
UNLV Retrospective Theses & Dissertations

1-1-2001

A self-stabilizing interval routing scheme in general networks A self-stabilizing interval routing scheme in general networks

Doina Bein
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Bein, Doina, "A self-stabilizing interval routing scheme in general networks" (2001). UNLV Retrospective
Theses & Dissertations. 1270.
http://dx.doi.org/10.25669/s6w4-emmp

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/s6w4-emmp
mailto:digitalscholarship@unlv.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quaiity of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Art)or, Ml 48106-1346 USA

800-521-0600

UMI'
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A SELF-STABILIZING INTERVAL ROUTING SCHEME IN GENERAL NETW ORKS

by

Doina Bein

Bachelor of Science
Al. I. Cuza University of Iasi, Romania

1996

Master of Science
Al. I. Cuza University of Iasi, Romania

1997

A thesis submitted in partial fulfillment
of the requirements for the

M aster o f Science Degree
D epartm ent o f Com puter Science

H ow ard R . Hughes College o f Engineering

G raduate College
U niversity o f Nevada, Las Vegas

August 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number; 1406382

UMI
UMI Microform 1406382

Copyright 2002 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Leaming Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IJNIV Thesis Approval
The Graduate College
University of Nevada, Las Vegas

June 11 , q 01

The Thesis prepared by

Doitia Bein_____

Entitled

A S e lf -S ta b il iz in g In te rn a l Routing Scheme in General Networks

is approved in partial fulfillment of the requirements for the degree of

Master o f Science

Examination Committee Member

Exanmiation Committee Member

I .

I
Graduate College Faculty Repres^htative

Examination Committee Chair

Dean o f the Graduate Colles^e

rK/ioir-33/i-oa a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Self-Stabilizing In terva l Routing Scheme in General Networks

by

Doina Bein

Dr. Ajoy Kumar Datta. Examination Committee Chair
Professor of Computer Science

University of Nevada. Las Vegas

Routing is the term used to describe the decision procedure by which a node selects one

(or. sometimes, more) of its neighbors to forward a message on its way toward the final

destination. The amount of information kept in each node for routing must be as small as

possible, but a message should be delivered on as short a path as possible. The Interval

Routing Scheme (1RS) labels the nodes with unique integers from a contiguous range, and

labels the outgoing arcs in every node with a set of intervals forming a partition. Since

1RS has an impact on routing in the global Internet, the design and implementation of

a distributed, fault-tolerant, and robust 1RS is an important research topic. The Pivot

Interval Routing (PIR) scheme [EGP98] divides the nodes in the network into pivots and

clients of the pivots. A pivot acts as a center for the partition of the network formed by

its clients. Each node can send messages directly only to a small subset of vertices in its

nearby vicinity or to the pivots.

An algorithm is called self-stabilizing [Dij74] if, starting from an arbitrary initial state,

it is guaranteed to reach a correct state in finite time and with no exterior help. In this

thesis, we pr esent a self-stabilizing P IR algorithm. The algorithm starts with no knowledge

of the network architecture and, eventually, each node builds its own routing table of size

loĝ ^̂ n-ré^v log n) bits {n is the number of nodes in the network and Ai, is the degree

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of node r), with a total of log^^' n) bits. The stretch factor (the ratio between the

length of a path and the distance between the endpoints) is at most five and is three on the

average. The stabilization time of the algorithm is 0 { d \ /n (l + logn)) time units, where n

is the number of nodes and d is the diameter of the network.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT .. iii

LIST OF F IG U R E S ... vi

A C K N O W L E D G M E N T S .. vii

IN T R O D U C T IO N .. 1
Related W o rk ... 2
Contributions... .1
Outline of the Thesis... 4

P R E L IM IN A R IE S .. 5
Distributed System s... 5
Programming Notations.. 7
Self-Stabilization... 8

P IVO T INTERVAL ROUTING S C H E M E .. I I
Routing Schemes... I I
Inter\’al Routing Scheme.. 14
Pivot Interval Routing Schem e.. 16

Overview of P I R ... 17

THE DISTRIBUTED PIVO T INTERVAL ROUTING S C H E M E 22
Data Structures ... 24
The A lgorithm .. 26

EiTor.Corrcction... 28
Calculate_Ball .. 29
Partial Algorithms - Second phase.. 33
To-Clients and T o -P ivo ts ... 35
Pivot .Label and Client i a b e l ... 40

One exam ple ... 45

PROOF OF CORRECTNESS .. 47
A Correct T -b a l l ... 48
Choosing the Nearest P iv o t .. 57
Relabeling... 59

Self-Stabilization and Time Complexity... 62

C O N C LU S IO N S ... 66

B IB L IO G R A P H Y .. 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA ... 69

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

3.1 An arbitrary network... 18
3.2 The t-ball Bi(5) ... 19
3.3 The pivots and their c lien ts ... 21

4.1 A partial t-ball for node 1 .. 45
4.2 The t-ball Bi (5) .. 46

5.1 A correct distance replaces the old o n e .. 49
5.2 The node u reached v through w but the path u w Is disconnected 50
5.3 A crash in the direct neighborhood.. 51
5.4 The down node u reached v through w .. 51
5.5 A cycle in delivering of dimension 3 .. 52
5.6 A correct s ituation ... 52
5.7 A shorter distance through another neighbor .. 55
5.8 Increasing m in.distance... 59

vn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to thank Dr. Ajoy Datta for chairing my committee and advising this work.

For this and for being generous with his time when I needed it I am deeply indebted to him.

I would also like to specifically thank Dr. John Minor. Dr. Tom Nartker. and Dr. Henry

Selvaraj for serving on the committee. I would like to thank the faculty of the Computer

Science Department of the University of Nevada. Las Vegas for the formal education along

with generous financial support. I am grateful to the Graduate College for having supported

my work through a summer stipend during the final stages of this work.

I am grateful to my parents for their inspiration. Special thanks go to my brother. Vlad

and his wife Alina for their encouragement. Finally and most importantly. I thank my

husband. Wolfgang, for his love and support.

vui

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Routing schemes implemented in point-to-point communication networks deliver messages

between processors. For large networks it becomes important to reduce the amount of

memory kept in each node for routing. At the same time, a message should be delivered on

as short a path as possible. For literature on the routing protocols, see [Tel94] and [Gou98j.

A universal routing strategy is an algorithm which generates a routing scheme for any

given network. A compact routing scheme uses compact routing tables. A table contains

an entry, for each link of a node, specifying which destinations must be routed via this link

[Tel94]. The most popular such scheme is the interval routing scheme 1RS ([SK85]). which

labels the nodes with unique integers from a contiguous range, and labels the outgoing arcs

in every node with a set of intervals forming a partition of the name range. A message

invoking the delivery protocol is sent on the unique outgoing arc labeled by an interval

which contains the destination label. While the preprocessing step is complex, the delivery

protocol consists of simple "shoot and forget" decision functions in every node, which depend

only on the destination.

It is important to update the routing scheme dynamically in case of network change

(processors can be added or conceivably crash.) The most general technique of designing a

system to tolerate arbitrary transient faults is self-stabilization ([Dij74].) A self-stabilizing

system is guaranteed to converge to the intended behavior in finite time, regardless of

the initial state of the processors and initial messages on the links. In a distributed self-

stabilizing algorithm, a node, with no initializa tion code and having only local information,

has to achieve a global objective, to build a correct 1RS in the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Related Work

Among all the research done in the area of compact routing, the hierarchical routing

scheme is the most related to our work. It is known [ABNL~89. ABNLP90. .A.P90. PU89]

that the memory requirements of a routing scheme are related to the worst case stretch

factor the routing scheme guarantees. Peleg [PU89] showed that any universal routing

strategy which can achieve a stretch factor s > 1 must use a total of I l (n ') bits of

routing information in the network.

Several routing strategies have been proposed which achieve an almost optimal efficiency-

space relation. Specifically. Peleg [PU89] proved that for every graph and every integer Ic > I

it is possible to construct a hierarchical routing scheme with stretch factor 0(/c) which uses

a total of log n) bits and labels each node with 0(log" n) bits. The scheme has a

few drawbacks: it is not name-independent (it relabels the nodes with new names), it does

not bound the local memory requirement of a node, and finally, it assumes a unit cost on tiie

links of the network. Other hierarchical routing methods, see [ABNL*89j and [.AP90j. avoid

these problems but at the price of non optimal efficiency-space. But the major disadvantage

of all proposed hierarchical routing strategies is a complex decision function at the nodes,

which becomes a bottleneck in the case of high-speed networks.

The first compact routing method was proposed by Santoro and Khatib [SK85]. The

method is based on labeling the nodes of a tree with integers from 0 to A' - 1 (iV represents

the total number of nodes in the tree) in such a way that the set of destinations for each

link is an interval. Van Leeuwen and Tan [LT87] extended the tree labeling scheme to

non-tree networks in such a way that (almost) every link is used for packet traffic. Eilam

[EGP98] presented a particular kind of interval routing scheme called pivot interval routing

scheme (PIR.) Each node has a routing table of size 0(n^^^ loĝ '̂ * n) bits and knows only

its direct neighbors. The scheme is not name-independent, but it bounds the local memory

requirement of a node, and makes no assumptions of the costs of the links in the network.

In 1973. Dijkstra introduced the notion of self-stabilization in the context of distributed

systems [Dij74. Dij82]. He defined a system as self-stabilizing when, “regardless of its initial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State, it is guaranteed to arrive at a legitimate state in a finite number of steps". A system

which is not self-stabilizing may stay in a illegitimate state forever.

Fault-tolerance is an important issue in designing network routing protocols since the

topology changes due to the link/node failure or recovery. An optimal self-stabilizing short­

est path tree construction is presented in [AKM ’̂ OSj. Self-stabilizing topology-update prob­

lems are discussed in [APSV94. Dol97. DH97. GS95. Mas95].

1.2 Contributions

Eilam [EGP98] presented the V X H scheme, which assumes a full knowledge of the net­

work for all the nodes in the graph. However they gave no algorithm for its implementation.

The article mentioned that such a scheme can be constructed in time polynomial in N. the

number of the nodes. VXTZ is similar to a 2-level hierarchical routing scheme, in the sense

that it involves 2-level message passing in case the source and the destination are not in the

same neighborhood.

In this thesis we propose a self-stabilizing pivot interval routing strategy STXTl. It is

a fault-tolerant distributed implementation of the VXTZ scheme in a general asynchronous

network. The algorithm starts with no knowledge of the network architecture and progres­

sively builds an 1RS scheme. It supports fault causing nodes and link failures and additions

of nodes and/or links, and it is guaranteed that it will reach a correct state in finite time

(it is self-stabilizing.)

The tasks are fairly distributed among the nodes and each node builds its own rout­

ing table based on the information gathered online up to the current moment. There are

nodes in the network (called pivots) which play the role of the routers. Their routing table

capacities are the same as the non-pivots nodes 0(n '̂^^ log^^^n -t- logn) bits, where n

is the number of nodes in the network and A f is the degree of node v. with a total of

0{n^'~log^^~n) bits. The stretch factor of f iv e and the average stretch of three are pre­

served. as in the VXTZ scheme. The stabilization time of the algorithm is 0 { d ^ n { l 4- logn))

time units, where n is the number of nodes and d is the diameter of the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Outline of the Thesis

In the next Chapter we give general definitions for distributed systems and self stabi­

lization. Since the VXTZ scheme is a particular case of 1RS. the interval routing scheme and

some specific definitions are given in Chapter 3. Chapter 4 contains our main contribution,

the distributed VXTZ algorithm. We then prove the correctness of the algorithm in Chapter

5 and we give some concluding remarks in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

PRELIMINARIES

In this chapter we present a number definitions for a distributed system and self-stabilization,

and we give precise programming notations used in the algorithm.

2.1 Distributed Systems

A recent orientation in computer systems research is to consider distributing computa­

tion among several processors {multiprocessor systems.) If the processors share the com­

puter bus. the clock, and sometimes memory and peripheral devices, the systems is called

tightly coupled. If the processors do not share memory or clock, and instead, have their own

memory, they are called distributed systems. The processors communicate with each other

through various communication lines, such as high-speed buses or telephone lines.

Defin ition 2.1.1 (D istribu ted System) A distributed system is an undirected connected

graph, S = (V .E). where V is a set o f nodes ^Pj = n) and E is the .set o f edges. Nodes

represent processors, and edges represent bidirectional communication links.

There are various reasons for building a distributed algorithm using distributed systems:

computation speed-up. reliability, communication. If a particular computation can be par­

titioned into a number of subcomputations that can run concurrently, then a distributed

system may allow us to distribute the computation among the various sites - to run that

computation concurrently. If one node fails in a distributed system, the remaining ones can

potentially continue operating.

There are many instances in which programs need to exchange data among each other on

the system. When the processors are connected by a communication network, tire processes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at different sites can exchange information. There are two common models of communica­

tion: message passing and shared memory. In the message passing model, information is

exchanged through an interprocess-communication facility (IPC) provided by the operat­

ing system. In the shared memory model, processes use map memory system calls to gain

access to regions of memory owned by other processes. A process can access a region of

memory owned by another process. Processes may exchange information by reading and

writing data in these shared areas. The form of the data and the location arc determined

by these processes and are not under the operating system's control.

IPC offers a mechanism to allow processes to communicate and synchronize their actions,

providing at least two operations: send{message) and receive(message). If processes p,

and pj need to communicate, they must send messages to and receive messages from each

other: a communication link must exist between them. Messages sent by a processor can

be either fixed size or variable size.

Regarding the timing of events (receiving/delivering a message, computing local infor­

mation). we have several synchronous, asynchronous, and partially synchronous models.

The synchronous model is the simplest model to describe and to program. We assume that

all processors take steps in their executions simultaneously, and the transmission time of

each message is bounded. But this is very difficult to implement, and because of this, most

distributed systems are not synchronous. The asynchronous model is the other extreme,

where processors can take steps at arbitrary speeds and in arbitrary orders. It is the hardest

to program, because of the uncertainty in the order of events. Since the asynchronous model

has no assumption about time, algorithms designed for the asynchronous model are general

and portable: they are guaranteed to run correctly in networks with arbitrary' timing guar­

antees. On the other hand, the asynchronous model does not provide sufficient conditions

to solve problems efficiently, or even to solve them at all. The partially synchronous model

is in between, with a wide range of possible assumptions that can be made. .\ very common

assumption is to bound the interval of time for transmitting a message, called timeout, after

which the message is considered lost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We consider networks which are asynchronous. Each node starts with an unique ID.

chosen from some large totally ordered space of identifiers such as the positive integers.

All process ID ’s in the network are distinct, but there is no constraint on which IDs actually

appear in the network (they do not have to be consecutive integers.) Initially, each node

knows only its direct neighbors. Edges are labeled by distance values. A communication

link (p. q) exists if and only if p and q are neighbors and the physical distance between them

identifies the length of the link.

Every processor p can distinguish all its links. The variable Np refers to the set of the

direct neighbors of p. arranged in some arbitrary order - < p . The number of neighbors of

p. \Np\. is called the degree of p and is denoted by Ap. We assume that Np is maintained

by an underlying local topology maintenance protocol that it can alter its values in case of

changes in the network (failures of processors, or links, or both.)

2.2 Programming Notations

Each component of a system (node or link) has a local state, which is defined by the ID

of the node and the values of the program variables. We define the global state of a system

as the union of the local state of its components.

The program consists of a set of global variables and a finite set of actions. A process

can read/write its own variables and only read the variables of the neighboring processors.

Each action is uniquely identified by a label and is part of a guarded command:

< label > ::< guard > —>< action >

The guard of an action is a Boolean expression involving the global variables and/or

local variables. The action can be executed only if its guard evaluates to true. We assume

that the actions are atomically executed: the evaluation of a guard and the execution of

the corresponding action, if it is selected for execution, are done in one atomic step.

In the system, one or more processors execute an action and a processor may take at

most one action. This execution model is known as the distributed daemon. We assume a

weakly fa ir daemon, meaning that if processor p is continuously enabled, p will be eventually

Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

chosen by the distributed daemon to execute an action.

A network protocol is a set of node programs, one for each node. A global state of the

protocol is the state of all nodes as well the messages on links.

Let C be the set of all possible configurations of the system and a distributed protocol

V he & collection of binary transition relations denoted by ^ on C.

A computation of P is a maximal sequence of configurations e = (7o-7 i 7 i- 7 i - i —)

such that Vf > 0: 7 , i-> 7,^.1 if 7 ,^1 exists or 7 , is a terminal configuration. Maximality

means that the sequence is either infinite, or it is finite and no action of V is enabled in the

final configuration.

The set of all possible computations of P in the system S is denoted by £.

The set of computations of P in S starting with a particular configuration a € C is

denoted by 5q. A configuration 3 is reachable from q. o 3. if there exists a computation

e € ^Q.e = (7 0 -7 i7 i . 7 i - i —) such that 3 = 7 ,-.i > 0.

2.3 Self-Stabilization

The notion of self-stabilization was introduced to computer science by Dijkstra in 1973.

He limited his attention to a ring of finite-state machines. He defined a system as self-

stabilizing when "regardless of its initial state, it is guaranteed to arrive at a legitimate

state in a finite number of steps" [Dij82j. A non self-stabilizing system may stay in a non

legitimate state forever. Dijkstra observed that "local actions taken on account of local

information must accomplish a global objective" [Dij82].

His work was rather incomprehensible, and it was Lamport in 1983 who appreciated

and explained it. Since then, substantial research was done and particular cases of self­

stabilization have been studied in articles: snap SS. fault containing, super-stabilization

[DolOO]. The work of Dijkstra remains a "milestone in work of fault tolerance" and is now

considered to be the most general technique for designing a system to tolerate arbitrary

transient faults.

A self-stabilizing system S guarantees that, starting from an arbitrary global state, it

reaches a legal global state within a finite number of state transitions, and remains in a legal

Reproduced witfi permission of the copyright owner. Further reproduction prohibited without permission.

9

state unless a change occurs. In a non-self-stabilizing system, the system designer needs to

enumerate the accepted kinds of faults, such as node/link failures, and he must add special

mechanisms for recovery. Generally, not all types of faults are taken in consideration, and

an obscure error such as a memory corruption can provoke a general reset of the entire

system. Ideally, a system should continue its work by correctly restoring the system state

whenever a fault occurs ([AG93. Gou98j.)

Self-stabilization offers a uniform mechanism to cope with not only arbitrary transient

faults such as data, message, location counter corruption ([KP93]). but also with a variety

of faults such as network congestion and software bugs ([L.A.I99].)

Given a predicate P: among C. the set of all possible configurations, we denote by Cp

the set of legitimate configurations, (corresponding to the legitimate states of the system,

which satisfy P). and by C - C the set of illegitimate configurations (which do not satisfy

P.) The predicate truth of the P for our distributed algorithm guarantees that the network

has a correct V lT l scheme.

The relation c r P means that an element c € C satisfies the predicate P defined on

the set C. A predicate is non-empty if there exists at least one element that satisfies the

predicate. We define a special predicate true as follows: fo r any r € C. c F true.

We introduce the concept of an attractor to define self-stabilization. Intuitively, an at­

tractor is a set of configurations of the system S that "attracts" another set of configurations

of S for any computation in £.

Definition 2.3.1 (Closed Attractor) Let C\ and C> be subsets o f C. C\ is an attractor

fo r Ci i f and only i f fo r any in itia l configuration ci in Ci, fo r any execution e in .

(e = c \.C i). there exists i > 1 such that fo r any j > i, cj 6 C\.

We can define the closed attractor in terms of predicates :

If Cl and Ci are the set of configurations satisfying predicate Pi. and respectively P i. then

P i is an attractor for Pi if and only if Vq I - Pi : Ve G : e = (7 0 . 7 1) :: 3i > O.Vj >

i . ' f j h Pi. We denote this relation as Pi > Pi.

In the usual (non-stabilizing) distributed system, the possible computations can be

Reproduced witfi permission of tfie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

10

restricted by allowing the system to start only from some well-defined in itia l configurations.

On the other hand, in a stabilizing system, problems cannot be solved using this convention,

since all possible system configiurations are admissible initial configurations.

Definition 2.3.2 (Self-stabilization) A system S is called self-stabilizing i f and only i f

there exists a non-empty subset C C C o f legitimate configurations and a predicate Cp such

that C is a closed attractor fo rC :

(i) Va I- : Ve 6 5q :: e h SVp (correctness).

(ii) true >Cp(convergence).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

PIVO T INTERVAL ROUTING SCHEME

We start this chapter by giving an overview of the routing scheme in general, then we

continue with interval routing schemes and we present a particular case of 1RS called pivot

interval routing scheme.

3.1 Routing Schemes

Generally, networks are not fully connected. Moreover, in case of super-networks (net­

works of networks), we often have sparse networks. So. for nodes to communicate with each

other in a connected network, we have to define a procedure such that somehow a decision

is taken and messages will reach their destination. A node can communicate directly (to

send packets of information) only to a subset of the nodes called the neighbors of the node.

Routing is the term used to describe the decision procedure by which a node selects one

(or sometimes many) of its neighbors to forward the message on its way toward the final

destination. The objective in designing a routing strategy is to generate, for every node, a

decision-making procedure to perform this function and guarantee delivery of each message.

In the extreme case, we can have a simple procedure: send the message to all neighbors,

each neighbor does the same (flood the network with messages.) Of course the message will

reach eventually the destination, but the network is overloaded with too many messages.

In this case we do not need to know anything about the network, so no memory is required

locally for the decision function. If we want to avoid this situation we can proceed to analyze

the network and gather information about its topology. The more information we have, the

better is the decision function. This means that the message will follow a shorter path to

U

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

its final destination.

Assume that some process p, (abstracted by node u) wants to sends a message to process

Pj (abstracted by node u.) This will be done along some route, which is a sequence of adja­

cent communication links in the network (abstracted as a simple path.) A routing algorithm

specifies the route by telling each intermediate node on the route on which outgoing edge

the message should be sent depending on the destination.

The information stored in each node regarding the network topologj- as a working basis

for the local decision procedure is called routing table and defines the memory required by

that node. The total memory required by the strategy is the sum of the memory required

in each node of the network and it is a performance criterion of the algorithm. The routing

problem has two parts:

1. Preprocessing - the routing table computation. The routing table must be computed

when the network is initialized or must be brought up-to-date when a change occurs.

2. D elivery - when a message is to be sent through the network, it must be forwarded

using the local routing table.

.Also, in analyzing a routing scheme we must take in consideration some factors [Tel94] :

L. Correctness: the algorithm must deliver every message sent through the network to

its final destination.

2. Communication complexity: the algorithm for the computation of the routing tables

must use as few messages, time and storage, as possible.

3. Efficiency: the algorithm must send messages through paths that arc as good as

possible. The term of good refers to the minimization of the delay and high throughput

of the entire network. An algorithm is called optimal if it uses always the "best" paths.

4. Robustness: in case of a topology change (addition/removal of a channel or node.)

the algorithm updates the routing tables in order to perform the routing function in

the modified network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

5. Adaptativeness: the algorithm balances the load of channels and nodes by adapting

the tables in order to avoid paths through channels or nodes that are highly busy,

preferring channels and nodes with a currently light load.

6. Fairness: the algorithm must provide service to every node in the same degree.

The term of "best" path can mean different things :

• Shortest path: each link is characterized by a length value, and the cost of the path

represents the sum of the length of the links in the path.

• Minimum hop: a path is measured by the number of hops (traversed links or steps

from one node to the other.)

• Minimum delay - each link has dynamically assigned a weight, depending on the traffic

on the channel.

.An algorithm would concentrate on one of these aspects and try to choose the path,

among all the paths that link two nodes, which has the minimum value.

Therefore, each processor p, maintains a routing table which contains, for each destina­

tion Pj in the network, pj ^ p,. the identity of p/s neighbor on the path to pj. In order

to always have the shortest path between any two nodes, the total memory required for

each node is O(nlogd) bits (therefore 0(n*logn) for the entire network.) The distributed

algorithm to solve this case is easier.

The three most common routing schemes are fixed routing, virtual routing, and dynamic

routing :

• Fixed routing: a path from p, to pj is specified in advance and does not change unless

a hardware faiiiu'e disables this path. Usually, the shortest path is chosen, so the

communication costs are minimized.

• Virtual routing: a path from p, to pj is fixed for the duration of one ses.sion. Different

sessions involving messages from pi to pj may have different paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

• Dynamic routing: the path used to send a message from pi to pj is chosen only when

a message is sent. Because the decision is made dynamically, separate messages may

be assigned different paths.

There are tradeoffs among these three schemes. Fixed routing cannot adapt to link

failures. If a path has been established between p, and pj. the messages must be sent along

this path, even if the path is down. We can partially remedy this problem by using virtual

routing, and can avoid it completely by using dynamic routing. Fixed and virtual routing

ensure that messages from p; to pj will be delivered in the order in which they were sent.

In dynamic routing, messages may arrive out of order.

The dynamic routing is the most complicated to set up and run. but is the best way to

manage routing in complicated environments.

Some routing strategies code topological information in the address of a node, in order

to use shorter routing tables or fewer table lookups. These so-called "compact" routing

schemes do not always use optimal paths.

3.2 Internal Routing Scheme

.An interval routing scheme is a way of implementing routing schemes on arbitrary

networks. It is based on representing the routing table stored at each node in a compact

manner by grouping the set of destination addresses that use the same output port into

intervals of consecutive addresses (nodes of the graph representing the network.)

As originally introduced in [SK85]. where the scheme required each set of destinations

to consist of a single interval, it has been subsequently generalized in [LT87] to allow more

than one interval per edge.

Consider an undirected n-node graph G = (V .E). Since G is undirected, each edge

(u. u) G E can be viewed as two arcs. i.e. two ordered pairs, (u. v) and (e. u).

D efin ition 3.2.1 (In terva l Routing Scheme) An interval routing scheme R on S is a

routing scheme consisting o f a pair (C.,1), generated in the preprocessing step, where C is

a node-labeling. L : V —> {1.......n }, and T is an arc-labeling. I : E - r 2^*^'. Formally, fo r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

every x Ç .V , the collection of sets that label all the outgoing arcs of x forms a partition of

the name range (possibly excluding x itse lf):

^(e)UZ,(x) = {l.n}

2. /(e) n I{e ') = 0. fo r every two distinct arcs e. e' in E j

The delivery protocol is defined as follows: the message is sent on the. arc e labeled by a

set /(e) that contains the destination {destination G /(e)).

The graph G is said to support an interval routing scheme(IRS). if there exists this pair

n = {C.I).

An 1RS can be characterized by two notions : compactness and stretch factor.

The compactness o f an arc e € E. c(/(e)). represents the minimum number of intervals

composing 1(e) which label e. The compactness o f an 1RS. H on S. denoted by Comp(R). is

the maximum, over all arcs e € E. of the compactness c(l(e)). The 1RS is k-[RS if. for every

arc (u. v). the collection of labels /(u .e) assigned to it is composed of at most k intervals

[a. 6] of consecutive integers, where n and I being considered consecutive (cyclically.)

For general graphs, the problem of deciding whether IR S (S) = 1 is NP-complete.

The compactness of many classes of graphs has been studied. The trees, outerplanar

graphs, hypercubes and meshes have compactness = 1. The Peterson graph has compact­

ness = 2. Clearly, the compactness cannot exceed n/2. since any set 1(e) C (1 .2 n}

containing more than n/2 integers must contain at least two consecutive integers, which can

merge into an interval. Gavoille and Peleg [GP99] have shown that n/4 is tisymptotically a

tight bound for the compactness of n-node graphs.

The .stretch factor represents the ratio between the length of a path and the distance

between the endpoints. The maximum and the average stretch factors of Tl are defined as

follows:

SlretcholR) = m ax,*,

A routing scheme of stretch factor 1 is called a shortest path routing scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

The efficiency of a routing scheme is measured by the stretch factor, but the memory

required in each node depends on the compactness. Intuitively, smaller compactness and

degree imply smaller routing tables.

3.3 Pivot Interval Routing Scheme

Eilam [EGP98] defined the PIR as a particular case of the 1RS. with the stretch factor

at most five and the average stretch at most three. Tiie scheme is simple and the paths are

loop-free. The idea is to choose a collection of special nodes called pivots and to partition

the network such that each set of the partition contains only one pivot. The pivot will

be the main router for its set and the communication path between two nodes depends

whether the nodes are in the same set or not. Each pivot relabels the node in its partition

in ascending order, using the tree-labeling method (D F S for selecting the nodes.) The first

pivot starts with value 1. If rii is the last value used by the first pivot for relabeling its

nodes, the next pivot starts with nj -i- 1 for itself, and proceeds similarly for its clients, so

on.

Now. each node, including the pivots, will have to relabel the outgoing arcs with the

labels for destination nodes. It starts with the nodes which arc successors in the partition,

the nodes with are closer in terms of distance, and the pivots. The nodes which are further,

in other partitions, are grouped, and for them we consider as the destination their pivots.

In this way. each link is labeled with at most 2 \ /n (l -f- ln (n)) intervals.

As a result of relabeling, when the nodes are in the same set. the messages will always

follow the shortest path. If the sender and the destination are in different sets, the message

sent by the sender will reach the pivot of the set where the destination is on the shortest

path. Then, the message is sent on the shortest path from that pivot to the destination.

For every node v. we define an order relation among the nodes : x -<i. y iff

either d is t(x .v) < d ist(y, v) or d is t{x .v) = d is t{y ,v) and ID {x) < ID {y) .

The routing scheme construction is based on the notions of balls and covers.

D efin ition 3.3.1 (T -B a ll) We can order a ll the other nodes with respect to this relation

and choose the set t-bail By{L) as the firs t t nodes according to the node ascending ordering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

Therefore, the t-ball defines the closer nodes, and does not always contains all the

neighbors of the current node.

Consider now a collection H of subsets of size t of elements from V.

Definition 3.3.2 (Cover) .4 set P C V is called the cover fo r H i f fo r every set A Ç. H .

A n P 7^0.

Awerbuch [ABNLP90] presented two techniques to calculate the cover. The first tech­

nique uses a greedy algorithm: starting initially with P = 0. adds iteratively an element

of V occurring at the most uncovered sets to P. When P becomes a cover, the algorithm

stops. The set P is called a greedy cover for H.

Another technique uses randomization. Each element of B is selected in the set P with

a probability c ln (H). for some constant c > I. P is called a randomized cover for H.

3.3.1 Overview of PIR

The PIR strategy, as described in [EGP98] has a preprocessing and a delivery part. The

purpose of the preprocessing part is to gather information and to build the routing tables

in each node. The delivery protocol simply takes the message .M with destination v ^ u

and sends it on the unique arc e € Ey. such that L{v) 6 /(e).

a. Preliminary construction:

1. Let P be a cover for the collection of t-balls of the nodes. {B,.(()|r € V'}.

2. For Yv 6 V. p(r) the nearest node to v in P with respect to the -<i- relation.

3. For every pivot p e P, let 5p = {ejp(e) = p} be the set of its "clients".

4. For every pivot p 6 P. construct a minimum spanning tree Tp rooted at p and

spanning the entire graph G. and let Tp be the subtree of Tp induced by Sp.

b. labeling the nodes:

Assume that P = {pi.p2 p/}. We start by labeling the nodes in 5p[. then Sp ,̂

So o il. W e assign the nodes of a pre-order numbering in ascending order, starting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

from 1. Assuming ni is the largest label assigned to a node in 5p;. we continue with

the value ni + 1 to relabel the nodes in Spn- traversing the subtree so on.

c. Labeling the arcs:

For a node u € we label every arc e € Eu by a set of destinations [(e) Ç V in three

steps, starting with 1(e) = 0;

1. if u is not a leaf in T'̂ ^u)• successors s € T'^^uj l^^el the appropriate arcs of

Eu on the shortest path from s to u

2. for all the nodes e € B „(t) . label the appropriate arcs of E„ on the shortest path

from u to u

for all the pivots p € P. the appropriate arc e 6 E„ on the shortest path from u

to p is labeled by all the nodes in Sp which are not part of the Z?„(0-

For example, consider the following arbitrary network;

Figure 3.1: An arbitrai"}' network

The number of nodes n = 10 =► f = [y^lO(l + In IO)J => f = 5

So each t-ball will have five elements, in case we have at least six nodes :

By(t) = B,.(5).Vv G {1.4 .5 .7 .8 .9 .10. I I . 12.13} (6 = 5 + 1 which is the current node, not

included in its t-ball.)

Reproduced with permission ot the copyright owner. Further reproduction prohibited without permission.

19

A t-ball is calculated using the order relation, based on the distance to the current node,

defined at the beginning of Section 3.3.

From the Figure 3.1. the t-ball fii(5) is :

Figure 3.2: The t-ball fli(5)

and the nodes from Bi(5) arc shadowed. We have:

5 i(5)______________________
node 12 7 5 8 10
distance 2 3 5 5 6

We observe that nodes 5 and 8 have the same distance to node 1. but the ID of node 5

is lower than the ID of node 8. so 5 has priority:

Bi(5) = {12.7 .5 .8 .10}

For other nodes:

#4(5)
node 8 10 12 13 1 9 11
distance 4 5 7 7 9 9 9

and again 12 and 13 have the same distance, but 12 < 13. Also, here we have another

situation: the nodes 1.9.11 have the same distance 9. but because we can select only one

extra node. 1 is included and 9.11 are rejected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Bs(5) 57(5)
node 7 9 1 11 13 node 5 1 11 9 12 13
distance 2 4 5 5 6 distance 2 3 3 4 5 5

58(5) #9(5)
node 10 12 13 4 1 11 node 13 5 7 10 11
distance 1 3 3 4 5 5 distance 2 4 4 4 4

5io(5) # ii(5)
node 8 13 9 11 12 node 13 7 9 10 5 8
distance 1 2 4 4 4 distance 2 3 4 4 5 5

#12(5) #13(5)
node 1 8 10 7 9 node 9 10 11 8 7
distance 2 3 4 5 5 distance 2 2 2 3 5

Based on the t-balls, we calculate the cover, applying a Greedy method. The frequency

of the nodes in the t-balls (how often each node appears in a t-ball) are ;

node I 4 9 10 11 12 13
frequency 5 1 4 0 3 6 7 6

The nodes for the cover are selected based on high frequency, and in case of tie. we select

the lesser ID. So. the first node selected is 10. then the t-balls containing 10 are eliminated

and the frequency for all the nodes in the remaining t-balls B iq) are computed

again. The new values are:

node 1 4 5 7 8 9 10 11 12 13
frequency 2 0 1 1 1 3 0

so the node 9 is the second pivot, and the selection stops, because we do not have any

remaining t-balls.

The cover is: cover = (9,10} and. based on the distance, we have the following set of

clients for each pivot:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Figure 3.3: The pivots and their clients

• nodes 1.4.8 have their pivot = 10 because 10 is the only pivot included in their t-balls

B

• nodes 5.7 have their pivot = 9 because 9 is the only pivot included in their t-balls B

• node 9 has its pivot = 9 even if 10 € #g(5). because 9 is a pivot node.

• node 10 has its pivot = 10 even if 10 € 5io(ô). because 10 is a pivot node.

• node 11 has its p-icot = 9 even if both 9.10 € 5 u (5). because di.st(11.9) < di.sf(11.10).

• node 12 has its pivot = 10 even if both 9.10 € # 12(0). because di.s<(12.10) <

f/i.st(12.9).

• node 13 has its pivot = 9 even if both 9.10 6 # i 3 (ô). disf(13.9) = dz.st(13.10). but

9 < 10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

THE DISTRIBUTED PIVOT INTERVAL ROUTING SCHEME

We present a fault-tolerant distributed implementation of the VZTi. scheme, in a general

asynchronous network. The algorithm starts with no knowledge of the network architecture

and. progressively, builds an 1RS scheme. It supports faults causing nodes and link failures

and additions of nodes and/or links, and it is guaranteed that it will reach a correct state

in finite time (it is self-stabilizing.) The tasks are fairly distributed among the nodes and

each node builds its own routing table based on the information gathered online up to

the current moment. There are nodes in the network (called pivots) which play the role

of the routers, but their routing table capacity is the same as that of non-pivot nodes.

The stretch factor (the ratio between the length of a path and the distance between the

endpoints) is at most f iv e and is three on the average. The stabilization time of the

algorithm is 0 (d ^ n (l 4- logn)) time units, where n is the number of nodes and d is the

diameter of the network.

In this chapter we present the self-stabilizing distributed algorithm. We start by defining

new concepts, as partia l t-ball and nearer pivot, and a new technique called fa ir coordination.

followed by the topology protocol requirements. The data structures and the global variables

used in the code are presented in Section 4.1. Starting with the Section 4.2. we present the

general structure of the algorithm, and then we give details, layer by layer.

We cannot give a bound on the moment of time when a message can be received, since

the system is asynchronous. Also, we cannot wait forever to receive all the messages sent

by other nodes in order to construct a correct t-ball. and later, a correct cover. Eventually,

after an unbounded period of time, all the messages will be received by the nodes and t-balls

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

will be correctly calculated and used in the algorithm. Therefore, we relax the definition of

t-ball and nearest pivot, to fit to an asynchronous algorithm:

Definition 4.0.3 (Partial T-Ball) A partial t-ball fo r a node v. By. is a set o f t nodes,

with the length of the path toward v w ithin the t lowest values received by the node un til a

certain condition becomes true.

In the description of the algorithm, we use the word t-ball instead of partial t-ball. by a

slight abuse in notation.

Also, each non-pivot node (a node which is not part of the cover) has to choose its

nearest pivot, with respect to the distance relation defined in Section 3.1. Because the

network is an asynchronous system, we cannot bound the point in time when that pivot is

correctly chosen. We define and we use the term nearer pivot, instead of closest pivot, in

our asynchronous algorithm.

Definition 4.0.4 (Nearer Pivot) A nearer pivot fo r a node v is a pivot p E P. which is

in the partial t-ball o f the node v. By. and also with the lowest length o f the path toward v

received until a certain condition becomes true.

For the distributed algorithm, we define a new technique called fair-coordination among

the nodes of an ordered set P:

Definition 4.0.5 (Fair-Coordination) I f P = {p i.p i. . . .} is an ordered set of nodes.

P C V, we say that these nodes are fair-coordinated i f each node p, starts executing its

algorithm when it is its turn (this means that node p\ starts first, node p-y waits fo r p i to

finish and then starts executing, and so on.)

Later, we will see that P is in fact a greedy cover for all the t-balls of the nodes in the

network.

We consider that each network link delivers every message sent in FIFO order to the

receiver. In [APSV91] it is shown how to implement such a FIFO link in a self-stabilizing

manner. Also, we consider an underlying topological maintenance protocol which is a local

topolog}- protocol. It assures properties regarding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

-the message's sending/delivering: FIFO order in message receiving, no message loss

(between neighboring processes), correct delivery of messages based on their types (for

receive guards.)

-and the status of the links and neighboring nodes: the topolog}' layer detects any mod­

ification in the adjacent links and continuously updates the values for the set of the up

neighbors, the degree of the node and the set of all up nodes in the network. In every node

it stores these current values in some variables.

In the same node we use shared memory between the processes (running algorithms),

and message passing between any two neighboring nodes. Each algorithm communicates

by global variables with the other processes running in the same node. The global variables

are described in the next subsection.

4.1 Data Structures

Each node u maintains several variables of different types. One triab le is computed by

the underlying layer of topological maintenance protocol :

Ny = the set of the neighbors' IDs of the node i;

leader = the elected leader for all the nodes in the graph

to-leader = the neighbor toward the leader

The others are calculated and used by the layers of the algorithm. The most important

ones are:

i) integer variables:

t is the dimension of a t-ball and is equal to \/n ♦ Inn

pivot contains the nearest pivot

to.pivot the neighbor which is the first node on the shortest path to that

particular pivot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_'o

ii) Boolean variables:

existJeader is true when the leader-node is selected

updated is true when the t-ball is updated

balLsent is true when the t-ball is sent to the leader

cover.ready is true when the node has received the cover

relabel is true when a node has selected its pivot/clients and is ready for the

relabeling step

reset2. resets, resets are true when we restart the algorithm for the layer 2. 3.

4

ill) other data structures :

L. ! the node, respectively the arc relabeling functions

B a set of the integer values corresponding to the nodes IDs situated in the

t-ball By of the node v

R cvdJD s the set of IDs of other nodes known by the current node

cover a set of integer values representing the IDs of the pivots which forms the

cover for all the t-balls

S a set of the integer values corresponding to the successors IDs situated in

the subtree Sp rooted in the closest pivot p of the node

S P T = the shortest path tree rooted at itself, if the node is elected as a pivot

H a linked list with information regarding the nodes from B. cover and S.

Each clement of the list has three fields of type in t and the last one of type

Boolean:

dest = destination ID

neighbor = the neighbor which is the first node on the path to dest

distance = the distance toward dest. or 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

direct = is true if dest is a direct neighbor of the current node and the

direct link is the shortest

The list H is maintained in ascending order by the value of the destination and has several

functions which help us to retrieve information from it:

G iv e J D s (H) = returns all the nodes IDs stored in the field id in H . or null

if 5 is 0

G (H ,id) = returns the element of H with the given id. or nu ll if H does not

have such an element

We consider the following notations:

- V E H means v E G iv e J D s (H) (e.g. H <L (B l ic o v e r \ jS) means G iv e J D s {H) %

(B U cover U 5))

- H[id\ means G {H .u) (e.g. H[u\.neighbor means [G (H .u)).ne ighbor.)

4.2 The Algorithm

We present the layers of the algorithm, with an informal explanation for each layer and

the subsequent module running on that particular layer.

The algorithm has four layers:

First layer: Alg. C a lc u la te .B a ll

Second layer: .Alg. R ece iv ing .C over
or

Alg. C a lcu la te .C o ve r

Third laver: .Alg. T o .C lie n ts
or

.Alg. T o S i vota

Fourth layer: .Alg. P iv o tS a b e l
or

.Alg. C lie n t J .abe l

- all nodes except the leader

- the leader -

- the pivots front cover -

- the non-pivot.s -

- the pivots from cover -

- the non-pivots -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The general algorithm is:

27

A lgorithm 4.2.1 SVTR. Stabilizing Pivot Interval Routing Scheme

A 01 E rro r .C o rre c t io n

A 02 C a lc u la te S a ll

A 02 R ecew ing .C over

A .01 C a lcu la te .C over

A 03 To.C U ents

A OB T o .P ivo ts

A 07 P ivo t.Labe l

A .08 C lie n t.L a b e l

E rro r.Correction has the role to broadcast periodically a message D IS T to inform about

the node. Eventually discrepancies in the global variables are detected and appropriate

actions are taken. Because it does not participate in the process of constructing the 1RS. it

is not included in any of the layers.

In the first phase, the algorithm Calculate.Ball gathers information about the neigh­

borhood. The D IS T messages from the other nodes are processed and the first t lowest

distances, breaking ties by increasing node ID. are stored in the data structure H together

with the node IDs (stored also in the set B.) So far. B,. is computed in the set B and the

corresponding links are labeled dynamically with the IDs from the set B. The leader is

elected and we know the neighbor toward it (each node is oriented toward the leader by the

variable to.pivot.) When we have received enough information. B is sent to the leader.

The modules in the second phase concentrate in broadcasting all the t-balls toward

the leader, calculating and broadcasting the cover of all the t-balls to the nodes In the

network. The leader will execute the algorithm Calculate.Cover. which, using a greedy

method, calculates the set of the pivots. The cover is broadcast in the network such that

now a node can see if it is elected as a pivot or has to be a client for one particular pivot.

From a node, the message containing the t-ball follows the shortest path toward the leader.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

passing by intermediate nodes (Receiving.Cover.) Later, from the leader, the cover is sent

to all the nodes. An intermediate node has to analyze each message received and to forward

it on the appropriate link.

The third phase partitions the network into sets of clients, one set for each pivot. Once

the set of pivots (the cover) is known by each node, each pivot has to create its own client-

hood’. In order to attract clients, the pivots send messages in the network (algorithm

To.CUents) and leave the clients to choose the nearest pivot (algorithm To .P ivo ts .) And

each node relabels the appropriate links toward the pivots, and its successors in the client-

hood.

The last phase consists in deciding (algorithm Pivot.Lahel) and in assigning new IDs

(algorithm Client.Label) for the nodes such that, in each node, the destinations can be

grouped into a set of intervals labeling the links to the neighbors. Using fair-coordination.

described at the beginning of Section 4. each pivot relabels the nodes in its partition, and

once this is done, it broadcasts the result such that the next pivot can start. Each node

in the network receives, gradually, the result of relabeling. Once a result is received, a

non-pivot node changes the IDs appropriately. For a pivot, the relabeling follows the tree-

labeling algorithm applied to the spanning tree containing all of the pivot's clients. The

method consists of relabeling the nodes in a preorder traversal of the tree, using correct

values (values from the correct range.)

4.2.1 Error-Correction

The algorithm Error.Correction in each node checks continuously the values of the global

variables to detect erroneous values and sends periodically messages to the other nodes in

order to help them calculate the distance to the current node. If an error is detected, the

entire construction of the SVTR. scheme must start from scratch. In this case, all the global

variables are reset to n u ll or fa lse , in order to start a fresh phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Algorithm 4.2.2 Error.C orrection
Messages: D IS T : sender: the ID of the sender

d ia t: the length of the path the message went through

L O S T : id \: the sender ID
idj: the ID of the other node adjacent to the crashed link

Local.variables: id .n b .n b r: int
Predicate e rro r = (B \ / / ^ 0) V (B = 0 A (/ / U cover U S) # 0) V {cover = 0 A S # 0)V

V (H * {B U c o v e rU S)) V { to .p iv o t ÿ { . \ \ . U { / D „ }))

Macro: R E S T A R T = reset all the layers and set the global variables to their default rallies
Actions:

1.01 timeout — .
/ • node i> broadcasts the message D IS T * /

1.02 SEND D IS T (ID y .Q) TO all nb €

1.00 e rro r — » R E S T A R T

3 id € H : H [id \.d ire c t = true A id 6 .\\. A length{Vm k to id) H [id \.d is tance — »1 04

105 R E S T A R T

1.06 aid € H : H [id \.d ire c t = fa lse A id 6 .V„ A //[id].neig/i6or = id
1 07 H [id \.d is tance := length{Vmk to id)
1 08 B[i(fj.direct := true

Macro R E S T A R T
It 01 ex is tJeader. ba ll.aen t.cove r.ready, relabel := fa ls e
It 02 B. H . cover. S :=<d
R00 pivo t := ID ,:

R i ll R c v d J D s ;= { ID , . }
H 0.5 to .p ivo t := some neighbor from .V,.
It 06 reset'l. resetd. resctd := true

4.2.2 Calculate3all

The set B should contain t nodes with the lowest t distances to v. H should contain

all the nodes in the graph, divided into intervals, and. for each interval, the neighbor of v

toward them.

When B contains the t lowest distances among all received, it is sent to the leader.

Whatever is stored in B. is stored also in H . with additional information regarding the

distance to those nodes and the neighbors of v toward them, so we have further tests on

H instead of B. At the same time, each node sends its t-ball to each neighbor in order to

detect eventual discrepancies. From [EGP98]. we know that:

If u € By then for every node x on the shortest path from i> to u. u E B^.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

In our algorithm, this is the way a node v selects its nodes in B. by comparing different

distances received from all the neighbors which also includes those nodes in their t-balls.

Thus, checking the other t-balls help us to eliminate wrong nodes and cycles in delivering

messages.

On receiving a message D IS T from a neighbor nbr:

- if the message contains its own ID {D IST.sender = ID v)- discard it

- otherwise, process the message and eventually broadcast it to the other neighbors (if

any.)

Message processing means:

- add the length of the link to nbr at the field distance in the message

- if the updated distance is within the top of the t lowest distances, breaking ties by

increasing node ID. the ID is stored in B and H. and the message will be broadcast to all

the other neighbors.

- otherwise, discard the message.

When L’ has received at least one message from all the other nodes in V. and later,

whenever a message received changes the data structure B (and H). the partial t-ball B is

sent to the leader using the neighbor to.le.ader.

Algorithm 4.2.3 C alcu la te .Ba ll
Messages: B A L L : sender : the ID of the sender

B : the set B
dest : the ID of the destination

C H E C K : sender: the sender ID. a neighbor of the current node
B S : the t-ball of the sender
H.V: the data structure H of the sender

D IS T : sender: the ID of the sender
d ia t: the length of the path the message went through

L O S T : id i : the sender ID
id;: the ID of the other node adjacent to the crashed link

Local.variables: id. u, nb. nbr : int /* elements in .V„ * /
updated. to.aend : Boolean

Macros: R E .M O V E = eliminate a wrong node and restart the layers 2.3 and 4
input: id: int / * the wrong node to be removed * /

.V: set of int / * the set of neighbors to be warned about * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Algorithm 4.2.4 Calculate.BaU
R E S T A R T i = restart the layers 2.3 and 4
S E K D . . \ ’ B R S = send D IS T messages to a set of neighbors and update some local variables

U P D A T E = update the data structure B and H input: id .d is t .n b r : int

Actions:

2.01 ID v = leader — » ex ia tJeade r := true

2 02 (B u (f D . }) \ R c id J O s # 0 — > R E S T A R T

2.03 3 id 6 H : { id ^ Nv A H [id \.d ire c t = true) V H [id \.ne ighbor ^ .V,. — >
/ • id Is a wrong node and remove it from B and H * /

2.04 R E X v)
2.06 R c v d J D s ■■= {/D „}
2.07 B := 0
2.0» R E S T A R T i

2.00 Upon RECEIPT of D /ST(s.dist,) FROM neighbor nbr — >
2.10 i f { s ^ IDv)
2.11 then
2.12 d ia t, ;= d ia t, + /eng</i(link to nbr)

/* update the information in B .H * /
2 13 U P D A T E {s . d ia t,. nbr)
2.14 endif

2.13 Upon RECEIPT of L O S T { id i . i d j FROM nbr — *
2.16 if {id< e H A H [id>].ne ighbor - id i)
2.17 then
2.1» R E . \ I 0 V E { i d 2 . \ v \ { n b r })
2 19 endif

2.20 (|flci'd-/i3s| = n A updated A e x ia tJeade r) — t
2.21 i t { ID v ^ leader)
2.22 then
2.23 SE.N'D B A L L { ID v .B . le a d e r) TO toJeader
2.24 endif
2.25 b a llj ie n t := true
2.26 updated := fa ls e

2.27 (IRcodJDsl = n A to.sejid) — »
2 .2» SE.ND C H E C K U D v . B . H) TO all nb 6 .V,
2.29 to jsend := fa ls e

2.30 Upon RECEIPT of C H E C h J a , B , .H ,) FROM nbr — >
2.31 if (s = nbr)
2.32 then
2.33 for all (11 € B A u ^ s A ff[u].neighbor = a) do
2.34 if (u ^ B j) V (u S Bj A B[u|.dia(ance B,[u|.dia(ance + lc n g th {iin k to nbr))
2.35 then
2.36 RE.\IOVE{u..\'v)
2.37 endif
2.3» endfor
2.39 endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Algorithm 4.2.5 Calculate .B a ll
Macro R E M O V E { id , N)
n.oi RESTARTi
R .02 Remove J D (id , H , B)
R .03 i f [to .p iv o t = id)
R.04 then
R.05 to .p ivo t := some neighbor from
R.06 endif
R .07 SEND L O S T ilD v . id) TO all nb € .V
R ON R c v d J D s := R cvd .ID s \ {id}
Macro RESTARTi
T OI ba ll.aen t.cove r.ready . relabel := fa ls e
T .0 2 rese t'l. resetZ. resetA := true
T 03 cover, S := 0
T .04 updated, to jie n d := true

Macro S E . \ 'D J IB R S
/ * the message D IS T is forward to the other neighbors * /

S OI SEND D IS T is . d is t,) TO all nb 6 .V, \ {nbr}
3.02 updated. to.send := true

Macro U P D A T E { id . d is t. nbr)
Local.variables: ID .n ia x .d s t : int

I. o t R c v d J D s : = R cvd .ID s U { s }

L' 02 if (id = leader)
1.03 then
V Q.i e x is t.le a de r = true
L 05 endif
L OB if (id S B)
L 07 then
L 00 if (id € B A (II[id].d i.s tance > d is t V (B[id).distance < d is t A R U d].neighbor = n b r)))
L 09 then
L 10 H lid j.d is ta n ce := d is t
L . u H [id j.ne ighbo r := nbr
L 12 H '[id }.d irect := fa lse
L.13 S E . \D . . \B R S
L . u endif
L 13 else
L IB if (|B| < t)
L 17 then
L . i s .Veu,'Ce//(B. B. id. d is t. nbr. fa ls e)
L .19 S E .X D J IB R S
L .20 else
L .21 ID jn a x jd s t := .M ax im um J) is ta n c e {B . H)
L .22 i f IH \ID .m a x .d s t\.d is ta n c e > d is t) V H [ID .m a x jis t\ .d is ta n c e = d is t A ID .m a x .d s t > id))
L.23 then / • id is inserted and ID .m a x .d s t is removed * /
L 24 R E S E T i(ID .m a x J is ta n c e .)
L .25 . \e w C e ll(H . B . id . d is t. nbr. fa ls e)
L .26 S E .W D J IB R S
L .27 endif
L .29 endif
L 29 endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

4.2.3 Partial Algorithms - Second phase

1. Routing the t-balls o r the cover (each node except the leader)

A node « ^ leader is waiting for the calculated cover from the leader. Eventually

messages containing other t-balls are forwarded to the leader. Once the cover reaches the

node e through a neighbor, v broadcasts it to the other neighbors.

A lgorithm 4.2.6 Receiving.Cover
Messages: B A L L : sender : the ID of the sender

B : the set B
dest : the ID of the destination

C O V : sender : the ID of the sender
cover : the cover (set of pivots)

Local.variables: id , dest. nb r : int /* elements in .\ \ * /
B ,.c o v : set of t int

Predicate: w a it.cove r = b a ll.sen t A I D , leader
Macro: RESTART-y = restart the layers 3 and 4
Actions;

3 01 iva it-cover A respt'2 = tru e — » R E S T A R T ^

3 02 Upon RECEIPT of B A L L {s . Bn.dest) FROM nbr — >
.1.03 if { ID v leader A s ^ ID , . A nbr ^ toJeader A de.st = leader)
3 04 then / ’ a message to be forwarded to the leader * /
3 05 SEND B .A LL{s . B t.d e s t) TO toJeader
3 00 endif

3.07 Upon RECEIPT of COV'(s.coc) FROM nbr — >
3.0» if (w a it.co ve r A s = leader A nb r = to .leader A cover # cor 1
3.00 then /* a new cover from the leader ’ /
3 10 cover := coi>

/ * broadcast the cover to the other neighbors * /
3.11 SEND C O V {s .c o v) TO nb € .V,. \ {nbr.toJeader}
3.12 cover.ready := tru e
3.13 5 : = 0
3 14 endif

Macro R E S T A m - .
R 01 cover.ready, relabel := fa ls e
R .02 resct'd. resetA := tru e
R .03 cover. 5 := 0

R.04 reset'l := fa lse

2. Calculate, the cover (only the leader)

The leader receives all the t-balls Bv{t). v G V. and using a greedy algorithm decides

the cover (the set of the pivola.) The result is broadcast in the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Algorithm 4.2.7 Calculate.Cover
Messages: B A L L : sender : the ID of the sender

B: the set B
dest : the ID of the destination

C O V : sender : the ID of the sender
cover : the cover (set of pivots)

Local.variables: update-.boolean
Rcvd : set of int
T B a lls : LinkedJ-ist of (int. set of t int)

Predicate: determ ine .cover = b a llj ie n t A [D,. = leader
Macro: U P D A T E .T B A L L S = update the current set of tballs by adding new or replacing the old ones

input: id : int
B ,d : set of t int
T B a lls : Linked.List of (int. set of t int)

Actions:

4 01 determ ine .cover A reset'l = tru e — >
/* eliminate all the t-balls received • /

4 02 update := fa ls e
4 03 Rcvd. T B a lls ;= 0
4 04 R ES T.A R T 2

4 05 Upon RECEIPT of B.ALLIs. B,.dest) FROM nbr — »
4 oii if [ID v = leader A dest = ID ,)
4 07 then
I os L 'P D .A T E .T B A L L S ls . B , .T B a l ls)
4 09 endif

4 to de term ine .cover A |Rcfdl = n - 1 A update — >
/ • we can calculate the cover for all the t balls including the local one B */

111 C P D.AT E .T B A L L S (ID , . .B .T B a lls)
4 12 cover := G reedy.C over (T B a lls)

/ * the node sends the cover to all neighbors * /
4 13 SEN'D C O V {ID v ,c o v e r) TO all nb €
4 14 update := fa ls e
4 13 cover.ready := true
I 16 S := ÿ

Macro U P D .A .T E J 'B A L L S iid . B ,d . T B a lls)
I 01 Rcvd := RcvdU {id}
I 02 if (id € G iv e .ID s {T B a lls))
L' 03 then
L.04 R e m o v e .B a ll{ id .T B a lls)
1 .03 endif
L.06 .\ 'e w B a ll(id . B ,d . T B a lls)
L.07 update := true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

4.2.4 To-Clients and ToJ*ivots

From this point, the nodes are divided into pivots and non-pivots. A node runs either

the algorithm To.Pivots or To.CUents. Both modules take in consideration the fact that

any node, pivot or client, must have links oriented toward each pivot.

A non-pivot node has to choose a pivot, the nearest one. and to become the client of

that pivot. It has to know the distance to each pivot, therefore it waits for the pivots'

action:

By n cover ^ 0 = > 3 a pivot in By

At the same time, each pivot p € cover, receiving the set of pivots, has to identify the

set of its clients. So p will broadcast a message P JD IS T containing its ID and the distance,

initially 0. to every other node. Such messages will be received by every node, pivot or

not. after the set of the pivots, the cover, is already known. They will help each node to

store the first node on the shortest path to each pivot, and non-pivot nodes to decide their

nearest pivots.

So. a node (pivot or not), receiving P JO IST from a pivot through a neighbor nbr. does

the following:

- if the message ID is its own ID. discard the message

- otherwise, add the length of the link to nbr at the field distance in the message and

continue.

- if. for that particular node ID. it is the first message received or the updated distance

is less than the stored one. memorize for the link the ID of the message in data structure H

- otherwise, discard the message.

I. Calculate and organize the set o f the clients (each pivot p G cover)

A pivot receives another type of messages, the answers of the clients [A C C E P T .S U C C

or R E JE C T .S U C C .) In case of A C C E P TJS U C C . the sender is added to the data struc­

ture H . with di-itrmce 0. Also, the successors field represents a path in the S P T rooted at

pivot:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

- last ID is the "son" of the pivot

- the next last is the "son of the son", and so on.

and it is added to the tree.

Algorithm 4.2.8 To.CUents
Messages: A C C E P TS i'C C : senz/er; the ID of the sender

succs: the string of successors' IDs
dest : the ID of the destination

P JO IS T : sender: the ID of the sender
d is t: the length of the path the message went through

R E J E C T J U C C : sender : the ID of the sender
dest : the ID of the destination

Local.variables: ii6. nbr ; int / ’ elements in S\. * /
Rcvd : set of int

Predicate: se lect.c lien ts = cover.ready A ID ,, € cover
Macros: A L l.~ A \S \V E R S = check whether the pivot has received messages from everybody, in order

to end this layer and to go to the next layer, for relabeling

R E S T A R T] = restart the layer 4
U P D A T E .H = update H information and returns true if a change was tnade. otherwise false

input: id . d is t. nbr: int

Actions:

5 in
j 02

•> 0:1

r> 0 -1

•> n.t
3 ot)
) OT

5.08

5 no

5.10

5.11

3 12

5.13

5.1-1

5.13

It)
17

5.18

5.20

5.21

{.select.clients A rese t'l = true) — >
Rcvd := ID v
RES TA R TS

(se lect.c lien ts A tim e o u t) — >
SE.ND P .D IS T { ID v .Q) TO all nb € .\\.
pivot := ID v
to .p ivo t := ID v

Upon RECEIPT of P J) IS T [s .d is t ,) FROM nbr — »
if {se lec t.c lien ts A s i /Di- A .s € cover)
then / * update the data structure H * /

d is t , := di.st, -i- len g th (\m k to nbr]
U P D . \T E J I { s .d is t , .n b r)
Rcvd := Rcvd U {s}

endif

Upon RECEIPT of .A C C E P T JS U C C (s .su cc ,.de s t) FROM nbr —
if {se lec t.c lien ts A s ^ /Dt- A dest = ID ,.)
then /* add the sender as a client to H. with the default distance 0 * /

U P D .A T E J I{ id .0 .n b r)
/ • message A C C E P T .S U C C contains a path in the SPT with only its own clients * /
C o n s tru c t.T ree {S P T . succ,)
/ * check whether all the nodes have replied * /
A f ,L .A . \S W E R S

endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Algorithm 4.2.9 To.CUents
5.22 Upon RECEIPT of R E J E C T J U C C (s .d e s t) FROM nbr —*
5.23 if {se lec t.c lien ts A s ^ ID v)
5.24 then
5.25 i f (dest = ID v)
5.26 then

/ * check whether ail the nodes liave replied * /
5 27 A L L J y S V V E R S
5.28 else
5.29 SEND R E J E C T .S U C C {s .d e s t) TO H \dest\.ne ighbor
5 30 endif
5 3 1 endif

Macro A L L . . \X S W E R S
A 01 Rcvd := R cvdU {s}
A 02 if (Iflci'dI = n)
A.03 then /* go to the layer -I * /
A 04 relabel. resetA := true
A 05 cover.ready := fa lse
A 06 endif

M acro R E S T A R T s
R 01 resef-l := true
R 02 5 := 0
R 03 relabel, re se t! := fa ls e

Macro V P D .A T E .H { id . d is t. nbr)
f 0! if { id E H)
L 02 then
I. 03 X ew C elK H. id . nbr. d is t. fa ls e)
L 04 SEND P J) IS T { id .d is t) TO all nb € .V,. \ {nbr}
L 05 return true
t 06 else
I 07 if ((fllid).n e ig h b o r = nbr) V (H [id].d is tance > d is t)
V 06 then /* a new distance to th at node * /
1 09 //(idj.distance := d is t
i; 111 //[id].neighbor := nbr
1 11 H \id].d ire c t := fa ls e
1. 12 SEND P J O IS T lid .d is t) TO all nb € N\ \ {nbr}
L' 13 return true
1.14 else
I 15 return false
L .16 endif
117 endif

2. Calculate the nearest pivot (each non-pivot v E V — cover)

In addition, a non-pivot node, has to do an extra action: if the updated distance is

the least one (this means that the message is from the nearest pivot), the node updates its

variables: pivot t - that pivot

to.pivot 4— the neighbor from which the message was received

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

and broadcasts the message to all the other neighbors (if any.)

When the node has received at least one message from each pivot, it has selected its

nearest pivot and the pivot is in B, the node sends back (using the to.pivot neighbor) a

message A C C E P T .SUCC with its ID and the selected pivot as destination. The message

follows a path containing nodes with the same pivot as its pivot.

A message from a non-pivot node must be an answer toward the same pivot as itself:

- the set of successors stored in the message is extracted and the neighbor, from which

the message was received, is stored in data structure H.

- the node adds its ID at the end of the message and forwards the message to the pivot

using the to.pivot neighbor.

A lgorithm 4.2.10 To.P ivots__
Messages; P .D IS T : sender: the ID of the sender

d is t: the lengtli of the path the message went through

R E J E C T .S U C C : sender : the ID of the sender
dest : the ID of the destination

A C C E P T .S U C C : sender: the ID of the sender
succs: the string of successors' IDs
dest : the ID of the destination

Local.variables: n b .nb r : int /* elements in .V,. • /
n iin x l is t : int / * the minimum distance to the current pivot * /
update : boolean
Rcvd: set of int

Predicate: choose.pivot = rove r.re a d y A [D ,- % cover
Macro: B E T T E R .P IV O T = update some global and local variables in order to choose

the nearer pivot of the current node
input: m m jiis ta n c e . id .d is t .n b r : mt

Actions:

S OI choose.pivot A (resef3 = tru e V {Rcvd \ cover) f- 0) — t
6.02 Rcvd :— 0
6.03 m in J is t : = o c

60.1 R E S T .A R T j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Algorithm 4.2.11 To.Pivots
6.05 Upon RECEIPT o f P J) !S T { s .d is t ,) FROM nbr — >
6.06 if (choose.pivot A s ^ [D ,. A s E cover)
6.07 then /* update the data structure H * /
6.0» R a id : = f ic u d U {s }

6.09 d is t, -.= d is t , + le n g th (lin k to nbr)
6.10 if (pii'of ^ co i'e r)
6.11 then
6.12 pivo t := s
6 13 to .p ivo t := nbr
6.14 m in .d is ta n ce := d is t,
6.15 endif
6 16 update := update V U P D A T E .H {s .d is t , . nbr)

/ • check whether we can choose the nearest pivot * /
6.17 B E T T E R .P lV O T {m in A is ta n c e . s. dist.,. nbr)
6.1» endif

6.19 choose.pivot A Rcvd = cover A update A p ivo t € B — >
/ * the closer pivot is selected, so v sends acceptance to it and refusals to the other pivots * /

6.20 SEND .ACCEPT.SUCC(IDv. IDv. pivot) TO to.pivot
6.21 for all pp € cover \ {picot} do
622 SEND REJECTSUCC(IDv.pp) TO H[pp\.ne ighbor
6 23 endfor

/ * now a c tira te the next layer * /
6 24 relabel, reset-l := tru e
6.25 update, cover.ready ■.= fa lse

Upon RECEIPT of R E J E C T Æ !C C [s .d c s t) FROM nbr
if {choo.se.p ivo t A .■>■ jé / Dv A dest Ç cover A dest € I I)
then / • a message for a pivot * /

6 29 SEND R E .IE C T .S U C C {s .d ts t) TO B(desfUeig/i6or
endif

6.27

6 2»

6 30

6.31 Upon RECEIPT of .A C C E P T ..S U C C {s.succ,.de .st) FROM nbr —*
6 32 if {choose.pivot A dest 6 cover A dest = p ivo t)
6 33 then / • a message from a client of the same pivot * /
6.34 5 := S U {s }
6.35 U P D A T E J I{s .O .n b r)

/ * the node adds itself at the end of the message and forward it to the pivot * /
6.36 succ, := succ,-r"+" indicates the concatenation operator I Dv
6.37 SEND .A C C E P T J U C C {s . succ,.de.st) TO to .p ivo t
6.3» endif

Macro B E T T E R .P IV O T {m in jd is ta n c e . id .d is t. nbr)
B.oi if {{p ivo t = id A to .p ivo t = nbr) V {m in .d is tance > d is t))
B.Q2 then /* update the current pivot information */
B 03 m in jlis ta n c e := d is t
B.Q4 p ivo t := id
B 05 to jp ivo t := nbr
B 06 endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

4.2.5 PivotXabel and Client-Label

Here we solve the most important part, relabeling the nodes.

1. Pivot-action

Each pivot relabels the nodes which are its clients when it is its turn. VVc use the new

technique, fa ir coordination, defined in Definition 4.0.5:

- the first pivot in cover will start re-labeling; when this is done, the pivot broadcasts

the message R E L B L with the old and the new ID for each of its clients to all its neighbors

in order to reach all the other nodes in the graph and subsequently, the other pivots

- once a message R E L B L from the first pivot is received by the second pivot, it will

proceed accordingly and so on. It accepts only one message from each other pivot (all the

other are discarded.)

Each time a pivot starts relabeling, it warns the other nodes to be prepared to accept the

(new) relabels, by sending in advance a C L E A N message. In the meantime, the messages

containing new IDs are processed:

- the old node ID is replaced by the new one and the variables associated are updated

- the message R E L B L is broadcast to all the neighbors, in the entire graph.

A lgorithm 4.2.12 PivotSabe l
Messages: R E LB L-. sender: the ID of the sender

o ld J Ds: the old IDs of the nodes in Sj,ndrr which have received a new label
n e w J D s : the new labels of the nodes in S,endtr

C LE .A .X : sender : the ID of the sender
dest : the ID of the destination

Local.variables: V : set of int / * the set of current nodes in the graph * /
n e w J . : function from V to [l..n] / * new node labeling function * /
nett'-/ : function from E to 2^*' ’̂ / • new arc labeling function * /
newlabels : boolean / * is t ru e if at least one label is changed * /
n .n i.n b r .n b .n e u ilD : int
Rcvd : set of int / * set of pivot IDs with the relabels already received * /

Predicate: re labe l.c lien ts = relabel A ID v € cover
Macros: L A B E L = the node v do the relabeling for all the nodes in its SPT tree S„

R E F R E S H = send a message C L E A N to all other pivots regarding the new relabeling
R E L A B E L J) O N E = check whether the new labels received are different from the previous ones

and start a new phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

A lgorithm 4.2.13 PivotXabe l
R E S T A R T a = restart the algorithm from the layer 2
U P D A T E J D S = build the interval routing scheme in the current node

input: c u rre n t J d , p iv o t. id : int
o ld lD s . n e w ID a : array of int

Actions:

r 01 re labe l.c lien ts A {p ivo t ̂cover V ^ (B U cover U S \ {/Di.})) — , R E S T A R T

7.02 re labe l.c lien ts A (rese(4 = tru e V Rcvd \ cover ^ 0)) — ^
7.03 R E F R E S H
7 04 resetA := fa ls e

7 05 re labe l.c lien ts A{lDv is the first pivot in cover) — »
7 Ort R E F R E S H
7 07 L A B E L

7 ON Upon RECEIPT of C L E A S (s .d e s t) FROM nbr —>
7 OU if {dest = ID c)
7 10 then /• a new start for some pivot * /
7 11 Rcvd := Rcvd \ {a}

7 l -J

/* node V warns its clients also */
for all id £ S A id ^ do

7 13 SEND C L E A . \ { lD „ . id) TO //[idj.neiÿ/iôor
7 M endfor
7 I -I else
r lb SEND C L E A \ { s .d e s t) TO H [dest\.ne ighbor
7 17 endif

7 la Upon RECEIPT of R E L B L {s .o ld J D s .n e w . lD s) FROM nbr — .
7 I'J i f {s £ cover A a ^ f D,. A a ̂ Rcvd)
7 -JO then
7 21 V V U {o/d_fDs|
7 22 SEND R E L B L {s .o ld J D s .n e w J D s) TO all nb £ .V, \ {ri6r)

7 22

/ * update H corresponding to the new lab e ls */
U P D A T E . ID S (lD , . . s .o ld J D s . n e w J D s)

7.24

/ * store the last value assigned to a node * /
n := M A X {n e w J D s)

7.25 if {n > n i)
7.2b then
7.27 n i := n
7.28 endif

7.29

/ * check whether it is our turn * /
if -'(3pp £ cover before v and op g Rcvd)

7 3U then
7.31 L A B E L
7 32 endif
7 33 endif

7.34 Rcvd - cover A |V| = n —> R E L A B E L J 3 0 N E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Algorithm 4.2.14 PivotXabel
Macro L A B E L

/ * the pivot has to do the relabeling for its clients starting with the next value for nl * /
L .o i n i := n i + 1
L 02 { n i , o ld J D s . n e w J D s) := T re e J ,a b e l i n g { ID v .S P T { ID i .) . n i)
L .0 3 n e w lD : = n e w J D s [[D L ,]
L .0 4 U P D A T E J D S i l D , . . ID , . . o l d J D s . n e w J D s)

/ * send the new labels to all other nodes * /
L 05 SEND R E L B L i l D , . . o l d J D s . n e w J D s) TO all nb € , \ ,

/ * node I' is done w ith its relabeling * /
LOS relabel := fa lse

Macro R E F R E S H
R . o i R c v d . V . n e w J . n e w J
R 02 newlabels := fa lse
R 03 rii : = 0

/ * node V warns the other pivots th a t it w ill s tart its relabeling * /
R 0-1 for all id 6 cover A id ^ I D , do
R u r . SEND C L E .A . \ { ID , . . i d) TO H [id \ .ne ighbor
R 00 endfor

Macro R E L A B E L . D O . X E
/ * check whether we have a new node or arc labeling function * /

D 01 for all u S V' do
D02 if (£[uj ^ rieR'.i[«!)
D 03 then
D 0-1 newlabels := t rue
0 0.5 endif
D 00 for all nbr 6 do
DOT if { I I ID v . nbr] ^ n e u ._ / |u .n b r j)

DOS then
D 01) newlabels := t rue
DIO endif
D ll i f {newlabels = true)
D 12 then / • we replace the old functions by the new ones * /
D 13 for all u 6 V do
D I I L[uJ := neu '.T [ii]
D 15 endfor
D 10 for all nbr £ .\\. do
D 17 / (/ D „ . n 6 r) : = n e i f J [u . n f r r j

D 18 endfor
D ili newlabels := fa lse
0 20 endif

/ * we start a new phase * /
D.21 RES T.A RT a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Algorithm 4.2.15 PivotXabel
Macro RESTARTa

TO I existJeader. sent Jball. cover.ready, relabel := fa lse
T .02 rese<2. resei3 , rese/4 := t rue
T .0 3 cover, S := 0
T .0 4 updated := t rue

/ * e lim inate from H a ll the nodes except B nodes * /
T 05 for all i d i H \ B d o
T .08 D eleteCell{ id . H)
TOT endfor

Macro U P D A T E . I D S (c u r r e n t . i d , p i v o t . i d . o ld lD s . n e w lD s)
Local.variables: u. nbr : int
L 01 Rcvd := Rcvd I) { p iv o t . id }

/ • we build the node labeling function * /
L 02 for all u 6 o ld l Ds do
L 03 neu ..L [u | := neu.’/D s [u]
L 04 endfor

/ • we label the links toward a pivot p w ith the interval corresponding to its clients in S p , * /
L 05 if (c u r re n t . id ^ p ivo t . id)
L 08 then
L 07 nbr ~ H [p ivo t . id \.ne ighbor
v os n e w J [c u r re n t . id . nbr] := n e u ;./[c u rre n t.id . nbr] U n e w lD s
TOO endif

/ * now we label ind iv idual nodes from B and S * /
u 10 for all u 6 o ld l Ds A u ^ p ivo t . id A u 6 / / do
L 11 nbr ~ H[u].ne ighbor
u 12 n e u './[id , nbr] := new JU d , nbr] U n eu '/D s[u]
L 13 endfor

2. Clients action

When a non-pivot node receives a R E L B L message:

- check if it is from a pivot and it is the first message received from that pivot.

- if yes. update all its variables and broadcast the message to the other neighbors.

Its new ID is kept in the variable newID and the value is used in the delivery protocol, until

a new topology change occurs and we have to reset again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

Algorithm 4.2.16 C lient Jjabel
Messages: R E L B L : sender: the ID of the sender

o ld J D s : the old IDs of the nodes in Sender which have received a new label
n e w J D s : the new labels of the nodes in S,endcr

C L E A N : sender : the ID of the sender
dest : the ID of the destination

Local.variables: Rcvd : set of int
V : set of int /* the set of current nodes in the graph * /
nbr. nb. n e w lD : int
n e w j : function from V to [l..n] / * new calculated node labeling function * /
n e w j : function from E to ' / * new calculated arc labeling function * /
newlabels : boolean / ' i s t rue if at least one label is changed ' /

Predicate: update.all = relabel A ID . . ^ cover
Macro: U P D . A T E J D S = build the interval routing scheme in the current node

input: id .p id : int
o ld l D s .n e w l Ds : array of int

Actions:

8 01 relabel A (p ivot ^ cover ^ H ^ { B U cover U S)) — » R E S T .A R T

8 02 update.all A {resetA = t rue V (Rcvd \ cover ^ 0)) — r
a 03 Rcvd. V. n e w J . n e w J :— 0
8 02 newlabels := fa lse
8 01 resetA ;= fa lse

8.05 Upon RECEIPT of C£,£/LV(‘*-de-‘<<) FROM rihr — y
8 06 if (.8 * ID . . A de.st = ID . .)
8.07 then / * a message for me ' /
8 08 Rcvd := Rcvd \ {.s}

/ * node V warns its clients also ' /
8 09 for all id 6 S A id # ID.. do
8 10 SEND CLEAN(lD ...id) TO H[id\.neighbor
8.11 endfor
8 12 endif
8 13 if (choose.pivot A s ^ ID .. A dest £ cover A dest £ H)
8.11 then / • a message for a pivot ' /
8.15 SEND C L E .A N (s .d e s t) TO //[desfj.neiÿhbor
8 16 endif

8.17 Upon RECEIPT of RELBLls. ofdTDs. neu'JDs) FROM nbr — y
8.18 if [update .a l l A s £ {coeer \ Rcvd)]
8 19 then
8.20 Rcvd : = Rcvd\J {.s]
8.20 V :— V U { o l d J D s }
8.21 if (ID . . £ a ld J D s]
8.22 then / * the message contains our new ID ' /
8.23 n e w lD :— n e w J D s l lD . .]
8.24 endif

/ * build the 1RS using H and new IDs * /
8.25 U P D A T E J D S (I D . . . s. o ld J D s . n e w J D s)

/ * broadcast to the other neighbors ' /
8.26 SEND R E L B L(s. o l d J D s . n e w J D s) TO nb £ ;V„ \ {nbr})
8.27 endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4ü

4.3 One example

Consider the network given as example in chapter 3. Figure 3.1. Because the system is

asynchronous, we cannot bound the transmission time. Messages coming from the closest

nodes are not always arriving first. For example, suppose that node 1 has received messages

from its direct neighbors 7.13.10.12 with the distances equal to the lengtli of the direct

links, and from node 8 with the distance = leng th {link {8 . 12)) + Ie7i (j t l i{ l in k (l2 . 1)) = ô.

Ordering the nodes in B\ we have:

B
node 12 7 8 13 10
distance 2 3 5 7 8

Figure 4.1: A partial t-ball for node 1

But this partial t-ball Bi 5 i(5) = {12.7.5.8.10}. So, node 1 has to wait until it will

receive all the messages such that its final t-ball doesn't change anymore, and it is finally :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4(i

Figure 4.2: The t-ball Bi(5)

Next, we prove the correctness of the algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5

PROOF OF CORRECTNESS

The construction of the VZR. starts with each node v calculating its partial t-ball 0,.. Based

on all t-balls. the cover is calculated and therefore the nodes are divided into pivots and

non - pivots. A pivot selects its client-hood (so the network is divided into k = \cover\

client-hoods) and relabels the nodes inside its client-hood.

All the proofs are made for a generic node v. First, we show that the partial t-ball B

will contain only correct IDs. Based on correct t-balls. the calculated cover is a correct one.

Second, that each non-pivot will elect the nearest pivot so SVITZ builds in each pivot the

SPT as V m . Based on SPTs. pivots do relabeling, so the 1RS is correct and the same ;rs

in v m scheme described in [EGP98].

For updating B. v receives only correct distances. Besides the removal of the wrong IDs

from B (Properties 5.1.7 and 5.1.8). we have to show that B gets emptied at most once (by

executing R EST ART) in every execution of the algorithm (Lemma 5.1). so c can reach the

last layer, to build the labeling functions.

Once the cover is calculated, a non-pivot node u has to select its nearest pivot based on

the distance values, so by Lemma 5.2 the nearer pivot becomes in finite time the nearest

pivot for V. Also, each pivot, once it knows all its clients, has to do the relabeling. By

doing this in fa ir coordinated manner (Lemma 5.4), we obtain correct labeling functions

TZ. = (C .X) .

Each time the labeling functions are calculated, the old and the new values are compared.

If there is at least one change, the old ones are replaced by the nev ones. In any case, the

algorithm restarts: the t-ball calculated up to that point is kept, but all the nodes except

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

the ones from B are erased from H. and cover. S are reset to 0. Only the guards of layer 1

and 2 are enabled, by setting the appropriate boolean variables to true or false value. So.

it is a restart with good values. Later, new labeling functions are calculated and compared

with the old ones, and we restart again. When we have no more changes in the t-balls. in

cover and all the Sp.p € cover, then the relabeling functions will remain the same.

Using Lemmas 5.5. 5.6. 5.7. 5.8. we prove that the algorithm stabilizes in 0 (d \ / / i (I -f log n))

time units, where n is the number of nodes and d is the diameter of the network. Therefore

SVXTl constructs a VXTl scheme in polynomial time and it is self-stabilizing also.

5.1 .\ Correct T-ball

To calculate the t-ball B for an arbitrary node v in the network, we use the guarded

commands in the algorithm Calculate.Ball and some guards in E rro r .Correction.

Adding nodes to B is done automatically, and the macro U P D A TE in Calculate.Ball

takes care of it. The main concern is to remove the "bad" nodes, with invalid information

in H and/or B. First, we show that the partial t-ball B will contain only correct IDs. and

the wrong IDs from B are removed (Properties 5.1.7 and 5.1.8.) Next, we prove that B can

become 0 at most once, so B converges to a correct t-ball (Lemma 5.1.)

We have the following observations, most of them referring to macro U P D A TE in

Calculate .Ball:

Observation 5.1.1 For Vu E Hv[u].distarice maintains in v the lowest distance re­

ceived from u (lines U. 10-13.) Starting from an arbitrary configuration, after a finite time

Hi,[u\.distance is the lowest distance between v and u.

Consider m as the initial value of Hi.[u].distance. If m is greater or equal to some

distance from u to v received in some message, m gets later overwritten by that distance

and Hv[u].distance converges to the shortest distance (condition H[id].distance > dist in

line U.08 where id = u and dist is the value of the distance received in a message.)

If m is smaller than any possible value of the distance, we show that m gets replaced

with a rorrert value and later HAu].distance converges to the shortest distance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

The value m is stored as the distance from u to v through a neighbor Hv[u].neighhor.

This neighbor keeps also u in its t-ball. otherwise it would not have forwarded the message.

So. if that neighbor forwards to v another distance to u. this value replaces m. This action

does not affect the process of selecting the shortest distance to u. because the overwritten

is done only in case a new distance is received from the neighbor toward u on the shortest

path known up to this point. For example:

Figure 5.1: A correct distance replaces the old one

Assume now that v knows that u is at the distance 10 and this is the shortest distance

to u. so it is stored in H.,: Hv[u\.distance = 10

and e receives the distance from u through the path stored as shortest up to this point in

Hi as 17. Then u replaces 10 by 17 : ff[.[uj.di.stonce = 17

and. maybe later. 17 will be overwritten by a shorter distance.

Observation 5.1.2 B must contain the firs t t nodes in ascending order o f the distance. I f

B has less than t elements, an incoming node is .simply added to B (lines U. 18-19.) I f B

has exactly t elements and a new node should be. added, the one with the longe.st distance,

breaking ties by increasing node ID. is removed (lines U.21-26.)

Another situation is the following. Wlien we say that u is down, we see this from the

point of view of v: either u fails, or on the path from u to v some link is down, so v does not

"see" u as an up node. If it is only a link failure, v will probably "see" u through another

path.

For a node u. u ^ v. we have the following observations:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Observation 5.1.3 I f u is stored in Hi- as a neighbor o fv . but it is not a current neighbor

(u ^ Nv), u gets removed from Hi. (the guard 2.13 becomes true in node v and it is executed

fo r id = u .)

Observation 5.1.4 I f u is stored in H^ as reaching v through a non-existing neighbor, ii

gets removed also (the guard 2.13 becomes true.)

Observation 5.1.5 I f u reached v through a neighbor w of v (w €

wj,

Figure 5.2: The node u reached v through w but the path u -> w is disconnected

and the path between u and w does not exist anymore (we received a message LOST(w. u)).

then the path between u and v is removed from H^ also (lines 2.15-19.)

Observation 5.1.6 From IEGP98J we know that:

I f u ^ Bv => fo r all nodes w on the shortest path from u to v. u € Bu.-.

Thus V checks this property with its direct neighbors by receiving their t-balls and

sending its t-ball. whenever a change occurs in B.

Based on these observations, we prove further properties. The first property shows the

removal of non-existing nodes. A non-existing node is a node which either has failed or it

was never an up node in the network.

Property 5.1.7 (Removing the non-existing nodes) Starting from an arbitrary con­

figuration. i f a node u fails, or .some links are down, or u does not exist, all nodes v. which

have u included in Bi- as reachable through those links, w ill remove u from their B and H

data structure in fin ite time.

Proof. The proof is by induction on the number of hops from u to an arbitrary v.

such that u e Bi,. The general idea is.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

a) if u is stored as a direct neighbor of v (Hi-lu].direct = true):

Figure 5.3: A crash in the direct neighborliood

then by Observation 5.1.3. u is removed and the information is broadcast to the other nodes,

as we remarked in Observation 5.1.6.

b) if Hv[u].direct = false but Hv[u].neighbor = u. by Observation 5.1.3 or 5.1.4. n is

removed and the information is broadcast to the otlier nodes.

c) 3tt> : Hi.[u\.direct = false A Hv[a\.neighbor = w A w n. It is compulsory for w to

be an up neighbor, otherwise the guard 2.13 becomes true in node v for id = u\ and a and

all the other nodes which reach v through w get removed (Observation 5.1.4.)

We have a situation like this:

Figure 5.4: The down node u reached u through ir

3u'k such that u € .Nu,.*. A direct = true => Bun, Hu;,, get updated. Recursively.

Bu’ and Hu.- get updated. □

Property 5.1.8 (Removing the cycles) Starting from an arbitrary configuration, fo r all

the nodes in the network, the cycles in forwarding a message to any arbitrary node are

eventually removed from B and H.

Proof. A cycle in this case means that a node forward a message to another node,

that node to another one so on. until the message is forwarded back to the first node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

02

without reaching the destination. For example, a cycle of dimension 3 can be:

Figure 5.5: A cycle in delivering of dimension 3

and we have the following values :

Hi-[x\.neighbor = w : v knows that the best neighbor to reach x is ir

Hu,[x\.neighbor — u : lu knows that the best neighbor to reach x is u

Hu[x].neighbor = v : u knows that the best neighbor to reach x is e

Therefore a message sent to x. once it enters the cycle, it goes forever. Simply checking

whether x 6 Bu A Hu[x\.neighbor = e ^ x € B, leave a cycle undetected.

A strong condition should be added such that, at some point, x is removed from a set

B of a node along the cycle and recursively, x gets removed from all the other nodes which

form the cycle. The extra condition is Hi-[x].distance — length{v. w) + Hu.[x\.distance and

it removes the eventual cycles.

To understand how it works, consider the following example:

Figure 5.6: A correct situation

Here, we see that Hu[x]-distance must be 2 + 3 = 5.

How does this condition help us? Going back to Figure 5.6. suppose Hv[x\.distance. = 12:

=> Hu,[x].distance must be 12- 4 = 8 => Hu[x\.distance must be 8—3 = 5 => Hu[x].distance

must be 5 — 2 = 3.

This is a contradiction to the initial value of Hi.[x].distunce = 12. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Up to this point we have shown how to remove "bad" nodes from B. Another way to

remove elements from B is to set it to 0. We show that it is possible at most once in every

execution of the algorithm SVTR. in node v. In this way. B will contain, in finite time, the

t closest nodes to v. so gradually, the cover will be calculated based on these values, and

finally the labeling functions.

Lemma 5.1 (Emptying B) Starting from an arbitrary configuration, in any execution, c

executes REST ART at most once.

Proof. Suppose we have executed REST ART and we analyze now what can happen

next. We prove that further actions do not determine another RESTART. So. we analyse

each guard from all the modules that have as action RESTART and we prove that they

cannot become enabled again.

Property 5.1.9 After REST.ART is executed, in the algorithm Error.Correction f'e

predicate erro r remains false (so. its action RESTART i.s not executed anymore.)

Proof. After RESTART is executed, the data structure B and H are 0. In the

algorithm Calculate.Ball, whenever B adds or removes an element, the same element is

added/removed from H. Also, whenever a crash occurs in the network, the node v does not

become disconnected, so it has at least one up neighbor, so B does not become 0 because

of Remove J D executions. When RESTART^ gets executed, we make sure to keep in H

whatever is in B. So. the condition { B \ H ^ %) is false from here on.

The statements in REST ART are executed atomically so. when B is 0. H. cover and

S'are also 0. They will be calculated later, based on the values of all the partial t-balls B

of all the nodes in the graph. Therefore, the condition (f l = 0 A (cover u S) ^ 0) is false

also from here on.

S and cover start as 0 and. as long as a cover is not calculated, ccmer remains 0. Wlien-

ever cover is set to 0. the variable cover.ready is set to false, so the guarded commands of

the algorithms ToJ^ivots and To.Clients cannot execute in order to determine the set S

of the successors for the node. So 5 remains 0. therefore the condition (cover = 0 A S ^ 0)

is false.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

B. H. cover. S start as 0. Whenever B adds or removes an element, this element is

added/removed from H in one atomic step. After the cover is calculated, the pivots send

messages to all nodes and. when such a message reaches the node v. their IDs are added to

H. So H will eventually contain all the IDs stored in cover. Also, whenever an ID is added

to S. it is added to H also. Therefore the condition H ^ [B U cover U S) is fal.se.

When macro REST ART is executed, the variable to.pivot starts with the ID of some

neighbor (line R.04.) It can be changed in the following situations:

(i) the neighbor with the ID stored in to.pivot crashes (or the link to that neighbor

crcishes.) In this case, in the macro REM O VE another neighbor is chosen (line R.05). so

to.pivot e (i\\. \J { IDi -}) remains true.

(iii) the node v is selected as a pivot, so to.pivot has (and keeps) the value ID,., so the

condition to.pivot 6 (A\. U {IDi-}) remains true.

(iv) the node v is not selected as a pivot, so it has to choose its nearest pivot. The variable

oiin.distance keeps the lowest distance received toward any of the pivots, so whenever a

lower distance toward a pivot is received. to.pivot is changed to that neighbor which sent

this information, therefore to.pivot € {N.. U { I Du}) remains true. □

Property 5.1.10 Once the macro REST.ART is executed, the guard 1.04 of the algorithm

E rr or.Correction (keeping correct data about the neighbors) remains fal.se.

Proof. The field direct specified whether a direct neighbor of v has the shortest path

to V through the link between them.

H starts as 0. Whenever a node is added/updated in H, the value of the field direct of

that element is set to false (lines LM2. U.I8. U.25. of the macro U PD.ATE in the algorithm

Calculate .Ball, lines U.03. U .I l of the macro Update.H in the algorithm To.Clients.)

The only statement which sets the value of the field direct for a node u to true is in the

lines 1.06-1.08 of the algorithm Error.Correction. But this is done only if u is neighbor

of V and has the direct link as the shortest path {H[u].neighbor = u) and. in this case the

field distance is set to the correct value (the value of the length of the link.)

The field d is lunc t can change when a shorter distance is detected. But at that time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

00

the field direct is set to fa lse automatically (lines U.12 of the macro U P D A T E in the

algorithm Calculate .B a ll, line U . l l of the macro U pdateM in the algorithm To.C lients.)

Taking an example:

Figure 5.7: A shorter distance through another neighbor

Suppose that initially for the node w stored in Hu. the values of the fields arc:

H[w].neighbor = w H[w\.distance = 5 H[w \.d irect = true

If node V detects a shorter distance to node w through node u. the values are changed in

the macros U P D A T E (lines U .10-12) or U pdateM (lines U.09-11) to:

H[w].neighbor = u H[w].distance = 'i H [w].d irect =■ fa lse □

Property 5.1.11 The guard 2.02 in the algorithm C alcu late.Ba ll (keeping data about un­

known nodes, whose D IS T messages have not been yet received) remains fa lse .

Proof. The set RcvdJDs keeps all the nodes which have sent information regarding

the distance toward the node v. These distances are valid information.

Obviously, we cannot trust the information regarding a node in B whom message has

not been yet received. Because of that we impose REST A R T when such a node is detected.

After R E S TA R T gets executed and B becomes 0, R cvdJD s := {ID u }. From here on.

R cvdJD s will start storing only the IDs of the nodes which have sent messages and maybe

have changed the set B. So. B Ç R cvdJD . so the guard 2.02 remains fa lse. □

After R E S TA R T is executed, the variable pivot is set to the node ID. If the node is

part of the cover, we make sure that pivot and to .p ivot is the node ID. But if the node

is not part of the cover, pivot is set arbitrarily to one of the pivots (lines 6.10-12 in the

algorithm To.P ivots.) Starting from this point, pivot is modified to the closest pivot whose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

message has been received (macro B E T T E R M IV O T .)

Property 5.1.12 I f v is a pivot, in the algorithm P ivo t Ja b e l the guard 7.01 (the chosen

pivot is not in cover set or the data in the routing table are inconsistent) remains fa lse.

Proof. The variable pivot is set to its own ID (line 5.06 in the algorithm To.Cl ients) .

so pivot 6 cover. The algorithm Pivot Jabe l runs only for the pivots. So. when relabel

becomes true, this means that the node v has received messages from all other pivots and all

non-pivot nodes. Besides the information regarding the nodes in B. H contains information

about all other pivots and the successors (which are in fact its clients) and nothing else.

Therefore H = (B u cover U 5). □

Property 5.1.13 I f v is not a pivot, in the algorithm C lien t Jabe l. the guard 8.01 (the

chosen pivot is not in cover .set or the data in the routing table are inconsistent) remains

false.

Proof. The algorithm C lien t Ja b e l runs only for the non-pivot nodes (a client of

some pivot.) Thus, when relabel becomes true, this means that c has received messages

from all the pivots and successors, and H contains this information. So. pivot is set to the

nearer pivot (macro B E T T E R M IV O T in the algorithm To.P ivots.) Later, the chosen

pivot is checked if it is also part of the t-ball B^ (line 6.19 in the algorithm ToM ivots.) So.

the condition relabel A [pivot ^ cover V H (B l i cover U S)) is fal.se. □

We have shown that all the possible guards which can determine a re-execution of

R E S TA R T remains fa lse after a R E S TA R T has been executed, so we have at most one

R E S T A R T in every execution. □

So:

Theorem 5.1.14 (Correct t-ball) Starting from an arbitrary configuration, the partial

t-ba'.l Bu. in fin ite time, becomes the -ball o f node v. B i.{t). required by V T R .scheme.

Proof. Using the Properties 5.1.7. 5.1.8, Lemma 5.1. and Observation 5.1.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ol

We know, by Property 5.1.7, that B will contain only the up nodes in the network,

and with the cycles removed (Property 5.1.8.) The guards of the algorithm Calcu la te.Ba ll

updates B in case of new distances or topology changes (Observation 5.1.1.)

By Lemma 5.1. once a node starts executing the distributed algorithm, we can iiave at

most one R ESTAR T, which means that B can be reset to 0 at most once. □

5.2 Choosing the Nearest Pivot

When the set B is changed and we supposedly have received at least one message from

each other node, we go to the second level. The set B containing the current t-ball is sent

to the leader, and the variable ball.sent is set to true (line 2.25.)

A node, even if it is not done calculating its t-ball. forwards eventually t-balls received

toward the leader (line 3.03.) The leader collects the t-balls and once its t-ball is calculated

(balLsent = true) and all other t-balls are received, it calculates a cover based on these

t-balls. using a greedy method. Whenever a new t-ball is received, leader checks whether

that node did not send one before. If the node has sent an old t-ball. the leader replaces it

with the new one (macro U P D .A T E .T B A LLS) and possibly recalculates again the cover.

Once it is calculated, the cover is broadcast in the network and we go to the third level.

If V is not selected as a leader, it forwards other eventual t-balls to the pivot. When the

cover is received, the second level is done and we go to the third level.

When the algorithms in the second level are done, the variable cover .ready becomes

true (lines 3.12. 4.15) for the third level.

In the third level, the nodes are divided into pivots and clients. A client selects a pivot

as its nearest pivot. Each pivot arranges its clients in a SPT tree rooted at itself. Both

have to maintain shortest distances to the all the pivots and the successors in the SPT tree

which is part. (For a pivot, the successors are in fact all its clients.)

The criterion to choose a closer pivot is by distance. The next property proves that,

regardless of the initial value of the variable min.distance a closer pivot is chosen and in a

finite time, the closest pivot will be eventually chosen. Once a non-pivot selects the correct

pivot, it sends an acceptance message, so the pivots will have cunect clients. So. it is enough

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

to prove that a client will eventually choose the nearest pivot in order to maintain that each

pivot has correct clients. Also, the set of successors 5 maintained in each node depends of

the correct selection of the pivots by the non-pivots.

Lem m a 5.2 (m in.distance) Starting from an arbitrary configuration and regardless of

its in itia l value, the variable min.distance in the algorithm To.P ivots w ill have in a fin ite

time, the minimum value among all the distances toward the pivots (the nodes in cover.)

Proof. Generally, when we receive a message from a pivot, we compare min.di.stance

with the distance received, stored in the variable dist. If min.di.stance > di.st. we update

rnin.distance and eventually it will converge to the minimum distance among all the pivots.

But if we start with a small value for m in.distance. such that always m in.distancc <

dist. we will not be able to converge to the correct pivot.

In order to correct this, suppose that p is the starting pivot node for v. p € cover, and

nhr is the starting neighbor toward it. Thus. min.distance is what the node v knows that

is its distance to p through the neighbor nbr.

When we receive a message from p through nbr containing the \-alid distance, we sim­

ply modify m.injdistance to that distance. Possibly this real distance is greater than some

distances already received and discarded. But we know that a node is continuously broad­

casting its distance toward the other node, so after a while this valid value of min.distance

can be properly changed.

We do not know when the message arrives but it will arrive, because each of the neighbors

(pivots or not) maintains shorter distances toward all the pivots. Therefore we will receive

messages regarding each pivot from all of them, so the erroneous value of m in.distance is

eventually corrected.

Consider the following example. The node v has the variable min.distance = 3 and the

current nearer pivot u. u 6 cover. The neighbor toward u on the current shortest path is w.

Now. node v receives a message through w with another distance toward u. We know that

this is the actual value, because the message is not corrupted and it carries a correct value,

and all other nodes on the path toward u have done the change in their min di.stnnrp<i-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

disi*20

mm dUiance-3

Figure 5.8: Increasing miii-distance

Now, it is the turn of the node v to replace the old value of min.distance which is 3

with the newer one. 17. □

5.3 Relabeling

We already know that a non-pivot node v always chooses its pivot as a node from the

cover. But that pivot should be also in its t-ball: cover n 5,. 0 => 3p € cover A p 6 D,.-

We wait until we have received at least one message from each pivot and the chosen pivot

is in B. At that time v considers the pivot elected and sends an acceptance message to

that pivot and refusals to all the other pivots. .4nd the third level ends until local or global

changes requires a re-execution of this level. The condition Rcvd = cover is necessary to

be true in order to proceed for choosing the closer pivot because we have to send refusals

to all other pivots, so we need at least one path to each of them. That path will not be in

that moment the shortest, but in a finite time it will converge to it.

For a pivot the third level ends when it receives acceptance or refusals from all nodes

which are non-pivots and messages regarding the distance from all other pivots.

When the third level is done the variable cover.ready becomes fa lse (lines A.05 in the

macro A L L .A N S W E R S . 6.25). until we need to execute the algorithms on this layer again,

and we go to the fourth layer by setting the variables relabel and reset4 to true (lines A.04.

6.24.)

The purpose of our distributed algorithm is to calculate the labeling functions C and

X. All other layers concur for providing enough information such that this step is done

properly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Each pivot p relabels the node in its partition. Having the clients arranged in a SPT tree

(called Sp) rooted at itself, the pivot starts re-numbering the nodes in a preorder traversal

of the tree. This method, proposed by Santoro and Khatib [SK85]. is the first compact

routing method and is called tree-labeling. Once the process is done, p sends messages to

all the other nodes and constructs the portion of the functions which define the 1RS.

The SPT is correctly constructed, by Lemma 5.2. So the most important jispect is the

order in which the pivots start relabeling their clients. In the Lemma 5.4 we prove tliat

the order is the one required by [EGP98], so the pivots, running concurrently, label in fa ir

coordinated. Next, we prove this property and the fact that one message accepted from

each pivot is enough for all the nodes in the graph to eventually construct correct labeling

functions (Lemma 5.3.) We restrict ourselves to the case of one message accepted, because

of the asynchronous model. An old relabeling can reach a node later than a newer one. so

it can overwrite it. In order to prevent this, we allow a node to accept only one message

with relabeling, and that message should follow a C L E A N message, which specifies that a

certain pivot will start the relabel. Because we assume that we do not have message reorder,

a R E L B L message will reach a node after a C L E A N message hiis already been received.

.4nd a node will receive (and accept) only one C L E A N message, sent or forwarded by its

own pivot and not by anybody else. In this way. we prevent flooding the network with

confusing C L E A N or R E L B L messages.

Lem m a 5.3 (One message per p ivot) For a pivot node v. regardless o f the in itia l value

of the Rcvd. accepting only one message from each other pivot does not affect the process

of building correct IR functions.

Proof. The condition 7.10 in the algorithm PivotS,abel imposes the restriction of at

most one message from each pivot. We can have no more messages accepted from a pivot

p if p € Rcvd because of a possibly wrong initialization and not because a message from p

has been received. Here we have several cases:

(i) the client-hood of p interferes with the client-hood of v. In this case, some guards in

ToJ^iVùtô become ivue and a new relabeling starts for v with relabel, rese ii := true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

In this case, the guard 7.02 becomes true for both v and p. Rci'd ;= 0 for v. so a new

message from p is awaited.

(ii) the client-hood of p does not interfere with the client-hood of v. but interfere with

the client-hood of another pivot q. then both p and q will have a new relabeling so

appropriate C L E A N messages will remove them from Rcvd of v such that the new

relabels of p and q will be accepted by v.

(iii) the client-hood of p does not interfere with any client-hood. it is a simply re-arrangement

of the clients. The node p will send a C L E A N message to determine the node v to

remove p from Rcvd. so the new relabels of p will be accepted by r.

.\ node accepts only one message R E LB L is order to prevent the network to be flooded.

For a pivot, we need to prove that the relabeling process respects tlie V lT l preprocessing

step of [EGP98]. Or simply, the fair-coordination among the pivots dictates when each pivot

does its relabeling.

Lemma 5.4 (Fair-coordination) The pivots relabeling is done in fair-coordinated man­

ner.

Proof. We know that the first pivot from cover is the one which starts the process

of relabeling for the entire network. We order the cover = {pi.po. •••Pt}-

Each pivot starts in some state and once reaches the fourth layer, first it ensures that

all the other nodes will accept its new value by sending a message C L E A N first. Because

we have FIFO charmels when the message R E L B L containing the relabel reaches a node,

we know that C L E A N was previously received and the node is able to accept the relabels.

C L E A N does not require any condition to be true to be processed, because a different

node can execute guarded commands of different layers with various speed of execution, so

we cannot expect all the pivots • o be in fourth layer at the same ' ime.

The node pi starts relabeling first once relabel = true. After receiving C L E A N the

other pivots wait fur the message of pi. Once this is done, it broadcasts the new labels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

in the network to all the nodes. For a non-pivot node, only the C L E A N messages arc

restricted to be sent be its pivot. R E L B L messages are accepted from any node, but only

the first message. Once po receives the message from p%. it is its turn to do relabeling, and

so on. □

When a node is assumed to have received relabels from all the pivots, it checks whether

the labeling functions are different from the previous ones. If there is at least one change,

the old ones are replaced by the new ones. The algorithm restarts: The t-ball calculated

up to this point is kept, but all the nodes except the ones from B are erased from H. The

variables cover. S are reset to 0. Only the guards of layer 1 and 2 are enabled, by setting the

appropriate boolean variables to true or fa lse value. Thus it is a restart with good values.

Later, new labeling functions are calculated and compared with the old ones, and we restart

again. When we have no more changes in the t-balls. in cover and all the Sp. p 6 cover, the

relabeling functions will remain the same.

5.4 Self-Stabilization and Time Complexity

We consider d to be the diameter of the network. In case of network change, d can

be modified, so. to be more precise, consider d to be the maximum diameter over all the

diameters of the network in different situations which have occurred (in the worst case

d = n.)

Also. Sp represents the set of clients for each pivot p 6 cover, calculated in the algorithm

To.C lients.

Because the property of self-stabilization implies that the system will reach a correct

state in finite time, we prove the self-stabilization together with an analysis of the time.

We define the state predicate C[. C i = I i A I 2 h A I 4 A I 0 as the invariant for all

legitimate states:

I \ : Bi- = St,(f).Vi' € - indicates that the set B calculated in each node is the defined

t-ball By(f) (or. the partial t-ball is the t-ball for each node v in a legitimate state.)

i 2 : cover = C ulcu lu ie .cover{Bv{i)\v t V'} (the cover caicuiated by the algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Calculate.Cover is the cover for all t-balls.)

I 3 : p ivot = pt.. Vt' € K — cover (the nearer pivot calculated in the algorithm To.P ivots is

the nearest pivot in terms of the distance X f. for each non-pivot node.)

h '■ ^’ = Uuteot'cr U cover and Sp n = 0. Vp. t e cover, p ^ t .

(the set of the clients {S„|e € V) forms a partition for the nodes in the graph)

I 5 : {L. /) constructed in the macro U P D A T E J D S is the VITZ scheme.

Lemma 5.5 I \ is a closed attractor fo rC .

Proof. By Theorem 5.1.14. starting from an arbitrary state, in finite time, for each

node V the set = Si.(f).

By Lemma 5.1. once a node starts executing the distributed algorithm, we can have

at most one R ES TA R T, which means that B can be reset to 0 at most once. So. if we

have a RESTAR T, consider (r the time spent until all REST.ART gets executed. Time

depends on the local computation.

.\nd consider time units to received messages from all the other nodes. Time t i

depends on the diameter of the network, because a message can come from at most distance

d. and on the time spent by the processors on the path through which the message reaches

V. to process and forwards the message to v. If no R EST A R T is executed in any node in

the network, for each node v € V . in 0 {d) time units, all the distances arc received and

the partial t-ball Bf becomes the t-ball B J t) . So. the set B calculated by the algorithm

Calculate .B a ll contains the t nearest nodes to v.

Therefore it will take at most tp + 0{d] time units for v to calculate its t-ball B,.(() in

the variable B. □

Lemma 5.6 /o is a closed attractor fo r C.

Proof. Consider leader the node elected as a leader.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

If all the nodes have their t-balls calculated and no R E S T A R T occurs anymore, in

0(2d) time units the elected leader eventually collects all the t-balls: each node needs 0 [d)

time units to calculate the t-ball and 0 {d) time units to send it to the leader.

By Lemma 5.5. a node needs a finite time to calculate its t-ball. Once it is computed,

the t-ball is sent to the leader in the message B A L L through the neighbor nbr. locally

computed by each node. Consider the worst case, when the distance in hops between the

elected leader and a node is d. so B A LL will reach the leader in 0{d) time units.

After a node has received messages from all the other nodes in the network, it sends

the set B, but continues to run. Whenever a change occurs in B due to a smaller distance

received. B is sent again to the leader. Within d time units, the node v has to receive all

the messages sent by the other nodes, so it has to wait maximum d time units, to have

received messages from its t nearest nodes and to have the partial t-ball B to its t-halL

Now. leader has to wait 0{2d] time units (from all the n nodes) to receive the correct

t-balls. and. based on their values, to compute the cover. Once the cover is calculated, in

0 {d) time units each node will eventually receive it. □

Lem m a 5.7 I 3 and I 4 are closed attractors fo r C.

Proof.

We have to prove that after the cover is received by any node, and no more REST.ART

is executed in any node:

(i) within d time units, for each non-pivot node, the nearer pivot becomes the nearest

one

[i i] within d + d = 2 d time units, each pivot has its set of clients selected

We know that the set B contains at least one pivot, and by Lemma 5.2 we know that

each non-pivot node v will eventually choose its nearest pivot. We cannot say that this can

be done in t time units, because for selecting nodes in B the distance is not considered in

terms of hops, but in real values. So, each non-pivot has to wait at most d time units, to

receive all the messages from other nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Each pivot has to wait for a client to elect it as the nearest pivot and then to send the

answer to it. Because a client has a distance in hops to the pivot of at most d. the answer

sent by the client node will reach the pivot in at most d + d = 2d time units, not taking in

consideration the time spent by the client in local computation. □

So. by Lemma 5.7 in finite time, each node is ready to start the fourth layer, which

focuses on relabeling and calculating the functions for 1RS.

Lem m a 5.8 h w a dosed attractor fo r C.

Proof. Consider the moment when relabel = true for ever}' node and R E S TA R T is

not executed anymore in any node. Within d time units, each node receives the labels sent

by the first pivot pi (including the second pivot p .̂) Within d + d = 2d all nodes receive

the labels sent by the second pivot po.

Using Lemma 5.-1. the relabeling is done as required by the V IR . and by accepting one

message per pivot (Lemma 5.3.) So. in 0(kd) . where k = |cot'cr|. each node receives all the

labels. It takes 0{kd) time units for the relabeling functions of 1RS to be completely con­

structed in each node (macro U P D A T E J D S .) By [EGP98). k = Imeerl < i /a (I -f logn).

so the stabilization time becomes 0 (d y /n (l -I- logn)) time units. □

Theorem 5.4.1 (Closure and convergence of Cj) The distributed algorithm constructs

a V m scheme in polynomial time. The characteristics o f the VTR. scheme are preserved,

as in the [EGP98J: the stretch facto r is at most five and is three on the average, and

the routing table size o f size 0{n^^~\og^‘ ' n -f At, logn) bits per node and with a total of

0{n^^‘ log^^-n). The algorithm stabilizes in 0 { d \ / n { l -r logn)) time units.

Proof. By transitivity, using Lemmas 5.5. 5.6. 5.7. and 5.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS

In this thesis, we presented a self-stabilized interval routing scheme SVTR. .\s high speed

networks become larger and larger, it is essential to design direct routing schemes, which

require a relatively small amount of memory in the nodes for routing purposes. The pro­

posed algorithm is the first self-stabilizing compact routing algorithm for an asynchronous,

arbitrary weighted network, and can easily be extended to an unweighted network. It takes

0 (d \ / n (l 4- logn)) time units to stabilize, where n is the number of nodes and d is the

diameter of the network, and the routing functions use 0 (n^^- log^ '̂ n) bits in total.

Interval routing algorithms can be used to design efficient solutions to some fundamental

problems in distributed computing, such as broadcasting, mutual exclusion. BPS. and DPS.

There already exist self-stabilizing solutions to the above problems [DolOO]. One interesting

topic of future research is to to find efficient self-stabilizing solutions (more efficient than

the existing ones) to the above problems.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[ABNL'*'89] B. Awerbuch. A. Bar-Noy. N. Linial. . and D. Peleg. Compact distributed data
structures for adaptive routing. In STOC89 Proceedings o f the 2 1 th Annual
ACM Symposium on Theory of Computing, volume 2. pages 230-240. 1989.

[ABNLP90] B. Awerbuch. A. Bar-Noy. N. Linial. and D. Peleg. Improved routing strategies
with succint tables. Journal o f Algorithms. 11:307-341. 1990.

[AG93] A. Arora and M. G. Gouda. Closure and convergence: a foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering. 19:1015
1027. 1993.

[AKM^93] B. Awerbuch. S. Kutten. V. Mansour. B. Patt-Shamir. and G. Varghese. Time
optimal self-stabilizing synchronization. In STOC93 Proceedings o f the 25th
.Annual ACM Symposium on Theory o f Computing, pages 652-661. 1993.

[AP90] B. Awerbuch and D. Peleg. Sparse partition. In FOCS90 Proceedings o f the
.‘iOst Annual IEEE Symposium on Foundations o f Computer Science, pages
503-513. 1990.

[APSV91j B. Awerbuch. B. Patt-Shamir. and G. Varghese. Self-stabilization by local
checking and correction. In F0CS91 Proceedings of the :11st Annual IEEE
Symposium on Foundations o f Computer Science, pages 268-277. 1991.

[.4PSV94] B. Awerbuch. B. Patt-Shamir. and G Varghese. Bounding the unbounded. In
Proceedings of the Second Workshop on Self-Stabilizing Systems. 1994.

[DH97] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed
systems. Chicago Journal o f Theoritical Computer Science. 3(4). 1997.

[Dij74] E. VV. Dijkstra. Self stabilizing systems in spite of distributed control. Commu­
nications of the Association o f the Computing Machinei-y, 17:643-644. 1974.

[Dij82] E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Selected
Writings o f Computing: A Personal Perspective, pages 41-46. 1982.

[Dol97] S. Dolev. Self-stabilizing routing and related protocols. Journal o f Parallel and
Distributed Computing. 42(2):122-127. 1997.

[DolOO] Shlomi Dolev. Self-Stabilization. The M IT Press. 2000.

[EGP98] T . Eilam. C. Gavoille. and D. Peleg. Compact routing schemes with low stretch
factor. Technical report. LaBRI. Université Bordeaux. Weizmann Institute of
Science. 1998.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

[Gou98] M. G. Gouda. Elements o f network protocol design. John Wiley k Sons. Inc..
1998.

[GP99] C. Gavoille and D. Peleg. The compactness of interval routing. SIAM Journal
on Discrete Mathematics. 12:459-473. 1999.

[GS95] M. G. Gouda and M. Schneider. Maximum flow routing. In Proceedings o f the
Second Workshop on Self-Stabilizing Systems, pages 2.1-2.13. 1995.

[KP93] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing. 7:17-26. 1993.

[LAJ99] C. Labovitz. A. Ahuja. and F. Jahanian. Experimental study of internet sta­
bility and wide-area network failures. In Proceedings of FTCS99. 1999.

[LT87] J. Leeuwen and R. B. Tan. Interval routing. Computer Journal, pages 298-307.
1987.

(Mas95| T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology
problem. In Proceedings o f the Second Workshop on Self-Stabilizing Systeins.
pages 1.1-1.15. 1995.

[PU89] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing
tables. In Journal of the ACM. volume 36. pages 510 530. 1989.

[SK85] N. Santoro and J. Khatib. Labeling and implicit routing in the networks. In
Computer Journal, volume 28. pages 5 -8. 1985.

[Tcl94] Gerard Tel. Introduction to Distributed .Algorithms. Cambridge University
Press. 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University of Nevada. Las Vegas

Doina Bein

Local Address:
2355 Brockton Way
Henderson. NV 89014

Home Address:
2355 Brockton Way
Henderson. NV 89014

Degrees:
Bachelor of Science, Computer Science. 1996
Al. I. Cuza University of Iasi. Romania

Master of Science. Computer Science. 1997
Al. I. Cuza University of Iasi. Romania

Thesis Title: Self-stabilizing Interval Routing Scheme in General Networks

Thesis Examination Comittee:
Chairperson. Dr. Ajoy Kumar Datta. Ph.D.
Committee Member. Dr. Thomas Natker. Ph.D.
Committee Member. Dr. John T . Minor. Ph.D.
Graduate Faculty Representative. Dr. Henry Selvaraj, Ph.D.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A self-stabilizing interval routing scheme in general networks
	Repository Citation

	tmp.1534373701.pdf.dXcj4

