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ABSTRACT

CONSTRUCTION OF A RANDOM SIGNAL WITH A SPECIFIC PSD
AND A UNIFORM PDF

by
Venkatraghavan Bringi
Dr. Peter Stubberud, Examination Committee Chair
Associate Professor of Electrical and Computer Engineering
University of Nevada, Las Vegas
The performance of a dynamic element matching (DEM) flash digital to analog
converter (DAC) can be improved by controlling the DEM DAC’s interconnection
network with a random signal that has a specific power spectral density (PSD) and a
uniform probability distribution function (PDF). Many algorithms exist for generating a
random signal with a white PSD and a uniform PDF, but there exists only one algorithm
for generating a random signal with a specific PSD and a particular PDF. For DEM DAC
applications, the random signal must be generated at the speed of the DEM DAC.
However, a real time implementation of this existing algorithm is too computation
intensive for a typical DEM DAC. In this thesis, an algorithm that constructs a uniformly
distributed random signal with a specific PSD is developed. This uniformly distributed
colored random signal is implemented using a finite state machine (FSM) and Linear

Feedback Shift Registers (LFSRs).

i
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CHAPTER |

INTRODUCTION

Flash digital to analog converters (DACs) depend on matched components for
converting a digital signal to an analog signal. In practice, perfectly matched components
are impossible to fabricate. Even matched components on integrated circuits exhibit
mismatch errors such as linear gradient mismatch errors, geometric mismatch errors and
dynamic mismatch errors. The errors due to mismatched components add a nonlinear
transformation, called integral nonlinearity (INL), to a flash DAC’s linear transformation
[1] and reduce the DAC’s performance.

A signal processing algorithm called dynamic element matching (DEM) has been used
to reduce the effects of component mismatches in DACs [2] thereby improving their
performance. DEM algorithms reduce the effects of mismatched components by
rearranging dynamically the interconnections of mismatched components so that the time
averages of the equivalent components at each of the component positions are almost
equal [2; 3]. In a flash DEM DAC, an interconnection network dynamically rearranges
the mapping between the digital input signal and the mismatched unit DACs so that the
time averages of the activated unit DAC outputs are almost equal and the time averages
of the deactivated unit DAC outputs are almost equal [2; 3; 4; 5]. If the interconnection
network’s control signal is deterministic, the mapping between the digital input signal

and the mismatched unit DACs is deterministic, and the DAC is said to be a deterministic

1
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DAC ([3]. Similarly, if the interconnection network’s control signal is stochastic, the
mapping between the digital input signal and the mismatched unit DACs is stochastic,
and the DAC is said to be a stochastic DAC [3]. Many stochastic DEM DACs require a
stochastic control signal with a uniform probability distribution function (PDF) and a
particular power spectral density (PSD) to control the DEM algorithm’s interconnection
network [3].

In general, a linear system can shape a random signal’s PSD to approximate a desired
PSD; however a linear system typically cannot generate a signal with a desired PDF.
Many other algorithms [6; 7] exist for generating a stochastic signal with a uniform PDF
and a white PSD, only one algorithm [8] exists for generating a stochastic signal with a
specific PDF and a particular PSD. The existing algorithm [8] generates a random signal
with a specific PSD and a specific probability distribution using a linear system. This
algorithm shapes a signal’s PDF by representing the desired PDF by a set of
approximation coefficients, determining an output/input relation that expresses the
variation of the PDF while it is passing through the linear system, and then determining a
relationship between the approximation coefficients and the output/input relation. An
input signal is then constructed from an independent, identically distributed (i.1.d)
uniform or Gausian process and a non-linear characteristic.

DEM DACs require a random signal that has the same sampling rate as the DAC. A
real time implementation of the above algorithm requires a large amount of computation.
Thus, a real time implementation of this algorithm is not practical for DEM DACs.
Therefore, a simple method is required to construct a uniformly distributed random signal

with a specific PSD for controlling a DEM DAC’s interconnection network.
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The PSD of a random signal [9; 10] can be shaped using a linear filter {11; 12; 13] and
the PDF of a random signal can be shaped using a nonlinear transformation. Figure [-1

shows the block diagram of such a system. In Figure 1-1, a white random signal, w(n),

c(n)

wln) Linear _L(n_)_.. Nonlinear

filter transformation

Figure 1-1. Block diagram of a system that generates a colored signal
with a specific distribution.

is filtered using a linear filter that shapes the signal’s PSD. The PDF of the filtered signal,
x(n), is shaped by a nonlinear transformation. The resulting random signal, c(n), will be
an appropriate uniformly distributed colored signal if the nonlinear transformation does
not significantly alter the spectrum of x(n). For example, a lowpass filtered random
signal, x(n), can be generated by passing a white random signal, w(n), through a lowpass
filter. The PDF of the colored random signal, x(n), can be shaped using a nonlinear
transformation. If the nonlinear transformation does not significantly alter the spectrum
of x(n), then the output, c(n), is a colored random signal with a specific distribution. This
approach is used in this thesis to generate a uniformly distributed random signal with a
specific PSD.

In this thesis, it is also shown that the two most significant bits of a B bit colored
binary random signal have more influence on the signal’s PSD than the B-2 least

significant bits. Therefore, a B bit colored random signal can be adequately generated by
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generating the two most significant bits as colored bits and the B-2 least significant bits
as white bits. The two most significant bits are generated using a finite state machine
(FSM) and the B-2 least significant bits are generated using Linear Feedback Shift
Registers (LFSRs) [14; 15; 16]. The real time implementation that generates a uniformly
distributed colored random signal using a FSM and LFSRs requires less hardware when
compared to the hardware requirements for generating all the B bits as colored bits.
Therefore, the real time implementation can be operated at the clock speed of a DEM

DAC.
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CHAPTER2

BACKGROUND INFORMATION

The algorithm developed in this thesis constructs a uniformly distributed random
signal with a specific power spectral density (PSD). The PSD of the random signal is
shaped by filtering a white random signal using a linear phase filter and then filtering the
resulting signal by a nonlinear filter that shapes the PDF. The uniformly distributed
colored random signal is generated using a finite state machine (FSM) and Linear
Feedback Shift Registers (LFSRs) [14; 15; 16]. The FSM is used to generate the two
most significant bits (MSBs) of the uniformly distributed colored random signal and the
remaining bits are generated using LFSRs. Because LFSRs are very simple hardware

structures, they are well suited for real time implementations.

2.1 A DEM Flash DAC Architecture
Figure 2-1 shows the architecture of a B bit DEM flash DAC. The DAC’s input signal,
x(n), is a B bit digital signal where xg < x(n) < xp + 2% _ 1. The natural binary converter
transforms the digital input signal, x(n), into the B bit natural binary signal, x(n), where
x(n) = x(n) — xo which implies that 0 < y(n) < 2% - 1. The modified thermometer coder

converts the natural binary coded signal, y(n), into a 2% bit modified thermometer

5
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encoded signal, 1(n). The interconnection network, controlled by the signal ¢(n), connects
the 2% bits of the modified thermometer encoded signal, #(n), to the 28 unit DACs. The
control signal, c(n), can be a deterministic signal or a stochastic signal. The

interconnection network’s output, g(n), activates y(n), or x(n) — xo, unit DACs and

828(") Unit yga(nT)
| DAC 2°

x(n) (n)

ynT)

ya(n

w [~ X(n) = x(n) —xp

) 4
Modified Thermometer Coder
\&f
Interconnection Network

& N
1 DAC2

gé(”) Unit Yl("T)

| DAC 1
T c(n)

Figure 2-1. A B bit dynamic element matching flash DAC architecture.

N~
A 4
Natural Binary Converter

deactivates the remaining 2%-y(n), or 28.x(n) + x,, unit DACs irrespective of the control
signal, c(n). If each activated unit DAC generates an analog signal, a, and each
deactivated unit DAC generates an analog signal d, then the DAC’s quantization step
sizes or code widths, g, are the difference between a and d, that is ¢ = a-d. The DAC’s

output, y(nT), which is the sum of all the unit DAC outputs, can be written as

ynT) = ay(n)+d[2%-x(n)]
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= (a-d)y(n) + a2’
= g[x(n) - xg] + ° 2-1)
The mismatched components between each of the unit DACs prevent the analog
output of the activated unit DACs as well as the deactivated unit DACs from being
identical. Therefore, the DAC’s quantization step sizes are not constant which results in
degradation of the DAC’s performance. To improve the DAC’s performance, the DEM
DAC’s interconnection network dynamically alters the mapping between the input signal,
x(n), and the mismatched unit DACs so that the time averages of the activated unit DAC
outputs are nearly equal. If the interconnection network’s control signal, c(n), is
deterministic, the mapping between the DAC'’s input signal, x(n), and the 2% unit DACs is
deterministic, and the DAC is said to as a deterministic DEM DAC. Similarly, if the
interconnection network’s control signal, ¢(n), is stochastic, the mapping between the
DAC’s input signal, x(n), and the 2° unit DACs is stochastic, and the DAC is said to as a

stochastic DEM DAC.

2.2 Linear Feedback Shift Register
In this thesis, a uniformly distributed random signal with a specific PSD is
implemented using a finite state machine (FSM) and Linear Feedback Shift Registers
(LFSRs) [14; 15; 16]. LFSRs can generate a uniformly distributed white random signal of
any length using D flip-flops and XOR gates.
An LFSR of length n consists of n registers (or n stages) which are numbered 0, 1, ...,
n-1 and each register is capable of storing one bit. A clock controls the data movement

between the registers. During each clock pulse, the content of stage i is moved to stage i-
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1 for each i, 1 <i < n-1. Before moving the content of stage i to stage i-1, the new content
of stage n-1 is first calculated by modulo 2 addition of the contents of a subset of the set
of stages {0, 1, ..., n-1}. The elements of this subset are often called taps. The most
commonly used register is a D flip-flop and modulo 2 addition is performed using an
XOR gate. The length of the binary sequence generated using the LFSR depends upon
the number of taps and the initial state of the registers (the state of the registers during the
first clock cycle).

In an LFSR, a polynomial is used to represent a binary code [14; 15; 16; 17; 18; 19].
To illustrate, consider a polynomial, f{x), of degree n where

f)=l1+ax'+ ... +aux"" +ax", (2-2)
ay € {0,1} and 1< & < n. This polynomial determines the taps of the LFSR [14; 15; 16;
17; 18; 19]. Figure 2-2 shows an LFSR of length n. In Figure 2-2, the polynomial
associated with the LFSR is f{x) = 1 + aix' + .... + @,..x™" + a,x" and the number of stages
in the LFSR is equal to the degree of the polynomial, f{x). In Figure 2-2, 5;, j > n, is the
feedback bit and is the new content of stage n-1 during each clock pulse. The feedback
bit, 5;, is calculated by modulo 2 addition of taps. If the initial content of stage i is 5; € {0,
1} for each i, 0 < i < n-1, then [s,.y, ...., 51, So] is called the initial state of the LFSR. The
output, s, of stage 0 is the random sequence, {sq, s1, 52,.... }, generated by the LFSR and
it is uniquely determined by the recursion
S;i=(si 1 ® a2 ® ... aps,) forj2n (2-3)

where @ is modulo 2 operator.

The polynomial, fix). is called an irreducible polynomial if f{x) cannot be factored or

written as a product of two polynomials [15; 16]. Every irreducible polynomial, with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coefficients 0 or | and of degree n > 1, divides the polynomial 1- x” where r = 2" -1, with
a zero remainder. If f{x) is an irreducible polynomial of degree n, then the LFSR

generates a sequence with a period of length 2" -1 [15; 16] and the sequence is said to be

a, a» an an
Sj Sj1 S;2 Sj-n+1 Sj-n
Ly stage p| stage . —pl stage »| stage
n-1 n-2 1 0 |output

Figure 2-2 An LFSR of length .

a maximal sequence. The output of an LFSR has a period of length /, where 1 < /< 2"-1
and the period length, /, depends on the polynomial associated with the LFSR. In a
maximal sequence of length 2" 1, there are 2™' -1 zeros and 2" ones [15; 16]. Figure 2-
3 shows the almost uniform distribution of a maximal sequence of length 2" 1.

For example, consider a polynomial

S) = Ty (2-4)
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10

The polynomial in Equation (2-4) is an irreducible polynomial because f{x) cannot be
written as a product of two polynomials. Also, the polynomial, f{x) = 1+x+ x°, divides the

olynomial 1- x” with a zero remainder; that is,
poiyn

(1- XY(1+x+ x¥) = (1-x) (14x%+ X)) (2-5)
A
g 2 2!
E
2
a
—
0 1 samples

Figure 2-3. Distribution of a maximal sequence.

Because the polynomial, fix) = 1+x+x’, is an irreducible polynomial, the period of the
generated sequence will be 2°-1, which is 7, and the sequence is said to be a maximal
sequence. Figure 2-4 shows the three-stage LFSR that generates a binary sequence with
a period of length 2’-1, which is 7. The output, s, of stage 0 is determined by the
recursion 5; = ( 5.; @ s5.3) forj > 3. If the initial state of the LFSR is [1 1 1], then
Figure 2-5 shows the binary sequence generated using the three-stage LFSR. This figure
shows that the generated sequence has a period of 2°-1, which is 7, and the output of
stage 2 and stage 1 is same as the output of stage 0 except for a delay. Therefore, the

output of stage 2 and stage 1 is a phase-shifted replica of the output of stage 0. Because
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the generated sequence is a maximal sequence, there are 2%'_1 zeros and 2*' ones in the

sequence. Figure 2-6 shows the distribution of the sequence generated by stage 0.

L—p| stage p| Stage p»| stage >
2 1 0 |output

Figure 2-4 An LFSR of length 3.
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stage 2 stage | stage0
1 1 1
0 1 1
1 0 1
0 1 0
0 0 1
1 0 0
1 1 0
1 1 1

Figure 2-5. Sequence generated using the three-stage LFSR.

Distribution

—>
0 1 samples

Figure 2-6. Distribution of the sequence generated by stage 0.
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2.3 Correlation Function and Covanance function
The randomness of a sequence can be measured using the correlation function and the
covariance function of the sequence.
If x(n) and x(n2) are two random variables at time instant n; and n;, then the
correlation function, R,, is defined as
Ry(ny, n2) = E[x(m)x(n2)] (2-6)
where E[x(n)x(n2)] is the expected value of the product of x(n,;) and x(n,). If the
random signal is assumed to be a wide-sense stationary signal, then the correlation
function, R,, becomes independent of the time origin and depends only on the time
difference between n, and n,. Therefore, for a wide sense stationary signal, Equation
(2-6) can be written as
Ri(t) = Elx(m)x(m + 7)] 2-7)

where R(7 ) is the cotrelation function of a wide-sense stationary signal and t = ny-ny. If

;(nl) and ;(rzz) are the mean or the expected value of the random variables x(n;) and
x(n;) respectively, then the covariance function, C,, is defined as

Celm, 1) = E{ [x0n)- x(m)] [x(n2)- X (n2)] }. (2-8)
If the random signal is assumed to be a wide-sense stationary signal, then the correlation
function, C,, becomes independent of the time origin and depends only on the time
difference between n; and n,. Therefore, for a wide sense stationary signal, Equation
(2-8) can be written as

Ci(e) = E{ [x(m)- x (n)] [x(m +7)-x (m +9)] } 29
where (7 ) is the covariance function of a wide-sense stationarv signal, t = ny-m.

Equations (2-8) and (2-9) show that the covariance function, C,(t ), is same as the
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correlation function, R,(7), if the expected value or mean of the random variables is zero.
If the mean is nonzero, Co( ) = E[e(m )x(m + 7)] + E[ x(m) x (m+7)] - E [x(ny) x (m+17)]
- E[;(nl)t(mﬂ)] and the covariance function is a shifted version of the correlation
function.

The power spectral density, Si(e /“), of the random variable, x(n), is defined as the
Fourier Transform of the correlation function, R,(7); that is,

Sde’) =F {Ry(1))

= Ri(t) ™ (2-10)

T
If x(n) is assumed to be an ergodic signal where the time averages are equivalent to
ensemble averages, then the autocorrelation, R,(t ), of the random variable x(#) can be

written as

A\'

R(r)= Im —1___ +
Nooo 2N+ ,ZN xm) x(m+7) @-11)

and therefore the PSD, Si(e”“), can be written as

S:e’”) =F{R«(t)}

a

N
= lim L x(ny) x(m+1) € /"
Zm Ny oo I, (2-12)

Interchanging the summations, Equation (2-12) can be written as

; lim 1 ol c - jot
S = N Sw ol 2 X Z.a, x(mrr) e (2-13)

Substituting m = n,+7 in (2-13),

S{e’®) = lim 1 jonl o
No>w 2N+1 .ZN Xm)e ") (2-14)
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= hm l o Ji
N oo 2Ne XE)Xe™)

(2-15)
If x(n) is real then,
| X(e7) | =1 X(e”) | (2-16)
Substituting Equation (2-16) in Equation (2-15),
Sde’) = lim _1L__ |y w2
N> o 2N+] (2-17)

If N is a finite value, then Equation (2-17) can be written as

Sx(ejw) = _I__(_w)”ej ?

2N+

= | Xe™|? (2-18)
T

where T =2N+1.

Using the correlation function and the covariance function, the randomness of the
binary sequence generated using the three-stage LFSR in Section 2.2, can be measured.
Figure 2-7 shows the correlation function, R.(7 ). This figure shows that the maximum
correlation occurs at t = 7. Figure 2-8 shows the covariance function, C(7 ). This figure
is same as the correlation function but with a zero mean. If the mean is nonzero, then the
sequence will have a DC shift in the power spectrum. If this DC shift is not desired, then
the covariance function is used instead of the correlation function. Figure 2-9 shows the
PSD and the distribution of ones and zeros of the generated sequence. Because the
sequence is a maximal sequence, it has 4 ones and 3 zeros, as expected. The PSD shows
that the sequence generated using the LFSR is almost white because the PSD is present

over the entire frequency spectrum. The PSD is not constant over the entire spectrum
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because the length of the generated sequence is very small. If the length of the sequence
generated using the LFSR is very long (in the order of thousands), then the PSD becomes

more constant over the entire frequency spectrum.
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Cormelation function of the sequence generated by stage 0 of a 3-stage LFSR
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Figure 2-7. Correlation function of the sequence generated by stage 0 of a
three-stage LFSR.

Covariance function of the sequence generated by stage 0 of a 3-stage LFSR
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Figure 2-8. Covariance function of the sequence generated by stage 0 of
a three-stage LFSR.
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PSD of the sequence generated by stage 0 of a 3-stage LFSR
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Figure 2-9. PSD and histogram plot of the sequence generated by stage 0
of a three-stage LFSR.
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CHAPTER 3

METHODOLOGY OF CONSTRUCTION OF A UNIFORMLY DISTRIBUTED
COLORED RANDOM SIGNAL

In a flash DEM DAC, many interconnection networks dynamically rearrange the
mapping between the digital input signal and the mismatched unit DACs so that the time
averages of the activated unit DAC outputs are equal and the time averages of the
deactivated unit DAC outputs are equal. For these interconnection networks, the required
control signal is a uniformly distributed random signal with a specific power spectral
density (PSD) [3; 4]. Figure 3-1 shows the probability distribution function (PDF) of a

control signal that is uniformly distributed between a and . In this thesis, an algorithm

»

Probability
Distribution
7

< e >
a B samples

Figure 3-1. PDF of a uniformly distributed control signal.
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is developed for constructing a uniformly distributed random signal with a specific PSD.
Figure 3-2 shows the block diagram of this algorithm that generates a uniformly

distributed colored random signal, c(n), by filtering a white random signal, w(n), using

Linear Phase x) Nonlinear _C(L)_>

FIR Filter transformation

w(n)

Figure 3-2. Block diagram of a system that generates a uniformly
distributed colored random signal.

a linear phase FIR filter that shapes the PSD and then filtering the colored random signal,

x(n), using a nonlinear filter that shapes the PDF.

3.1 Transformation of a random signal
The PSD of a random signal can be shaped by filtering a white random signal using a
linear phase FIR filter. The frequency response, H(e/®), of the filter in Figure 3-3 can be
used to describe any frequency selection filter with a single passband having a lower
cutoff frequency of w;and an upper cutoff frequency of w,. Because the phase of the filter
is zero, H(¢“) has complex conjugate symmetric about ® = 0. Therefore the filter’s
impulse response, A(n), is real. Using the inverse Fourier Transform, the filter’s impulse

response, h(n), can be written in terms of @, and @, as
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h(n) = (1/27) I H(e’") e’ do

(1/7m) [ sin(ew, n) - sin(exyn) ] whenn=0

-1

(I/m) [y - o ] whenn=0
T
3
=
<+ >
- ) 0 ® Wy,
co,, l [ o rad/sam
Figure 3-3. Frequency response of the filter.
If the phase is non-zero, then the frequency response, H(e /%), can be written as
(3-2)

H(e’") = H(w) /%)

where H(w ) is the zero phase frequency response of the system and

Hw)=(N-1) ®
2

(3-3)

where N is the length of the impulse response, A(n), of the filter.

For example, if the required random signal is a bandlimited signal with a lower cutoff

frequency of ey and an upper cutoff frequency of @, then a white random signal would
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be filtered using a linear phase FIR filter that has the frequency spectrum, H("®), as
shown in Figure 3-3. In Equation (3-1), if @y = 0 and w, # =, then the linear phase FIR
filter is a lowpass filter and if @y # 0 and @, = &, then the linear phase FIR filter is a
highpass filter.

If w(n) is a white random input signal, then the filtered signal, x(n), is

x(n)=w(n) * h(n)

x©

=) w(k) h(n-k) (3-4)

k=-x
where * represents the convolution of the white random signal, w(n), with h(n). If R.(n)

is the autocorrelation of w(n) then the PSD, S..(e’“), of the white random signal, w(n), is

Sue’®) = F{Ru(n))
= Y Rumye’ (3-5)

where F{R.(n)} is the Fourier Transform of R,(n). If the white random signal, w(n), is an
ergodic signal having a finite time period, T, then the PSD, S.(e’*), is

Se’) = | WMe’™)|* (3-6)
T

Because w(n) is a white signal, the PSD, S,(e”), of w(n) will be constant over the entire
frequency spectrum.
If x(n) is also an ergodic signal having a finite time period, 7, then the PSD, Sde’®), of

the colored random signal, x(n), is

S’ = | X |? (3-7)
T

= | e’ H(e'™) |?
T
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The Central Limit Theorem, when expressed as a property of convolutions, states that

the convolution operation of a large number of positive functions is approximately a

o

normal function [9]. Because x(n) = z w(k) h(n-k), then the colored random signal,

k=
x(n), is an approximately normally distributed signal whether w(n) is a uniformly
distributed or normally distributed white signal. To transform the colored random
signal’s, x(n)’s, normal distribution to a uniform distribution, x(») is filtered using its
distribution function; that is,

c(n) = Fxm(x(n)) (3-8)
where c(n) is the resulting filtered random signal and Fy(x(n)) is the distribution
function of the normally distributed colored random signal, x(n). Because x(n) is
normally distributed,

(172) + erf (x,) 20
Finf(%o) =
(172) - erf (x,) X< 0 (3-9)

where erf'is the error function which is defined as
erf (x,) = (1/sqre(2m)) I exp(-12) dr (3-10)
0
To show that the filtered random signal, c¢(n), is uniformly distributed, let ¢, = Fi(ny(xo)
and let F,)(c,) be the distribution function of the new random signal; that is,
Fc(n)(co) = P(C(")S co) (3'l 1)
Because Fy(x,) is monotonic, c(n) < ¢, if and only if x(n) < x,. Therefore,

Femco) = Ple(n)< c,)

= P(x(n)=< x,)
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= Fiyn(%)

=¢, (3-12)
Equation (3-12) shows that the distribution function, Feu)(c,), is equal to c¢,, which
implies that ¢(n) is uniformly distributed. The uniformly distributed random signal, c(n),
exists in the same interval as that of the normally distributed colored random signal, x(n).

The frequency spectrum, C(e”), of the uniformly distributed random signal, c(n), is

C(e)=F {c(n)}

=F {Fin)( x(n)) } { from Equation (3-8) }
= Z Fem(x(n)) € (3-13)

Equation (3-13) shows that the frequency spectrum, C(e’“), of the uniformly distributed
random signal is the Fourier Transform of the distribution function, Fy)(x(n)), of the
normally distributed colored random signal, x(n). It is very difficult to get a closed form
expression for Equation (3-13) because the distribution function, Fyp(x(n)), of the
normally distributed colored random signal, x(n), is represented in terms of the error
function, erf, and it exists in a finite interval.

Instead of finding a closed form expression for the Fourier Transform of an error
function, it is simulated in Matlab. From the simulation it is found that the frequency
spectrum, C(e”), exists in the same interval as that of the frequency spectrum, X(e’®), of
the normally distributed colored random signal, x(n). If R/(n) is the autocorrelation of

¢(n), then the PSD, S.(e”), of c(n) is

S{e’®) = F{R(n)}
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= X Rdme’™ (3-14)

where F{R.(n)} is the Fourier Transform of R.(n). Because c(n) is assumed to be an
ergodic signal having a finite time period, T, the PSD, S.(e’®), is

Se’) = | Ce™|* (3-15)
T

Because C(e’®) exists in the same interval as that of X(e’“), the PSD, S{e’®), of c(n)
will also exist in the same interval as that of the PSD, Si(e”®), of the normally distributed
colored random signal, x(»n). Therefore, c(n) is a uniformly distributed colored random
signal.

As described, a uniformly distributed colored random signal can be constructed by
filtering a uniformly distributed or normally distributed white random signal with a linear
phase FIR filter and then filtering the resulting output by a nonlinear filter, the error
function. The result is a uniformly distributed colored random signal, c(n), and this
random signal can be used in a B bit DEM DAC as interconnection network’s control

signal. Appendix A contains MATLAB code for the algorithm.

3.2 Examples to illustrate the effectiveness of the algorithm
To illustrate the effectiveness of the algorithm, several uniformly distributed colored
random signals are generated with different spectral densities. Figure 3-4 shows the
impulse response, 4(n), and the frequency spectrum, H(e /*), (in dB) of a lowpass filter
with a cutoff frequency of n/3 and of order 99. Figure 3-5 shows the autocorrelation,

R.(n), and the PSD, S,(e““), of a normally distributed white random signai, w(n), with
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zero mean and of length 925. Because the random input signal is white, the PSD, Sw(ej 9,
is present over the entire frequency spectrum. The normally distributed colored random
signal, x(n), is obtained by filtering the normally distributed white random signal, w(n),
using the linear phase FIR filter, h(n). Figure 3-6 shows the autocorrelation, R(n), and
the PSD, S.(e”®), of the normally distributed colored random signal, x(n), of length 1024
and with a cutoff frequency of /3. The uniformly distributed colored random signal,
c(n), is obtained by a nonlinear transformation of the normally distributed colored
random signal, x(n). Figure 3-7 shows the autocorrelation, R.(n), and the PSD, S (e o of
the uniformly distributed colored random signal, c(n), of length 1024 and with a cutoff
frequency of n/3. Figure 3-7 also shows that the PSD, S.(e /™, of ¢(n) exists in the same
interval as that of the PSD, Si(e ’“), of the normally distributed colored random signal,
x(n). Figure 3-8 shows the histogram plot of the normally distributed white random
signal, w(n), normally distributed colored random signal, x(n), and uniformly distributed
colored random signal, c(n). Figure 3-9 shows the frequency spectrum of the normally
distributed white random signal, w(n), normally distributed colored random signal, x(n),
and uniformly distributed colored random signal, c(n), with a cutoff frequency of n/3.
Figures 3-10 — 3-15 show the simulation results of the algorithm for constructing a
uniformly distributed bandlimited random signal with a lower cutoff frequency of n/3 and
an upper cutoff frequency of 3n/4. Figures 3-16 — 3-21 show the simulation results of the
algorithm for constructing a uniformly distributed highpass filtered random signal with a

cutoff frequency of 3n/4.
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3.3 Examples to illustrate the effects of the design parameters

The examples in this section illustrate the effects that the length of a white random
input signal, w(n), and the length of a linear phase FIR filter’s impulse response have on
the PSD, S.(e’*), of the uniformly distributed colored random signal, c(n).

A random signal is white if it has a constant PSD over the entire frequency spectrum.
For finite length signals, the magnitude of the spectrum depends upon the length of the
random signal. If the length of the white random signal is small (in the order of
hundreds), then the PSD is not constant over the entire frequency spectrum. If the length
of the white random signal is very long (in the order of thousands), then the PSD is
constant over the entire frequency spectrum.

The PSD of the white random signal, w(n), influences the power spectrum of the
constructed uniformly distributed colored random signal, ¢(n). To study the influence of
the length of the normally distributed white random signal, w(n), the algorithm is
simulated with w(n) having lengths 223 and 2015. Figure 3-22 shows the PSD of w(n) for
lengths 223 and 2015. Figure 3-23 shows the corresponding PSD of the uniformly
distributed colored random signal, c(n). Figure 3-22 shows that for w(n) of length 223,
S.(e /*) varies between -20dB and 15dB and for w(n) of length 2015, S.(e ’*) varies
between -9dB and 6dB. Figure 3-23 shows that for c(n) of length 256, S(e’®) in the
passband varies between 0dB and 47dB and for c(n) of length 2048, S.(e /) in the
passband varies between 26dB and 38dB.

The length of the normally distributed white random signal, w(n), influences the PSD
of the normally distributed colored random signal, x(n), which in tumn influences the PSD

of the uniformly distributed colored random signal, ¢(n). Therefore, the PSD of the output
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random signal, c(n), will be constant if the length of the normally distributed white
random signal, w(n), is considerably long.

The length of the linear phase FIR filter’s impulse response influences the transition at
the discontinuity of the PSD, S.(e’), of the colored random signal. The transition from
passband to stopband of the filter will be sharp if the length of the linear phase FIR
filter’s impulse response or the filter order is high [11]. If the transition region of the
filter is sharp, then the transition at the discontinuity of S.(e’“) will also be sharp.

Figure 3-24 shows the impulse response, 4(x), and the frequency response, H(e’*), of
a lowpass filter having A(n) of length 11 and with a cutoff frequency of n/2. Figure 3-25
shows the impulse response, 4(n), and the frequency response, H(e’*), of a lowpass filter
having h(n) of length 63 and with a cutoff frequency of /2. Figures (3-24) and (3-25)
show that the transition region of the filter having A(n) of length 63 is sharper than the

transition region of the filter having h(n) of length 11. Figure 3-26 shows the
corresponding PSD, S.(e /*), of the uniformly distributed colored random signal, c(n).
The transition at the discontinuity of S.(e’“) generated by filtering a white random signal
using a linear phase FIR filter having an impulse response of length 63 is much sharper
than the transition at the discontinuity of S.(e /) generated by filtering a white random
signal using a linear phase FIR filter having an impulse response of length 11. So, the
transition at the discontinuity of S.(e ’*) will be sharper if the length of the linear phase

FIR filter’s impulse response is large.
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Impulse response of the filter with a cutoff freqency of pi/3 rad/sam and of order 99
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Figure 3-4. Impulse response and frequency response of the filter
with a cutoff frequency of n/3 rad/sam and of order 99.
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Autocorrelation of the normally distributed white signal of length 925
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Figure 3-5. Autocorrelation and PSD of the normally distributed
white signal of length 925.
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Autocorrelation of the normally distributed colored signal of length 1024
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Figure 3-6. Autocorrelation and PSD of the normally distributed colored signal

of length 1024 and with a cutoff frequency of n/3 rad/sam.
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x 1@futocorrelation of the uniformly distributed colored signal of length 1024
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Figure 3-7. Autocorrelation and PSD of the uniformly distributed colored
signal of length 1024 and with a cutoff frequency of n/3 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Figure 3-8. Histogram plot of the normally distributed white signal, normally
distributed colored signal and uniformly distributed colored signal
with a cutoff frequency of n/3 rad/sam.
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Frequency Spectrum of the normally distributed white signal of length 925
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Figure 3-9. Frequency spectrum of the normally distributed white signal,
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Impulse response of the filter with a LCF of pi/3 rad/sam & UCF 3pi/4 rad/sam and of order 99
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Figure 3-10. Impulse response and frequency response of the filter with a
lower cutoff frequency of n/3 rad/sam & an upper cutoff
frequency of 3n/4 rad/sam and of order 99.
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Autacorrelation of the nomally distributed white signal of length 925
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Figure 3-11. Autocorrelation and PSD of the normally distributed
white signal of length 925.
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Autocorrelation of the normally distributed colored signal of length 1024
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signal of length 1024 and with a lower cutoff frequency of
7/3 rad/sam & an upper cutoff frequency of 3n/4 rad/sam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x 1@utocorrelation of the uniformiy distributed colored signal of length 1024
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Figure 3-13. Autocorrelation and PSD of the uniformly distributed colored
signal of length 1024 and with a lower cutoff frequency of
7/3 rad/sam & an upper cutoff frequency of 3n/4 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Figure 3-14. Histogram plot of the normally distributed white signal, normally
distributed colored signal and uniformly distributed colored signal
with a cutoff frequency of 7/3 rad/sam & 3n/4 rad/sam.
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Frequency Spectrum of the normally distributed white signal of length 925
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Figure 3-15. Frequency Spectrum of the normally distributed white signal, normaily
distributed colored signal and uniformly distributed colored signai
with a cutoff frequency of n/3 rad/sam and 3n/4 rad/sam.
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Impulse response of the filter with a cutoff frequency of 3pi/4 rad/sam and of order 99
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Figure 3-16. Impulse response and frequency response of the filter
with a cutoff frequency of 3n/4 rad/sam and of order 99.
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Autocorrelation of the normally distributed white signal of length 925
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Figure 3-17. Autocorrelation and PSD of the normally distributed
white signal of length 925.
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Autacorrelation of the normally distributed colored signal of length 1024
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Figure 3-18. Autocorrelation and PSD of the normally distributed colored
signal of length 1024 and with a cutoff frequency of 3n/4 rad/sam.
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« 1aflutocorrelation of the uniformly distributed colored signal of length 1024
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Figure 3-19. Autocorrelation and PSD of the uniformly distributed colored
signal of length 1024 and with a cutoff frequency of 3n/4 rad/sam.
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Histogram plot of the 4-bit normally distributed white signal of length 925
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Figure 3-20. Histogram plot of the normally distributed white signal,
normally distributed colored signal and uniformly distributed
colored signal with a cutoff frequency of 3n/4 rad/sam.
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Frequency Spectrum of the nommally distributed white signa! of length 925
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Figure 3-21. Frequency spectrum of the normally distributed white signal,
normally distributed colored signal and uniformly distributed
colored signal with a cutoff frequency of 3n/4 rad/sam.
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PSD of the nomally distributed white signal of length 223
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PSD of the normally distributed white signal of length 2015
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Figure 3-22. PSD of the normally distributed white signal of lengths

223 and 2015.
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PSD of the uniformly distributed colored signal of length 256 with filter order 33
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Figure 3-23. PSD of the uniformly distributed colored signal of lengths
223 and 2015 and with a cutoff frequency of n/2 rad/sam.
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impulse response of the filter with a cutoff frequency of pi/2 rad/sam and of order 11
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Impulse response and frequency response of the filter
with a cutoff frequency of n/2 rad/sam and of order 11.
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impulse response of the filter with a cutoff frequency of pi/2 rad/sam and of order 63
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Figure 3-25. Impulse response and frequency response of the filter
with a cutoff frequency at n/2 rad/sam and of order 63.
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PSD of the uniformly distributed colored signal of length 1024 with filter order 11
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PSD of the uniformly distributed colored signal of length 1024 with filter order 63
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Figure 3-26. PSD of the uniformly distributed colored signal of length 1024
with a cutoff frequency of n/2 rad/sam and of order 11 & 63.
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CHAPTER 4

HARDWARE GENERATION

A B bit uniformly distributed white random signal can be efficiently generated using
Linear Feedback Shift Registers (LFSRs) [14; 15; 16]; however the literature does not
have an efficient method for generating a B bit uniformly distributed colored random
signal. One method of generating a B bit uniformly distributed colored random signal is
using a finite state machine (FSM). If a FSM has to generate all the B bits of a uniformly
distributed colored random signal then the hardware requirements become very large. In
this chapter, it is shown that the two most significant bits (MSBs) of a B bit uniformly
distributed colored random signal influence the signal’s PSD more than the B-2 least
significant bits (LSBs). Therefore, when generating a B bit uniformly distributed colored
random signal, it is often sufficient to generate the two MSBs as colored bits using a
FSM and the remaining B-2 LSBs as white bits using LFSRs. This method reduces the
hardware requirements for a real time implementation on chip when compared to the

hardware requirements for generating all the B bits as colored bits using a FSM.

4.1 PSD of the individual bits of a uniformly distributed colored random signal
To show that the two MSBs of a B bit uniformly distributed colored random signal

influence the signal’s PSD more than the B-2 LSBs, the power in the individual

52
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bit sequence of a B bit uniformly distributed colored random signal is calculated. If 0 <

w(n) < 1, then w(n) can be written as

w(n) = i win) 2" (4-1)

r=l
where w,(n) is the rth bit of w(n), wi(n) is the most significant bit (MSB) of w(n) and
wg(n) is the least significant bit (LSB) of w(n). The normally distributed colored signal,
x(n), is

x(n) = w(n) * h(n)
=3 k) henk) (4-2)

k=-x

where h(n) is the impulse response of a linear phase FIR filter and w(n) is the normally

distributed white random signal. Substituting Equation (4-1) in Equation (4-2),

x(n) = i wA(n) 27 * h(n)

r=i

= i h(n-k) 23: wilk) 2"} (4-3)
k=-

r=al

Interchanging the summations, Equation (4-3) can be written as

x(n) =i 27 i h(n-k) wk)

r=] k=-x

= i 27 x/{n) (4-4)

r={

where x{n) = ) h(n-k) wik) and in general, x{(n) & {0,1}. If x(n), 1S r < B , is
k=wx

converted to a binary number, Q[x/n)], by rounding, then Qfx«(n)] can be written as
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OlxAm)] =xdn) + 3. eiln) 4-5)
j=l
where -27/2 < e(n) < 27/2, ej(n), is the rounding error of the jth bit and each efn) is

assumed to be a uniformly distributed, zero mean wide-sense stationary white noise.

Figure 4-1 shows the uniform distribution of the rounding error, e(n), of the jth bit.

. . 0 ‘
Distribution

2712 2712 e(n)

Figure 4-1 Uniform distribution of e(n).

Equation (4-5) shows that the rounding error of each bit propagates to the succeeding
bits.
For example, when r =1
Qlu(n)] = xi(n) + ei(n) (4-6)
where -2"/2 < ey(n) <272, and when r =2
Olxan)] = x2(n) + ex(n) + ex(m) (4-7)

where -27%/2 < ex(n) <272, and when r =B

Qlxs(n)] = xs(n)+ Y. efn) (4-8)

Jj=l
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where -2%/2< ep(n) < 2212, These equations show that the rounding error of each bit
propagates to the succeeding bits. The rounding error of the LSB is ei(n) + ex(n) + ...+
ep(n) and it is the contribution of rounding error from all the previous bits. If the rounding
error of the jth bit, e(n), 1</ < B, is assumed to be a zero mean wide-sense stationary
white noise then the sum, e(n) = e;(n) + ex(n) + ...+ eg(n), is also a zero mean wide-sense
stationary white noise.

The PSD, Sgpri(e”), of Q[x(n)] can be written as

Souri(e”) =F{Rq{n)} + Z F{R,(n)}

j=

=Sde’)+ Y Sfe) 9)

=
where R.{(n) is the autocorrelation of x/(n), ScA€) is the PSD of x{n), R.(n) is the
autocorrelation of ej(n) and S (e /%) is the PSD of ej(n). Because e/(n) is assumed to be a
zero mean wide-sense stationary white noise, the PSD, S,(e oy, of e/(n) s constant over
the entire frequency spectrum.

The power, Py}, in Q[xAn)] is

Pore = (1/27) J‘ Sele’”) do + i (1/27) I Se(e’®) do
=l -

-

=Pyt Py (4-10)

j=l
Because ¢j(n) is assumed to be a uniformly distributed, zero mean wide-sense stationary

white noise, the power, Pe;, in e{(n) is the variance of e{n) [10]; that is,
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P = (1/2m) f Se(e’®) do

= Elef’(n)] (4-11)

The variance of e(n) is

2112

E[ejz(n)] = _[W:ejz(n) 2/ de(n)

= 2%12 (4-12)

From Equations (4-11) and (4-12), the power, P,;, in ej(n) is
g =212 (4-13)
In a B-bit uniformly distributed random signal that has a period of length /, where / =
2" each bit sequence is uniformly distributed with 2™' zeros and 2™' ones [15].

Therefore, the power, Py}, in the rth bit, 1< r < B, is
Poun = E[ QlxAn)}’]
=12 Y. 0 + (127 Y, @7
n=1 n=1

- (2-2r 2m-l)/2m

2

=272 (4-14)

Substituting Equations (4-13) and (4-14) in Equation (4-10),

272 =P, + Y, 2Y2 (4-15)

j=l

Equation (4-15) shows that the power in the rounding error of each bit is added to the

succeeding bits. Therefore, the power, P, in the rounding error of the MSB is the
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smallest and it is 2%/12. The power in the rounding error of the LSB is the largest and it is
the sum of the power in the rounding error of all the bits. The signal power, Pgjx}, in the
MSB is the largest and it is 222, The signal power, Pgj:s), in the LSB is the smallest and
it is 27°2/2. Therefore, the power in the rounding error of the MSB is much smaller than
the power in Q[xi(n)] and Sgp«t l(e"") is similar to Sy (e /). The power in the rounding
error of the LSB is the contribution of the power in the rounding error of all the previous
bits and it is greater than the power in Q[xz(n)]. Therefore, Sgj«ai(e /) is constant over the
entire frequency spectrum and Qfxs(n)] looks like a white bit. For example, when r =1

Popr1)= Py + Pe (4-16)

Poy = 272/2 =0.125

P, =27/12=0.0208
where Pgy ) is the power in the MSB, Q[x\(n)]. Because the power, P, in the rounding
error of the MSB is smaller than the signal power, the MSB looks like a colored bit.
When r =2

Popa) = Pot Pe+ Pg 4-17)

Pop) = 272 = 0.03125

Po+ Po= 27/12+27/12 = 0.026
where Py is the power in the second MSB, Qfxz(n)]. The power in the rounding error
of the MSB propagates to the second MSB and the power in the rounding error of the
second MSB is P+ P.. Because P+ P < Py, the second LSB also looks like a
colored bit. When r =3

Popx3) = Pe3+ Poy+ Py + P (4-18)

Poray = 2°/2=0.0078
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Py +Pa+ P =2212+2*/12+2°/12
=0.0273

where Pgj,3 is the power in the third MSB, Q[x3(n)]. The power in the rounding error of
the third MSB is P.; + P2 + Pe3 and it is the contribution of the power in the rounding
error from all the previous bits. Because P, + Py + Pu3 >> Py, the third MSB looks like
a white bit and Sgp3i(e’*) is constant over the entire frequency spectrum. For r 2 3, the
power in the rth bit is smaller than the power in the rounding error of that bit. Therefore,
the PSD of the rth bit is constant over the entire frequency spectrum and the rth bit
appears like a white bit. Figure 4-2 shows the signal power in the rth bit and the power in
the rounding error of that bit (in this figure, the continuous line corresponds to the signal
power and the dashed line corresponds to the power in the rounding error). This figure
shows that signal power in the two MSBs is larger than the power in the rounding error of
the corresponding bit. For r > 3, the signal power is smaller than the power in the
rounding error of the rth bit. Therefore, for r 2 3, the rth bit looks like a white bit.

Equations (4-4) — (4-18) are also applicable to the uniformly distributed colored
random signal, ¢(n), because Section 3.1 showed that the nonlinear transformation shapes
the distribution of the random signal and does not significantly alter the spectrum.
Therefore, if the uniformly distributed colored signal, c(n), is converted to a B bit binary
signal c¢,(n), then only the two MSBs are colored and influence the signal’s PSD more
than the remaining B-2 LSBs. Because the power in the rounding error of the B-2 LSBs is
larger than the power in the signal, the B-2 LSBs look like white bits. Therefore, a B bit
uniformly distributed colored random signal can be adequately generated by generating

the two MSBs as colored bits and the remaining B-2 LSBs as white bits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

To illustrate, a uniformly distributed highpass filtered random signal that is
bandlimited between 3n/4 and n and has a length of 1024 is generated. The colored
random signal is converted to a four-bit binary signal. Figure 4-3 shows that the PSD of
the MSB is colored because the power in the MSB is larger than the power in the
rounding error of the MSB. Similarly, Figure 4-4 shows that the PSD of the second bit is
also colored because the power in the second MSB exceeds the power in the rounding

error of the second MSB. Figure 4-5 and Figure 4-6 show that the PSD of the third bit

continous line - signal power, dashed line - error power
0.14 , —_ ‘ : ‘

R G —

0.12F

o
—
T
1
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o

o
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—.
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Figure 4-2 The signal power in the rth bit and the power in the
rounding error of the rth bit.

and the fourth bit are uniform over the entire frequency spectrum because the power in
these bits is smaller than the power in the rounding error of the corresponding bits.

Therefore, a four- bit uniformly distributed colored random signal can be adequately
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generated by generating the two MSBs as colored bits and the remaining 2 LSBs as white

bits.

4.2 Hardware design using a FSM

Section 4.1 showed that a uniformly distributed colored rapdom signal can be
adequately generated by generating the two MSBs as colored bits and the remaining B-2
LSBs as white bits. The B-2 LSBs can be generated on chip using Linear Feed Back Shift
Registers (LFSRs) and the two MSBs can be generated using a finite state machine
(FSM).

In this thesis, FSMs that generate the two MSBs are designed in VHDL ([20; 21]. The
uniformly distributed colored random signal constructed by the algorithm is assumed to
be periodic with a period /, where [ is the length of the constructed random signal.
Therefore, the FSM is designed with / states and the output at the mth state is the mth
two-bit word of the random signal, where 1 < m < [. For example, consider a four-bit
uniformly distributed highpass filtered random signal that is bandlimited between 3n/4
and n and has a length of 256. The two MSBs of the uniformly distributed highpass
filtered random signal are colored and are generated using a FSM. Because the length of
the random signal is 256, the FSM will have 256 states and the output at the mth state
will be the mth two-bit word of the random signal, where 1 £ m < 256. Figure 4-7 shows
a FSM with 256 states, designed to generate the two MSBs of the four-bit uniformly
distributed colored random signal. This figure shows that at the rising edge of the clock,
the FSM changes from the mth state to (m+1)th state and the output at the mth state is the

mth two-bit word of the random signal. A C program was written to generate the state
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machine VHDL code. Appendix A contains the C program listing that generates the state

machine VHDL code.

4.3 Linear Feedback Shift Register implementation

Section 4.2 shows the generation of the two MSBs of a uniformly distributed colored
random signal using a FSM. The remaining B-2 LSBs can be generated on chip using
Linear Feed Back Shift Registers (LFSRs). The B-2 LSBs can also be generated using a
FSM, but the hardware requirements for an LFSR implementation are much less than the
hardware requirements for a FSM implementation. Therefore the LFSR implementation
is preferred for generating the B-2 white bits.

The approach for the LFSR implementation is to use a polynomial associated with the
LFSR for generating each white bit of the uniformly distributed colored random signal.
For B-2 white bits of the random signal, B-2 polynomials are required. Each polynomial
should generate a sequence that has a length that is identical to the length of the random
signal constructed by the algorithm. For example, in Section 4.2, the two MSBs of the
uniformly distributed highpass filtered random signal that is bandlimited between 3n/4
and = and has a length of 256 are generated using a FSM. The remaining 2 LSBs are
generated using LFSRs. Two polynomials, one for the third bit and the other for the
fourth bit, are required for the LFSR implementation. Each polynomial should generate a
sequence that has a length of 256. Because an n-stage LFSR can generate a sequence of
length 2" at most, a sequence that has a length of 256 requires an eight-stage shift register
for the LFSR implementation. The irreducible polynomials associated with an eight-stage

LFSR are [14}:
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,
1 1+

1+ + 0+

[R%]

3. 1+t
4. lrrc+dowd
5. lterr+xhd
6. ltxexb+x'+xd
7. leerrd s+
8. ltrrxi+d+xt+rt+ed
Because the above polynomials are irreducible polynomials, they can generate sequences
with a period of length 23-1, which is 255. Any two of the above polynomials can be used
to generate the two LSBs of the random signal. The PSD of the sequence generated using
the LFSR will be white [14; 15; 16] and uniformly distributed with 2*' -1 zeros and 2%
ones. Figure 4-8 shows the PSD and the histogram plot of the LSB sequence of the
uniformly distributed highpass filtered random signal that is generated using an eight-
stage LFSR. This figure shows that the PSD of the binary sequence generated using an
LFSR is white and uniformly distributed with 2*' -1 zeros and 2% ones. Figure 4-9
shows that the four-bit random signal generated using the FSM and LFSRs is a uniformly
distributed highpass filtered random signal that is bandlimited between 37/4 and =.
Therefore, a uniformly distributed colored random signal can be adequately generated by
generating the two MSBs as colored bits and the B-2 LSBs as white bits.

In general, the period of the random signal can be increased if each bit of the
random signal is generated with a different period. The period of the random signal will

be very long if the MSB is generated with a long period and the succeeding bits are
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generated with decreasing periods. For example, in a four-bit uniformly distributed
colored random signal, the period of the random signal increases if the MSB is generated
with a period of 2"-1, the second MSB is generated with a period of 2°"'-1, the third MSB
is generated with a period of 2”1 and the LSB is generated with a period of 2™3.1. This
method can be followed to increase the period of a uniformly distributed colored random
signal generated using a FSM and LFSRs. But the disadvantage is that the hardware
requirements for a FSM implementation grow exponentially with the period of the
random sequence. Therefore, if the two MSBs are generated with a longer period than the
succeeding bits, then the hardware requirements for a FSM implementation increase such
that the real time implementation on chip becomes too large for a typical DEM DAC. To
keep the hardware requirements as small as possible, the two MSBs are generated with a
small period. The B-2 LSB bits that are generated using LFSRs can have longer periods
because increasing their periods increase the hardware requirements by few registers and
gates. The trade-off for this method of generating the random signal is that the period of
the random signal is just greater than the period of the MSB. But, this method is still
advantageous because the side correlations are decreased without much increase in the
hardware requirements for a real time implementation on chip.

For example, the two MSBs of a four-bit uniformly distributed highpass filtered
random signal are generated using a FSM with a period of 256. The third MSB is
generated using an LFSR with a period of 511 and the LSB is also generated using an
LFSR but with a period of 1023. Figure 4-10 and Figure 4-11 show the autocovariance
and the PSD of the 2 MSB sequences generated using a FSM. Because the period of the

sequence 1s 256, the autocovariance of the sequence has four side correiations and a main
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correlation. Figure 4-12 shows the autocovariance and the PSD of the third MSB
sequence generated using an LFSR. Because the period of the third MSB sequence is
511, the autocovariance of the sequence has 2 side correlations and a main correlation.
Figure 4-13 shows the autocovariance and the PSD of the LSB sequence generated using
an LFSR. Because the period of the LSB sequence is 1023, the autocovariance of the
sequence has no side correlation. Figure 4-14 shows the PSD and the histogram plot of
the uniformly distributed colored random signal of length 1023 generated using a FSM
and different length LFSRs. This figure shows that the random signal is a uniformly
distributed high pass filtered signal that is bandlimited between 3n/4 and =. Figure 4-15
shows the autocovariance of the uniformly distributed colored random signal of length
1023 generated using a FSM and different length LFSRs. Figure 4-16 shows the
autocovariance of the uniformly distributed colored random signal of length 1023
generated with a period of 256. Figures 4-13 and 4-14 show that the side correlations of
the uniformly distributed colored random signal of length 1023 generated using a FSM
and different length LFSRs are lesser than the side correlations of the uniformly
distributed colored random signal of length 1023 generated with a period of 256.
Therefore, generating a uniformly distributed colored random signal by generating the
two MSBs with a small period and the succeeding B-2 LSBs with increasing periods
reduce the side correlations of the random signal without much increase in the hardware

requirements for a real time implementation on chip for a DEM DAC application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

Autocovariance of the MSB sequence of the 4-bit random signal
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Figure 4-3. Autocovariance and PSD of the MSB sequence of the four-bit random
signal that is bandlimited between 3n/4 rad/sam and = rad/sam.
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Autocovariance of the 2nd bit sequence of the 4-bit random signal
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Figure 4-4. Autocovariance and PSD of the 2nd bit sequence of the four-bit random
signal that is bandlimited between 3n/4 rad/sam and = rad/sam.
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Autocovariance of the 3rd bit sequence of the 4-bit random signal
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Figure 4-5. Autocovariance and PSD of the 3rd bit sequence of the four-bit random
signal that is bandlimited between 3n/4 rad/sam and = rad/sam.
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Autocovariance of the LSB sequence of the 4-bit random signal
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Figure 4-6. Autocovariance and PSD of the LSB sequence of the four-bit random
signal that is bandlimited between 3n/4 rad/sam and = rad/sam.
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Rising edge of clock.
Output = 2nd word
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Figure 4-7. FSM that generates the two MSBs of a uniformly
distributed colored random signal of length 256.
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PSD of the LSB sequence of length 256 generated using an 8-stage LFSR
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Figure 4-8. PSD and histogram plot of the LSB sequence of length 256
generated using an eight-stage LFSR.
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PSD of the 4-bit random signal of length 256 generated using a FSM and the LFSRs
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Histogram plot of the 4-bit random signal generated using a FSM and the LFSRs
40 - . ‘ ‘
‘ l

30

20

Count

10

Bins

Figure 4-9. PSD and histogram plot of the four-bit random signal of length 256 and
with a cutoff frequency 3n/4 generated using a FSM and LFSRs.
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Autocovariance of the MSB sequence generated using a FSM with a period of 256
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Figure 4-10. Autocovariance and PSD of the MSB sequence of a four- bit
random signal generated using a FSM with a period of 256.
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Autocovariance of the 2nd bit sequence generated using a FSM with a period of 256
300 ¥ T 1 T

Ccer(n)

0 500 1000 1500 2000 2500

Normalized PSD of the 2nd bit sequence generated using a FSM with a period of 256
80 L] 14 T ] i

60

=
o

N
o

Scr(e™) in dB

05 1 15 2 25 3
wipi

Figure 4-11. Autocovariance and PSD of the 2nd MSB sequence of a four-
bit random signal generated using a FSM with a period of 256.
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Autocovariance of the 3rd bit sequence generated using an LF SR with a period of 511
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Figure 4-12. Autocovariance and PSD of the 3rd MSB sequence of a four-bit
random signal generated using an LFSR with a period of 511.
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Autocovariance of the LSB sequence generated using an LFSR with a period of 1023
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Figure 4-13. Autocovariance and PSD of the LSB sequence of a four-bit
random signal generated using an LFSR with a period of 1023.
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PSD of the 4-bit random signal generated using a FSM and different length LFSRs
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Figure 4-14. PSD and histogram plot of the uniformly distributed highpass
filtered random signal generated using a FSM and different
length LFSRs that is bandlimited between 3n/4 rad/sam and = rad/sam.
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Autocoyartghce of the 4-bit random signal generated using a FSM and different length LFSRs
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Figure 4-15. Autocovariance of the uniformly distributed highpass filtered
random signal generated using a FSM and different length LFSRs .
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Figure 4-16. Autocovariance of the uniformly distributed highpass filtered
random signal generated with 2 period of 256.
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CHAPTER 5

CONCLUSION

In this thesis, an algorithm that can generate a uniformly distributed colored random
signal in real time is developed. The uniformiy distributed colored random signal can be
generated with different power spectral densities like a lowpass filtered random signal, a
bandpass filtered random signal or a highpass filtered random signal. Several examples
illustrate the effects of the parameters such as the length of the white random input signal
and the length of the linear phase FIR filter’s impulse response have on the generated
colored random signal. The examples illustrate that if the length of the white input
random signal is long (in the order of thousands) then the PSD of the output random
signal is more constant, and if the length of the linear phase FIR filter’s impulse response
is long, then the transition at the discontinuity of the power spectrum is very sharp.

In this thesis, it is shown that in a B bit uniformly distributed colored random signal,
the two most significant bits (MSBs) have a more significant influence on the signal’s
PSD than the remaining B-2 least significant bits (LSBs). Therefore, a B bit uniformly
distributed colored random signal can be adequately generated by generating the two
MSBs as colored bits and the remaining B—2 LSBs as white bits. The two MSBs are
generated as colored bits using a finite state machine (FSM) and the B-2 LSBs are

generated as white bits using Linear Feedback Shift Registers (LFSRs). The disadvantage
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of a FSM design is that the hardware requirements for the FSM implementation grow
exponentially with the period of the random signal. To keep the hardware requirements
low, the two MSBs are generated with a small period.

The B-2 LSBs can also be generated using a FSM, but the hardware requirements for
an LFSR implementation are much less than the hardware requirements for a FSM
implementation. Therefore, the LFSR implementation is preferred for generating the B-2
white bits. The tradeoff for simple hardware requirements is the influence of the LFSR
generated sequence on the uniform distribution of the resulting random signal. The LFSR
generated sequence influences the distribution of the random signal because using an
LFSR it is very difficult to generate exactly the same bit sequence constructed by the
algorithm. For a uniformly distributed binary sequence of length / with (/-1)/2 + 1 ones
and (/-1)/2 zeros, I! / ((I-1)/2)! ((I+1)/2)! unique sequences, each of length / can be
generated. But polynomials do not exist to generate all the /! / ((I-1)/2)! ((I+1)/2)!
sequences. Therefore, it is very difficult to generate exactly the same bit sequence using
the LFSR. But, this does not significantly alter the distribution of the colored random
signal because the two MSBs make the most significant contribution for the uniform
distribution of a random signal. Because the two MSBs are generated using a FSM, they
are exactly same as the sequence constructed by the algorithm. Therefore, the uniform
distribution of the random signal is not significantly altered. For example, in a three-bit
uniformly distributed random signal, changing the LSB sequence does not significantly
alter the uniform distribution of the random signal as long as the individual bit sequence

is uniformly distributed. Because the LFSR generated sequence is uniformly distributed
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with //2 zeros and //2+1 ones, it does not significantly alter the distribution of the random
signal.

In this thesis, it is also shown that generating a uniformly distributed colored random
signal by generating the two MSBs with a small period and the succeeding B-2 LSBs
with increasing periods reduce the side correlations of the random signal without much
increase in the hardware requirements for a real time implementation on chip. This is
because the two MSBs are generated using a FSM and the B-2 LSBs are generated using
LFSRs.

The advantage of this real time implementation for generating a uniformly distributed
colored random signal is that it does not require large computation. Because of this, the
real time implementation can be operated at the clock speed of a DEM DAC. Therefore,
the generated uniformly distributed colored random signal can be used in a DEM DAC as
interconnection network’s control signal. Many alternative approaches were tried during

the research work but this algorithm was reported because it is far simpler than the others.
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% I'ZZEEZESEZEESERETEEEERERRSES RS RS2 R AR R R R AR SRR
F owxx Filter Specifications

% * %k

F rxx w_low - Low Pass Cut off Frequency
§ khx of the Desired PSD

§ ***  yw up - High Pass Cut off Frequency
F kkx of the Desired PSD

F kxx fil order - Order of the filter

% *** w low = 0 - LPF, w_up = pi - HPF

% khkhkhhkhkhkhkhkrhkhhhhhhkhkrhkrkhkkhkhhkhkkrhrhrhhbrrhrhrrrrrtd

w_low = 3*pi/4;
w_up = pi;
fil order = 33;

% (1222222222222 X2 R SRR ARisR Rttt l S
% *** Calling the function filter design that

% *** that generates the time domain components
% *** of the filter

% * k%

T okwx h - Time domain components of the

§ *xx filter

§ ko H - Frequency response of the

§ wxx filter

% *** psdhmat - Power Spectral Density of the

§ kax filter using matlab command PSD
% (122 22X X2 EZESXRERR RSS2 R R R SRRl SRl ss RS
h = filter design(w_low,w_up,fil_order) ;

H = abs(fft(h));

psdhmat = psd(h);

N0 A

*

* len ~ length of the random signal
* no_bits -~ Number of bits for binary convers

A0 AN N A°

bit _len = 8;
len = 2”bit_len- (£il_order-1);
no_bits = 4;

val = round((len-1)/2);

d ok kodk K
*kk
* %k k
* %%
* ik
* %k
% %k
* %k %
% % %k
% %k ¥k

o % %
* %k K
* Kk Kk
* k ¥k
* % %
* kk
* % %
* % %
* % K
* % %
* &k Kk
* % %

ion

[ ZZXEXEEEREIREELEEERXSRZSZARS R 22 2SS XS RRR 2222 R R oty sy

* Parameters Specifications for the random signal

*
*
*
*

khkhkhkhkkkhkrhkhkhkkkhkhkhkhkhkhhhhkrrhrkrhkhkhhrrrthrhhrrrhrrrd
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f = (0:val)/val*pi;

% I ZXETEEEEZEAEEETEEZZSEZE SR XRESZZESSXRSS SRS ARAS RS2 &8 8
$ * Generation of Normally Distributed White Signal

§ * *
$ * nw - normally distributed white signal of *
§ * length len with zero mean and *
$ * unit variance *
% * NW - Frequency Spectrum of nw *
$ * corrnw - Autocorrelation of nw *
% * psdnw - Power Spectral Density of nw using *
§ * corrnw (psdnw -- FFT --> corrnw) *
% * psdnwmat - Power Spectral Density of nw using *
$ * using the matlab command PSD *
% * meannw - mean of nw *
% * varnw - variance of nw *
% kkhkhhhkkhkrhkkhkhbhhhrhkkhkhhbrhrrrhrrhbhbhbkrhkrrrkrhhhhrrk
nw = randn(len,1);

NW = abs(fft(nw));

psdnwf = (NW."2);

psdnwf = psdnwf/max (psdnwf) ;

corrnw = XCorr(nw) ;

psdnw = abs (fft (corrnw));

$ Normalizing the Power Spectral density
psdnw = psdnw/max (psdnw) ;

psdnwmat = psd(nw);

meannw = mean(nw) ;
varnw = cov(nw)};

X222 E22 2222222222222 22222 2222222222222 Rl Sl s

*Generation of Normally Distributed colored Signal *
by filtering nw using the designed filter *

nc - normally distributed colored signal of
length len
NC - Frequency Spectrum of nc

~——— Narvbememmamann ] ab 3
COITTC - Autccerrelaticn c¢f nc

psdnc - Power Spectral Density of nc using
corrnc (psdnc -- FFT --> corrnc)

o0 O OO IO N K K K A N
C2E B 2 B
* % % * A * *

* *
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$ * psdncmat - Power Spectral Density of nw using *
5 * using the matlab command PSD *
% * meannc - mean of nc *
% * varnc - variance of nc *
% [ XXX EXZXXZEEZEZREZZRR2 XSS 2222222 222222222t iasndlssd s

nc = conv(h,nw);

lennc = length(nc) ;
$val2 = (lennc-1)/2;
$f2 = (0:val2)/val2*pi;

NC = abs(fft(nc));

psdncf = NC."2;
psdncf = psdncf/max(psdncf) ;
corrnc = Xcorr(nc);

psdnc = abs(fft (corrnc));

% Normalizing the Power Spectral density
psdnc = psdnc/max (psdnc) ;

psdncmat = psd(nc) ;

meannc = mean{(nc) ;
varnc = cov(nc);

IZ2E XXX ESSSR SRR RS2 2R X222 RS Ri xR Rl s Rt Rl

* Calling the function that converts the normally

* distributed colored signal to uniformly
distributed signal

N o

*
*
* *
* *
* ucb - Uniformly distributed colored signal in *
* binary form using no_bits *
* ucwm- Uniformly distributed colored signal *
* with nonzero mean *
* meanucwm - mean of nc *
* *
* *

varucwm - variance of nc
P R RS R ETZEE LT R R LR Z SR EAEREE RS S A S EERER SRS RS R SR XX

A N A A K N K N KR AN

{ucb] = normal2uniform(nc,no_bits);
ucwm = bin2dec (ucb) ;

meanucwm = mean (ucwm) ;
varucwm = cov(ucwm) ;
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% [ ZXZ 2 XS ZEREREEXAXEXLRSZ2XZXSXRSSERXRRRARZR SRR SR RS d
% *** Generation of Uniformly Distributed colored ***
§ *xx signal with zero mean *k®
% * %%k % % %
$ *** uc - uniformly distributed colored signal ***
F kR with zero mean *kx
g ***x UC - Frequency Spectrum of uc *hx
§ *** corruc - Autocorrelation of uc *kx
$ *** psduc - Power Spectral Density of uc using***
§ *r% corruc (psduc -- FFT --> corruc) ***
$ *** psducmat - Power Spectral Density of uc using***
F krx using the matlab command PSD ol
% *** meanuc - mean of uc *kx
% *** yaruc - variance of uc *xx
% [Z2ZZ2EEXEEEESRAEESEZAZERZRARZ RS2 R 2 2222 R 2222222t iss

uc = ucwm - meanucwm;

UC = abs(fft(uc));
psducf = UC.*2;
psducf = psducf/max(psducf);

corruc = Xxcorr (uc);
psduc = abs(fft (corruc));

% Normalizing the Power Spectral density
psduc = psduc/max (psduc) ;

psducmat = psd(uc) ;

meanuc = mean(uc) ;

varuc = cov(uc) ;

% I Z X222 2222222 RRAR2S2RRR2RX T

% *** Plotting the figures ***
% tZ2XZA RS S22 RS2SRRSR 2 R 2D

vall = (fil order-1)/2;
f1 = (0:vall)/vall*pi;
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figure (301);

subplot (211) ;

stem(h) ;

title('Impulse response of the filter with a cutoff
frequency of pi/2 rad/sam and of order 63');
xlabel('n');

ylabel ('h(n)');

subplot (212) ;

plot (£1, 20*loglO(H(1l:vall+l)));

title('Frequency response of the filter with a cutoff
frequency of pi/2 rad/sam and of order 63');

xlabel ('w/pi');

ylabel (‘H(e*j"w) in dB');

$figure (311);

$subplot (313);

$plot (fh, 20*1ogl0 (psdhmat)) ;

$title ('PSD of the filter with a cutoff freqency at 3pi/4
and filter order 99');

$xlabel ('w/pi');

$ylabel ('PSD - Sh in dB');

figure(302);

subplot (311) ;

plot (f, 20*1logl0 (NW(l:val+l)));

title('Frequency Spectrum of the normally distributed white
signal of length 925');

xlabel ('w/pi');

ylabel ('W(e*j*w) in dB');

subplot (312);

plot (£, 20*loglO(NC(l:val+l)));

title ('Frequency Spectrum of the normally distributed
colored signal of length 1024');

xlabel ('w/pi');

ylabel ('X(e*j*w) in dB');

subplot (313) ;

plot (£, 20*logl0(UC(1l:val+l)));

title('Frequency Spectrum of the uniformly distributed
colored signal of length 1024');

xlabel{(‘w/pi'j};

ylabel ('C(e*j*w) in dB');
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lenpsdnwmat = length(psdnwmat) ;
fnw = (0:lenpsdnwmat-1)/lenpsdnwmat*pi;

lenpsdncmat = length(psdncmat) ;
fnc = (0:lenpsdncmat-1)/lenpsdncmat*pi;

lenpsducmat = length(psducmat) ;
fuc = (0:lenpsducmat-1)/lenpsducmat*pi;

figure (304) ;

$subplot (211) ;

$stem(corrnw) ;

$title('Autocorrelation of the normally distributed white
signal of length 925');

$xlabel('n'});

%ylabel ('Rw(n) ') ;

subplot (212) ;

plot (fnw, 20*logl0 (psdnwmat)) ;

axis ([0 pi -20 20]):

title('PSD of the normally distributed white signal of
length 2015');

xlabel ('w/pi');

ylabel ('Sw(e”j*w) in dB');

figure (305) ;

%¥subplot (211) ;

$stem(corrnc) ;

$title('Autocorrelation of the normally distributed colored
signal of length 1024');

$xlabel('n');

$ylabel ('Rx(n) ') ;

subplot (212) ;

plot (fnc, 20*logl0 (psdncmat)) ;

title('PSD of the normally distributed colored signal of
length 1024');

axis([ 0 pi -130 40]);

xlabel ('w/pi');

ylabel ('Sx(e*j*w) in dB');

figure (306) ;

%¥subplot (211) ;
$stem(corruc) ;
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$title('Autocorrelation of the uniformly distributed
colored signal of length 1024');

$xlabel ('n');

$ylabel ('Rc(n)');

subplot (212) ;

plot (fuc, 20*logl0 (psducmat));

axis({ 0 pi 0 100]);

title('PSD of the uniformly distributed colored signal of
length 1024 with filter order 63');

xlabel ('w/pi');

ylabel ('Sc(e®j*w) in dB');

figure(307) ;

subplot (311) ;

hist (nw) ;

title('Histogram plot of the 4-bit normally distributed
white signal of length 925');

xlabel ('Bin') ;

ylabel ('Count') ;

subplot (312) ;

hist (nc) ;

title('Histogram plot of the 4-bit normally distributed
colored signal of length 1024');

xlabel ('Bin') ;

ylabel ('Count') ;

subplot (313);

hist (uc,2”no_bits) ;

title('Histogram plot of the 4-bit uniformly distributed
colored signal of length 1024');

xlabel ('Bin') ;

ylabel ('Count') ;
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% R R R R R R R R R R R R EESX XSS SRR RRS RSS2SR 2222 RAaRts )
% *** Punction for generating the impulse * ok ok
§ Wk response of the filter *kx
% dedededde ko dedded d koA ok ok d ok d kAR Aok ok k ke dede gk kb gk ko ok ok
function (h] = filter_design(w_low,w_up, fil_order)
% X R XX X222 X2 222X X2 22X XXX 2222222 RaRR R
§ wk¥ Parameter Description ool
% * % % * %k
$ *** h - Time domain components of the ***
§ ke filter *kx
§ *** w low - Low Pass Cut off Frequency *kx
§ rrx of the Desired PSD *hx
§ *** w up - High Pass Cut off Frequency *kx
§ owrx of the Desired PSD *kk
$ *** fil order - Order of the filter - *=**
§ rxx w_low = 0 - LPF, wh = pi - HPF ol
% I'ZTZTEZXEESREREX RSS2 E2 RS RSS2 222222 2 Rl st
n = -(fil order-1)/2 :1: (fil_order-1)/2;
j=1;
for k = -(fil_order-1)/2:-1
h(j) = (sin(k*w_up)-sin(k*w_low))/(pi*k);
j=j+1;
end

h(j) = (w_up-w_low)/pi;
J=3+1;

for k = 1:(fil_order-1)/2

h(j) = (sin(k*w_up)-sin(k*w_low))/(pi*k);
j=j+1;

end
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khkhkhkkkhddhhdddhddhdokddhdhdkdddk ik d ko kddddkkdkddkd

*kx Function for converting normally ***
**x distibuted real sequence to uniformly***

* ok k distributed binary sequence * %k
(2222222232222 2223X2322222 222222222t Rttt 2

o

P

A° N A

function {uni] = normal2uniform(nor, no_bits)

hkhhkhkhkhhkhkhkhkhhhhhkhhkkrhkrrrhhrhkhkhkkrkxrhhhhkhhrhkbrrhhrn

o\®

g *rx Parameter description *kx
% * %k % * % *
% *** nor - Normally distributed real sequence LA
$ *** uni - Uniformly distributed binary sequence***
% *** no bits - Number of bits for binary *H
F xEx representation of the real number***
%

IZ2 22X EEERZE2RXXRER 2RSSRt RRRtn sl Sl

norlen = length(nor) ;
quantlen = 2%no_bits;
count = floor(norlen/quantlen);

i = 0:quantlen-1;
quant = dec2bin(i,no_bits);

[norasc,pos] = sort(nor);

num = 1;
for m = l:norlen
if num > count
j = min{(j+1,quantlen);
num = 1;
end
uni(pos(m),:) = quant(j,:);
num = num+l;

end

yl = bin2dec (uni);
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$figure(1l);
$subplot (211) ;
$hist (nor) ;

%$subplot (212) ;
$hist (yl,quantlen);
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khhdkkhkdhhkdkhkrrhhddhhddddidhhdddiddkdiddhdhddhkkiddri

*** PFunction for histogram plot of each bit **»
*** of the binary random sequence obtained  ***

*** from the decimal sequence *kk
[ZZXZXZXEXZZEESX SRR RS RS RS SZS A2 2222 SRRt Rl sd

A® A A° A I°

function [hist seq] = hist_binary(bin_seq)

% 2222 XEZERRZR2XR22 222222 2XXX22 222222 R R RS R
F wrx Parameter Description *kx
% * kK *kk
% *** bin seq - Binary sequence Tk
$ *** hist seq- Binary sequence for which***
§ *rw histogram can be plotted ***

I[Z22ZEEEEXEESEARSEEREASEZSRZZ2222RRRR R Rl SR

Pre)

[bin_seqlen, bin_segbits] = size(bin_seq);

% I EEEREXZ X2 R A2 RSS2 2 2SS XZ2 RSS2 & &
§ *** MSB - Left most Bit ol
§ rh* bl (i=1 in iteration) *=*=*

*** [SB - Right most Bit - bm xxx

IZZ2EZXSZE22Z X222 RRR2RRRSSR 2Rt

A A

for i = 1l:bin_segbits

hist_seq(:,i) = bin2dec(bin_seq(:,1i));

figure (100) ;

subplot (bin_segbits, 1,1i);

hist (hist_seq(:,1));

title('Histogram plot of each bit of the binary signal
- MSB first, LSB last');

xlabel ('Bins');

ylabel ('Count') ;

end
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(222 Z2XEZEZZEEESSRRZRZSASR AR RRRRERRE SR

*** Pyunction for finding the Autocovariance *kk
*** and power spectral density of each bit of =***
*** the binary random sequence obtained from ***

*** the decimal sequence *kx
I ZZEZIEEXZEASEERESRRESS AR S SRR RS RRRRR 2R 2D

a° a0 o

N N A

function [(covb, psdb] = bits_psd(bin_seq);

% ddhkkdkdhddddhdhddhordd ke ok d o d sk d ok o d ook ok koo ko okkok ko
§ *h Parameter Description LA
% * % %k * %k %
% *** bin seq - Binary sequence *hx
% *** covb - Matrix in which each column has the ***
§ aww autocovariance of the corresponding ***
§ rh% bit of the binary sequence *h ok
$ *** psdb - Matrix in which each column has the ***
§ oxrx power spectral density of the *xx
§ kx corresponding bit of the binary *kk
§ *xk sequence *h %

I ZEXEERIEINEERERRRRERER SRR RS2RRXRRARRRR 2R 2222 R SR

e

[bin_seqglen, bin_segbits] = size(bin_seq);

% I Z2Z XX EEEEEEEEEEEAESSASAEERSAEEA S S SR SRR
*** MSB - Left most Bit *okk
* k% bl (i=1 in iteration) *x*»*

*** [SB - Right most Bit - bm *kk

khkhkkhkhkkhhkhhrkhrhhhhdrkhrhrhrhhhbhrhbrdhih

K a0 N AN

for i = 1:bin_segbits

b = bin_seqg(:,1);
covb(:,1i) = xcov(b);
psdb(:,1i) = abs(fft(covb(:,1)));

lenpsdb = length(psdb(:,1i));
lenpsdbt = round((lenpsdb-1)/2);
fr = (0:lenpsdbt)/lenpsdbt * pi;

figure (10+1i) ;
subplot (211) ;
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plot (covb(:,1i));

title('Autocovariance of each bit of the binary
sequence - MSB first, LSB last');

xlabel ('Lag') ;

ylabel ('Cb') ;

subplot (212) ;

plot (fr,psdb(l:lenpsdbt+1,1));
title('Normalized PSD of each bit of the binary
sequence - MSB first, LSB last');

xlabel ('Normallized frequency');

ylabel ('PSD - Sb in db');

end
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[ZZ2ZXEEZEXZERXSSIEZSSSSARAZER S22 2R RaRE R R

*** Function for generating the Random ***
*** gequence using Linear Feed back Shift#+**
*r ok Register (LFSR) * Xk

[ ZZEXEXESXEEXZEZXRZSASESSESRARARERES SRRyl

o0 A A o°

)

function [y] = lfsrgeneration(degree,taps)

%****************************************************
§ wxx Parameter description kkw
% *** degree - Degree of the shift register *kk
§ khx polynomial generating the sequence ***
§ *** taps - Tap positions of the LFSR LA
F orrr oy - Generated random sequence *k ok

2 X222 RRE AR R ARt s il i st REE R

% *** Tnitial state of the LFSR ***
X = ones(1l,degree) ;

true = 1;

i=1;

tapsize = length(taps);

while (true ~= 0 & i < (2"%degree))

i = 1+1;
for j = 2:degree

x(i,j)=x(i-1,3-1);
end
temp = 0;

$ *** Feedback using xor gate **x*
for j = l:tapsize

temp = temp + x(i-1,taps(j));

end

N
*

** x - generated binary random sequence ***

) = wmed{temp,2);

Al

-

/ 1
\dy &
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repeat = x(1,:) ~= x(i,:);
true = sum(repeat) ;

end

$*** Extracting one of the columns from the binary
sequence ***
y = x{(:,1);
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Program name : statemachine.cpp

/* C-Program to generate the state diagram VHDL description
of a random signal. The binary random signal should be in
.txt format and the generated VHDL file will be in .vhd
format.*/

#include<stdio.h>
#include<math.h>

#define vectorlength 127
#define nobits 7

main ()

{

FILE *f1,*f2;

char *str(40];
char txtfile[20];
char vhdlfile[20];
char rpy(nobits];
char tmp;

int stateno[vectorlength+l];
int 1i,73;

/* Initializing the array stateno */
for (i=0;i<vectorlength;i++)

{

stateno[i] = i+1;

)

stateno[i] = 1;

/* Getting the txt file name where the truth table is
stored */

printf ("The truth table is stored as text file\n\n");

printf ("Enter the name of this file with a .txt
extension\n") ;

scanf ("$s",txtfile);

/* Getting the vhdl file name where the output is
stored */

printf ("The output file should be stored as a .vhd
file\n\n");
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printf ("\nEnter the name of the file into which it

writes\n");

scanf("%s",vhdlfile);

strl]
str(2]
str(3]
str(4]

str(5]
str(6]
str(7]
strig]
str([9]
str{10]
stril]
str(i2]

str(13]
str(14]
str(15]
str[l6]
str(17]
str(18]

str[19]
str([20]
str(21]
strf22]
str{23]
str24]
str{25]

str(26]
str[27]
str([28]
str([29]
str([30]

str{3i]
str(32]

"library IEEE;";

"use IEEE.std logic_l1l64.all;";
"use IEEE.std_logic_arith.all;";
"use IEEE.std logic_unsigned.all;";

"entity statemachine is";

1] port ( L '.

"clk : in std_logic;";

"preset in std_logic;";

"yrp : out std _logic_vector(";
"downto 0)";

= n)'.u;

"end statemachine;";

"architecture fsm of statemachine is";
"type states is (";

Ilsll,.

"signal presentstate: states;";
"begin";

"process (clk)";

"if clk = '1' then";
"if reset = 'l' then";

= "presentstate «<=";

"yrp <=";
"else";
"end if;";

it.n.,.
’ !

"case presentstate is";
"when";

"oznt,

"when others => null;";
"end case;";

"end process;";
"end fsm;";

/* Opening the txt file in read mode */

// [i=Lopen("yiZ2

fi=fopen(txtfile,
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rewind(£f1);

/* Opening the vhdlfile in write mode */
// f2=fopen("try.vhd", "w");
f2=fopen(vhdlfile, "w");

/* Writing the intial statements to the vhdlfile */

fprintf (f2, "%s\n", str(l]);
fprintf (£2, "%s\n", str(2]);
fprintf (£2, "%s\n", str{3]);
fprintf(£2, "%s\n\n", str(4]);

fprintf (£2, "$s\n", str(s]);
fprintf (f2, "\t%s\n", str(6]);

fprintf (£2, "\t\t%s\n", str(7]);

fprintf (£2, "\t\t%s\n", str(8]);

fprintf (£2, "\t\t%s", str(9]);

fprintf (£2, "%d %s", nobits-1, str(10]);

/* this is for the downto statement for o/p yrp */

fprintf (£2, "$s\n", str(ll]);
fprintf (£2, "%s\n\n", str(12]);

fprintf (f2, "$s\n\n", str(13]);
fprintf (£2, "\t%s ", str[1i4]);

for(i=0;i<vectorlength-1;i++)

{

fprintf (£2, "%s%d, ", str[15], statenolil);

}

fprintf (f2, "$s%d", str(l15], statenol[i]);
fprintf (£2, "%s\n", str(lll);
fprintf (£2, "\t%s\n\n", str(l6]);

fprintf (£2, "$s\n\n", str(17]);
fprintf (£2, "%$s\n", str[18]);

fprintf (£2, "%$s\n", str(17]);

fprintf (£2, "\t%s\n", str(19]);

fprintf (£2, "\t\t%s\n", str(20]);

fprintf (£2, "\t\t\t%s %s%d%s\n", str[21], str(15],

stateno{0], str[25]);

fseek (f1, 5, 0);
for(j=0;j<nobits;j++)
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fscanf (£1, "%c",&rpyl(jl);
fseek (f1, 5, 1);

fprintf (£2,"\t\t\t%s \"%.7s\" %s\n", str(22], rpy,
str[25]);

fprintf (£2, "\t\t%s\n", str(23]);
fprintf (£2, "\t\t\t%s\n", str(26]);
rewind (f1) ;

fseek(£1, 5, 0);

for(i=0;i<vectorlength;i++)
{
fprintf (£2, "\t\t\t\t%s %s%d %s\n", str(27],
str(15], stateno{i], str(28]);
for(j=0;j<nobits;j++)

fscanf (£1, "%c",&rpyljl):
fseek(f1l, 5, 1);

fscanf (£f1,"\n");

fprintf (£2, "\t\t\t\t\t%s \"%.7s\" %s\n",
str(22], rpy, str(25]);

/* change here according to the number of

bits used. */

fprintf (£2, "\t\t\t\t\t%s\n", str(19]);

fprintf (£2, "\t\t\t\t\t\t%s %s%d%s\n", str(21],
str[15], stateno(i+l], str(25]);

fprintf (£2, "\t\t\t\t\t%s\n", strl24]);

}

fprintf (f2, "\t\t\t\t%s \n", str(29]);
fprintf (£f2, "\t\t\t¥s\n", str{30]);
fprintf (£2, "\t\t%s\n", str(24]);

fprintf(£2, "\t%s\n", str(24]);
fprintf (£2, "%s\n", str(31l]);
fprintf (f2, "%s\n", str(32]);
fclose(£fl);

fclose(£f2) ;
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