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ABSTRACT

CONSTRUCTION OF A RANDOM SIGNAL WITH A SPECIFIC PSD 
AND A UNIFORM PDF

by

Venkatraghavan Bringi

Dr. Peter Stubberud, Examination Committee Chair 
Associate Professor o f  Electrical and Computer Engineering 

University o f Nevada, Las Vegas

The performance o f  a dynamic element matching (DEM) flash digital to analog 

converter (DAC) can be improved by controlling the DEM DAC’s interconnection 

network with a random signal that has a specific power spectral density (PSD) and a 

uniform probability distribution function (PDF). Many algorithms exist for generating a 

random signal with a white PSD and a uniform PDF, but there exists only one algorithm 

for generating a random signal with a specific PSD and a particular PDF. For DEM DAC 

applications, the random signal must be generated at the speed o f  the DEM DAC. 

However, a real time implementation o f this existing algorithm is too computation 

intensive for a typical DEM DAC. In this thesis, an algorithm that constructs a uniformly 

distributed random signal with a specific PSD is developed. This uniformly distributed 

colored random signal is implemented using a finite state machine (FSM) and Linear 

Feedback Shift Registers (LFSRs).

Ill
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CHAPTER 1 

INTRODUCTION

Flash digital to analog converters (DACs) depend on matched components for 

converting a digital signal to an analog signal. In practice, perfectly matched components 

are impossible to fabricate. Even matched components on integrated circuits exhibit 

mismatch errors such as linear gradient mismatch errors, geometric mismatch errors and 

dynamic mismatch errors. The errors due to mismatched components add a nonlinear 

transformation, called integral nonlinearity (INL), to a flash DAC’s linear transformation 

[1] and reduce the DAC’s performance.

A signal processing algorithm called dynamic element matching (DEM) has been used 

to reduce the effects o f component mismatches in DACs [2] thereby improving their 

performance. DEM algorithms reduce the effects o f  mismatched components by 

rearranging dynamically the interconnections o f mismatched components so that the time 

averages o f the equivalent components at each o f the component positions are almost 

equal [2; 3]. In a flash DEM DAC, an interconnection network dynamically rearranges 

the mapping between the digital input signal and the mismatched unit DACs so that the 

time averages o f the activated unit DAC outputs are almost equal and the time averages 

o f the deactivated unit DAC outputs are almost equal [2; 3; 4; 5]. I f  the interconnection 

network’s control signal is deterministic, the mapping between the digital input signal 

and the mismatched unit DACs is deterministic, and the DAC is said to be a deterministic

I
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DAC [3]. Similarly, if  the interconnection network’s control signal is stochastic, the 

mapping between the digital input signal and the mismatched unit DACs is stochastic, 

and the DAC is said to be a stochastic DAC [3]. Many stochastic DEM DACs require a 

stochastic control signal with a uniform probability distribution function (PDF) and a 

particular power spectral density (PSD) to control the DEM algorithm’s interconnection 

network [3].

In general, a linear system can shape a random signal’s PSD to approximate a desired 

PSD; however a linear system typically cannot generate a signal with a desired PDF. 

Many other algorithms [6; 7] exist for generating a stochastic signal with a uniform PDF 

and a white PSD, only one algorithm [8] exists for generating a stochastic signal with a 

specific PDF and a particular PSD. The existing algorithm [8] generates a random signal 

with a specific PSD and a specific probability distribution using a linear system. This 

algorithm shapes a signal’s PDF by representing the desired PDF by a set of 

approximation coefficients, determining an output/input relation that expresses the 

variation o f the PDF while it is passing through the linear system, and then determining a 

relationship between the approximation coefficients and the output/input relation. An 

input signal is then constructed from an independent, identically distributed (i.i.d) 

uniform or Gausian process and a non-linear characteristic.

DEM DACs require a random signal that has the same sampling rate as the DAC. A 

real time implementation o f  the above algorithm requires a large amount o f  computation. 

Thus, a real time implementation o f this algorithm is not practical for DEM DACs. 

Therefore, a simple method is required to construct a uniformly distributed random signal 

with a specific PSD for controlling a DEM DAC’s interconnection network.
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The PSD o f a random signal [9; 10] can be shaped using a linear filter [11; 12; 13] and 

the PDF o f a random signal can be shaped using a nonlinear transformation. Figure 1-1 

shows the block diagram of such a system. In Figure 1-1, a white random signal, w(n).

w(/l) Linear x(/i)
Nonlinear

C(fl)
-------

filter transformation

Figure 1-1. Block diagram o f  a system that generates a colored signal 
with a specific distribution.

is filtered using a linear filter that shapes the signal’s PSD. The PDF o f the filtered signal, 

.r(rt), is shaped by a nonlinear transformation. The resulting random signal, c{n), will be 

an appropriate uniformly distributed colored signal if the nonlinear transformation does 

not significantly alter the spectrum of ,x(n). For example, a lowpass filtered random 

signal, x{n), can be generated by passing a white random signal, w(/i), through a lowpass 

filter. The PDF o f the colored random signal, x{n), can be shaped using a nonlinear 

transformation. If  the nonlinear transformation does not significantly alter the spectrum 

of.t(«), then the output, c(«), is a colored random signal with a specific distribution. This 

approach is used in this thesis to generate a uniformly distributed random signal with a 

specific PSD.

In this thesis, it is also shown that the two most significant bits o f  a B bit colored 

binary random signal have more influence on the signal’s PSD than the 5 -2  least 

significant bits. Therefore, a 5  bit colored random signal can be adequately generated by
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generating the two most significant bits as colored bits and the 5 -2  least significant bits 

as white bits. The two most significant bits are generated using a finite state machine 

(FSM) and the 5 -2  least significant bits are generated using Linear Feedback Shift 

Registers (LFSRs) [14; 15; 16]. The real time implementation that generates a uniformly 

distributed colored random signal using a FSM and LFSRs requires less hardware when 

compared to the hardware requirements for generating all the 5  bits as colored bits. 

Therefore, the real time implementation can be operated at the clock speed o f a DEM 

DAC.
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CHAPTER]

BACKGROUND INFORMATION 

The algorithm developed in this thesis constructs a uniformly distributed random 

signal with a specific power spectral density (PSD). The PSD o f the random signal is 

shaped by filtering a white random signal using a linear phase filter and then filtering the 

resulting signal by a nonlinear filter that shapes the PDF. The uniformly distributed 

colored random signal is generated using a finite state machine (FSM) and Linear 

Feedback Shift Registers (LFSRs) [14; 15; 16]. The FSM is used to generate the two 

most significant bits (MSBs) o f  the uniformly distributed colored random signal and the 

remaining bits are generated using LFSRs. Because LFSRs are very simple hardware 

structures, they are well suited for real time implementations.

2.1 A DEM Flash DAC Architecture 

Figure 2-1 shows the architecture o f a 5  bit DEM flash DAC. The DAC’s input signal, 

x(n), is a 5  bit digital signal where xq < x(n) < xq+  2^ -  I. The natural binary converter 

transforms the digital input signal, .r(«), into the B bit natural binary signal, %(n), where 

X ( n )  = .r(«) -  Xq which implies that 0 < %(») < 2^ -  1. The modified thermometer coder 

converts the natural binary coded signal, %(n), into a 2^ bit modified thermometer
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encoded signal, t{n). The interconnection network, controlled by the signal c(n), connects 

the 2^ bits o f the modified thermometer encoded signal, /(/i), to the 2^ unit DACs. The 

control signal, c(/i), can be a deterministic signal or a stochastic signal. The 

interconnection network’s output, g{n), activates %(»), or .t(n) -  xo, unit DACs and

Unit 
DAC 2

Unit 
DAC 2

Unit 
DAC 1

13

x{n) l(n)

c(n)

y{nT)

Figure 2-1. A 5  bit dynamic element matching flash DAC architecture.

deactivates the remaining 2^-%(»), or 2^-x(n) + .to, unit DACs irrespective o f  the control 

signal, c(n). If each activated unit DAC generates an analog signal, a, and each 

deactivated unit DAC generates an analog signal d, then the DAC’s quantization step 

sizes or code widths, q, are the difference between a and d, that i s q  = a-d. The DAC’s 

output, y(/i7), which is the sum o f all the unit DAC outputs, can be written as

y(«7) = ax{n) + d[2^-x{n)]
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= {a-d)xin) + d2^

= q[x{n) -  .To] + d2^ (2-1 )

The mismatched components between each o f  the unit DACs prevent the analog 

output o f the activated unit DACs as well as the deactivated unit DACs from being 

identical. Therefore, the DAC’s quantization step sizes are not constant which results in 

degradation o f the DAC’s performance. To improve the DAC’s performance, the DEM 

DAC’s interconnection network dynamically alters the mapping between the input signal, 

.r(«), and the mismatched unit DACs so that the time averages o f the activated unit DAC 

outputs are nearly equal. If the interconnection network’s control signal, c(n), is 

deterministic, the mapping between the DAC’s input signal, .ï(h), and the 2^ unit DACs is 

deterministic, and the DAC is said to as a deterministic DEM DAC. Similarly, if the 

interconnection network’s control signal, c(«), is stochastic, the mapping between the 

DAC’s input signal, .t(n), and the 2^ unit DACs is stochastic, and the DAC is said to as a 

stochastic DEM DAC.

2.2 Linear Feedback Shift Register 

In this thesis, a uniformly distributed random signal with a specific PSD is 

implemented using a finite state machine (FSM) and Linear Feedback Shift Registers 

(LFSRs) [14; 15; 16]. LFSRs can generate a uniformly distributed white random signal of 

any length using D flip-flops and XOR gates.

An LFSR o f  length n consists o f  n registers (or n stages) which are numbered 0, 1 , . . . ,  

M-1 and each register is capable o f storing one bit. A clock controls the data movement 

between the registers. During each clock pulse, the content o f  stage / is moved to stage i-
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1 for each /, 1 < / < n-1. Before moving the content o f  stage / to stage /-I, the new content 

o f stage n-1 is first calculated by modulo 2 addition o f the contents o f  a subset o f the set 

o f stages {0, I, ... , n-1}. The elements o f this subset are often called taps. The most 

commonly used register is a D flip-flop and modulo 2 addition is performed using an 

XOR gate. The length o f the binary sequence generated using the LFSR depends upon 

the number o f taps and the initial state o f the registers (the state o f the registers during the 

first clock cycle).

In an LFSR, a polynomial is used to represent a binary code [14; 15; 16; 17; 18; 19]. 

To illustrate, consider a polynomial,/(.r), o f  degree n where

f ix )  = 1 + a ,.t '+  .... + a„.\x"'^ + fl/tx", (2-2)

Qk € {0,1} and \< k < n. This polynomial determines the taps o f the LFSR [14; 15; 16; 

17; 18; 19]. Figure 2-2 shows an LFSR o f length n. In Figure 2-2, the polynomial 

associated with the LFSR is fix )  = 1 + u,x' + .... + a„.\x"'^ + Onx" and the number o f stages 

in the LFSR is equal to the degree o f the polynomial, fix ). In Figure 2-2, sj, j  > n, is the 

feedback bit and is the new content o f  stage «-1 during each clock pulse. The feedback 

bit, Sj, is calculated by modulo 2 addition o f taps. If  the initial content o f  stage i is Si 6 (0, 

1} for each i, 0 < / < n-1, then [^„.i,...., s\, 5o] is called the initial state o f  the LFSR. The 

output, s, o f stage 0 is the random sequence, {%, s\, s i,.... }, generated by the LFSR and 

it is uniquely determined by the recursion

Sj = {a\Sj.\®  a2Sj-2® ......® a„sj.„) fo ry > n  (2-3)

where ® is modulo 2 operator.

The polynomial, fix ) , is called an irreducible polynomial if  fix )  cannot be factored or 

written as a product o f  two polynomials [15; 16]. Every irreducible polynomial, with
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coefficients 0 or 1 and o f degree n > 1, divides the polynomial 1- /  where r  = 2" -1 , with 

a zero remainder. I f  J{x) is an irreducible polynomial o f  degree n, then the LFSR 

generates a sequence with a period o f  length 2 " - l  [15; 16] and the sequence is said to be

fj-n

stagestage
n-2

stage
output

Figure 2-2 An LFSR o f length n.

a maximal sequence. The output o f  an LFSR has a period o f length /, where 1 < / < 2" -1 

and the period length, /, depends on the polynomial associated with the LFSR. In a 

maximal sequence o f  length 2 " - l ,  there are 2"'' - I  zeros and 2""' ones [15; 16]. Figure 2- 

3 shows the almost uniform distribution o f  a maximal sequence o f  length 2" -1 .

For example, consider a polynomial

j[x)  =  l-hrhr^ . (2-4)
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The polynomial in Equation (2-4) is an irreducible polynomial because J[x) cannot be 

written as a product o f two polynomials. Also, the polynom ial,/.t) = l+x+ divides the 

polynomial 1- .v’ with a zero remainder; that is,

( 1 - / ) / (  1 +.t+ x^) = ( 1 -.v) ( 1 x^) (2-5)

1 samples

Figure 2-3. Distribution o f a maximal sequence.

Because the polynomial,/(.t) = l+jc+.r\ is an irreducible polynomial, the period o f the 

generated sequence will be 2^-1, which is 7, and the sequence is said to be a maximal 

sequence. Figure 2-4 shows the three-stage LFSR that generates a binary sequence with 

a period o f length 2^-1, which is 7. The output, s, o f  stage 0 is determined by the 

recursion sj =  ( sj.\ © jy.j ) for y > 3. If  the initial state o f  the LFSR is [1 1 1], then 

Figure 2-5 shows the binary sequence generated using the three-stage LFSR. This figure 

shows that the generated sequence has a period o f 2^-1, which is 7, and the output o f 

stage 2 and stage I is same as the output o f  stage 0 except for a delay. Therefore, the 

output o f  stage 2 and stage 1 is a phase-shifted replica o f  the output o f stage 0. Because
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the generated sequence is a maximal sequence, there are 2^‘* -1 zeros and 2 ^ ' ones in the 

sequence. Figure 2-6 shows the distribution o f  the sequence generated by stage 0.

Sj-2

Stage stagestage
output

Figure 2-4 An LFSR of length 3.
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stage 2 stage 1 stage 0

Figure 2-5. Sequence generated using the three-stage LFSR.

1 samples

Figure 2-6. Distribution o f  the sequence generated by stage 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

2.3 Correlation Function and Covariance function 

The randomness o f  a sequence can be measured using the correlation function and the 

covariance function o f the sequence.

If a:(«i) and .x(«2) are two random variables at time instant ri\ and ttj, then the 

correlation function, Rx, is defined as

Rxinu ni) = £[.x(m).r(«2)] (2-6)

where £[,x(ni).v(n2)] is the expected value o f  the product o f .x(«i) and -xfni)- If the 

random signal is assumed to be a wide-sense stationary signal, then the correlation 

function, Rx, becomes independent o f the time origin and depends only on the time 

difference between ni and n,. Therefore, for a wide sense stationary signal. Equation 

(2-6) can be written as

Rx{x ) = £[.x(ni).x(ni + r)] (2-7)

where £ ,( r  ) is the coirelation function o f  a wide-sense stationary signal and x =  ni-n\. If

x{n \)  and .v(«2) are the mean or the expected value o f  the random variables .x(wi) and 

.x(«2) respectively, then the covariance function, Q , is defined as

Cx{n\, n2) = E {  [x(n,)- -t(« i)] W " :)-  x (« 2)] }• (2-8)

If the random signal is assumed to be a wide-sense stationary signal, then the correlation 

function, Q , becomes independent o f  the time origin and depends only on the time 

difference between « 2  and n\. Therefore, for a wide sense stationary signal. Equation 

(2-8) can be written as

Q (T ) = £{ [x{ni)-x{ni)] [jx(«i+r)-x(«i+T)] } (2-9)

where r . ( r  ) is the covariance function o f  a wide-sense stationary signal, r  =  M2-M1. 

Equations (2-8) and (2-9) show that the covariance function, Cx(x ), is same as the
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correlation function, Rx(x ), if the expected value or mean o f the random variables is zero. 

If  the mean is nonzero, C .i(t) = £[%(», )x(M, + t ) ]  + £[x(«i)A:(ni+T)] - £  [x(/ii)x(/ji+ t)] 

- £[.r(«i).x(«i+T)] and the covariance function is a shifted version o f the correlation 

function.

The power spectral density, S^e  “̂), o f  the random variable, .x(m), is defined as the 

Fourier Transform of the correlation function, Rx{x ); that is,

S x (e n  = F {Rx(x)}

=  S  (2-10)
X=-cc

If -t(«) is assumed to be an ergodic signal where the time averages are equivalent to 

ensemble averages, then the autocorrelation, £ , ( t  ), o f  the random variable x{n) can be 

written as

£((T) = lim — L
S '

2  .X(/Il).t(/Jl+T)
A -> 00 2Af+l (2-11)

and therefore the PSD, St(c''“0, can be written as 

S,(e^“) = F {£ ,(r)}

y  lim ----- !------- ^  .r(ni).x(ni+r)e'^"'’
TZl A/->00 2N+\ (2-12)

Interchanging the summations. Equation (2-12) can be written as

2N+1 X  ■<n\+x)e^‘"̂  (2-13)
/ r l = — iV  t s - o j

Substituting m = n\+x  in (2-13),

( 2 - u )
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'  (M 5 )

If .x{n) is real then,

|% ( e n i  = |% ( g n | .  (2-16)

Substituting Equation (2-16) in Equation (2-15),

5 , ( e O  =  l i m   1  I W e ^ l -
IV-> 00 2AI+1 (2-17)

If IV is a finite value, then Equation (2-17) can be written as

S x (.e n =  \ X ( e ^ \ - 
2N+\

= \ X ( e n \ - (2-18)
T

where T=  2IV+1.

Using the correlation function and the covariance function, the randomness o f the 

binary sequence generated using the three-stage LFSR in Section 2.2, can be measured. 

Figure 2-7 shows the correlation function, R ^ r  ). This figure shows that the maximum 

correlation occurs at t = 7. Figure 2-8 shows the covariance function, Q ( r  ). This figure 

is same as the correlation function but with a zero mean. If  the mean is nonzero, then the 

sequence will have a DC shift in the power spectrum. If this DC shift is not desired, then 

the covariance function is used instead o f the correlation function. Figure 2-9 shows the 

PSD and the distribution o f  ones and zeros o f  the generated sequence. Because the

sequence is a maximal sequence, it has 4 ones and 3 zeros, as expected. The PSD shows

that the sequence generated using the LFSR is almost white because the PSD is present 

over the entire fi-equency spectrum. The PSD is not constant over the entire spectrum
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because the length o f the generated sequence is very small. If  the length o f  the sequence 

generated using the LFSR is very long (in the order o f thousands), then the PSD becomes 

more constant over the entire frequency spectrum.
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Correlation function of the sequence generated by  stage 0  of a 3-stage LFSR
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Figure 2-7. Correlation function o f the sequence generated by stage 0 o f  a 
three-stage LFSR.

Covariance function of the sequence generated by stage 0 of a 3-stage LFSR
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o
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Figure 2-8. Covariance function o f  the sequence generated by stage 0 o f 
a three-stage LFSR.
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PSD of the sequence generated by stage 0 of a 3-stage LFSR
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Histogram plot of the sequence generated by stage 0 of a 3-stage LFSR
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Figure 2-9. PSD and histogram plot o f the sequence generated by stage 0 
o f a three-stage LFSR.
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CHAPTER 3

METHODOLOGY OF CONSTRUCTION OF A UNIFORMLY DISTRIBUTED 

COLORED RANDOM SIGNAL 

In a flash DEM DAC, many interconnection networks dynamically rearrange the 

mapping between the digital input signal and the mismatched unit DACs so that the time 

averages o f the activated unit DAC outputs are equal and the time averages o f the 

deactivated unit DAC outputs are equal. For these interconnection networks, the required 

control signal is a uniformly distributed random signal with a specific power spectral 

density (PSD) [3; 4]. Figure 3-1 shows the probability distribution function (PDF) o f  a 

control signal that is uniformly distributed between a  and /3. In this thesis, an algorithm

P samplesa

Figure 3-1. PDF o f  a uniformlv distributed control signal.

19
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is developed for constructing a uniformly distributed random signal with a specific PSD. 

Figure 3-2 shows the block diagram of this algorithm that generates a uniformly 

distributed colored random signal, c(n), by filtering a white random signal, w(n), using

iv(n) Linear Phase Nonlinear
c(n)

FIR Filter
W

transformation

Figure 3-2. Block diagram o f a system that generates a uniformly 
distributed colored random signal.

a linear phase FIR filter that shapes the PSD and then filtering the colored random signal, 

.t(n), using a nonlinear filter that shapes the PDF.

3.1 Transformation o f a random signal 

The PSD o f a random signal can be shaped by filtering a white random signal using a 

linear phase FIR filter. The fi'equency response, o f  the filter in Figure 3-3 can be

used to describe any frequency selection filter with a single passband having a lower 

cutoff frequency o f  œ^and an upper cutoff frequency o f  atu. Because the phase o f the filter 

is zero, / / ( O  has complex conjugate symmetric about w = 0. Therefore the filter’s 

impulse response, ft(n), is real. Using the inverse Fourier Transform, the filter’s impulse 

response, h(n), can be written in terms o f co i and as
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h(n) = {M2n) j  </û)
- ; r

( M m )  [ sin((ÜMri) - sin(û)/n) ] when » # 0  

(I/tt) [ûJi,-û)/] when m = 0 (3-1)

S '

■Oh -a>i COi %
(û rad/sam

Figure 3-3. Frequency response o f  the filter.

If the phase is non-zero, then the fi'equency response, can be written as

= (3-2)

where H(o) ) is the zero phase fi-equency response o f  the system and

9 (û ))=  (N-l)  CO 
2

(3-3)

where N  is the length o f the impulse response, h(n), o f  the filter.

For example, if the required random signal is a bandlimited signal with a lower cutoff 

frequency o f co/ and an upper cutoff frequency o f  cô , then a white random signal would
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be filtered using a linear phase FIR filter that has the frequency spectrum, / / ( O ,  as 

shown in Figure 3-3. In Equation (3-1), if #  = 0 and (Uu^ k, then the linear phase FIR 

filter is a lowpass filter and if  to; 0 and then the linear phase FIR filter is a

highpass filter.

If  w(«) is a white random input signal, then the filtered signal, x(n), is

■x(«) = w{n) * h{n)

= ^  w{k)h(n-k) (3-4)

where * represents the convolution o f the white random signal, w(«), with h{n). If /?w(n) 

is the autocorrelation o f w(n) then the PSD, 5,v(e-'“), o f the white random signal, w(«), is

SUc^“) = F{RH(n)}

= Z  /( .(" )  g ' "  (3-5)

where F {/?»(«)} is the Fourier Transform o f Rw{n). If the white random signal, w(n), is an

ergodic signal having a finite time period, T, then the PSD, Sw(e"'“ ), is

5 U e '“) = I W j e ^  I '  (3-6)
T

Because w{n) is a white signal, the PSD, 5».(e^“), o f w(«) will be constant over the entire 

frequency spectrum.

If .t(n) is also an ergodic signal having a finite time period, T, then the PSD, 5^(e ■'“’), of 

the colored random signal, x{n), is

S A e n =  I X ( e n  l~ (3-7)
T

W ( e n H ( e n
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The Central Limit Theorem, when expressed as a property o f convolutions, states that 

the convolution operation o f  a large number o f positive functions is approximately a

normal function [9]. Because x(/i) = ^  w(k) h{n-k), then the colored random signal,
4=-«

-x(/j), is an approximately normally distributed signal whether w(n) is a uniformly 

distributed or normally distributed white signal. To transform the colored random 

signal’s, .x(/i)’s, normal distribution to a uniform distribution, x{n) is filtered using its 

distribution function; that is,

c(m) = Fx(„){x(n)) (3-8)

where c{n) is the resulting filtered random signal and Fx(„){x{n)) is the distribution 

function o f the normally distributed colored random signal, .x(«). Because .x(«) is 

normally distributed,

(1/2) + e;/(.Xo) .Xo > 0

i \ / 2 ) ~  e r f  ixo) X o < 0  (3-9)

where e r f  \s the error function which is defined as

F j(n)(Xo) ■<

xo

erf{xo) = i\/sqrt(2n))  J exp{-ri2)dt  (3-10)
0

To show that the filtered random signal, c(n), is uniformly distributed, let Cg = Fx(„}(Xg) 

and let Fc(„)(Cg) be the distribution function o f  the new random signal; that is,

Fc(n)(Co) = P(c(n)< Cg) (3-11)

Because Fx(„)(Xg) is monotonie, c(/i) < c„ if  and only if x(n) < Xg. Therefore,

Fc(„)(Co) =  P(c(n)< Cg)

= P(x(n)<Xg)
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= Fx(n)(Xo)

= Cg (3-12)

Equation (3-12) shows that the distribution function, Fc(„)(Co), is equal to Co, which 

implies that c(n) is uniformly distributed. The uniformly distributed random signal, c{n), 

exists in the same interval as that o f the normally distributed colored random signal, jc(n).

The frequency spectrum, C(e^“), o f  the uniformly distributed random signal, c(n), is

C ( 0  = F{c(n)}

= F  {Fr(„)( x {n ))} { from Equation (3-8)}

=  Z  FxU x{n))e^ '^  (3-13)
rt = -«

Equation (3-13) shows that the frequency spectrum, C(c''“), o f  the uniformly distributed 

random signal is the Fourier Transform of the distribution function, Fi(n)(x(n)), o f  the 

normally distributed colored random signal, .x(«). It is very difficult to get a closed form 

expression for Equation (3-13) because the distribution function, Fr(„)(x(«)), o f  the 

normally distributed colored random signal, x{ri), is represented in terms o f the error 

function, erf, and it exists in a finite interval.

Instead o f finding a closed form expression for the Fourier Transform o f  an error 

function, it is simulated in Matlab. From the simulation it is found that the frequency 

spectrum, C(e-'“), exists in the same interval as that o f the frequency spectrum, of 

the normally distributed colored random signal, x{n). I f  Rdn)  is the autocorrelation of 

c(«), then the PSD, 5c(e^“), o f  c(n) is

5 c ( e n  = F{Rc(«)}
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= É  U n ) e ^ ' ^  (3-14)
n=-<o

where F{/îc(/i)} is the Fourier Transform o (  Rdn). Because c(n) is assumed to be an 

ergodic signal having a finite time period, T, the PSD, Sc(e-'“), is

S d e n  = \ q e n \ - (3-15)
T

Because C(e ■'“) exists in the same interval as that o f X(e ■'“), the PSD, Sde  ''“), o f c(n) 

will also exist in the same interval as that o f  the PSD, 5x(e-'“), o f the normally distributed 

colored random signal, .r(/i)- Therefore, c(n) is a uniformly distributed colored random 

signal.

As described, a uniformly distributed colored random signal can be constructed by 

filtering a uniformly distributed or normally distributed white random signal with a linear 

phase FIR filter and then filtering the resulting output by a nonlinear filter, the error 

function. The result is a uniformly distributed colored random signal, c(n), and this 

random signal can be used in a 5  bit DEM DAC as interconnection network’s control 

signal. Appendix A contains MATLAB code for the algorithm.

3.2 Examples to illustrate the effectiveness o f the algorithm 

To illustrate the effectiveness o f the algorithm, several uniformly distributed colored 

random signals are generated with different spectral densities. Figure 3-4 shows the 

impulse response, h{n), and the frequency spectrum, H{e ■'“), (in dB) o f a lowpass filter 

with a cutoff fi-equency o f nI3 and o f  order 99. Figure 3-5 shows the autocorrelation, 

Rj^n), and the PSD, 5’w(e ^"), o f  a normally distributed white random signal, w(/i), with
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zero mean and o f length 925. Because the random input signal is white, the PSD, 5w(e-'“), 

is present over the entire frequency spectrum. The normally distributed colored random 

signal, x{n), is obtained by filtering the normally distributed white random signal, w(/i), 

using the linear phase FIR filter, h(n). Figure 3-6 shows the autocorrelation, Rxin), and 

the PSD, o f the normally distributed colored random signal, x(«), o f  length 1024

and with a cutoff frequency o f n/2. The uniformly distributed colored random signal, 

c(n), is obtained by a nonlinear transformation o f  the normally distributed colored 

random signal, x(n). Figure 3-7 shows the autocorrelation, Rc(n), and the PSD, 5c(e-'“), of 

the uniformly distributed colored random signal, c(n), o f  length 1024 and with a cutoff 

frequency o f n/3. Figure 3-7 also shows that the PSD, 5c(c '“), o f  c(n) exists in the same 

interval as that o f  the PSD, Sx(e ^“), o f  the normally distributed colored random signal, 

.x(n). Figure 3-8 shows the histogram plot o f the normally distributed white random 

signal, w(n), normally distributed colored random signal, x(n), and uniformly distributed 

colored random signal, c(n). Figure 3-9 shows the frequency spectrum o f the normally 

distributed white random signal, w(n), normally distributed colored random signal, x(n), 

and uniformly distributed colored random signal, c(n), with a cutoff frequency o f  ti/3. 

Figures 3-10 -  3-15 show the simulation results o f the algorithm for constructing a 

uniformly distributed bandlimited random signal with a lower cutoff frequency o f  7t/3 and 

an upper cutoff frequency o f  3n/4. Figures 3 -1 6 -3 -2 1  show the simulation results o f the 

algorithm for constructing a uniformly distributed highpass filtered random signal with a 

cutoff frequency o f 3tt/4.
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3.3 Examples to illustrate the effects o f  the design parameters 

The examples in this section illustrate the effects that the length o f  a white random 

input signal, w(/j), and the length o f a linear phase FIR filter’s impulse response have on 

the PSD, o f  the uniformly distributed colored random signal, c{n).

A random signal is white if  it has a constant PSD over the entire frequency spectrum. 

For finite length signals, the magnitude o f the spectrum depends upon the length o f the 

random signal. If the length o f the white random signal is small (in the order o f 

hundreds), then the PSD is not constant over the entire frequency spectrum. If the length 

o f the white random signal is very long (in the order o f thousands), then the PSD is 

constant over the entire frequency spectrum.

The PSD o f the white random signal, vv(n), influences the power spectrum of the 

constructed uniformly distributed colored random signal, c(n). To study the influence o f 

the length o f the normally distributed white random signal, w{n), the algorithm is 

simulated with w(m) having lengths 223 and 2015. Figure 3-22 shows the PSD o f w{n) for 

lengths 223 and 2015. Figure 3-23 shows the corresponding PSD o f  the uniformly 

distributed colored random signal, c(n). Figure 3-22 shows that for w(n) o f length 223, 

S,v(e ■'") varies between -20dB and 15dB and for w(n) o f  length 2015, 5n.(e^“) varies 

between -9dB and 6dB. Figure 3-23 shows that for c(n) o f  length 256, Sc(e “̂) in the 

passband varies between OdB and 47dB and for c(n) o f  length 2048, Sc(e ''“) in the 

passband varies between 26dB and 38dB.

The length o f the normally distributed white random signal, w(n), influences the PSD 

o f the normally distributed colored random signal, x(«), which in turn influences the PSD 

o f the uniformly distributed colored random signal, c(n). Therefore, the PSD o f the output
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random signal, c(w), will be constant if  the length o f  the normally distributed white 

random signal, w(n), is considerably long.

The length o f the linear phase FIR filter’s impulse response influences the transition at 

the discontinuity o f  the PSD, 5c(e-'“), o f  the colored random signal. The transition from 

passband to stopband of the filter will be sharp if the length o f the linear phase FIR 

filter’s impulse response or the filter order is high [11]. If  the transition region o f the 

filter is sharp, then the transition at the discontinuity o f Sc(e-'“) will also be sharp.

Figure 3-24 shows the impulse response, h(n), and the frequency response, of

a lowpass filter having h{n) o f length 11 and with a cutoff frequency o f  n/2. Figure 3-25 

shows the impulse response, h{n), and the frequency response, o f a lowpass filter

having h{n) o f  length 63 and with a cutoff frequency o f  n/2. Figures (3-24) and (3-25) 

show that the transition region o f the filter having h{n) o f  length 63 is sharper than the 

transition region o f  the filter having h{n) o f length 11. Figure 3-26 shows the 

corresponding PSD, 5c(e o f the uniformly distributed colored random signal, c{n). 

The transition at the discontinuity o f 5c(e-'“) generated by filtering a white random signal 

using a linear phase FIR filter having an impulse response o f length 63 is much sharper 

than the transition at the discontinuity o f  Sde  ■'“) generated by filtering a white random 

signal using a linear phase FIR filter having an impulse response o f  length 11. So, the 

transition at the discontinuity o f Sde  ■'“) will be sharper if  the length o f  the linear phase 

FIR filter’s impulse response is large.
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Impulse response of the filter with a cutoff freqency of pi/3 rad/sam and of order 99
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Figure 3-4. Impulse response and frequency response o f the filter 
with a cutoff frequency o f  ïï/3 rad/sam and o f  order 99.
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1000
Autocorrelation of the normally distributed white signal of length 925
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Figure 3-5. Autocorrelation and PSD o f the normally distributed 
white signal o f length 925.
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Autocorrelation of the normally distributed colored signal of length 1024
T
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Figure 3-6. Autocorrelation and PSD o f the normally distributed colored signal 
o f length 1024 and with a cutoff frequency o f  n/3 rad/sam.
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X igl^utocorrelation of the uniformly distributed colored signal of length 1024
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Figure 3-7. Autocorrelation and PSD o f the uniformly distributed colored
signal of length 1024 and with a cutoff frequency o f  n/3 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Figure 3-8. Histogram plot o f  the normally distributed white signal, normally 
distributed colored signal and uniformly distributed colored signal 
with a cutoff frequency o f ti/3 rad/sam.
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Frequency Spectrum of the normally distributed white signal of length 925
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Figure 3-9. Frequency spectrum o f the normally distributed white signal, 
normally distributed colored signal and uniformly distributed 
colored signal with a cutoff frequency o f  tt/3 rad/sam
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Impulse response of the filter with a LCF of pi/3 rad/sam & UCF 3pi/4 rad/sam and of order 99
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Frequency response of the filter with a LCF of pi/3 rad/sam & UCF 3pi/4 rad/sam and of order 99
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Figure 3-10. Impulse response and frequency response o f  the filter with a 
lower cutoff frequency o f n/3 rad/sam & an upper cutoff 
frequency o f  3n/4 rad/sam and o f  order 99.
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Figure 3-11. Autocorrelation and PSD o f the normally distributed 
white signal o f  length 925.
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Autocorrelation of the normally distributed colored signal of length 1024
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Figure 3-12. Autocorrelation and PSD o f the normally distributed colored 
signal o f length 1024 and with a lower cutoff frequency of 
7t/3 rad/sam & an upper cutoff frequency o f  3%/4 rad/sam.
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X 1 (Autocorrelation of the uniformly distributed colored signal of length 1024 
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Figure 3-13. Autocorrelation and PSD o f the uniformly distributed colored 
signal o f length 1024 and with a lower cutoff frequency of 
rt/3 rad/sam & an upper cutoff frequency o f  3n/4 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Histogram plot of the 4-bit normally Aiflributed colored signal of length 1024
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Histogram plot of the 4-bit uniformly RiRributed colored signal of length 1024

Figure 3-14. Histogram plot o f  the normally distributed white signal, normally 
distributed colored signal and uniformly distributed colored signal 
with a cutoff frequency o f  7t/3 rad/sam & 37t/4 rad/sam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Frequency Spectrum of the normally distributed white signal of length 925
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Figure 3-15. Frequency Spectrum o f the normally distributed white signal, normally 
distributed colored signal and uniformly distributed colored signal 
with a cutoff frequency o f Tt/3 rad/sam and 3:t/4 rad/sam.
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Impulse response of the filter with a cutoff frequency of 3pl/4 rad/sam and of order 99 
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Figure 3-16. Impulse response and frequency response o f the filter
with a cutoff frequency o f 3it/4 rad/sam and o f  order 99.
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Figure 3-17. Autocorrelation and PSD o f  the normally distributed 
white signal o f length 925.
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Autocorrelation of the normally distributed colored signal of length 1024 
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Figure 3-18. Autocorrelation and PSD of the normally distributed colored
signal o f  length 1024 and with a cutoff frequency o f  3Tt/4 rad/sam.
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Figure 3-19. Autocorrelation and PSD of the uniformly distributed colored
signal o f length 1024 and with a cutoff frequency o f 3tt/4 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Figure 3-20. Histogram plot o f  the normally distributed white signal,
normally distributed colored signal and uniformly distributed 
colored signal with a cutoff frequency of3n/4  rad/sam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Frequency Spectrum of the normally distributed white signal of length 925
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Figure 3-21. Frequency spectrum o f  the normally distributed white signal, 
normally distributed colored signal and uniformly distributed 
colored signal with a cutoff frequency o f  3n/4 rad/sam.
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Figure 3-22. PSD o f the normally distributed white signal o f  lengths 
223 and 2015.
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PSD of the uniformly distributed colored signal of length 256 with filter order 33
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Figure 3-23. PSD o f  the uniformly distributed colored signal o f lengths 
223 and 2015 and with a cutoff frequency o f it/2 rad/sam.
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Impulse response of the filter with a cutoff frequency of pi/2 rad/sam and of order 11
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Figure 3-24. Impulse response and frequency response o f the filter 
with a cutoff frequency o f  id l  rad/sam and o f order 11.
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Impulse response of the filter with a cutoff frequency of pi/2 rad/sam and of order 63
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Figure 3-25. Impulse response and frequency response o f  the filter 
with a cutoff frequency at n/2 rad/sam and o f  order 63.
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Figure 3-26. PSD o f the uniformly distributed colored signal o f length 1024 
with a cutoff frequency o f n/1 rad/sam and o f  order 11 & 63.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER4

HARDWARE GENERATION 

A B bit uniformly distributed white random signal can be efficiently generated using 

Linear Feedback Shift Registers (LFSRs) [14; 15; 16]; however the literature does not 

have an efficient method for generating a B  bit uniformly distributed colored random 

signal. One method of generating a B  bit uniformly distributed colored random signal is 

using a finite state machine (FSM). If  a FSM has to generate all the B  bits o f  a uniformly 

distributed colored random signal then the hardware requirements become very large. In 

this chapter, it is shown that the two most significant bits (MSBs) o f  a B bit uniformly 

distributed colored random signal influence the signal’s PSD more than the B-2  least 

significant bits (LSBs). Therefore, when generating a B  bit uniformly distributed colored 

random signal, it is often sufficient to generate the two MSBs as colored bits using a 

FSM and the remaining B -2  LSBs as white bits using LFSRs. This method reduces the 

hardware requirements for a real time implementation on chip when compared to the 

hardware requirements for generating all the B  bits as colored bits using a FSM.

4.1 PSD o f the individual bits o f  a uniformly distributed colored random signal 

To show that the two MSBs o f  a 5  bit uniformly distributed colored random signal 

influence the signal’s PSD more than the B-2  LSBs, the power in the individual

52
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bit sequence o f  a #  bit uniformly distributed colored random signal is calculated. If 0 < 

m'(m) < 1, then w(«) can be written as

" (4-1)
f=l

where w,{n) is the rth bit o f  w(«), ivi(«) is the most significant bit (MSB) o f w(«) and

is the least significant bit (LSB) o f w{n). The normally distributed colored signal,

x{n), is

x[n) = w(n) * h{n)

= ^  w{k)h{n-k) (4-2)

where h{n) is the impulse response o f a linear phase FER filter and w{n) is the normally 

distributed white random signal. Substituting Equation (4-1) in Equation (4-2),

.<«) = 2  w^n) I '  * h{n)

= ^  T  h{n-k) ^  wXA:) T ' \  (4-3)
k--<x3 r=l J

Interchanging the summations. Equation (4-3) can be written as

x ( n ) = '^  2'  ̂ J  h{n-k)w^k)
ral

= £  2-AvX«) (4-4)
r=I

where Xr(n) = ^  h(n-k) w,(k) and in general, x^n )  g {0,1}. If  x^n), 1< r  < 5  , is

converted to a binary number, 0[xr(n)], by rounding, then Q[.Vr(n)] can be written as
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(4-5)
y=i

where -2 A2 < e /n ) < 2 À2, ej{n), is the rounding error o f  the yth bit and each e /n ) is 

assumed to be a uniformly distributed, zero mean wide-sense stationary white noise. 

Figure 4-1 shows the uniform distribution o f the rounding error, e /n ), o f  the yth bit.

i
Distribution

i

2!

<--------------------------- --------------------------- ►

-2V2 2V2 ejin)

Figure 4-1 Uniform distribution o f  e/n).

Equation (4-5) shows that the rounding error o f each bit propagates to the succeeding 

bits.

For example, when r =1

Q[.ti(«)] = .ti(n) + e\(n)

where -2'V2 < e,(M) < 2 ‘'/2, and when r =2

Q[x2(n)] = X2{n) + e\{ri) + e2(n) 

where -2'^/2 < e2{n) <2'^/2, and when r =B

Q[xB(n)] = Xfl(n) + X

(4-6)

(4-7)

(4-8)
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where -2'^^I2< ej(n) < 2'®/2. These equations show that the rounding error o f  each bit 

propagates to the succeeding bits. The rounding error o f  the LSB is e\(n) + eiin) + ...+  

efl(n) and it is the contribution o f rounding error from all the previous bits. If  the rounding 

error o f  theyth bit, ej{n), l< j  < B, is assumed to be a zero mean wide-sense stationary 

white noise then the sum, e(n) = e\(n) + ei(n) + ...+  e ^n ), is also a zero mean wide-sense 

stationary white noise.

The PSD, o f 0[JCr(«)] can be written as

= F {W ,)} + X

= & X e n +  X  ^«y(^n (4-9)
y=i

where R x M  is the autocorrelation o f Xr(n), Sxrie/^^ is the PSD o f Xr(n), Rej(n) is the 

autocorrelation o f ej{n) and Sej{e^'^ is the PSD o f e /n ). Because e /n ) is assumed to be a 

zero mean wide-sense stationary white noise, the PSD, Sgjie -'“), o f e /n ) is constant over 

the entire frequency spectrum.

The power, PQ[xr\, in Q[xr{n)] is

.T IT

fg M = (l/2 T t) j Wldw+X ( l /2 7 t) j  5 e X O d (û
- n  y=l - I t

= & r + X  (4-10)
y=i

Because e /« )  is assumed to be a uniformly distributed, zero mean wide-sense stationary

white noise, the power, Pej, in e /n ) is the variance o f  ej{n) [10]; that is.
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Pej = (1/271) f 5,Xe^“)dtû
-ff

= E[e/{n)] (4-11)

The variance o f ej{n) is

E[e/{n)] = J ^^'(M) 2 ' de{n)

= 2‘-À12 (4-12)

From Equations (4-11) and (4-12), the power, Pgj, in ^(») is

P ej= T ^^n2  (4-13)

In a A-bit uniformly distributed random signal that has a period o f  length /, where / = 

2'", each bit sequence is uniformly distributed with 2'"'* zeros and 2'"’' ones [15]. 

Therefore, the power, Pgixr], in the rth bit, 1< r  < A, is

Pq m = E [Q [xA .n)f]

= (1 /21  X  0 + (1 /2 1  Z  (21"
" - 1  n - l

= 2'"'')/2'"

= r l 2  (4-14)

Substituting Equations (4-13) and (4-14) in Equation (4-10),

2-^/2 = P rr + X  2'‘'/12 (4-15)
;=i

Equation (4-15) shows that the power in the rounding error o f each bit is added to the

succeeding bits. Therefore, the power, Pe\, in the rounding error o f  the MSB is the
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smallest and it is 2'^/12. The power in the rounding error o f  the LSB is the largest and it is 

the sum o f the power in the rounding error o f all the bits. The signal power, Pq[x\\, in the 

MSB is the largest and it is 2'^/2. The signal power, Pq[xb\, in the LSB is the smallest and 

it is Therefore, the power in the rounding error o f  the MSB is much smaller than 

the power in Q[x\{jt)] and is similar to Sx\{e^'^. The power in the rounding

error o f  the LSB is the contribution o f the power in the rounding error o f all the previous 

bits and it is greater than the power in Q[xfl(/i)]. Therefore, SQ[xB\{e^^) is constant over the 

entire frequency spectrum and 0[.Vfl(n)] looks like a white bit. For example, when r  =1

Pq[i \]~ P x\ '^  Pe\ (4-16)

= 2'-/2 =0.125 

= 2 - / 1 2  = 0.0208

where Pq[xi] is the power in the MSB, 0[xi(n)]. Because the power, Pe\, in the rounding 

error o f the MSB is smaller than the signal power, the MSB looks like a colored bit. 

When r =2

Pq[x2] F*ei + Pel (4-17)

Pq[xX] = 2 + /2 =  0.03125 

Pe\+ Pe2= 2‘̂ /12 + 2+/12 = 0.026 

where Pq[x1] is the power in the second MSB, 0[.V2(w)]. The power in the rounding error 

o f the MSB propagates to the second MSB and the power in the rounding error o f  the 

second MSB is Pe\+ Pe2- Because Pe\+ Pe2 < Px2, the second LSB also looks like a 

colored bit. When r  =3

Pq[x2] = Px3 + Pel+ Pe2+ Pei (4* 18)

Pg[xi] = 2-^/2 = 0.0078
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& I + &2 + &3 =2-^/ l2  + 2 + / 1 2 + 2 'V l 2  

= 0.0273

where PQ[xi\ is the power in the third MSB, 0[.t3(n)]. The power in the rounding error of 

the third MSB is Pe\ + Pei + Pei and it is the contribution o f  the power in the rounding 

error from all the previous bits. Because Pe\ + Pei + Pei »  Pxi, the third MSB looks like 

a white bit and Sg[,tj](e ■'“) is constant over the entire frequency spectrum. For r  > 3, the 

power in the rth bit is smaller than the power in the rounding error o f  that bit. Therefore, 

the PSD of the rth bit is constant over the entire frequency spectrum and the rth bit 

appears like a white bit. Figure 4-2 shows the signal power in the rth bit and the power in 

the rounding error o f that bit (in this figure, the continuous line corresponds to the signal 

power and the dashed line corresponds to the power in the rounding error). This figure 

shows that signal power in the t\\'o MSBs is larger than the power in the rounding error of 

the corresponding bit. For r  > 3, the signal power is smaller than the power in the 

rounding error o f  the rth bit. Therefore, for r  > 3, the rth bit looks like a white bit.

Equations (4-4) -  (4-18) are also applicable to the uniformly distributed colored 

random signal, c(/i), because Section 3.1 showed that the nonlinear transformation shapes 

the distribution o f the random signal and does not significantly alter the spectrum. 

Therefore, if the uniformly distributed colored signal, c{n), is converted to a A bit binary 

signal Cr{n), then only the two MSBs are colored and influence the signal’s PSD more 

than the remaining B-2 LSBs. Because the power in the rounding error o f  the B-2 LSBs is 

larger than the power in the signal, the B-2 LSBs look like white bits. Therefore, a A bit 

uniformly distributed colored random signal can be adequately generated by generating 

the two MSBs as colored bits and the remaining B -2  LSBs as white bits.
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To illustrate, a uniformly distributed highpass filtered random signal that is 

bandlimited between 371/4 and 7t and has a length o f 1024 is generated. The colored 

random signal is converted to a four-bit binary signal. Figure 4-3 shows that the PSD of 

the MSB is colored because the power in the MSB is larger than the power in the 

rounding error o f  the MSB. Similarly, Figure 4-4 shows that the PSD o f the second bit is 

also colored because the power in the second MSB exceeds the power in the rounding 

error o f  the second MSB. Figure 4-5 and Figure 4-6 show that the PSD o f  the third bit

0.14
continous line - signal power, dashed line - error power

0.121

0.1

^ 0.08 

L . 0 6

0.04

0.02

1 1.5 2.5
r

3.5

Figure 4-2 The signal power in the rth bit and the power in the 
rounding error o f the rth bit.

and the fourth bit are uniform over the entire frequency spectrum because the power in 

these bits is smaller than the power in the rounding error o f the corresponding bits. 

Therefore, a four- bit uniformly distributed colored random signal can be adequately
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generated by generating the two MSBs as colored bits and the remaining 2 LSBs as white 

bits.

4.2 Hardware design using a FSM 

Section 4.1 showed that a uniformly distributed colored random signal can be 

adequately generated by generating the two MSBs as colored bits and the remaining B-1 

LSBs as white bits. The B-2 LSBs can be generated on chip using Linear Feed Back Shift 

Registers (LFSRs) and the two MSBs can be generated using a finite state machine 

(FSM).

In this thesis, FSMs that generate the two MSBs are designed in VHDL [20; 21]. The 

uniformly distributed colored random signal constructed by the algorithm is assumed to 

be periodic with a period /, where I is the length o f the constructed random signal. 

Therefore, the FSM is designed with / states and the output at the mih state is the mth 

two-bit word o f the random signal, where 1 < m < I. For example, consider a four-bit 

uniformly distributed highpass filtered random signal that is bandlimited between 3rt/4 

and n and has a length o f 256. The two MSBs o f  the uniformly distributed highpass 

filtered random signal are colored and are generated using a FSM. Because the length o f 

the random signal is 256, the FSM will have 256 states and the output at the mth state 

will be the mth two-bit word o f  the random signal, where 1 < w < 256. Figure 4-7 shows 

a FSM with 256 states, designed to generate the two MSBs o f  the four-bit uniformly 

distributed colored random signal. This figure shows that at the rising edge o f  the clock, 

the FSM changes firom the mth state to (m+l)th state and the output at the mth state is the 

mth two-bit word o f  the random signal. A C program was written to generate the state
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machine VHDL code. Appendix A contains the C program listing that generates the state 

machine VHDL code.

4.3 Linear Feedback Shift Register implementation 

Section 4.2 shows the generation o f the two MSBs o f  a uniformly distributed colored 

random signal using a FSM. The remaining B-2 LSBs can be generated on chip using 

Linear Feed Back Shift Registers (LFSRs). The B-2 LSBs can also be generated using a 

FSM, but the hardware requirements for an LFSR implementation are much less than the 

hardware requirements for a FSM implementation. Therefore the LFSR implementation 

is preferred for generating the B-2 white bits.

The approach for the LFSR implementation is to use a polynomial associated with the 

LFSR for generating each white bit o f the uniformly distributed colored random signal. 

For B-2 white bits o f the random signal, B-2 polynomials are required. Each polynomial 

should generate a sequence that has a length that is identical to the length o f  the random 

signal constructed by the algorithm. For example, in Section 4.2, the two MSBs o f  the 

uniformly distributed highpass filtered random signal that is bandlimited between 3ti/4 

and n  and has a length o f  256 are generated using a FSM. The remaining 2 LSBs are 

generated using LFSRs. Two polynomials, one for the third bit and the other for the 

fourth bit, are required for the LFSR implementation. Each polynomial should generate a 

sequence that has a length o f  256. Because an «-stage LFSR can generate a sequence o f 

length 2" at most, a sequence that has a length o f  256 requires an eight-stage shift register 

for the LFSR implementation. The irreducible polynomials associated with an eight-stage 

LFSR are [14];
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1. l+.r‘+.t^+.rW

2. l+x^+.tW+.r®

3. l + . r W + x W

4. l+.t+x^+x^+.r*

5. l+.t+.t^+.r*+x*

6. l-i-.r+.r®+.t^+.t*

7. 1 +.r+.r*+.t^+x*+x^+x*

8. l+.r+.r‘+x^+x’‘+.r^+.r*

Because the above polynomials are irreducible polynomials, they can generate sequences 

with a period o f  length 2*-l, which is 255. Any two o f the above polynomials can be used 

to generate the two LSBs of the random signal. The PSD o f the sequence generated using 

the LFSR will be white [14; 15; 16] and uniformly distributed with 2*‘‘ -1  zeros and 2*"' 

ones. Figure 4-8 shows the PSD and the histogram plot o f  the LSB sequence o f the 

uniformly distributed highpass filtered random signal that is generated using an eight- 

stage LFSR. This figure shows that the PSD o f the binary sequence generated using an 

LFSR is white and uniformly distributed with 2® ‘ -1 zeros and 2*“' ones. Figure 4-9 

shows that the four-bit random signal generated using the FSM and LFSRs is a uniformly 

distributed highpass filtered random signal that is bandlimited between 37t/4 and n. 

Therefore, a uniformly distributed colored random signal can be adequately generated by 

generating the two MSBs as colored bits and the B-2 LSBs as white bits.

In general, the period o f  the random signal can be increased i f  each bit o f  the 

random signal is generated with a different period. The period o f the random signal will 

be very long if  the MSB is generated with a long period and the succeedmg bits are
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generated with decreasing periods. For example, in a four-bit uniformly distributed 

colored random signal, the period o f  the random signal increases if  the MSB is generated 

with a period o f 2"-l, the second MSB is generated with a period o f  2 " ''- l , the third MSB 

is generated with a period o f 2"'^-l and the LSB is generated with a period o f  2"‘̂ -l. This 

method can be followed to increase the period o f a uniformly distributed colored random 

signal generated using a FSM and LFSRs. But the disadvantage is that the hardware 

requirements for a FSM implementation grow exponentially with the period o f the 

random sequence. Therefore, if the two MSBs are generated with a longer period than the 

succeeding bits, then the hardware requirements for a FSM implementation increase such 

that the real time implementation on chip becomes too large for a typical DEM DAC. To 

keep the hardware requirements as small as possible, the two MSBs are generated with a 

small period. The B-2 LSB bits that are generated using LFSRs can have longer periods 

because increasing their periods increase the hardware requirements by few registers and 

gates. The trade-off for this method o f generating the random signal is that the period of 

the random signal is just greater than the period o f  the MSB. But, this method is still 

advantageous because the side correlations are decreased without much increase in the 

hardware requirements for a real time implementation on chip.

For example, the two MSBs o f  a four-bit uniformly distributed highpass filtered 

random signal are generated using a FSM with a period o f 256. The third MSB is 

generated using an LFSR with a period o f 511 and the LSB is also generated using an 

LFSR but with a period o f 1023. Figure 4-10 and Figure 4-11 show the autocovariance 

and the PSD o f the 2 MSB sequences generated using a FSM. Because the period o f the 

sequence is 256, the autocovariance o f the sequence has four side correlations and a main
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correlation. Figure 4-12 shows the autocovariance and the PSD o f the third MSB 

sequence generated using an LFSR. Because the period o f the third MSB sequence is 

511, the autocovariance o f the sequence has 2 side correlations and a main correlation. 

Figure 4-13 shows the autocovariance and the PSD of the LSB sequence generated using 

an LFSR. Because the period o f  the LSB sequence is 1023, the autocovariance o f the 

sequence has no side correlation. Figure 4-14 shows the PSD and the histogram plot o f 

the uniformly distributed colored random signal o f  length 1023 generated using a FSM 

and different length LFSRs. This figure shows that the random signal is a uniformly 

distributed high pass filtered signal that is bandlimited between 37t/4 and n. Figure 4-15 

shows the autocovariance o f  the uniformly distributed colored random signal o f length 

1023 generated using a FSM and different length LFSRs. Figure 4-16 shows the 

autocovariance o f  the uniformly distributed colored random signal o f  length 1023 

generated with a period o f 256. Figures 4-13 and 4-14 show that the side correlations of 

the uniformly distributed colored random signal o f  length 1023 generated using a FSM 

and different length LFSRs are lesser than the side correlations o f the uniformly 

distributed colored random signal o f length 1023 generated with a period o f  256.

Therefore, generating a uniformly distributed colored random signal by generating the 

two MSBs with a small period and the succeeding B-2 LSBs with increasing periods 

reduce the side correlations o f  the random signal without much increase in the hardware 

requirements for a real time implementation on chip for a DEM DAC application.
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Autocovariance of the MSB sequence of the 4-bit random signal

I# # # 6 #

Normalized PSD of the MSB sequence of the 4-bit random signal

Figure 4-3. Autocovariance and PSD o f  the MSB sequence o f the four-bit random 
signal that is bandlimited between SttM rad/sam and n rad/sam.
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Autocovariance of the 2nd bit sequence of the 4-bit random signal
300

200

100
c

O

-100 r

-200
500 1000 1500

n
2000 2500

80:
Normalized PSD of the 2nd bit sequence of the 4-bit random signal

?
C

Î
(0

60 i-

120 L

I
Or

iM i i é é Ii f l i i l l i||| [ifi 7 If

-20^
0.5 1.5

w/pi
2.5

Figure 4-4. Autocovariance and PSD of the 2nd bit sequence o f the four-bit random 
signal that is bandlimited between 3n/4 rad/sam and n  rad/sam.
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Autocovariance of the 3rd bit sequence of the 4-bit random signal
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Figure 4-5. Autocovariance and PSD o f the 3rd bit sequence o f  the four-bit random 
signal that is bandlimited between 3ir/4 rad/sam and n  rad/sam.
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Figure 4-6. Autocovariance and PSD o f the LSB sequence o f the four-bit random 
signal that is bandlimited between 3%/4 rad/sam and k rad/sam.
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Figure 4-7. FSM that generates the two MSBs o f a uniformly 
distributed colored random signal o f  length 256.
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PSD of the LSB sequence of length 256 generated using an 8-stage LFSR
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Figure 4-8. PSD and histogram plot o f the LSB sequence o f  length 256 
generated using an eight-stage LFSR.
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PSD of the 4-bit random signal of length 256 generated using a FSM and the LFSRs
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Figure 4-9. PSD and histogram plot o f the four-bit random signal o f  length 256 and 
with a cutoff frequency 3n/4 generated using a FSM and LFSRs.
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Autocovariance of the MSB sequence generated using a FSM with a period of 256
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Figure 4-10. Autocovariance and PSD o f the MSB sequence o f  a four- bit 
random signal generated using a FSM with a period o f  256.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

Autocovariance of the 2nd bit sequence generated using a FSM with a period of 256
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Figure 4-11. Autocovariance and PSD o f the 2nd MSB sequence o f a four- 
bit random signal generated using a FSM with a period o f 256.
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Autocovariance of the 3rd bit sequence generated using an LFSR with a period of 511 
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Figure 4-12. Autocovariance and PSD o f the 3rd MSB sequence o f  a four-bit 
random signal generated using an LFSR with a period o f  511.
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Autocovariance of the LSB sequence generated using an LFSR with a period of 1023
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Figure 4-13. Autocovariance and PSD o f  the LSB sequence o f  a four-bit
random signal generated using an LFSR with a period o f  1023.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

PSD of the 4-bit random signal generated using a FSM and different length LFSRs
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Figure 4-14. PSD and histogram plot o f the uniformly distributed highpass 
filtered random signal generated using a FSM and different 
length LFSRs that is bandlimited between 3ir/4 rad/sam and n rad/sam.
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Autoco)(afg(hce of the 4-bit random signal generated using a FSM and different length LFSRs
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Figure 4-15. Autocovariance o f  the uniformly distributed highpass filtered
random signal generated using a FSM and different length LFSRs
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Figure 4-16. Autocovariance o f  the uniformly distributed highpass filtered 
random signal generated with a period o f  256.
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CHAPTER 5 

CONCLUSION

In this thesis, an algorithm that can generate a unifomtly distributed colored random 

signal in real time is developed. The uniformly distributed colored random signal can be 

generated with different power spectral densities like a lowpass filtered random signal, a 

bandpass filtered random signal or a highpass filtered random signal. Several examples 

illustrate the effects o f the parameters such as the length o f the white random input signal 

and the length o f the linear phase FIR filter’s impulse response have on the generated 

colored random signal. The examples illustrate that if the length o f the white input 

random signal is long (in the order o f thousands) then the PSD of the output random 

signal is more constant, and if the length o f  the linear phase FIR filter’s impulse response 

is long, then the transition at the discontinuity o f  the power spectrum is very sharp.

In this thesis, it is shown that in a 5  bit uniformly distributed colored random signal, 

the two most significant bits (MSBs) have a more significant influence on the signal’s 

PSD than the remaining B-1  least significant bits (LSBs). Therefore, a B  bit uniformly 

distributed colored random signal can be adequately generated by generating the two 

MSBs as colored bits and the remaining B -2  LSBs as white bits. The two MSBs are 

generated as colored bits using a finite state machine (FSM) and the B -2  LSBs are 

generated as white bits using Linear Feedback Shift Registers (LFSRs). The disadvantage

78
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of a FSM design is that the hardware requirements for the FSM implementation grow 

exponentially with the period o f the random signal. To keep the hardware requirements 

low, the two MSBs are generated with a small period.

The B-2 LSBs can also be generated using a FSM, but the hardware requirements for 

an LFSR implementation are much less than the hardware requirements for a FSM 

implementation. Therefore, the LFSR implementation is preferred for generating the B-2 

white bits. The tradeoff for simple hardware requirements is the influence o f the LFSR 

generated sequence on the uniform distribution o f the resulting random signal. The LFSR 

generated sequence influences the distribution o f the random signal because using an 

LFSR it is very difficult to generate exactly the same bit sequence constructed by the 

algorithm. For a uniformly distributed binary sequence o f  length / with (/-l)/2 + 1 ones 

and (/-l)/2 zeros, /! / ((/-l)/2)! ((/+ l)/2)! unique sequences, each o f  length / can be 

generated. But polynomials do not exist to generate all the II / ((/-l)/2)! ((/+l)/2)! 

sequences. Therefore, it is very difficult to generate exactly the same bit sequence using 

the LFSR. But, this does not significantly alter the distribution o f  the colored random 

signal because the two MSBs make the most significant contribution for the uniform 

distribution o f  a random signal. Because the two MSBs are generated using a FSM, they 

are exactly same as the sequence constructed by the algorithm. Therefore, the uniform 

distribution o f  the random signal is not significantly altered. For example, in a three-bit 

uniformly distributed random signal, changing the LSB sequence does not significantly 

alter the uniform distribution o f  the random signal as long as the individual bit sequence 

is uniformly distributed. Because the LFSR generated sequence is uniformly distributed
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with 112 zeros and //2+1 ones, it does not significantly alter the distribution o f the random 

signal.

In this thesis, it is also shown that generating a uniformly distributed colored random 

signal by generating the two MSBs with a small period and the succeeding B-2 LSBs 

with increasing periods reduce the side correlations o f  the random signal without much 

increase in the hardware requirements for a real time implementation on chip. This is 

because the two MSBs are generated using a FSM and the B-2 LSBs are generated using 

LFSRs.

The advantage o f this real time implementation for generating a uniformly distributed 

colored random signal is that it does not require large computation. Because o f  this, the 

real time implementation can be operated at the clock speed o f a DEM DAC. Therefore, 

the generated uniformly distributed colored random signal can be used in a DEM DAC as 

interconnection network’s control signal. Many alternative approaches were tried during 

the research work but this algorithm was reported because it is far simpler than the others.
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *** Filter Specifications ***
% ** * ★ * *  
% *** w_low - Low Pass Cut off Frequency * * *

% *** of the Desired PSD * * *

% *** w_up - High Pass Cut off Frequency * * *

% * * *  of the Desired PSD * * *

% *** fil_order - Order of the filter ***
% ★** w_low = 0 - LPF, w_up = pi - HPF * * *

■s * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

w_low = 3*pi/4; 
w_up = pi; 
fil order = 33;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% * * *  Calling the function filter_design that *** 
% *** that generates the time domain components *** 
% * * *  of the filter ***
% *** *** 
% *** h - Time domain components of the ***
% * * *  filter * * *

% ★** H - Frequency response of the * * *

% *** filter ***
% *** psdhmat - Power Spectral Density of the * * *  

% *** filter using matlab command PSD***
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

h = filter_design(w_low,w_up,fil_order) ;
H = abs(fft (h) ) ;

psdhmat = psd(h);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

irameters Specifications for the random signal *
*

:n - length of the random signal *
3_bits - Number of bits for binary conversion * 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *
% *
% ★
% *
% *
% *

bit
len = 2*bit_len-(fil_order-l); 
no_bits = 4;

val = round((len-1)/2);
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f = (0:val)/val*pi;

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% * Generation of Normally Distributed White Signal
%

%

%

%

%

%

%

%

%

nw - normally distributed white signal of
length len with zero mean and 
unit variance 

NW - Frequency Spectrum of nw
corrnw - Autocorrelation of nw
psdnw - Power Spectral Density of nw using

corrnw (psdnw -- FFT corrnw) 
psdnwmat - Power Spectral Density of nw using 

using the matlab command PSD 
meannw - mean of nw
varnw - variance of nw

*
★
★
*

★
★
*

*

*
★
*

★
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

nw = randn(len,1);
NW = abs (fft (nw) ) ;

psdnwf = (NW.*2);
psdnwf = psdnwf/max(psdnwf);

corrnw = xcorr(nw); 
psdnw = abs(fft(corrnw));

% Normalizing the Power Spectral density 
psdnw = psdnw/max(psdnw);

psdnwmat = psd(nw);

meannw = mean(nw); 
varnw = cov(nw);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *Generation of Normally Distributed colored Signal 
by filtering nw using the designed filter

no - normally distributed colored signal of 
length len 

NC - Frequency Spectrum of no 
% * c o r m c  - Autocorrelation of nc
% * psdnc - Power Spectral Density of nc using

c o r m c  (psdnc -- FFT --> corrnc)

%

%

%

%

%

*

*

*

*

*

*
*

*
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% * psdncmat - Power Spectral Density of nw using *
% * using the matlab command PSD *
% * meanno - mean of nc *
% * varnc - variance of nc *

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

nc = conv(h,nw); 
lennc = length(nc);
%val2 = (lennc-1)/2;
%f2 = (0 :val2)/val2*pi;

NC = abs(fft(nc)) ;

psdncf = NC.*2 ;
psdncf = psdncf/max(psdncf);

corrnc = xcorr(nc); 
psdnc = abs(fft(corrnc));

% Normalizing the Power Spectral density 
psdnc = psdnc/max(psdnc);

psdncmat = psd(nc);

meannc = mean(nc); 
varnc = cov(nc);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% * Calling the function that converts the normally 
% * distributed colored signal to uniformly 
% * distributed signal
% *
% * ucb - Uniformly distributed colored signal in 
% * binary form using no_bits
% * ucwm- Uniformly distributed colored signal 
% * with nonzero mean
% * meanucwm - mean of nc 
% * varucwm - variance of nc 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

[ucb] = normal2uniform(nc,no_bits);

ucwm = bin2dec(ucb);

meanucwm = mean(ucwm); 
varucwm = cov(ucwm) ;
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^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *★* Generation of Uniformly Distributed colored * * *

% *** signal with zero mean ***
% *** *** 
% *** uc - uniformly distributed colored signal ***
% *** with zero mean ***
% *★* uc - Frequency Spectrum of uc ***
% * * *  corruc - Autocorrelation of uc ***
% *** psduc - Power Spectral Density of uc using***
% *** corruc (psduc -- FFT corruc) ***
% * * *  psducmat - Power Spectral Density of uc using***
% *** using the matlab command PSD ***
% *** meanuc - mean of uc ***
% *** varue - variance of uc ***
■6 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

UC = ucwm - meanucwm; 
uc = abs(fft(uc));

psducf = UC.*2;
psducf = psducf/max(psducf);

corruc = xcorr(uc); 
psduc = abs(fft(corruc));

% Normalizing the Power Spectral density 
psduc = psduc/max(psduc);

psducmat = psd(uc);

meanuc = mean(uc); 
varuc = cov(uc);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% * * *  Plotting the figures * * *  

% * * * * * * * * * * * * * * * * * * * * * * * * * * * *

vail = (fil_order-l)/2; 
f1 = (0 :vail)/vail*pi;

lenpsdhmat = length(psdhmat);
fh = (0:lenpsdhmat-l)/lenpsdhmat*pi;
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figure(3 01); 
subplot (211); 
stem(h);
title('Impulse response of the filter with a cutoff 
frequency of pi/2 rad/sam and of order 63'); 
xlabel('n '); 
ylabel('h(n)');

subplot(212);
plot(f1, 20*loglG(H(1 :val1 + 1))) ;
title('Frequency response of the filter with a cutoff
frequency of pi/2 rad/sam and of order 63');
xlabel('w/pi');
ylabel ( 'H(e^j ̂’w) in dB ' ) ;

%figure(311);
%subplot (313) ;
%plot(fh, 20*logl0(psdhmat));
%title('PSD of the filter with a cutoff fregency at 3pi/4 
and filter order 99');
%xlabel('w/pi');
%ylabel('PSD - Sh in dB');

figure (302) ; 

subplot(311);
plot(f, 20*logl0(NW(1:val + 1))) ;
title('Frequency Spectrum of the normally distributed white
signal of length 925');
xlabel('w/pi');
ylabel('W(e*j*w) in d B ');

subplot(312);
plot(f, 20*logl0(NC(1 :val + 1)));
title('Frequency Spectrum of the normally distributed
colored signal of length 1024') ;
xlabel('w/pi');
ylabel (’X(e'‘j*w) in dB');

subplot(313);
plot(f, 20*logl0(UC(1:val+1)));
title('Frequency Spectrum of the uniformly distributed
colored signal of length 1024 ' ) ;
xlabel('w/pi');
ylabel('C(e*j*w) in d B ');
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lenpsdnwmat = length(psdnwmat);
fnw = (0 :lenpsdnwmat-1)/lenpsdnwmat*pi;

lenpsdncmat = length(psdncmat);
fnc = (0 :lenpsdncmat-1)/lenpsdncmat*pi;

lenpsducmat = length(psducmat);
Eue = (0 :lenpsducmat-1)/lenpsducmat*pi;

figure(304);

%subplot(211);
%stem(corrnw);
%title('Autocorrelation of the normally distributed white 
signal of length 925');
%xlabel('n' ) ;
%ylabel('Rw(n)');

subplot(212);
plot(fnw, 20*logl0(psdnwmat)); 
axis([0 pi -20 20] ) ;
title('PSD of the normally distributed white signal of
length 2015' ) ;
xlabel('w/pi');
ylabel ('Sw (e*j *w) in dB ' ) ;

figure(305);

%subplot(211);
%stem(corrnc);
%title('Autocorrelation of the normally distributed colored 
signal of length 1024');
%xlabel('n ');
%ylabel('Rx(n)');

subplot(212) ;
plot(fnc, 20*logl0(psdncmat));
title('PSD of the normally distributed colored signal of
length 1024');
axis([ 0 pi -130 40]);
xlabel('w/pi');
ylabel ('Sx (e'̂ j *w) in dB');

figure(306);

%subplot(211) ;
%stem(corruc);
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%title{'Autocorrelation of the uniformly distributed 
colored signal of length 1024');
%xlabel('n' ) ;
%ylabel('Re (n) ’);

subplot(212) ;
plot(fuc, 20*logl0(psducmat)); 
axis([ 0 pi 0 100]);
title('PSD of the uniformly distributed colored signal of
length 1024 with filter order 63');
xlabel('w/pi') ;
ylabel ('Sc (e*j''w) in dB');

figure(307);

subplot(311); 
hist(nw);
title('Histogram plot of the 4-bit normally distributed 
white signal of length 925'); 
xlabel('Bin'); 
ylabel('Count');

subplot(312) ; 
hist(nc);
title('Histogram plot of the 4-bit normally distributed 
colored signal of length 1024'); 
xlabel('Bin'); 
ylabel('Count');

subplot(313); 
hist(uc,2*no_bits);
title('Histogram plot of the 4-bit uniformly distributed 
colored signal of length 1024'); 
xlabel('B i n '); 
ylabel('Count');
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% **★ Function for generating the impulse * * *  

% *** response of the filter ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function [h] = filter_design(w_low,w_up,fil_order)

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% *** Parameter Description ***
% *** ***
% *** h - Time domain components of the ***
% * * *  filter ***
% *★* w_low - Low Pass Cut off Frequency ***
% *** of the Desired PSD ***
% *** w_up - High Pass Cut off Frequency * * *

% *** of the Desired PSD ***
% * * *  fil_order - Order of the filter ***
% *** w_low = 0 - LPF, wh = pi - HPF ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

n = - (fil_order-l)/2 :1 : (fil_order-l)/2;
j=i;

for k = - (fil_order-l)/2:-1

h(j) = (sin(k*w_up)-sin(k*w_low)) / (pi*k);
j=j+i;

end

h(j) = (w_up-w_low)/pi;
j=j+i;

for k = 1 :(fil_order-l)/2

h(j) = (sin(k*w_up)-sin(k*w_low)) / (pi*k);
j=j+i;

end
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% ★★★ Function for converting normally *** 
% * * *  distibuted real sequence to uniformly*** 
% *** distributed binary sequence ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function [uni] = normal2uniform(nor, no bits)

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% *** Parameter description ***
% *** ***
% +** nor - Normally distributed real sequence ***
% *** uni - Uniformly distributed binary sequence***
% *** no_bits - Number of bits for binary ***
% *** representation of the real number***
3r * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

norlen = length(nor); 
quantlen = 2*no_bits; 
count = floor(norlen/quantlen);

i = 0 :quantlen-1;
quant = dec2bin(i,no_bits);

[norasc,pos] = sort(nor);

j = 1;
num = 1;

for m = 1:norlen

if num > count
j = min(j+1,quantlen); 
num = 1;

end
uni(pos(m),:) = quant(j ,:); 
num = num+1;

end

yl = bin2dec(uni);
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%figure(1); 
%subplot(211); 
%hist(nor);

%subplot (212) ; 
%hist(yl,quantlen)
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% **★ Function for histogram plot of each bit *** 
% *** of the binary random sequence obtained *** 
% *** from the decimal sequence ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function [hist_seq] = hist_binary(bin_seq)

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *** Parameter Description ***
% * ★ *  * * *
% *** bin_seq - Binary sequence ***
% * * *  hist_seq- Binary sequence for which***
% *** histogram can be plotted ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

[bin_seqlen, bin_seqbits] = size(bin_seq);

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% *** MSB - Left most Bit * * *

% * * *  bl (i=l in iteration) * * *

% *** LSB - Right most Bit - bm * * *

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

for i = 1 :bin_seqbits

hist_seq(:,i) = bin2dec(bin_seq(:,i)); 
figure(100);
subplot(bin_seqbits,1,i) ; 
hist(hist_seq(:,i));
title('Histogram plot of each bit of the binary signal 
- MSB first, LSB last'); 
xlabel('Bins'); 
ylabel('Count');

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% **★ Function for finding the Autocovariance ***
% * * *  and power spectral density of each bit of ***
% * * *  the binary random sequence obtained from ***
% * * *  the decimal sequence ***
^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function [covb, psdb] = bits_psd(bin_seq);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Parameter Description * * *

*  *  *

* * *  bin_seq - Binary sequence ***
covb - Matrix in which each column has the * * *

autocovariance of the corresponding ***
bit of the binary sequence * * *

psdb - Matrix in which each column has the
power spectral density of the 
corresponding bit of the binary ***
sequence ***

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% * * *

% * * *

% * *  *

% * * *

% * * *

% * * *

% * * *

% * * *

% * * *

% * * *

% * * *

% * * *

*  *  *  

*  *  *

[bin_seqlen, bin_seqbits] = size(bin_seq);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *** MSB - Left most Bit ***
% * * *  bl (i=l in iteration) ***
% *** LSB - Right most Bit - bm * * *

^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

for i = 1 :bin_seqbits

b = bin_seq(:,i);
covb(:,i) = xcov(b);
psdb(:,i) = abs(fft(covb(:,i) ) ) ;

lenpsdb = length(psdb(:,i)); 
lenpsdbt = round((lenpsdb-1)/2); 
fr = (0 :lenpsdbt)/lenpsdbt * pi;

figure(10+i); 
subplot (211) ;
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plot(covb ( :,i)) ;
title('Autocovariance of each bit of the binary 
sequence - MSB first, LSB last'); 
xlabel('Lag'); 
ylabel('C b ');

subplot(212);
plot(fr,psdb(1 :lenpsdbt + 1,i));
title('Normalized PSD of each bit of the binary 
sequence - MSB first, LSB last'); 
xlabel('Normallized frequency'); 
ylabel('PSD - Sb in d b ');

end
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% * * *  Function for generating the Random * * *  

% *** sequence using Linear Feed back Shift*** 
% *** Register (LFSR) ***

function [y] = Ifsrgeneration(degree,taps)

% *** Parameter description ***
% *** degree - Degree of the shift register ***
% *** polynomial generating the sequence ***
% *** taps - Tap positions of the LFSR ***
% *** y - Generated random sequence ***
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% *** Initial state of the LFSR ***
X = ones(1,degree);

true = 1; 
i = 1;
tapsize = length(taps); 

while (true -= 0 & i < (2*degree)) 

i = i+1;
for j = 2:degree

x(i,j)=x(i-l,j-l);

end

temp = 0 ;

% *** Feedback using xor gate *** 
for j = 1:tapsize

temp = temp + x(i-1,taps(j));

end

% *** X - generated binary random sequence * * *  

x(i,l) = mcd(tsmp,2);
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repeat = x(l,:) -= x(i,:); 
true = sum(repeat);

end

%*** Extracting one of the columns from the binary 
sequence *** 

y = X ( : , 1) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

Program name : statemachine.cpp

/* C-Program to generate the state diagram VHDL description 
of a random signal. The binary random signal should be in 
.txt format and the generated VHDL file will be in .vhd 
format.*/

#include<stdio.h>
#include<math.h>

#define vectorlength 127 
#define nobits 7

main()
{

FILE *fl,*f2;

char *str[40]; 
char txtfile[20]; 
char vhdlfile[20]; 
char rpy[nobits]; 
char tmp;

int stateno[vectorlength+1]; 
int i ,j ;

/* Initializing the array stateno */ 
for (i=0;i<vectorlength;i++)

{
stateno[i] = i+1;

}

stateno [i] = 1;

/* Getting the txt file name where the truth table is 
stored */

printf("The truth table is stored as text file\n\n"); 
printf("Enter the name of this file with a .txt 

extension\n"); 
scanf("%s",txtfile);

/* Getting the vhdl file name where the output is 
stored */

printf("The output file should be stored as a .vhd 
file\n\n");
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printf("\nEnter the name of the file into which it 
writes\n");

scanf("%s ",vhdlfile);

str 1] "library IEEE;";
str 2] = "use IEEE.std_logic_1164.all;";
str 3] = "use IEEE.std_logic_arith.all ;";
str 4] = "use lEEE.std logic_unsigned.all;";

str 5] = "entity statemachine is";
str 6] = "port (";
str 7] = " d i e  : in std_logic; " ;
str 8] = "preset : in std_logic;";
str 9] = "yrp : out std_logic_vector(";
str 10] = "downto 0)";
str 11] = . II ./ / /
str 12] = "end statemachine;";

str 13] "architecture fsm of statemachine is"
str 14] = "type states is (";
str 15] = " s " ;
str 16] = "signal presentstate: states ;";
str 17] = "begin" ;
str 18] = "process(elk) " ;

str 19] = "if elk = ' 1 ' then" ;
str 20] = "if reset = ' 1 ' then";
str 21] = "presentstate < = " ;
str 22] = "yrp < = " ;
str 23] = "else" ;
str 24] = "end if;";
str 25] = It . ft .

str 26] = "case presentstate is";
str 27] = "when" ;
str 28] = " = > " ;
str 29] = "when others => null;";
str 30] = "end case;";

str 31] "end process ;" ;
str 32] = "end fsm;";

/* Opening the txt file in read mode */ 

// fl=fopen(”yl27.txt", "r"); 

fl=fopen(txtfile, "r");
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rewind(fl);

/* Opening the vhdlfile in write mode */
// f2=fopen("try.vhd", "w"); 
f2=fopen(vhdlfile, "w");

/* Writing the intial statements to the vhdlfile */

fprintf(f2, 
fprintf(f2, 
fprintf(f2, 
fprintf(f2,

'%s\n", str [1]); 
'%s\n", str[2]); 
'%s\n", str[3]); 
'%s\n\n", s tr[4]);

fprintf(f2, 
fprintf(f2,

fprintf(f2, 
fprintf(f2, 
fprintf(f2, 
fprintf ( £ 2 ,

'%s\n", s tr[5]);
'\t%s\n", s tr[6]);

'\t\t%s\n", s tr[7]);
'\t\t%s\n", s tr[8]);
'\t\t%s", s tr[9]);
'%d %s", nobits-1, str [10]);

/ *  this is for the downto statement for o/p yrp */

fprintf(f2, "%s\n", s tr[11]); 
fprintf(f2, "%s\n\n", s tr[12]);

fprintf(f2, "%s\n\n", s tr[13]); 
fprintf(f2, "\t%s ", s tr[14]);

for(i=0;i<vectorlength-l;i++)

fprintf(f2, "%s%d, ", s t r [15], stateno[i]);

fprintf(f2, 
fprintf(f2, 
fprintf(f2,

'%s%d", s tr[15], stateno[i]); 
'%s\n", str[11]);
'\t%s\n\n", s t r [16]);

fprintf(f2, 
fprintf(f2, 
fprintf(f2, 
fprintf(f2, 
fprintf(f2, 
fprintf(f2,

'%s\n\n", str [17]);
'%s\n", str[18]);
'%s\n", str[17]);
'\t%s\n", s t r [19]);
'\t\t%s\n", s t r [20]);
'\t\t\t%s %s%d%s\n", s t r [21], s tr[15],

stateno[0], s tr[25]);

fseek(fl, 5, 0); 
for(j=0;j<nobits;j++)
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{
fscanf(fl, "%c",&rpy [ j ] ); 
fseek(fl, 5, 1);

}
fprintf(f2,"\t\t\t%s \"%.7s\" %s\n", str [22], rpy, 

str [25] ) ;

fprintf(f2, "\t\t%s\n", s t r [23]),• 
fprintf(f2, "\t\t\t%s\n", s t r [26]); 
rewind(fl); 
fseek(f1, 5, 0);

for(i=0;i<vectorlength;i++)
{

fprintf(f2, "\t\t\t\t%s %s%d %s\n", s t r [27], 
st r [15], stateno[i], s t r [28]); 

for(j =0 ;j <nobits;j ++)
{

fscanf(fl, "%c",&rpy [ j ] ); 
fseek(fl, 5, 1);

}

fscanf(f1,"\n");
fprintf(f2, "\t\t\t\t\t%s \"%.7s\" %s\n", 

str [22] , rpy, str [25] ) ;
/* change here according to the number of 

bits used. */ 
fprintf(f2, "\t\t\t\t\t%s\n", s t r [19]); 
fprintf(f2, "\t\t\t\t\t\t%s %s%d%s\n", s t r [21], 

str[15], stateno[i+1], s t r [25]); 
fprintf(f2, "\t\t\t\t\t%s\n", s t r [24]);

}

fprintf(f2, "\t\t\t\t%s \n", str[29]); 
fprintf(f2, "\t\t\t%s\n", s t r [30]) ; 
fprintf(f2, "\t\t%s\n", s t r [24]); 
fprintf(f2, "\t%s\n", st r [24]); 
fprintf(f2, "%s\n", st r [31]); 
fprintf(f2, "%s\n", str [32]);

fclose(fl); 
fclose(f2) ;
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