), where the relative intensities of the peaks correspond to the relative PL quantum efficiencies. Regardless of the metal ion substitution, upon methylation of the 8-quinolinolato ligand φ_pl increases in the order 4MeqₙM >> M_qₙ > 5MeqₙM. Similar to 4Meq₂Zn, the 2Meq₂Zn derivative where substitution is on the pyridyl ring, also exhibited a substantially higher φ_pl compared to the C5-methylated and unsubstituted derivatives.
Figure 4.4. Emission Spectra of nMeq₂Zn in DMF showing effects of methyl substitution on emission energies. The relative intensities are proportional to the relative intensities where there is a significant increase of ϕ_{PL} on 4Meq₂Zn and a decrease on 5Meq₂Zn.

Figure 4.5. Emission spectra of nMeqLi in DMF showing effects of methyl substitution on emission energies. The relative intensities are proportional to the relative intensities where there is a significant increase of ϕ_{PL} on 4MeqLi and a decrease on 5MeqLi.
4.5 Discussion and Conclusions

4.5a Effect of Metal Ion Substitution on Photophysical Properties

It is reasonable to conclude that in DMF, the red shift of the longest wavelength absorption energies for lithium mono(8-quinolinolato) chelates is caused by dissociation of the chelate by solvation or complexation with the polar solvent to form a ligand anion (q⁻) / Li⁺ metal cation pair. Three pieces of experimental evidence support this supposition: 1) the absorption spectrum of the deprotonated 8-quinolinol (q⁻) in DMF, prepared by adding two drops of 10% NaOH to q dissolved in DMF was identical to the absorption spectrum of Liq (See Appendix III); 2) the chemical shifts of the aromatic protons in the ¹H NMR spectra for Liq were more shielded in DMSO-d₆ vs. CDCl₃; and 3) the PL quantum efficiencies of nMeqLi chelates in CH₂Cl₂ were larger than in DMF, because of the solvation of the anionic ligand results in a less rigid chelate structure.

On the other hand, the spectral changes in different solvents for Znq₂ are not so easily explained. The large blue shifts for Alq₃ and 2Meq₂Zn in the polar protic MeOH solvent most likely arise because of H-bonding between the quinolinolato oxygen with the solvent, thus stabilizing the ground state of these materials. The opposite effects observed for the other Znq₂ chelates suggest that the MeOH solvent interacts andZn ion through its oxygen atom, rather than H-bonding, consistent with the formation of the dihydrated form of Znq₂ obtained when synthesized from aqueous solutions.

The 2Meq₂Zn chelate did not show the same effects in MeOH and DMF as the other nMeq₂Zn because of the position of methyl substitution. Although the exact geometry (tetrahedral vs. square planar) of the nMeq₂Zn chelates is not established, it is expected that the 2Meq₂Zn material would be the least likely to exist in a square planar
structure because of steric hindrance of methyl substitution at the C2-position and it has the least solvent interaction among all the nMe\textsubscript{2}Zn\textsubscript{2} chelates. In fact, because of the steric hindrance by the methyl group on the 2C-position, the quinolinolato oxygens would be more likely to interact with MeOH through H-bonding because the methyl groups would block the Zn ion. This suggests that the geometry of the ligands for the other nMe\textsubscript{2}Zn chelates may be more planar. Therefore, in both polar solvents (DMF and MeOH) the excited state is more stabilized than the ground state. The red shifts of absorption in DMF are larger than in MeOH because DMF interacts by complexation (or solvation) of the ligand vs. the metal ion, and thus has a stronger effect on the energy of absorption than MeOH since the metal ion is not directly involved in the electronic transition.

These results suggest that for nMe\textsubscript{2}Zn chelates, with the exception of 2Me\textsubscript{2}Zn, there must be a larger difference in polarity between the ground and excited states compared to the metal tris-chelates. This would be true if indeed the electronic distribution on the ligand is more evenly distributed over both the pyridyl ring and phenoxide ring of the ligand in the ground state. This could be because of a more ionic character in the metal ligand bonding, as indicated by the NEXAFS data presented in Chapter 3, and thus the excited state would be more polar. However, additional experiments are necessary to confirm this supposition.

The effects of ligand methylation on the photophysical properties of the metal (8-quinolinolato) chelates were similar regardless of the metal ion. For all materials C4-methylation substantially increased the PL quantum efficiencies. For the nMe\textsubscript{3}M chelates C4-methylation resulted in a doubling of ϕPL vs. the unsubstituted analogue,
Alq₃. An even larger increase of ϕPL was observed for 4Meq₂Zn vs. Znq₂ (4.5 fold increase) and the increase for C-4 methylation for Liq was ~2 fold. The increase in ϕPL for 4Meq₃Al vs. Alq₃ was attributed to decreased coupling of the metal-ligand stretching coordinates to the electronic transition responsible for PL. Since the infrared spectra of all metal (8-quinolinolato) chelates are similar (see Chapter 2) this decreased coupling of the vibrational modes to the electronic transition may be a common property for all C₄-methylated derivatives.

References

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER 5

DEVICE FABRICATION AND ELECTROLUMINESCENCE
CHARACTERIZATION

5.1 Device Fabrication

Dr. Paul Burrows at Pacific Northwest National Laboratories fabricated and tested the devices. All OLED's were fabricated simultaneously as depicted in Figure 5.1. Devices were grown on glass slides precoated with indium tin oxide (ITO) with a sheet resistance of 15Ω/cm². The ITO substrates were degreased in detergent, then boiled in 1,1,1-trichloroethane, rinsed with reagent grade acetone and finally rinsed with methanol before being dried in stream of UHP nitrogen. The substrates were then exposed to UV-Ozone for 5 minutes. A 500 Å layer of the preferentially hole transporting material (HTL), N,N'-diphenyl-N,N'-bis(1-naphthol) 1,1'-biphenyl-4,4'diamine (α-NPD) (See Figure 5.2), was deposited on the ITO substrate by thermal evaporation from a baffled Mo crucible at a nominal rate of 2-to-4 Å/s under a base pressure of <2 x 10⁻⁶ Torr. A 550 Å layer of the preferentially electron-transporting (ETL) zinc bis (n-methyl-8-quinolinolato) chelates, also serving as the emitter layer (EML), was then deposited on the HTL. A top electrode consisting of a 5 Å LiF layer deposited on the EML layer followed by a 1000 Å layer of Al metal was subsequently deposited by thermal evaporation through a mask as circular 1 mm diameter contacts. In order to have
minimal variation on the thickness of each layer, all devices were made at the same time, where the HTL was vapor deposited on all the devices, as well as the cathode layers. Thus, devices produced from different metal chelate materials were identical in all respects. An Alq3 based OLED was also fabricated and tested simultaneously with the Znq2 materials and used as the reference material in this study. A quartz crystal oscillator placed near the substrate was used to measure the thickness of the films. Film thicknesses were calibrated by ellipsometry of films grown on silicon.

![Schematic representation of an organic-light emitting device](image)

Figure 5.1. Schematic representation of an organic-light emitting device.

![a-NPD](image)

Figure 5.2. α-NPD.

5.2. Device Testing
Devices were tested in air with an electrical pressure contacts made by means of a 25µm diameter Au wires. Current-voltage characteristics were measured with a Hewlett-Packard HP4145 semiconductor parameter analyzer, and EL intensities were measured with a Newport 835 optical power meter with a large area photodetector placed directly below the glass substrate. Thus, all efficiencies reported were measured directly from the backs of the devices with no corrections or assumptions regarding angular dependence of the electroluminescence. Spectra were recorded with an EG&G optical multichannel analyzer on a 0.25 focal length spectrograph.

5.3 Calculation of Relative Electroluminescence Efficiencies (Rel. η_{EL})

Electroluminescent quantum efficiencies ($\eta_{EL} = \text{photons emitted/electron injected}$) were calculated relative to devices prepared with Alq3 as the EML with normalized $\eta_{EL}(\text{Alq3}) = 1.0$. The applied voltage was increased gradually while measuring the light output and the current across the device. Data were collected from the pixilated device and average was acquired from at least three pixels on each device. Electroluminescence efficiencies were calculated from the optical output power (L) at a low current drive of 100 µA (current density of 13 mA/cm²) using equation (1).

$$\text{Rel. } \eta_{EL} = \frac{\eta_{EL(\text{ref})} L_{\text{sample}}}{L_{\text{ref}}}$$

5.4 Electroluminescence Results

The electroluminescence energy shifts of the methylated Znq2 materials were consistent with those observed for PL emission energies, where methylation of the
pyridyl ring (C2 or C4-methylation) resulted in a blue shift of emission and substitution of the phenoxide ring (C5-methylation) resulted in a red shift. The spectral data and colors of OLED light emission are shown in Table 5.1. Note that the 4Meq₂Zn material saturated the spectrograph detector; therefore, the reported λ_max value is approximated.

Table 5.1 EL Spectral Data.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>λ_max (nm) of EL Emission</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alq₃</td>
<td>530</td>
<td>Green</td>
</tr>
<tr>
<td>Znq₂</td>
<td>571</td>
<td>Yellow-green</td>
</tr>
<tr>
<td>2Meq₂Zn</td>
<td>560</td>
<td>Yellow-green</td>
</tr>
<tr>
<td>4Meq₂Zn</td>
<td>549*</td>
<td>green</td>
</tr>
<tr>
<td>5Meq₂Zn</td>
<td>578</td>
<td>Yellow-orange</td>
</tr>
</tbody>
</table>

*Estimated value from saturated spectrum.

The current versus voltage (IV) characteristics of OLED's composed of ITO/NPD/metal chelate/LiF-Al are shown in Figure 5.3. The device operating voltages (at a fixed current) increases in the order 4Meq₂Zn << Znq₂ ≤ Alq₃ < 5Meq₂Zn << 2Meq₂Zn. Although the voltage data were highly variable (largest variation was for 5Meq₂Zn), the relative differences in the voltage requirements between the metal chelate materials used as the EML in identically prepared OLED's were significant. (See the Appendix)

Figure 5.4 shows the dependence of the optical output power on drive current for each OLED. At a current of 100μA, the EL output increases in the order 5Meq₂Zn << 2Meq₂Zn < Znq₂ < Alq₃ << 4Meq₂Zn with less variability in the data compared to the I/V characteristics (see the Appendix).
The EL device data are tabulated in Table 5.2. The C4-methylated derivative of Znq₂ exhibited the highest relative EL quantum efficiency (~2X greater than the Alq₃ reference material) and the C5-methylated derivative the lowest. These results are consistent with the results for the metal tris(8-quinolinolato) series where the EL efficiencies were directly related to the PL efficiencies of the materials. However, 4Meq²Zn also exhibited the lowest voltage requirement in the series. Previously, we showed that 4Meq²Al had a higher EL efficiency than the unsubstituted derivative, Alq₃, but with a higher voltage requirement. (See Figures 5.4 and 5.5)²

As discussed in Chapter 1, if PL efficiency is the dominating factor for high EL efficiency then the ratio, \(\eta_{\text{EL}}/\phi_{\text{PL}} \) should be close to 1.0. As shown in Table 5.2, this ratio is greater than 1.0 for all Znq₂ materials investigated. This suggests that the other material properties, namely charge injection and transport efficiencies, must be different in these materials. This is not surprising because of the expected differences in geometry of the Znq₂ materials compared to the octahedral metal tris-chelates, which will have a large impact on solid-state packing. However, what is surprising is the significantly lower voltage requirement and higher light output exhibited by 4Meq²Zn. Explanations for these differences are discussed in the preceding section of this thesis; results are correlated to the differences in photophysical, thermal and electronic structure properties of these materials.
Table 5.2 EL Device Data.

<table>
<thead>
<tr>
<th>Metal Chelate</th>
<th>Voltage (at 13μmps/cm²)</th>
<th>Rel. η_{EL} (Alq$_3$ = 1.0)</th>
<th>η_{EL} / ϕ_{PL} (Alq$_3$ = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alq$_3$</td>
<td>7.5 ±0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Znq$_2$</td>
<td>7.3±0.4</td>
<td>0.73</td>
<td>2.2</td>
</tr>
<tr>
<td>2Meq$_2$Zn</td>
<td>10.1±0.3</td>
<td>0.60</td>
<td>1.4</td>
</tr>
<tr>
<td>4Meq$_2$Zn</td>
<td>5.3±0.1</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>5Meq$_2$Zn</td>
<td>7.6±0.6</td>
<td>0.23</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Figure 5.3. Current vs. voltage (IV) curve for nMeq$_2$Zn and Alq$_3$ as reference.
Figure 5.4. Light output vs. current for nMeqZn and Alq3 as reference.

Figure 5.5. Current vs. voltage (IV) curve for nMeqAl.
5.5 Discussions and Conclusion

Improving the electroluminescence efficiency of emitter materials requires better understanding of how the photoluminescence efficiency, the energy level alignment with the cathode and the hole transport layer and charge transport are affected by the molecular structure, electronic structure and bulk packing in the solid state. One way to establish structure/function relationships is through systematic studies of similar materials.

Alq3 is the most studied emitter material for organic electroluminescence applications because it has the best balance of material properties leading to efficient and stable device performance. The high PL efficiency in the solid state (30 %)\(^4\) and high glass transition temperature (177°C)\(^5\) has been attributed to its nearly octahedral
structure. Unlike most organic materials used for EL, Alq$_3$ is a fairly good electron transporting material, which is due to the preferential overlap in the solid state of the electron deficient pyridyl rings, the likely site of electron injection and transport. Indeed, we have previously shown that methylation of the pyridyl ring of Alq$_3$ caused an increase in drive voltage in OLED devices.$^{(6)}$ Therefore, significant changes in the coordination geometry of the ligands and changes in the electronic distribution on the pyridyl ring should have significant effects on charge transport properties of metal (8-quinolinolato) chelates. The purpose of this thesis was to investigate these effects through systematic study of tetracoordinated zinc (n-methyl-8-quinolinolato) and bicoordinated lithium (n-methyl-8-quinolinolato) chelates.

The thermal characterization showed that for all metal (n-methyl-8-quinolinolato) chelates, the C4-methylated derivatives had the lowest melting points, with the exception of the Liq chelates. The trend of the melting points for Liq chelates is similar to the T_m of the ligands. Low melting points for the 4MeqnM are indicative of weaker cohesive forces in the solid states compared to their unsubstituted analogue. Also, 4Meq$_2$Zn, 4Meq$_3$Al and 5Meq$_3$Al had the highest glass transition temperatures with no other transitions observed above T_q unlike their unsubstituted analogues, which exhibited recrystallization before melting. This high stability of the glassy state is favorable for practical OLED applications. For the nMeqLi chelates no other thermal transitions were observed other than T_m, and therefore these materials were the most "salt-like" of all Mqn.

The most intriguing result from the thermal characterization was that the glass transition temperatures were not significantly different between the zinc bis- and
aluminum tris-chelate series. Naito suggested that the high T_g of Alq$_3$ was because of its spherical shape. Therefore, if the glass transition were dependent on the shape of the molecule, we would expect a different trend for the more planar Znq$_2$ materials. However, all nMeq$_2$Zn chelates exhibited almost exactly the same T_g as the corresponding nMeq$_3$Al series, indicating that the nature of the ligand moiety has a stronger effect on the T_g than the metal chelate geometry.

Although the effects of methylation of the ligand on the photophysical properties and the electronic structure were similar for all metal (8-quinolinolato) chelates, substitution of the metal ion caused significant differences in the solvent dependencies of absorption and intensities of the carbon edge NEXAFS spectra. The inclusion of the Liq materials in these studies was important for understanding the nature of the differences between the Alq$_3$ and Znq$_2$ materials. The solvent dependences of absorption and emission energies were partially accounted to the geometry changes of the metal chelate, resulting in stronger interactions with solvent molecules. We also propose that, because of the differences in the ionic nature of the metal-ligand bond, a large red shift of the longest wavelength of absorption was observed in a more polar solvent. Indeed, the NEXAFS spectroscopy of the carbon K-edge of Mq$_n$ supports an increasing ionic metal-ligand bonding character from Alq$_3$ < Znq$_2$ < Liq. The significant decrease of the intensity of the lowest energy transition (LUMO (I)) upon metal ion substitution is indicative of decrease of the probability of the LUMO (I) transition, which can occur if those LUMO states are more “filled.” One way to interpret this trend is that a more even electron distribution between the pyridyl ring and the phenoxide ring supports a more ionic character of the metal ligand bond of Liq than Znq$_2$ than Alq$_3$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
In order to draw implications about the electroluminescence performances of the metal quinolate chelates, it is important to know the packing behavior of these materials. Unfortunately, the geometry of the ligands for Znq₂ has not been established because of the inability to obtain single crystals for x-ray diffraction analysis. However, molecular modeling suggests that the material has an intermediate geometry between a tetrahedral and square planar.\(^9\) However, crystal structures of the dihydrate form of Znq₂ and the anhydrous form of copper (8-quinolinolato) have been determined,\(^{10,11}\) where the geometries of the ligands were essentially planar. In the case of the dihydrate Znq₂, the interaction of the water molecules in the axial position on the zinc atoms provided a strong influence on the planarity of the 8-quinolinolato ligand geometry, which may be significantly different in the anhydrous form. However, we propose that the 2Meq₂Zn chelate exhibits the least planar geometry than all other nMeq₂Zn chelates studied. 2Meq₂Zn exhibited similar solvent dependences of the absorption and emission energies as the metal tris-(8-quinolinolato) chelates, which suggests that there are less solvent interaction for this material than the other nMeq₂Zn. This is also consistent with the steric hindrance induced by C2-methylation of the pyridyl ring of the ligand. Therefore, with a more planar structure for Znq₂, 4Meq₂Zn and 5Meq₂Zn, these materials can have close \(\pi-\pi\) stacking interaction. In fact, in the crystal structure reported for Cuq₂, the \(\pi-\pi\) stacking interaction of the ligands was \(\sim 3.3 \text{ Å}\), which is less than the \(\pi-\pi\) stacking interaction in Alq₃\(^7\) (\(\sim 3.5 \text{ Å}\)).

Although the results from the photophysical and electronic characterization of Liq were important piece of the puzzle, time allowed us to carry out the device characterizations only for Znq₂ chelates. For the Znq₂ materials, a reduction of the
number of ligands coordinated to the metal ion should allow more room for better ligand overlap in the solid state. As a result there may be both positive and negative implications on electroluminescence performance. For example closer $\pi-\pi$ stacking interactions can lead to excimer and/or exciplex formation in the solid state, which is known to quench efficient light generation \(^{(3)}\), but this close interaction may enhance charge transport properties. For all metal chelates studied in this thesis, there was no evidence for excimer or exciplex formation neither from the photophysical studies of solid-state films nor from the electroluminescence spectra from OLEDs.

On the other hand, substitution of Zn atom, which will have more ionic metal-ligand bonding character, should reduce the number of electron trapping sites. For all metal (8-quinolinolato) chelates, it is believed that electrons are injected and transported through the electron deficient, pyridyl ring of the ligand. However, no discussions of electron trapping differences among these materials have been reported. There are two ways we believe that electrons can become trapped in the metal (8-quinolinolato) materials. The crystal structure for Alq\(3\)\(^{(7)}\) showed that two of the three ligands were closely interacting (<3.5Å), where the third ligand was less interacting (>3.5Å) with adjacent molecules. If an electron is transported into the third ligand, it can act as an electron trap and may result in an increase in drive voltage. This form of electron trap is less likely for the Znq\(_2\) chelates because all ligands may closely interact with an adjacent ligand. Another possible mechanism for electron trapping may be due to the relative electron affinity of the pyridyl ring acceptor of the ligand. For both the zinc and lithium chelates studied in this thesis, x-ray spectroscopic studies suggest that the electrons were more evenly distributed between the two ring systems of the ligand, which would
decrease the electron affinity of the pyridyl ring. If so, the electron can be more easily transported to the adjacent ligand, enhancing electron transport because of shallower traps.

Previously, we have showed that, for the aluminum metal tris-quinolates, 4Meq₃Al has the highest light output and the 5Meq₃Al has the lowest light output, relative to Alq₃, which is consistent with the trends in their \(\phi_{PL} \). However, although 4Meq₃Al have the highest light output, it requires a much larger drive voltage than Alq₃. We proposed that the larger drive voltage upon methyl substitution on the 4-C position is a consequence of impedance matching by preferential overlap of the pyridyl rings. Therefore, charge transport may be less favorable. For the Znq₂ chelates, similar to Alq₃, 4meq₂Zn gave the highest light output and 5Meq₂Zn exhibited the lowest light output, consistent with the trends in their \(\phi_{PL} \). However, unlike Alq₃, in addition for its high light output, 4Meq₂Zn (~5.3 V) also required the least drive voltage requirement compared to Znq₂ and Alq₃. The drive voltages of Znq₂ (~7.3 V) and 5Meq₂Zn (~7.6 V) were similar to Alq₃ (~7.5 V), while 2Meq₂Zn (~10.1 V) had the highest. If photoluminescence is the dominating factor for the EL performance of all metal (8-quinolinolato) chelates and electron injection/transport and charge injection are similar for all metal (8-quinolinolato), then we would expect a similar trends in EL efficiencies, where \(\eta_{EL}/\phi_{PL} \) should be close to 1.00. However, \(\eta_{EL}/\phi_{PL} \) for 4Meq₃Al and 5Meq₃Al are 0.40 and 1.3, respectively. We propose that the charge transport and/or injection of metal quinolinolato chelates are enhanced with ratios >1.00 and less favorable with ratios < 1.00. The \(\eta_{EL}/\phi_{PL} \) ratios for all Znq₂ were all > 1.00. Therefore, electron injection and/or transport are enhanced in the Znq₂ materials. Indeed, if the anhydrous form of Znq₂ is
more planar than tetrahedral, closer $\pi-\pi$ stacking interaction should lead to better electron transport properties compared to Alq$_3$. This explains the similarities of the drive voltage requirements of Alq$_3$ with Znq$_2$ and 5Meq$_2$Znq. For 2Meq$_2$Zn, the larger drive voltage requirement was accounted to the less planar geometry, which may prevent efficient overlap of the ligand moieties in the solid state and hinders charge transport. 4Meq$_2$Zn exhibits a substantially lower voltage requirement than all other nMeq$_2$Zn chelates studied. Our rationalization to this result is that this material may have reduced trapping ability of the injected electrons, because of the placement of the methyl group on the pyridyl ring causing a decrease in electron affinity.

References

CHAPTER 6

CONCLUSIONS

The work presented here represents only a small piece of a much larger puzzle. The long-range goal is to have more detailed understanding of the structure function relationships in organic materials derived from metal quinolate chelates and how we can optimize the metal quinolate materials. In order to achieve this goal, much more work is necessary concerning the characterization of metal quinolate chelates in general. Specifically, with regard to the present study concerning Znq₂ and Liq, many questions remain unanswered. Solutions to these questions may be found through further investigations and the following discussion outlines the future direction of this research.

To begin, more structural characterization must be performed on the Znq₂ materials such as variable temperature NMR or solid state NMR. This would provide more information regarding the structure. In addition, packing behavior and coordination geometry of Znq₂ needs to be determined in order to truly establish a structure/function relationship. This information could also be substantiated with x-ray powder diffraction data.

To strengthen our interpretation from the electronic characterization and photophysical properties that a more ionic metal ligand bonding character exists in Liq compared to Znq₂ and much less so in Alq₃, several experiments must be performed.
First, the comparison of the solution FT-IR and solid FT-IR of Liq, Znq₂ and Alq₃ will provide insights into the differences and similarities between the C=O and C-O⁻ stretches, which may provide some indication about whether there is partial dissociation of the Liq. Also, if indeed Liq has the most ionic metal ligand bonding character and there is some delocalization of the phenolic oxygen lone pairs towards the quinolate ligand, we would observe a significant C=O stretch for Liq materials. Another experiment that may be performed is color titration of the Mqⁿ⁻. This experiment would provide information about the relative ionic character of these materials provided that an appropriate solvent is found for the Znq₂ materials. Results from this experiment will also allow us to compare the relative ease to which these materials dissociate in solution.

Although the overall results from this thesis work suggests that Znq₂ might be a better electron transporter material than Alq₃, more experiments with similar materials must be carried out in order to understand the properties that can affect charge transport and electron transport. For example, because the voltage requirements will be dependent on both charge injection and charge transport, charge mobility studies should be performed to determine which modification (methyl vs. metal ion substitution) would have a larger effect. In addition, more x-ray spectroscopic studies must be carried out to determine the HOMO/LUMO energies, in comparison to theoretical treatment of the metal quinolate chelates. Once the HOMO/LUMO energies are found, this information can then be correlated to the electron injection and hole injection phenomena. It will also provide a guide for determining which hole transporters and cathodes would be more appropriate and would have a better energy level matching with the electron transporter/emissive materials. Theoretical treatment and molecular modeling of the
metal quinolate chelates would also aid in the understanding of the transitions observed in the NEXAFS spectroscopy. Once this information becomes available, this may help in determining the transitions responsible for photoluminescence and/or electroluminescence. From there, we can determine the cause of the relative shifts and changes in intensities from the UV-Vis spectroscopy.

In the NEXAFS spectroscopy carried out for in this thesis, the reasons for the differences and similarities in the C and N peak energies and relative intensities are not well established. Since our interpretation may be one of many ways of interpreting the data, further investigations along these lines are recommended. One potential would involve comparing the O 1s NEXAFS of Mqₙ. Results from this experiment would give some chemical information about the environment of the O, which may provide additional information about the nature of the metal ligand bond in these materials.

All in all, the important finding for this thesis is that, although the metal ion is not directly involved in the photoluminescence process of the metal quinolate chelates, directly it can affect the electroluminescence through a modified coordination geometry and electron distribution on the quinolate ligand, thereby affecting electron transport, electron injection and hole injection properties. However, only through systematic studies of similar materials would we derive the structure/function relationship of these materials.
APPENDIX I

FT-IR DATA
Figure A-1 FT-IR Spectra of Znq₂: a) KBr Pellet; b) Vapor Deposited Film.

Figure A-2 FT-IR Spectra of 2Meq₂Zn on KBr Pellet.
Figure A-3 FT-IR Spectra of 4Meq₂Zn: a) KBr Pellet; b) Vapor Deposited Film.

Figure A-4 FT-IR Spectra of 5Meq₂Zn: a) KBr Pellet; b) Vapor Deposited Film.
Figure A-5 FT-IR Spectra of Liq: a) KBr Pellet; b) Vapor Deposited Film.

Figure A-6 FT-IR Spectra of 4MeqLi: a) KBr Pellet; b) Vapor Deposited Film.
Figure A-7 FT-IR Spectra of 5MeqLi: a) KBr Pellet; b) Vapor Deposited Film.
Figure B-1 Decomposition temperature for Znq_2.

Figure B-2 Decomposition temperature for 2Meq_2Zn.
Figure B-3 Decomposition temperature for 4Meq₂Zn.

Figure B-4 Decomposition temperature of 5Meq₂Zn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure B-5 Decomposition temperature of Liq.

Figure B-6 Decomposition temperature of 4MeqLi.
Figure B-7 Decomposition temperature of 5MeqLi.

Figure B-8 DSC traces of A) first and B) second heating cycles of lithium mono-quinolinolato chelates: (a) Liq; (b) 4MeqLi and (c) 5MeqLi.
APPENDIX III

PHOTOPHYSICAL DATA
Figure C-1 Absorbance Spectra of nMeq₂Zn in MeOH.

Figure C-2 Absorbance Spectra of nMeq₂Zn on Film.
Figure C-3 Absorbance Spectra of nMeqLi on Film.

Figure C-4 Emission Spectra of nMeq₂Zn in CH₂Cl₂.
Figure C-5 Emission Spectra of nMeq₂Zn in MeOH.

Figure C-6 Emission Spectra of nMeq₂Zn on Film.
Figure C-7 Emission Spectra of nMeqLi in CH$_2$Cl$_2$.

Figure C-8 Emission Spectra of nMeqLi in DMF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure C-9 Emission Spectra of nMeqLi on Film.

Figure C-10 Absorption Spectra of q and q⁻ in DMF.
APPENDIX IV

DEVICE PROPERTIES
Figure D-1 IV curves for Znq₂.

Figure D-2 IV curves for 2Meq₂Zn.
Figure D-3 IV curves for 4Meq$_2$Zn.

Figure D-4 IV curves for 5Meq$_2$Zn.
Figure D-5 Light output vs. current for Znq₂.

Figure D-6 Light output vs. current for 2Meq₂Zn.
Figure D-7 Light Output vs. current for 4Meq$_2$Zn.

Figure D-8 Light output vs. current for 5Meq$_2$Zn.
Figure D-9 IV curve for Alq3.

Figure D-10 Light output vs. current for Alq3.
APPENDIX V

1H NMR DATA
Table E-1. \(^1\)H NMR Chemical shifts in ppm and Coupling Constants for nMeq and nMeqLi in DMSO-d\(_6\).

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\delta)H2 (ppm)</th>
<th>(\delta)H3 (ppm)</th>
<th>(\delta)H4 (ppm)</th>
<th>(\delta)H5 (ppm)</th>
<th>(\delta)H6 (ppm)</th>
<th>(\delta)H7 (ppm)</th>
<th>(\delta)CH(_3) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>8.91 (dd)</td>
<td>7.59 (dd)</td>
<td>8.36 (dd)</td>
<td>7.45 (dd)</td>
<td>7.50 (m)</td>
<td>7.19 (dd)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,3=4.1]</td>
<td>[J3,2=4.1]</td>
<td>[J4,3=8.3]</td>
<td>[J5,6=8.2]</td>
<td>[J6,5=8.2]</td>
<td>[J7,6=7.5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,4=2.0]</td>
<td>[J3,4=1.7]</td>
<td>[J3,2=1.6]</td>
<td>[J5,7=1.4]</td>
<td></td>
<td>[J7,5=1.4]</td>
<td></td>
</tr>
<tr>
<td>Liq</td>
<td>8.45 (dd)</td>
<td>7.30 (m)</td>
<td>8.07 (dd)</td>
<td>6.62 (d)</td>
<td>7.20 (d)</td>
<td>6.54 (d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,3=4.2]</td>
<td>[J3,4=8.2]</td>
<td>[J4,3=8.2]</td>
<td>[J5,6=7.9]</td>
<td>[J6,5=7.9]</td>
<td>[J7,6=7.8]</td>
<td></td>
</tr>
<tr>
<td>4Meq</td>
<td>8.31 (d)</td>
<td>7.15 (d)</td>
<td>6.68 (d)</td>
<td>7.20 (t)</td>
<td>6.54 (d)</td>
<td>2.53 (s)</td>
<td>2.66 (s)</td>
</tr>
<tr>
<td></td>
<td>[J2,3=3.7]</td>
<td>[J3,2=3.7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4MeqLi</td>
<td>8.71 (d)</td>
<td>7.41 (d)</td>
<td>7.49 (d)</td>
<td>7.48 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,3=4.3]</td>
<td>[J3,4=4.3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Meq</td>
<td>8.87 (dd)</td>
<td>7.60 (dd)</td>
<td>8.40(dd)</td>
<td>7.28 (d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,3=4.1]</td>
<td>[J3,4=8.5]</td>
<td>[J4,3=8.5]</td>
<td>[J6,7=7.7]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5MeqLi</td>
<td>8.44 (dd)</td>
<td>7.34 (m)</td>
<td>8.14 (dd)</td>
<td>7.01 (d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[J2,3=3.8]</td>
<td>[J3,4=8.4]</td>
<td>[J4,3=8.4]</td>
<td>[J6,5=7.9]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E-2. \(^1\)H NMR Chemical shifts in ppm and Coupling Constants for q and Liq in CDCl\(_3\).

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\delta)H2 (ppm)</th>
<th>(\delta)H3 (ppm)</th>
<th>(\delta)H4 (ppm)</th>
<th>(\delta)H5 (ppm)</th>
<th>(\delta)H6 (ppm)</th>
<th>(\delta)H7 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>8.78 (dd)</td>
<td>7.38 (dd)</td>
<td>8.10 (dd)</td>
<td>7.30 (dd)</td>
<td>7.44 (m)</td>
<td>7.21 (dd)</td>
</tr>
<tr>
<td></td>
<td>[J3,2=3.0]</td>
<td>[J2,3=8.3]</td>
<td>[J4,3=8.3]</td>
<td>[J6,5=8.2]</td>
<td>[J7,6=7.9]</td>
<td>[J7,6=8.7]</td>
</tr>
<tr>
<td>Liq</td>
<td>8.45 (dd)</td>
<td>7.30 (m)</td>
<td>8.07 (dd)</td>
<td>6.62 (d)</td>
<td>7.20 (d)</td>
<td>6.54 (d)</td>
</tr>
<tr>
<td></td>
<td>[J2,3=4.2]</td>
<td>[J3,4=8.2]</td>
<td>[J4,3=8.2]</td>
<td>[J5,6=7.9]</td>
<td>[J6,5=7.9]</td>
<td>[J7,6=7.8]</td>
</tr>
</tbody>
</table>
VITA

Graduate College
University of Nevada, Las Vegas

Florecida Lalo Endrino

Address:
5125 Gray Lane # B
Las Vegas, NV 89119

Degrees:
Bachelor of Science, Chemistry, May 1999 University of Nevada, Las Vegas
Bachelor of Science, Biology, May 1999 University of Nevada, Las Vegas

Publications:

Presentations:

Thesis Title: Comparative Study of Zinc Bis-Quinolates and Lithium Mono-Quinolates: Investigation of the Effect of Coordination Geometry on Electroluminescence Performance

Thesis Examination Committee:
Chairperson, Dr. Linda S. Sapochak, Ph.D.
Committee Member, Dr. Lydia McKinstry, Ph.D.
Committee Member, Dr. Dave Hatchett, Ph.D.
Graduate College Representative, Dr. Malcolm Nicol, Ph.D.