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ABSTRACT 

Improved Algorithms for Ear Clipping Triangulation 

by 

Bartosz Kajak 

Dr. Henry Selvaraj, Examination Committee Chair 

Professor of Electrical and Computer Engineering 

University of Nevada, Las Vegas 

 

Dr. Laxmi Gewali, Associate Examination Committee Chair 

Professor of Electrical and Computer Engineering 

University of Nevada, Las Vegas 

 

 

 We consider the problem of improving ear-slicing algorithm for triangulating a 

simple polygon. We propose two variations of ear-slicing technique for generating 

“good-quality” triangulation. The first approach is based on searching for the best 

triangle along the boundary. The second approach considers polygon partitioning on a 

pre-process before applying the ear-slicing. Experimental investigation reveals that both 

approaches yield better quality triangulation than the standard ear-slicing method. 
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CHAPTER 1 

INTRODUCTION 

Triangulation of a simple polygon is a partitioning of its interior into triangles such 

that the vertices of triangles are also the vertices of the polygon. It has been established 

that any simple polygon can be triangulated. It can be easily verified that a triangulated 

polygon of n vertices contains exactly n-3 diagonal and n-2 triangles. A polygon can be 

triangulated in exponentially many ways. The problem of developing efficient algorithms 

for triangulating a simple polygon has attracted the interest of several researchers from 

computational geometry [1]. One of the first polygon triangulation algorithms found in 

standard text books is based on repeatedly slicing a triangle. This approach is often called 

triangulation by “ear-slicing“. A straightforward implementation of ear-slicing algorithm 

takes O(n
2
) time. From the beginning of 1980, there was a flurry of research interest for 

developing a linear time algorithm for triangulating a simple polygon. The fastest 

algorithm known for the next ten years (1980-1989) had time complexity O(nlog*n). For 

all practical purposes this time complexity is linear. From the theoretical point of view, 

there was still room for improvement. Finally, Bernard Chazelle [4] reported a linear time 

algorithm for triangulating a simple polygon. Some investigators have commented that 

Chazelle’s linear time algorithm is very difficult for practical implementation. Finding a 

simple linear time algorithm that can be implemented easily is still an open problem. 

In this thesis an overview of different methods for triangulating a polygon are 

presented. It is shown that some algorithms can yield mesh with large number of thin-

triangles which are not desired for application in finite element analysis. Quality issue for 

triangulation is considered. A triangulation with large proportions of “fat” triangles is 
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said to be of high quality. Modifications of the standard ear-cutting algorithm for 

generating quality triangular mesh are presented. Additionally, presented method is 

improved by introducing polygon decomposition. Experiment results of the proposed 

algorithms are presented and additional approaches for further improving the quality of 

generated triangles are discussed. 
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CHAPTER 2 

POLYGON TRIANGULATION 

The triangulation of a simple polygon is the partitioning of its interior triangles 

such that the vertices of triangles are also vertices of the polygon. It has been established 

that any simple polygon can be triangulated [1]. It can be easily verified that a 

triangulated polygon of n vertices contains exactly n-3 diagonal and n-2 triangles. A 

polygon can be triangulated in exponentially many ways. The problem of developing 

efficient algorithms for triangulating a simple polygon has attracted the interest of several 

researchers from computational geometry [1-7]. One of the first polygon triangulation 

algorithms found in standard text book is based on repeatedly slicing a triangle [1,7]. This 

approach is often called triangulation by “ear-cutting “. A straightforward 

implementation of ear-cutting algorithm takes O(n
2
) time. From the beginning of 1980 

there was a flurry of research interest for developing a linear time algorithm for 

triangulating a simple polygon. The fastest algorithm known for the next ten years (1980-

1989) had time complexity O(nlog*n)[1,7]. For all practical purposes this time 

complexity is linear. From theoretical point of view, there was still room for 

improvement. Finally Bernard Chazelle [4] reported a linear time algorithm for 

triangulating a simple polygon. Some investigators have commented that Chazelle’s 

linear time algorithm is very difficult for practical implementation [1]. Finding a simple 

linear time algorithm that can be implemented easily is still an open problem. 

2.1 Ear-Slicing algorithm 

Ear-slicing is one of the well-known techniques for triangulating a simple 

polygon [1, 2, 3, 6]. Due to its intuitive appeal, ear-slicing triangulation is usually 
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considered as one of the fist simplest triangulation algorithms. We first present a brief 

review of the standard ear-slicing algorithm. Let the vertices of the polygon that appear in 

the counterclockwise traversal of its boundary be denoted by v0, v1, v2, ... , vn-1. Three 

consecutive vertices vi-1,vi ,vi+1 form an ear of the polygon if the line segment Li  = [vi-

1,vi+1] connecting vertices vi-1and vi+1lies completely inside the polygon. Figure 1 

illustrates the definition of ear. In the figure, vertex sequence <v4,v5, v6> form ear 

because line segment L5  = [v4,v6] lies completely inside the polygon. Similarly, vertex 

sequence <v8,v9, v10> form another ear. On the other hand, vertex sequence <v1,v2, v3> 

does not form an ear because the line segment joining v1 to v3 does not lie completely 

inside the polygon. 

 
Figure 2.1 : Illustrating ear of a polygon 
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Figure 2.2 Triangulation by traditional ear-cutting method 

 

It is known that any polygon with number of vertices greater than 3 has at least two 

ears [1]. If we have a simple polygon P with large number of vertices then the residual 

shape P' obtained by slicing off an ear from P is also a simple polygon. This observation 

reveals that any simple polygon with at least three vertices can be triangulated by slicing 

an ear repeatedly. Ear-slicing stops when the residual polygon is a triangle. This 

algorithm can be formally sketched as follows. 

 

Algorithm 1: Triangulation by Standard Ear-Slicing 

Input:  A simple polygon with n vertices v0, v1, v2, ... , vn-1 stored in a list L. 

 Output: A set of n-3 diagonals that triangulate the polygon 

Step 1: Let D be the empty diagonal list. 

 

Step 2: while (L has more than 3 vertices) do 

 

Step 3:  (a.) Locate an ear vi-1,vi ,vi+1. 

  (b.) Add diagonal (vi-1, vi+1) to D. 

 

Step 4:  Remove vi from L. 

 endwhile 

 

Step 5: Output diagonals in D as triangulating diagonals 
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To determine whether a candidate segment di = (vi-1, vi+1) is a diagonal or not, the 

algorithm checks the intersection of di with all the edges of the polygon. If this candidate 

segment does not intersect with any edge of the polygon then it is a valid diagonal and 

inserted into D. This straightforward check for Step 3, takes O(n) time. Since this check 

is repeated O(n) time the total time for Algorithm 1 is O(n
2
). Detailed analysis and 

implementation issue of triangulation by ear-slicing is available in reference [1]. A more 

careful analysis of ear-slicing algorithm has been investigated by ElGingy, Everett, and 

Toussaint [2]. The algorithm reported in [2] is simpler to implement but it still need 

O(n)time per ear-slice. Figure 2.2, shows a triangulation obtained by using the standard 

ear-slicing algorithm. An inspection of the triangles in the triangulation of Figure 2.2 

reveals that there are several thin and skinny triangles. It is thus an interesting problem to 

modify ear-slicing techniques so that the resulting triangulation has reduced number of 

skinny triangles. 

2.2 Toussaint’s strip triangulation  

An efficient method of triangulating a simple polygon was developed by Godfried 

Toussaint in 1988. His adaptive algorithm runs in O(n(1+t0)) where t0 < n is the resulting 

number of triangles that share no edges with the processed polygon. Therefore t0 depends 

on shape complexity of input polygon. Due to its low complexity the algorithm has found 

immediate application in computer graphics. The algorithm requires no sorting or usage 

of complicated data structures. The approach is to partition complex polygon into set of 

smaller polygons called sleeves. Note that a polygon is called a sleeve if it can be 

triangulated so that the triangulation dual is a chain. The polygon in Figure 3a admits 

triangulation whose dual is a chain and hence it is a sleeve. On the other hand polygon in 
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Figure 3b is a non-sleeve because all triangulation duals are not chains. In the first step 

algorithm finds a diagonal and perform triangulation in both directions assuming the 

polygon is a sleeve. If the polygon indeed happens to be a sleeve the algorithm terminates 

successfully. On the other hand if the polygon is not a sleeve, the algorithm partition 

polygon into components by inserting appropriate diagonals and proceeds to triangulate 

the components separately. In the worst case, the time complexity O(n(1+t0)) could be 

O(n
2
) for polygon where number of triangles that do not share polygon edges is O(n). But 

for polygon with simpler shape complexity the value of t0 is small and usually constant. 

In some case the algorithm runs in linear time. 

 

 

  
 

 

Figure 2.3a: A sleeve polygon 

  

Figure 2.3b: A non-sleeve polygon 

2.3 Decomposition into monotone polygons 

Improved triangulation algorithm that executes in O(nlogn) time was first 

introduced by Garey, Johnson, Preparata & Tarjan in 1978. It first partitions the polygon 

into simpler pieces separately in efficient manner. The simpler pieces are called 

monotone polygons. A polygon P is monotone in y-direction if any horizontal line 
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intersects P in exactly one line segment or empty. The step for partitioning into monotone 

components is done in O(nlogn) time. This is achieved by constructing diagonals from 

“cusp” vertices as shown in Figure 4. It is remarked that a horizontal line segment s1 can 

be drawn in a cusp vertex so that the polygon edge at the cusp vertex are either both 

above or below s1. In figure 5 the polygon is partitioned into six monotone pieces. 

Triangulating monotone polygon can be achieved in linear time as briefly described next. 

 

 

Figure 2.4 Polygon partitioned into monotone pieces – I, II, … VII. 

2.4 Triangulating a monotone polygon 

Given polygon is called monotone with respect to line L if it can be split into two 

polygonal chains, where each chain is monotone with respect to L. Note that a chain Ch1 

is monotone with respect to a line L if the intersection of any line parallel to L with Ch1 
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is either empty or one point. In Figure 6 a monotone polygon with respect to y axis is 

shown and the two monotone chains are <v0, v1, …, v14> and < v14, v15, …, v26, v0>. It is 

easily observed that the two monotone chains left-chain and right-chain, as described 

above are such that their vertices are already sorted by y-coordinate. This ordering 

property of monotone chains can be used to develop an efficient algorithm. The algorithm 

obtains the sorted list of the vertices of the polygon by merging the left-chain and right-

chain. Since merging of two sorted list can be done in linear time the sorted list of 

vertices (sorted by y-coordinate) can be done within the same time. The top-most and the 

bottom-most vertices can also be determined in linear time by simply scanning the 

boundary. After having the sorted list of vertices the polygon can be triangulated in 

greedy manner by walking top to down and by using stack. The details can be found in 

[1, 15, 16]. 
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Figure 2.5 Triangulated Monotone Polygon. 

2.5 Converting triangulations to quadrangulations 

For certain problems in finite element analysis and scattered data interpolation 

decomposing a polygon into quadrangle (quadrilateral) elements is more beneficial than a 

triangular decomposition. Unfortunately algorithms for high quality quadrangle meshes 

are not as well developed as algorithms for triangular meshes. It is known that a polygon 

may not admit a qaudrangulation if we restrict diagonals to be inserted only between 

existing vertices (where Steiner points are not permitted). Additionally it was proven that 

qaudrangulation without adding Steiner points can be done only if number of vertices of a 

figure is even. Unlike quadrangular, computing of triangular meshes is well known and 

developed for years, due to that fact scientist took an insight into converting 
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triangulations to quadrangulations. A triangular mesh generated on a simple polygon can 

be converted into quadrangular in O(n) time. The restriction is that obtained quadrangles 

have to be strict quadrangles – no three vertices can be collinear (that would make them 

triangles). O(n) time can be achieved by inserting Steiner points on all of the edges and 

diagonals of a triangulated polygon. Then extra Steiner points are inserted in the interior 

of each of the triangles and connected to the other 3 points on the diagonal and the edges 

(Figure 2.6a and 2.6b). Connected Steiner points yield quadrangular mesh. Such 

algorithm is very simple to implement and run in linear time. Disadvantage of that 

solution is the fact that large number of Steiner points is generated, while the goal is to 

keep that amount low. For simple n-gon such approach always uses 3n-5 Steiner points.  

 

 

 

Figure 2.6a: Triangulated simple polygon 

 

Figure 2.6b: Quadrangulation obtained by inserting 

3n-5 Steiner points 
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A slightly more complicated algorithm was developed that decreases number of 

Steiner points. Algorithm’s first step is to obtain a Hamiltonian-cycle triangulation by 

Arkin’s Algorithm [17]. A planar dual tree is inserted into triangulated polygon. Once the 

tree is constructed each triangle’s interior node of a dual tree is connected with three 

vertices of that triangle. Now diagonals of an original polygon triangulation are erased 

and Hamiltonian triangulation is obtained. Next, we need to visit polygon’s triangles in 

Hamiltonian order. We can do that by performing a tree traversal of the geometrical dual 

tree – Hamiltonian cycle. By visiting each triangle and erasing every other diagonal 

polygon quadrangulation is achieved (Figure 2.8a, 2.8b, 2.8c, 2.8d). One outside Steiner 

point may be required to quadrangulate last remaining triangle. Algorithm performs in 

O(n) time and always generates n-2 Steiner points. Further improvements of converting 

triangular meshes to quadrangulations were proposed. In [18] presented method require at 

most n/3 outer Steiner points or at most n/4 inner Steiner points and at most one outside 

the polygon. 
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Figure 2.7a: Triangulated simple polygon 

 

Figure 2.7b: Dual tree inserted into triangulated 

polygon with each triangle’s interior node 

connected to vertices of corresponding triangle 

 

Figure 2.7c: Polygon with triangulating diagonals 

removed 

 

Figure 2.7d: Quadrangulated polygon with n-2 

Steiner points inserted (one single triangle 

remaining) 
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CHAPTER 3 

IMPROVED TRIANGULATION 

This chapter presents the main contributions of the thesis. We propose two 

approaches for improving performance of ear-slicing techniques for generating quality 

triangulation. The first approach is based on searching for best diagonal to slice an ear. 

The second approach relies on partitioning polygon after examining the output generated 

from regular triangulation. 

3.1 Notion of quality triangulation 

We first consider the quality measure of a triangle. One of the applications of 

triangular mesh is in finite element analysis [1,7], where a complicated domain need to be 

partitioned into union of simple shapes such triangles, quadrilaterals, hexagons, etc. For 

computing fluid flow and heat transfer in a given domain, it is necessary to solve partial 

differential equations on triangles and quadrilaterals rather than the whole domain. The 

quality of solution obtained by using finite elements (triangles, quadrilaterals) method 

depends on the shape of the elements. The finite elements that are not skinny yield better 

approximation for the generated solution. For such applications, it is beneficial to 

generate triangular mesh with larger proportion of quality triangles.  

One way to measure the quality of a triangle is by finding its smallest enclosing 

bounding rectangle. An easy way of finding such a rectangle is to construct the smallest 

iso-thetic (axis parallel) rectangle. It is very easy to construct smallest enclosing iso-

thetic rectangle. We just have to select appropriate x- and y-coordinates from the 

coordinates of the vertices of the triangle. An example of smallest iso-thetic rectangle is 

shown in Figure3a. It turns out that the smallest enclosing rectangle in not necessarily 
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iso-thetic as shown in Figure 3b. Let l and w (l>= w) be the height and width, 

respectively, of the smallest enclosing rectangle. Then the aspect ratioar(T) of triangle T 

is defined as the ratio w/l. It is obvious that aspect ratio of any triangle T satisfies the 

condition 0 <ar(T) <= 1. A high quality triangle should have large (> 0.5) aspect ratio. 

 

 

 

 

     (a): Iso-thetic bounding box                      (b): General bounding box 

Figure 3.1: Two ways of measuring aspect ratio 

3.2 Greedy searching. 

To modify the performance of ear-clipping triangulation it is necessary to examine 

the aspect ratios of all possible ears by scanning the whole boundary. The algorithm 

examines each three consecutive vertices <vi-1, vi, vi+1> one by one along the boundary 

starting from vertex v0. It checks if vi-1, vi+1 is an internal diagonal or not. If vi-1, vi+1 is 

indeed an diagonal then it computes aspect ratio of the triangle (“ear”) <ai-1, ai, ai+1>. 

The algorithm keeps track of the triangle that maximizes the aspect ratio by constantly 

updating the desired “search-ear” as the scan proceeds along the boundary. When the first 

quality triangle identified in greedy-manner is completed, the initial polygon is made 

smaller by a vertex by chopping-off the ear. The process of ear-slicing is continued until 

the residual polygon is a triangle. The running snap-shot of the algorithm is shown in 

Figure 3.2.  
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     (a): Polygon to be triangulated 

 

     (b): First quality triangle found 

 

     (c): First “ear” chopped and second quality 

triangle found                  

  (a):     

(d): Residual polygon is a triangle 

 

     (e): Triangulated polygon                  

Figure 3.2: Improved ear-slicing triangulation 
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The diagonal corresponding to the ear that maximizes the aspect ratio is taken as the 

desired diagonal for triangulation. An algorithm based on this search scheme by 

comparing aspect ratio is sketched as Algorithm 2. A triangulation obtained by applying 

Algorithm 2 is shown in Figure 3.2, which clearly has larger number of quality triangles 

than a triangulation obtained by traditional method showed in Figure 2.2. 

 

Figure 3.3 Triangulation by improved ear-cutting method 

Algorithm 2: Triangulation by Modified Ear-Slicing 

Input:     A simple polygon with n vertices v0, v1, v2, ... , vn-1 stored in a list L. 

Output:  A set of n-3 diagonals that triangulate the polygon 

Step 1:    Let D be the empty diagonal list. 

 

Step 2:    while (L has more than 3 vertices) do 

a.LetTi be the next ear 

  b.Tmax = Ti; maxval = ar(Ti); 

  c.  Ti = getNextEar(); 

  d.  while (Ti is notnull) do 

   if (ar(Ti)>maxval) then 

    Tmax = Ti;  

maxval = ar(Ti); 

    endif 

   Ti = getNextEar(); 

  endwhile 

  e.  Add the diagonal corresponding to Tmax to  D. 

 

Step 3:  Remove middle vertex ofTmax fromL. 

 endwhile 

 
Step 4:    Output diagonals in D as triangulating diagonals 
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Time complexity analysis of Algorithm 2 is straightforward. The inner while loop 

need to examine all triangles to determine the best one. Hence one execution of the inner 

while-loop takes O(n
2
) time. The outer while-loop executes n-3 times and hence the total 

time complexity of Algorithm 2 is O(n
3
).  

Theorem 1: Modified ear-slicing algorithm can be executed in O(n
3
) time 

3.3 Polygon Partitioning and Ear Slicing. 

On closer examination of the triangulation obtained by using the standard ear-slicing 

algorithm we find that there could be regions where many skinny triangles are crowded. 

This is illustrated in Figure 3.4. 

 

 

Figure 3.4 Ilustating the crowding of skinny triangles 

 

Definition 3-1: Given a triangulated polygon the internal diagonal that intersects with 

most number of skinny triangles is called the stabbing diagonal (Figure 3.5).  
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Figure 3.5 Ilustating stabbing diagonal 

 

In order to improve the number of quality triangles our approach is to first partition 

the polygon into components by using the stabbing diagonals. The critical issue here is 

come up with technique for identifying appropriate stabbing diagonal efficiently. An 

obvious way is to try all possible diagonals as possible stabbing candidates. For this 

purpose we need to use the concept of visibility graph of a polygon investigated in 

computational geometry [1] which can be described as follows: 

 

Visibility Graph: Given a simple polygon P the visibility graph of P, denoted as 

VG(P) consist of set of vertices V which are exactly the set of vertices of the polygon and 

the set of edges are the set of internal diagonals of the polygon. 
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Figure 3.6 Illustrating visibility graph. 

To determine the stabbing diagonal we can first compute the visibility graph to get all 

possible candidate internal diagonals. Each diagonal from the visibility graph is checked 

for the intersection with the triangles of the triangulation. The number of triangles 

intersected by a diagonal can be referred to as its stabbing number. The diagonal that 

maximizes the stabbing number is taken as the stabbing diagonal.  

 

Figure 3.6 Illustrating visibility edge with triangulating edges. 
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A formal sketch of the algorithm is as follows:  

Algorithm 2: Partitioning and Ear-Slicing 

Input:     (i) A simple polygon P with n vertices v0, v1, v2, ... , vn-1 stored in a list L. 

(ii) Integer m   

Output:  A set of n-3 diagonals that triangulate the polygon. 

Step 1:    Compute the visibility graph VG(P) of the given simple polygon. 

 

Step 2:    Determine the triangulation T(P) by applying improved ear-slicing 

    triangulation algorithm 

Step 3:   // Determine stabbing number for diagonals of Visibility Graph. 

  For each diagonal edge ei in VG(P) do 

  sn(ei)=Number of diagonals of T(P) intersected by ei. 

     

Step 4:    Let E’ be the list of diagonals of VG(P) sorted by stabbing number (in 

    non-incrementing order). 

 

Step 5:     Let P1, P2 … Pm be the sub-polygons of P implied by the first m     

    diagonal in E’. 

 

Step 6:     Triangulate P1, P2 … Pm  by applying the improved ear-slicing   

    algorithm.      

 

Step 7:     Output the diagonal of triangulated polygon of P1, P2 … Pm.       

 

The time complexity of Algorithm 2 can be analyzed in straightforward manner. 

Visibility graph can be computed in O(n
2
) time [1] and hence step 1 takes O(n

2
) 

Improved ear-slicing (step 2) can be done in O(n
3
) time. Stabbing numbers sn(ei) can be 

computed by checking each edge of visibility graph again triangulation in O(n
3
) time. 

Sorted list of diagonals (step 4) can be done in O(n
2
logn) time by sorting all O(n

2
) 

diagonals. Once we have E’, step 5 can be obtained in O(n
2
) time. Each of the m 

polygon’s component in step 6 can have O(n) sizes and hence step 6 is takes O(n
3
m) 

time. Step 7 takes O(n) time. Since step 6 is the dominating step, the total time of the 

algorithm is O(mn
3
). 
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CHAPTER 4 

IMPLEMENTATION 

This chapter describes implementation and study of the ear-cutting and improved 

quality triangulation algorithms. Program was implemented in Java Version 1.6. 

Application consists of three algorithms implemented to triangulate the polygons. 

First algorithm performs standard ear-cutting triangulation, second one performs 

improved quality triangulation and last one allows for manual decomposition of polygons 

by diagonal stabbing and individual triangulation of decomposed pieces.      

4.1 Application interface 

Implementation is done by permitting user to generate a figure or read any 

predesigned polygon from a file consisting of n vertices. Polygon size and shape can be 

adjusted by adding and deleting vertices or splitting edges. Once figure is finalized user 

has a choice to triangulate it using original ear-cutting method or execute an improved 

quality triangulation algorithm. As a result program outputs triangulating diagonals. 

Slight code modification allows user to manually decompose polygon by inserting 

stabbing diagonals in the places where large number of triangulating diagonals exist. 

Decomposed polygon is then triangulated using improved ear-cutting method and yields 

ameliorated results. 

4.1.1 Interface description 

Figure 4.2 shows an implementation of the main Graphic User Interface. GUI was 

implemented by extending the JFrame class component in java.swing which consists of 

four panels. Application layout is presented in Figure 4.1. File menu is contained within 
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JFrame’s top menu bar and contains two basic items: read and save. All other panels 

contained within JFrame object are constructed by using JPanel class. Main panel area is 

divided into four sub-panels: left, right, center and bottom. Center panel contains main 

display area that allows user to manually draw, edit or display polygons read from a file. 

Mouse coordinates are provided in the upper left corner to help navigate or draw objects 

within center area. The right panel is divided into two windows. First one is used to 

display x and y vertex coordinates of the polygon. Appropriate coordinates are displayed 

each time user clicks inside the center panel to draw or modify a polygon by adding a 

vertex. Second window displays triangles’ quality statistics. Information is classified into 

5 groups with respect to triangles’ aspect ratio. Large number of triangles in the first two 

groups indicates a lot of skinny triangles and low quality of triangulation, accordingly 

large number of triangles in groups four and five indicate good triangulation quality. First 

group contains triangle with aspect ratio in range 0:0.2, second group in range 0.2:0.4, 

third in 0.4:0.6, last two groups contain good quality triangles with aspect ratio in range 

0.6:0.8 and 0.8-1 accordingly. Total number of triangles in each of the groups is 

displayed as a result of successful triangulation.  
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Figure 4.1: GUI Layout 

 

 

 

 

Figure 4.2: The Initial Display of GUI for polygon triangulation 

 

The right panel contains four checkboxes used to add and manipulate the edges and 

vertices of a polygon. Application starts with no vertices or edges displayed, user can 

Menu Bar 

Bottom Panel 

 

Left 

Panel 

 

 

Right 

Panel 

 

 

Center Panel 
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initiate drawing figure by selecting Draw-Vertex checkbox. Figure 4.2 presents simple 

three vertices object drawn by user in the center panel. Such triangle can be grown to a 

bigger polygon by adding consecutive vertices and splitting the edges. User adds vertex 

simply by clicking inside the main panel area. Draw-Vertex, Edit-Vertex, Delete-Vertex 

and Spli-edge can be done one at a time. Functionality of right panel checkboxes is 

described in Table 4.1. Finally, the bottom panel contains two buttons used to execute 

polygon triangulation. First button to the left triangulate polygon using original ear-

cutting method, second button executes improved triangulation. Polygon can be 

triangulated only once for each start of the application. Multiple instances of the same 

application can be used for comparison of results. Additionally source code can be edited 

to manually decompose polygon by stabbing diagonals between the vertices where large 

number of diagonals exist. Such decomposition further improves the quality. Once 

decomposed polygon can be executed by clicking Improved Ear-cutting method button. 

Saved polygon can be used multiple times to run different algorithms to compare the 

results. However, store option will not save triangulating diagonals, therefore algorithm 

has to be executed again in order to restore previous triangulation results. 

 

Table 4.2 Right Panel checkboxes description. 

1 Draw-Vertex Adds a vertex vn  to edge v0 , vn-1. 

2 Edit-Vertex Changes x and y coordinates of a vertex, update is done by 

clicking the vertex and dragging it into desired place 

within a main panel area. 

3 Delete-Vertex Deletes clicked vertex of a polygon by updating the values 

to the connecting vertices. 

4 Split-Edge Splits the closest edge into two parts by generating new 

vertex to the closest edge. 
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Figure 4.3a: AutoCAD figure used for triangulation 

221 

515  844 

656  892 

574  824 

646  854 

705  845 

650  822 

… … 

Figure 4.3b: Part of input file 

generated  by AutoLISP script 

 

4.1.2 Program menu items. 

File menu is located in top menu bar and contains two basic items: read and save. 

Generated or modified objects can be saved to repeat research and execution on multiple 

algorithms. Quality improvement can be measured using Triangles Stats data if the same 

polygon is used to execute various algorithms. Second option allows reading stored 

objects from a file. Figure contained in the file can be created by user in main panel or 

generated and extracted from external application, i.e. AutoCAD. File has to be in the 

format where the first line contains number of vertices, followed by lines containing x 

and y coordinates of each vertex. AutoCAD was used to generate desired, complex 

shapes and AutoLISP script was written to export them to appropriate, readable file 

format. Figure 4.3a presents figure draw in AutoCAD and Figure 4.3b presents part of 
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input file generated by AutoLISP script. Figure 4.4 and Figure 4.5 shows the GUI 

representation of the File menu and selection panel to choose or save the polygon 

respectively. 

 

Table 4.2 File Menu Items description. 

1 Read File Brings up a file selection panel, user can choose a pre 

generated graph file. 

2 Save File Brings up a file save panel, user can save a new generated 

file or replace an existing file 

 

 

 
 

Figure 4.4: File-menu pull down. 
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Figure 4.5: Prompting user for File selection. 

 

4.2 Description of methods and classes. 

Program Cross Triangulation uses three distinct ways to decompose a polygon drawn 

by user or read from a file into triangles. Execution is triggered by clicking either 

Original Ear-cutting or Improved Ear-Cutting button. Standard ear-cutting 

decomposition is performed using algorithm described in Chapter 2, improved method is 

based on extended ear-slicing algorithm as discusses in Chapter 3. User can also modify 

code to perform manual decomposition into sub-polygons and then triangulate 

decomposed pieces using improved method. Resulted triangulating diagonals are painted 

in red and displayed inside black boundary of a polygon. Main driver of a program is 

class public class Cross_Triangulation. It contains definitions of all methods used to set 
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up GUI components, including panels, buttons and checkboxes. It defines event driven 

program behavior. It also contains all methods responsible for successful execution of a 

polygon triangulation. Two main methods that execute triangulation are: public void 

triangulate1(Vector) – implements standard ear-slicing algorithm, public void 

triangulate2(Vector) – implements improved ear-slicing. Methods public void 

triangulateBetween(Vector, int, int, int, int), public void triangulateLeftof(Vector, 

int, int) and public double triangulateRightof(Vector, int, int) perform manual 

polygon decomposition and extended triangulation.  

Implemented method public void triangulate1(Vector) takes a Vector containing 

polygon vertices’ coordinates as a parameter. It clones the polygon vector and uses new 

copy to process triangulation algorithm. Method attempts to find a diagonal for each 

vertex of a polygon starting from vertex 0 until n-1. Algorithm checks if diagonal exist 

for every other vertex i.e. vertex i with vertex i+2. Standard algorithm blindly searches 

for diagonals and if a diagonal is found program immediately stores it in a Vector called 

diagonals and removes vertex i+1 from cloned polygon (slicing an ear). Each algorithm 

method uses public boolean isDiagonal_ie(Vector, int, int). isDiagonal_ie takes 

polygon (Vector) and two vertices’ indices (int) as the parameters. It returns Boolean 

value true if there exists a diagonal between provided vertices. Program repeats finding 

diagonals and removing ears until number of vertices is greater than 3 (residual part is a 

triangle). Program uses protected void paintComponent(Grapics g) method to draw 

polygon and output triangulating diagonals from Vector(Point) diagonals into center 

panel of GUI. Figure 4.6 presents figure triangulated using original ear-slicing method. 
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Figure 4.6: Figure triangulated using traditional ear-cutting method 

 

Method public void triangulate2(Vector) extends triangulate1 by including method 

public int getFatEar(Vector) . getFatEar takes a polygon as a parameter and returns 

ear tip index of a polygon ear with the largest aspect ratio. Method searches polygon 

boundary in greedy manner, verifies if triangle is an ear (public Boolean isEar(Vector, 

int)) computes aspect ratio of each of the ears and returns index of the one with the 

largest value. Program continues by slicing polygon ear with returned index of an ear tip 

until residual part is a triangle. Method public double getAspectRatio(Point, Point, 

Point) takes coordinates of three consecutive vertices of a polygon as a parameters, 

computes and returns decimal value of an aspect ratio of triangle created by given points. 

Method getAspectRatio uses three additional classes and their methods to obtain lengths 

and heights of a triangle required to compute Aspect Ratio. Classes public class 

my_point, public class segment and public class line were used. Once three edges and 
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heights are found method getAspectRatio computes three distinct aspect ratios and 

returns the smallest of them. Such method uses general bounding box as described in 

Chapter 3 and presented in Figure 3.1b. Figure 4.7 presents the polygon triangulated 

using improved method which exhibits essential quality improvement over triangulation 

showed in Figure 4.6. 

 

 
Figure 4.7: Figure triangulated using improved ear-cutting method 

 

Methods public void triangulateBetween(Vector, int, int, int, int), public void 

triangulateLeftof(Vector, int, int) and public double triangulateRightof(Vector, int, 

int) were implemented to ameliorate obtained results even further by decomposing 

polygon into sub-polygons in the areas where large number of skinny triangles exist. 

Method public void triangulateBetween(Vector, int, int, int, int) takes as an input 

Vector containing vertices of a polygon, and four integers with vertices indices. Each pair 

of vertices indicates start and end of decomposing diagonal. User can provide indices of 

two diagonals and triangulate area in between them.  Method will copy area restricted by 
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two diagonals into new polygon Vector and triangulate it using improved ear-slicing 

technique. Such method can be combined with public void triangulateLeftof(Vector, 

int, int) and public double triangulateRightof(Vector, int, int). triangulateLeftof and 

triangulateRightof takes Vector containing vertices of a polygon and two integers with 

vertices indices as a parameter. Two integers indicate starting and ending index of a  

decomposing diagonal. First method copies and triangulates area enclosed within 

polygon boundary to the right of provided diagonal and second method copies and 

triangulates area enclosed within polygon boundary to the left of provided diagonal. 

Experiments with manual decomposition yielded surprisingly good results, that 

encouraged author to develop an automatic method. Polygon partitioning and ear-slicing 

algorithm was proposed and described in chapter 3 (Algorithm 3).  

4.3 Experimental Results 

Numbers of experiments with complicated polygonal shapes to test the performance 

of algorithms were conducted. Table 4.3 presents samples of experimental results.  It 

contains five columns with five different aspect ratios. Each column is divided into two 

sub-columns that contain number of triangles with respect to aspect ratio for original ear-

slicing algorithm (Org) and improved triangulation (Imp). We showed results for figures 

of different shapes and sizes. Number of vertices range between 70 and 300. Regardless 

of size and shape of the polygon improved ear-slicing algorithm yields better quality.  
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Table 4.3 Triangulation Quality comparison. 

Sample Polygon 

Aspect Ratios 

Asp= 

0:0.2 

Asp= 

0.2:0.4 

Asp= 

0.4:0.6 

Asp= 

0.6: 0.8 

Asp= 

0.8: 1 

Org Imp Org Imp Org Imp Org Imp Org Imp 

 

n=77 

75 73 0 2 0 1 0 0 0 0 

 

n=122 

56 12 37 41 23 53 4 13 0 1 

 

n=170 

118 71 35 64 12 27 3 6 0 0 

 

n=221 

126 74 71 97 19 38 3 10 0 0 
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n=295 

203 126 60 90 21 50 9 24 0 3 

 

Experiments with polygon partitioning were done for complex polygon. Figure 4.8 

represents triangulated Lake Mead, Nevada shape with partitioning diagonals showed as 

bold lines. Simulation is created by reading over three hundreds of vertices that form a 

complicated polygonal shape.  When the component polygons are separately triangulated 

by using the modified ear-slicing algorithm the result is shown in Figure 4.9, which has 

large proportions of "quality" triangles. Our experiments based on Lake Mead shape 

prove amelioration of triangulation quality for improved ear-cutting algorithm.  
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Figure 4.8: Stabbing diagonals (drawn with thick edges) of a triangulated polygon 

 

Figure 4.9: Triangulated polygon by partitioning and ear slicing 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

We presented a critical review of polygon triangulation algorithms and underlined the 

need for improving the ear-slicing polygon triangulation algorithm. We presented two 

approaches from improving the performance of standard ear-slicing algorithm. The 

proposed approaches are sketched in a formal algorithm. The time complexity of the first 

algorithm is O(n
3
) where n is the number of vertices in the polygon. The time complexity 

of the second algorithm is O(mn
3
), where m is the number of components obtained by 

partitioning.  

We presented an extensive experimental investigation of the first algorithm in Java 

programming language. The front-end of the implementation has user-friendly interface 

for entering and displaying polygon and triangulation. The performance of the first 

algorithm is experimentally investigated on several types of polygons. The compiled 

results show that the triangulation obtained by the first indeed contains high proportion of 

quality triangles. 

Due to time constraints we were not able to perform extensive experimental 

investigation of the second algorithm. However a few test cases show that the second 

algorithm has a potential to generate good quality triangulation. 

Several future research activities can be carried out by extending the presented 

algorithm. One problem would be to extend proposed algorithm to polygon with holes. It 

would also be fruitful to perform extensive experimental investigation of the second 

algorithm presented in the thesis. 
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