
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-2011

Improved algorithms for ear-clipping triangulation Improved algorithms for ear-clipping triangulation

Bartosz Kajak
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Electrical and Computer Engineering Commons, Mathematics Commons, Numerical

Analysis and Computation Commons, and the Theory and Algorithms Commons

Repository Citation Repository Citation
Kajak, Bartosz, "Improved algorithms for ear-clipping triangulation" (2011). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 1319.
http://dx.doi.org/10.34917/3038333

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/3038333
mailto:digitalscholarship@unlv.edu

IMPROVED ALGORITHMS FOR EAR-CLIPPING TRIANGULATION

by

Bartosz Kajak

Bachelor of Science

Lublin University of Technology, Poland

2005

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

Aug 2011

Copyright by Bartosz Kajak 2011

All Rights Reserved

 ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Bartosz Kajak

entitled

Improved Algorithms for Ear-Clipping Triangulation

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering
Department of Electrical Engineering

Henry Selvaraj, Committee Chair

Laxmi P. Gewali, Committee Associate Chair

Dawid Zydek, Committee Member

Pramen Shrestha, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2011

 iii

ABSTRACT

Improved Algorithms for Ear Clipping Triangulation

by

Bartosz Kajak

Dr. Henry Selvaraj, Examination Committee Chair

Professor of Electrical and Computer Engineering

University of Nevada, Las Vegas

Dr. Laxmi Gewali, Associate Examination Committee Chair

Professor of Electrical and Computer Engineering

University of Nevada, Las Vegas

 We consider the problem of improving ear-slicing algorithm for triangulating a

simple polygon. We propose two variations of ear-slicing technique for generating

“good-quality” triangulation. The first approach is based on searching for the best

triangle along the boundary. The second approach considers polygon partitioning on a

pre-process before applying the ear-slicing. Experimental investigation reveals that both

approaches yield better quality triangulation than the standard ear-slicing method.

 iv

ACKNOWLEDGMENTS

Nearly three years ago, I submitted my admission application to Howard R. Hughes

College of Engineering at University of Nevada, Las Vegas. Little did I know about

significance and impact this decision would have on my life. My Master’s program

studies were filled with moments of happiness and grief, major challenges and triumphs.

Not only did I learn the art of scientific research, but I also had some of the biggest life

lessons that defined my character today. I learned how to overcome obstacles along the

way and never give up. Now I know that through our biggest challenges we get greatest

triumphs. That difficult and very productive time filled with pursuit for research, sow a

seed of relentless hunger for knowledge and in result will undeniably bring me more

fruits of success in the future.

I would like to express my utmost gratitude to dr Henry Selvaraj my mentor, advisor

and master advisory committee chair. Thanks to dr Selvaraj I become a part of Electrical

and Computer engineering department at UNLV. I greatly appreciate warm, friendly

atmosphere at school and the fact that I always felt welcome. Dr Selvaraj helped me with

my program and thesis work as well as with my private life challenges. It is impossible to

describe significance and positive impact of dr Selvaraj on my life and my thankfulness

to him in couple sentences. I cannot imagine better advisor. Thank you, dr Selvaraj for all

your help, it will never be forgotten.

I am extremely happy to take this opportunity to acknowledge my debt and gratitude

to dr Laxmi Gewali, associate chair of my graduate committee. Dr Gewali demonstrated

his incredible patience and was extremely generous with his time. Words only will fail to

 v

express my gratitude for his commitment to me and my thesis. Dr Gewali taught and

guided me through research, which brought the fruits of my first conference publication

and this thesis. His words of wisdom are extremely significant to me and will be

referenced in the future.

I could never forget to thank dr Dawid Zydek - great friend, advisor and my graduate

committee member. Dawid’s thoughts, experiences and observations were many times

groundbreaking for me. Dawid was always willing to share his opinion in decision

making process, he helped me during my studies in professional and private life. Dawid

always believed in me even in the most challenging of moments. There is no words to

describe my gratitude for his help.

I am extending my sincere thanks to dr Pramen Shrestha – graduate committee

member for his contribution throughout this investigation.

I would like to thank to my Las Vegas friends Juan Santana and Lina Chaparro for all

of their support, for being there and for not giving up on me even in the hardest of times.

Juan and Lina were always patient listeners and real friends. They radiate positive, warm

energy and their help will never be forgotten.

Special thanks to my friends Mariana Rocha Rodrigues, Natarajan Pillai, Ewelina

Camacho, Kasia and Rafał Kowalczuk for valuable and unforgettable conversations and

support.

At last I would like to thank my mother Ela, father Andrzej, sister Kasia and her

husband Leszek for persistent support and concern. They have been with me throughout

my life regardless of situation. They make sure I know I am never alone.

 vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ..vii

LIST OF FIGURES ... viii

LIST OF ALGORITHMS .. x

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 TRIANGULATION OF A POLYGON ... 3

2.1. Ear-Slicing Algorithm ... 3

2.2. Tousaint’s strip triangulation ... 6

2.3. Decomposition into Monotone Polygons ... 7

2.4. Triangulating a Monotone Polygon ... 8

2.5. Converting Triangulations to Quadrangulations .. 10

CHAPTER 3 IMPROVED TRIANGULATION ... 14

3.1. Notion of quality triangulation .. 14

3.2. Greedy Searching .. 15

3.3. Polygon Partitioning and Ear-Slicing .. 18

CHAPTER 4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 22

4.1 Application interface ... 22

 4.1.1 Interface description ... 22

 4.1.2 Program menu items .. 26

4.2 Description of methods and classes ... 28

4.3 Experimental results .. 32

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 36

BIBLIOGRAPHY ... 37

VITA ... 39

 vii

LIST OF TABLES

Table 4.2. Right Panel checkboxes ddescriptions .. 25

Table 4.3. File Menu Items description ... 27

Table 4.3. Triangulation Quality yield comparison .. 33

 viii

LIST OF FIGURES

Figure 2-1. Ilustrating ear of a polygon ... 4

Figure 2-2.Triangulation by traditional ear-cutting method .. 5

Figure 2-3a. A sleeve polygon ... 7

Figure 2-3b. A non-sleeve polygon .. 7

Figure 2-4. Polygon partitioned into monotone pieces – I, II, … VII. 8

Figure 2-5 Triangulated monotone polygon. .. 10

Figure 2-6a Triangulated simple polygon. .. 11

Figure 2-6b Quadrangulation obtained by inserting 3n-5 Steiner points. 11

Figure 2-7a Triangulated simple polygon. .. 13

Figure 2-7b Dual tree inserted into triangulated polygon with each triangle’s interior node

 connected to vertices of corresponding triangle. ... 13

Figure 2-7c Polygon with triangulating diagonals removed. ... 13

Figure 2-7d Quadrangulated polygon with n-2 Steiner points inserted (one single triangle

 remaining). ... 13

Figure 3-1 Two ways of measuring aspect ratio. .. 15

Figure 3-1a Iso-thetic bounding box .. 15

Figure 3-1b General bounding box... 15

Figure 3-2 Improved ear-slicing triangultion .. 16

Figure 3-2a Polygon to be triangulated. ... 16

Figure 3-2b First quality triangle found. ... 16

Figure 3-2c First “ear” chopped and second quality triangle found. 16

Figure 3-2d Residual polygon is a triangle ... 16

 ix

Figure 3-2e Triangulated polygon .. 16

Figure 3-3 Triangulation by improved ear-slicing method .. 17

Figure 3-4 Illustrating the crowding of skinny triangles ... 18

Figure 3-5 Illustrating stabbing diagonal .. 19

Figure 3-6 Illustrating visibility graph .. 20

Figure 3-7 Illustrating visibility edge with triangulated edges .. 20

Figure 4-1 GUI Layout .. 24

Figure 4-2 The initial display of GUI for polygon triangulation 24

Figure 4-3a AutoCAD figure used for triangulation ... 26

Figure 4-3b Part of input file generated by AutoLISP script ... 26

Figure 4-4 File-menu pull down... 27

Figure 4-5 Prompting user for File selection .. 28

Figure 4-6 Figure triangulated using traditional ear-cutting method 30

Figure 4-7 Figure triangulated using improved ear-cutting method 31

Figure 4-8 Stabbing diagonals (drawn with thick edges) of a triangulated polygon 35

Figure 4-9 Triangulated polygon by partitioning and ear slicing..................................... 35

 x

LIST OF ALGORITHMS

Algorithm 1. Triangulation by Standard Ear-Slicing .. 5

Algorithm 2. Triangulation by Modified Ear-Slicing .. 17

Algorithm 3. Partitioning and Ear-Slicing .. 21

 1

CHAPTER 1

INTRODUCTION

Triangulation of a simple polygon is a partitioning of its interior into triangles such

that the vertices of triangles are also the vertices of the polygon. It has been established

that any simple polygon can be triangulated. It can be easily verified that a triangulated

polygon of n vertices contains exactly n-3 diagonal and n-2 triangles. A polygon can be

triangulated in exponentially many ways. The problem of developing efficient algorithms

for triangulating a simple polygon has attracted the interest of several researchers from

computational geometry [1]. One of the first polygon triangulation algorithms found in

standard text books is based on repeatedly slicing a triangle. This approach is often called

triangulation by “ear-slicing“. A straightforward implementation of ear-slicing algorithm

takes O(n
2
) time. From the beginning of 1980, there was a flurry of research interest for

developing a linear time algorithm for triangulating a simple polygon. The fastest

algorithm known for the next ten years (1980-1989) had time complexity O(nlog*n). For

all practical purposes this time complexity is linear. From the theoretical point of view,

there was still room for improvement. Finally, Bernard Chazelle [4] reported a linear time

algorithm for triangulating a simple polygon. Some investigators have commented that

Chazelle’s linear time algorithm is very difficult for practical implementation. Finding a

simple linear time algorithm that can be implemented easily is still an open problem.

In this thesis an overview of different methods for triangulating a polygon are

presented. It is shown that some algorithms can yield mesh with large number of thin-

triangles which are not desired for application in finite element analysis. Quality issue for

triangulation is considered. A triangulation with large proportions of “fat” triangles is

 2

said to be of high quality. Modifications of the standard ear-cutting algorithm for

generating quality triangular mesh are presented. Additionally, presented method is

improved by introducing polygon decomposition. Experiment results of the proposed

algorithms are presented and additional approaches for further improving the quality of

generated triangles are discussed.

 3

CHAPTER 2

POLYGON TRIANGULATION

The triangulation of a simple polygon is the partitioning of its interior triangles

such that the vertices of triangles are also vertices of the polygon. It has been established

that any simple polygon can be triangulated [1]. It can be easily verified that a

triangulated polygon of n vertices contains exactly n-3 diagonal and n-2 triangles. A

polygon can be triangulated in exponentially many ways. The problem of developing

efficient algorithms for triangulating a simple polygon has attracted the interest of several

researchers from computational geometry [1-7]. One of the first polygon triangulation

algorithms found in standard text book is based on repeatedly slicing a triangle [1,7]. This

approach is often called triangulation by “ear-cutting “. A straightforward

implementation of ear-cutting algorithm takes O(n
2
) time. From the beginning of 1980

there was a flurry of research interest for developing a linear time algorithm for

triangulating a simple polygon. The fastest algorithm known for the next ten years (1980-

1989) had time complexity O(nlog*n)[1,7]. For all practical purposes this time

complexity is linear. From theoretical point of view, there was still room for

improvement. Finally Bernard Chazelle [4] reported a linear time algorithm for

triangulating a simple polygon. Some investigators have commented that Chazelle’s

linear time algorithm is very difficult for practical implementation [1]. Finding a simple

linear time algorithm that can be implemented easily is still an open problem.

2.1 Ear-Slicing algorithm

Ear-slicing is one of the well-known techniques for triangulating a simple

polygon [1, 2, 3, 6]. Due to its intuitive appeal, ear-slicing triangulation is usually

 4

considered as one of the fist simplest triangulation algorithms. We first present a brief

review of the standard ear-slicing algorithm. Let the vertices of the polygon that appear in

the counterclockwise traversal of its boundary be denoted by v0, v1, v2, ... , vn-1. Three

consecutive vertices vi-1,vi ,vi+1 form an ear of the polygon if the line segment Li = [vi-

1,vi+1] connecting vertices vi-1and vi+1lies completely inside the polygon. Figure 1

illustrates the definition of ear. In the figure, vertex sequence <v4,v5, v6> form ear

because line segment L5 = [v4,v6] lies completely inside the polygon. Similarly, vertex

sequence <v8,v9, v10> form another ear. On the other hand, vertex sequence <v1,v2, v3>

does not form an ear because the line segment joining v1 to v3 does not lie completely

inside the polygon.

Figure 2.1 : Illustrating ear of a polygon

 5

Figure 2.2 Triangulation by traditional ear-cutting method

It is known that any polygon with number of vertices greater than 3 has at least two

ears [1]. If we have a simple polygon P with large number of vertices then the residual

shape P' obtained by slicing off an ear from P is also a simple polygon. This observation

reveals that any simple polygon with at least three vertices can be triangulated by slicing

an ear repeatedly. Ear-slicing stops when the residual polygon is a triangle. This

algorithm can be formally sketched as follows.

Algorithm 1: Triangulation by Standard Ear-Slicing

Input: A simple polygon with n vertices v0, v1, v2, ... , vn-1 stored in a list L.

 Output: A set of n-3 diagonals that triangulate the polygon

Step 1: Let D be the empty diagonal list.

Step 2: while (L has more than 3 vertices) do

Step 3: (a.) Locate an ear vi-1,vi ,vi+1.

 (b.) Add diagonal (vi-1, vi+1) to D.

Step 4: Remove vi from L.

 endwhile

Step 5: Output diagonals in D as triangulating diagonals

 6

To determine whether a candidate segment di = (vi-1, vi+1) is a diagonal or not, the

algorithm checks the intersection of di with all the edges of the polygon. If this candidate

segment does not intersect with any edge of the polygon then it is a valid diagonal and

inserted into D. This straightforward check for Step 3, takes O(n) time. Since this check

is repeated O(n) time the total time for Algorithm 1 is O(n
2
). Detailed analysis and

implementation issue of triangulation by ear-slicing is available in reference [1]. A more

careful analysis of ear-slicing algorithm has been investigated by ElGingy, Everett, and

Toussaint [2]. The algorithm reported in [2] is simpler to implement but it still need

O(n)time per ear-slice. Figure 2.2, shows a triangulation obtained by using the standard

ear-slicing algorithm. An inspection of the triangles in the triangulation of Figure 2.2

reveals that there are several thin and skinny triangles. It is thus an interesting problem to

modify ear-slicing techniques so that the resulting triangulation has reduced number of

skinny triangles.

2.2 Toussaint’s strip triangulation

An efficient method of triangulating a simple polygon was developed by Godfried

Toussaint in 1988. His adaptive algorithm runs in O(n(1+t0)) where t0 < n is the resulting

number of triangles that share no edges with the processed polygon. Therefore t0 depends

on shape complexity of input polygon. Due to its low complexity the algorithm has found

immediate application in computer graphics. The algorithm requires no sorting or usage

of complicated data structures. The approach is to partition complex polygon into set of

smaller polygons called sleeves. Note that a polygon is called a sleeve if it can be

triangulated so that the triangulation dual is a chain. The polygon in Figure 3a admits

triangulation whose dual is a chain and hence it is a sleeve. On the other hand polygon in

 7

Figure 3b is a non-sleeve because all triangulation duals are not chains. In the first step

algorithm finds a diagonal and perform triangulation in both directions assuming the

polygon is a sleeve. If the polygon indeed happens to be a sleeve the algorithm terminates

successfully. On the other hand if the polygon is not a sleeve, the algorithm partition

polygon into components by inserting appropriate diagonals and proceeds to triangulate

the components separately. In the worst case, the time complexity O(n(1+t0)) could be

O(n
2
) for polygon where number of triangles that do not share polygon edges is O(n). But

for polygon with simpler shape complexity the value of t0 is small and usually constant.

In some case the algorithm runs in linear time.

Figure 2.3a: A sleeve polygon

Figure 2.3b: A non-sleeve polygon

2.3 Decomposition into monotone polygons

Improved triangulation algorithm that executes in O(nlogn) time was first

introduced by Garey, Johnson, Preparata & Tarjan in 1978. It first partitions the polygon

into simpler pieces separately in efficient manner. The simpler pieces are called

monotone polygons. A polygon P is monotone in y-direction if any horizontal line

 8

intersects P in exactly one line segment or empty. The step for partitioning into monotone

components is done in O(nlogn) time. This is achieved by constructing diagonals from

“cusp” vertices as shown in Figure 4. It is remarked that a horizontal line segment s1 can

be drawn in a cusp vertex so that the polygon edge at the cusp vertex are either both

above or below s1. In figure 5 the polygon is partitioned into six monotone pieces.

Triangulating monotone polygon can be achieved in linear time as briefly described next.

Figure 2.4 Polygon partitioned into monotone pieces – I, II, … VII.

2.4 Triangulating a monotone polygon

Given polygon is called monotone with respect to line L if it can be split into two

polygonal chains, where each chain is monotone with respect to L. Note that a chain Ch1

is monotone with respect to a line L if the intersection of any line parallel to L with Ch1

 9

is either empty or one point. In Figure 6 a monotone polygon with respect to y axis is

shown and the two monotone chains are <v0, v1, …, v14> and < v14, v15, …, v26, v0>. It is

easily observed that the two monotone chains left-chain and right-chain, as described

above are such that their vertices are already sorted by y-coordinate. This ordering

property of monotone chains can be used to develop an efficient algorithm. The algorithm

obtains the sorted list of the vertices of the polygon by merging the left-chain and right-

chain. Since merging of two sorted list can be done in linear time the sorted list of

vertices (sorted by y-coordinate) can be done within the same time. The top-most and the

bottom-most vertices can also be determined in linear time by simply scanning the

boundary. After having the sorted list of vertices the polygon can be triangulated in

greedy manner by walking top to down and by using stack. The details can be found in

[1, 15, 16].

 10

Figure 2.5 Triangulated Monotone Polygon.

2.5 Converting triangulations to quadrangulations

For certain problems in finite element analysis and scattered data interpolation

decomposing a polygon into quadrangle (quadrilateral) elements is more beneficial than a

triangular decomposition. Unfortunately algorithms for high quality quadrangle meshes

are not as well developed as algorithms for triangular meshes. It is known that a polygon

may not admit a qaudrangulation if we restrict diagonals to be inserted only between

existing vertices (where Steiner points are not permitted). Additionally it was proven that

qaudrangulation without adding Steiner points can be done only if number of vertices of a

figure is even. Unlike quadrangular, computing of triangular meshes is well known and

developed for years, due to that fact scientist took an insight into converting

 11

triangulations to quadrangulations. A triangular mesh generated on a simple polygon can

be converted into quadrangular in O(n) time. The restriction is that obtained quadrangles

have to be strict quadrangles – no three vertices can be collinear (that would make them

triangles). O(n) time can be achieved by inserting Steiner points on all of the edges and

diagonals of a triangulated polygon. Then extra Steiner points are inserted in the interior

of each of the triangles and connected to the other 3 points on the diagonal and the edges

(Figure 2.6a and 2.6b). Connected Steiner points yield quadrangular mesh. Such

algorithm is very simple to implement and run in linear time. Disadvantage of that

solution is the fact that large number of Steiner points is generated, while the goal is to

keep that amount low. For simple n-gon such approach always uses 3n-5 Steiner points.

Figure 2.6a: Triangulated simple polygon

Figure 2.6b: Quadrangulation obtained by inserting

3n-5 Steiner points

 12

A slightly more complicated algorithm was developed that decreases number of

Steiner points. Algorithm’s first step is to obtain a Hamiltonian-cycle triangulation by

Arkin’s Algorithm [17]. A planar dual tree is inserted into triangulated polygon. Once the

tree is constructed each triangle’s interior node of a dual tree is connected with three

vertices of that triangle. Now diagonals of an original polygon triangulation are erased

and Hamiltonian triangulation is obtained. Next, we need to visit polygon’s triangles in

Hamiltonian order. We can do that by performing a tree traversal of the geometrical dual

tree – Hamiltonian cycle. By visiting each triangle and erasing every other diagonal

polygon quadrangulation is achieved (Figure 2.8a, 2.8b, 2.8c, 2.8d). One outside Steiner

point may be required to quadrangulate last remaining triangle. Algorithm performs in

O(n) time and always generates n-2 Steiner points. Further improvements of converting

triangular meshes to quadrangulations were proposed. In [18] presented method require at

most n/3 outer Steiner points or at most n/4 inner Steiner points and at most one outside

the polygon.

 13

Figure 2.7a: Triangulated simple polygon

Figure 2.7b: Dual tree inserted into triangulated

polygon with each triangle’s interior node

connected to vertices of corresponding triangle

Figure 2.7c: Polygon with triangulating diagonals

removed

Figure 2.7d: Quadrangulated polygon with n-2

Steiner points inserted (one single triangle

remaining)

 14

CHAPTER 3

IMPROVED TRIANGULATION

This chapter presents the main contributions of the thesis. We propose two

approaches for improving performance of ear-slicing techniques for generating quality

triangulation. The first approach is based on searching for best diagonal to slice an ear.

The second approach relies on partitioning polygon after examining the output generated

from regular triangulation.

3.1 Notion of quality triangulation

We first consider the quality measure of a triangle. One of the applications of

triangular mesh is in finite element analysis [1,7], where a complicated domain need to be

partitioned into union of simple shapes such triangles, quadrilaterals, hexagons, etc. For

computing fluid flow and heat transfer in a given domain, it is necessary to solve partial

differential equations on triangles and quadrilaterals rather than the whole domain. The

quality of solution obtained by using finite elements (triangles, quadrilaterals) method

depends on the shape of the elements. The finite elements that are not skinny yield better

approximation for the generated solution. For such applications, it is beneficial to

generate triangular mesh with larger proportion of quality triangles.

One way to measure the quality of a triangle is by finding its smallest enclosing

bounding rectangle. An easy way of finding such a rectangle is to construct the smallest

iso-thetic (axis parallel) rectangle. It is very easy to construct smallest enclosing iso-

thetic rectangle. We just have to select appropriate x- and y-coordinates from the

coordinates of the vertices of the triangle. An example of smallest iso-thetic rectangle is

shown in Figure3a. It turns out that the smallest enclosing rectangle in not necessarily

 15

iso-thetic as shown in Figure 3b. Let l and w (l>= w) be the height and width,

respectively, of the smallest enclosing rectangle. Then the aspect ratioar(T) of triangle T

is defined as the ratio w/l. It is obvious that aspect ratio of any triangle T satisfies the

condition 0 <ar(T) <= 1. A high quality triangle should have large (> 0.5) aspect ratio.

 (a): Iso-thetic bounding box (b): General bounding box

Figure 3.1: Two ways of measuring aspect ratio

3.2 Greedy searching.

To modify the performance of ear-clipping triangulation it is necessary to examine

the aspect ratios of all possible ears by scanning the whole boundary. The algorithm

examines each three consecutive vertices <vi-1, vi, vi+1> one by one along the boundary

starting from vertex v0. It checks if vi-1, vi+1 is an internal diagonal or not. If vi-1, vi+1 is

indeed an diagonal then it computes aspect ratio of the triangle (“ear”) <ai-1, ai, ai+1>.

The algorithm keeps track of the triangle that maximizes the aspect ratio by constantly

updating the desired “search-ear” as the scan proceeds along the boundary. When the first

quality triangle identified in greedy-manner is completed, the initial polygon is made

smaller by a vertex by chopping-off the ear. The process of ear-slicing is continued until

the residual polygon is a triangle. The running snap-shot of the algorithm is shown in

Figure 3.2.

 16

 (a): Polygon to be triangulated

 (b): First quality triangle found

 (c): First “ear” chopped and second quality

triangle found

 (a):

(d): Residual polygon is a triangle

 (e): Triangulated polygon

Figure 3.2: Improved ear-slicing triangulation

 17

The diagonal corresponding to the ear that maximizes the aspect ratio is taken as the

desired diagonal for triangulation. An algorithm based on this search scheme by

comparing aspect ratio is sketched as Algorithm 2. A triangulation obtained by applying

Algorithm 2 is shown in Figure 3.2, which clearly has larger number of quality triangles

than a triangulation obtained by traditional method showed in Figure 2.2.

Figure 3.3 Triangulation by improved ear-cutting method

Algorithm 2: Triangulation by Modified Ear-Slicing

Input: A simple polygon with n vertices v0, v1, v2, ... , vn-1 stored in a list L.

Output: A set of n-3 diagonals that triangulate the polygon

Step 1: Let D be the empty diagonal list.

Step 2: while (L has more than 3 vertices) do

a.LetTi be the next ear

 b.Tmax = Ti; maxval = ar(Ti);

 c. Ti = getNextEar();

 d. while (Ti is notnull) do

 if (ar(Ti)>maxval) then

 Tmax = Ti;

maxval = ar(Ti);

 endif

 Ti = getNextEar();

 endwhile

 e. Add the diagonal corresponding to Tmax to D.

Step 3: Remove middle vertex ofTmax fromL.

 endwhile

Step 4: Output diagonals in D as triangulating diagonals

 18

Time complexity analysis of Algorithm 2 is straightforward. The inner while loop

need to examine all triangles to determine the best one. Hence one execution of the inner

while-loop takes O(n
2
) time. The outer while-loop executes n-3 times and hence the total

time complexity of Algorithm 2 is O(n
3
).

Theorem 1: Modified ear-slicing algorithm can be executed in O(n
3
) time

3.3 Polygon Partitioning and Ear Slicing.

On closer examination of the triangulation obtained by using the standard ear-slicing

algorithm we find that there could be regions where many skinny triangles are crowded.

This is illustrated in Figure 3.4.

Figure 3.4 Ilustating the crowding of skinny triangles

Definition 3-1: Given a triangulated polygon the internal diagonal that intersects with

most number of skinny triangles is called the stabbing diagonal (Figure 3.5).

 19

Figure 3.5 Ilustating stabbing diagonal

In order to improve the number of quality triangles our approach is to first partition

the polygon into components by using the stabbing diagonals. The critical issue here is

come up with technique for identifying appropriate stabbing diagonal efficiently. An

obvious way is to try all possible diagonals as possible stabbing candidates. For this

purpose we need to use the concept of visibility graph of a polygon investigated in

computational geometry [1] which can be described as follows:

Visibility Graph: Given a simple polygon P the visibility graph of P, denoted as

VG(P) consist of set of vertices V which are exactly the set of vertices of the polygon and

the set of edges are the set of internal diagonals of the polygon.

 20

Figure 3.6 Illustrating visibility graph.

To determine the stabbing diagonal we can first compute the visibility graph to get all

possible candidate internal diagonals. Each diagonal from the visibility graph is checked

for the intersection with the triangles of the triangulation. The number of triangles

intersected by a diagonal can be referred to as its stabbing number. The diagonal that

maximizes the stabbing number is taken as the stabbing diagonal.

Figure 3.6 Illustrating visibility edge with triangulating edges.

 21

A formal sketch of the algorithm is as follows:

Algorithm 2: Partitioning and Ear-Slicing

Input: (i) A simple polygon P with n vertices v0, v1, v2, ... , vn-1 stored in a list L.

(ii) Integer m

Output: A set of n-3 diagonals that triangulate the polygon.

Step 1: Compute the visibility graph VG(P) of the given simple polygon.

Step 2: Determine the triangulation T(P) by applying improved ear-slicing

 triangulation algorithm

Step 3: // Determine stabbing number for diagonals of Visibility Graph.

 For each diagonal edge ei in VG(P) do

 sn(ei)=Number of diagonals of T(P) intersected by ei.

Step 4: Let E’ be the list of diagonals of VG(P) sorted by stabbing number (in

 non-incrementing order).

Step 5: Let P1, P2 … Pm be the sub-polygons of P implied by the first m

 diagonal in E’.

Step 6: Triangulate P1, P2 … Pm by applying the improved ear-slicing

 algorithm.

Step 7: Output the diagonal of triangulated polygon of P1, P2 … Pm.

The time complexity of Algorithm 2 can be analyzed in straightforward manner.

Visibility graph can be computed in O(n
2
) time [1] and hence step 1 takes O(n

2
)

Improved ear-slicing (step 2) can be done in O(n
3
) time. Stabbing numbers sn(ei) can be

computed by checking each edge of visibility graph again triangulation in O(n
3
) time.

Sorted list of diagonals (step 4) can be done in O(n
2
logn) time by sorting all O(n

2
)

diagonals. Once we have E’, step 5 can be obtained in O(n
2
) time. Each of the m

polygon’s component in step 6 can have O(n) sizes and hence step 6 is takes O(n
3
m)

time. Step 7 takes O(n) time. Since step 6 is the dominating step, the total time of the

algorithm is O(mn
3
).

 22

CHAPTER 4

IMPLEMENTATION

This chapter describes implementation and study of the ear-cutting and improved

quality triangulation algorithms. Program was implemented in Java Version 1.6.

Application consists of three algorithms implemented to triangulate the polygons.

First algorithm performs standard ear-cutting triangulation, second one performs

improved quality triangulation and last one allows for manual decomposition of polygons

by diagonal stabbing and individual triangulation of decomposed pieces.

4.1 Application interface

Implementation is done by permitting user to generate a figure or read any

predesigned polygon from a file consisting of n vertices. Polygon size and shape can be

adjusted by adding and deleting vertices or splitting edges. Once figure is finalized user

has a choice to triangulate it using original ear-cutting method or execute an improved

quality triangulation algorithm. As a result program outputs triangulating diagonals.

Slight code modification allows user to manually decompose polygon by inserting

stabbing diagonals in the places where large number of triangulating diagonals exist.

Decomposed polygon is then triangulated using improved ear-cutting method and yields

ameliorated results.

4.1.1 Interface description

Figure 4.2 shows an implementation of the main Graphic User Interface. GUI was

implemented by extending the JFrame class component in java.swing which consists of

four panels. Application layout is presented in Figure 4.1. File menu is contained within

 23

JFrame’s top menu bar and contains two basic items: read and save. All other panels

contained within JFrame object are constructed by using JPanel class. Main panel area is

divided into four sub-panels: left, right, center and bottom. Center panel contains main

display area that allows user to manually draw, edit or display polygons read from a file.

Mouse coordinates are provided in the upper left corner to help navigate or draw objects

within center area. The right panel is divided into two windows. First one is used to

display x and y vertex coordinates of the polygon. Appropriate coordinates are displayed

each time user clicks inside the center panel to draw or modify a polygon by adding a

vertex. Second window displays triangles’ quality statistics. Information is classified into

5 groups with respect to triangles’ aspect ratio. Large number of triangles in the first two

groups indicates a lot of skinny triangles and low quality of triangulation, accordingly

large number of triangles in groups four and five indicate good triangulation quality. First

group contains triangle with aspect ratio in range 0:0.2, second group in range 0.2:0.4,

third in 0.4:0.6, last two groups contain good quality triangles with aspect ratio in range

0.6:0.8 and 0.8-1 accordingly. Total number of triangles in each of the groups is

displayed as a result of successful triangulation.

 24

Figure 4.1: GUI Layout

Figure 4.2: The Initial Display of GUI for polygon triangulation

The right panel contains four checkboxes used to add and manipulate the edges and

vertices of a polygon. Application starts with no vertices or edges displayed, user can

Menu Bar

Bottom Panel

Left

Panel

Right

Panel

Center Panel

 25

initiate drawing figure by selecting Draw-Vertex checkbox. Figure 4.2 presents simple

three vertices object drawn by user in the center panel. Such triangle can be grown to a

bigger polygon by adding consecutive vertices and splitting the edges. User adds vertex

simply by clicking inside the main panel area. Draw-Vertex, Edit-Vertex, Delete-Vertex

and Spli-edge can be done one at a time. Functionality of right panel checkboxes is

described in Table 4.1. Finally, the bottom panel contains two buttons used to execute

polygon triangulation. First button to the left triangulate polygon using original ear-

cutting method, second button executes improved triangulation. Polygon can be

triangulated only once for each start of the application. Multiple instances of the same

application can be used for comparison of results. Additionally source code can be edited

to manually decompose polygon by stabbing diagonals between the vertices where large

number of diagonals exist. Such decomposition further improves the quality. Once

decomposed polygon can be executed by clicking Improved Ear-cutting method button.

Saved polygon can be used multiple times to run different algorithms to compare the

results. However, store option will not save triangulating diagonals, therefore algorithm

has to be executed again in order to restore previous triangulation results.

Table 4.2 Right Panel checkboxes description.

1 Draw-Vertex Adds a vertex vn to edge v0 , vn-1.

2 Edit-Vertex Changes x and y coordinates of a vertex, update is done by

clicking the vertex and dragging it into desired place

within a main panel area.

3 Delete-Vertex Deletes clicked vertex of a polygon by updating the values

to the connecting vertices.

4 Split-Edge Splits the closest edge into two parts by generating new

vertex to the closest edge.

 26

Figure 4.3a: AutoCAD figure used for triangulation

221

515 844

656 892

574 824

646 854

705 845

650 822

… …

Figure 4.3b: Part of input file

generated by AutoLISP script

4.1.2 Program menu items.

File menu is located in top menu bar and contains two basic items: read and save.

Generated or modified objects can be saved to repeat research and execution on multiple

algorithms. Quality improvement can be measured using Triangles Stats data if the same

polygon is used to execute various algorithms. Second option allows reading stored

objects from a file. Figure contained in the file can be created by user in main panel or

generated and extracted from external application, i.e. AutoCAD. File has to be in the

format where the first line contains number of vertices, followed by lines containing x

and y coordinates of each vertex. AutoCAD was used to generate desired, complex

shapes and AutoLISP script was written to export them to appropriate, readable file

format. Figure 4.3a presents figure draw in AutoCAD and Figure 4.3b presents part of

 27

input file generated by AutoLISP script. Figure 4.4 and Figure 4.5 shows the GUI

representation of the File menu and selection panel to choose or save the polygon

respectively.

Table 4.2 File Menu Items description.

1 Read File Brings up a file selection panel, user can choose a pre

generated graph file.

2 Save File Brings up a file save panel, user can save a new generated

file or replace an existing file

Figure 4.4: File-menu pull down.

 28

Figure 4.5: Prompting user for File selection.

4.2 Description of methods and classes.

Program Cross Triangulation uses three distinct ways to decompose a polygon drawn

by user or read from a file into triangles. Execution is triggered by clicking either

Original Ear-cutting or Improved Ear-Cutting button. Standard ear-cutting

decomposition is performed using algorithm described in Chapter 2, improved method is

based on extended ear-slicing algorithm as discusses in Chapter 3. User can also modify

code to perform manual decomposition into sub-polygons and then triangulate

decomposed pieces using improved method. Resulted triangulating diagonals are painted

in red and displayed inside black boundary of a polygon. Main driver of a program is

class public class Cross_Triangulation. It contains definitions of all methods used to set

 29

up GUI components, including panels, buttons and checkboxes. It defines event driven

program behavior. It also contains all methods responsible for successful execution of a

polygon triangulation. Two main methods that execute triangulation are: public void

triangulate1(Vector) – implements standard ear-slicing algorithm, public void

triangulate2(Vector) – implements improved ear-slicing. Methods public void

triangulateBetween(Vector, int, int, int, int), public void triangulateLeftof(Vector,

int, int) and public double triangulateRightof(Vector, int, int) perform manual

polygon decomposition and extended triangulation.

Implemented method public void triangulate1(Vector) takes a Vector containing

polygon vertices’ coordinates as a parameter. It clones the polygon vector and uses new

copy to process triangulation algorithm. Method attempts to find a diagonal for each

vertex of a polygon starting from vertex 0 until n-1. Algorithm checks if diagonal exist

for every other vertex i.e. vertex i with vertex i+2. Standard algorithm blindly searches

for diagonals and if a diagonal is found program immediately stores it in a Vector called

diagonals and removes vertex i+1 from cloned polygon (slicing an ear). Each algorithm

method uses public boolean isDiagonal_ie(Vector, int, int). isDiagonal_ie takes

polygon (Vector) and two vertices’ indices (int) as the parameters. It returns Boolean

value true if there exists a diagonal between provided vertices. Program repeats finding

diagonals and removing ears until number of vertices is greater than 3 (residual part is a

triangle). Program uses protected void paintComponent(Grapics g) method to draw

polygon and output triangulating diagonals from Vector(Point) diagonals into center

panel of GUI. Figure 4.6 presents figure triangulated using original ear-slicing method.

 30

Figure 4.6: Figure triangulated using traditional ear-cutting method

Method public void triangulate2(Vector) extends triangulate1 by including method

public int getFatEar(Vector) . getFatEar takes a polygon as a parameter and returns

ear tip index of a polygon ear with the largest aspect ratio. Method searches polygon

boundary in greedy manner, verifies if triangle is an ear (public Boolean isEar(Vector,

int)) computes aspect ratio of each of the ears and returns index of the one with the

largest value. Program continues by slicing polygon ear with returned index of an ear tip

until residual part is a triangle. Method public double getAspectRatio(Point, Point,

Point) takes coordinates of three consecutive vertices of a polygon as a parameters,

computes and returns decimal value of an aspect ratio of triangle created by given points.

Method getAspectRatio uses three additional classes and their methods to obtain lengths

and heights of a triangle required to compute Aspect Ratio. Classes public class

my_point, public class segment and public class line were used. Once three edges and

 31

heights are found method getAspectRatio computes three distinct aspect ratios and

returns the smallest of them. Such method uses general bounding box as described in

Chapter 3 and presented in Figure 3.1b. Figure 4.7 presents the polygon triangulated

using improved method which exhibits essential quality improvement over triangulation

showed in Figure 4.6.

Figure 4.7: Figure triangulated using improved ear-cutting method

Methods public void triangulateBetween(Vector, int, int, int, int), public void

triangulateLeftof(Vector, int, int) and public double triangulateRightof(Vector, int,

int) were implemented to ameliorate obtained results even further by decomposing

polygon into sub-polygons in the areas where large number of skinny triangles exist.

Method public void triangulateBetween(Vector, int, int, int, int) takes as an input

Vector containing vertices of a polygon, and four integers with vertices indices. Each pair

of vertices indicates start and end of decomposing diagonal. User can provide indices of

two diagonals and triangulate area in between them. Method will copy area restricted by

 32

two diagonals into new polygon Vector and triangulate it using improved ear-slicing

technique. Such method can be combined with public void triangulateLeftof(Vector,

int, int) and public double triangulateRightof(Vector, int, int). triangulateLeftof and

triangulateRightof takes Vector containing vertices of a polygon and two integers with

vertices indices as a parameter. Two integers indicate starting and ending index of a

decomposing diagonal. First method copies and triangulates area enclosed within

polygon boundary to the right of provided diagonal and second method copies and

triangulates area enclosed within polygon boundary to the left of provided diagonal.

Experiments with manual decomposition yielded surprisingly good results, that

encouraged author to develop an automatic method. Polygon partitioning and ear-slicing

algorithm was proposed and described in chapter 3 (Algorithm 3).

4.3 Experimental Results

Numbers of experiments with complicated polygonal shapes to test the performance

of algorithms were conducted. Table 4.3 presents samples of experimental results. It

contains five columns with five different aspect ratios. Each column is divided into two

sub-columns that contain number of triangles with respect to aspect ratio for original ear-

slicing algorithm (Org) and improved triangulation (Imp). We showed results for figures

of different shapes and sizes. Number of vertices range between 70 and 300. Regardless

of size and shape of the polygon improved ear-slicing algorithm yields better quality.

 33

Table 4.3 Triangulation Quality comparison.

Sample Polygon

Aspect Ratios

Asp=

0:0.2

Asp=

0.2:0.4

Asp=

0.4:0.6

Asp=

0.6: 0.8

Asp=

0.8: 1

Org Imp Org Imp Org Imp Org Imp Org Imp

n=77

75 73 0 2 0 1 0 0 0 0

n=122

56 12 37 41 23 53 4 13 0 1

n=170

118 71 35 64 12 27 3 6 0 0

n=221

126 74 71 97 19 38 3 10 0 0

 34

n=295

203 126 60 90 21 50 9 24 0 3

Experiments with polygon partitioning were done for complex polygon. Figure 4.8

represents triangulated Lake Mead, Nevada shape with partitioning diagonals showed as

bold lines. Simulation is created by reading over three hundreds of vertices that form a

complicated polygonal shape. When the component polygons are separately triangulated

by using the modified ear-slicing algorithm the result is shown in Figure 4.9, which has

large proportions of "quality" triangles. Our experiments based on Lake Mead shape

prove amelioration of triangulation quality for improved ear-cutting algorithm.

 35

Figure 4.8: Stabbing diagonals (drawn with thick edges) of a triangulated polygon

Figure 4.9: Triangulated polygon by partitioning and ear slicing

 36

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We presented a critical review of polygon triangulation algorithms and underlined the

need for improving the ear-slicing polygon triangulation algorithm. We presented two

approaches from improving the performance of standard ear-slicing algorithm. The

proposed approaches are sketched in a formal algorithm. The time complexity of the first

algorithm is O(n
3
) where n is the number of vertices in the polygon. The time complexity

of the second algorithm is O(mn
3
), where m is the number of components obtained by

partitioning.

We presented an extensive experimental investigation of the first algorithm in Java

programming language. The front-end of the implementation has user-friendly interface

for entering and displaying polygon and triangulation. The performance of the first

algorithm is experimentally investigated on several types of polygons. The compiled

results show that the triangulation obtained by the first indeed contains high proportion of

quality triangles.

Due to time constraints we were not able to perform extensive experimental

investigation of the second algorithm. However a few test cases show that the second

algorithm has a potential to generate good quality triangulation.

Several future research activities can be carried out by extending the presented

algorithm. One problem would be to extend proposed algorithm to polygon with holes. It

would also be fruitful to perform extensive experimental investigation of the second

algorithm presented in the thesis.

 37

BIBLIOGRAPHY

[1] O'Rourke, Joseph, Computational Geometry in C, Second Edition, Cambridge

University Press, 1998.

[2] ElGindy, H., Everett, H., and Toussaint, G. T., (1993) "Slicing an Ear Using

Prune-and-Search," Pattern Recognition Letters, 14, (9):719–722.

[3] Meisters, G. H., "Polygons have ears." American Mathematical Monthly 82

(1975). 648–651

[4] Chazelle, Bernard, "Triangulating a Simple Polygon in Linear Time", Discrete

and Computational Geometry6: 485–524, 1991.

[5] Stefan HertelKurt Mehlhorn, “Fast Triangulation of Simple Polygons”,

Proceedings of the 1983 International FCT-Conference on Fundamentals of

Computation Theory.

[6] B. Chazelle, “A Theorem on Polygon Cutting with Applications”, Proc. 23rd

FOCS (1982), 339-349.

[7] Mark de Berg, Marc van Kreveld, Mark Overmars, and OtfriedSchwarzkoft,

Computational Geometry (2nd revised ed.), Springer Verlag, 2000.

[8] Godfried T. Toussaint, "Efficient triangulation of simple polygons," The Visual

Computer, vol. 7, 1991, pp. 280-295.

[9] Seidel, Raimund (1991), "A Simple and Fast Incremental Randomized Algorithm

for Computing Trapezoidal Decompositions and for Triangulating Polygons",

Computational Geometry: Theory and Applications1: 51–64.

[10] B. Preas and M. Lorenzetti, Eds., “Physical Design and Automation of VLSI

Systems”, Benjamin/Cummings, Menlo Park, 1988.

[11] D. Zydek, “Processor Allocator for Chip Multiprocessors,” Ph.D. Thesis,

University of Nevada, Las Vegas, USA, 2010.

[12] D. Zydek, H. Selvaraj, “Hardware Implementation of Processor Allocation

Schemes for Mesh-Based Chip Multiprocessors,” Journal of Microprocessors and

Microsystems, vol. 34, no. 1, 2010, pp. 39-48.

[13] D. Zydek, H. Selvaraj, L. Koszalka, I. Pozniak-Koszalka, “Evaluation Scheme for

NoC-based CMP with Integrated Processor Management System,” International

Journal of Electronics and Telecommunications, vol. 56, no. 2, 2010, pp. 157-

168.

 38

[14] D. Zydek, H. Selvaraj, “Fast and Efficient Processor Allocation Algorithm for

Torus-Based Chip Multiprocessors,” Journal of Computers & Electrical

Engineering, vol. 37, no. 1, 2011, pp. 91-105.

[15] F. Preparata and K. Supowit. Testing a simple polygon for monotonicity

Information Proc. Letters, 12(4):161–164, 1981.

[16] A. Fournier , D. Y. Montuno, Triangulating Simple Polygons and Equivalent

Problems, ACM Transactions on Graphics (TOG), v.3 n.2, p.153-174, April 1984.

[17] E. Arkin, M. Held, J. Mitchell, S. Skiena, Hamiltonian Triangulations for Fast

Rendering, in: J. Van Leeuven, ed., Algorithms –ESA ’94, Lecture Notes in

Computer Science 855, Utrecht, Netherlands, September 1994, pp. 36-47.

[18] Suneeta Ramaswami, Pedro Ramos, Godfried Toussaint, Converting

triangulations to quadrangulations, in: Computational Geometry: Theory and

Applications, Computational Geometry 9 (1998) pp. 257-276.

[19] D. Zydek, H. Selvaraj, G. Borowik, T. Luba, “Energy Characteristic of Processor

Allocator and Network-on-Chip,” International Journal of Applied Mathematics

and Computer Science, vol. 21, no. 2, 2011, pp. 385-399, DOI: 10.2478/v10006-

011-0029-7.

[20] D. Zydek, H. Selvaraj, “Processor Allocation Problem for NoC-based Chip

Multiprocessors,” Proceedings of 6th International Conference on Information

Technology: New Generations (ITNG 2009), IEEE Computer Society Press,

2009, pp. 96-101, DOI: 10.1109/ITNG.2009.182.

[21] D. Zydek, I. Pozniak-Koszalka, L. Koszalka, K. J. Burnham, “Algorithms to

Managing Unicast, Multicast and Broadcast Transmission for Optical Switches,”

Lecture Notes in Computer Science, vol. 5297, Springer Verlag, 2008, pp. 21-30,

DOI: 10.1007/978-3-540-88623-5_3.

[22] D. Zydek, H. Selvaraj, L. Gewali, “Synthesis of Processor Allocator for Torus-

Based Chip MultiProcessors,” Proceedings of 7th International Conference on

Information Technology: New Generations (ITNG 2010), IEEE Computer

Society Press, 2010, pp. 13-18, DOI: 10.1109/ITNG.2010.145.

[23] D. Zydek, N. Shlayan, E. Regentova, H. Selvaraj, “Review of Packet Switching

Technologies for Future NoC,” Proceedings of Nineteenth International

Conference on Systems Engineering (ICSEng 2008), IEEE Computer Society

Press, 2008, pp. 306-311, DOI: 10.1109/ICSEng.2008.47.

 39

VITA

Graduate College

University of Nevada, Las Vegas

Bartosz Kajak

Degrees:

Bachelor of Science in Electrical and Computer Engineering

Lublin University of Technology, Poland 2005

Special Honors and Awards:

GPSA Service Award for displaying outstanding performance through

dedication and service to the UNLV and Las Vegas community, Las Vegas

2011

Member of Tau Beta Pi - The USA Engineering Honor Society, University of

Nevada, Las Vegas, 2011

Graduate and Professional Student Association Department’s Representative,

University of Nevada, Las Vegas, 2010

IEEE Member, Institute of Electrical and Computer Engineers, 2010

Articles in Refereed Conference Proceedings:

B. Kajak, L. Gewali, H. Selvaraj, “Ear Slicing and Quality Triangulation”

Proceedings of Twenty First International Conference on Systems Engineering

(ICSEng 2011), IEEE Computer Society Press, 2011.

Thesis Title:

 Improved Algorithms for Ear Clipping Triangulation.

Thesis Examination Committee:

Chairperson, Henry Selvaraj, Ph.D.

Associate Committee Chair, Laxmi Gewali, Ph.D.

Committee Member, Dawid Zydek, Ph.D.

Graduate Faculty Representative, Pramen Shrestha, Ph.D.

	Improved algorithms for ear-clipping triangulation
	Repository Citation

	Microsoft Word - Improved Algorithms for Ear-Clipping Triangulation_1_

