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ABSTRACT
Genesis and morphology of soil pendants in Quaternary landforms of Pahranagat
Valley, Nevada
by
Amy L. Brock
Dr. Brenda Buck, Examination Committee Chair
Professor of Geoscience
University of Nevada, Las Vegas
Five geomorphic surfaces present in the northern Pahranagat Valley, Lincoln County,

Nevada range in age from Early Pleistocene to Recent (Q1-Q35) and vary in clast
lithology from dolomite to volcanic tephras. Two chronosequences and 5 lithosequences
were compared to evaluate micro and macromorphic characteristics and development of
soil pendants. This study presents a new interpretation for soil pendant development.
Key features observed in the Pahranagat Valley pendants provide evidence for
precipitation at the clast-pendant contact suggesting that newer deposits are not always
found at the pendant terminus as other studies have assumed. These features include a
void at the clast-pendant contact where precipitates such as calcium carbonate, silica
and/or fibrous silicate clays may precipitate. Other features present in these pendants
include significant amounts of parent clast grains that are incorporated into the pendant,
detrital grain and parent material displacement and/or dissolution and presence of the

fibrous clay sepiolite.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Purpose of Study

Laminar accumulations of pedogenic material such as calcium carbonate that
accurnulates on the bottoms of coarse clasts within a soil profile (pendants) are becoming
increasingly important to Quaternary landform studies throughout the western United
States. Pendants are found in many soils of arid and semi-arid regions of the world. Few
studies have focused on the morphology and genesis of these features although they have
recently provided the material for absolute and relative dating of geomorphic landforms
as well as the timing of Quaternary faulting episodes. Numerous chronosequence studies
pertaining to the genesis of calcic soils have also used pendants for obtaining information
on calcium carbonate development through time. The purpose of this study is to evaluate
soils on a series of landforms that vary with age and clast lithology to determine the
influence of these parameters on the genesis of calcic soil pendant features. This thesis
will address several questions concerning soil pendants found in the Pahranagat Valley of
Lincoln County, Nevada: (1) How are soil pendants formed? (2) What are the
microscopic and macroscopic characteristics of pendants? (3) How do time and lithology
affect pendant genesis?

This thesis will lead to a better understanding of soil pendants, their macro and

micromorphic characteristics and features associated with their development. The results



2
of this thesis will benefit the fields of Quaternary pedology, geomorphology, agriculture,

archaeology and many other soil related areas, Pendants can be applied to these fields to
help determine ages (relative and absolute) of landforms, soil fertility and stability, water

quality and movement, contaminant transpott, biological habitats and air quality.

Significance

Arid soils are becoming increasingly significant as world populations grow. Currently
arid and semi-arid soils cover approximately 36% of Earth’s surface (Buol et. al., 1997).
Landforms found in these areas directly affect and in turn are affected by urbanization
and agriculture. Improper management and development may adversely influence soil
stability and fertility, water quality, biological habitats and air quality. Poor planning of
these surfaces may also promote flooding and increase seismic risks associated with
urban development on present or future faults, Secondary carbonate accumulations in
soils have been extensively studied throughout the western portion of the continental
United States, Carbonate soils stretch as far east as Kansas and Oklahoma and north to
Montanta and North Dakota and south into Mexico (Figure 1.1). The overwhelming
abundance and variety of calcic soils in the southwestern U.S. provides a unique setting
to study their morphological and chemical characteristics and relationships with respect
to variations in climate, biota, topography, lithology and time, The lack of
comprehensive absolute dating analyses for Quaternary deposits has spurred extensive

research on soil carbonate for half of a century (Gile et al., 1963; Gile et al., 1966;
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Vanden Heuvel, 1966; Wieder and Yaalon, 1974; Bachman and Machette, 1977;
Aguilar et al., 1981; Gile et al., 1981; Pierce and Scott, 1982; Allen, 1985; Blank and
Fosberg, 1990; Boettinger and Southard, 1990; McFadden et al., 1991; Monger ¢t al.,
1991; Reheis et al., 1992; Eghbal and Southard, 1993; Monger and Adams, 1996). The
application of isotopic dating techniques combined with the development of
morphological stages have been used 10 obtain a better understanding of the temporal
development of calcic soils not only in the southwestern U.S,, but the world (Gile et al.,
1965 Gile et al., 1966; Swett, 1974; Bachman and Machette, 1977; Gile et al., 1981;
Pierce and Scott, 1982; Pierce, 1985, Amundson et al., 1989; McFadden et al., 1991,
Reheis et al., 1992; Amundson et al., 1994; Courty et al., 1994; Wang and Anderson,
1998; Khademi and Mermut, 1999; Ludwig and Paces, 2002). Carbonate rich soils found
in the northern portion of the Pahranagat Valley provide an opportunity to contribute to
our understanding of calcium carbonate and silica development in soils. The Pahranagat
Valley is used for this chronosequence and lithosequence study because a number of soil
forming properties are constant. Biota, climate, and topography are consistent between
landforms with local changes in lithology and temporal development.  Because of this,
specific changes in soil development can be attributed to lithology and/or time.

An additional significance of this study, although not addressed in detail is the
numerous fault scarps that have been identified in close proximity to the small town of
Hiko, Nevada (Figure 3.1) that could pose a significant seismic hazard for this
community. The valley is also rich in archaeological sites with petroglyphs unique only
to the valley and evidence for prehistoric and paleo-Indian occupation that has yet to be

fully understood. With this study, insight into the geomorphic and developmental history



of the valley may facilitate its overall understanding, sparking new research into the

seismic history and paleo-setting for the Pahranagat Valley.

Study Area Location

The study area is located in the northern Pahranagat Valley of Lincoln County,
Nevada approximately 209 km north of Las Vegas (Figure 1.2). The Pahranagat Valley
spans a length of approximately 48 km and ranges in width from 1-8 k. The study area
covers roughly 8 km? in the northern section of the valley. Soil profiles were described
and landforms were evaluated on two, heavily dissected alluvial fans. Each fan contains 5
geomorphic surfaces composed of fan remnants and inset fans associated with multiple
periods of deposition and incision. The sediments that make up these fans are derived
from the North Pahranagat Range and southern Seaman Range located north of the small
town of Hiko, Nevada. Two ephemeral washes extend from the North Pahranagat and
Seaman Ranges as tributaries of the ephemeral White River. The northern Pahranagat
Valley is ideal for studying arid soils because it contains well preserved fan deposits.
Also, the study area has undergone minimal disturbance from anthropogenic sources
including off-road vehicle use, agriculture, grazing and building (with the exception of
two gravel access roads). There is evidence of prehistoric occupation in the area, but

impact appears to be minimal and limited to lithic scatter sites.

Alluvial Fan Formation
Alluvial fans are developed under special tectonic and climatic conditions and

predominantly occur in arid and semi-arid regions of the world. Fluvial debris from steep
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Figure 1.2. Location map showing the upper portion of Pahranagat Valley and study
area location.



mountain streams are deposited in adjacent valleys to form these features. Alluvial fans
consist of proximal, mid-fan, and distal portions related to the distance from the mountain
front contact, grainsize, and the type of sediment deposited. Alluvial fans can vary from
small, steep fans to broad and gently sloping, and typically exhibit a cone or triangle
form. Several factors that influence alluvial fan formation in desert environments
include: (1) Faulting along range boundaries that increase stream gradients and/or (2)
Climate changes that affect sediment flux and vegetative cover. Alluvial seduments are
dominantly used in soil studies throughout the southwest (Sowers et al., 1988; Bull,
1991). Terminologies and descriptions of Peterson (1981) are used to describe alluvial

landforms in the Pahranagat Valley study area.

Landforms of the Basin and Range Province

Peterson (1981) describes a series of geomorphic swrfaces associated with the
formation of alluvial fans located in the Basin and Range province. The resulting
terminologies used to describe these surfaces are based primarily on topography, relief
and soil development. Descriptions also pertain to shape, geographic scale and genetic
relationship of each landform. Peterson’s (1981) terms that will be applied to this study
are ballena, inset fan, and fan remnant (Figure 1.3). Ballenas are defined as erosional
remnants of alluvial fans with rounded tops and extreme soil development consistent with
the convex nature of the surface. These forms are believed to be relicts of surfaces
formed in the Pleistocene. Inset fans are defined as ephemeral stream floodplains that
exist between ballenas or other fan remnant surfaces. They have level surfaces indicating

that they formed by aggradational processes. Fan remnants are the result of alluvial fan
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Figure 1.3. Block diagram showing spatial relationships and characteristics associated with ballenas, fan remnants, and inset fans
from Peterson (1981) descriptions.



dissection through time. They are located above wash channels or inset fans. After
dissection, the surfaces that remnain, including ballenas, can be termed fan remnants,
Ballenas, inset fans and fan remnants combine to form the present day topography of the

northern Pahranagat Valley alluvial fans.

Geologic and Geomorphic History of the Study Area

The Pahranagat Valley is a praduct of Cenozoic extension of the western United
States and is part of the Basin and Range Physiographic Province. The northemn section
of the Pahranagat Valley is bounded by several north-south trending mountain ranges.
Devonian and Mississippian strata underlie Tertiary volcanics where Tschantz and
Pampayan (1970) described a dissected volcanic neck with associated ignimbrites, tuffs
and ash flows. These units are exposed in the Seaman Range that bounds the north and
northwestern side of the field area. For the purpose of this paper, the northernmost
alluvial fan and associated drainage is referred to as BLM fan and BLM wash and the
southernmost fan and drainage is referred to as Mail Summit fan and Mail Summit wash.
The BLM drains rocks exposed in the southern Seaman Range (Figure 3.2). The North
Pahranagat range bounds the western side of the valley and is the main source of material
for alluvial fans in the Mail Summit drainage. The North Pahranagat Range, including
Mount Irish, is composed of the Devonian Simonson dolomite. The northern section of
the range is composed of Tertiary volcanics includmg vwnditferentiated volcanics and
ignimbrites (Tschantz and Pampayan, 1970). Fans developed from this range are large
and spread laterally into the valley. The eastern border of the valley is defined by the

tectonically active Hiko range. Many studies have been conducted on the geology and
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tectonics of this range (Switzer, 1996; Tschantz and Pampayan, 1970; Taylor et al.,

1998). The Hiko Range is composed of Devonian and Mississippian dolomites,
quartzites and shales and the southern portion of this range contains few Tertiary
volcanics. Fans originating from the Hiko Range are smaller and steeper compared to
fans derived from the North Pahranagat and Southern Seaman ranges. The appearance of
these fans is presumed to be the result of removal of sediment by the ancestral White
River facilitated by Holocene faulting along the range front. Documented normal
faulting in the Hiko range and in adjacent Quaternary sediments (Switzer, 1996; Taylor et
al., 1998) suggests tectonic control of these alluvial fans. Miocene lacustrine deposits of
the Muddy Creek Formation (Tschantz and Pampayan, 1970) underlie Quaternary fan
deposits in the northern section of the study area. These deposits are predominantly
interbedded siltstone and shale,

As an externally drained valley within the Basin and Range Physiographic Province,
the Pahranagat Valley contains the floodplain of the ancestral, now ephemeral, White
River that begins in the White Pine Range and joins with Kane Springs Wash and
Meadow Valley Wash and flows south to the Colorado River. Several spring-fed lakes
are present in the Pahranagat valley. The Frenchy and Maynard lakes, located in the
northern section of the valley are used for hunting and fishing nearly year round. The
floodplain is widely used for farming and grazing activities that use shallow groundwater

wells and local springs to irrigate crops.
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Current and Past Climates of the Study Area

The southwest region of the United States has experienced multiple episodes of glacial
and interglacial climates since the Early Pleistocene. The glacial episodes are marked by
a decrease in temperature and/or increase in rainfall events from a shift of airmass
boundaries towards the south (Bull, 1991). This shift brought increased winter
precipitation and decreased monsoonal precipitation in the southwest deserts (Bull,

1991). A record of vegetation and climates was put together for the south-central
Nevada region, specifically for the Nevada Test Site and vicinity (Spaulding, 1985). This
record suggests that the past 45,000 years were marked by major changes in climate. The
Wisconsin glacial age with a wetter and cooler climate lasted until about 10,000 years
ago. A development of desert vegetation in the Nevada Test Site vicinity began to occur
at around 15,000 suggesting an increase in temperatures and decrease in precipitation
(Spaulding, 1985). Studies using pack-rat middens and pollen from lacustrine deposits of
the Lower Pahranagat Lake have interpreted a detailed, high resolution look at climate
changes in the Late Holocene (Isaacs and Tharp, 1996). Alternating wet and dry
conditions have occurred over the past several thousand years as told by the Lower
Pahranagat Lake sediments (Isaacs and Tharp, 1996). Temperature and precipitation data
have been collected between 1964 and 1990 at the Pahranagat Wildlife Refuge
approximately 25 km south of the field area. Temperature and precipitation data for this
area provided from the 2000 Soil Survey of Lincoln County, Nevada, South Part (Soil
Survey Staff, 2000) (Figure 1.4). The Pahranagat Valley receives its highest monthly
precipitation in early spring and late summer with averages ranging from 1.5 to 2.0 cm.

Summer months receive 0.5 to 1.0 cm on average and winter months get between 1.0 and
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Figure 1.4. (A)Temperature data and (B) precipitation data for the study area.
Data recorded at the Pahranagat Valley Wildlife Refuge from 1964-1990.
After Soil Survey Staff, 2000.
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1.8 cm. Temperatures in the Pahranagat average 26.7° Celsius (R0°F) in the summer

4.40° (40°F) in the winter. The soils of the study area are classified as having a mesic

soil temperature regime (Soil Survey Staff, 2000).

Vegetation

Blackbrush (Coleogyne ramosissima) is the dominant vegetation of the study area and
is present on all landforms except modern drainages. Blackbrush is a component of both
the Great Basin and Mojave desertscrub biomes. The occurrence of blackbrush is
believed to be heavily dependent upon precipitation, limiting its presence in the Mojave
desertscrub biome where precipitation is less than that of the Great Basin biome (Turner,
1982). Other vegetation present on landforms includes Nevada ephedra (Ephedra
nevadensis), rabbitbrush (Chrysothamnus spp.), red brome (Bromus rubens), cholla (O,
cholla), narrow-leafed phacelia (Phacelia distans), and purple sage (Salvia leucophylla).
Vegetation is considerably different than that of the lower Pahranagat south of Crystal
Spring where creosote is dominant. Areas such as the Pahranagat Valley with arid
climates that exhibit these types of vegetation are commonly characterized by calcic and

or silicious soils.

Calcic Soils and Carbonate Horizon Morphology

Soils containing accumulations of pedogenic carbonate are classified as calcic soils.
Calcic soils with significant accumulation to the point of induration are termed
petrocalcic (Soil Survey Staff, 1998). Pedogenic calcium carbonate forms in the soil

from the combination of calcium ions, CO, and water. Calcium is available from dust,
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rainwater, and the weathering of parent material. CQO; is present from diffusion from the

atmosphere and plant respiration (Figure 1.5).

Arid and semi-arid soils contain high amounts of calcium carbonate when compared
with humid climate soils. The amount and timing of precipitation controls the
development of calcic soils. If enough precipitation occurs, calcium ions will be flushed
through the soil profile and will not accumulate to form calcic horizons. Similarly, if
precipitation accurs in cooler and/or cloudier seasons where soil water is not
overwhelmingly effected by evaporation, depths of wetting will be greater, thus calcic
horizons may be found much deeper in the soil profile.

The precipitation of minerals including clays, silica, gypsum, halite, and other soluble
salts can be directly affected by the presence of calcium carbonate or vice versa.
Carbonate can mask ¢lay accumulation making it difficult to see in a soil profile (Allen,
1985). A typical soil profile containing all of the above-mentioned minerals without
other complicating factors would exhibit a solubility effect where minerals precipitate out
at increasing depths within a soil profile based on increasing solubility. For example, a
typical soil would exhibit, from top of profile to bottom: clay (Bt), calcium carbonate
(Bk), gypsum (By), and other soluble salts (Bz) (Harden et al., 1991; Birkeland, 1999).
The depths at which these constituents accumulate depend upon the depth of soil wetting,
which is a function of precipitation (total amount and seasonality), texture, topography
and plant cover and type. A change in any of these factors can cause overprinting where,
for example, gypsum and calcium carbonate may precipitate at approximately the same

depths (Harden et al., 1991).
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In order to compare calcium carbonate development in soils, several factors affecting

its genesis must be evaluated. These factors are topography, biota, climate, parent
material and time. Depending on environment each factor can dominate the
characteristics of a soil. When all but one factor is constant, soil characteristics can be
attributed to be the result of that one factor. For example, studies conducted on calcic
soils of southern New Mexico have provided information concerning carbonate
development through time (Gile et al., 1965, 1966). These studies were conducted as
chronosequences where biology, climate, topography and parent material are consistent
throughout each landform. Therefore, changes in soil characteristics were attributed to
time of soil formation. Gile et al. (1966) were then able to construct four stages of
carbonate morphology relating morphological stages of carbonate accumaulation in soils
to corresponding profiles and associated ages.

The four stages of carbonate development described by Gile et al. (1966) are depicted
in Figure 1.6, These stages range from slight coatings on pebble bottoms and filaments
to massive horizons that are completely indurated with secondary carbonate with
overlying laminar caps. Bachman and Machette (1977) added two more stages (Figure
1.7) described as pisolitic and brecciated features based on studies conducted at Mormon
Mesa, Nevada and Roswell, New Mexico. These stages directly relate to the age of the
associated landform. This provides a standard for carbonate development through time
across anid regions of the world.

Research has indicated that dissolution of limestone parent materials can also
contribute to calcic soil development (Rabenhorst and Wilding, 1986; Levine and

Hendricks, 1990). Dissolution features include “cupped limestones™ and partially
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Figure 1.6. Four stages of secondary carbonate development
in gravelly soils through time Gile et. al., 1965.
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(Bachman and Machette, 1977).



. . : NI 18
dissolved clasts. Evidence for pedogenic reprecipitation include thick carbonate

coatings (pendants) on undersides of clasts (Gile et al., 1981; Sowers et al., 1988:
Treadwell-Steitz and McFadden, 2000). The dominant limestone lithology of the parent
material can cause faster rates of accumulation preventing an accurate correlation of
accumulation with time (Sowers et al., 1988).

Gile et al.’s (1966) stages of carbonate morphology have been widely used throughout
the southwest United States and other arid regions for relative landform dating,
paleoclimate determination, seismic hazard assessment and land sustainability issues.
Increasing the understanding of the genesis of calcic soils in arid regions is extremely
important because this knowledge can contribute to dating Quatermary landforms found
throughout the Basin and Range Province. Organic carbon is rare in desert soils,
providing little opportunity for *C radiometric ages. A few studies have focused on the
application of *C and U-Th dating techniques to calcic soils with some success (Pierce,
1985; Sowers et al., 1988; Amundson et al., 1989; Amundson et al., 1994; Ludwig and
Paces, 2002). However, most of these studies did not examine the micromorphology of
the pedogenic carbonate in detail (specifically soil pendants) they were dating, thus
limiting the success of these techniques. A thorough understanding of the genests of
calcic soils and their relationship to the age of the associated landforms is still greatly

needed.

Silica in Calcic Soils
The precipitation of silica in arid soils depends upon soil pH and the presence of other

precipitates (i.e. secondary carbonate and other salts) in the soil. Many calcic soils
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throughout the southwestern U.S. contain varying amounts of pedogenic silica. A

variety of silica polymorphs ranging from well ordered to amorphous can occur as
several forms in pedogenic environments: Quartz, opal-C, opal-CT, and opal-A. Quartz
is present as silt and sand-sized detrital grains that have been moved into the soil profile
from eolian, fluvial or other physical processes (Drees et al., 1989). Opal-C is rare in
soils, however opal C-T is commonly found in soils and many of its parent materials
(Drees et al., 1989). Opal-A is found in pedogenic duripans and calcretes of silicious
soils (Drees et al., 1989). Opal-C, opal-CT and opal-A are differentiated according to
their ordered and/or disordered arrangement of silica identified through patterns in X-Ray
Diffraction and from this point forward, will be referred to as opaline silica or amorphous
silica. Silicious soils in arid environments have been studied but not to the extent of
calcium carbonate soils. Silica has been noted to display an increase in accumulation
through time and with certain silica rich parent materials (Chadwick et al. 1989). First
“stages” of silica accumulation occur as microagglomerates and durinodes (Chadwick et
al., 1989) in Holocene soils of Monitor Valley, Nevada. In a study of three soil
chronosequences of the western U.S., Harden, et al. (1991) noted an increase in the
amount of silica precipitated in soils through time coinciding with calcic and gypsic
horizon development. Silica accumulation in these soils ranged from coatings under
clasts to indurated, laminar platelets. Opaline pendants in Alfisols of California are
assumed to indicate the maximum form of accumunlation in those soils and are not related
to duripans or their formation (Munk and Southard, 1993). Much more work is needed to

constrain the timing and morphology of silica pedogenesis in arid environments.



Increased solubility of amorphous silica occurs at pH 9 (Birkeland, 1999). Many
workers discuss the downward movement and eventual precipitation of silica in profile,
similar to carbonates and other salts. Harden et al. (1991) found opaline silica to
precipitate at or above the Bt horizon similar to soils in Monitor Valley, Nevada
{Chadwick et al., 1989).

Parent material can have a huge impact on silicic soil formation. Volcanic material
such as ash, and other tephra deposits containing high amounts of volcanic glass can be
transported and ultimately deposited into the subsurface where hydrolysis reactions may
take place. Figure 1.8 displays areas covered by Holocene duric formation in soils
coinciding with the ash fall area covered by Mazama ash 6900 years ago as well as the
area of the Great Basin florisitic zone (Chadwick et al., 1985). Chadwick et al. (1989)
found Holocene silicification of soils is heavily influenced by volcanic glass and
determined that soils of Monitor Valley, Nevada, had enough moisture to cause
hydrolysis and release silica into solution, but was not enough to ftush silica out of the
profile. As silica in solation moves through soil, it can do one of three things: (1) it can
be used by plants to form phytoliths, which are used in buried soils to interpret
paleoclimates, (2) precipitate out as durinodes or cement or lamina of stage I'V horizons

or (3) bond with other ions to produce silicate clays (Chadwick et al., 1989).

Silicate Clays in Calcic Soils
Clay accumulation in soils occurs through several processes: (1) translocation, (2)

transformation, and (3) neoformation. Translocation is the process where by clays are
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physically transported through the profile under the influence of gravity and meteoric
water. No chemical reactions or changes take place with translocation, These clays have
collected on the surface through eolian, fluvial and other physical processes. Evidence for
translocation is the presence of clay films called “argillans” on ped surfaces (Birkeland,
1999). Through time, the amount of clay that accumulates creates an increase in clay in
subsurface horizons. The amount of ¢lay in subsurface horizons can be used to indicate
the degree of development of the soil. In arid environments, a significant portion of
silicate clays that are present and available for movement from the surface come from
dust. Such clays include kaolinite, chlorite, smectites, illite and mixed layer clays. The
type of clay present in a soil profile is often dependent upon nearby sources containing
these clay minerals that are carried by eolian processes.

Transformations occur below the surface, in the soil profile. Transformation occurs
where one mineral changes to another mineral through a series of solid state alterations
{(Birkeland, 1999). Transformation commonly occurs at grain edges or along layers and
then continues inward (Birkeland, 1999). This process is limited by available moisture
and available ions throngh parent material, other clays and/or other downward moving
ions in solution such as aluminum and magnesium. In petrocalcic horizons, pressure
dissolution of incorporated feldspars, quartz, and other grains may also lead to clay
formation and cause clay to accumulate around areas of dissolved grains. Ions may also
be incorporated back into solution to be available for later precipitation where
neoformation may take place (Monger and Daugherty, 1991; Wang et al., 1994;

Birkeland, 1999).
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Neoformation occurs where ions in solution combine to precipitate out as secondary

minerals including clay minerals. Neoformation of clays from combined ions in a
solution or through reactions with amorphous minerals is different from that of
transformation processes because it is not a solid state transformation (Birkeland, 1999).
Evidence for neoformation in arid soils includes perfect-nearly perfect, undisturbed
structures such as tunnel-like fibers of sepiolite and palygorskite. Fibers radiating into
pore spaces is also evidence of neoformation (Monger and Daugherty, 1991). Smectite
or forms of 2:1 smectite clays such as illite and chlorite tend to be the most abundant clay
minerals found in soils of arid and semi-arid regions (Borchardt, 1989). Any soil
environment high in silica may contain smectite clays. In petrocalcic horizons of arid
soils, ions of Al and Mg may precipitate with silica to form the fibrous clay minerals
sepiolite and palygorskite. In calcic soils, depending on parent material lithologies, ions
found in solution include, but are not limited to Al, Mg, K, Na, and Si. In these soils,
calcium tends to precipitate out with CO; and water to form secondary calcium
carbonate. The remaining ions in solution then precipitate out with silica to form clay
minerals characteristic of arid environments. Figure 1.9 displays a basic clay assemblage
found in calcic soils in arid and semi-arid climates. The relationships between secondary
carbonate and clay minerals in soils are sometimes difficult to characterize (Aguilar et al.,
1981; Allen, 1985). The dominant observation has been that of secondary carbonate of
petrocaleic horizons “consuming” clay minerals and grains (Reheis, 1988; Halitim et al.,
1993). However, Aguilar et al, (1981) noticed several zones in calcic horizons where the
clay appears to “invade” the carbonate. In the petrocalcic horizon of a Texas Aridisol,

the banded appearance of crystalline calcite has been interpreted to be a product of
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Figure 1.9. A typical carbonate-bearing soil in a semi-arid or arid climate.
Smectite dominates the clay assemblages (Velde, 1992).
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exclusion of clay and other particles into a band of its own (Allen, 1985). Petrocalcic
horizons can also provide an environment for the preservation of other illuvial clays
because they are protected from some weathering processes (Khademi and Mermut,
1999).

Sepjolite and Palygorskite

Magnesium and aluminum silicate clays, such as sepiolite
[Si;sMggO4(OH)4(OH;)498H;0] and palygorskite [SigMgsOq0(OH)»(OH,)4#2H,0)]
(Singer, 1989), occur in several types of environments including marine and lacustrine
environments, deposits that have been influenced by hydrothermal activity and
petrocalcic horizons of arid soils (Singer, 1984). The presence of dolomite parent
material can provide the necessary magnesium needed to produce sepiolite and
palygorskite in the soil profile (Singer, 1984). An inverse relationship between the
occurrences of smectite and palygorskite suggest some pedogenic environments favor the
formation of one mineral over the other (Mackenzie et al., 1984; Singer, 1984). Some
authors have suggested the transformation of montmorillonite and illite to sepiolite and
palygorskite with increasing soil development (in petrocalcic horizons) (Hay and
Wiggens, 1980). The occurrence of neoformed sepiolite and palygorskite in pedogenic
environments with stage [II or greater carbonate development are indicative of Middle to
Early Pleistocene-aged soils (Bachman and Machette, 1977). Bachman and Machette
suggest that the formation of these clays first requires the petrocalcic horizon to form,
and remain with enough time for grain dissolution and clay neoformation. Hay and

Wiggins (1980) attribute the dominance of opal and sepiolite to volcanic parent material
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rather than the presence of carbonate material because of the high glass and quartz

content of volcanic tephras.

Sepiolite can also be found as coatings on soil pellets (Hay and Wiggens, 1980;
Sowers et al., 1988). Sepiolite has been found to preferentially encompass grains such as
quartz, feldspar, rhyolite, and calcite (Vanden Heuvel, 1966; Hay and Wiggins, 1980).
These pellet features occur above the taminar cap of Stage IV carbonate horizons
{Sowers et al., 1988) and in fracture fillings {(Hay and Wiggins, 1980). Pellets are made
up of sepiolite and/or opal, which surrounds grains, pieces of carbonate and/or soil matrix

(Hay and Wiggins, 1980).

Soil Pendants

Multiple, laminar layers of secondary calcium carbonate and/or silica that have
accurnulated on the bottoms of clasts in coarse or gravelly soils have been given various
names by several authors. In this study, these features will be referred to as pendants
and/or coatings. Pendants have also been called carbonate coats, beards, gravel coatings,
and pebble bottom coatings (Sowers et al., 1988; Chadwick et al., 1988; Admunson et al.,
1989; Ducloux and Laouina, 1989; Blank and Fosberg, 1990; Levine and Hendricks,
1990; Munk and Southard, 1993; Vincent, et. al., 1994; Treadwell-Steitz and McFadden,
2000). These are important yet poorly understood features of calcic and duric soils of the
western United States and other arid and serni-arid regions of the world, including cryic
temperature areas (Forman and Miller, 1984; Sletten, 1988; Courty et al., 1994; Wang

and Anderson, 1998). Pendants are described as multiple carbonate and/or silica coatings



ranging from pure carbonate 10 pure opaline silica that have accurnulated on the bottom
of coarse clasts 1n the subsurface of a soil.

Pendant formation is assurned to resemble a stalactite-style process with an initial
accumulation adjacent to the underside of the clast (Pierce and Scott, 1982; Pierce, 1985;
Chadwick et al., 1988; Sowers et al., 1988; Amundson et al., 1989; McFadden et al.,
1991; Reheis et al., 1992; Amundson et al., 1994; Courtey et al., 1994; Wang and
Anderson, 1998; Birkeland, 1999; Treadwell-Steitz and McFadden, 2000; Ludwig and
Paces, 2002). As additional accumulation continues, layers of carbonate and/or silica
form an order of lamina with the oldest immediately adjacent to the clast and youngest at
the terminus of the pendant.

Throughout development of the pendant, continued precipitation resuits in multiple
layers of CaCQs with occasional laminae that contain other materials such as detrital
grains, silica or clays (Amundson et al 1989; Blank and Fosberg, 1990; Amundson et al.,
1994; Courtey et al., 1994; Wang and Anderson, 1998; Treadwell-Steitz and McFadden,
2000; Ludwig and Paces, 2002). Alternating layers are suggested to be a product of
changes to and from arid and wet seasons or climates (Chadwick et al., 1988; Amundson
et al., 1994; Courtey et al., 1994; Ludwig and Paces, 2002).

Soil forming processes begin once a landform is stable. By obtaining ages for the
first, “inner” layers of pendant, it may be possible to estimate minimum ages for stability
of the landforms where the pendants formed. Several studies have explored the use of
pendants as potential aids in determining age of landforms. U-Th and '*C dating has
been used to analyze the oldest lamina (those closest to the clast) to estimate ages of

formation (Pierce, 1985; Amundson et al., 1989; Ludwig and Paces, 2002). However, the



use of pendants as relative dating tools has not been entirely successful. The dating of
“inner” and “outer” lamina has revealed many inconsistencies. In some studies, the inner
lamina (believed to be oldest) reveal younger ages when compared with the outer lamina
(believed to be youngest) (Pierce, 1985; Sowers et al., 1988; Chadwick et al., 1989).
Extensive micromorphic observations of the pendants in these studies were rarely
conducted. Several studies have used the innermost layers to obtain absolute ages for the
initial development of pendants. Inner carbonate accumulations assumed to be the first
deposited are dated to find the age at which the soil began to develop (Amundson et al.,

1994; Lodwig and Paces, 2002).



CHAPTER I

METHODOLOGY
Landform Selection and Mapping

Landforms were mapped using 1:40,000, black and white, USGS aerial photograph
stereoscopic pairs. These landforms were input into a Geographic Information System
using the Fossil Peak, NV, NW, Fossil Peak, NV, SW, Fossil Peak, NV, NE, and Mail
Summit, NV, SE, digital orthophoto quadrangles (DOQs) that have a resolution of 1
meter. Landforms were differentiated using degree of desert pavement and desert
varnish development, spatial relationships with other landforms, vegetation differences,
dissection, slope, surface color, curvature, and soil development.

Landforms were grouped according to parent material, represented by the dominant
lithology of surface clasts, and visual observations of the lithologies of gravel in profiles.
Surface clast data was obtained using a method similar to one described by Bull (1991).
A metric tape was randomly tossed on the surface and 100 clasts were measured at their
C-axes. The portion of the clast that the tape crossed was also measured. The lithology of
each clast measured was recorded. At the final clast, the total length of tape used was
noted. Percentages for area of tape covered by clasts were determined, as well as percent
lithologies from all surfaces. This method was used to estimate amount of surface

covered by clasts and to separate the volcanic dominant landforms from the
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limestone/dolomite landforms, and also to compare of soil development between soils

of two different parent lithologies. Surface data for landforms is provided in Chapter IIL

Pedon Selection and Sampling

One pit per landform was dug using a backhoe provided by the Clark County Natural
Resources Conservation Service and by hand where & backhoe could not reach. Depths
of pits ranged from 30 c¢m to over 1 m. Pit locations were chosen based on minimal
erosion, desert pavement development and flatness of surface. Pit locations were also
chosen on areas that best represented each Jandform, In order to sample for chrono and
lithosequences, one profile was sampled from a representative of each landform that had
dolomite and volcanic dominant material, with the exception of the youngest landform in
dolomite material. A total of 9 pits were described and sampled. Samples were collected
from all horizons in each profile, sieved and divided into gravel (>2 mm) and fines {<2
mm). Universal transverse mercator (UTM) coordinates of each pit location were
recorded in the field with a geographic positioning system (Figure 2.1). Horizons
containing pendants or other delicate features such as durinodes were carefully wrapped
and transported In plastic containers back to the laboratory. All soil descriptions were
completed using the 1998 NRCS Field Book for Describing and Sampling Soils (Soil
Survey Staff, 1998), with the exception of Av horizons, where the nomenclature ‘v’
represents vesicular features rather than the presence of plinthite (McFadden et al., 1987).
Soil structure, including type, grade and size were recorded in the field as well as roots,
pore spaces, degree of effervescence with HCl and stages of secondary calcium carbonate

development (Gile, 1966; Bachman and Machette, 1977). Silica was observed in the
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field as patchy, yellow accumulations occurring with carbonate on the underside of

clasts. No specific terminology has been published for description of these
accumulations, For the purposes of this study, the Ped and Void Surface Features-
Distinctness classes from the USDA-NRCS Field Book for Describing and Sampling
Soils (Soil Survey Staff, 1998) were used to compare silica accurnulation between
horizons. Durinodes were tested in the field by soaking them in water and observing
their tendency to break apart. If the sample held together after soaking, it was determined
to be a durinode (Soil Survey Staff, 1996). Wet and dry colors were determined in the
field using the Munsel! Soil Color Chart. A qualitative taxonomic classification was
determined with the available laboratory data using the USDA’s 1998 Keys to Soil

Taxonomy (Soil Survey Staff, 1998).

Texture Analysis

Texture analyses were conducted in the UNLV Soil Analysis Laboratory, Secondary
calcium carbonate was removed from all sampled horizons, with the exception of Q1
Silica, under the guidelines set by Gee and Bauder (1986). Samples from each horizon
were distributed between 4-50 mm plastic test tubes and alternately centrifuged and
washed with distilled water and sodium acetate, and then oven dried when removal was
complete. Approximately 60 gm of each sample were weighed and combined with
distilled water and a mixture of 50 gm to 1 L of Calgon water softener containing sodium
hexametaphosphate to facilitate clay dispersion. Texture was determined using the

hydrometer method described by Gee and Bauder (1986). Three 40-second readings
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were taken to measure the amount of silt and clay in suspension. Clay percent was

determuned from a six-hour reading of the hydrometer.

Electrical Conductivity and pH

Electrical conductivity (EC) and pH were determined using an Accumet Basic AB30
conductivity meter and a VWR model 8100 pH meter in a saturated paste. These
analyses were conducted in the UNLV Soil Analyses Laboratory. Soil water was
extracted for EC using a ceramic filter and vacuom. Methods for EC and pH analyses
were followed from the Soil Survey Laboratory Methods Manual, (Soil Survey Staff,

1996).

Macroscopic Techniques

A Leica GZC macroscope was used to examine soil features from each horizon.
Loose grains and dirt were dusted from pendants with a small paintbrush then observed
and photographed at scales ranging from 1 mum to 20 mm. Features such as crystal fibers,
structure, glass shards, quartz grains, pellets, secondary carbonate and silica
accumulations and pendant structures were observed and recorded using this method.
This method was also used when preparing samples for scanning electron microscopy

(SEM).

Microscopic Techniques
One or two pendants from each horizon containing pendants, pellet material and

durinodes were epoxied using Spurr low-viscosity embedding media to hold pendants



together during thin section preparation. Blue epoxy dye was added to each sample for 34
easier identification of void spaces. Billets of pendants were cut perpendicular to the soil
surface in the UNLV Rock Laboratory. A total of 26 pendant, I pellet, and 4 durinode
billets were sent to Quality Thin Sections in Arizona. Thin sections were then etched with
1.5% HCI and dipped in a mixture of HC] and Azalarin Red for calcite staining
{(Hutchison, 1974). Twenty-four pendants were also point counted using 1/3mm by
1/3mm grid spacing for up to 600 counts. Points were grouped as carbonate, silica/clay,

void spaces and grains incorporated from the soil matrix or from the parent clast,

Scanning Electron Microscopy

Thin sections were analyzed using backscatter electron (BSE) imaging and electron
dispersion spectrometry (EDS) to determine pendant composition and relationships
between materials. Samples were prepared as stated above, placed in a sonic bath and
sputtered with a carbon coating. A gold coating was not used because the coating device
was not big enough to accommodate the 2x3 inch thin sections, Samples were analyzed
in the UNLV EMIL laboratory with a JEQL-5600 SEM equipped with an Oxford ISIS
Electron Dispersion Spectrometer (EDS) system.

EDS was used to determine the composition of minerals found within soil pendants
and to identify silica, carbonate, clays, void spaces, grain lithology and parent-clast

lithology.
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X-Ray Diffraction

X-ray diffraction was used to differentiate clays in pendants from several soil
horizons. Because soil pendants are predominantly composed of calcium carbonate,
removal of carbonate was necessary before XRD analysis. The sample was crushed into a
powder using a rock hammer and large metal file. These techniques were also used to
granulate two parent clasts to obtain their compositions. The powder was placed ina 1:10
mixture of distilled water and NaOAc (Gee and Bauder, 1986). Alternating NaQAc
treatment and washing with centrifugation was repeated until a reaction no longer took
place. The sample was oven dried in low heat to prevent destruction of clay structure.
Two parent clasts (Figure 4.2} that held pendants were also crushed and sent through the
same processes to obtain a standard for clays that may be derived from the clast.

Samples were analyzed at the New Mexico State University Analytical Geochemistry

Research Laboratory with a Rigaku X-ray diffractometer.



CHAPTER 111

LANDFORM AND PEDON RESULTS

The northern Pahranagat Valley contains a series of five time-variant landforms (Q1-
Q5) developed from depositional episodes in the Quaternary. These landforms were
identified in two large fans that cover most of the study area and slope 3-6 degrees to the
east toward the White River floodplain and Hiko Range. The soils developed on these
landforms are typical of those found in desert environments. They contain vesicular
horizons (Av), desert pavements and sparse vegetation (Bull, 1991). These landforms are
believed to range in age from Early-Middle Pleistocene to Late Holocene, Interpreted
relative ages of the landforms in the study area are discussed in Chapter V.
Topographically, the highest landforms represent the oldest preserved landforms of the
valley. The Q1 landforms are ballenas and are located adjacent to bedrock mountain
fronts on the eastern and notthern-most parts of the study area. Fan remnants and inset
fans represent the Q2 and Q3 landforms. These surfaces are found between ballenas and
as terraces to large drainages. Q4 landforms are inset fans found below the Q1-Q3
landforms and approximately 1m above Q5 that include the active drainages of the study
area. A detailed geomorphic map of northern Pahranagat Valley landforms is shown in
Figure 3.1 and Plate 1. The soil characteristics of these landforms tend to vary through
time and exhibit increased pedogenic development corresponding to increased age.

Complexity in carbonate, silica and clay accumulation also increase with increasing age.
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Map Legend

Undifferentiated faults
solid white lines, dotted
where inferred

A7 Bphemeral drainages
State Route 318

White River floodplain

Voleanic dominant  Dolomite dominant
parent material parent material

Map projection—-Universal transverse mercator
NAD 83, Zone 11

0 1 km
1:24,000

Figure 3.1. Quaternary landform map of northern Pahranagat Valley.
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Initial differentiation between landforms was attained by comparing soil development,
degree of dissection, degree of desert varnish, desert pavement development, vegetation
differences, curvature, surface color and topographical position. A chart showing a
sumrnary of landform descriptions, qualitative taxonomic classifications, dominant
vegetation, slope and relative ages for all landforms of the study area is provided in

Chapter V (Figure 5.1).

Parent Material Lithology and Surface Characteristics

Two drainages, BLM and Mail Summit washes, are present on two fan complexes that
exhibit distinct and separate parent lithologies (Figure 3.2). BLM wash drains Tertiary
volcanic rocks that have provide material for the BLM fan. Landforms of the BLM are
distinguished from Mail Summit fan landforms, with a subscripted V (i.e. Qly). The
Mail Summit landforms, composed primarily of dolomite, are denoted by a subscripted I
(i.e. Qlp). Surface clast data supports this division of landforms (Figure 3.3). The BLM
fan has volcanic surface clast percentages ranging from 59-94%. The Mail Summit fan
has dominantly dolomite lithologies ranging from 99-100%. Each landform displays a
set of surface characteristics that can be compared through time and with lithology. This
creates two chronosequences and five lithosequences. BLM and Mail Summit fans
provide nurmerous surface material brought from two different sources. Profiles of
surfaces of the same age but with different parent lithologies (i.e. Qly and Qlp) can give
insight into the development of soils and soil features in varying tithologies. The type of

parent material that a soil forms in can greatly influence its pedogenic development. The
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ting generalized bedrock

ithologies of the study area and vicinity,. BLM wash and Mail Summit

depic
wash are shown and labeled (Tschantz and Pampayan, 1970).

Figure 3.2. Simplified geologic map
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Percent of Bif;cé:; :;{ 4 _Degree of Preservation Particle Size Percent
Surface in  Between Stream Gravel Mean Percent  Percent clasts Dominant
Surface Pavement  Particles _Ci:anne:’s Bars mm Sorting  >32mm >32mm limestone Lfgkozo&:

Q1L 530 47.0 None None 15% Moderate 3 100 99 carbonate
Ql, 451 54.9 None None 15.0 Poor 5 60 71 volcanic
Q2, 454 54.6 None None 149  Moderate 3 100 99 carbonate
Q2, 37.4 62.6 None None 18.2 Poor 12 83 59 volcanic
Q3, No pavement Poor Good 242 Moderate 23 100 100 carbonate
Q3. No pavement Poor . Good 11.9 Moderate 0 0 65 volcanic
Q4. No pavement Good Excellent —— Poor — — 100 carbonate
Q4, No pavement Good Excellent —  Moderate 2 — 94 volcanic
Q5. No pavement Excellent  Excellent —— Poor — — 100 carbonate
Q5. No pavement Excellent Excellent —  Moderate 0 — S0 volcanic

Figure 3.3. Data from surface clast observation and measurements of 100 clasts. Dashes represent data not recorded. Percent

dominant lithology was calculated by recording the lithology of the clasts that were larger than 32 mm. Table format taken from
Bull, 1991.
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BLM and Mail Summit fans provide perfect settings to study the effect of time and

lithology on soil development.

BIM fan surface characteristics

Landforms associated with the BL.M fan include ballenas, fan remnants, inset fans
and modern drainages (Peterson, 1981). These landforms are composed of dominantly
volcanic material that show pronounced weathering and degradation. Quartz crystals and
other grains that have weathered from the volcanic material are present on the surface as
2 mm and smaller grains. Sorting of surface clasts is poor on all five BLM landforms.
Surfaces of the BLM fan have a pinkish color inherited from the dominant pink
ignimbrite material, Surface clasts on the Q1y-Q3y landforms range in size from 11.9-
18.2 mm. Larger clasts (>32mm) incorporated into pavements on Qly and Q2y
landforms are predominantly limestone/dolomite clasts (60% and 80%).

Mail Summit fan surface characteristics

Landforms associated with the Mail Summit fan are equivalent to those of the BLM
fan with respect to topographic position, microtopography, vegetation, and temporal
development; suggesting similar depositional histories. Mail Summit landforms display a
gray-white color inherited from the predominant gray dolomite clasts. Sorting of surface
material is moderate and remains moderate on all landforms. Surface clasts on Q1p-Q3)

landforms range in size from 14.9-24.2 mm.

Q1 Landforms and Profile Descriptions
Q1 landforms are found in both volcanic and limestone/dolomite rich parent material.

Because these landforms have the highest topographic location, they are easily



42

distinguished from all other landforms. Q1 landforms are ballenas with well defined
rounded, convex surfaces (Peterson, 1981) (Figures 3.4 and 3.5). Q1 landforms are easily
identified on aerial photos as lobate and shadow-producing forms sloping 3" cast toward
the White River floodplain. In aerial photos, these landforms are light in color. Desert
pavement is moderately to well developed with evidence of erosional disturbance.
Overall, little desert varish 1s present because this landform lacks material lithologically
conducive for desert varnish formation. However, desert varnish is present on clasts
other than limestone/dolostone and tephra material, QI landforms of the Mail Summit
and BLM fans exhibit evidence for exhumation of subsurface calcic and petrocalcic
horizons. Partial eroded pieces of carbonate pendants and fragments of a stage IV
laminar cap are sitting on the surface, upturned and on their sides. Cupped or dissolved
limestone/dolomite clasts are present at the surface (Figure 3.6). Soil development for all
Q1 landforms is parallel to the surface with a massive calcic horizon at equal depths on
all sides. For example, small test pits dug on the side slopes of the ballena revealed a
petrocalcic horizon at equal depth with the petrocalcic horizon that was encountered at
the crest. The dominant vegetation is blackbrush. Nevada ephedra is also present on the
Q1 landforms of both Mail Summit and BLM fans.

Mail Summit Q1p Backhoe Pit

The pedon described as Backhoe Pit is found in the gravelly, limestone/dolomite
material of the Q1 Mail Summit landforms. The pedon described is located at UTM
coordinates 655037 east and 4170233 north, Pedon depth reaches 82 cm and is divided
into 7 horizons and qualitatively classified as a Calcic Petrocalcid. All horizons are

skeletal with gravel percents ranging from 37 to 95%. Carbonate horizons begin at 13 cm
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Figure 3.4. Q1, and Q2 landforms located on the Maﬂ Sumrnlt fan. Q1,is
putlined with a solid line. White dashed line shows Q2;, landform outline.

Flgure 3 5 | Roundcd balienas of the Ql landform. Ql is hlghllghtedwnh the
solid line. White dashed line shows Q2 landform outline.



common on the Q1 surfaces.
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depth and continue, with increasing stages of morphology, through the rest of the profile
(Figure 3.7). Stage Il carbonate begins at 13 cm exhibiting thick coatings on the
undersides of clasts and between gravels. Carbonate accamulation increases downward
through the profile with stage Il at 33 cm depth, continuing at 57 ¢m with stage 11T with
incipient development of a stage IV laminar cap encountering a stage IV horizon at 82
cm. Pendants were observed in all horizons of the profile except for Avl and Av2.
Pendants were also found at the surface overturned and on their sides. A thin layer of
ovoid shaped pellets overly the stage IV laminar cap at 81 cm. These pellets ranged in
size from ~250um to 1 mm. BSE compositional imaging and EDS methods show that
these pellets were composed of detrital grains composed of quartz and sphene, pieces of
carbonate material and masses of sepiolite all encompassed by a layer of sepiolite clay or
other clay (Figure 3.8), Texture varied from very gravelly loam in the Av] and Av2
horizons, to very to extremely gravelly sandy loam in the Bk, Bkgm1, Bkqn2 and
Bkgm3 horizons and is gravelly with a fine fraction texture of loamy sand in the Bkqm4
horizon. pH values range from 7.92 to 8.28. EC values range from 325.2pus/em to
4120us/cm (Figure 3.25).

BLM Qlv Silica Pit

Silica Pit is located at UTM coordinates 658135 east and 4174745 north. Silica Pit
represents soils found in the Qtv landform. Pit depth reached only 29 cm due to
increased hardpan strength and inability to reach area with a backhoe (Figure 3.9).
Carbonate development begins at 10 cm with a well developed stage I1I with incipient
stage IV petrocalcic horizon. Below 23 cm the stage I1I horizon overlies a stage IV

horizon at 29 cm. Soils associated with this profile are qualitatively classified as Calcic



Profile Depth (em)

Q1, Backhoe Pit
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Hotizon  Depth Structure Texture *Silica *CaCoO,
{< 2mm fraction)
(cmm)
Moderate, Fine-Med.,
1 Avl 0-10 Subangular Blocky Loam N/A None
0 Abrupt Stooth
sz 10-13 Strong, Coarse,
Pl Loz None
. . Abf‘upt Smooth a oam None
Strong, Med.-Coarse, Stage
13-33 Subangular Blocky Sandy Loam Distinet Il
Abrupt Wavy
Stage
33.57 Massive Sandy Loam Distingt I
— Abrupt Wavy
: Stage
57-65 Massive Sandy Loam Distinct 1
Abrupt Wavy incipient IV
701 Stage
qum3 65-82 Massive Sandy Loam Prominent 1]
80~ S Pellet Horizon 81-82 cm
At Abrupt Wavy Stage
7 qum4 82+ Massive Loamy Sand Faint v

Figure 3.7. Soil profile and associated data from Q1, Backhoe pit. “Silica descriptions
from Soil Survey Staff (1998). *Stages of carbonate morphology (Gile et al,, 1966;
Bachman and Machette, 1977)
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Ql, Silica Pit

Horizon Depth Structure Texture *Silica *CaCQ,
(< 2mm fraction)

(cm)
l Av 0-10 # # None None
Abrupt Smooth
10 d

- Stage
E Bkq | 1023 # # Distinet it
= 204 incipient IV
j=3
15 B
A rerrmssesmensed s ADTUPT Wavy
s Yo Stage
= 'Bkqml] 2329 # # Distinct il
g 0 fessssad  Abrpt Wavy Stage

B kqm2 # # Prominent v

Figure 3.9. Soil profile for Q1V Silica pit. # analyses were not performed. *Silica
descriptions from Soil Survey Staff (1998). *Stages of carbonate morphology
(Gile et al., 1966; Bachman and Machette, 1977).
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Petrocalcids. Texture, pH, and EC were not measured for this profile because of

sampling difficulty.

Q2 Landforms and Pedon Descriptions

The second oldest landforms present in the study area are found in both
limestone/dolostone and volcanic parent matenial. The Q2 geomorphic surfaces are
located below and inset against Q1 ballena surfaces and are recognized as
topographically flat, moderately dissected, inset fans (Figures 3.4 and 3.5) (Peterson,
1981). Soil development is parallel with this planar surface, which is different and easily
distinguished from the rounded development of the Q1 surfaces. Vegetation is
predominantly blackbrush, similar to Q1 landforms. Degree of desert pavement 1s high
but not as great as the older surfaces (Figure 3.10 and 3.11). Desert varnish is present on
clasts other than limestone although there is limited material for varnish development,
The best preserved inset fans of Q2 are found near the larger drainages of the study area
in BLM and Mail Summit Washes.

Mail Summit Q1 Merkler Pit

Merkler Pit is located on a Q2 inset fan surface of the Mail Summit fan at UTM
coordinates 659196 meters east and 4173482 meters north, Pedon depth reaches 72 ¢cm
and was divided into four separate soil horizons (Figure 3.12). Carbonate accumulation
increases with depth with initial accumulation as stage IT at 13 cm forming a stage IV at
40 cm decreasing to a stage LI massive carbonate horizon at 35 ci. The laminar cap of
the stage IV horizon at 40 cm has a thin layer of pellets that sit on top. Pellets are similar

to those described in the Q1 Backhoe Pit profile discussion. Soil pendants are observed
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Fil:ll‘e 3.10. Surface cl

asts of Q2,, landform on Mail Summit fan.

Figure 3.11. Surface clasts of Q2, landform on BLM fan.
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Q2, Merkler Pit

Horizon Depth Structure Texture “Silica *CaCO
P (< me’ggation) )
(em)
y Strong, Very Coarse,
Av 013 Platy Sandy Loam  None None

Abrupt Smooth

Weak, Medium, ‘ Stage
13-40 Subangular Blocky Sandy Loam Faint 1

El
2 40 , Pellet Horizon 40-41cm
—a > 1 Abrupt Wavy
dr -
o Stage
L.'L““‘j 50- 40-55 Massive Loamy Sand Distinct v
= .
St P -
= et
et -+ A brUpt Wavy
GO re Tyt s
Ll - Stage
4% ,Bl.q.n * 53-72 Massive Loamy Sand Faint I
70-{ETr

Figure 3.12. Soil profile of Q2, Merkler pit and associated descriptions.*Silica
descriptions from Soil Survey Staft (1998). *Stages of carbonate morphology
(Gile et al., 1966; Bachman and Machette, 1977).
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throughout the calcic horizons of the profile. Pendants are relatively thick and are

similar to those of the Q1 landforms. Gravel content is high with percentages ranging
from 43-70%. Soil texture is very gravelly loam for the Av horizon, extremely gravelly
sandy loam for the Bk and extremely gravelly loamy sand for the remaining horizons.
Soils associated with Merkler Pit are qualitatively classified as Calcic Petrocalcids. pH
ranges from 8.13-8.28 and EC values range 310.9us/cm to 352.5us/cm (Figure 3.24).

BLM Q2y BLM Pit

BLM Pit is located on a Q2 inset fan surface of the BLM fan at UTM coordinates
639196 meters east and 4173400 meters north and is dominated by volcanic parent
material with some dolomite at the surface. The profiie depth reached 90 cm with
carbonate accumulation beginning at 13 em with faint carbonate present on the
undersides of clasts continuing with a stage III and incipient stage IV at 40 cm. Below 51
cm, calcium carbonate morphology decreased to stage 11T and continued to the base of the
profile (Figure 3.13). Gravel percentages were not measured for this profile. Five
horizons were designated in the field with textures ranging from sandy Ioam to sand at 40
cm depth. Soils associated with this profile are qualitatively classified as Calcic

Petrocalcic. pH values range from 8.4 to 8.9 with EC between 288.51s/cm and

412.0us/cm (Figure 3.24).

Q3 Landforms and Profile Descriptions
Q3 landforms are inset fan remnants, dissecting Q2 and some areas of Q1 landforms
(Figures 3.14 and 3.15). Slight bar and swale topography is present. However, there is

no desert varnish or desert pavement development. The (@3 landforms contain more
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Q2, BLM Pit

Horizon Depth Structure Texture *Silica *CaCQ,
(cm)

Strong, Fine,
0-12 Subangular Blocky Sandy Loam None None

Abrapt Wavy

Moderate, Med.-Coarse,
12-40 Subangular Blocky Sandy Loam Faint Faint

F)
2
=
g _
. 40-:-%&:&* -+« Abrupt Smooth
5 ) Stage
o 40-51 Massive Sand Distinct 111
incipient IV
Abrupt Smooth
Stage
51-70 Massive Sand Distinet 111
Abrupt Smooth
Stage
70-90 Single Grain Sand Prominent 1t

Figure 3.13. Soil profile of Q2, BLM pit and associated data. “Silica descriptions
from Soil Survey Staff (1998). *Stages of carbonate morphology (Gile et al., 1966;
Bachman and Machette, 1977).



Figure 3.14. Q3 landform outlined in white
dashed line. Notice Q1 landform in distance.
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and (32, landforms in background.




effedra than the older Q1 and Q2 landforms. However, blackbrush, is still the dominant
vegetation. Q3 landforms can be identified on aerial photographs as darker (when
compared to Q1 and Q2) with shallower stream channel areas that have not been
dissected by the Q4-forming event(s). The distal ends of the Q3 landforms were
dissected by fluvial episodes of the ancient White River, leaving no fans on the modern
floodplain. Q3 landforms are also found upstream of some smaller tributary channels
where headcutting of Q4 has not occurred.

Mail Summit QO3 Mystery Pit

Mystery Pit is located on a Q3 inset surface of the Mail Summit fan at UTM
coordinates 656575 meters east and 4169884 meters north. The profile is 118 cm deep
with gravel percents varying between 51-77% and texture ranging from very to extremely
gravely sandy loam in the A, Bk1 and Bk3 horizons to extremely gravelly loamy sand in
the Bk2 and Bk4 horizons. No massive carbonate horizons exist in this profile. Stage I
carbonate begins at 11 cm and continues to 100 em where it increases to stage II.
Carbonate accumulation occurs as thin pendants throughout the profile (Figure 3.16).
Soils associated with this profile are qualitatively classified as Typic Haplocalcids. pH
values range from 8.15-8.34 and EC from 282.9us/cm to 650.1us/cm (Figure 3.24).

BIM Q3y Last Pit

Last Pit is located on a Q3 inset surface of the BLM fan at UTM coordinates 658237
meters east and 4174376 meters north. This profile contains 46-91% gravel and all
horizons have a very to extremely gravelly loamy sand texture. The profile is 118 em
deep. Carbonate accumulation begins at 10 cm with stage [ and increases to a stage II

accumulation at 68 cm. Thin ¢arbonate coatings on clasts (pendants) are present in the Bk
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Q3, Mystery Pit

Horizon Depth Structure Texture *Silica *CaCo,

(cm) (< 2mm ﬁ‘ﬂC[l()ﬂ)
Moaod., Fine-Med.,
A 0-11 Subangular Blocky Sandy Loam None None
~tlear Wavy
Weak, Fine, Stage
11-38 Subangular Blocky Sandy Loam None |
S~
&
=
= 4-<Clear Wavy
j*] B T e T o
Q 40 ;-Illlll‘: i::]il
'2 jz:llllliﬂlilt
":': -iisl‘l ¥ f;]ii
2 T
[~ IIJE!_;I_!TJILYI
30 T P Y
A Weak, Very Fine-Fine, Stage
§ Bk2§ 38-73 Subangular Blocky  Loamy Sand Faint 1
60|
T
rEr
Tty
L e=Clear Wavy
807 e ’i"‘f;;': Mod., Fine-Med., Stage
J':‘?r] ]?11(53‘;;'{;" 73-100 Subangular Blocky Sandy Loam  None 1
Fp e
90 {eEEn
e Clear Wavy
ifxiJ:I;J:::L:
L
_é.f.'.' = : Stage
-k Bk Il 100-118 Single Grain Loamy Sand  None II
110!
T
]lllfTLr'FZTT—‘[

Figure 3.16. Diagram of (3, Mystery profile and associated information. *Silica
descriptions from Soil Survey Staff (1998). *Stages of carbonate morphology
(Gile et al,, 1966; Bachman and Machette, 1977).
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horizons with stage Il carbonate morphology (Figure 3.17). Durinodes occur between

68-100 cm depth. Soils associated with this profile are qualitatively classified as
Durinodic Haplocalcids. pH measurements range from 6.6 to 7.23 and EC from

304ps/cm-481.5us/cm,

Q4 Landform and Profile Descriptions

(Q4 landforms are inset fans found in deeply dissected drainages of the study area
approximately 1 meter above the modern channels, Strong bar and swale surface
topography is present with no desert varnish or desert pavement development (Figures
3.18 and 3.19). Cryptogamic crust is common and the dominant vegetation is blackbush
and Nevada ephedra, with less common rabbitbrush and cholla. Few, large boulder-sized
rocks are present on this landform. There is a significant (~20 meter) change in elevation
from adjacent, Q2 inset fans to the Q4 inset fans. Q4 is easily identified on aerial
photographs as channel shaped, sinuous forms, dark in color, that have transported and
deposited alluvium onto the White River floodplain.

Mail Summit Q4 Shovel Pit

Shovel Pit is located on a Q4 inset fan at UTM coordinates 657003 meters cast and
4169005 meters north. It lies in the Mail Summit fan and is 90 cm deep. Shovel Pit
profile contains a sporadic, weak Av horizon overlying a Bw and two Bk horizons
(Figure 3.20). Stage I carbonate development begins at 13 ¢m and remains throughout
the profile. Thin carbonate gravel coatings are present throughout the profile in the Bk1,
Bk2 and Bk3 horizons. Soils associated with this profile are qualitatively classified as

Typic Haplocalcids. Gravel content varies from 29 to 58% and has textures of gravelly to
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Figure 3.17. Diagram of Q3, Last profile and associated data. *Silica descriptions

from Soil Survey Staff (1998). *Stages of carbonate morphology (Gile et al., 1966;

Bachman and Machette, 1977).



1gure 3.18. Q4 landform of Mail Summit fan Photo taken fac1g east
looking towards Hiko Range, Notice Q2 landforms at higher elevations on

Figure 3 19. Q4, landform of BLM fzm Photo
taken looking west. Notice Q2, landform at
higher elevation on right edge of photo.
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Figure 3.20. Soil profile of Q4, Shovel profile and associated information.

*Silica descriptions from Soil Survey Staff (1998). *Stages of
carbonate morphology (Gile et al., 1966; Bachman and Machette,

1977).
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very gravelly sandy loam to very gravelly loamy sand. pH values are 7.91-8.44 and EC 6

values ranging from 270us/cm-927.4pus/cm (Figure 3.24).

BLM OQ4y Glass Pit

Glass Pit profile is located on a Q4 inset fan at UTM coordinates 658810 meters east
and 4174122 meters north and is 122 cm deep. Profile development is similar to that of
Q4p Shovel Pit with stage I carbonate morphology beginning at 26 cm as stage [
accumulations throughout the entire profile. (Figure 3.21). Durinodes are present in this
profile at §9-122 cm but are not as distinct as thosc found in the Q3 Last Pit. Soils
associated with this profile are qualitatively classified as Durinodic Haplocalcids. Gravel
content ranges between 40-64% with textures of extremely gravely sandy loam and very
gravely loamy sand with extremely gravely sand in the Bk2 and Bk3 horizons. No
vesicular horizon was present with this profile. pH values range from 8.01 to 8.41 with

EC values of 1100us/cm to 382.3us/cm (Figure 3.24).

Q5 Landform and Profile Description

QS5 is an inset drainage found in areas where ephemeral channels and associated active
floodplains create whiter, light colored meandering and braided areas on aerial
photographs . Q5 inset fan surfaces are located adjacent to and approximately one meter
below the Q4 inset fan surtaces (Figure 3.22). QS5 soil profile is qualitatively classified as
a Typic Torriorthent. The one profile associated with this landform is Wash Pit (Figure
3.23) located on a Q3 tnset fan surface of the BLM drainage at UTM coordinates 658810
meters east and 4174100 meters north. This profile consists of four C horizons that have

undergone little to no pedogenesis. Sedimentary structures are present as fluvial



Profile Depth (cm)

4, Glass Pit
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Horizon  Depth Structure Texture *Silica *CaCo,
(cm) {< 2mmn fraction)
A Q-2 Weak, Fine-Med., Loamy sand None None
] Abrupt Smooth Platy _
Maoderate, Very Fine-Fine,
10 Bw 2-13 Subangular Blocky  Loamy sand None Naone
| Abrupt Wavy
Moderate, Med-Coarse, o Stage
13-46 Subangular Blocky  Sandy Loam Distingt |
—ip Abtupt Wavy
Moderate, Med-Coarse, Stage
46-89 Subangular Blocky Sand Distinct [
%09 - - o Abn‘lpt Wavy
o]
SRR . _ Distinct Stage
_ qu 89122 Single Grain Sand Durinodes I
110_ / P f
1204

Figure 321, Dlagram of Q4, Glass profile and associated data. “Silica descriptions
from Soil Survey Staff (1998). *Stages of carbonate morphology (Gile et al., 1966;
Bachman and Machette, 1977).



Figure 3.22, Q5 (active) landform outlined with solid
line. Notice Q4,, immediately adjacent to Q3,. Q2; is in
background.
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Q5, Wash Pit

Horizon Depth Structure Texture. *Silica *CaCO,
(em) {< 2mm fraction)
C1 0-3 Single grain
| ~ Abrupt Smooth Sand None None
10+ . .
2 3-20 Single grain Sand None None
.
a 20 Abrupt Smooth
2 .
= {1 C3 20-30 Single grain Sand None None
Y
a0 30 Abrupt Smooth
L)
g
&
[a W
407 30 Single grai
C4 -50 ingle grain Sand None None
4
50

Figure 3.23. Soil profile of Q5, Wash profile and associated data. “Silica descriptions
from Soil Survey Staff (1998). *Stages of carbonate morphology (Gile et al., 1966;
Bachman and Machette, 1977).
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crosshedded sands and gravels. The texture is sand for each horizon. pH values range

from 8.2 to 9 and EC values from 302.6pus/cm to 510.4us/cm (Figure 3.24).



Pedon Name Depth  Horizon Texture Gravel % Dry Color pH  EC{(us/cm)

Q1 Backhoe 0-10 Avl Loam 51 T.5v1/2 822 479.5
(31 Backhoe 10-13 Av2 Loam 37 7.5vr6/3 828 365.2
Q1 Backhoe 13-33 Bk Sandy Loam 50 7.5yr6/3  8.22 325.2
Q1 Backhoe 33.57 Bkgml  Sandy Loam 74 7.5y1/3 824 358.6
Q1 Buckhoe  57-63 Bkgm2  Sandy Loam 76 7591772 8.23 362
Q1 Backhoe  65-82 Bkqm3  Sandy Loam 77 7.5y 8.1 8199
Q1 Backhoe 82+ Bkgm4 Loamy Sand 95 T7.5yrlf3 792 4121
Q1 Silica 0-10 Av * * * * *
Q1 Silica 10-23 Bkq * * * * ®
Q1 Silica 23-29 Bkgml u * * * *
Q1 Silica 29+ Bkgm?2 * * ¥ * ¥
Q2 Merkler 0-13 Av Loam 43 10yr6/2  8.13 3345
Q2 Merkler 13-40 Bk Sandy Loar 68 10yr7/3  8.18 3109
Q2 Merkler 40-55 Bkgm Loamy Sand 75 10yr6/2 822 336.9
Q2 Merkler 55-72 Bkm Loamy Sand 70 0yr1/3 828 3525
Q2 BLM 0-12 Av Sandy Loam * 10yr6/3 8.4 320
Q:BIM 12-40) Bk Sandy Loam * 10yr7s2 8.9 288.5
Q2 BLM 40-51 Bkgml Sand * 10yr6/2 8.6 3826
Q2 BLM 51-70 Bkgm?2 Sand * 10yré/2 8.8 205.5
Q2 BLM 70-90 Bkgm3 Sand * 10yr/3 3.9 412
Q3 Mystery 0-11 A Sandy Loam 51 10yr6/4 - 8.15 650.1
Q3 Mystery 11-38 Bkl Sandy Loam 66 10yré/3  8.34 297
Q3 Mystery 3873 Bk2 Loamy Sand T 10yr6/3 832 2829
Q3 Mystery  73-100 Bk3 Sandy Loam 65 10yr7/3 831 378.8
Q3 Mystery  100-118 Bk4 Loamy Sand 67 10y7/3 821 500.7
Q3 Last 0-10 A Loamy Sand 48 7.5y6/3  7.19 481.3
Q3 Last 10-22 Bkl Loamy Sand 46 7.5yr6/3  7.23 409.3
Q3 Last 22-68 Bk2 Loamy Sand 52 7.5yr6/3 6.6 304
Q3 Last 68-100 Bk3 Loamy Sand 91 7.5yr6/3  7.15 382.1
Q4 Shovel 0-6 Av Sandy Loam 58 10yr5/4 791 927.4
Q4 Shovel 6-28 Bw Sandy Loam 47 10yré/4 838 3234
Q4 Shovel 28-37 Bkl Sandy Loam 29 10yr5/3 8.44 296.]
Q4 Shovel 37-90 Bk2 Loamy Sand 44 10yr5/3  8.35 270.5
Q4 Glass 0-2 A Loamy Sand 48 10yr6/2  8.01 1103
Q4 Glass 2-13 Bw Loamy Sand 40 10yr6/3  8.39 355.2
Q4 Glass 13-46 Bkl Sandy Loam 64 10y16/2  8.35 317.5
Q4 Glass 46-89 Bk2 Sand 62 10yr6/3 835 3172

E& Glass 89-122 Bkﬂ Sand 64 102612 8.41 382.3
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Pedon Name  Depth  Horizon Texture Gravel % Dry Color  pH (us/em)

Q5 Wash 0-3 cl Sand * * 8.2 5104

Q5 Wash 3.20 2 Sand * * 8.6 466

Q5Wash  20-30 c3 Sand * * 9 3176
Qs Wash 3050 C4 Sand * * 8.2 302.6

Figure 3.24. Combined data from all profiles sampled. (*-analyses were not performed)



CHAPTER IV

SOIL PENDANT RESULTS
Soil pendants collected from the Quaternary landforms in the northern Pahranagat
Valley display a variety of unique morphologies and characteristics. Pendants were
examined from each soil horizon in which they appeared. This chapter summarizes field
descriptions, macromorphology and micromorphology from pendants sampled in the

northern Pahranagat Valley. The information obtained from these analyses is given in

Figures 4.1-4.4.

General Description and Characteristics

Soil pendants are present in all Quaternary landforms of the study area except for
active inset drainages (Q5). Pendants were collected from horizons with stage I and
greater carbonate development where carbonate and or other material has accumulated on
the undersides of gravel or cobbles in the soil profile. Pendants are commonly seen in the
soil profile with distinct, white, carbonate accumulating below each clast (Figure 4.5).
When pendants are removed from soil profiles, they retain the same form as seen in place
(Figure 4.6). Each pendant has a set of features and associated terminotogy that will be
used throughout this chapter (Figure 4.6). All pendants have a parent clast and associated

clast-pendant contact. Parent clasts are the gravel to cobble sized clasts, located in the
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Figure 4.1. Point count data with sample thicknesses. $total number of points counted
ina 1/3x1/3 grid. *Percentages, &Measurement of pendant at thickest vertical point.

Unit Samgle ID Depth Total$ Carbonate* Clay/Silica* Voids.;"warains* Thickness&

()1 Backhoe QB2 10-13 600 20.33 32.33 27.66 | 19.66 17 |
(J1 Backhoe J1B3 13-33 600 56.33 34 .66 4.5 5 11
Q1 Backhoe Q1B4 33-57 600 44.66 335 12.33 9 6
Q1 Backhoe QIB35 57-65 600 17.82 8.83 35.16 | 0.33 10
()1 Backhoe Q1B6 65-82 600 54.33 19,33 25 1.33 5
(21 Backhoe Q1B7 82+ 600 4.33 52.16 8.33 | 35.16 12
Q1 Silica (153a 29+ 300 37.33 28.33 29.33 5 4
2 BLM Q2B2 1240 300 54.6 21 1.6 22.8 2
Q2 BLM {J2B3 4(-51 600 12.83 21.5 6.33 | 33.33 11
2 BLM Q2B3a | 40-31 600 36.83 13 6.16 | 43.99 11
Q2 BLM Q2B4 31-70 600 29.82 17.5 14,16 | 38.5 7
()2 BLM QIB5 70-90 600 10.66 45,16 22.66 | 215 15
()2 BLM Q2B3a | 70-90 600 30.83 16,83 13,16 | 39.16 15
(}2 Merkler Q2M2 13-40 600 68.83 11.16 1033 | 9.66 6
Q2 Merkler QM3 40-53 600 21.83 27.83 4.16 | 46.16 14
Q2 Merkler Q2M4 35-72 600 25.66 17 11.83 § 43.5 17
03 Mystery | Q3MYI 0-11 600 37.5 325 13.66 | 16.33 4
Q3 Mystery | Q3MYl1a] 0-11 600 65.99 17.39 8.33 | 12.83 4
Q3 Mystery | Q3MY2 | 11-38 405 75.3 14.56 8.88 1.23 2
Q3 Mystery | Q3MY3 | 38-73 [not enough pendant to count 1
Q3 Mystery | Q3MY4 | 73-100{ 600 53.83 17.83 18.16 | 10.66 4
Q3 Mystery | Q3MY4a | 73-100| 600 68 1566 | 13.66 | 2.66 3
Q3 Mystery | Q3MYS5 |100-118] 600 60.33 31 7 1.66 1
Q3 Last (Q3L3 22-68 |not enough pendant to count 1
Q3 Last Q34 | 68-100| 276 73.18 17.39 0.42 0 2

0.2

5 (ilass Q3G5 | 89-1221 600 03.33 11 5 20,66 4
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Figure 4.2, EDS and XRD results. Gray areas represent horizons without pendants or
horizons where pendants were not analyzed. Dashed lines indicate XRD analyses not
performed. *Two pendants from horizon were analyzed with SEM
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Figure 4.3. Information from SEM analyses.
Horizons in gray represent horizons with no pendants or horizons
where pendants were not analyzed. *Two samples analyzed
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where no pendants are present.
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Clast-pendant
contact

Pendant
ferminus

Figure 4.6. Pendant pulled from Q2,
Image also shows associated terminology of pendant
features. Bar lengthis 1 cm.



subsurface, underneath which pedogenic materials accumulate creating a pendant. In
some instances, multiple pebble sized parent clasts share one pendant, however, there is
typically one clast per pendant. The clast-pendant contact is the contact between the

parent clast and its pendant. The pendant terminus is the bottom limit to the pendant.

Macromorphology and Micromorphology of Pendants

Pendants were examined in the field as well as in the laboratory with fields of view
ranging from 20 mm to 1 mm. Visual and chemical examinations of pendants were
performed using backscatter electron analyses (BSE) with SEM. The compositional
analyses of BSE greatly assisted in determining pendant-clast differences and
compositional variations throughout the pendant. Figure 4.7 shows an example of a
pendant viewed using this method. Calcium carbonate appears white and darkens with
increasing magnesium and silica. Features such as voids, some crystalline structures,
coatings and grain inclusions can also be viewed using compositional BSE (Figure 4.7
and 4.8). Voids show up as dark, black areas that can exhibit rounded, angular and linear
to sublinear shapes. Crystals are apparent as subhedral, euhedral and anhedral structures.
Silica appears amorphous while sepiolite can occur in either a fibrous or massive form.
Detrital grains have a rounded appearance. In contrast, grains incorporated directly from
the parent clast are angular. The physical relationships between carbonate, silica and clay
can also be seen with BSE and confirmed using EDS.

Pedogenic calcium carbonate

Calcium carbonate is the dominant pedogenic mineral found in all pendants examined

in the study area. Carbonate material initially precipitates as a white powdery substance



Silica

Void Space Detrital Grains

+ . L .

Figure 4.7. BSE compositional image of a pendant from Q2, BLM
(12-40) cm. This image illustrates common features associated with
pendants found in the study area.

Dolomite
parent clast

. S

Figure 4.8. BSE copositmnal image showinpcndant from Q2\,LM
40-51 ¢cm. This image also shows common features associated with
pendants of the study area.
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that coats clast bottoms and increase in thickness from the Q4 to Q1 profiles and with
profile depth. When viewed at greater magnification, the powdery material is crystalline
and appears to radiate in cavities and cover grains (Figure 4.9).

Diverse chemical characteristics are seen in the calcium carbonate of Pahranagat
Valley soil pendants, The amount of calcium carbonate contained in pendants fluctuates
with depth in all soil profiles that were sampled. Point counts for carbonate range from
4% to 73%. Greater concentrations of carbonate are seen in samples from Q3-Q5
landforms (38-73%). Pendants from Q1 and Q2 landforms contain lower amounts of
carbonate compared to younger samples. EDS analyses indicates pure carbonate exhibits
high peaks of calcium, oxygen and carbon. The pedogenic calcite has a variety of crystal
habits ranging from massive and anhedral to subhedral crystals (Figures 4.10 and 4.11).
Massive carbonate (as seen in thin section) is the dominant form of carbonate found in
these pendants. In addition, there are pendants with areas of pure laminar carbonate.
However, pendants containing carbonate laminae are not exclusively composed of these
layers. The most common laminas consist of subhedral microsparite crystals radiating
downward, and in some cases have new laminas adjacent below them, Microsparite
crystals (4-50um) are also seen radiating around grains and in voids between large
rounded (transported) grains and pieces of rounded carbonate. Lamina are on average
20um in thickness and are generally the largest crystalline material found in all pedants
examined in this study, Lamina are commonly separated by small voids created from
erystalline contacts and may contain linear accumulations of silicate clays (Figure 4.7).

Silica lamina are present but rare.



Figure 4.9a, White, crystalline calcite found on the underside of Q3, Mystery
(70-90) e¢m filling pits and depressions. Field of view is 2mm.

Figure 4.9b. Yellow silica patches on the underside of a pendant pulled from
Q2,BLM (12-40) cm, Field of view is 1.5 cm.

79



o
g

o

ey

it e

80

Figure 4.11. BSE image amina s
contact from Q3, Mystery (11-38) em.
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Secondary silica accumulations

Silica is present as yellow, patchy material partially coating the pendant terminus
(Figure 4.9). Silica accumulation also appears to increase from Q4 to Q1 and is more
common in the BLM fan landforms. Silica was identified in eight of the samples in 3
forms: (1) as rare lamina between adjacent carbonate lamina, (2) on the pendant terminus
of one sample and (3) as a coating on incorporated grains. XRD analyses confirmed
amorphous silica in two of the eight samples.

Lamina composed of pure silica are rare, and can only be found in three of the 25
samples. They are found in the interiors of pendants and as outer coatings at the pendant
terminus (Figures 4.7 and 4.12). Silicious lamina are not continuous across the length of
the pendant and vary in thickness. Lamina with pure silica composition are also found
alternating with lamina of calcium carbonate, sepiolite and other silicate clays. Silica
coatings on pendant termini are only found in the Q3 Last profile. The surface areas of
grains incorporated into the pendant matrix from loose soil or by clast inclusions are
other areas where silica can be present. Silica coatings surrounding grains are closely
associated with grain dissolution and in these conditions, may be closely related (spatially
and chemically) to the accumulation of sepiolite (Figure 4.13).

Sepiolite

A variety of clay minerals in pendants were identified using XRD (Figure 4.2). The
identified minerals include: kaolinite, montmorillonite, illite, chlorite-montmorillonite,
palygorskite and sepiolite. Sepiolite is the only clay mineral present that can be identified
using SEM and EDS. Sepiolite has strong peaks of silica and magnesium, with variable

concentrations of calcite, depending on the carbonate-sepiolite relationships (Figure



TR b
Limestone |
Parent Clast|~

Figure 4.12. Pendant from Q3, Last (22-68) cm with silica lamina near terminus.
Note that parent clast is of limestone composition. Black solid line is approximate
area of clast-pendant contact.
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Detritl grain] " £k
containing E - i I
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3 ‘ _ L -4 Jﬁf‘**

g o T

Figure 4.13. Image from Q2, BLM 70-90 cm showing the common relationships
seen between silica and sepiolite in the pendants of the study area. Solid black line
shows border of grain and silica. Dotted black line shows contact between silica
and sepiolite,



4.14). Sepiolite occurrence is greatest in Q1 and Q2 landforms and some significant 5

amounts of sepiolite are found in the Q3, Mystery and Last pit profiles.

Sepiolite occurs as large masses and more commonly as bands alternating with
calcium carbonate (Figures 4.15-4.17). Three samples showed calcium carbonate
appearing to be consumed by sepiolite. These areas are present where carbonate with
only Ca, C, and O peaks (EDS data) exhibits a visual and chemical transformation into
sepiolite (Mg, Si). Figures 4.18-4.22 show a calcium carbonate mass surrounded by
material that exhibits EDS peaks of nearly equal Mg, Si, and CaCO3. This transitional
material loses calcium and grades into pure sepiolite. This apparent transformation
process is seen in three of the 25 samples from Q1 and Q2 landforms.

Distinct septolite fibers are not observed in any of the samples probably because of
polishing of the thin sections. There are a small number of samples where sepiolite
appears to form tunnel-like structures that fill voids and coat grains (Figures 4.23 and
4.24). Circular forms with diameters of approximately 4-5um are found in layers of
sepiolite that alternate between catbonate and may also be a profile view of these fibers.
One occurrence of palygorskite (identified with XRD) is found in the Q2 Merkler profile
at 12-40 ¢m but was not be identified using SEM methods.

Soil Pellet Features

Pellets present in the Qlp Backhoe and Q2p Merkler profiles were found loosely
attached to pendant termini. These features are present in Q1 and Q2 landforms found
directly above a stage IV laminar cap. Pellets from these landforms are composed of
rounded pieces of carbonate, and rounded detrital grains that were enveloped by sepiolite

clay and range in size from 250 um to Imm (Figores 4.25-4.27). In thin section,
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Figure 4.14. Typical EDS peaks associated with the clay mineral sepiolite. Note
C peak from carbon coating.

Figure 4.15. Banded sepiolite and carbonate from pendant from Q1, Backhoe
(13-33) em. The carbonate is white, sepiolite is dark gray and voids are black.
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Figure 4.16. Pendant from Q2V BLM 40-51 ¢m showing caleium
carbonate (white) with bands of sepiolite (dark gray).
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Figure 4.17. Pendant of Q1, Backhoe (82+). Large rounded detrital grains an
chunks of rounded carbonate floating in a sea of sepiolite.
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Figure 4.18. Sepiolite occurs with carbonate in a pendant of Q1 Backhoe
(65-82 cm). A close up of the white box is shown 1n figure 4.19.
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Figure 4.19. Area from 4.18 showing transformation of carbonate into sepiolite.
Boxes A-C are areas analyzed by EDS and shown in figures 4.20, 4.21 and 4.22.
From Q1, Backhoe 65-82 cm. (A) is pure sepiolite, (B) has composition of

carbonate and sepiolite and (C) is pure carbonate.
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Figure 4.22. EDS of box C from figure 4.19.
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F1gure 4.23. BSE image of pendant from Q] Backhoe 57-65 cm showmg vmd
space with sep1ol1te and carbonate filling void at clast-pendant contact. Also
shown are pieces of parent clast material that has been searated from the clast,

Flgure 4, 24‘ Fibrous seplollte radntmg from rounded detntal grain. This
image was taken of pendant from Q2, BLM 51-70 cm.
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F 1gure 4.25. Seplo 1te encompassmg a vo camc gram w1t na pendant.

F igure 4. 26 Rounded c.'cplohte features in carbonate matrix. The above
feature has carbonate with high Si and Mg and lower feature has pure sepiolite
encompassing a rounded piece of carbonate.
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Figure 4.27. Pendant from Q2V BLM 40-51 ¢m showing carbonate near
parent clast and sepiolite in a circular form.
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pellets have an ovate or egg shaped appearance, Pellet-like features were found in

pendants and at the pendant terminus of eight samples. These features were only found
in the thin sections of pendants from the Q1 and Q2 landforms. Five out of the five
horizons sampled from Q1p Backhoe profile contained these features. Two out of three of
the Q2p Merkler and 1 out of 6 of Q2y BLM profiles also contained pellet-like features.

Qther amorphous materials

Other clays mentioned in the previous segment are found in pendants of the study area
but not to the extent and abundance of sepiolite. Some materials found within pendants
(especially those of the Q3 and younger landforms) display EDS peaks containing Si,
Mg, and Al with minor traces of Fe and K (Figure 4.28). A small sulfur peak is found co-
occurring with other materials in 16 of the 25 samples. These accumulations occur in the
pendant and on the pendant terminus (Figare 4.29 and 4.30). Because of the inability to
associate this set of peaks to exact mineral names, they are all referred to as other clays or
other amorphous precipitates. XRD analyses were conducted on representatives of all
profiles except for Q3 Last and Q4 Glass. Q4 Glass pit coatings were too thin to obtain
enough sample for analysis. Illite is the second most abundant clay mineral (behind
sepiolite) identified through XRD and can be found in 3 out of 10 samples. Kaolimte is
present in pendants from the 55-72 cm horizon of Q2 BLM pit and the 73-100 c¢m
horizon of Q3 Mystery. Montmorillonite and mixed clay chlorite-montrmorillonite are
also found. Pure montmorillonite is found in the 29+ horizon of Q1 Silica pit and the
40-51cm and 70-90 cm horizons of Q2 BLM pit. The mixed ctay occurs once in Q3

Mystery at 73-100 cm. Minerals other than carbonate, silica and clay were identified
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Figure 4.28. EDS peaks of “other clay”™ mineral. Note the peaks of potassium, iron, and

aluminum with little magnesium.
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Figure 4.29. BSE image of pendant from Q3, Mystery 0-11. Terminus of pendant
has layer of “other clay”., White box outlines area in figure 4.30.
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Figure 4.30. Closer view of area in white box of fi
other clay coating pendant terminus.
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through EDS. These minerals were quartz, muscovite, orthoclase and dolomite, all

occurring as detrital grains or crystals and grains derived from the parent clast.

Pendant size

Pendant size is difficult to determine in the field and laboratory because of an
undulating pendant-clast contact and unknown angular or rounded features of the parent
clast. Thicknesses were measured from thin section at the thickest point from clast-
pendant contact to the pendant terminus. Pendants observed in this study range in size
from 1 to 17 mm at their thickest points (Figure 4.1). These measurements may not be
true indicators of pendant thickness due to the thickening and thinning of pendant
material. However, these measurements are assumed to represent the average thickness
of material coating the pendant. Some pendants appear to mimic the topography of the
clast and contain the thickest accumulation of material below the lowest part of the clast
(Figure 4,31).

Pendant-clast contact

Parent clast lithology was recorded using EDS. SEM analyses from thin sections
showed that 14 out of 25 samples were dolomite, 9 out of 25 were limestone and 2 out of
25 were volcanic (Figure 4.2).  Volcanic parent material displayed several textures and
chernical compositions. Parent clasts of volcanic lithologies are datk, brittle and have
large fissures creating a rounded appearance to sections of the clast (Figure 4.32).
Limestone parent clasts appeared white or lighter in color (in BSE) because of their high
Ca content (Figures 4.12 and 4.17). The clasts composed of dolomite crystals were easy
to distinguish because of their dark gray appearance (in BSE) caused from increased

magnesium content (Figures 4.34, 4.37 and 4.38). EDS peaks for dolomite were strong



Figure 4.31. Scan of thin section made from Q2, Merkler
55-72 em showing pendant mimicking the parent clast form.
Parent clast is outlined in dotted line and pendant is outlined

in solid line. Red color is from Azilarin-Red stain for carbonate,
Bar length 1s 1.5 cm,
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Figure 4.32. Volcanic pendant of Q1, Silica 29+. Notice rounded, broken
appearance of parent clast. White dotted line is approximate location of
parent-clast contact.
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Figure 4.33. Pendant with linear void at clast-pendant contact. This image also
shows dissolution of CaCQ, within the void space. From Q2, BLM 12-40 cm.
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Flgure 4 34, Pendant fromQ] Backhoe 57-65 cm showm<I zone 0
incorporation of parent ¢last material into pendant. White dotted box shows area
covered in figure 4.35. Black box shows arca covered in figure 4.36.
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Figure 4.35. Area Covered by whlte box in ﬁgure 434, Image shows
incorporation of parent clast grains into carbonate matrix at clast-pendant
contact.
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Figure 4.36. Area covered by black box in figure 4.34. Image shows incorporated
parent clast grains into carbonate matrix with evidence of displacement.
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Parent Clas

Figure 4.37. Q1, Backhoe 33-57 cm showing pendant-clast contact

with large portion of clast broken off and incorporated into pendant. Black box
outlines area shown in figure 4.38.

o

Figure 4.38. Close up of area covered in black box of figure 4.37. N ote
the calcium carbonate with acicular crystalline areas radiating downward into
void.
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in Mg and Ca. The texture of the dolomite material also facilitated its identification,

Crystalline grains ranging in size from 200um to 20um were readily apparent. Crystal
size decreased considerably approaching the pendant-clast contact and in many samples,
the fragments of the parent clast are incorporated into the pendant surrounded by massive
calcium carbonate (Figures 4.34-4.40).

The presence of a linear or sub-linear void between clast and pendant is noticed in
65% of the samples (Figures 4.29,4.33, 4.37 and 4.38). The linear voids range in
thickness from 10um to 400um. These void features do not run the entire length of the
contact but can dominate up to 90% of the contact length. Within this void, evidence for
dissolution and precipitation of calcium carbonate, silica and other clays is evident
(Figures 4.33, 4.37 and 4.38). Five of the seventeen clasts (29%) that contain a
linear/sub-linear void space also contain mineral precipitates in the void. Calcium
carbonate appears as subhedral crystalline material similar to that of carbonate lamina. In
some cases, the carbonate exhibits pure CaCO3 with no evidence of dissolution or other
effects of time and appears undisturbed relative to adjacent carbonate that contains high
Mg and pitted dissolved features.

Grain incorporation from the parent clast occurs in 13 of the 25 (52%) samples.
Usually associated with these features is a “zone of clast break-up™ where the clast breaks
along its crystal cleavages. This zone can be up to 200um with packing of grains
decreasing towards the extremity of the clast (Figure 4.34). Grains dislodged from the
clast are incorporated into the calcium carbonate matrix and can sometimes be found well

into the heart of the pendant (Figures 4.34 and 4.37-4.40). Separation of grains increases
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Flgure 439, Pendant from Q1D Backhoe 57-65 cm with large section of parent
clast material that has been incorporated into the pendant.

parent clast i

Figure 4. 40 Pendant from Q2D Merkler 40 55 cm showing large portions of
parent clast material incorporated into pendant.
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away from the clast and with depth into the pendant. Seven pendants display “layers” of

incorporated clast grains with large sections of carbonate spanning the area between the
clast and grain layer. The incorporated clast grains may undergo further displacement
and/or dissolution once they have been incorporated into the pendant matrix.

(Grain displacement and dissolution

Displacement of detrital and parent clast grains occurs in 20% of the samples, more
commonly in Qlp Backhoe and Q2p, Merkler profiles. Displaced grains have a “puzzle-
piece” appearance where the grains appear to have once fit together (Figures 4.35-4.40).
These grains are commonly separated by crystalline carbonate. Many grains that have
undergone displacement do not appear to be affected by dissolution although there are
some samples with both processes occurring. Dissolution of incorporated grains occurs
in 44% of the samples and is evident from the pitting and dissolved appearance of grains
that commonly are encircled by clay or silica (Figures 4.41-4.42). There is evidence of
partial and complete dissolution of clasts with the presence of voids in the carbonate
matrix that have an angular shape. Three samples out of 25 had angular void spaces. In
some cases, a remnant grain can be found within this void displaying an obvious

relationship between grain and void (Figure 4.34 and 4.44).

Pendants in Varying Lithologies

Pendants formed in the landforms of the BLM fan (volcanic parent material) have
rough, angular bottoms with pitted surfaces that were once in contact with other grains,
The pendant terminus is commonly coated with yellow silica accumulations (Figure 4.9).

Pendants from the profiles of these landforms have numerous inclusions of coarse sand

2

o
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Figure 441, Pendant from Q2, Merkler 13-40 cm with many etched dolomite
grains. Area in white box is shown in figure 4.42. I represents dolomite grains.
Other grains have high Si and Al chemistries.

Figure 4.42. Heavily etched volcanic grain in carbonate matrix. Area is from area
covered in white box from figure 4.41.
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Figure 4.43. Angular void with ¢ matchmg gram in carbonate matrix. From
2, Merkler 40-55 cm.

Flgure 4. 44 Ii)olomne grams in carbonate matrlx with dlssolutlon vcnds From
Q3, Mystery 0-11 ¢cm. Grains are dolomite with an occasional quartz grain (Si).
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and small gravels that are visible with the naked eye and give the pendant a poorly

sorted appearance (Figure 4.45). Pendants from the Mail Summit fan landforms
(dolomite parent material) are smoother with less inclusions of sand and gravel than those
derived from volcanic lithologies. However, point count data show that there are two
pendants from Q2 Merkler pit and one from Q1 Backhoe pit that contain significant
amounts (>20%) of pendant grains derived from the soil matrix or from the parent clast.
Point counting conducted on 24 samples reveal that 10 pendants have grain
percentages above 20%. 70% of these samples were pulled from BLM fan (volcanic

parent material) soil profiles (Figure 4.1).

Pendants in Soils of Different Age

Soil pendants associated with the Q1 and Q2 landforms exhibit clast degradation and
inclusions of clast material. Q3 soils also exhibit clast break up but not inclusion of clast
material. Displaced grains occur in Q1 and Q2 soils and where dissolution features occur
in Q1-Q3. Pellet-like masses are only seen in the Q1 and Q2 soils. Sepiolite only occurs

in the Q1-Q3 soils and fibers of sepiolite are seen in soils of Q1 and Q2.
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Figure 4.6. Pendant pulled from Q2, BLM 12-40 cm.

Image also shows associated terminology of pendant
features. Bar length is 1 cm.



CHAPTER V

DISCUSSION

Quaternary Landform Relative Ages and Soil Development

Quaternary landforms in the northern Pahranagat Valley developed from several time
dependant alluvial processes with material derived from two different parent lithologies
(Figures 3.1-3.3). These landforms labeled Q1p-Q5p (dolomite dominant parent material)
and Q1v-Q5v (volcanic dominant parent material) have distinct characteristics associated
with their temporal development. Surface topography and dissection, degree of desert
pavement, degree of desert varnish, and soil development were used to determine the
relative age constraints of these landforms. Characteristics of the Kyle Canyon fan north
of Las Vegas Nevada (Sowers et al., 1988) and piedmonts of the lower Colorado River
region (Bull, 1991) were compared with the northern Pahranagat Valley landforms.
Stages of carbonate morphology constructed by Gile et al. (1966) and Bachman and
Machette (1977) were used to better constrain the ages of these surfaces according to
carbonate development. Landform topography, elevation and spatial relationships with
other landforms were used for relative dating based on Peterson’s (1981) descriptions for
landforms of the Basin and Range Province (1981) (Figure 3.1). Temporal terms for the

Quaternary are used and provided by Bull (1991) (Figure 5.2).

107



Landform Unit Taxonomic Dominant | Slope | Relative
Unit Description*® Classification® Vegetation | Percent Age
Q 1L Ball Calcic Petrocalcid Farl
na Blackrush carty
ale Calcic Petrocalcid E 3 Pleistocene
v
Q2L Fan Calcic Petrocalcid Blackbrush 36 Middle
sz Remnant | calcic Petrocalcid NV. Effedra Pleistocene
Q3 L Fan Typic Haplocalcid Blackbrush 3 Late
Q3, Remnant |Durinodic Haplocalcid| NV-Effedra Pleistocene
Q 4 Blackbrush
L Typic Haplocalcid NV. Effedra 6 Early
Rabbit Br.
Q4v Inset Fan Durinodic Haplocalcid ?:héﬂar Holocene
. Blackbrush
Active . NV. Effedra
QS . Typic Torriorthent Rabbit Br. 6 Modern
Dfalnage Cholla

Figure 5.1. Characteristics of Q1-Q5 landforms with varying lithologies. *-Peterson, 1981 &-Qualitative taxonomic

classification.
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Age Ka
Holocene
Late 0-4
Mid 4-8
Early 8-10
Pleistocene
Latest 10-20
Late 10-125
Middle 125-790
Early 790-1650

Figure 5.2. Assigned ages of Quatemary temporal
terms, in thousands of years before present (ka)
{Bull, 1991).
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(21 landforms represent the oldest remnants of the Mail Summit and BLM fans and
are interpreted to be Early Pleistocene in age. Q1 surfaces are found as balienas that have
undergone significant weathering and removal of an unknown amount of soil. Evidence
for weathering and removal of upper horizons is indicated by an exhumed petrocalcic
horizon with pieces of stage IV laminar cap at the surface. Gravels containing pendants
are also present upturned and on their sides. Desert pavement is well developed with
moderate sorting of clasts. Surface clast counts reveal 99% of the clasts recorded and
measured on the Q1 surface were either limestone or dolomite (Figure 3.3). In contrast,
Qlv surface clasts were dominantly voleanic (71%). However, sixty percent of the larger
(>32 mm) clasts found on the Q1vy surface were dolomite or limestone. The Av horizons
vary between 10 cm (Qly) and 13 ¢m (Q1p) which are roughly equivalent to the Q2
landforms, but are much thicker and well developed than the 33-Q5 landforms (Figures
3.7,3.9,3.12 and 3.13). The sandy loam textures of the Bk, Bkqm1, Bkqm?2 and Bkgm3
horizons of Q1p Backhoe (Figure 3.8) give no evidence for significant clay accumulation
in the fine soil fraction (<2 mm), although significant clay accumulation would have been
predicted to develop during the Pleistocene with increased moisture allowing the
development of argillic horizons. This suggests that erosion has removed argillic
horizons or carbonate has either masked and/or inhibited clay accumulation in these soils
which has been suggested to have happened in other studies conducted in the
southwestern U.S. (Gile and Grossman, 1968; Allen, 1985; Monger et al., 1991).

The EC data for Q1p Backhoe shows a relative increase with depth suggesting a

possible increase in salts. pH values for Q1p Backhoe remain fairly consistent at 8.22 to



8.28 for the upper 5 horizons but decrease to 8.11 and 7.92 in the lower two horizons. Hi

These two lower horizons also show an increase in EC values from 362us/cm in the
Bkgm?2 horizon to 819 ps/cm in Bkqm3 and 4121ps/cm in Bkqmd. This increase in EC
and corresponding decrease in pH suggests a possible increase in sulfate minerals such as
gypsum. Shallow lakes throughout the valley could provide an eolian source for this
material. Gypsum is more soluble than carbonate $0 it is possible that it would be found
deeper in the profile (below sampled horizons). If deeper horizons within the profile had
been excavated and analyzed, an increased accumulation of gypsum might have been
found. The possible accumulation of gypsum below the top of the carbonate
accumulation depth concurs with studies conducted by Harden et al. (1991) where the
highest percentage of gypsum in the profile was located below the top of the carbonate
horizon in a simple leaching regime. Q1y Silica profile provides no information about
texture, structure, EC or pH because they were not measured for this profile,

Soil development, erosional features and the classic ballena form correlate to those of
the oldest landforms of the lower Colorado River region (~790 ka) as well as the Surface
1 landforms of the Kyle Canyon fan that were dated at ~800ka using paleomagnetism.
Soil development is similar to Surface 1 of the Kyle Canyon fan with shallow carbonate
horizons exhibiting exhumed petrocalcic pieces on the surface and in upper horizons. In
Kyle Canyon fan, Stage IV carbonate occurs at 32 cm with an incipient stage IV at 8 cm
in the Surface I soils (Sowers et al. 1988). Ql1p Backhoe pit has similar changes in
morphology with a stage IV carbonate horizon found at 82 cm with an incipient stage TV
at 57 em. The complicated and advanced carbonate morphology found on this landform

suggests an early Pleistocene age and may indicate a paleo-wetting depth influenced by
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past glacial climates (Gile et al. 1966; McFadden and Tinsley, 1985). McFadden and
Tinsley (1983) attributed two “bulges™ of carbonate of Pleistocene soils to the Holocene
(upper bulge) and Pleistocene (lower bulge) maximum depths of wetting in soils near
Vidal Junction, California. However, Q1 soils of the study area and Surface 1 soils of
Kyle Canyon fan display two laminar stages of development implying that multiple
glacial climates over 100’s of thousands of years have contributed to their development
(Gile et al. 1966; Bachmann and Machette, 1977). The inferred decrease in effective
precipitation suggested by the carbonate morphology could be caused by seasonal or
large-scale climatic changes associated with glacial/interglacial cycles. The presence of
two laminar caps could be explained by (1) high rates of sedimentation increasing the
profile depth during the Pleistocene in turn pushing the cap deeper and allowing the
formation of a second laminar cap above and/or (2) an increase in aridity (less
precipitation or a change in seasonality of precipitation) which would decrease the depth
of wetting. This change could result in the upper laminar cap forming at a shallower
depth than the lower one. Relating the formation of the upper laminar cap to increased
aridity at the onset of the the Holocene is unlikely because of the extensive amount of
time that it would take to form a stage IV horizon as seen in the Q1 Backhoe profile
which well exceeds the length of time within the Holocene (Gile et al. 1966). The
Holocene carbonate accumulations would be predicted to be only weakly developed as
stage 1, or less likely, stage II accumulations (Gile et al. 1966) similar to those found in
the Q4 profiles.

Pendants of Q1p Backhoe profile that were measured in thin section had an average

thickness of 10.2 mm. One sample from Qlvy Silica profile had a thickness of 4 mm
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which may not represent the true average thickness of all pendants in that profile. 3

Silica patches increase with depth in both Q1p Backhoe and Q1y Silica profiles. The
increase in silica accurnulation throughout both of these profiles can be attributed to an
increase in solubility of silica from pressure dissolution within petrocalcic horizons
and/or from Pleistocene wetting that would have flushed silica deeper into the profile
before later and shallower carbonate accumulation.

The soils associated with Q1 landforms are Aridisols because they have an aridic soil
moisture regime, an ochric epipedon (dry with no significant organic components) and
contain calcic and petrocalcic horizons. Although speciftc calcium carbonate percentages
were not measured, these soils were observed to contain a petrocalcic horizon with an
upper boundary within 100 cm of the surface and an associated calcic horizon above.
Therefore, these soils are qualitatively classified as Calcic Petrocalcids.

Q2 Landforms

Q2 landforms do not exhibit the rounded ballena style of the Q1 landforms and instead
have planar topographies similar to inset fans. They are found at lower elevations than
the Q1 ballena surfaces (Figures 3.4 and 3.5). Pedogenic carbonate stages of the Q2
landforms are similar to that of Q1 containing incipient stage IV calcium carbonate in the
Qly BLM and full stage IV carbonate in Q2 Merker both at 40 cm depth (Figures 3.12
and 3.13). The increased development of a stage IV laminar cap (compared to the
incipient stage IV of Q2v BL.M) in the dolomite material may be a function dissolution
and reprecipitation of CaCOs in parent material (Rabenhorst and Wilding 1936; Sowers et

al. 1988; Levine and Hendricks, 1990),
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Surface characteristics are similar to those of the Q1 landforms with no evidence of

bar and swale topography and a well developed desert pavement. However, they are not
ballenas and the erosion and exhumation of petrocalcic horizons present on the Q1
surfaces are not as prevalent as seen in the Q2 profiles. The Q2p surface had 99%
carbonate lithologies. Fifty-nine percent of the surface clasts recorded for the Q2y surface
were volcanic and 83% of the clasts larger than 32 mm were calcareous. This evidence
again suggests that preferential weathering of volcanic material into smaller clasts leaves
the more resistant calcareous material at the surface. The Av horizons of the Q2
landforms remain thick (13 cm for Q2p Merkler and 12 cm for Q2y BLM) similar to
those of the Q1 landforms (Figures 3.12 and 3.13). Silica accumulations on the
undersides of clasts and pendants are present as faint to distinct in Q2p Merkler profile
and faint to prominent in Q2y BLM profile. The increase in visible silica in the Q2y
BILM profile could result from parent material with volcanic glass and other silicious
sources more readily available for dissolution and reprecipitation into the soil. Pendant
thicknesses average 12.3 mm for Q2p Merkler and 10.2 mm for Q2y BLM. These
thicknesses appear to be similar to the Q1 Backhoe profile average and represent the
highest averages of all pendants measured throughout all landforms (Q1-Q4).

EC values for Q2p Merkler remain consistent with readings from 310.9us/cm to
352.5us/cm throughout the profile. pH values steadily increase with depth from 8.13 to

8.28. For Q2v BLM profile, EC values vary at depth from 288.5 ps/cm (lowest) to 412.0

us/cm (highest). The highest EC reading was found at the lowest horizon but occurs with

the highest pH (8.9) suggesting that perhaps salts other than sulfates could be present.
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The soils associated with Q2 landforms are aridisols that also have a petrocalcic

horizon with an upper boundary within 100 cm of the surface and have a calcic horizon
above the petrocalcic horizon. Because of these features, the soils associated with Q2
landforms are given a qualitative taxonomic classification of of Calcic Petrocalcid similar
to Q1.

Soil development with an incipient stage [V petrocalcic horizon in Q2v BLM profile
suggests a Mid Pleistocene age, younger than the Q1 landforms. These landforms do not
exhibit the rounded, erosional ballena forms of Q1. Q2 landforms are that interpreted to
be Middle Pleistocene in age consistent with those of Surface 2 of Kyle Canyon fan
ranging from ~730-130ka. This landform was dated using paleomagnetism and
BTy ages of inner lamina of pendants (Reheis, 1988). Other similar surfaces in the
region are the Q2 surfaces of the lower Colorado River. These surfaces range in age
from 730-130ka and have normal polarity and age constrains based on K/A ages of a
basalt flow in Q2 alluvium and B0Th/A¥y ages of carbonate pendants (Bull, 1991).

Q3 Landforms

Q3 landforms are inset fan remnants located stratigraphically below Q1 and Q2
landforms and considerably higher than Q4 and Q5 landforms. These surfaces contain no
petrocalcic horizons and have no desert pavement development. Bar and swale
topography is present, yet poorly preserved, suggesting leveling of the surface consistent
with initial stages of carbonate development (McFadden et al,, 1987). On the Q3p
surface, 100% of clasts were carbonate in lithology. Conversely, surface clasts of the
Q3y landform were 65% volcanic. Av horizons are not present and the profiles reach a

maximum stage II carbonate development at 100 cm depth in the Q3p Mystery profile
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and 68 cm depth in Q3y Last profile. Texture varies between sandy loam and loamy

sand throughout both profiles showing no significant accumulation of ¢lays in the fine
grained material. Visual accumulation of silica was not seen in the Q3p Mystery profile
but are present as faint patches on the undersides of gravel in the Q3y Last profile. In
addition, durinodes were found in the 68-100 cm horizon of Q3y Last profile, The
presence of durinodes and faint patches of silica in this profile contrasted with the lack of
them in Q3p Mystery supports the hypothesis that silica accumulation in the volcanic
material is greater than in the dolomite material because of its availability to be taken into
solution and reprecipitated. Pendant thicknesses average 2.7 mm for Q3p Mystery and
1.5 mm for the two pendants measured from Q3v Last profile. These measurements are
significantly less than the older Q1 and Q2 averages suggesting pendant thickness
increases with age.

EC and pH values for Q3p Mystery profile show an increased salinity in the A (upper)
and Bk4 (lower) horizons. Corresponding pH values are 8.15 for the A and 8.21 for Bk4,
Both pH readings are the lowest of those recorded in the profile. Again, increased EC and
decreased pH values may be explained by the presence of sulfate minerals. Salts
accumulated in the wpper (A) horizon could be a product of Holocene eolian material
accumulated at the surface. Salt accumulations present deeper in the profile could result
from increased wetting depths during the Pleistocene (Harden et al,, 1991). Q3v Last
readings show highest EC values in the top horizons (A-481.5, Bk1-409.3) similar to
Q3p. pH values are difficult to interpret because they range from 6.6 to 7.23,
considerably lower than the readings of any other horizons in this study, pH and EC

analyses for this profile were conducted at a later date than the other profiles analyzed in



the study. Factors such as distilled water pH and instrument error could be a factor in 1

these unique readings. However, the upper horizon EC readings of 481.5us/cm and
409.3us/cm suggest increased salt accumulations when compared with the lower horizons
of the profile consistent with Holocene eolian input,

The soils associated with Q3p landforms are Aridisols that also have a calcic horizon
with an upper boundary within 100 cm of the surface and do not have a petrocalcic
horizon, These soils also do not have aquic conditions, natric horizons, xeric or ustic
moisture regimes, argillic or a significant caleic horizon above, shallow depth, or xeric
and ustic soil moisture regimes. A qualitative taxononomic classification of Typic
Haplocalcid is given to the soil of the Q3p Mystery profile. Soils associated with the Q3y
landforms are similar in carbonate and other soil development factors to the Q3y
landform soils. However, the presence of durinodes found at the 68-100 cm horizon
places this soil qualitatively into the classification of Durinodic Haplocalcid for the Q3v
soils. These landforms are interpreted to be Late Pleistocene in age consistent with those
of the 12-2ka Q3 deposits of the lower Colorado River region and 15-10ka Surface 3
deposits of the Kyle Canyon fan (Sowers et al. 1988; Bull, 1991). In Kyle Canyon fan,
Surface 3 carbonate development reaches a stage II at 61 cm depth similar to the stage II
depths of the Q3p Mystery profile. The lower Colorado River region Q3 landforms were
dated using desert varnish developrent and '*C of plant fossils (Bull, 1991). Surface 3
of Kyle Canyon fan was dated using '*C and uranium-series analyses of soil pendants

(Sowers et al. 1988).
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Q4 Landforms 8

Q4 landforms are inset fan remnants located significantly below the Q1-Q3 landforms
and approximately 1 meter above the Q5 active drainage. There is no desert pavement or
desert varnish development and bar and swale topography is well preserved. Carbonate
development is limited to stage I in both Q4p, Shovel and Q4vy Glass profiles. No visual
accumulation of silica is apparent in Q4p Shovel but Q4v Glass displays distinct
accumulations in all horizons excluding A and Bw. Durinodes are present in the §9-122
cm horizon of Q4y Glass. Silica accumulation in the volcanic material and not the
dolomite parent material again implies that silica is more readily available in the volcanic
parent material. Pendant thickness recorded from one pendant from the Q4y Glass
profile was 4 mm. This sample was preferentially selected because of its size and may not
be a true representative of the average pendant thicknesses of this profile.

The fine grained fraction of soil has textures that vary from sandy loam to loamy sand
in the Q45 Shovel profile and loamy sand to sandy loam and sand in the Q4 Glass
profile (Figures 3.20-3.21). Again, no distinct development of clay is seen in either
profile probably due to the lack of time needed for the development of significant argillic
horizons. Also, calcite crystal growth from carbonate accumulation may be inhibiting the
development of clay in these profiles. pH and EC values for Q4p Shovel show a high EC
reading of 972.4 ps/cm in the Av horizon correlating with a low 7.91 pH. Q4y Glass
profile exhibits the same pattern with an EC reading of 1103 ps/cm and pH of 8.01 in the
A horizon. These high salinity and low pH readings of the surface horizons suggest an
accumulation of sulfate salts (i.e. gypsum) that could be a product of Holocene aridity

and transport from nearby pluvial sources.
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Soils assoctated with the Q4 Shovel profile are similar to those of Q4y but do not
have the calcic horizon development seen in Q3 and older soils so they are qualitatively
classified as Typic Haplocalcids. Q4y Glass profile contains durinodes in the 89-122 em
horizon and is qualitatively classified as Durinodic Haplocalcid. Soil development and
surface characteristics of the Q4 landforms suggest an Early Holocene age for these
deposits. Similar deposits from the lower Colorado River region are interpreted to be 4
ka based on light desert vamish. The Kyle Canyon deposits were not dated. The
presence of stage I coatings in the Q4 landforms suggests an age of approximately ~8 ka
correlated to similar carbonate development in the Las Cruces, NM area (Gile, et, al.
1966). Precipitation differences between the study area and Las Cruces would suggest a
slightly older age estimate for the Q4 soils in the study area. Less precipitation in the
study area would decrease the rate of calcium carbonate accumulation in the soils, Thus,
older soils of the Pahranagat Valley may contain carbonate accumulations equivalent to
younger soils of southern New Mexico (Machette, 1985).

Q3 Landforms

The Q5 landforms of the study are the modern drainages located 1 meter below Q4
surfaces. They have active bar and swale topography and contain no vegetation. They
are frequently subjected to flowing water in rainstorm events. One soil profile (Q5y
Wash) was sampled and analyzed and yielded four poorly developed horizons of sand.
No carbonate or silica accumulations are present. EC measurements decrease with depth
from 510.4 pus/cm to 302.6 us/cm. pH values range from 8.2 to 8.6 with a value of 9.0 in
the C3 horizon. QSv Wash profile is an Entisol (little soil development) with an aridic

moisture regime that does not fit into any other subgroup and therefore is classified as
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Typic Torriorthents. This classification is believed to be the same for Q5p landforms. 20

The Q5 landforms are modern in age.

Q1-Q5 landforms show increased elevation with age, Q1 is highest and oldest
followed by Q2, Q3, Q4 and the modern, active Q5 channels occur at the lowest
topographic position. Landform surfaces display an increase in weathering through time
with both limestone/dolomite and volcanic parent material. However, volcanic material
appears to weather faster, This interpretation is supported by the abundance of volcanic
clasts weathered to 2mm and smaller grains. In contrast, calcareous matetial remains as
larger clasts on the surface of both Q1v and Q2y landforms. Disappearance of bar and
swale topography with increased age and increased desert pavement development with a
corresponding increase in Av thicknesses supports McFadden et al’s (1987) interpretation
of desert pavement formation whereby eolian input uplifts gravel to smooth the
microtopography associated with bar and swale. The similarity in Av thickness between
Q1 and Q2 indicates that pavement development significantly contributes to the
formation of the Av (McFadden et. al. 1987). Q3-Q5 landforms have no desert pavement
and thus do not contain significant Av’s.

Soil development increases with increasing age with stage [V carbonate development
in the Q1 and Q2 landforms. A slight difference in development between soils of the
same age with different lithologies (Q2p Merkler and Q2yv BLM) could be the product of
increased calcium carbonate in the calcareous lithologies (Sowers et. al. 1988; Levine and
Hendricks, 1990; Rabenhorst and Wilding 1986). Although not as readily seen in the
younger landforms, this effect may become more important with increasing age. Perhaps

the differences between Q2p Merkler and Q2y BLM are from local variations of the
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surfaces with micro-topography or by natural variations within the soil profile. Soil

pendants in the study area appear to increase in thickness with increasing age which is
consistent with observations from other studies (Pierce and Scott, 1982; Pierce, 1985;
Chadwick et. al. 1988; Bull and Vincent, 1994; Treadwell-Steitz and McFadden, 2000).
This may result from the selection process and difficulty of measuring pendants without
cutting them. Q3 and Q4 pendants are significantly thinner than those of Q1 and Q2
pendants. Figure 5.3 shows the overall characteristics and soil development on each

surface.

Pendant Genesis

Soil pendants found in the Quaternary landforms of northern Pahranagat Valley
pravide a unique look into the characteristics and processes of their formation. Pendants
have become the focus of many recent studies to determine absolute ages of soil profile
development related to landform stability. The current, accepted method of pendant
genesis is similar to the formation of stalactites, in which successive precipitation events
occur at the base of the pendant forming lamina in successive ages from youngest (most
recent precipitates at or near pendant terminus) to oldest towards the interior of the
pendant (Figures 5.4 and 5.5) (Pierce and Scott, 1982; Pierce, 1985; Chadwick et al.
1988; Sowers et al. 1988; Amundson et al. 1989; McFadden et al. 1991; Reheis et al.
1992; Amundson et al. 1994; Courtey et al. 1994; Birkeland, 1999; Treadwell-Steitz and
McFadden, 2000; Wang and Anderson, 1998; Ludwig and Paces, 2002). These lamina
form as the result of multiple episodes of precipitation in which successive episodes of

accumulation occur at the pendant terminus. All studies that have been conducted on soil
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Mixed Stalactite-Style and
Clast-Contact Formation

I1a.

Stalactite-Style Formation

[a.

Ib. IIb.

Meteoric
Water

Ic. Ilc.

Oldest

Youngest

[1d.

Youngest —— ¥

Also possible youngest w3

Figure 5.4, Stalactite-style formation process commonly accepted as pendant
formation (la-Ic), and the proposed formation style where material is
precipitated out at the clast-pendant contact. Note that both styles of
development can co-occur. A chart describing both styles of formation is given
in figure 5.3.
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L. Stalactite-Style Formation
Stages

A. Clean, newly deposited clast.

B. No void space between clast
and pendant, Initial accumu-
lation forms on bottom of
clast.

C. Accumulation continues in a
stalagtite-style deposition with
youngest lamilla at bottom of
pendant.

II. Mixed Stalactite-Style and
Clast-Contact Formation Stages

A.

B.

. Void space between clast and

Clean, newly deposited clast,

Initial accumulation forms on
bottom of clast.

pendant allows meteoric

water to precipitate CaCO, and
incorporate clast grains into

the pendant. Younger deposits
are now at clast/pendant contact.

Precipitation can continue

as well as laminar formation.
Ages vary throughout
pendant.

Figure 5.5. Description of Stalactite-style and Clast-contact formation processes for soil

pendants of the study area,



pendants have assumed that pendants form in this manner {Chadwick et. al. 1988; 125

Sowers et. al. 1988; Amundson et. al., 1989; Duclous and Laouina, 1989; Blank and
Fosberg, 1990; Levine and Hendricks, 1990; Munk and Southard, 1993; Vincent et. al.
1994; Treadwell-Steitz and McFadden, 2000). However, this study has found that only a
few pendants of the Pahranagat Valley exhibit this style of development.

Macroscopic and microscopic techniques reveal that pendants of the Pahranagat
Valley are similar to those observed by Treadwell-Steitz and McFadden (2000) but
dissimilar to other calcic pendants that are discussed in the literature. Most studies
conducted on pendants describe them as being composed only of laminar calcium
carbonate with minor amounts of other materials (Gile et al. 1966; Chadwick et al. 1989).
Similarities to pendants observed by Treadwell-Steitz and McFadden (2000) include the
presence of clay, abundant silicate grains and the absence of clearly laminated structure.
They also found disrupted lamina attributed to a void located at the parent-clast contact.
Pahranagat pendants are composed primarily of calcium carbonate but also contain
significant amounts of other materials. Many of these layers contain high amounts of
grains included in the pendant matrix that were originally pieces of the parent clast or
detrital grains. Pendants that were point counted have grain inclusions that range from 0-
53%. In thin section, some pendants contain large, rounded grains (up to 2mm in size)
that were incorporated from the soil matrix as well as apparent fragments of the parent
clast incorporated near the clast pendant contact (Figure 4.1).

Only 5 of the 25 samples analyzed had evidence for the previously inferred method of
stalactite-style formation. The remaining 20 samples had evidence contradicting the

accepted method of pendant genesis. Many features found in the pendants that were
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exarmined in this study provide evidence for a new formation process for pendants of

the study area (Figure 5.6). These features include dissolution and precipitation into a
void at the clast-pendant contact, a clast “break-up” zone, inclusions of parent clast
material in the pendant, and the formation of sepiolite and peliet-like features (Figures
4.3,4.7,4.8, 4.10-4.44). Sixty-eight percent of the total samples observed had clast-
pendant contact voids. Twenty-eight percent had parent clast fragments included into the
carbonate matrix suggesting precipitation of carbonate either into fractures of the parent
clast or a significant amount of precipitates that pushed grains of the parent clast down
into the pendant. The position of these fragments within the pendant indicate that the void
at the clast/pendant contact has remained open through time allowing successive
generations of precipitation of calcium carbonate, silica and silicate clays (Figures 5.4
and 5.5). The youngest material is now at the pendant-clast contact. This process will
continue as long as there 13 a void at the contact where water can infiltrate and precipitate
minerals. Continued precipitation at the void or at the pendant terminus causes ages to be
mixed throughout the pendant. It is likely that pendants displaying this formation process
contain the oldest lamina toward the middle of the pendants.

The proposed genesis through time for pendants in this study is detailed and described
as follows. (1) A void develops at the clast pendant contact and remains open to soil
water through time (Figures 4.11, 4.23, 4.29, 4.33) (2) Evaporation within this void leads
to the supersaturation and eventual precipitation of materials such as carbonate, salts
other than carbonate, silica or silicate clays. However, the precipitation of materials
within this void does not result in the void closing. The contact between the pendant and

parent clast rematns open to soil fluids. This appears to be a physical process possibly
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caused by different degrees of thermal expansion and or freeze-thaw processes

between the soil pendant and the parent clast. Thus, each successive precipitation event
results in the pendant growing from the clast contact outward (Figures 4.11, 4.23, 4.33).
(3) In some cases the pendant-clast contact contains a break-up zone where crystalline or
amorphous minerals can infiltrate into microfractures within the clast, precipitate, and
displace fragments of the parent clast down into the pendant (Figures 4.34-4.40). (4) The
precipitated material displaces parent clast fragments downward into the pendant as
continued precipitation of materials continues in the void through time. (5) The process
of precipitation in the void can alternate or occur simultaneously with precipitation at the
pendant terminus. At the terminus, detrital grains within the surrounding soil can become
incorporated into the pendant as well (Figures 4.17 and 4.29). (6) Dissolution of
incorporated grains occurs from either the force of carbonate crystallization or by
undersaturation of ions in the soil solution (Figures 4.41-4.44). (7) The products from the
dissolution of grains contribute to the pore water chemistry which may cause repeated
dissolution and/or reprecipitation of secondary products including the mineral sepiolite.
(8) Pore water chemistry can change through time so that alternating episodes of
dissolution and precipitation could occur affecting the presence and relationship of
different pendant constituents. (9) The formation of sepiolite either as the product of
dissolution around grains or by neoformation within the pendant occurs. (10) Rounded
forms of sepiolite develop and form pellet-like features in the carbonate matrix (Figures
4.25-4.27). The resulting morphology of pendants is similar to that of petrocalcic

horizons possibly up to stage V. The developmental process described above was



formulated from specific features seen in pendants of the study area. They are
discussed below.

The primary mineral present in soil pendants of the study area is micro-sparite masses
of calcium carbonate (Figures 4.10 and 4.11). Some calcite crystal structure is seen as
lenticular crystals radiating as lamina, however these are rare (Figure 4.11). Pendants
consisting wholly of laminar calcium carbonate were not seen in this study. Instead,
pendants are heterogeneous, composed of high amounts of magnesivm calcites, silica,
silicate clays and incorporated detrital grains and grains derived from the parent clast.
(Carbonate and other materials can be precipitated at the pendant terminus or inside voids
within the pendant itself. Voids at the pendant-clast contact contain evidence for the
dissolution and reprecipitation of these minerals.

Voids at clast pendant contact

Sixty-eight percent of the pendants examined in this study had linear voids at the clast
pendant contact. Similar voids have been found in other studies. Courtey et. al. (1994)
noticed a “thin fissure” at the clast-pendant contact that was interpreted to have no affect
on pendant formation. Treadwell-Steitz and McFadden (2000) also noticed an area where
the pendant had “separated” from the clast and into which calcite had precipitated.
However, these studies report that this clast-pendant contact feature is not a significant
player in pendant development. Voids found in samples from the study area can cover up

to 80-90% of the length of the contact (viewed in thin section) and range in vertical

thickness from 10um to 400um. Four of the samples with voids had precipitates of

calcium carbonate, silica and/for silicate clays within these voids.
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Linear voids at the clast-pendant contact are present in pendants from all landforms
sampled: 67% of pendants sampled from QI, 43% of pendants from Q2 and 100% of
pendants from Q3 and Q4 profiles (Figure 5.6). Because they are found in all ages of
landforms, these veoid features do not appear to be time dependant features. Their
presence is necessary for the clast-pendant contact growth throughout pendant
development. Since they are found in all ages, this supports the newly proposed
formation process.

Void development with different lithologies

Of the 17 pendants that had voids at the parent-clast contact, 41% of the parent clasts
were limestone, 47% were dolomite and 11% were volcanic (Figure 5.7). Only two
volcanic parent clasts were analyzed. The small percentage of volcanic parent clasts with
voids reflects this sampling bias. However, it is important to note that both volcanic
samples had voids at the contact. Treadwell-Steitz and McFadden (2000) reported voids
on metamorphic clasts, therefore voids have been found to occur in several major
lithologies. To fully understand whether lithology affects void formation, more
observations need to be made on pendants in other lithologies.

Clasts of dolomite lithologies show increased weathering and separation of grains near
the clast-pendant contact (Figure 5.7). The development and stability through time of
linear voids at the clast-pendant contact might be attributed to differences in thermal
expansion characteristics between the pedogenic carbonate material of the pendant and
the lithified dolomite or volcanic lithology of the parent clast. Treadwell-Steitz and

McFadden (2000} suggested that weathering of the biotite in metamorphic clasts
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Clast-contact void*®

Clast Lithologies

Dolomite

Limestone

Volcanic

Figure 5.7.Percentage of dolomite, limestone and volcanic parent clasts containing voids at
pendant-clast contact, grain displacement, clast break-up and clast inclusions. *Percentages
out of 17 occurrences, “Percentages out of 6 occurrences, “Percentages out of 13 occurrences,
*Percentages out of 7 occurrences
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contributes to the separation between the clast and pendant contact. Weathering is

attributed to cycles of wetting and drying (Treadwell-Steitz and McFadden, 2000).
Physical weathering of the clast prior to deposition can also a key factor in the
development of pendants. The loose grains in the clast break-up zone provide areas that
calcite can precipitate and grow forcing grains further apart and into the carbonate matrix
(see discussion on ‘break up zone’ below). However, this clast break up zone only helps
to explain how fragments of the clast are found within the pendant. Another explanation
is needed to understand why this clast/pendant void remains open despite precipitation of
carbonate and other compounds. A possible explanation is the difference in thermal
expansion between pedogenic minerals in pendants and the more dense parent clasts, A
slight difference in thermal expansion between the pendant and the clast could cause the
voids seen in this study as well as allow those voids to remain open through time. More
work should be conducted on the differences in thermal expansion between pedogenic
carbonate and lithified materials and the importance of the clast break-up zone to fully
understand the causes of the void space at the clast-pendant contact,

Clast inclusions and the “break-up” zone

The presence of grains and large fragments of parent clast that have been included into
the carbonate matrix of the pendant suggest that clast-pendant voids are an important
mechanism for pendant formation. Material derived from the parent clast is commonly
associated with a zone located at the outermost edges of the parent clast that is breaking
into smaller pieces. This zone is referred to as the “zone of break-up” and is observed in
52% of the samples (Figure 4.34). This zone is marked by a decrease in grain size toward

the clast edges. A hypothesis for the formation of this zone is that it initially begins as a



: . 133
zone of weakened crystals or grains at the exterior edges of the parent-clast. This

weathering is possibly initiated by collision with other cobbles and grains during
transport before deposition. Microfractures caused by this weathering allow water to
infiltrate, precipitate carbonate, and force apart fragments of the parent clasts. However,
some process, perhaps thermal expansion, is needed to keep the void open at this contact
as it is seen to be a dominant feature in all ages of pendants in this study. Seven out of 13
samples that exhibited a clast break-up zone also had pendants with grains and pieces of
parent clast that were incorporated into the pendants indicating previous break-up and
incorporation. Also, 9 out of 25 samples containing clast break-up zones also contained
voids. For example, weakened dolomite material at the clast-pendant contact allows
crystalline calcite to grow and perhaps contribute to the separation and displacement of
grains by force of crystallization (Weyl, 1959; Winkler and Singer, 1972; Watts, 1978,
Allen, 1985; Maliva and Siever, 1988; Monger et al. 1991). Many parent clast inclusions
can be seen incorporated well into the heart of the pendant (Figures 4.34-4.40). Grains
that are incorporated from the parent clast undergo displacement with carbonate
crystallization forcing grains apart and down into the pendant. Evidence for this is the
presence of large chunks of parent material that would fit together similar to pieces in a
puzzle. XRD data shows the presence of dolomite and/or quartz material in 8 out of the 8
samples analyzed (Figure 4.2). This material is probably from detrital (especially quartz)
and parent clast (most likely dolomites) grains that were incorporated from either the
“plucking” of grains from the parent clast or included from the soil matrix in the lamina

during stalactite-style formation.
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It 1s important to note that pendants could appear to have a stalactite style

formation process and show no evidence for growth at the clast-contact void. Clast
inclusions are a positive sign that this process is occurring, however, with parent clasts of
lithologies other than dolomite, it may be difficult to discern.

Clast inclusions and the “break-up” zone with age

The presence of a clast break-up zone in all ages (Figure 5.6) supports the hypothesis
that the clast-pendant void remains open through time and precipitation within
microfractures in the parent ¢last result in fragments being broken off of the clast and
incorporated into the pendant . This data suggests that it occurs throughout the
development of the pendant and is seemingly not dependent upon time. Clast inclusions
are only seen in the Q1 and Q2 soils implying that development of these features may
depend upon age. The amount of time that it would take to include significant portions of
the parent clast into the heart of the pendants may be on the order of 100,000+ years.

Clast inclusions and the “break-up” zone with different lithologies

Clast “break-up” zones are seen in predominantly dolomite parent-clasts (70%)
(Figure 5.7). Thirty-one percent of the recorded break-up zones were in limestone
material. The two samples with volcanic parent clasts did not contain a break-up zone but
did have a clast-pendant contact void. This evidence suggests that the crystalline material
of dolomite is more apt to break apart and form the break-up zone, However, not enough
samples with lithologies other than dolomite were observed to make a definite
interpretation. In this study dolomite grains are the most prevalent lithology found
incorporated in the pendant matrix. Seventy-one percent of pendants with clast

inclusions have dolomite parent clasts. The remaining 29% are limestone in lithology.
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This study was unable to assess the importance of voleanic parent clasts due to the low

number of samples of this lithology.

Grain displacement

Grains incorporated into the carbonate matrix either by detrital processes or from the
zone of break-up can appear to undergo displacement by force of crystallization (Figures
4.35-4.37 and 4.39) (Bachman and Machette, 1977, Allen, 1985; Machette, 1985; Reheis,
1988; Monger et. al. 1991). Grain displacement is a physical process that does not
dissolve the material involved. The portions of material that are incorporated are
separated by calcium carbonate and would readily fit together similar to pieces of a
puzzle. The edges of these displaced grains are sharp and may appear to have not
undergone dissolution. Grain displacement is seen in 20% of the pendants sampled.

Grain displacement with age

Grain displacement is seen only in profiles of the Q1 and Q2 landforms suggesting
that this process occurs in pendants Mid-Pleistocene or older in age (Figure 5.6). This is
consistent with the findings of Bachman and Machette (1977) who found grains to be
dispersed thronghout the carbonate matrix of stage IV through VI petrocalcic horizons.
Monger et al. (1991) described displaced framework grains in the stage IV laminar zone
of the lower La Mesa surface in southern New Mexico. They also attribute a layer of
framework grains incorporated into the lamina of the stage IV carbonate to an
exclusionary process where soil particles are pushed ahead of a micrite crystallization

front.
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Grain displacement tends to be a greater factor in pendants with parent clasts of
dolomite lithologies (compared to limestones) (Figure 5.7). Eighty percent of pendants
that had evidence for displacement had dolomite parent clasts and only 10% (1 out of 5)
were limestone. Only two voleanic clasts were studied and may not provide a true look at
the relationship between grain displacement and volcanic lithologies. Inclusions of
detrital and parent material grains in the pendant that are observed to undergo
displacement are also found o undergo dissolution.

Grain dissolution

Grain dissolution occurs in the Q1-Q3 landforms and is represented by (1) grains that
are surrounded by a large void with matching angular shape where the grain appears to
have been completely or partially dissolved (Figures 4.41-4.44), (2) grains that are
surrounded by amorphous silica exhibiting an indistinet boundary between grain and
surrounding material (Figures 4.13 and 4.33) and/or (3) grains that are etched (Figures
4.41-4.32). Grain dissolution is probably the result of pressure applied to grain edges
from calcite crystal growth (Watts, 1978; Reheis, 1988; Maliva and Siever, 1988; Levine
and Hendricks, 1990; Allen, 1985). Grain dissolution is a common characteristic of
petrocalcic horizons (stage III and higher).

Large, angular voids are present in 3 of the 25 samples. These features are most likely
the result of partial or complete dissolution of grains. Monger et al. (1991) and Allen
(1985) both described displaced and partially dissolved grains in petrocalcic horizons.
These voids were also commonly associated with partial dissolution and even

replacement of quartz and silicate grains (Allen, 1985). Halitim et al. (1981) also



described large angular voids surrounding small dissolved quartz grains in calcareons 37

accumujations from the high steppes in Algeria,

In this study, amorphous coatings of silica are also observed surrounding grains
(Figures 4.13 and 4.33). The dissolution of silica and other silicate minerals can
contribute large amounts of silica into the soil solution that eventually precipitates as
amorphous silica or silicate clays. Wang et al. (1994) attributes the dissolution of silicate
grains to the formation of sepiolite. The incorporation of dissolved silica into the sepiolite
crystal structure causes the surrounding soil solution to become undersaturated in silica.
Wang et al. (1994) state that this process leads to enhanced dissolution of silica-
containing detrital grains in the petrocalcic horizon. The minerals dissolve and release
cations of Si, K, Na, Ca, Al dependant upon the grain mineralogy (Singer, 1981;
Boettinger and Southard, 1990). Once in solution, the cations may be flushed through the
profile, taken up by plants or join with other cations to form amorphous silica or silicate
clays.

Grain dissolution with age

Grain dissolution occurs in the Q1-Q3 landform soils. However, no evidence for
dissolution is seen in the Qly Silica and Q3v Last profiles possibly due to the small
number of samples observed. Grain dissolution 1s a time dependant process relating to
stage III and greater soils. Other factors, including the formation of silicate clays in a
petrocalcic horizon (Wang et al. 1994) or a well developed pendant can control the

armount of dissclution in a pendant or petrocalcic horizon.
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Grain dissolution with change in lithology

Grains of dolomite, quartz and feldspar were all observed to be dissolved in the
carbonate mattix of pendants. No one type of grain was observed to dissolve more
readily than the others. However, dependent upon the specific chemistries of soil pore
solutions, it is possible that specific lithologies could be more readily dissolved

Amorphous silica in pendants

Amorphous silica was found with XRD analyses in two of the samples from Qlp
Backhoe and Q2y BLM profiles. Silica was also observed encompassing grains and as
lamina of pendants. Silica was observed in 8 out of 25 samples. Other studies have
reported and reviewed the occurrence of amorphous silica in arid and semi-arid soils
(Jones and Uehara, 1973; Halitim et al. 1981; Allen, 1985; Chadwick et al. 1989; Drees
et al. 1989; Boettinger and Southard, 1990; Harden et al. 1991; Eghbal and Southard,
1993; Birkeland, 1999)

Amorphous silica in pendants with age

EDS analyses show amorphous silica occurring in pendants of Q1-Q4 profiles (Figure
4.2). Macroscopic observations also show that silica is present on the undersides of clasts
in all landforms except for QS5 landforms (Figure 4.4). There is no evidence to suggest
that only older or younger surfaces contain amorphous silica. Reheis (1988) suggests that
the solubility of aluminosilicate and detrital silicate grains increases with increasing
aridity where silica and carbonate would precipitate out simultaneously. In addition, the
solubility of silica increases with increasing pH. This is also indicated in models
produced by Wang et al. (1994) where an increase in aridity is predicted to increase the

concentration of magnesium in soil pore water. This increase in dissolved magnesium



could drive the chemical precipitation of sepiolite. As explained previously, this would13
deplete soil pore waters in dissolved silica that could enhance silica dissolution. Increased
evaporation would concentrate magnesium in the profile. This magnesium would “take
up” free silica (the product of grain dissolution) and combine to form sepiolite. As
sepiolite formation increases, an undersaturation of silica forces more silica to dissolve
and be added to the soil solution. Amorphous silica precipitating without sepiolite
involves complicated chemistries associated with the over and undersaturation of ions in
the soil solution, These chemical processes all take place with respect to the amount of
magnesium in the soil solution. If magnesium is not available to capture silica, then
sepiolite will not develop. It is possible that the silica seen in the samples could be an
intermediate stage before the formation of sepiolite. Perhaps local variations in silica
concentration allows amorphous silica to precipitate where in other sections it must be
used to make sepiolite.

Amorphous silica in pendants with changes in lithology

No amorphous silica was identified with EDS in Q1 and Q2p profiles and in only one
sample of Q3p. However, silica was found in pendants from Qly, Q2y and Q4y,
implying that pendants derived from volcanic materials have more access to soluble silica
or quartz for dissolution and reprecipitation. This evidence supports the interpretation
that silica accumulation in soils is heavily controlled by parent material composition
(Chadwick et al. 1989; Harden et al. 1991; Reheis et al. 1995). Additionally, the
contribution of volcanic ash during the Quaternary could play a significant roll in the
production of silica in Holocene aged soils. For example, ash falls such as the one
produced by Mt. Mazama approximately 6900 years ago has contributed to the Holocene

development of silicious soils in the southwest (Chadwick et al. 1989). The study area is
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located on the southernmost border of the area where Mazama ash fell. An increase in

magnesium from the atmosphere or parent material could cause significant dissolution of
quartz then subsequent precipitation as sepiolite (Halitir et al. 1983; Wang, et al. 1994 ),
In the soils of the study area, magnesium is believed to be available from the dissolution
of dolomite parent material. The oversaturation of magnesium in these soils contributes
to processes similar to those expressed by Wang et al. (1994) and Halitim et al. (1983)
where the availability of magnesium combined with silica causes sepiolite to precipitate.

Sepiolite in carbonate pendants

Sepiolite has been only moderately evaluated in pedogenic environments, far less than
palygorskite (Rogers et al. 1956; Bachmann and Machette, 1977; Bigham, 1980; Hay and
Wiggens, 1980; Velde, 1985). However, similar developmental processes are proposed
for the occurrence of both of these minerals in soils. Both palygorskite and sepiolite may
form in identical pedogenic environments. The prime difference between the two is the
availability of aluminum. In soils with high magnesium, silica and aluminum, the
formation of palygorskite is preferred over sepiolite (Abtahi, 1980; Jones, 1983; Singer,
1984; Guzel and Wilson, 1985; Ducloux and Laouina, 1989; Monger and Daugherty,
1991). In environments where there is little or no aluminum available, sepiolite is
favored to form (Abtahi, 1980; Hay and Wiggins, 1980; Jones, 1983). In the remaining
discussion, the formation of sepiolite and palygorskite is assumed to be similar with
differences due only to soil water chemistry.

Sepiolite can be found in several environments including arid soils. In marine
environments, sepiolite forms by precipitation from solution or by transformation.

Lacustrine sepiolite forms in arid and serni-arid regions in aquatic conditions containing
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high magnesium and silica. Sepiolite can also form by the replacement of minerals in

rocks by the other minerals. The marine, lacustrine and rock-replacement forms of
sepiolite can be ruled out for the soils of the study area because they are formed on
alluvial sediments far from these environments.

Sepiolite is the dominant clay present in pendants of the Q1-Q3 landforms of the study
area. Pedogenic sepiolite found in these soils can be associated with with either: (1)
rising groundwater or hydrothermal alterations (Singer, 1989), (2) inheritance from
marine parent material containing these clays (Singer, 1989), (3) translocation of
materials from brought in from eolian processes from playas (Guzel and Wilson, 1983;
Jones, 1983), or (4) neoformation within the pendant or within the petrocalcic horizon as
a product of available ions from dissolution and reprecipitation of grains or other
magnesiam and silica containing materials {Vanden Heuvel, 1966; Abtahi, 1980; Hay
and Wiggins, 1980; Monger and Daugherty, 1991).

Carbonate micromorphology and morphological characteristics of the soils of the study
area indicate that groundwater or hydrothermal alteration has not contributed to the
development of sepiolite in these profiles. Sepiolite as a marine product is also not
considered becanse XRD results do not report sepiolite or any other clays in the dolomite
clasts of the soils. However, their influence cannot be completely excluded because only
three clasts wete analyzed and they may not represent the overall compositions of all
dolomites in the profiles.

Translocation of sepiolite into the soils of the study area could be plausible because
(1) nearby sources of sepiolite deposits that may have blown in, (2) the majority of

sepiolite in the study area appears to have massive form (Figure 4.17), and (3) the



e . _ 142
occurrence of sepiolite in older landforms could be attributed to past wetter climates

that would be conducive to the formation of argillic horizons formed by translocation.
The massive appearance of the sepiolite in the study area may be attributed to the thin
sectioning of samples that would obscure the fibrous nature of this clay. However, this
does not rule out the possible translocation of these clays into the profile. A regionat
source of sepiolite that could support a translocated origin includes deposits recorded by
Papke (1972) who found 4 meter thick deposits of sepiolite in the Amargosa Flat playa of
southern Nevada. Sepiolite blown from this source was noted to be a possible contributor
1o the occurrence of sepiolite found in Nevada Test Site (NTS) soils. Southerly summer
winds crossing Amargosa Flat could carry the sepiolite deposits to the NTS. This process
could also happen in soils of the study area because they are in close proximity (roughly
100km) to the NTS and approximately 250km northeast of the Amargosa deposits.
However, the close proximity of these deposits to the study area cannot explain the
presence of sepiolite found within pendants of this study. Texture analyses reveal no
distinct horizons of ¢lay accumulations suggesting that translocation of these materials
into profile does not occur to form an argillic horizon. Additionally, no sepiclite was
found in pendants younger than Late Pleistocene in age supporting that recent transport
of significant amounts of Amargosa or similar deposits has not occurred during this time.
It is important to note that only pendants were analyzed with the XRD. It is possible that
the fine grained fraction could contain some sepiolite in soils of all ages that were not
observed suggesting that translocation of sepiolite into the profile could have occurred
during the Pleistocene and even up to modern day. However, the sepiolite found within

this study occurs within the pendants and therefore it is extremely unlikely that it
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accumulated there through transiocation. There are no connecting pore spaces within

the soil pendants except for the clast/pendant void. It is more plausible that the sepiolite
found in this study is a result of neoformation. Evidence for neoformation includes
instances where fibrous forms are present that appear to have formed in place. Also, the
necessary ions needed for its formation are available from the magnesium rich parent
material and silica from dissolved grains within the pendant. Monger and Daugherty
(1991) found palygorskite fibers radiating into pore spaces and interpreted their shape
and arrangement to be a product of neoformation. Fibers found parallel to grains and
showing no displacement or disturbance would also provide evidence for neoformation
(Monger and Daugherty, 1991). Five samples of the study area appear to have a fibrous
form in void spaces and radiating perpendicular to grains (Figures 4.23, 4.24) supporting
the hypothesis of neoformation.

High concentrations of silica and magnesium are needed for the formation of sepiolite
in a pedogenic environment. In the study area, these materials can be provided from high
magnesium parent material (dolomite) and silica found in the Tertiary volcanic rocks and
from other silica-rich detrital materials (Jones, 1983; Chadwick et. al. 1989; Harden et. al.
1991; Reheis et. al. 1995). Dissolution of dolomite clasts (cupped limestones} seen in the
profiles could be a source of magnesium needed for sepiolite formation (Jones, 1983;
Singer, 1989). Magnesium input from eolean sources and brought into profile is another
source that could be concentrated in evaporitic environments of soil poor spaces (Jones,
1983; Wang et al., 1994). Free silica is present as the result of dissolution of silicate
grains and volcanic material with high glass content (Chadwick et. al. 1989; Harden et.

al. 1991; Reheis et. al. 1995). The volcanic material that makes up the BLM fan and
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associated surfaces provides ample silicate material that is seen eroded out as £2mm

grains at the surface. Once incorporated into the profile, it is possible that they will
undergo dissolution producing the needed silica in solution for sepiolite formation.
Samples from two horizons of Q4 Glass profile contained 20 and 19% glass in the very
fine fraction and 18 and 17% glass in the fine fraction. These grains are likely a huge
factor in the production of silica in the volcanic dominant soil profiles.

It is important to note the observation of calcium carbonate appearing to be
consumed by sepiolite in some areas of the pendants (Figures 4.18-4.19). These
relationships suggest soil pore waters that are or have been undersaturated with respect to
calcium carbonate, and possibly over saturated with silica and magnesium. This situation
may explain the relationships seen in this study in which sepiolite appears to be replacing
calcite. More research is needed to understand the specific controls and chemical
relationships between the calcium carbonate and sepiolite.

Sepiolite material as bands with carbonate appear to be formed by an “exclusionary
process” where clay is physically forced outward by the growth of calcite crystals (Allen,
1985). The appearance of carbonate being consumed (chemically) by sepiolite is noticed
in 3 of the 25 samples analyzed (Figures 4.15 and 4.16). Most often fibrous clays are
seen being consumed by carbonate in petrocalcic environments, However, those findings
do not support Bachman and Machette’s (1977) proposal that sepiolite is formed in
carbonates of Mid-Pleistocene or older. Instead, sepiolite appearing to consume the
carbonate through its dissolution and the increase in silica and magnesium due to their
oversaturation seems to support these observation. Point counts conducted on the

pendants of the study area reveal an increase in ¢lay concentration with increased time.
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This data is consistent with the idea that sepiolite forms in the petrocalcic horizons

with time (Figure 5.8). This data also supports the newly proposed pendant genesis
where increased calcium carbonate causes pressure dissolution. This is the key to
sepiolite precipitation. Overall, if the clay was being consumed through time, a decrease
in accumulation with age should be noticed. Perhaps with additional time and a change
in the chemical environment, sepiolite will be consumed by calcium carbonate or other
minerals.

Sepiolite in pendants with age

Sepiolite is found in pendants of the Q1-Q3 landforms. Sepiolite was also identified
with XRD in the Q1p Backhoe and Q2y BLM profiles. The presence of sepiolite clay in
these landforms is consistent with studies conducted by Bachman and Machette (1977)
and Vanden Heuvel (1966) where sepiolite and palygorskite are shown to form in
petrocalcic horizons of Middle Pleistocene or older age. Q3p Mystery profile is an
exception because development of the profile is determined to be only Late Pleistocene in
age. An increase of sepiolite formation in older soils with little formation in younger
soils supports the interpretation of pendant genesis in which sepiolite forms in petrocalcic
horizons of the study area (Figure 5.8).

Sepiolite in pendants with changes in lithology

Sepiolite is found in profiles of both dolomite and volcanic parent materials. Q3v Last
is the only soil profile from Q1-Q3 landforms (Pleistocene in age) where sepiolite is not
found. The amount of sepiolite material was not determined in this study. However,
point counts combining all clays and silica give an idea of the amount of these types of

material seen in pendants of the study area. Understanding all effects of parent lithology
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in soil pendants is not possible in this study. However, it is likely that parent material

may play a large role in sepiolite development. Wang et al. (1994) noted that more silica
compared to magnesium is needed for the neoformation of sepiolite, If the abundance of
dolomite within the study area soils provides significant magnesium, then the limiting

factor in the genesis of sepiolite would be silica.

Pendants as an Environment for Pellet Formation

Sepiolite in pendants of the study area appears to play an important role in the
development of pelletal material in the Q1 and Q2 landforms. In the pendants, sepiolite
appears to preferentially “roll up” and encompass grains and pieces of carbonate and
other pendant material as seen in soils studied by Hay and Wiggins (1980). The
appearance of sepiolite surrounding grains and other rounded materials could be
produced by the following mechanisms: (1) coatings of sepiolite deposited around the
grains before incorporation into the pendant, (2) dissolution of grains within the pendant
and precipitation of sepiolite as a result of pressure from calcium carbonate
crystallization and/or (3) translocation or neoformation of sepiolite to encompass grains
already existing in the pendant. Micromorphic identification of pellet-like features as
well as ovoid shaped sepiolite in Q1-Q3 pendants provides evidence for the inital
formation of pellets in pendants of the Pahranagat Valley. Sepiolite has been shown in
previous studies to preferentially encompass grains and form round masses (Hay and
Wiggens, 1980). Hay and Wiggens (1980) found pellets in fractures of petrocalcic
horizons and as inclusions within lamina at the bottoms of pendants. Grains and

carbonate surrounded by sepiolite, as well as circular masses of sepiolite found in the



carbonate matrix of pendants, are proposed to be the initial formation stages of pellets.
A proposed development for peliets in soils of the study area is as follows. (1) Detrital or
clast grains incorporated into the pendant undergo pressure dissolution to form silica
and/or the grain is surrounded by sepiolite with no dissoluion processes occuring (either
by translocation or preferential surrounding of sepiolite to grains). (2) For those grains
that have undergone partial or complete dissolution, silica released through dissolution
combines with magnesium available from the dominant dolomite material to form the
mineral sepiolite. (3) Increased precipitation with climate change and/ot increased
erosion increasing the depth of wetting, dissolves the laminar carbonate of the pendants
holding these circular features allowing them to be released into the soil matrix. (4) In
time, the pellets are slowly transported down through the profile in fissures and
abandoned plant roots to be eventually deposited on the laminar cap. Hay and Wiggens
(1989} report “pustulose” mamillary appearances of the petrocalcic material. This
supports the idea that pellets are released into the profile from the dissolution of the
carbonate matrix that holds them in place. The dissolution of the carbonate matrix from
increased wetting of past glacial climates supports the presence of pellets in the Q1 and
Q2 landforms. Both of these landforms have undergone multiple episodes of glacial
climates that would contribute to the dissolution of carbonate in the soil profile. Pellets
formed in pendants would be released during these episodes and accumulate through time
in fissures (Hay and Wiggins, 1980) and on tops of laminar caps deeper in the profile.
Pellet-like forms are found in the carbonate of pendants above and below the laminar
caps. However, the pellets above the laminar cap would be subject to more wetting

episodes releasing the pellets into the soil. Because pendants have such similar
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characteristics and processes that take place in the carbonate matrix, it is very likely

that they are also developed in petrocalcic (stage III and greater) horizons.

Pendants as Petrocalcic Equivalents

In soil profiles, pendants are associated with stage I and stage II carbonate
morphology because they coat the bottoms of clasts and/or begin to cement adjacent
clasts together (Gile et al. 1966), However, at the micromorphic scale, characteristics and
processes seen the pendants of the study area suggest that they are more similar in
morphology to the stage IIT and greater carbonate horizons, Grain dissolution and
sepiolite neoformation are recorded to occur in arid and semi-arid pedogenic
environments with petrocalcic horizons (stage Il or greater) that are interpreted to be
Mid-Pleistocene or older in age (Bachman and Machette, 1977). In these soils, grains
incorporated by the carbonate matrix undergo significant changes resulting from the force
of crystallization by calcite crystals. This process can force silica and other ions into
solution to be picked up by plant roots, or flushed through the profile. Silica in solution
can combine with magnesium, aluminum and other cations to form silicate clays or
precipitate out as amorphous sitica. Evidence for dissolution and reprecipitation,
displacement of grains and the formation of sepiolite in pendants of the Q1, Q2 and Q3
profiles of the study area suggest that these pendants are comparable to petrocalcic (stage
II and greater) horizons (Bachman and Machette, 1977; Allen, 1985; Monger et al.
1991). More work must be conducted on the processes taking place in carbonate

pendants to fully understand their relationship with petrocalcic horizons.
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Application of Contact-Formation Style to Dating Laminae 0

As mentioned above, pendants have recently become important as absolute dating
tools for timing of soil development on surfaces throughout the southwestern United
States. Numerous studies have attempted to use 14 and U-series methods to date inner
and outer lamina of soil pendants. Unfortunately, these techniques have not proven to be
entirely successful. Several studies have had problems with lamina dates not producing
expected values (Sowers et al 1988; Pierce, 1985). For example, work done on the Kyle
Canyon fan in southern Nevada (Sowers et al. 1988) and King Canyon fan along the Arco
fault in central Idaho (Pierce, 1985) found pendants that had inner lamina younger than
outer lamina. It is difficult to determine if pendants dated in the Kyle Canyon fan had
problematic dates because inner and outer lamina were not sampled from the same
pendant. However, Pierce (1995) recorded reversed ages for two samples where inner
and outer lamina were dated from the same pendant. In one questionable sample, inner
lamina provided Z*Th/***U ages of 3045 ka and outer lamina were 98+25ka. Another
sample had inner lamina dated at 233+ka and outer lamina of 4218ka. These dates do not
conform to the previously assumed method of development for pendants. However, the
suggested method of pendant genesis described herein can explain these discrepancies,

Several methods are involved when evaluating the ages of pendant lamina: (1) whole
pendants are ground and dated to represent the average age of the pendant (Amundson et
al.,1989; Courtey et al. 1994; Wang and Anderson, 1998), (2) outer lamina are removed
and inner lamina are dated to reveal the approximate age for the beginning of soil
formation (Amundson et al. 1989; Amundson et al. 1994; Courtey et al. 1994; Ludwig

and Paces, 2002) and (3) both inner, outer and occasionally middle lamina are dated to
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look at the stratigraphic sequence of ages within the pendant for the comparison of

development through time (Pierce, 1985).

The first method described is not affected by this study because the pendant is
examined as a whole. However, the application of this study to the second and third
methods mentioned is critical. Without close observation of the micromorphology and
relationships between lamina of pendants, the ages of lamina could be skewed. Inner
lamina revealing much younger ages than the outer may not be the result of errors of the
dating technique and instead may reveal true ages of a pendant that has formed by the
clast-pendant contact process.

Observations of pendants on dolomite in this study area show inclusions resulting
from input at the clast-pendant void. Other lithologies may not be as foretelling about
their formation process. The occurrence of voids at metamorphic parent material in the
study conducted by Treadwell-Steitz and McFadden (2000} implies that this formation
process may occur in all lithologies so caution is recommended when dealing with any
pendant from any lithology.

This study does not suggest that all pendants form in the newly proposed way. This
study does however, suggest a thorough evaluation of each pendant before dating to help

interpret what those dates mean to the age and/or genesis of the landform.



CHAPTER V1

CONCLUSIONS AND FUTURE WORK

Five Quaternary landforms in the northern Pahranagat Valley range in age from Early-
Pleistocene to modern (Q1-Q5) and are derived from two different lithologies of parent
material. Q1p-Q5p landforms in dolomite material exhibit similar development according
to surface characteristics and soil evolution through time as the equivalent aged
landforms that were derived from volcanic material (Q1v-Q35y). Q1 (ballenas) are
topographically highest and oldest followed by Q2, Q3, Q4 and the lowest, modern,
active Q3 channels. Bar and swale 1s a common feature of the Q3-Q35 landforms in
contrast to Q1 and Q2 that contains significant Av horizons and well developed desert
pavement. Q1 landforms have undergone significant soil erosion since time of deposition.
Soil development on each landform increases with increasing age with a stage I'V laminar
cap reached in the Q1 and Q2 surfaces. Surfaces Q3 and Q4 have stages [l to I
respectively and Q5 contains no significant soil development. Soil pendants also increase
in thickness with increasing age. An increase with age of silica accumulation is seen on
the bottoms of clasts and pendants in the Q1-Q4 landforms. Silica accumulations are not
as well developed in the Q1p-Q4y landforms as the Q1v-Q4dy landforms. Silica is also
found as durinodes in the in the Qdv and Q5v profiles. This variation is most likely from
the increased amount of glass shards and other silicious material weathered from the

tephra parent material on the volcanic dominant surfaces. The presence of silica in
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profiles of both dolomite and volcanic lithologies suggests that Holocene ash falls may
have provided material for silica dissolution and reaccumulaion within the profile.

Soil pendants that have formed in the Quaternary landforms of the northern
Pahranagat Valley exhibit formation characteristics that have not been documented in
previous studies. Features viewed with macromorphic and micromorphic techniques
provide evidence for a new style of formation. The dominant feature contributing to this
process is a linear void found on 68 % of the clast-pendant contacts on samples viewed in
this study. At the clast-pendant contact, the linear void shows evidence of dissolution
and more importantly, precipitation of calcium carbonate and other materials such as
silica and silicate clays. Large portions of parent-clast material are incorporated in the
carbonate matrix in 28% of the pendants observed. Some parent clast grains or detrital
grains incorporated into the pendant undergo displacement and/or dissolution in soils
from the older (Q1-Q3) landforms. Evidence for displacement from the growth of calcite
crystals includes the appearance of angular grains that fit together like a puzzle. These
“puzzle pieces” are separated by pedogenic carbonate. Evidence for dissolution includes
angular voids, grains with dissolved or etched grains, and grains surrounded by silica and
sepiolite clay. The presence of dissolved grains and sepiolite clay in the Q1-Q3 pendants
of the study area suggests that these features undergo processes similar to petrocalcic
(stage IIl or greater) horizons that afe Mid-Pleistocene or older in age (Bachmann and
Machette, 1977).

From the occurrence of the above mentioned features in pendants a new model] for the
genesis of carbonate pendants is presented. (1) A linear void develops at the clast-pendant

contact that remains open to soil water throughout time. (2) Evaporation of soil water
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within the void leads to the supersaturation and eventual precipitation of carbonate

and/or other materials. These precipitates do not close the void. Instead, the contact
between the pendant and parent clast remains open to soil fluids possibly due to
differences in thermal expansion and or freeze-thaw between pedogenic carbonate and
the host clast. (3) In some cases, the clast contains a break-up zone where soil fluids can
infiltrate within the microfractures, precipitate crystalline or amorphous materials, and
cause displacement and fragmentation of the parent clast. Further precipitation of
minerals pushes these fragments deeper into the pendant. (4) Continued precipitation in
the clast-pendant void as well as precipitation at the pendant terminus can occur
simultaneously thus the youngest pedogenic materials can either be located at the
terminus (outermost lamina), or at the clast pendant contact (innermost lamina).
Precipitation at the pendant terminus can also incorporate detrital grains into the pendant
matrix. (5) Dissolution of the incorporated grains by force of crystallization possibly
enhanced by local changes in soil pore water chemistry may occur. The products from
dissolution of incorporated grains reprecipitates as secondary minerals including sepiolite
and/or amorphous silica. (6) Por¢ water chemistry may change through time affecting the
presence and relationship of different pendant constituents. (7) Rounded forms of
sepiolite may develop that may signify the beginning of pellet formation. This may be the
initial stage of pisolite morphology found in stage V and VI petrocalcic horizons
(Bachmann and Machette, 1977).

Recently, studies have been conducted on "*C and Uranium-series dating of the inner
and outer lamina of pendants with some success. Dates of some pendants show inner

lamina to be younger then the outer lamina. Because those results contradicted the
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assumed genesis of soil pendants (outermost laminae are the youngest), dating

geomorphic landforms using this technique has been unreliable. This study presents a
new mechanism for the genesis of soil pendants that can explain previous studies’ results
of isotopic dating. The morphologic data presented herein indicates that soil pendants can
form through two different mechanisms: (1) one in which the laminae precipitate at either
{or both) the clast/pendant contact or the pendant terminus resulting in the youngest
laminae occurring as either the innermost laminae and/or the outermost laminae, and (2)
the traditionally assummed method in which the pendant grows from the clast outward so
that the outermost laminae are the youngest.

This study suggests that close and detailed examination of pendant features with
microscopic techniques be conducted before dating to ensure accurate landform ages.
With increased study of the mechanisms controlling soil and landform development,
greater progress can be made toward assessing seismic hazards, resource conservation,

paleoclimate interpretation, and urban and agricultural planning.
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