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ABSTRACT

Electrochemical Techniques for Detection of TNT and Other Explosives
Using Disposable Screen-Printed Carbon Electrodes

by
Rebecca Pearson
Dr. Shawn L. Gerstenberger. Examination Committee Chair
Assistant Professor of Environmental Studies
University of Nevada, Las Vegas

Nitroaromatic and nitramine explosives have been found in the soil and water
from many government military bases due to improper storage, weapons testing and
production. Run-off from contaminated soil and water can enter underground water and
potentially contaminate drinking water for near-by communities. With the closing of
military bases throughout the U.S. and Europe. contamination will need to be assessed
and remediated before the land and water can be used again for other purposes. The use
of a fast and inexpensive field screening technique can save time and money typically
incurred during intensive laboratory analysis of clean samples.

Screen-printed thick film electrodes are examined as voltammetric sensors for
measurement of 2.4.6-Trinitrotoluene (TNT), and Hexahydro-1.3.5-trinitro-1.3.5-triazine
(RDX). The square wave voltammetric (SWYV) scan technique can be used to measure

TNT and RDX in as little as 50 puL. sample volumes applied to the electrode surface

iii
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within minutes. The detection limit of this electrochemical assay can also be
significantly improved by coupling it with a solid phase extraction (SPE) protocol using
Empore SDB-RPS membranes. The simple, rapid, cost-effective, and sensitive
characteristics of this assay make it an excellent candidate for development as a field
analytical method for onsite explosives detection. This research project successfully
developed a new method to examine the capabilities, use and optimization of screen-
printed carbon electrodes for detection of TNT, RDX and metabolites from various

matrices.
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CHAPTER 1
INTRODUCTION

Properties

Explosives are generally a group of nitroaromatic compounds (NAC’s) that are
used in ammunition, however not all of them are aromatic. The major explosives
produced are TNT (2.4,6-trinitrotoluene) and RDX (hexahydro-1.3,5-trinitro-1,3.5-
triazine, Royal Demolition Explosive). The focus of this research is mainly on TNT, but
RDX was also examined since the two compounds are often used in mixtures and found
together in contaminated areas. TNT breakdown products such as 2-amino-4.6-
dinitrotoluene (2-aDNT), 4-amino-2.6-dinitrotoluene (4-aDNT), 2.4-dinitrotoluene (2.4-
DNT), 1.3,5-trinitrobenzene (1.3.5-TNB) and paradinitrobenzene (p-DNB). which results
from biodegradation or photodegradation, are also examined. Their structures are shown
in Figure 1. Figure 2 shows a suggested photodegradation and microbial degradation
pathway for TNT (Godejohann, 1998). Products include: 2-amino-4.6-dinitrotoluene (2-
A-4.6-DNT); 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT); 2,4,6-trinitrotoluene (2,4,6-
TNT); 2.4,6-trinitrobenzyl alcohol (2,4,6-TNBOH); 1.3,5-trinitrobenzene (1,3,5-TNB);
3.5-dinitroanaline (3,5-DNA); 2-amino-4,6-dinitrobenzoic acid (2-A-4,6-DNBA); 2-
hydroxy-4,6-dinitrobenzoic acid (2-OH-4,6-DNB); 3,5-dinitrophenol (3,5-DNP); 2.4-

dinitrobenzoic acid (2,4-DNBA).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N

CH3 N02
O2N NO> ‘/hllﬁ
NO,

TNT RDX

CH;

NO> © NO,
2,4-DNT No, 1,3,5-TNB
p-DNB
CH; CH;

NO, NH,
2-aDNT 4-aDNT

Figure 1 Structures of Explosives and TNT Breakdown Products
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minor major
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o) NH; O\ NH, ON
1. dissoctation
decarboxylation L H0
NO,
3,5-DNA 2-A-4,6-DNBA 2-0H-4,6-DNBA 3,5-DNP
1. dissociation
12. reduction
O
J
2,4-DNBA

Figure 2 Suggested TNT Breakdown Pathways (Godejohann, 1998)

TNT is an aromatic, odorless, yellow compound that is soluble in acetone and
alcohol (Merck, 1996). It does not occur naturally in the environment, but is made by

nitration of toluene with nitric acid and sulfuric acid. It is slightly water soluble with a
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Kow of 1.6 (CRC, 1998). TNT has a very low vapor pressure (1.99x10~ mmHg at 20° C)
and therefore will not evaporate out of water or soil into the atmosphere.

RDX is a synthetically made white powder that is 1.3 times more explosive than
TNT based on energy released differences (Bose et al., 1998). It is produced by the
Bachmann process, which reacts hexamine with nitric acid, ammonium nitrate, glacial
acetic acid, and acetic anhydride. It is not aromatic, but rather a triazine ring. RDX is
less hydrophobic than TNT with a K, of 0.87. RDX is also more water-soluble than
TNT. RDX also has a very low vapor pressure (1x10° mmHg at 20 C). so it will not

evaporate into the atmosphere.

Sources

Contamination of water and soil by RDX. TNT and its metabolites has become an
important topic in the U.S. Specific issues that are critical in this area include detection.
clean up, and prevention of future contamination. TNT and RDX are not produced
commercially in the United States and are manufactured only at military arsenals. Most
of the clean-up efforts today are from the contamination of water and soil in government
military facilities due to manufacturing, testing, waste disposal. and improper storage.
Today’s waste disposal laws are very strict, but in the past many of the leftover explosive
wastes were simply dumped into lagoons or pools. Although in principle this procedure
confines the waste to a controlled area, in time many of the compounds have become
mobilized during heavy precipitation events causing pools to overflow. Photolysis of
TNT in aqueous solutions is responsible for the development of “pink water”. This has

occurred in lagoons where TNT waste has been dumped and allowed to sit over time. As
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the water evaporates in these lagoons, the TNT becomes more concentrated and
approaches toxic levels. Both TNT and RDX do not readily evaporate, so once they are
in the water system, they will stay there for long periods of time until biodegradation or
photooxidation occurs. TNT has limited solubility in water, but unlike many other
organic compounds it also has little affinity for soils and can rapidly migrate to the
groundwater (Valsaraj et al., 1998). These sources of contamination to ground water can
then travel in plumes to pollute near-by drinking water sources. This source of
contamination is one of the U.S. Defense Department’s most serious environmental
problems. Plumes of contaminated groundwater have been identified at military sites
with some extending beyond installation boundaries of the facility (Jenkins et al.. 1994).

Explosives can enter the environment from improper disposal. storage leaks,
particles that enter the air after detonation. or residue that can fall into the soil and water
from ammunition testing. Contaminated soils are common to many inactive and
abandoned industrial and commercial sites. federal munitions facilities and military
reservations throughout the country (QaiSi et al.. 1996). Depending on the type of soil.
TNT may or may not be easily released. It has been shown that clay has a high affinity
for the sorption of TNT (Weissmahr. 1999). Contaminated clay soils could pose a long-
term chronic source of TNT. However, TNT has little affinity for organic soils and can
rapidly migrate to produce groundwater pollution. TNT has been found in soils in
volumes as high as 60% by-weight (Elovitz et al., 1999).

The Environmental Protection Agency has identified 1,397 hazardous waste sites

on its National Priorities List. TNT has been found in at least 20 of these sites (ATSDR.
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1998) and RDX has been found in at least 16 of these sites (ATSDR, 1998). The location

and frequency of these sites throughout the United States can be seen in Figure 3.
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Figure 3 U.S. Distribution and frequency map of RDX contaminated NPL sites.
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Health Effects

Due to their toxicity and instability, shipping, handling, and disposal of
explosives are highly regulated and have strict government implemented guidelines.
EPA has designated all explosive. flammable and toxic compounds as hazardous wastes
and has determined allowable concentrations in our drinking water to minimize exposure
to toxic compounds. The Department of Transportation regulates the transport of
explosives due to their explosive hazard. The Occupational Safety and Health
Administration regulates the levels of hazardous materials in the workplace that a worker
can be exposed to. TNT, RDX and breakdown products have well documented health
risks, which can include mutagenic and carcinogenic properties, reproductive
abnormalities. liver and heart damage, seizures. dermatitis. blood disorders such as
anemia in addition to minor effects (ASTDR. 1995). These compounds are still being
studied for other health effects and for their long-term exposure effects on humans and
wildlife species.

Exposure to toxic explosive compounds can come from inhalation. ingestion. or
dermal contact. The main sources of exposure are dermal and ingestion. primarily
associated with working with explosives and from contaminated water and foods grown
in contaminated soils. When taken in by ingestion, TNT will readily enter the blood
stream and travel throughout the body. Once it reaches the liver it is broken down and
excreted in urine. The toxicity of TNT raises some concerns with remediation and the
possibility of leaving behind more toxic breakdown products (ASTDR. 1998). The

health effects and danger of TNT breakdown products are not fully understood.
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Exposure to toxic compounds depends on several factors. These include the dose,
the duration, the route by which you are exposed, and your own individual characteristics
such as age, sex, nutritional status, and state of health (ATSDR, 1998). Most human
populations exposed to TNT are workers at manufacturing or testing facilities and
families that live close to contaminated sites where explosive residues have reached the

ground and drinking water systems.

Remediation

The need to remediate explosive contamination from soil and water has
stimulated much research. Current remediation methods involving incineration or secure
landfilling are expensive and consume scarce landfill space (Williford et al., 1999).
Other methods include microbial degradation, phytoremediation. and photo oxidation, of
which the most promising technologies are bioremediation and phytoremediation
(Drzyzga et al., 1999). In bioremediation, bacteria are used to naturally breakdown the
aromatic rings and nitrogen substituent groups. This usually involves piling up large
amounts of TNT and RDX contaminated soil and supplying a constant source of oxygen
to allow aerobic biodegradation to take place.

Phytoremediation is a process in which the numerous nitroaromatic compounds
are utilized as nitrogen sources for plants. Biodegradation can be slow and leave behind
toxic breakdown products, similar to photo oxidation processes. To be successful,
remediation processes need to be effective, simple, inexpensive, and should not be time
consuming. Because of these problems the research into phytoremediation has

demonstrated some promising techniques related to the clean-up efforts. Past research
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has included the use of wetlands (Best et al., 1999), and aerobic biodegradation by the
genus Rhodococcus (Coleman et al., 1998) for the clean up of RDX. Research on TNT
has included the use of Poplar trees (Thompson et al., 1998), and aquatic plants (Hughes
et al.. 1997). Much of the research has dealt with hydroponic systems, that use water
contaminated with TNT. It has been reported that almost 100% of the TNT was
removed from the water by Myriophyllum aquaticum plants (Rivera et al.. 1998).
Contaminated water needs to be treated quickly. since explosive residue in water
is very mobile and can potentially lead to contamination of community drinking water

sources. Once drinking water sources are contaminated. human health is at risk.

Detection Methods

To assess the occurrence and levels of TNT and RDX contamination. water and
soil samples must be routinely tested. Testing for TNT requires accurate methods, which
can detect low-level concentrations in ranges of parts per billion (ppb) or less. Current
analytical detection methods include the use of High Performance Liquid
Chromatography (HPLC). Gas Chromatography with Mass Spectroscopy (GC-MS) and
Ultra-Violet (UV) detection (Bouvier & Oehrle. 1995). TNT and its metabolites can be
detected in air, water. soil, plant tissue, urine. blood. kidneys, liver, and hand swabs taken
from workers for dermal exposure. Because TNT is found in numerous media, there are
many different methods for sample extraction and detection (Jenkins & Thorne, 1995).

HPLC and GC-MS are the most common analytical methods and separation and
detection by these instruments are considered reliable and sensitive (Walsh & Ranney,

1998). They are however, expensive and time-consuming techniques that require skilled
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10

laboratory scientists or technicians to perform. Their use involves complex equipment,
supplies, and procedures. Bioassay is another detection method that shows specificity for
TNT and RDX, but with a higher detection limit. All of the aforementioned methods
have certain problems associated with them. They can be costly, insensitive. lack
specificity, time consuming and intensive with respect to the length of the procedure and
amount of supplies needed.

In regards to remediation. one important factor when looking at contamination is
phase assessment sampling of water and soil from contaminated sites. This procedure
uses random environmental samples from sites and tests for “hot-spots™ of contamination
and areas where the soil and water are clean. The samples collected have to then be sent
to a laboratory for analysis. which can take days. or even weeks. Shipment and storage
of samples is costly. Another problem with conventional explosive analysis and
detection methods is the portability of the equipment. Equipment such as HPLC and GC-
MS systems are not convenient to take on-site for sampling testing. Bioassays are
portable but a new assay must be done for every different compound in question.

The goal of this research project was to investigate new detection methods for
TNT, RDX, and metabolites using electrochemical detection techniques. The idea behind
the electrochemical approach is to develop a procedure that is portable. fast, inexpensive,
sensitive and able to differentiate between TNT and RDX. This method would allow for
simple on-site sampling of water, soil, and other media and allow researchers to quickly

identify heavily contaminated areas saving time and money.
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CHAPTER 2

THEORY

Electrochemistry

Electrochemistry deals with the interrelationship of electricity and chemical
reactions and with the potential interconversion of chemical and electrical energy. Using
different chemical parameters, electrical quantities such as current, potential, and charge
can be measured. Most inorganic and some organic chemical compounds become
ionized when dissolved in water or other liquids. Their positively and negatively charged
1ons have the ability to conduct an electric current. If a pair of electrodes is placed in a
solution of an electrolyte, or an ionizable compound, and a source of direct current is
connected between them, the positive ions in the solution move toward the negative
electrode and the negative ions toward the positive. On reaching the electrodes, the ions
may gain or lose electrons and be transformed into neutral atoms or molecules; the nature
of the reactions at the electrodes depends on the potential difference, or voltage, applied
(Wang, 1994).

Electrochemical processes take place at the electrode-solution interface in an
electrochemical cell. The cell consists of at least two electrodes and an electrolyte
solution. The electrodes consist of a working electrode, which responds to the target
analyte, and a reference electrode, which is at a constant potential that is independent of

the properties of the solution. For a current to develop in a cell, it is necessary that the

Il
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electrodes be connected to an external metal conductor and that an electron transfer
reaction can occur at each of the two electrodes. Since the electrode-solution interface is
limited, a continuous mass transfer of reactive species from the solution to the electrode
surface must be provided (Christian, 1994). The movement of reactive species is
accomplished by convection, migration, or diffusion. Convection involves motion as a
result of stirring of the solution. Migration is the movement of ions through the solution
brought about by electrostatic attraction between the ions and the electrode’s charge.
Diffusion is the motion of species brought about by a concentration gradient (Kissenger
& Heineman, 1996).

The quantity of material reacting at each electrode when current is passed through
an electrolyte is proportional to the quantity of electricity passed through the electrolyte.
Electrochemistry is based on Faraday’s Law, which states that in a controlled-potential
experiment, a change in current is related to the concentration of the target analyte.
Analytical measurements involve monitoring the transfer of electrons during the redox
process of the analyte while scanning through electrode potentials. The current
resulting from the change in oxidation state of the electroactive species is termed the
faradaic current, and is a direct measure of the rate of the redox reaction (Figure 4). This
change in current (y-axis) is plotted against the applied potential (x-axis) of the electrode

called a voltammogram (Wang, 1994).

O + ne & R

Figure 4 Redox Equation
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Square-Wave

Electrochemistry can be classified into several specific techniques. Square Wave
Voltammetry (SWV) is one example. SWYV consists of a large-amplitude differential
technique in which a waveform composed of a symmetrical square wave (same
frequency), superimposed on a base staircase potential, is applied to the working
electrode. The current is sampled at the end of forward (cathodic) pulse (dots) and at the
end of the reverse (anodic) pulse (crosses) (Figure S5)(Sawyer et al., 1995). The
difference between the two measurements is plotted vs. the base staircase potential. The
result is a peak-shaped voltammogram, where the peak current is proportional to the
concentration of the species (Figure 6)(Lund &Hummerich. 2001). Square wave
voltammetry is very fast with high sensitivity. An entire square wave scan can take only
10 ms. Because of its sensitivity, it is useful for samples with low concentrations; as low
as le-8M can be detected (Wang, 1994). Also because of its speed., it is useful for
analysis of large batches of samples, by decreasing the time it would normally take to

analyze them by other methods.
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Figure 5 The Change in Potential of the Working Electrode with Time in SWV
(Sawyer et at., 1995)
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Figure 6 Square Wave Voltammogram
(Adapted from Lund & Hummerich, 2001)
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Cyclic Voltammetry

Cyclic voltammetry (CV) is useful for determining qualitative information about
electrochemical reactions. It rapidly provides information on the location of redox
potentials of the electroactive species. In general a cyclic scan can take from 1 ms to 100
seconds. CV consists of scanning linearly the potential of a stationary working electrode
using a triangular potential waveform (Figure 7)(Skoog et al., 1998). During the
potential sweep, the potentiostat measures the current resulting from the applied
potential, resulting in a current vs. potential plot. The forward scan is the reduction of the
species and generates a cathodic peak at a characteristic E° value for the redox process.
The reverse scan oxidizes the species and an anodic peak results. Figure 8 is an example

of a cyclic voltammogram for a ferri cyanide solution (Skoog et al., 1998).

Potential, V

1 ]
0 20 40
Time, s

Figure 7 Example of a Triangle Wave Form Graph
(Adapted from Skoog et al., 1998)
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Figure 8 Cyclic Voltammogram of Ferri Cyanide Solution
(Adapted from Skoog et al., 1998)

Working Electrodes

Electrochemical detection of the analyte is done using a working electrode.
Unlike optical detectors (fluorescence or UV/Vis), an electrochemical detector oxidizes
or reduces the targeted molecule, converting it to another chemical entity. During the
course of this reaction, electrons are gained or lost by the electrode. It is this flow of
electrons that creates the signal that is generated by the electrochemical detector and used
to quantify the amount of sample. Not all molecules are electrochemically reactive, and
some chemicals will react only under certain circumstances. Manipulation of such factors

such as the electrode material, solution pH, ionic strength and the applied potential of the
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working electrode all contribute to the selectivity and efficiency of the electrochemical
assay.

There are many types of working electrodes that can be used depending on the
redox behavior of the electroactive species. Different electrode materials can be selected
to maximize sensitivity and reproducibility. Other factors involved in selecting electrode
types include electrical conductivity, surface reproducibility, cost, and toxicity. Common
electrodes involve the use of mercury, carbon, and noble metals. This research project
used carbon paste, glassy carbon, and screen-printed carbon electrodes.

Carbon paste electrodes involve the use of graphite powder mixed with organic
liquids to form a paste. The paste is packed into an electrode with attached electrical
leads. They are inexpensive and have low background-current contributions. The carbon
paste composition and packing is very critical for good electron-transfer rates. For
example, an increase in organic liquid content will decrease conduction.

Glassy-carbon electrodes use carbon that is treated and formed into a glassy, hard
substance encased in a pre-molded polymeric resin body. They possess excellent
mechanical and electrical properties, a wide potential window, chemical inertness, and
reproducible performance.

Carbon based solid electrodes are commonly used because of their broad potential
window, low background current, low cost, chemical inertness, and suitability for various
sensing and detection applications. However, they also have some disadvantages. The
surface of carbon electrodes is critical in performance and carbon electrodes have to be
pre-treated, polished, and/or renewed between uses or the electron-transfer rate can be

altered, attenuated or blocked.
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Separation and Detection Methods

Electrochemical detection is often combined with a chromatographic technique,
such as HPLC, allowing the analyte to be isolated and identified from the mixture of
compounds. In this research, HPLC was used with a dual-glassy carbon detector. A
small amount of solution containing various nitroaromatics is injected onto the HPLC
column where the random molecules are individually separated and arranged. The
chromatographic process separates these molecules from each other as they exit the
column at different times and enter the electrochemical cell as organized packets. Those
molecules that can react with the electrode, under the conditions created by the analyst,
will gain or lose one or more electrons during the detection process (Figure 9). The
detector monitors and amplifies the current (flow of electrons) during the passage of
these molecules through the cell. It then converts the current to a voltage, which is
recorded as a chromatographic peak. The elution time from the column can be used to
determine the identity of the molecule, comparing the peak to previously established
retention times from known samples. The size of the peak (height or area under the
curve) can be used to determine the quantity of the specific compound present in that

sample.
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Figure 9 Analytes exiting column and entering electrochemical cell

Screen-Printed Carbon Electrodes

One of the important aspects of this research was the characterization of screen-
printed carbon electrodes. The electrodes were manufactured by Dr. Joseph Wang's
research group at New Mexico State University and have many advantages (Wang et al.,
1998). The electrodes are small and light with dimensions of only lcm x 3cm. The
electrodes are made by first placing a sheet of specially made perforated ceramic in the
screen-printing machine. Metal templates are then placed over the ceramic sheet and the
carbon or silver ink is applied across them. The sheets are then placed in an oven to dry
between each ink screening. The combination reference and counter electrodes are made
from silver ink and the working electrode is made from carbon ink. Last, a dielectric
coating is applied over both electrodes, to block any cross current and interference
between the two electrode strips. The strips stick out of the dielectric coating about
0.3cm on each side. One side is used for the analysis of the solution (carbon and silver

end) and the other side is used for the electrical connections (contact end) to the
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electrochemical analyzer. (Figure 10) The carbon is used for the working electrode and

the silver is used as the reference/counter electrode (Wang et al., 1998).

Figure 10 Components of Screen-Printed Carbon Electrode

Screen-printed carbon electrodes are inexpensive to produce and are disposable
after each use, thus eliminating cross contamination. Also they require no preparation or
polishing as is common with carbon paste and glassy carbon electrodes. A sample
volume of 50 pL is needed for analysis on the electrode surface, so small amounts of
solutions and samples are used and little waste is accumulated. The screen-printed
carbon electrodes show high sensitivity, good reproducibility and good conductivity.
Because of the low cost and preparation, and high quality characteristics of the electrode,
they are ideal for traveling to field locations to analyze environmental samples. With a
laptop computer and minimal supplies, the entire electrode and analyzer set-up can be

made completely portable.
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CHAPTER 3

EXPERIMENT MATERIALS AND METHODS

Initial TNT Standard Curves Using Screen-Printed Carbon Electrodes

Initial TNT standard curves were created to test the screen-printed carbon (SPC)
electrodes to ensure contacts were good and working properly. A stock solution of 1000
ug/ml (1000 ppm) of TNT in acetonitrile was purchased from Chemservice. (TNT and
all other stock solutions of explosives were kept in a metal canister away from any light
source.) S uL increments of stock solution were added to 10 mL of IM Hydrochloric
acid in a standard addition method. Square wave voltammograms were scanned using a
CHI 620 Electrochemical Analyzer. Using the provided software, parameters were set
as: Initial E (V) =0.1, Final E (V) = -0.6. Increment E =0.004 V, Amplitude =0.01 V,
Frequency = 40 Hz, Quiet Time = 2 sec, Sensitivity = le-5 A/V. Using the same
electrodes, points were taken for a range of 0 to 5 ppm, starting with the blank and
increasing in 0.5ppm increments. For analysis, S0 uL of the prepared HCL-TNT solution
was pipetted onto the electrode, making sure the solution completely covered both the
working and reference electrodes. The scan was started immediately as described above.
When finished, the solution was pipetted off and the next standard concentration was
pipetted on. Since concentrations for the standard curve were increased with each scan,

contamnination from the previous sample was minimized.
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Figure 11 Picture of CHI Electrochemical Analyzer and Electrode Set-Up
and Close Up Of Electrode Attached to Contacts

Optimization of TNT detection

Standard curves of TNT in the very acidic solution of 1M HCI had very ciean
baselines and reproducible peak definition, however the changes in current were very
small between different concentrations of TNT. To optimize and try to increase the
generated change in current, different percentages of acetonitrile solutions were tested to
see what effect a higher pH buffer solution would have on the resulting SWV scans. The
PBS is used as the electrolytic buffer, HCI is used to keep a clean and stable baseline, and
acetonitrile is used because TNT is very soluble in it without being very acidic. TNT
standard curves were created using solutions of 50, 25, 16.7, and 10% acetonitrile in
phosphate buffer solution (PBS) with 1% 1M HCI to find the optimal solution to generate
low noise, high peaks, and well-defined peaks. Various concentrations of TNT, from O to
4 ppm, were tested. This was the concentration range relevant for environmental

samples. Parameters for the electroanalyzer were as previously described.
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TNT Standard Curves Using HPLC

TNT standard curves were also created using a BioAnalytical System High
Performance Liquid Chromatography (BAS-HPLC) with dual glassy-carbon
electrochemical detection. Optimal conditions used for this confirmatory method were
also used to design experiments for the screen-printed electrodes. The mobile phase
consisted of 50% Acetonitrile in a Phosphate buffer solution (PBS, pH 6.5)(68 mL of
0.2M Na>H>POy, 32 mL 0.2M Na>,HPO,, 300 mL of nanopure distilled water, and 400
mL of HPLC grade acetonitrile.) Using 1000 pg/mL TNT stock solution. dilutions were
made at 0, I, 2.5, 5, 10, 15, 20 and 25 ppm. Parameters for HPLC were as follows: C18
column, flow rate = 1.0 ml/min, filter = 0.10 Hz, -0.6V potential. 1.0 pA range. 20 uL
sample loop. The mobile phase solution and solvents were degassed prior to use with

nitrogen.

RDX Standard Curves Using Screen-Printed Carbon (SPC) Electrodes

RDX and TNT are often found as co-contaminants in environmental samples. To
determine the possible interference from RDX, measurements using the SPC electrodes
were done for standard curves for RDX, run under conditions determined as optimal for
the TNT assay. An RDX stock solution (1000 pug/ml) was purchased from Chemservice.
In a 10 % acetonitrile solution containing 9 mL of PBS(pH 6.5) and 1 mL acetonitrile, a
standard addition technique was followed as the solution was spiked with 5 pL
increments of RDX. Concentrations of 0, 0.5, 1, 3, 5, 7 and 10 ppm were analyzed on a
SPC electrode in the same manner as TNT standard curves. These initial tests were used

to determine the redox potential of the RDX molecule, the necessary potential range for
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the scan, and the concentration range required for a linear current response. Once the
redox potential and linear concentration ranges were established, the procedure was
tested in triplicate using concentrations ranging from O to 3 ppm. Electroanalyzer
parameters were the same as previously discussed for TNT samples.

In addition, RDX standard curves were tested using a 10% acetonitrile and 1%
LM HCI solution spiked with 1ppm TNT to see the effects of co-contamination. In an
attempt to separate the RDX signal from the TNT signal, another experiment was
completed which examined the effects of pH on the resulting signals. First a solution of
2 ppm concentration of TNT was analyzed in a 1% HCI and 10% acetonitrile in PBS.
Then RDX was added to the TNT solution, for a final concentration of 2 ppm for both,
and analyzed. The buffer solution was then acidified by adding 1M HCI to increase the
concentration from 1% to 10%, and analyzed. All three scans were performed on the

same electrode.

Analysis of Breakdown Products Using Electrodes

Another potential interference with TNT in environmental samples is the presence
of TNT biotransformation products due to photo degradation and microbial degradation.
These compounds were considered in order to gain a more complete understanding of
these potential co-contaminants and how they might interfere with TNT detection. Five
breakdown products that were considered included: 2-amino-dinitrotoluene, 4-amino-
dinitrotoluene, 1,3,5-trinitrotoluene, 2,4-dinitrotoluene, and para-dinitrobenzene. Each
compound was purchased from Chemservice, and dissolved in acetonitrile to make a

1000 pg/mL stock solution. Each compound was analyzed by the standard addition
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method in a 10% HCI and 10% acetonitrile in PBS solution. Parameters of the analyzer
were the same as previously described. Concentrations from O to 3 ppm were run. To
test interference with TNT, 2 ppm of each compound was added to a TNT solution at the

same concentration of 2 ppm.

TNT Extraction Method

An extraction method was performed to concentrate TNT from dilute water
samples so they could be detected and quantified by the electrodes. A stock TNT
solution of 1000 pg/mL was diluted in a 1:100 ratio with acetonitrile to make a new 10
ug/mL solution. From this solution a series of dilutions were made by pipetting 0. 10. 25.
50. 100. 150. 200. 250 puL. TNT stock solution into 50 mL of distilled nanopure water.
This made up eight solutions with concentrations of 0, 2. 5, 10, 20, 30, 40, and 50 ppb
TNT. Each solution was then filtered by vacuum through a pretreated 3M Empore SDB-
RPS extraction filter cartridge. The filter cartridge was pretreated by pipetting | mL of
acetonitrile on the filter for two minutes to activate it, and then removed by vacuum
filtration. This was followed by a one-minute wash with 1 mL of nanopure distilled
water, then vacuum filtered, leaving a small amount of water to keep the filter moist.
(Approximately a 2 mm layer of water.) SO mL of the first prepared diluted sample was
added to a 50 mL syringe attached to the filter cartridge. The dilution was then filtered
under vacuum filtration until the solution was gone. The filter was vacuumed for one
additional minute to assure all water was removed and the filter was completely dry.
One ml of acetonitrile was added to the filter and allowed to incubate for two minutes.

This treatment released the analyte from the filter. The sample was then vacuum filtered
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into a labeled 1.5 mL vial for two minutes or until the solution was completely removed
and the filter was dry. This entire filtration process was repeated for all prepared
dilutions. (Figure 12)

Once all dilutions were filtered, they were placed under a low flow of nitrogen
gas until the acetonitrile solvent was completely evaporated. Then 100 puL of acetonitrile
was added back to each vial to re-suspend the analyte. Each vial was mixed thoroughly
by vortexing for one minute. All vials were capped and stored at 40°C until analysis.
Given 100% extraction and recovery, this process resulted in a theoretical 1:500

concentration of the initial TNT dilutions.

/‘\g

WASTE EXTRACT

Figure 12 Schematic of TNT Extraction Method

INT Extraction Analysis Using Electrodes

For electrode analysis, 50 pL of the concentrated filtered samples from each vial

was placed in a beaker with 450 uL. of PBS and 5 uL. of HCI and mixed. This resulted in
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a 1:10 dilution of each sample (Table 1). 50 uL of PBS was placed on the electrode to
wet the surface and removed. A blank was run from a 10% acetonitrile solution
containing no TNT. After the blank, 50 uL of each dilution was analyzed on the
electrode following the same procedures and parameters as stated before. Using another
electrode, a stock standard TNT curve was run to compare the extraction curve to and

calculate percent recoveries. This extraction process was repeated in triplicate.

Table |

Theoretical Concentrations for Extraction Process for Electrode Analysis

Original Concentrated Electrode Dilution
Concentration Conc (1:500) Conc (1:10)
0 ppb 0 ppm 0 ppm
2 1.0 0.10
S 2.5 0.25
10 5.0 0.50
20 10.0 1.00
30 15.0 1.50
40 20.0 2.00
S0 25.0 2.50

TINT Extraction Analysis Using HPLC
For HPLC analysis of extracted TNT samples. 25 uL of each extracted sample

was added to 75 uL of acetonitrile. resulting in a 1:4 dilution (Table 2) of the
concentrated sample, and mixed thoroughly. Using the same parameters used in the TNT
standard curve analysis on HPLC above, each sample was injected into the HPLC. This
procedure was done to compare results obtained from using the newly developed method

on the electrodes to a standard technique using the HPL.C. A standard curve using a TNT
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stock solution diluted 10 0, 1, 2, 3, 4, 5, 6 and 7 ppm was also run. From this standard

curve a second percent recovery was calculated.

Table 2

Theoretical Concentrations for Extraction Process for HPLC Analysis

Original Concentrated HPLC Dilution
Concentration Conc (1:500) Conc (1:4)

0 ppb 0 ppm 0 ppm

2 1.0 0.250

5 25 0.625

10 50 1.250

20 10.0 2.500

30 15.0 3.750

40 20.0 5.000

50 25.0 6.250

DNT Extractions

Extractions of 4-amino-dinitrotoluene (DNT) were tested to determine if
separation from TNT is possible. It was thought that if the same procedure and filter
cartridges did not have a significant affinity for the DNT molecule, it could be a possible
means to remove the DNT from the TNT in the samples. This experiment was important
because the redox potential for DNT measured using square wave voltammetry was
similar to that shown by TNT and this compound is a major breakdown product of TNT
from microbial degradation. DNT showed to be an interference with measuring TNT
using SWV. A six-point extraction curve was performed using the same method used for
TNT extractions. Original dilution concentrations were 0, 2, S, 10, 20 and 30 ppb.

Following the same procedure these would lead to maximum theoretical final
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concentrations of 0, 1, 2.5, 5, 10 and 15 ppm samples. 50 puL of each filtered sample was
added to 445 uL. PBS and 5 ul. HCI. From this mixture, 50 uL. was pipetted and used for
electrode analysis. Using a stock DNT solution of 1000 ug/mL.. a standard DNT curve
was also done by spiking a 10% acetonitrile in PBS with 1% HCI solution with DNT in a
standard addition method. From this regression curve, percent recoveries of extracted

DNT were calculated.

Plant Tissue Extractions

After initial testing of the electrodes, the methods developed were then applied to
environmental samples. One application involved the extraction and analysis of TNT and
DNT from plant tissue, including roots, stems, and leaves. Plant samples were obtained
from Lee Wolfe at EPA in Athens, Georgia. Plant samples included Yucca filamentosa
leaves, tuber and roots and also Platanus occidentalis leaves, stem and roots. These
plants were part of a hydroponics study from plants grown in contaminated water dosed
with TNT. Our laboratory completed a blind analysis on the plants to compare our new
method to HPLC analysis run at the Athens lab (EPA Method 8330, EPA 1998).

For extraction of TNT and DNT from the plants, the tissue was first placed in an
oven at 40°C and left until completely dry. Approximately 0.25 gram samples of plant
tissue were weighed and placed in vials containing 10 mL of acetonitrile. Each vial was
vortexed for one minute and then placed in a sonicator for one hour. After sonication
they were allowed to settle overnight. The next day, each vial was centrifuged at 2500
rpm for ten minutes. Then 4 mL of the supernatant was collected and passed through a

0.45 um Teflon filter into another vial. followed by the addition of 4 mL of distilled
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water and vortexed for one minute. This solution was filtered one more time through a
0.45 um filter into a 50 mL vial. To this 8 mL solution, 42 mL of water was added to
make a 50 mL total volume dilution and vortexed for one minute. Each 50 mL solution
was then run through the Empore SDB-RPS extraction filters under vacuum as in the
above TNT extraction method. The TNT and DNT was re-extracted from the filter with

1 mL of acetonitrile into a 1.5 mL vial and allowed to evaporate completely. To this vial,
50 uL of acetonitrile was added to re-suspend the material. Then 445 uL of PBS and 5
puL IM HCI were added and the vial was vortexed for 30 seconds. Two extractions were
done for each plant sample, one for TNT analysis and the other for DNT analysis. The
entire extraction and analysis procedure was done in triplicate for each sample.

For electrode analysis. 50 uL of the solution was pipetted on the electrode and run
using square wave voltammetry. In a standard addition method, 5 pL. of a 100 ppm TNT
was added to the vial. vortexed, and 50 uL used on the electrode and run again. This
added an increase in concentration of 1 ppm TNT to the solution. This process was done
3 times for a total of 4 scans on the electrode: a blank (extracted solution), +1ppm,
+2ppm, and +3ppm TNT. These four points were plotted and a regression equation was
created. From this equation, the unknown original concentration was calculated by
extrapolating to zero.

For DNT measurements the same procedure was done using the second vial from
the plant extractions. Here a stock solution of 100 ppm DNT was used for the standard
addition to the original extraction. Four scans were run on each electrode and the original

unknown was calculated from the regression curve equation.
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Soil Extractions

TNT and DNT were extracted from soil samples obtained from the same source
and experiment as the plant tissue samples. Soil was taken from a depth of 0 - 10cm
from the top layer. For extractions, approximately 1 gram of soil was ground, weighed
and placed in a vial with 10 mL of acetonitrile. Each vial was vortexed for one minute
and placed in a sonicator for one hour. The vials were then placed on a shaker table
overnight. The next day the samples were centrifuged for ten minutes at 2500 rpm.
From each vial. 4 mL of the supernatant was collected and filtered through a 0.45 um
Teflon filter. To each filtered sample, 4 mL of calcium chloride (CaCl») was added and
then vortexed for | minute. After mixing, the vials were allowed to sit and settle for 20
minutes, and were then filtered one more time through a Teflon filter into a 50 mL vial.
To each vial, 42 mL of distilled water was added and vortexed for one minute. Each
sample was run through the extraction filters and re-collected with 1 mL acetonitrile into
a 1.5 mL vial and allowed to completely evaporate. Two extractions were done for each
sample, one for TNT and the other for DNT analysis. Each extraction procedure was
done in triplicate.

For electrode analysis, 50 uL of acetonitrile was added to each vial to re-suspend
the sample and mixed. Then 445 uL. PBS and 5 uLL 1M HCI was added to the vial and
vortexed for 30 seconds. Using the same standard addition method as with the plant
tissue, increments of TNT and DNT were spiked into the samples and run on the
electrodes. Four scans were done on each electrode, the points were plotted, and a
regression curve equation was made from which the unknown original concentration was

calculated.
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Blank Extractions

Blank extraction samples on plant tissue and soil were tested to verify that the
results from the soil and plant tissue extractions were valid and not just electroactive
matrix interference. For plant tissue blanks, samples of Yucca schidigera were obtained
from the University Nevada Las Vegas Greenhouse. These plants were grown from seed
on site and grown in a clean mixture of soil, peat moss, and vermiculite. Because of the
location and environment the Yucca was grown in, we assumed that there was no
exposure to TNT and DNT. Soil samples were taken from the first 10 cm down from the
top layer. Both the soil and plant tissue samples were extracted in the same method used
on the contaminated samples above. Analysis of the blank samples on the electrode also
followed the same method as above. Each sample was analyzed in triplicate.
Concentration vs current was graphed and a regression curve was used to calculate the

blank concentration.

Environmental Water Samples

Another application of our technique examined the analysis of contaminated
water samples from various wells from designated coded sites. These samples were
obtained through EPA, from other studies, and were analyzed previously by HPLC. Four
samples of known concentrations were tested, with two spikes of 1 and 4 ppm TNT. To
prepare each water sample, 8 mL were added to I mL acetonitrile and ImL PBS. This

resulted in a 20% dilution of the original concentration. Samples analyzed consisted of:
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Table 3

Codes and Known Concentrations for Water Samples

Sample Code Original TNT Concentration
Milan 005-99228 0.156 ppm
Milan 006-99228 3.152 ppm
LAAP Well 12 0.694 ppm
LAAP Well 141 1.908 ppm

50 uL of each sample was pipetted on the electrode and run using square wave
voltammetry. Electrochemical analyzer parameters were as previously described. The
samples were tested in order of increasing concentrations, including the spikes and an
initial blank.

A standard addition method was done on sample LAAP Well 168 with a known
TNT concentration 1.516 ppm. 8mL of sample was added to !mL acetonitrile and ImL
PBS. The original solution was treated as the blank and increments of lppm TNT was
added to the sample and analyzed on the electrode. The resulting points were plotted and
the regression curve equation was used to calculate the original concentration, as if it

were an unknown sample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

EXPERIMENTAL RESULTS

Initial TNT Standard Curves Using Screen-Printed Carbon Electrodes

Initial tests were performed on the screen-printed electrodes to test their
capabilities and activity with TNT. The maximum current upon reduction of TNT using
the screen-printed carbon electrodes appeared at approximately —0.25 Volts for the first
reduction peak (Figure 13) and at —0.685 Volts for the second reduction peak (not
shown). The second reduction peak was not evident over the background current below
concentrations of 1.5ppm. The second peak was significantly smaller than the first
reduction peak, electrodes showed a fairly high sensitivity for the TNT, detecting
concentrations as low as 0.5 ppm. Overlapping scans for increasing concentrations of
TNT are shown in Figure 13. A plot of the peak currents versus concentration resuited in
a linear relationship (Appendix 1). For this plot, the current for the blank baseline was
subtracted from the current for the sample. The dynamic concentration range for this

assay was 0-Sppm (R? = 0.9945)
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Figure 13  Overlapping Square Wave Voltammetry Scans of TNT Standard
Curve in HCI

Optimization of TNT Detection

Optimization tests were performed by various changes to the buffer solution to try
to increase current changes to smooth out baseline noise, increase analyte sensitivity, and
to obtain a better linear range of TNT concentrations inside an optimal scale. Different
concentrations of acetonitrile were tested in a 1% HCI solution in PBS. Acetonitrile
concentrations of 50, 25, 23.1, 20, 16.7, 10 and 9.1% were tested using various ranges of
TNT concentrations. Figure 14 shows examples of SWV scan from 10% acetonitrile,

which was found to produce the best results. Triplicate analysis produced average R’

value of 0.9987 (Appendix 1).
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INT Standard Curves Using HPLC

TNT was analyzed on HPLC to verify the linear results obtained from the SPCE.
TNT had an approximate retention time of 2.00 minutes. Peak area was plotted against
concentration. Results showed a linear response with an R* value of 0.9872. Figure 15

shows the plot of peak area vs concentration.

Peak Aroa
g

y = 132436x - 47405
R? = 0.9872

-500000 5 o 13 20 s »

Conc (ppm)

Figure 15 Regression Curve of TNT Standard Curve on HPLC
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RDX Standard Curves Using SPC electrodes

As with TNT, RDX was tested on the SPCE to test sensitivity and activity. RDX
had a first reduction peak value of approximately —0.8 Volts, although the reduction
peaks were not well defined, especially as RDX concentrations increased. A second
reduction peak was not seen. Figure 16 shows the overlapping SWYV scans for RDX in
increasing concentrations from 0 to 10 ppm. Once parameters were identified, the RDX
was repeated in triplicate from O-3ppm. This produced reproducible results with an
average R’ of 0.9309 (Appendix 1). Figure 17 shows the comparison of RDX and TNT
reduction potentials, both at a concentration of 2 ppm. Although the peak potential for

RDX occurs at a more negative potential than the first reduction peak for TNT, the peaks

overlap causing potential interference.
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Figure 16 Square Wave Voltammetry scans of RDX Standard Curve
in 10% Acetonitrile and % HCI
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To test the interference of RDX with TNT, a standard curve of RDX was run in a

fixed solution of 1ppm TNT. The first reduction peak of TNT was at —0.61 volts and the

second reduction peak was at -0.80 Volts. Although the TNT potential is far enough

away from the potential peak of RDX, the presence of RDX did increase and interfere

with the TNT scans. Figure 18 shows the overlapping SWV scans of increasing

concentration of RDX in the presence of | ppm TNT. This suggests that if RDX were

present in a TNT sample, the result would be an overestimate of the correct TNT

concentration.
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Figure 18 SWYV of RDX Concentration Spiked into a Ippm TNT Solution
in 10% Acetonitrile and 1% HCI

In order to reduce the interference problems associated with the presence of RDX
and TNT together, we acidified the solution using IM HCIl. When TNT and RDX were
analyzed together and then in the presence of a higher acidic solution, the RDX signal
disappeared, leaving only a signal from TNT. However, since the reduction potential is
dependent on the pH of the solution, the TNT reduction peak was now at —-0.42 Volts,
instead of -0.61 Volts. Figure 19 shows an overlapping SWV scan of 2 ppm TNT, 2 ppm
TNT with 2 ppm RDX, and after acidification of the solution. After acidification, the
SWY for TNT and RDX was identical to the signal produced earlier by only TNT

(tracing not shown due to direct overlap).
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Analysis of Breakdown Products Using Electrodes

Out of the five compounds tested for possible interference with TNT analysis,
only 2-amino-dinitrotoluene (2-aDNT) appeared to interfere. The first reduction
potential peak appeared at -0.58 Volts, which was very close to the potential for TNT
found at -0.42 Volts. Also, as seen from the overlapping scan (Figure 20) the peak for
2-aDNT was very high and started its ascent before the TNT peak finished descending,
suggesting that if the two were found together, they would interfere with each other,
creating one large peak. The only other compound that showed up on the SWV scan was
4-amino-dinitrotoluene, with a reduction potential of —~0.80 Voits. The three other

compounds tested, p-dinitrobenzene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene, did
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not show a reduction potential peak in these parameters, suggesting no significant

interference with TNT.
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Figure 20 Overlapping SWYV scans of TNT and Various Breakdown Products in IM HCI

TNT Extraction Method

Samples collected from the extraction of TNT from diluted stock solutions in
water were analyzed on SPC electrodes. Figure 21 is an example of the SWYV scans of
the extracted standard curve, with original concentrations ranging from O to 50 ppb. This
procedure was repeated three times. Appendix 2 lists the complete table of collected
data. When concentration was plotted against the average current, the graph resulted in a
linear relationship with an R? value of 0.9909. Figure 22 shows the plotted concentration
vs average current of the TNT standard curve using the screen-printed carbon electrodes

(SPCE), made from stock solution and tested with each extraction curve (Appendix 2).
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Using the stock solutions, the average percent recovery was calculated and graphed in

Figure 23.
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Figure 21 SCV Scans of Extracted TNT Samples on SPCE
in 10% Acetonitrile and 1% HCI
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Figure 22 Concentration vs Average Current of TNT Stock Solution on SPCE
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Figure 23 Percent Recovery of TNT Concentration from Extraction Process on SPCE

The TNT extracts were also analyzed using HPLC to verify the linear relationship
of the final samples analyzed by the SPC electrodes and the percent recovery. Figure 24
shows the graph of original concentration plotted against average peak area for the
extracted samples. Figure 25 shows the concentration plotted against average peak area
of the TNT stock solution tested with each trial of extraction samples. Appendix 2 lists
the table for the entire data collected from the HPLC trials. Figure 26 is a graph of the
average percent recovery as calculated using the data from the HPLC analyzed standard
curves and extracted samples. The average current results from the electrode data was
plotted against the average peak area results form the HPLC data to show that both

suggested a linear relationship from the extraction procedure. (Figure 27)
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DNT Extractions

A 2-amino-dinitrotoluene (DNT) extraction curve was done to test if the same

extraction procedure used for TNT might be useful for the identification of DNT in a

sample. It was also done to see if the loss of a nitro group for an amine group would

result in a different affinity for the 3M Empore filters leading to altered percent

recoveries compared to the TNT recoveries. A trial was run using the same technique as

in the TNT extractions, except a stock solution of 2-amino-dinitrotoluene was used for

the dilutions and standard curve. Figure 28 shows the results of the extracted samples.

The graph of original concentration against current shows an R’ value of 0.996. Also

tested was a standard curve, which when plotted in Figure 29, shows an R value of

0.9968. Using these graphs percent recovery of extracted 2-aDNT was calculated

(Figure 30).
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Figure 28 DNT Extraction Curve on SPCE
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Figure 30 Average DNT Percent Recoveries from SPCE

Plant Tissue and Soil Extractions

To test the previous method developments, TNT and DNT extractions were
performed on environmental samples, which included plant tissue, soil and water
samples. The plant tissue was obtained from EPA in Athens, Georgia. Table 4 lists the
final calculated concentrations for TNT and DNT extractions from both plant tissue and

soil samples (Yucca filamentosa and Platanus occidentalis). Not all plant tissue was
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reported in the final analysis, because sample size was inadequate, or tissue was
consumed during experimental trials. All samples were done in triplicate except for the
Yucca root, which only had enough weight for one trial. Appendix 3 lists the complete

data for the plant tissue and soil samples from electrode analysis.

Table 4

TNT and DNT Concentrations for Plant Tissue and Soil Extractions

I'NT Concentrations

Average Recovery Adjusted Previously
Concentration Concentration Reported Percent
Sample (mg/kg) (mg/kg) Value Difference
Sycamore Root 2.69 2.72 8.00 66
Sycamore Stem 1.71 1.82 N/R N/A
Sycamore Soil 1.23 1.34 2.10 59
Yucca Root 2.04 2.13 5.00 41
Yucca Soil 1.22 1.34 1.00 18
DNT Concentrations
Average Recovery Adjusted Previously
Concentration Concentration Reported Percent
Sample (mg/kg) (mg/kg) Value Difference
Sycamore Root 5.95 7.34 14.00 47
Sycamore Stem 4.84 6.23 8.00 22
Sycamore Soil 2.89 4.04 5.20 22
Yucca Root 4.70 6.09 13.00 53
Yucca Soil 3.05 424 6.10 30
Blank Extractions

Blank extractions were done to test the extraction method and analysis for matrix
interference and baseline noise. Although the Yucca species used in the blank was

different than the one tested, the procedure was the same and should have a similar
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matrix. Table 5 lists the average results of the blank extractions, while Appendix 3 lists

the entire data collected.

Table 5

I'NT and DNT Concentrations for Blank Extractions

TNT Concentrations
Average Concentration Actual Concentration
Sample (mg/kg) (mg/kg)
Yucca Leaf 2.65 0.00
Yucca Root 240 0.00
Yucca Soil 0.160 0.00
DNT Concentrations
Average Concentration Actual Concentration
Sample (mg/kg) (mg/kg)
Yucca Leaf 4.86 0.00
Yucca Root 5.70 0.00
Yucca Soil 0.98 0.00

Environmental Water Samples

Four water samples collected from EPA monitoring wells were tested for TNT to
see if results from HPLC analysis at EPA in Athens, Georgia compare with results from
the methods tested here. The concentrations of the water samples were plotted against
their resulting current, along with two known spiked concentrations, resulting in a 6-point
test. Figure 31 shows the graph of these six points and a regression curve with R* value
of 0.8322. Using this equation, a calculated concentration can be found for each of the

samples as if their concentrations were unknown. Table 6 lists known and the calculated
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values. Electrode data for all environmental water sample experiments are listed in

Appendix 3.
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Figure 31 Regression Plot of Environmental Water Samples
Table 6

Calculated and Reported Concentrations for Environmental Water Samples

Known HPLC Calculated Percent
Sample Code Concentration (ppb) Concentration (ppb) Difference

Blank 0 -712 (0) >100
Milan 005-99228 156 -170 (0) >100
LAAP Well 12 694 896 22
Spike 1000 1050 S
LAAP Well 141 1908 3320 42
Milan 006-99228 3152 3776 16
Spike 4000 4302 7
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One environmental sample (LAAP Well 168) was tested using a standard addition
method with TNT. Figure 32 shows the resulting SWV scan of this experiment. Using a
linear fit regression curve (R* = 0.9961), the unknown concentration was calculated to be
3417 ppb when the actual value was reported as 1516 ppb. This was more than double
the reported value (approximately a 55% difference). A second calculation was tested,
by graphing the TNT concentration against the difference in current between the first
reduction peak and the following trough, to see if this was a better indication of
concentration. This resulted in a linear curve fit with an R* value of .9995 and had a
983 ppb calculated TNT concentration of the environmental sample. This was a closer

value to the known with an approximate difference of only 35%.
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Figure 32 SWYV Scans for Standard Addition of Environmental Water Sample
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CHAPTER 5
DISCUSSION
Standardization and Optimization

The screen-printed carbon electrodes showed high sensitivity to TNT. Although
the amount of change in current between increasing concentrations varied slightly from
one electrode to another, the linear relationship was reproducible with each new standard
curve. The linear range for TNT, as measured by the first reduction peak, ranged
between 0.5 ppm and 15 ppm. A second reduction peak was detected down to 1.5 ppm,
but was not detectable in lower amounts. Concentrations above this limit are not useful,
so no testing was done beyond the 15 ppm concentration. HPLC analysis confirmed the
linear relationship resulting from electrode analysis of TNT standard curves.

The initial phosphate solution containing IM HCI was altered to see if current
changes could be enhanced. Trials were done using acetonitrile in varying concentrations
in a phosphate buffer solution keeping a constant 1% HCI in the final solution. The
optimization tests revealed that a slightly acidic solution (pH 5) is better for clean
baselines; however, if too acidic (pH 2) the current is decreased. A linear relationship
can still be observed for a standard curve, but the difference in current between peak
potential of the tested concentrations were small, leaving little room for variance. In
basic buffer solutions (above pH 7), the baseline increased rapidly causing the reduction

potential peaks to become non-detectable. Different pHs also lead to a shift in

52
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reduction peak potentials. A decrease in pH shifted the peak potential to a more positive
potential voltage, while an increase in pH shifted the peak potential to a more negative
potential.

Tests on RDX standard curves also showed a linear relationship for change in
current up to 10 ppm. The peak definition was poorer than TNT for the first reduction
peak, and a second reduction peak was not visible. The RDX peaks were small, broad,
and resulted in a smaller change in current. Because the peak for RDX is not very
distinct, it would be hard to detect RDX in a sample that is co-contaminated with TNT.
When TNT is present with RDX, the TNT reduction peak is seen, however, the RDX is
not. The result is an overestimation of the TNT concentration. To try to eliminate the
RDX signal, acidification was applied. At low pH, the signal from the RDX was lost
leaving only the TNT signal. This method could be used to estimate TNT and RDX
concentrations from a co-contaminated sample by running one sample in high pH buffer
(pH 7) and a second in low pH buffer (pH 2). The high pH would yield overestimated
TNT concentrations while the low pH would yield a more accurate TNT concentration.
The difference between the two peak currents would be due to the contribution from the
RDX concentration. This would allow TNT and RDX to be measured from one sample
using only one electrode, in just a few minutes.

Since TNT readily breaks down due to photo- and microbial degradation, large
amounts of degradation products could be present in samples and potentially interfere
with the detection of TNT on the electrodes. Selected degradation products were tested
for electrode sensitivity and reduction peak potential. Analysis of the electrochemical

behavior by the TNT breakdown products suggests that 2-amino-dinitrotoluene (DNT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

could be a potential interference with TNT since it has a reduction peak potential close to
TNT and overlapping peak tails. Analysis also shows that the electrodes are sensitive to
both 2-aDNT and 4-aDNT. Their reduction potential was not thought to be interference
to TNT since they had values more negative than TNT and only a small amount of peak
overlap. The three other compounds tested (2,4-dinitrotoluene, para-dinitrobenzene, and
1,3,5-trinitrobenzene) did not interfere with TNT, as the electrodes showed essentially no
sensitivity towards them using the method and parameters tested in this research.

Coupling the electrode analysis with the solid phase extraction using the 3M
Empore SDB-RPS filters resulted in a detection limit of 2 ppb TNT. These filters show
excellent efficiency in binding and releasing TNT. Electrode analysis and HPLC analysis
of the extracted samples both showed linear results. The extraction method has some
variability in the percent recovery. However, even though the electrode average recovery
was approximately 30%, the concentration factor of 1:500 was great enough to allow for
a significant improvement in the detection limit. The HPLC yielded higher percent
recoveries than the electrodes, but had poor reproducibility. It is possible that the HPLC
is a more sensitive technique than the screen-printed carbon electrodes.

The DNT extractions showed similar results to that of TNT, but with slightly
better percent recoveries. One possible reason for this could be if the filter had a higher
affinity for the DNT molecule, which has two nitro groups and one amine group.
Another reason could simply be due to a more efficient solvent release from
improvement in the extraction method and laboratory techniques, acquired from

numerous trials done before in the TNT extraction method development.
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Environmental Applications

The screen-printed carbon electrodes had mediocre usefulness for analysis of
plant tissue. The calculated concentrations resulting of plant extractions were only about
50% of the reported HPLC values for both TNT and DNT. The values for the soil
extractions, however, were closer to 75% of the reported HPLC values. Although the soil
results were better, they were still somewhat problematic. When extractions were
performed, the solutions had a noticeable amount of impurities in the matrix. The extract
had a green cloudy appearance, suggesting that a significant amount of plant material was
extracted into the acetonitrile solvent. Blank extractions were performed to test for the
possibility of matrix interference. These results showed high and variable current values
resulting from matrix interference. Consequently, the resuits from the soil and plant
extractions were inaccurate and unreliable. The soil blanks appeared to have a cleaner
matrix and give better resuits than the plant tissue blanks, suggesting that interferences in
the matrix of the plant tissue contributed to poorer results for the plant samples.

The water samples tested had calculated concentrations which closely
approximate the reported value. These samples possessed cleaner matrices, although
there appeared to still be some interference. These interferences with TNT could be due
to breakdown products, as the samples were collected 6 months prior to analysis.
However, even with the amount of error between the known and predicted values, the
electrode analysis still shows promise as a screening technique for estimates of TNT
concentrations in environmental ground water and surface water samples.

The well water sample tested by standard addition techniques had an initiai

concentration of twice the reported amount when the regression curve. used to calculate
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the concentration, was from concentration vs total current. After using peak to trough
difference instead of peak current for the Y-axis, the final calculation resulted in a
concentration closer to the reported value, but still had about 40% less than the reported
HPLC value. This data handling technique could show potential for screening water
samples for TNT. All of the environmental applications need more repetitions before

making any final conclusions.

General Comments and Applicability of Techniques

During the development of these methods, there existed some potential
problems/errors that could have had negative influences on the results. Most of this
research included the characterization of screen-printed carbon electrodes, however these
electrodes showed some variability in their fabrication. When electrodes were tested
with a voltmeter, there were considerable differences in resistance across the carbon and
silver strips between electrodes. (Appendix 4) This initial variance would lead to
differences in results. Another source of error was the use of HPLC for confirmation of
electrode results. Verification experiments done on the HPLC were performed using
techniques that were optimal to the best of my knowledge, however it takes a long time to
perfect the techniques needed to conduct experiments that result in reliable and
reproducible data. I had limited operating experience with the HPLC and had difficulties
with noisy baselines and reproducible peak areas, although retention times remained

constant for peak identification.
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Future Experiments

For future research I would like to look into better techniques for the detection of
RDX and TNT. The acidification process had some positive potential as a quick method
for the quantification of both TNT and RDX, but I would like to find a possible way to
separate and isolate the compounds for better individual analysis.

Also for future research, the extraction of TNT and DNT for concentration of
dilute samples could be better optimized and perfected for higher percent recoveries.
This could lead to detection limits below the 2 ppb level reported here. Also research for
a separation and detection method for TNT and DNT from a co-contaminate sample
could be used in screening of environmental samples. This could possibly lead to a
method which would separate the other breakdown products from TNT. The DNT
extraction experiment was only an initial test to see what potential the 3M Empore filters
had on other compounds. Not only do more repetitions of DNT need to be done, other
experiments on RDX and other TNT breakdown products are also needed.

Most importantly, for these electrodes to be used in analysis of plant and soil
extractions, more research needs to be done to isolate TNT from the matrix. The plant
and soil matrices have a lot of interference when analyzed by the electrode method.
Perhaps a separation technique could be applied first to reduce matrix interference.
Better results were obtained with the water samples, possibly due to the simpler matrices
of the sample. However, this screening technique could be useful in research using plants
for phytoremediation of TNT and other explosives from the environment. This would be
a fast method to test the water effluent for decreasing TNT concentrations or to test

various plant tissues for uptake of TNT.
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In conclusion, the use of screen-printed carbon electrodes shows great promise as
an electrochemical detection method. They are inexpensive, fast, simple and sensitive to
the compounds tested here. Detection methods using these electrodes require minimal
supplies and solvents, and generate small amounts of waste in the process. Another
valuable area of research could include the use of the electrodes for the detection of other
environmental contaminants. An important benefit of these detection methods is the
ability to analyze samples in the field and at contaminated sites, minimizing the time and

cost of lab analysis.
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STANDARDIZATION AND OPTIMIZATION
EXPERIMENTAL DATA
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Data for Characterization of TNT on Screen-Printed Carbon Electrodes

Standard Curve in 1M HCI1
Cone (ppm) Current (1e-7A
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Data for TNT Optimization in 10% Acetonitrile and 1%HCI in Phosphate Buffer
TNT curve A

conc TNT current curment-
(ppb) (1e-8A) bignk

L] 0.6278 ]
500 0.9388 0.3108
1000 1.388 0.7602
1500 1.772 1.1442
2000 2.129 1.5012
2500 25% 1.8042
3000 2.81 2.1822

' 28 q—-m-

—— e ——

b
[ ]

current (10-8A)
o
3] -

i

I B y = 0.0007x - 0.0076 . |
| R® = 0.9976 i
, 1000 1500 2000 2500 3000 3800 |
R conc (ppb) “- J

TNT curve B

conec TNT current current -

(eeb) (1e6A) biank
0

0.5802 0
S00 1.114 0.5538
1000 1.5683 1.0328
1500 2073 1.5128
2000 2.428 1.88678
2500 2881 23308
3000 3.412 28618
3

2.5 e e / ‘

‘:‘1.5
[ 4
bR |
| E
f Eos y = 0.0009x + 0.0631 :
(<] - s
; R? = 0.9976
.0 : r - - |
s 0 500 1000 1500 2000 2500 3000 3500 :

: conc (ppd) :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TNT curve C
cont TNT cumrent current-
okl (lo4A) bk
0 0.0004 o
S00 1078 0.4008
1000 1:400 0.0028
1800 1.0 1230
2000 2228 1020
2800 20 1.0030
3000 2 22708
28
2
15

-h

ogunmu)

y = 0.0008x + 0.0004
0 R = 0.9008
] S00 1000 1500 2000 2800 3000 3800
cont (ppb)
TNT average curve
conc TNT cwwveA curve B curveC avernge olandard standand
(aehl cwrest sunent st cameat devielian e
] () 0 o 0.0000 0.00000 0.00000
800 o ases c.en8 04044 0.12%20 007118
1000 o.7eR 1.058 o oses2 013770 om0
1800 11402 15128 12348 12972 o.18211 C.11001
2000 1.8012 10878 1.e0 10008 atemms 0.10789
2800 19002 23308 19098 2002 0.22e80 0.12880
3000 2122 20818 227e8 268 0.300¢3 020008
TNT average curve
300
2%

ourrent (10-8A)

REER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HITHEH

62



RDX Characterization Standard Curves in 10% Acetonitrile and 1% HCI on Screen-

Printed Carbon Electrodes

Trail 4 current -

conc (ppm]  cwrent plank
0.0 2123 0.000
[1X.) 231 0.248
1.0 2.626 0.503
1.5 2.858 0.733
20 2983 0.880
25 3.088 0.945
30 3183 1.030

Trail 2 current -

conc (ppm) surrent biank
0.0 2473 0.000
05 2923 0.450
1.0 3.194 0.721
15 3.425 0.952
20 3.558 1.085
2.5 3.630 1.157
30 3.782 1.309

current (108A)

1.200

1.000

0.800

0.600
0.400

y = 0.3458x + 0.0983

mz,af

0.000

rR? =0.9508

00 oS 1.0

15 20 25 30 35
CONC (ppm)

1.600

1.400

1.200 .

1.000

0.800 .

0.600

E :;: 7.( y = 0.4078x + 0.1993
0.000 @~ ' . . R= 0.9234
0.0 0.5 10 1.9 20 2.5 3.0 35
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hisnk
0.000

0343
0.704
0913
1.112
1.7
i

0.000
0.450
0.721

1.086
1187
1.3090

y*=0414ix+0.178 |

¥ sasm

10 18 20 28

s

mall
0.000

0.784
0.013
1112
117
1.2n

0.000
0.347

0.000
1.010
1.001
1208

0.10108 0.06083
0.14748 0.07373
0.11082 0.08841
0.13838 0.00010
0.12003 0.08332
0.15131 0.07888

Trall 3
coacinaml cument
0.0 2072
08 3318
10 3788
18 3.008
20 4.084
28 4.143
30 4243
RDX Averages
SOne | K
0.0 0.000
05 0.248
10 0.503
18 0.733
20 0.880
28 0.048
30 1.03%0
1.400
1.200
1.000
? 0.800
[ .
« 0.600
g 0.400

10

y = 0.3801x + 0.1686
R? = 0.9300
1.5 20 25 3o
conc (ppm)

s
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Graphs and Data for TNT Extractions on Screen-Printed Carbon Electrodes in 10%

Acetonitrile and 1% HCI in Phosphate Buffer

TNT stock electrode average results

(with stnd dev error bars)
2.5000
- / /%
1.5000 - -

- /

current (10-8A)

- )

y = 0.6887x + 0.0272
R?=0.9995

conc (ppm)
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Extraction samples average curve

67

(with stnd dev error bars)
0.6000
0.8000 MI

current (1e-8A)

0.1000

/ y = 0.0091x + 0.0229
R?* = 0.9909

0.0000 @

1} 10 2 0 40 L 0

Conc (ppb original)
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Data for Percent Recovery Calculations for TNT Extractions
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Data for HPLC Analysis of TNT Extractions
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Data for DNT Extraction Percent Recovery on Screen-Printed Carbon Electrodes

% Recovery for 2-aDNT Extraction

Extracted Curve
conc (ppm) current (1e-6A) blank

) 1.087 0.000
1 1.380 0.313
2 1.778 0.711
5 2.970 1.903
10 4811 3.744
15 6.317 5.250

Standard Curve

conc (ppm) current (1e-8A) blank

0 0.688 0.000
1 1.348 0.680
2 2032 1.344
5 3.268 2578
10 4.941 4.253
15 6.484 5.796

% Recoveries

conc standard extraction standard recovery

) 0.000 0.000 0.000 0.00
1 0.680 0.313 0474 47.42
2 1.344 0.711 0.529 52.90
5 2578 1.803 0.738 73.82
10 4253 3.744 0.880 68.03
15 5.706 5.250 0.908 90.58
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Data for Plant Tissue and Soil Extractions on Screen-Printed Carbon Electrodes
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Soil Extractions

TNT
Yucca -1
conc (ppm) current(1e-6A)
0] 1.501
1 388
2 5929
3 7.518
when y =0 linear fit
x= 0.8418
Yucca -2
conc (ppm) current(1g-6A)
] 0.8784
1 2557
2 4.784
3 7.625
when y =0 linear fit
xs 0.2631
Yucca -3
conc (ppm) current(1e-6A)
0 1.531
1 4423
2 6.71
3 8.629

when y =0 linear fit
t &4 0.7574

76

: —
9
8 f
7 —® |
6 /4 ;
]
5
: / T
3 / !
2
Py y=201x+1692 |
R*=0.9923
o . . -
. 0 0s 1 15 2 25 3 s,
L B J
s 1
e —
7 2 |
! o e
. — |
o .
3 ~ -
" S
L~ y=22467x+0.6911 |
‘o Ri=09088 |
i 0 05 1 15 2 25 3 is;
|
10 _
I 9 f
ll s ” |
', / o
| 6 7 . '
[ 5 / : |
: / 1
B |
| 2 |
1 y =2.3581x + 1.7861;
] 0 RE=Q.9018 i
l__o 0s 1 15 2 25 3 35|
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-1
conc (pom) asreni(ie-8A)
o 1281
1 3.088
2 5438
3 7.7
when y =8 inser fit poly it

Sycamore - 2
conc (com)  cureni(1e-6A)
0 1.317
1 3911
2 .73
3 0.147
when y = nsar @t poly &

xs 0.5058 048.01 20

Sycamore -3
cope (am) asreni(1e-8A)
[ 1.5%
1 £y ]
2 ssR
3 7514
when y =@ fnaer it poly it

xs 0.546¢ 0.08, 14.12

4
L
7
¢
s
4
3
2
s y=2.903k + 1.1303
° R =0
o 185 2 as 3 s
0
®
s
7
o
]
4
3
2
t
o

0
s
7
.
s
4
3
2
y = 20000x ¢ 1.0008

1
. =000

° 15 2 2s 3 as
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Stem Extraction
TNT
Sycamore Stam-1
concomadded) pask(1e-0A)
1] 0.65633
1 1.728
2 2.083
3 4.236
insar it x vaiue = 0.4838
Sycamore Stem-2
concamakil) ok (iefA)
] 0.55%2
1 133
2 2341
3 aen
linser fit x vaius = 0.4044
Sycamore Stham-3
conc (enm sddec) ok (10-8A)
] 0.4087
1 1.088
2 1.7%7
3 2007
inewr fit x vaiue = 0.5044

45

P o
as P
3 /
% e
15 4
1 pd
“( y = 1.1883x + 0.0008
0l . . =a.50%
° 1 2 3 .
.
3s
3 /
28 /
2
15 /
o; y = 1.0084x ¢ 04191
. R =0.9000
° 1 2 3
3
28 ) 4
15
1 /
05 ¥ = 0.7483n + 0.378
”'= 00000
ol . . .
0 1 2 3 .
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linear fit x value =

linear fit x value =

1.859
2914
4278
5.361

135

1.888
3.588

6.106

1.588

1.504
3.085
4.547
5.867

1.135

6
5 A
. /
3
2
. y = 1.247x + 1.6826
R* = 0.9981
0 v
0 2 3 4
7
6 V.
s /
‘ /
3
) ./ y = 1.3941x + 2.0321
R’ = 0.9936
1
] v
0 2 a 4
7
(1
) /
Py /
3 /
2
T y=1.4301x + 1.6231
o R’ =0.9983
(4] 15 2 25 3 s
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1927

3.961
4.945

0.9111

09138
1409
21%7

3
25 ——
2
15 -
1 /(
05 y = 0.0000x © 0.6208
( LYY )
0 1 2 s .
[
5 )
P /
3
2
1 y = 1.5000x + 0.0253
ol - — Frewm
1 2 3
[
5
: //
3
2 /
1?/ y=1.2044x ¢ 11794
. RF=090¢
0 1 2 3 4
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DNT
Sycamore Root-1
conc (ppm scided) oank (19-8A)
0 202
1 3.ax
2 4.931
3 6.343
linear i x value = 147
Sycamore Root-2
cone (pam addedd pask (10-8A)
] 2543
1 3.008
2 S.19¢
3 e.571
linsar it x valus = 1.908
Sycamore Root-3
concopmakiad ek (19-6A)
0 2008
1 3431
2 4.718
3 6.088
linsar M x veiue = 1.547
Yucca Root-1
cncmadkiedd pesk(1e-8A)
0 1.500
1 2407
2 3412
3 4483
fineer it x value = 1.5

© -« N W b OOV

| \\

L

(-]
-
n»n
“
»

y= 1.337x ¢+ 25408

a"-c.m

w o o O~
(-
-
N
“w

ofb.awbBubabo
™
W

[ -]
8
-
&
[ ]
&
[ ]
&
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Blank Extractions
TNT
Yucca Leaf-1
conc (oom)  careni(1e-GA)
) 0.417%
1 0.8144
2 1.3
3 2.081
whon y =9 finesr it
xs= 0.631
Yucca Leaf-2
conc (ppm)  caTeni(1e-8A)
) 0.3483
1 0.7398
2 1.447
3 1.05¢
wheny =9 finasr M
x= 0.748
Yuces Leaf-3
ancipom casmniiiedA)
0 0.3453
1 0.7021
2 1.152
3 1.8
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Root -1
conc (ppm) cueni(1e-GA)
solvent 0.2962
0 0.4808
1 0.628
2 1.241
3 1.688
when y =0 linsar fit
xs 0.384
Root -2
solvent 0.2191
0 0.331
1 0.5881
2 0.9182
3 1.268
when y =0 linear fit
xs 0.273
Root -3
current(1e-6A)
solvent 0.3287
0 0.5148
1 0.7751
2 1208
3 1.82¢
when y =0 linger fit
xs 0.234

18

N //
N ad

) Pad

L y = 0.4035x + 0.1561
f RT=0.9969
04 - - v -

0 0s 1.5 2 25 3

12
| /

X }

04

02 y =0.3137x + 0.0857
t/ R"=0.9963
0 — -

0 05 1.5 2 25 3 s

16
®

14 P
12 /

) /
08
Y /
[ X ) -%
02 y = 0.4419x + 0.1038

of/ R =0.97¢5

0 as 15 2 25 3 as
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when y =@
s

wheny =9
s

0.029

1.013

inser it
0.108

2.13%7

isi-ki

i
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14
®
12 >
1 /
o8 /
o8
04
el y = 0.4008x +
R=0.9827
o+ — v ——p— v v
o oS 1 18 2 28 3
28
®
2
15
1
®
s y- L 4
= 0.9647
° v v -

1.6

14

12

1

os

os /

04

02 y=04162x ¢
; R =0.9008
o o 1 15 2 25 3
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Blank Extractions
ONT
Yucca Leaf-1
conc (ppm) cureni(1e-GA)
0 1.168
1 2221
2 3.143
3 4.213
when y =0 lineer fit
xs 1.13
Yuccs Leaf-2
conc (pom) cumreni(1e-0A)
0 0.8826
1 1.403
2 2.048
3 3.084
when y =0 linear fit
x= 1.07
Yucca Leaf-3
conc (ppm)  curreni(1e-6A)
0 148
1 2245
2 3.048
3 4.018
when y =0 linsar fit
x= 1.68

45

35

25

1.5

/

e

-~

/

y=1.0281x + 1.1601
R = 0.9008
o:s 1 1.,5 i 25 3 35

35
3
25
2
15

——

=

/

1V

y=0.7980x + 0.771

R = 09787

05 1 1.5 2 25 3 s

——

——

Y

os y = 0.8477x + 14212
o R'= 09073
a5 1 1.5 2 28 3 s
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>
Root -1 cment- | 138
cncipom cmniieSA) mbant |,
solvent 1.073 [
0 146 0317 14
1 1.908 0.800 12
2 2382 129
3 2920 1.988 1
whea y =9 finear it :':
xS
0.78¢ > y = 0482 + 0378
[ ]
02 R'=0.9048
(] v v v
(] 0.s 1 15 2 25 3 35

] v
(] oS 1 18 2 28 3 5
Root -3 cument - S
cnc(oom omeniieSA) shant
sohvent .9 0 28
° 2.301 0.331
1 2808 o8 2
2 am 1.002
3 4704 279 15
when y =@ heer it 1
x=  02¢5 ( Z
s y = 0.5316x + 0.2838
R'= 09804
04— — v v
° as 1 18 2 28 3 3s
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Soll -1 curvent -
conc (oom) cureni(iedA) mivent
sohvant 1483 (/]

0 1.728 0273
1 2.15% 0.708
2 21 1.3%
3 3.400 2008
when y =9 linear Mt
& 0.333
Soll -2 current -
conc (oom) cumniieSA) sovend
soivent 1.37% 0
0 1.738 0.359
1 2023 0.044
2 2901 1202
3 3.278
when y »@ lnesr it
xs 0.4
Soll 3 asvent -
conc oom) csni(ie-fA) mbant
sohant 1.2% ]
0 1.000 0.3
1 2208 097
2 20m 1.468
3 .27 20%
wheny =@ linear Mt
s 0

08 1 15

2
1.8 ®
hy /
1.4
i /
1
o8 /
0s ®
o y = 05i00x + €2400)
08 1 15 25 R T
28
2
1.8
1
as
Y= 0.5213% + 0.4408
R’ =0.908¢
[ ] p— v v v
1] 1 1.8 25 3 kY]
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Data for Environmental Water Samples on Screen-Printed Carbon Electrodes

Environmental Water Samples Electrode Data

Standard Curve Method

90

finsl conc
Original Conc Conc After Current current - calculated after dilution
(epb} Dilution (ppb) (1e-4A) biank concentration
0 0 0.3318 0 -5893.2 -711.84
156 1248 0.857¢ 0.2257 -141.8 -170.18
6804 5852 1.002 0.8701 747 808.4
1000 1000 1.088 0.7341 875 1050
1908 1526.4 2012 1.6801 2787 33204
3152 252168 2202 1.8701 3147 rTre4
4000 4000 2421 2.0801 3s8s 4302
3
28
§ 2 74____4
S ®
b y = 0.0008x + 0.2966
.8 4
R’ =0.8827
()
. 1000 200 000 % [
Conc (ppd)
Standard Additon Method
Trough original conc = 1516 ppb TNT
Conc TNT Peak Curvent Current after dilution = 1213 ppb
ipeb) (1e-6A) (1e-4A) Difference
1213 1.300 1222 0.087 caicuisted conc = 819
2213 1.688 1.507 0.348 finsl conc = %
3213 2282 1.638 0.644
4213 2.700 1.708 0.911
5213 3.087 1918 11472
14
12
1 /_—
08
08
04
02 y = 0.0003x - 0.2¢467
o - R =0.9008
(] v — v - v
° 1000 2000 3000 4000 5000 6000
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ELECTRODE RESISTANCE DATA
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Data for Electrode Resistance Analysis of Screen-Printed Carbon Electrodes
Analysis of Screen-Printed Carbon Electrodes

Ressived 71080
Rosistance fl-chms) avernge standand Resisianse (Chms) avernge standand
siin sisatrude srhen-elde st davialien sikearaile astile dovisinn
A 1 0817 0.8% 0.00 1.9 1.14 o1
3 0488 1.10
[} 0.008 1.40
7 0.544 120
1" 0.408 090
[} 1 0.409 0.554 0.091 080 0.0 0.100
3 0.519 080
s 0620 100
4 0o 1.00
1 0.490 080
c 1 0452 0409 0.04 0.7 0.80 0122
3 0.468 0.80
s 0480 1.00
7 0.508 0.80
" 0.401 o7
1] 1 0.470 0487 0.050 0.7 0. 0.074
3 0.408 0.75
s 0572 0.0
7 0.500 0.0
® 0.408 o0
E 1 040 0357 0.148 1.08 1.08 0.112
3 0420 1.10
s 0.754 12
? 0087 1.00
"° 0.488 0.90
4 1 0.573 0.810 0.198 1.08 1.2 o188
3 0.854 1.10
s 0815 1.30
4 o 1.3
"* 0.408 1.10
Q 1 0.3%7 0341 0.008 080 0.2 0.8
s 0. 100
[} 0| 1.10
? .33 690
] 0.180 o7
H 1 042 0.574 0.180 0.00 0.90 0.1%
3 oe2 1.00
e aste 1.10
4 0.006 0.90
] 0.340 o.70
| 1 0401 0.008 0187 1.00 112 0228
3 o.T% 12
s 0.788 1.40
? 0678 120
) 0.5 080
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[

0.352
0.419
0.441
0.413
0.197

0.341
0.574
0.605
0.264

G-—IO'HMOOU>E Sumws
:

0.364

0.90
1.00
1.10
1.10
0.70

0.0247
0.0458
0.0221
0.0286
0.0723
0.0779
0.0490
0.0800
0.0837
0.0408

average strip resistance (carbon-side)

kilo-ohms
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average
1.14
0.90
0.80
0.79
105
1.22
0.92
0.90
1.12
0.96

c.-Ic)-nrnoouu:oL:"";.

94

stnd dev/2
0.0908

0.0500
0.0612
0.0371
0.0559
0.0978
0.0742
0.0791
0.1140
0.0837

average strip resistance (silver-side)

ohms
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