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ABSTRACT 

Uncertainty in Recharge Potential from Subsidence Craters at Frenchman Flat, 
Nevada Test Site: Impacts of Initial and Boundary 

Conditions and Media Properties 

by 

David Matthew Ely 

Dr. Glenn V. Wilson, Examination Committee Chair 
Professor, Water Resources Center 

Desert Research Institute 

The Nevada Test Site has over 400 subsidence craters formed by the collapse of 

overlying rock following underground nuclear tests. Under natural conditions, 

infiltration and recharge would not be considered likely due to infrequent precipitation 

events and extreme evapotranspiration. Crater U5a in Frenchman Flat was chosen for 

study because it intercepts significantly more drainage than surrounding craters. 

Vadose zone modeling was conducted to test the sensitivity of water movement to 

boundary and initial conditions. The effects of ponding depth was negligible but depth 

of wetting front movement was highly dependent on the lateral extent of the ponds. 

The model was insensitive to the initial conditions tested due to the extreme dryness of 

the soil. 

Field and laboratory observations provide evidence for a 63,000 m3 pond 

occurring on the initial crater surface. Model results predict such a wetting front 
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reaching the water table in 30 years. Sediment deposited by this large pond, however, 

provides an effective barrier to future infiltration and recharge. 
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CHAPTER 1 

LITERATURE REVIEW 

Recharge in Arid Environments 

Recharge, the rate at which water is replenished in an aquifer, is generally one 

of the most difficult components of the hydrologic budget to quantify (Stephens and 

Knowlton, 1986). An increased interest in the hydrologic processes of arid region 

infiltration and recharge has been caused by tbe need for safe disposal sites for 

hazardous and radioactive waste (Tyler et al., 1996). Groundwater resources of many 

semiarid and arid basins in the western United States are limited and ne.ed to be 

carefully developed to avoid loss of their use over the long term (Dettinger, 1989). An 

understanding of the recharge mechanisms involved can assist in such a determination. 

An area is considered arid if it receives less than 250 mm of average annual 

rainfall. In such a dry environment, surface and near surface processes regulate the 

amount of precipitation that can penetrate beyond the deep root zones of native desert 

vegetation. The extensive root system consumes almost all precipitation and transmits 

losses as transpiration. Although mountain regions may facilitate recharge, soil water 

storage capacity, transpiration, solar radiation, temperature, and wind generally negate 



any net gain into the vadose zone of the alluvial fans. As a result local recharge rates 

are very low, but generally very constant in the alluvial fans (Allison et al., 1994). 

2 

Allison et al. (1994) report on the many approaches to estimating recharge 

fluxes. Indirect physical methods can include empirical expressions, soil water balance, 

zero-flux plane method, or numerical estimation of water fluxes. Direct physical 

methods include lysimeters and natural or applied tracers. 

The simplest of the methods is the empirical expression of the type 

R=kt(P- k2) 

where P is precipitation and kt and kz are constants. This method is used mainly in 

areas where annual recharge is fairly high (> 50 mm/yr). 

Soil water balance can be represented, in the absence of surface runoff, by 

R=P-E,+S 

(I) 

(2) 

where E, is actual evapotranspiration and S is the change in soil water storage. 

However this method is not likely to be successful in an arid or semiarid region because 

of long periods of less than potential evapotranspiration, when errors in E, are greatest 

and P and E, are nearly equal (Gee and Hillel, 1988). 

The zero-flux plane method relies on locating a plane of zero hydraulic gradient 

in the soil profile. Recharge is then obtained by summation of the changes in water 

content below the plane. Allison et al. (1994) further state that this method fails during 

periods of high infiltration when the hydraulic gradient becomes positive throughout the 

profile. This period is when recharge will most likely be the greatest. 
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Sophocleous and Perry (1985) and Stephens and Knowlton (1986) attempted to 

use unsaturated zone hydraulic conductivities to solve Darcy's Law 

MI 
q=K(B)-' 

Llz (3) 

where llH1 is the total head gradient and K(O) is the unsaturated hydraulic conductivity. 

The water flux, q, calculated below the root zone, is assumed to be equal to 

groundwater recharge, R. Stephens and Knowlton (1986) found that annual recharge 

fluxes were highly dependent upon how they computed mean hydraulic conductivity, 

resulting in fluxes that varied by more than a factor of five. 

Gee et a!. (1992, 1993) successfully used lysimeters as a means of direct, 

physical estimation of recharge at arid sites. They fail, however, to capture the spatial 

variability produced by changes in flow pathways. 

Natural tracers eH, 14C, 36Cl, 15N, 180, 2H, 13C, and Cl) and applied tracers (180, 

3H, 2H, and Br) have been very successful in estimating recharge in arid environments 

(Tyler eta!., 1996). This method provides results that incorporate actual flow domains 

by integrating spatial and temporal variability to provide a record of historical recharge 

t1uxes. However, this method assumes a uniform wetting front, i.e. No preferential 

flowpaths, and assumptions regarding the paleoenvironment. 

Recharge at the Nevada Test Site 

The Nevada Test Site (NTS) lies within the northern edge of the Mojave Desert, 

105 km northwest of Las Vegas, occupying an area of 3500 km2 (Figure 1). The 

present climate at the study area is extremely arid, with an annual precipitation of 124 



mrnlyr for 30 years of record (French, 1986). Precipitation in this physiographic 

province of the western United States is categorized in two distinctly different periods. 

Winter rainfall is driven by cyclonic frontal systems carrying moisture from the Pacific 

Ocean off the western coast of the United States. Summer storms are convective 

4 

thunderstorms originating in the Gulf of California. Although summer storms are of far 

greater intensity, storms tend to be more localized and of shorter duration. In contrast, 

winter systems are more spatially uniform, low intensity and longer duration, and 

account for 75% of the annual rainfall. 

Evaporation in the basins of the NTS occurs only at potential rates following 

significant precipitation events (Bechtel Nevada, 1998d). Shouse et al. (1982) found 

evaporation from the soil in such an arid environment to occur in two stages. Stage 1: 

Immediately following a precipitation event, evaporation from wet soil conditions is 

controlled by meteorological conditions. Stage 2: As the soil dries, movement of water 

to the surface is lower than the evaporative demand as soil properties govern the rate of 

moisture loss. 

Soil-water flux in the Southern Great Basin was studied by Tyler et al. (1996) to 

examine the appropriateness of locating Radioactive Waste Management Sites 

(RWMS) at the Nevada Test Site. To study both current recharge and paleorecharge 

mechanisms, Tyler et al. (1996) examined ten boreholes (seven shallow series and three 

deep series) drilled to the water table (approximately 230 to 270m below land surface) 

to characterize the thick vadose zone of Frenchman Flat (NTS Area 5). Stable chloride 

and 36Cl indicated that soil waters deep in the unsaturated profile range in age from 

approximately 20,000 to 120,000 years. Secondary chloride bulges were evidence of 
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and Figure 6) are substantially different. The homogeneous profile redistributed water 

to a depth of 80 m below U3bh in about 100 years (0.8 m/yr). This result was in 

contrast to the measured water content. For the layered profile, effectively no 

downward movement of the wetting front occurred. Bechtel Nevada (1998d) stated that 

for the layered soil profile, successfully eliminating water flux at the surface would 

limit water movement at depth. The depth of the zone of increased water content, 

however, could be increased if current engineering structures for the prevention of 

runoff and ponding events degrade. 

A concern that excess moisture in waste containers could have a significant 

impact on the Area 5 Performance Assessment (Shott et al., 1997) with respect to water 

movement and radionuclide transport prompted a study (Crowe et al., !998) of soil 

water flow. Two scenarios of soil water flow were conducted: redistribution of 

moisture based on ambient conditions and a flooding scenario. In each, the waste 

column was assumed to be either 25, 50, 75, or 100 percent saturated and the waste was 

assigned identical hydraulic properties as the surrounding media. Those hydraulic 

properties were derived from the Area 5 PA summarized in Table 2. 

The base case scenario simulated infiltration, redistribution, bare-soi I 

evaporation, and precipitation for a 50 year period. All meteorological data 

incorporated actual measurements from Area 5 RWMS. Results show that some 

moisture from the initially saturated areas moves to zones of lesser water content, both 

above and below. After 50 years, the wetting front traveled to depths ranging from 14 

m for the 25 % wet waste to 33 m for the 100 % wet waste. After 30 years, the wetting 

front velocity decreased to 2 em/year for the 25 % wet waste to l 0 em/year m for the 
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material providing a fast mechanism for deep water movement and the fine-textured 

playa material serving as storage. As a conservative approach, Hokett and French 

(1998) simulated ponding events as a 0.3 m head that extended just 2m beyond the 

edge of a I 0 m wide playa. They also assumed an initial condition of uniform matric 

head of· I 0 m throughout the profile. Simulations suggest that such a mechanism 

would infiltrate a 0.3 m pond in less than a day and drainage to a depth of 129 m could 

occur within a 32 years. 

Objective 

The objectives of this study were (1) to evaluate uncertainty in the crater 

recharge estimates of Hokett and French (1998) due to boundary conditions and initial 

conditions and (2) to determine the effects of media properties on recharge estimates. 

Regions of possible recharge were distinguished by morphological descriptions and 

patterns in landscape dependent infiltration were determined in order to more accurately 

model recharge. This research will also assist in the study of risk assessment at the 

Nevada Test Site by incorporating ponding events, based on historic precipitation 

records, coupled with detailed vadose zone characteristics to predict potential recharge 

by craters. 
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Figure 7. Picture of crater USa showing erosional gullies, vegetation, surface playa 
(foreground), and high water sediment line. View NNE. 
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Table 1. Means and standard deviations for physical and hydraulic properties of Area 3 RWMS 
characterization samples listed by location category (From Bechtel Nevada, 1998d). 

Undisturbed ShallowCZ Mid-CZ 
Prof:!erty Mean so Mean so Mean so 

Particle Density [Mg m'31 2.49 0.0815 2.44 0.0646 2.41 0.0876 

Bulk Density [Mg m-3] 1.5 0.154 1.49 0.114 1.55 0.15 

Porosity [m3 m'3] 0.382 0.0632 0.387 0.0466 0.364 0.0618 

Sand Fraction [ wt 'Yo 1 83.8 8 81 7.6 80.1 8.9 
SiR Fraction [wt %] 7.3 4.2 10.2 7.3 10.3 6.8 
Clay Fraction [wt %) 8.9 4.3 8.5 2.6 9.7 4.4 

In Saturated Conductivity [In (m s·'l1 -11.4 1.45 -11.2 1.6 -12.1 1.74 

van Genuchten Parameters 
In alpha [ln(cm·')] -3.34 1.37 -4.42 0.89 -4.42 1.06 
n 1.49 0.368 1.74 0.274 1.74 0.337 
residual water content [m3 m-'1 0.067 0.057 0.132 0.033 0.135 0.041 

Combined 
Mean so 

2.4 0.0863 

1.52 0.137 

0.373 0.0581 

80.6 8.5 
10.1 6.8 
9.3 4 

-11.7 1.68 

-4.18 1.18 
1.68 0.344 
0.12 0.052 

IV 
v. 



Table 2. Hydraulic parameters from Area 5 Performance 
Assessment (Shott et al., 1997). 

Parameter Description Value for Simulation 

Saturated hydraulic conductivity 0.6390 md·1 

van Genuchten n parameter 1.9 m·1 

van Genuchten alpha parameter 1.831 

Residual water content 0.075 m3m·3 

Saturated water content 0.361 m3m·3 
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CHAPTER2 

MATERIALS AND METHODS 

Geologic Setting 

The local geology of the Nevada Test Site may be considered representative of 

Frenchman Flat. Frenchman Flat occupies the southeast portion of the Nevada Test 

Site in Nye County, Nevada. To the north Frenchman Flat is bounded by Yucca Flat, to 

the south by Mercury Valley, to the east by Indian Spring Valley, and to the west by 

Jackass Flat. Much of our knowledge of the geology of the Nevada Test Site can be 

attributed to the work of Winograd and Thordarson (1975). The NTS contains Tertiary 

volcanic rocks and Quaternary alluvial fill deposited unconformably on the deformed 

clastic and carbonate rocks of the Late Precambrian and Paleozoic western North 

American passive margin. Up to 3000 m of Precambrian to Middle Cambrian quartzite 

and siltstone are overlain by 4500 m of Middle Cambrian through Upper Devonian 

limestone and dolomite. The Eleana Formation, 2400 m of Devonian and Mississippian 

quartzite, siltstone, argillite, and conglomerate, is exposed in the northwest corner of 

Frenchman Flat. Pennsylvanian and Permian limestone constitutes the upper 1200 m of 

Paleozoic strata. No record of Mesozoic rock is locally present at Frenchman Flat. 

The region was affected by three episodes of deformation. The first occurred 
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during Paleozoic time and is locally represented by the Eleana Formation. The second 

took place during Mesozoic time and resulted in the folding and thrust faulting of 

Precan1brian and Paleozoic rocks. The third occurred during the Cenozoic and 

produced the normal block faults responsible for modern Basin and Range topography. 

During Cenozoic time, 2600 m of volcanic and sedimentary rocks were 

deposited in the deep basins produced by Basin and Range faulting. The Tertiary 

volcanic rocks primarily are ash-flow and air-fall tuff. The associated sedimentary 

rocks are conglomerates, tuffaceous sandstone, siltstone, calcareous lacustrine tuff, 

claystone, and freshwater limestone. Quaternary detrital sequences are largely alluvial 

deposits and typically less than 610 min thickness. 

The same stratigraphic sequence occurs locally at crater U5a. Thickness of the 

Cenozoic alluvium is estimated between 500 m to 350 m, underlain by 550 m of 

interbedded Tertiary ash-flow and air-fall tuff. Paleozoic carbonates extend beneath the 

tuffs to the Precambrian basement rocks. Structural features near crater USa include the 

Cane Spring and Rock Valley fault zones, the Frenchman flexure, and the Scarp 

Canyon lineament. Nearest to crater U5a is the Cane Spring fault zone, a northeast 

trending left lateral strike-slip fault located approximately 6.4 km to the west-northwest. 

Hydrogeologic Setting 

Nevada Test Site 

The lithology of the NTS can be divided into valley-fill alluvium, clastics, tuffs, 

and carbonates (Shott eta!., 1997). In general, the saturated portion of the alluvium, 

welded tuffs, and carbonates store and transmit enough water to be considered aquifers. 



The bedded tuffs and clastics form aquitards. Winograd and Thordarson (1975) 

identified nine hydrostratigraphic units (5 aquifers and 4 aquitards) at the NTS, 
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although these do not occur at all locations. In stratigraphic order, these units are the 

valley-fill aquifer, lava flow aquifer, welded tuff aquifer, lava flow aquitard, bedded tuff 

aquitard, upper carbonate aquifer, upper clastic aquitard, lower carbonate aquifer, and 

lower clastic aquitard. 

The Nevada Test Site lies within the most arid part of Nevada. Average annual 

precipitation ranges from 8 em to 25 em, depending on elevation. Principle recharge 

occurs in the higher elevations of the mountains. Infiltration at the recharge sites is 

vertical through the carbonate bedrock and then flows horizontally into the alluvial 

valley-fill (Domenico et al., 1964). Discharge occurs through evapotranspiration and 

through springs. Potential evapotranspiration rates of 150 to 200 em a year in the 

basins greatly exceed precipitation and create a vadose zone often over 350 m thick. 

Most of the larger springs in the area issue from carbonate rocks or from basin-fill 

overlying or adjacent to carbonate rocks (Burbey and Prudic, 1991 ). 

The principle reservoir used for water supply at the Nevada Test Site is the 

Tertiary and Quaternary valley-fill aquifer. It comprises alluvial fan, fluvial, lakebed, 

and mudflow deposits. The alluvial deposits include a range of grain sizes from clay to 

gravel and can be unconsolidated within a basin (Anderson, 1995). The upper alluvium 

is Paleozoic detritus and Tertiary rocks; deeper alluvium is predominantly tuffaceous. 

Maximum thickness is 730 m but the saturated thickness is only a fraction of that. 
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Frenchman Flat and Crater USa 

Frenchman Flat is surrounded on all sides by mountains and therefore drains 

internally. The alluvial valley-fill aquifer is saturated beneath an area of 70 k:m2 

Winograd and Thordarson (1975) examined three possibilities for water movement out 

of the basin from this valley-fill aquifer: (1) lateral flow through tbe Tertiary aquitards, 

(2) downward movement through the tuff aquitard into the carbonate aquifer, or (3) 

lateral flow through the aquitard then downward movement into the carbonate aquifer. 

They stated that the strongest case could be made for downward movement to the 

carbonates. This belief is based on no gradient existing between Frenchman Flat and 

Yucca Flat and a small range (3 rn) between the lowest water levels in the Cenozoic 

rocks for Frenchman Flat, Yucca Flat, and Jackass Flat. In any event, the lower 

carbonate aquifer rises above Frenchman Flat on all sides so groundwater movement 

will eventually flow into the carbonate aquifer. 

Average annual rainfall at the We115B precipitation gage 2700 m southwest of 

crater USa, is only 12.4 em. This extremely arid environment has no perennial streams 

or standing bodies of water. Surface water flow occurs only infrequently and channels 

are rarely deeper than I m. Schmeltzer et al. ( 1993) established that crater USa is 

located on the Barren Wash alluvial fan (alluvial fan area= 14.5 km2
) with the entire 

Barren Wash watershed measuring 210 km2
• The upstream watershed is likely to 

contribute flows to the crater very infrequently (French, 1997). 

The "Wishbone" event that formed Crater USa was detonated at a working point 

depth of 174.9 m below land surface. The static water table was estimated to be 206m 

below land surface. Some estimation of cavity size must be made to determine the 
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bulking factor and the position of the nuclear melt debris and radionuclides relative to 

the static water level. In tum, these attributes are directly related to geologic media and 

device yield. Drill logs for the emplacement hole record alluvium throughout the 

profile down to the water table. The actual yield of the weapons test, however, is 

classified. The "Wishbone" event is officially listed as < 20 kilotons. Such a large 

range produces enormous differences in possible cavity radii. The "Wishbone" event 

was buried at a fairly shallow depth, 174.9 meters. Minimum depth of burial for any test 

was normally 183 meters but the proximity of the water table at 206 meters may have 

forced a slightly shallower burial. The scaled depth of burial (SDOB) was calculated by 

the simple formula: 

SDOB (ft)= 350(kt113
) (Germain and Kahn, 1968) (4) 

Many tests in the 1960's used a less conservative SDOB = 300(kt113
). In 1990, 

"Baneberry" vented large amounts of gases to the atmosphere causing concern that a 

deeper SDOB was warranted. Post-Baneberry, the SDOB became 400(kt113
). 

Knowing the depth of burial of the detonation that formed crater U5a helps to 

confine the likely maximum yield. Some venting did occur with this event which may 

indicate slight under burial for the given weapon yield. The reported range of yields for 

"Wishbone" is< 20 kt, simplified equations show that the actual yield was most likely 

significantly less. The range can be conservatively constrained to 3 to 7 kt. 

From the device yield estimation, a further extrapolation may be made to 

estimate the size of the cavity produced from the vaporization of the surrounding rock 

and soil. Olsen (1993) gives the formula for approximating the length of the cavity 

radius: 



cw"3 

R =..:::...:.:..­
c (ph)l/4 

where C is a constant, nominally 70.2, W is the yield in kilotons, p is the overburden 

density in Mg/m3
, and his the depth of burial in meters. This approximation of the 
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(5) 

radius has 1-sigma error bars of about 10%. Using the estimated range of yields and an 

overburden pressure p of 2.0 g/cm3 (Olsen, 1993), cavity radius can be approximated in 

the range of 17 to 23 m. This estimate places the working point within 2 cavity radii of 

the water table, possibly allowing the introduction of some radionuclides directly. 

All rubble chimneys exhibit a bulking factor beta, not the compaction of rock 

that may be intuitive. This bulking has been thought to possibly provide a preferential 

pathway for infiltrating water. A common formula for estimating the bulking porosity, 

beta, is given by: 

(top of the cavity to the ground suiface)- (bottom of cavity to bottom of crater) 

This simple equation approximates beta at 5% to 12%. The formula for the bulking 

factor is uncomplicated but results fit well with those observed in the field. 

A topographic survey of crater USa was conducted in 1996 by Bechtel Nevada 

Corporation showing a depth of 12.8 m, representing 14.6 m of infilling over the last 30 

years. Hokett and Gillespie (1996) conducted particle size analysis on 30 samples from 

crater USa (Borehole USa-Nl) and 6 samples from an undisturbed area adjacent to the 

crater (Borehole U5a-N2). The soil texture in the top three meters of the playa is clay 

loam to loam. The remainder of the borehole ( <2 mm fraction) was comprised of 

loamy sand, sandy loams, and sand. The finer textured soils are the result of deposition 

during ponding events. Samples from the undisturbed borehole outside the crater were 
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all sandy loam or loamy sand. 

The bottom of crater U5a is dominated by Tamarix ramosissima (saltcedar), a 

naturalized shrub with a reputed high evapotranspiration (ET) rate. Sala et a!. (1996) 

reported that the key biological characteristics that have allowed its spread include (1) 

production of massive amounts of small, easily dispersed seeds over long periods of 

time (Warren and Turner, 1975), (2) ability to germinate and survive in highly saline 

soils (Brotherson and Winkle, 1986; Shafroth eta!., 1995), (3) the ability of seedlings to 

tolerate both desiccation and inundation, (4) active vegetative reproduction, and (5) the 

facultative phreatophytic nature of mature individuals (Busch eta!., 1992). The 

presence of these plants are further evidence of the periodic flooding and subsequent 

infiltration of ponding events. 

Smith et al. (1996) found that in dense stands ofT. ramosissima with high leaf 

area index, ET can dramatically exceed net radiation (and thus predicted ET0 ) under 

conditions of moist soils and high water table. These conditions are only partially met 

in the wintertime, when antecedent moisture content is higher, or directly following 

ponding events. This situation occurs primarily in the winter months (October - April) 

when cooler temperatures provide naturally reduced ET. During the summer months 

(May - September) hydraulic resistance for transport of water to leaf canopy, causes ET 

to be significantly lower than net radiation. 

Theoretical Methods 

Flow Equations 

Darcy's law (1856) was originally established for flow of water through a 
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saturated, homogeneous soil but was later extended to include non-steady state, 

unsaturated flow as: 

Q dh 
q=-=-K(h)-

At dZ 
(6) 

where q is the flux density (LT"1
), i.e., the volume of water, Q (L\ passing through a 

cross sectional area, A (L\ per unit time, t (T). The hydraulic head, H (L), is the sum 

of the gravitational head, z (L), and pressure head, h (L). The latter term attains positive 

values below and negative values above the water table. The hydraulic conductivity K, 

(LT1
), represents the ability of a soil to conduct water and is considered to be constant 

under saturated conditions. In variably saturated flow, however, it is a function of 

matric (i.e. negative pressure) head. As the matric head varies throughout the soil, so 

too will the water content and hydraulic conductivity. The hydraulic conductivity, 

being the slope of the flux versus hydraulic gradient line, varies with the average 

negative pressure. 

Darcy's law can be combined with the continuity equation: 

ae 
-= -Vq 
dt 

(7) 

where -Vq is the divergence of the flux, i.e., the difference between inflow and outflow 

at a given point. The left hand side of this equation can be written as 

(8) 

where C(6), the slope of the water retention curve, is referred to as the specific water 

capacity. 

Combining the continuity equation with the Darcy equation, results in the 
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Richards' equation (1931) for one-dimensional, non-steady state flow of water in the 

vertical direction: 

C(8) dh = i[K(h) dh + K(h)J 
dt dz dz 

(9) 

Water Retention Function 

The water retention function can be defined as the relationship between the soil 

water content and the matric pressure head. Matric pressure head for unsaturated soils 

are negative and will be referred to in units of depth of water. A soil's ability to retain 

soil water under different matric heads gives much information as to how the soil will 

regulate infiltration in situ. The water retention function is primarily controlled by two 

soil characteristics: the texture or particle-size distribution, and the structure or pore-

size distribution due to arrangement of the particles into units called aggregates (Salter 

and Williams, 1965; Reeve et al., 1973; Sharma and Uehara, 1968). Secondary 

structures contained in the soil can dramatically affect the water retention function. 

Organic matter can produce preferred pathways for water flow and alter retention due to 

its hydrophilic nature. Desiccation cracks create large macro-structures that can act as a 

conduit for soil water movement. Also the presence of shrink! swell clays affect the 

amount of water retained at a given pressure head (Bolt, 1956; El-Swaify and 

Henderson, 1967; Thomas and Moodie, 1962; Warkentin et al., 1957). 

The water retention curve may be measured in the laboratory under conditions 

of drying an initially saturated soil sample to the residual water content, or measured for 

the wetting curve, beginning at the residual water content and increasing the matric 



36 

head (Jess negative) to saturation. Hysteresis explains the difference between the 

wetting and drying curves. This principle states that a given pressure head for a wetting 

soil is less than that for a drying soil (Topp, 1969; Haines, 1930; Pavlakis and Barden, 

1972). This study will only utilize the drainage curve. 

Unsaturated Hydraulic Conductivity 

Reliable estimates of unsaturated hydraulic conductivity, K(h), are especially 

difficult to obtain, partly because of its extensive variablity in the field, and partly 

because measuring this parameter is time-consuming and expensive (van Genuchten, 

1978). It is for this reason that investigators began using models to calculate K(h) from 

water retention data. Early attempts, including the Millington-Quirk method 

(Millington and Quirk, 1964), produced acceptable results but were difficult to apply in 

actual field conditions. Brooks and Corey (1964) and Jeppson (1974) used closed-form 

analytical expressions based on the Burdine theory (Burdine, 1953) to estimate K(h). 

The Brooks-Corey method can be described reasonably well with the following 

equation: 

(10) 

where h, is the air entry value and A. is a soil characteristic parameter. It produces fairly 

accurate predictions but a discontinuity exists in the slope of the water retention curve 

and unsaturated hydraulic conductivity curve at the air-entry value, h •. 

A model utilizing a simple integral formula for unsaturated hydraulic 

conductivity was developed by Mualem (1976) allowing one to derive a closed-form 
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analytical expression from the water retention curve: 

l
e 1 
-dx 

2 

o h(x) 

l
l I (11) 
-dx 

o h(x) 

where his the matric head and e is the dimensionless parameter representing the 

effective moisture content: 

8 
8=---'-

8 -8 
s ' 

(12) 

where e, and e, are the saturated and residual water contents, repectively. 

van Genuchten ( 1978) incorporated the theories of Burdine and Mualem to 

generate a e model. The van Genuchten closed-form analytical expression contains 

three fitting parameters obtained from a non-linear least-square curve-fitting computer 

model of the water retention curve. The dimensionless effective moisture content is 

related to the pressure head by the following: 

where a:, m, and n are fitted parameters. 

1 e- [ J

m 

- 1 + (ah)'' 
(13) 

Most available techniques for measuring soil hydraulic properties (conductivity 

and retention) can neither distinguish between the different flow domains (macro-, 

meso-, or micro-) and their relative contribution to flow (Lux moore et al., 1990) nor be 

used to determine the between-domain exchange terms during variably saturated flow 

(Mohanty et a!., 1997). Tension infiltrometers can determine a hydraulic conductivity 

at a given tension, and this K(h) value can be matched with a known KsAT value, 
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shifting the entire K(h) curve to this matching point. 

Smettem and Kirby ( !990) and Smettem et a!. ( 1991) proposed a method for 

modeling K and 8 as a function of head for a macropore-matrix system. They used the 

van Genuchten (1978, 1980) model to determine the closed form analytical solutions for 

8(h) and K(8). Structured soils may contain macropores, mesopores, and micropores, 

with flow through each region dictated by the physical attributes of the soil. Wilson et 

a!. (1992) developed techniques for modeling 8(h) and K(h) in multiple porosity 

systems using van Genuchten 8(h) and K(h) models for the meso- and micropore 

regions. It was initially assumed that a linear relationship exists for 8(h) and K(8) 

between saturation and near saturation (h = -10 em), i.e. macropore region. However, 

this assumption failed to reach convergence when used in the three-dimensional multi­

region flow model MURF (Gwo, 1991, unpublished data). It is essential that the 8(h) 

relationship remain continuous throughout the range of h values to prevent convergence 

problems in flow modeling. To accomplish this, Wilson eta!. (1992) maintained the 

pressure head untransformed and obtained continuity between regions by selectively 

fixing and fitting the saturated and residual water content values to a nonlinear model 

called a Fermi function. Utilizing this approach, continuity was achieved and excellent 

agreement between measured and predicted values was reached, although the derivative 

of the 8(h) and K(8) functions were occasionally not continuous at the junction points 

between regions. 

Mohanty eta!. (1997) used in situ and laboratory measurements to develop 

piecewise-continuous soil water retention and hydraulic conductivity functions using 
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small increments in h to describe preferential flow. In contrast to the Wilson eta!. 

( 1992) approach of using numerous piecewise-continuous functions joined at different 

junction points, Mohanty eta!. (1997) invoked a hybrid sum-junction approach using 

two or more piecewise-continuous functions based on the different conducting pore 

regions. They set the KsAT as a floating parameter based on measured hydraulic 

conductivities at the junction point between capillary and non-capillary driven flow. 

Similar to the approach of Wilson et a!. (1992), Mohanty et al. (1997) extrapolated K 

values from the mesopore range to the macropore range using a non-linear equation. 

The authors reported that this new bimodal soil water retention and hydraulic 

conductivity functions performed well in describing the observed conditions at their 

field site. 

Experimental Methods 

Water Retention 

The hanging water column and pressure plate methods were used for water 

retention analysis as outlined in Klute (1986). Two undisturbed soil cores were taken 

from each station along a transect across the crater bottom (Figure 8) and one 

undisturbed soil core from each of the three stations adjacent to the crater. The 

undisturbed cores allowed the soil structure to be preserved. The soil core cells had an 

inside diameter of 5.3 em and a height of 6 em. The soil core samples were saturated in 

a 0.005 M CaS04 deaerated solution with 0.1% phenol. Saturation of the samples was 

accomplished slowly and incrementally from the bottom up to limit the entrapment of 

air. 350 ml Pyrex brand 80 mm fine-fritted disk Buchner funnels saturated in 0.005 M 
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CaS04 deaerated solution were used for the hanging water column measurements. 

Water retention at selected matric heads were obtained by lowering the water-filled 

tubing to the prescribed level below the semi-permeable membrane and allowing at 

least one day for equilibration. Matric heads of -15 em, -50 em, -100 em, -150 em, and 

-200 em were completed and the soil sample was weighed after each. Due to practical 

height restraints involved in the hanging water column method, -200 em was the limit 

of the system. 

Mid-range (-500 to -3000 em) water retention values were accomplished with 

the laboratory pressure chamber method outlined in Klute (1986). The soil core 

samples were placed on a fully saturated 3-bar ceramic pressure plate and pressures of 

-500 em, -750 em, and -1000 em were applied. The samples were weighed after 

allowing a minimum of 2 days equilibration. Disturbed soil samples placed in rubber 

rings were moistened in 0.005 M CaSo4 deaerated solution with 0.1% phenol and 

placed on a 5-bar ceramic pressure plate. Pressures of -1000 em and -3000 em were 

applied for a minimum of 2 days equilibration. The soil cores and disturbed soil 

samples were then oven-dried at 105° C for 2 days and weighed. 

Bulk density Ps was determined by oven-drying a core sample of a known 

volume V coRE and recording the mass MoRY· 

MDRY Pn=--
VcoRE 

(14) 

Volumetric water content, 8v, was calculated from the core samples at various 

pressures, Mi 
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MDRY e v = _.,___.=.:_ _ _£ 

Pw 
(15) 

The RETC code (van Genuchten, 1980), a non-linear least-squares curve-fitting 

program, calculated o: and n parameters from the volumetric water content and the 

associated pressure head with the assumption that m = 1- 1/n. 

Saturated Hydraulic Conductivity 

Single ring infiltrometer measurements were conducted at each station along the 

transect (Figure 8) and at the three stations adjaeent to the crater. This method of point 

infiltration was chosen to simulate the conditions of pond seepage. A metal ring 

(diameter= 24.7 em) was driven into the ground 10 em and a predetermined volume of 

water was applied to the soil. Two hoses, one for water application and one for air, 

were run into a 50 liter carboy with rubber stopper to create a Mariotte device for head 

control. By securing the air hose at a given height within the metal ring, a constant 

head of 4 em was maintained on the soil. Lateral spreading was not considered a 

concern so an outer ring was not utilized. Intake measurements were recorded unti I a 

steady-state condition was observed. 

Unsaturated Hydraulic Conductivity 

The tension infiltrometer (also known as disc permeameter) is a field method to 

measure unsaturated hydraulic conductivity, K(h). The procedures for confined tension 

infiltrometer techniques are described in Wilson and Luxmoore (1988). Tension 

infiltration was measured immediately following the constant head ring infiltrometer 
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procedure at each station along the crater transect and at the three stations adjacent to 

the crater. Within the ring, the soil surface was cleared of any debris or organic matter 

and covered with a thin layer of wet fine sand. This action ensures a proper "seal" 

around the disk of the instrument and eliminates air entry. The tension infiltrometer 

allowed water to be infiltrated into the soil surface under a constant matric head of -15 

em. The outflow of water from the device was recorded until a steady-state infiltration 

rate was achieved. For confined infiltration, the steady-state infiltration rate equals the 

hydraulic conductivity for the prescribed matric head. Upon completion, a soil sample 

was collected and oven-dried at 105° C to determine water content, e. 

Particle Size Analysis 

Particle size analysis of bulk samples was accomplished using the hydrometer 

and dry sieve methods as described by Gee and Bauder (1986). Loose soil samples 

were collected from 16 sites along the transect (Figure 8). In addition, 3 sites adjacent 

to the crater were sampled. From each sampling site, 40 to 50 g of air-dried soil were 

weighed into a 600 mL beaker. 250 mL of distilled water and 100 mL of sodium­

hexametaphosphate (HMP) solution (50 giL) were added to the beaker and allowed to 

soak overnight. The HMP solution neutralizes the charge on small soil grains, thus 

prohibiting the attraction of the grains from each other. The HMP treated soil sample 

was transferred to an electric blender and mixed for 5 minutes. Distilled water was then 

added to bring the volume to 1 L. For calibration purposes, a 1-L sedimentation 

cylinder contained I 00 mL of HMP solution and 900 mL of distilled water. The 

calibration value of this blank solution was used to correct for fluid viscosity and soil 
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solution concentration. Time was allowed for both sedimentation cylinders to thermally 

equilibrate and the temperature was recorded. The cylinders were stoppered and end­

over-end shaking was performed for 1 minute. One drop of amyl alcohol was added to 

eradicate surface foam. A standard hydrometer, ASTM no. 152 H, was slowly lowered 

into suspension and readings were recorded after 30 s, 1, 3, 10, 30, 90, 120, and 1440 

minutes, removing and rinsing the hydrometer after each reading. 

Upon completion of all hydrometer measurements, the sedimentation cylinders 

were poured through a 63 j.lm sieve, the remaining sediment in the sieve being very fine 

sand to gravel. This sieved material was placed in a pan and oven-dried at I 05° C. The 

dried sand and gravel grains were weighed and then sieved through a stack of seven 

sieves (63 J.lm, 125 j.lm, 250 j.lm, 500 J.lffi, 850 j.lm, 1180 j.lm, !ISO j.lm, and 2360 ~tm). 

The stack of sieves was placed in an automatic sieve shaker for 5 minutes. Each sieve 

was then weighed and a soil fraction mass was calculated. 

Results of the hydrometer and dry sieve procedures yield a mass fraction % for 

gravel, sand, silt, and clay. The gravel mass of each sample was disregarded and the 

remaining sand, silt, and clay percentages were used to classify the soil, using the 

USDA soil classification triangle. 

Subsurface Characterization 

To more accurately and completely characterize the subsurface, a series of sites 

along the transect were augered using a Gidding' s probe. Due to the hardness of the 

fme-grained layers encountered, continuous core samples were not recovered. Eight 

locations spaced approximately I 0 m apart (Figure 8), were drilled to a depth of 6 m 
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and the cuttings bagged and logged. The soil texture was estimated by the feel 

technique on all samples by Dr. G. V. Wilson, a Certified Professional Soil Scientist. In 

the laboratory, hydrometer and dry sieve techniques were used to determine particle size 

distributions on selected samples. To separate the fine grained sands from the silts, 

hydrometer measurements were recorded at 0.25, 0.5, 3, 15, 45, 120, and 1440 minutes 

and sieve screen diameters of 2.0, 0.707, 0.425, 0.250, 0.150, and 0.090 mm were used. 

Water Harvest 

The quantity of water that may be captured by the subsidence crater was 

estimated by French (1997) using the Soil Conservation Service (SCS) curve number 

approach. By definition, the curve number is 

CN 
1000 

s +100 
( 16) 

where CN = SCS curve number and S = maximum retention. Assuming that the initial 

abstraction of precipitation is 20% of the maximum retention, the relationship between 

the depths of precipitation (P) and runoff (Q) is 

(17) 

French (1997) stated that although other methods for estimating direct runoff are 

available, relative to the quantity and quality of data available, the curve number 

approach is reasonable. French (1997) used the precipitation data for the Well 5B 

station, located 2700 m southwest of crater USa. The average annual depth of 

precipitation was 12.4 em. French originally intended to study two flow capture 
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scenarios: (1) capture of the entire flow from the small watershed (approximately 0.65 

km2
) and (2) sheetflow capture from the Barren Wash Alluvial fan watershed (210 km2

) 

on which the crater is located. Because of the ratios of the watershed areas and the USa 

diameter to the alluvial fan contour passing through it, the larger flow capture area was 

considered unnecessafY. 

To properly represent soil conditions, Antecedent Moisture Condition IT (AM C­

IT) curve number of 77 was used for the winter months (October April) and AMC-1 

curve number of 59 was used for the summer months (May - September). Table 3 

shows the results of a 32 year simulation period using the 0.65 km2 capture area. 

Following crater formation in 1965, 14 ponding events were modeled with 14 

corresponding drainage periods. 

Numerical Methods 

HYDRUS-2D 

HYDRUS-2D, developed by Simunek eta!. (1996), is a Microsoft Windows 

based model for analysis of water flow and solute transport in variably saturated media. 

It includes the SWMS_2D finite element model for simulating two-dimensional water 

and solute movement in the variably saturated media. HYDRUS-2D numerically solves 

the Richards' equation for saturated-unsaturated water flow. The flow region may 

consist of heterogeneous, anisotropic soils and irregular flow domains. A catalog of 

soil hydraulic properties, based on soil texture, is included in the program. Flow can be 

modeled in the vertical plane, horizontal plane or in a three-dimensional region by 

simulating radial symmetry about a vertical axis. BoundarY conditions can be 
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prescribed as heads, fluxes, atmospheric, or free drainage. Initial conditions can be 

made constant throughout the flow domain, varied heterogeneously, or set in 

equilibrium with a bottom value. Data preprocessing, involving specification of the 

flow domain and construction of an unstructured finite element mesh, is accomplished 

with the mesh generation program MESHGEN-2D by PC-Progress, based on Delauney 

triangulation. Post-processing is also accomplished within the HYDRUS-2D model, 

with output graphics in 2D isolines or color spectra. 

Three separate modeling scenarios were conducted to assess the uncertainty in 

the approaches taken by Hokett and French (1998) by determining the effects of (I) 

areal extent and depths of ponds (boundary conditions) and (2) initial matric head 

conditions. The goal of the final scenario was to modify the conceptual model and flow 

domain (i.e. boundary conditions, initial conditions and media properties) to provide a 

"best" estimate of recharge based upon the new site characterization data. This final 

modeling scenario incorporates hydraulic properties determined from field and 

laboratory investigations, as well as surface runoff and subsequent ponding events as 

evidenced by physical attributes of the crater morphology. 

Sensitivity Analysis I and II 

Sensitivity Analysis I (SA I) examined the effects of varying the top boundary 

conditions on the depth of water movement in an unsaturated soil. The geometry and 

domain were held constant throughout the sensitivity analysis. The dimensions 

modeled were 40 m x 40 m, with no flow boundaries along the vertical sides and free 

drainage along the bottom boundary (Figure 9). Two separate boundary conditions, 
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depth of pond and areal extent of pond were applied to a series of ponding events and 

subsequent drainage event. Pond depths were set at 30 em and 90 em and areal extents 

at 5 m, 12m, 15m, and 20m and allowed to infiltrate until the prescribed volume of 

water was infiltrated. Following pond infiltration, an evapotranspiration boundary 

condition was applied until the next pond event. The ET was set unifonn with time at 

0.008 mid after Hokett and Gillespie (1998). The pond was simulated with a constant 

pressure head at the desired depth and horizontal extent along the upper boundary, with 

the remaining surface set as a no flow condition. The first pond volume equaled 271 m3
, 

followed by 990 days of drainage and evapotranspiration, followed by a second pond of 

volume 419m3
. Initial condition (matric head) was set at-100m. 

Sensitivity Analysis II (SAm used flow domain geometry, properties and 

boundary conditions consistent with Hokett and Gillespie ( 1998) to examine the effects 

of varying initial conditions on the depth of water movement beneath the crater. The 

three scenarios modeled to compare and contrast with the initial matric head of 

-10m by Hokett and Gillespie were (I) initial matric head of-10m throughout the 

domain, (2) initial matric head of -200 m throughout the domain, and (3) initial matric 

head set at equilibrium with the water table at the bottom boundary, resulting in a linear 

function with height above the water table. The initial and boundary conditions for 

Sensitivity Analysis II are represented in Figure 10. The dimensions modeled more 

closely represented the actual crater and rubble chimney assuming axial symmetry with 

a 60 m wide by 200m deep domain. The great depth of the underlying water table 

produced extremely dry conditions when set to equilibrium with the bottom boundary 

condition. The entire 33 years of predicted surface runoff, ponding events, and drainage 
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events were used to adequately capture the difference between the two modeling 

environments. 

MESHGEN-2D generated a mesh of 2574 nodes, 4987 triangles, and 7560 line 

segments for the smaller domain of Sensitivity Analysis I and 2959 nodes, 5677 

triangles, and 8635 line segments for the larger domain of Sensitivity Analysis II. Finer 

discretizations were used near the soil surface to handle the region of distinct 

differences in fluxes and pressure gradients. For SA I, maximum vertical discretization 

was 2.2 m near the bottom boundary and minimum discretization was 0.2 m along the 

surface. For SA II, maximum vertical discretization was 7 m near the bottom boundary 

and minimum discretization was 0.4 m near the surface. Three dimensionality was 

modeled with axisymmetric flow. Soil types incorporated in both analyses were limited 

to the three textures that appeared predominant in the crater region (Figure II). The 

playa was represented by a I 0 m wide by 3 m thick region of silt loam, underlain by a 

I 0 m wide by 7 m thick region of loam. The remainder of the subsurface was loamy 

sand. Hydraulic properties for the three soil types (Table 4) were consistent with 

Hokett and Gillespie (1998) who obtained these values from the HYDRUS-2D catalog 

for soil texture, based on Carse! and Parrish (1988). 

Because of the non-linear nature of the finite difference equation that HYDRUS-

2D solves, an iterative process must be used to obtain solutions of linearized algebraic 

equations. To ensure a satisfactory degree of agreement was obtained, the maximum 

number of iterations was set at 20 (upper ideal iteration= 7, lower ideal iteration= 3). 

Water content and pressure head tolerance were both set at l.e-003 for ponding events, 

and S.e-004 and 0.1, respectively, for drainage events. 
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Time discretization was sufficient to allow a given volume of water to infiltrate. 

Atmospheric conditions during the drainage event were time dependent. Evaporation 

was constant (0.008 md'1) and consistent with average summertime values for Area 5 

(Shott eta!., 1997). Precipitation values were taken from the daily totals at Well Sb. 

For ease of input, monthly totals were divided by 30 and assigned as daily totals, 

admittedly losing some storm characteristics (duration, intensity). 
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Table 3. Ponding event characteristics (Hokett and French, 1998). 

Pond event Year Month Volume(m) 
1 1 2 876 
2 1 10 382 
3 8 3 333 
4 11 3 271 
5 14 1 419 
6 16 1 1369 
7 18 1 530 
8 20 1 358 
9 20 4 284 
10 24 1 210 
11 26 2 530 
12 28 1 333 
13 28 11 333 
14 29 2 555 
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Table 4. Hydrus-2D soil properties used for SA I and II. 

Soil Qr Qs Qa Qm alpha n Ks (md"') Kk(md·} Qk 
Loamy sand 0.57 0.41 0.57 0.41 12.4 2.28 3.502 3.502 0.41 
Silt loam 0.034 0.46 0.034 0.46 1.6 1.37 0.06 0.06 0.46 
Loam 0.078 0.43 0,078 0.43 3.6 1.56 0.2496 0.2496 0.43 



CHAPTER3 

RESULTS AND DISCUSSION 

Introduction 

The final estimation of recharge potential beneath a subsidence crater depends 

upon many hydrologic parameters, boundary and initial conditions. To accurately 

assess the effect of uncertainty in these variables, the study attempted to isolate 

different variables and analyze the sensitivity of the model to each. The volume of 

surface runoff that enters crater USa can be predicted from the precipitation record and 

some understanding of the hydraulics involved. While this input may be the single 

most important determinant of recharge and the most uncertain in estimation, the 

uncertainty in runoff was not addressed in this study. 

The behavior of the surface runoff upon entering the crater was the focus. Soil 

conditions within the crater prior to arrival of the pond may be moist because most 

predicted ponding events occur in the winter months when storms are of longer 

duration and lower intensity, however the largest ponding events may occur during high 

intensity summer storms when the soil can be extremely dry. Thus, the sensitivity to 

the initial condition needs to be evaluated. If the surface runoff flows to the crater low 
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point (playa), then the low permeability playa could act as a barrier to flow. 

Alternately, substantial infiltration could occur in the coarse soil immediately upon 

entering the crater, resulting in a much diminished pond. Hokett and French ( 1998) 

proposed that a pond restricted in lateral extent to the playa and a small peripheral area 

surrounding the playa will preferentially focus recharge through this annular region. 

They assumed a 2 m lateral extent beyond the playa and a 30 em depth. However, if 

surface area of the pond is substantially increased, infiltration will occur over the larger 

area and maximum depth of water movement for a given volume of water may be far 

shallower. The floor of the crater exhibits little relief and an intensive survey of the 

present day topography would yield a sufficiently accurate stage-volume relationship. 

Such data does not exist for most craters, including USa, so an estimation of pond depth 

and lateral extent must be made for given runoff volumes. Thus, the sensitivity of 

recharge estimates to the boundary conditions representing the pond's lateral extent and 

depth needs to be evaluated. 

Sensitivity Analysis I 

Sensitivity Analysis I examined ponding depths of 30 and 90 em spread laterally 

along the smface for 5 m, 12m, 15 m, and 20m to detennine how sensitive infiltration 

and subsurface water movement were to these boundary conditions. The affectability of 

water movement to the depth of a pond was tested by placing a constant head flux 

boundary of 30 em and 90 em at the four prescribed lateral extents. For this analysis, 

two ponds of271 m3 and 419m3 were separated by a 990 day drainage event. Initial 

conditions were set at -I 00 m, which represents a dry antecedent condition. The model 
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was run until the predetermined volume of water had infiltrated the surface and the 

results compared. The method of infiltrating a set volume of water most closely 

represents reality yet strongly influences the maximum depth of water movement. The 

head prescribed to the pond will control the time to fully infiltrate the pond. 

The greater pressure head at the surface did affect the rate of infiltration and thus 

the time required to infiltrate the prescribed pond volume (Table 5). For the same 

volume of pond, the deeper pond infiltrated an average of 33% faster, directly 

proportional to the difference in pond depths. In each case, varying pond depth from 30 

to 90 em proved to have a negligible effect on the final depth of water movement (Table 

6). Water content profiles appeared nearly identical for pond depths of 30 em and 90 

em (Figure 12). A larger head (deeper pond depth) for one lateral extent would mean a 

greater volume of water, therefore resulting in a deeper wetting front. In this study, a 

relatively small range of heads was examined but the fact that a set volume of water was 

infiltrated limited the effect. If the infiltration simulation was run for a set time or if it 

simulated a falling head for an initial pressure head, the effect would be far more 

pronounced. 

In the case of the 5 m lateral extent, the simulation was stopped after 30 days 

although the entire volume of water had not infiltrated. The confining layers of silt 

loam and loam limited water movement beneath the playa. Flat topography of the playa 

region in crater USa would preclude the possibility of a 30 em deep pond being 

confined to so small a lateral extent. It did successfully demonstrate the "capping" 

ability of the playa material. Final water contents of all scenarios where the pond 

extended beyond the playa demonstrate the preferential movement of water outside of 



the fine-grained material. Infiltration is focused through the peripheral region of the 

playa. 
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lf deeper water movement is taken to be a "worst case" scenario for purposes of 

risk assessment, then lateral extent of the pond is a controlling factor of potential 

recharge. The surface area covered by the pond is a function of many factors, including 

volume of pond and crater topography. The surface runoff volume depends upon storm 

intensity, antecedent moisture condition of the soil, and soil hydraulic conductivity. 

Considering only surficial soil texture, as in the case of SA I, the pond extending 2 m 

beyond the playa, as assumed by Hokett and French (1998), had the deepest water 

movement and the pond extending I 0 m beyond the playa resulted in the shallowest 

(excluding the 5 m case, for reasons listed above), as seen in Figure 13. The difference 

between wetting front depths was clearly evident after only 2 ponding events. 

Following only 2 of the modeled 14 ponding events, water movement in the 12m pond 

penetrated 60% deeper than the 20 m pond. 

Sensitivity Analysis II 

Sensitivity Analysis II (SA II) examined the effects of initial condition on 

recharge estimates. Crater U5a is located in an extremely arid environment where 

potential evapotranspiration greatly exceeds precipitation. These factors produce dry 

soils overlying a very deep water table. Knowing that unsaturated hydraulic 

conductivity decreases as water content decreases, an attempt to quantify potential 

recharge due to initial conditions beneath crater USa was undertaken. 



60 

Three separate initial matric heads of -10 m, -200 m, and matric head set in 

equilibrium with the water table were modeled for a series of 14 ponds and drainage 

events. The playa region was represented by silt loam over silt, with the remainder of 

the domain as sandy loam, as assumed by Hokett and French (1998). Pond depth and 

lateral extent were set at 60 em and 12 m, respectively. The deep water table at 200 m 

below land surface results in a matric head changing linearly with depth for a value of 0 

at the water table to-200m at the surface. 

The first scenario represented relatively moist conditions, as the entire domain 

was set at h =-10m. The higher matric head did not depict actual field observations, 

but rather was meant as an upper limit. While this initial condition is by no means 

close to the soil field capacity (h = -3.5 m) or saturation (h = 0 m), water movement 

reached a depth of 130.0 m. 

The second initial condition observed was-200m throughout the domain 

(Figure 14). This matric condition was chosen to equal the depth of the water table and 

to represent an extremely dry lower limit, even in close proximity to the water table. 

Maximum depth of water movement was 129.8 m, nearly equal to that of the -I 0 m 

condition (Figure 15). 

The third initial condition modeled was a matric head set in equilibrium with the 

water table (Figure 14). This approach more closely approximates actual field 

conditions. Near the water table, the soil will be saturated in the capillary fringe but 

under negative heads. The unsaturated soil will become increasingly drier as the land 

surface is approached. For this condition, water infiltration and redistribution reached a 



depth of 129.5 m, once again nearly mirroring the results of the first two scenarios 

(Figure 15). 
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The similar depths for all three initial conditions can be explained by an 

examination of the hydraulic conductivity function, K(h) and water retention function, 

9(h) as shown in Figure 16 and Figure 17, respectively. Although the matric heads for 

the first two scenarios span an order of magnitude (-200m to -I 0 m), the entire range is 

very dry with minimal difference in water storage capacity. Water retention data for 

sandy loam showed residual water content was reached by h = -10 m. Water content 

decreased minimally below this point As unsaturated hydraulic conductivity is a 

function of head or water content, K(h) will be relatively the same low value for each of 

these initial conditions. In the third scenario, matric head was linearly proportional to 

depth, therefore matric heads ranged from -200 m to -130 m over this infiltration depth 

range. Once again, such dry conditions would dictate a similar K(h) and available water 

storage throughout the simulation. However, for this initial condition, the rate of water 

movement would be expected to increase as the wetting front approached the water 

table. The simulation ended when the wetting front was still nearly 70 m from the 

saturated zone. Within 10m of the water table (h =-10m), water content would begin 

to be great enough to strongly influence the hydraulic conductivity and storage capacity, 

thereby accelerating the rate of downward redistribution. The graph of hydraulic 

conductivity versus head (Figure 16) shows a break in the relatively flat gradient above 

h = -1000 m for the coarse material. This matric head, representing close proximity to 

the water table, would dominate the rate of unsaturated flow. A simple least-squares 

regression for depth of water movement from time predicts the wetting front will reach 



a depth of 190m at 49.5 years. Results of SA IT appear to show a negligible effect of 

initial conditions on depth of water movement to the tested depth. 

Particle Size Analysis along Surface Transect 

62 

Hydrometer and dry sieve results from soil samples taken along the surface 

transect showed a spatial relation for particle size analysis (Figure 18). Moving south 

away from the large erosional gullies, soil textures became increasingly fine-grained 

(Table 7). The playa region was distinguishable by a high clay content and the absence 

of vegetation (Figure 19). The northernmost sampling stations (90 through 165) are 

loamy sand to sandy loam. A sharp change in texture occurs between stations 70 and 

80, the surficial beginning of the playa region. Within the playa, the soil texture 

continues to become finer towards the south, grading from silt loam to clay. This 

occurrence is not surprising, as the predominant direction of overland flow is from the 

gullies in the north towards the south. Upon entering the crater (and leaving the more 

confining channels), flow velocity decreases and the heavier, coarser material is 

preferentially deposited near the gully entrance. The two southernmost sampling 

locations, 1 OS and 20S, are sandy loam, representing more recent erosion from the steep 

crater walls. Sampling stations outside of the crater (A, B, and C) were loamy sand to 

sandy loam. 

Particle Size Analysis with Depth 

Depth disturbed soil samples were collected in the field with the Gidding' s 

probe and analyzed in the laboratory by the hydrometer and dry sieve methods. If 

intermittent ponding occurred since crater formation as predicted by the surface runoff 
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modeling, then subsurface examination would find a pattern of layering with depth of 

the sedimentation events. It is unlikely that the playa would extend down to the original 

crater surface (14.6 m below present-day land surface). Instead there would exist 

alternating layers of fine playa material and coarse material, representing deposition 

from individual pond events. Neither of these two possibilities was found. Results 

showed two modes of deposition occurred within crater USa. The soil texture of the 

upper 6 m at the crater center, stations 30 and 70, exhibited gradual coarsening of soil 

texture with depth (Figure 20). Not only was the total sand content found to 

continuously increase with depth, but this size fraction was found to get coarser, with a 

gradual shift from very fine sand to very coarse sand (Table 8). Additionally, the 

deepest samples, at 5.9 m, contained gravel size particles. Soil texture determination 

was also completed in the field by Dr. G. V. Wilson (Appendix A). These results 

matched closely those determined in the laboratory and provide further evidence of 

coarsening with depth at other transect locations. The heavier, coarser sediment would 

be deposited first in the crater. The lighter, finer sediment would remain suspended 

until the flowing water stagnated and velocity decreased in the vicinity of the playa. 

Since there was no alternating coarse to fine layering in this zone of deposition, it is 

clear this is a single ponding event. This trend has the appearance of a crater-sized 

sedimentation cylinder. The particle size distribution at the crater center strongly 

suggests a single large ponding event deposited the upper 6 m of sediment, given the 

contact with gravel at 6 m. Additionally, deep drilling conducted by Hokett and 

Gillespie showed gravelly loamy sand below this suggesting that the entire 14.6 m was 



deposited in one event. A simplified cross section of the crater is presented in Figure 

21. 
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A surface of fine-grained silts and sands form a near continuous layer around the 

northern half of the crater sideslope and appears in places along the steeper southern 

slopes. This surface expression has the appearance of pond deposition, the top of which 

appears to constitute a high water mark (Figure 7). Field observations and 

measurements using an estimated slope and measured distance from the rim of the 

crater to the top of this surface coating show a uniforn1 height of 5 m below the rim, 

again suggesting water deposition. A stage-volume relationship can be calculated from 

the topographic survey of crater U5a and this apparent high water mark. Assuming the 

large ponding event occurred on the original crater dimensions, it would have had a 

volume of approximately 63,000 m3
• This large pond is further supported by the large 

erosional gullies which are evidence of a high energy event. 

The surface of the crater bottom outside the playa region was high in gravel and 

sand down to 2.5 m. While the surface does increase in elevation away from the playa, 

it rises only 100 em at station 120. Thus, this coarse surface material of gravel and sand 

north of the playa is not from the same deposition event as that seen at the crater center 

which supports an initial single large deposition event. Below the 2.5 m depth, the 

particle size distribution does mimic the distribution at the crater center. The coarse 

upper 2.5 m to the north side of the playa suggests that subsequent deposition events of 

considerably lower magnitude occurred. However, it appeared to be of sufficient 

energy to cut into and mix with the upper portion of the previous deposition near the 
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entrance into the crater. The sediment would fall out in accordance with Stokes' Law, 

leaving a gradation from coarse to fine particle with distance from the gully entrance. 

Saturated and Unsaturated Hydraulic Conductivity 

Infiltration into the soil is the flux of water vertically downward through the 

surface. Once steady state is reached, the hydraulic gradient approaches unit so that the 

infiltration rate can be considered the saturated hydraulic conductivity for the ring 

infiltrometer measurements and K(h = 15 em) for the tension infiltrometer 

measurements. Results of the ring infiltrometer and tension infiltrometer measurements 

conducted for saturated and unsaturated hydraulic conductivities appeared to be related 

to soil texture. The same spatial trend for particle sizes held true for KsAr and K(h) as 

well, with values decreasing from north to south and then increasing at the toe slope 

position south of the playa (Table 9). Results of the field infiltration procedures are 

presented in Appendix B. 

Steady-state infiltration for the ring infiltrometer was reached relatively quickly 

for the coarse soils, less than an hour in most cases. Within the playa, measurements 

were taken for a 24-hour period to ensure accuracy of the steady-state measurement. 

Some lateral flow may have occurred but the results seem reasonable. 

Along the transect of crater U5a, distinct zones of hydraulic conductivity were 

identified. More than two orders of magnitude difference existed for KsAr between the 

playa region of silty clay to clay and the coarse loamy sands. The KsAr for sandy loam 

and loamy sand soils within the crater was 4.0 mid (coefficient of variation :52%). 

Mean values for stations 20S and lOS were 25% lower due to the greater percent of 
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silts. The fine-grained playa material had KsAT values spanning 2 orders of magnitude, 

with a mean KsAr of 0.05 mid and a coefficient of variation of 60 %. Thus the KsAT of 

the playa region is nearly 2 orders of magnitude lower than the coarse material outside. 

Measurements for K(h) at -15 em head were begun immediately following the 

ring infiltrometer procedure for KsAr, meaning the soil was saturated at the initiation of 

all tension infiltrometer measurements. As infiltration continued, the rate decreased to 

a steady-state value as the soil desaturated into equilibrium with the prescribed tension. 

The flux into the soil under the prescribed tension under steady-state flow was taken to 

be K(h). For the loamy sand to sandy loam textures, unsaturated conductivities were 

decreased by approximately 50% over KsAT· Average value of K(h = -15 em) for these 

soils was 2.2 m/d (coefficient of variation = 91 % ). Within the playa, rates decreased 

by only 20% over the associated KsAr values. Average value of K(h = -15 em) for these 

fine-grained soils was 0.03 m/d (coefficient of variation= 133 % ). Thus, there is nearly 

a 2 order decrease inK (both KsAr and K(h = -15 em)) between the playa and coarse 

material. Tension infiltrometer malfunction prevented measurements from stations 50 

and 80. Measurements of K(h = -15 em) for the fine grained material may need further 

evaluation to be reliability qualified. Stations 30 and 40 actually demonstrated a slight 

increase in infiltration rates from the saturation to -15 em head, whereas stations 60 and 

70 produced decreases in rates of 1 to 2 orders of magnitude. Expected rates at this 

tension for this texture would be a negligible difference from saturated conductivity 

rates. Once again, field techniques and equipment may have produced unreliable results 

at stations 60 and 70. 
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Water Retention Characteristics 

Hanging water columns and pressure chamber analysis for water retention 

characteristics were completed for each sampling station, with the exception of 50, 70, 

and 80 (Appendix C). For these three stations, only high tension measurements for 

loose soil were accomplished and lower tension values were taken from similarly 

textured samples. Data were graphed for volumetric water content, 6, versus matric 

head (Figure 17). For purposes of the log function along the x -axis, 0 em was graphed 

as -1 em. A matric head of -15 em was also chosen as the lowest applied tension to 

match the head used for the tension infiltrometer. The air entry pressure, h., is the point 

along the water retention curve where air begins to displace water within the pores such 

that water content has measurably decreased. This value would be less negative for 

coarser grained soils and more negative for finer grained soils due to the differences in 

soil structure and porosity. The saturated water content was directly measured as the 

water content upon removal of the core from the tub of water with the water level at the 

top of the core. Saturated water content was taken to equal porosity and calculated as a 

function of bulk density, the mass of the saturated core and the mass of the dry core. 

Another method of porosity, and therefore saturated water content, calculation follows 

the formula 6s = [I -(bulk density/particle density)], where particle density is generally 

taken to be 2.65 g/cm3
. fu this study, these two methods of 8s determination do not 

yield the same result. The discrepancy could be caused by (I) the core not being fully 

saturated, (2) air entrapped within the core sample during saturation, or (3) the actual 

particle density does not equal 2.65 g/cm3
• A sharp decrease in water content occurred 
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for all samples between -500 em and -1000 em head, which coincides with the change 

from intact core sample to loose soil in the ring. 

Water content decreased rapidiy in the coarse-grained soil at high (less negative) 

matric heads and approached residual water content at -100 em for the loamy sand and 

sandy loam soils. Average bulk density pa for the loamy sand was 1.42 g/cm3 and 1.39 

g/cm3 for the sandy loam. Average saturated water contents for the loamy sand and 

sandy loam were 0.42 cm3/cm3 and 0.41 cm3/cm3
, respectively. 

Water content decreased gradually in the fine-grained soils until -I 000 em, but 

still did not approach the anticipated residual water content at -3000 em. Average bulk 

density for all the fine-grained soils was 1.14 g/cm3 and average saturated water content 

was 0.51 cm3/cm3
. 

van Genuchten Parameters 

The RETC code, developed by van Genuchten (1980), was used to model the 

water retention data by estimation of alpha, m and n. The residual water content was 

set to equal the measured value at h = -3000 em and the Mualem model [m = 1-(1/n)] 

was assumed in order to fit for the alpha and n parameters. Results are listed in 

Table 10. 

Both alpha and n are shape parameters used to describe the water retention curve 

and are dependent upon the soil texture and structure. Alpha is related to the air entry 

value by a= 1 lh •. For simplicity of notation, a is considered positive as ha is expressed 

as tension. Coarsely textured soils, such as sandy loam and loamy sand, will begin to 

lose water at lower tensions and thus will have a higher alpha value than fine-grained 
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soils. The n parameter describes the slope of the water retention curve and is a function 

of the pore size distribution (soil stmcture). A higher n value produces sharper 

decreases in 6 with h while lower n values produce gentler slopes. A coarse soil 

generally exhibits a sharp decrease in water content over a relatively small decrease in 

head so the value of n is greater than that of a fine-grained soil. 

As in past sections, the coarse-grained loamy sand and sandy loam will be 

discussed separately from the fine-grained loam to clay materials. Alpha values for the 

coarse material were higher than those found in other studies (Shott et al., 1997; Bechtel 

Nevada, 1998d). This observation signifies a less negative air entry value than those 

found in similar studies. For this procedure, the sandy loam was found to have a 

slightly higher average value of 0.044 cm·1
, as opposed to 0.038 em·' for the loamy 

sand. Both values still indicate a large decrease in water content at a relatively high 

matric pressure (-23 em to -26 em). Shott et al. (1997) and Bechtel Nevada (1998d) fit 

alpha values of0.018 cm'1 (h.= -55 em) and 0.012 em·' (ha = -83 em), respectively, but 

the first head applied to their core samples was -40 em. The lower initial matric head 

(-40 em vs. -15 em) could account for their lower alpha parameters. The soil property 

menu furnished in HYDRUS-2D contains values based upon the work of Carse! and 

Parrish (1988) and more closely match the alpha values in this study. HYDRUS-2D 

provides an alpha value of 0.075 cm'1 (ha = -13 em) for sandy loam and 0.124 cm·1 (h, 

= -8 em) for loamy sand. The van Genuchten n parameter showed good agreement 

between the two coarser soil textures, loamy sand had n equal to 1.75 and sandy loam 

equaled to 1.74, and the Bechtel Nevada (1998d) value of 1.75. Shott eta!. (1997) and 

HYDRUS-2D determined steeper slopes of the water retention curve. The n parameter 
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in Shott et al. (1997) was 1.9 and HYDRUS-2D has n equaling 1.89 for sandy loam and 

2.28 for loamy sand. Given that n has a range of I to around 4, these values are fairly 

consistent and seem reasonable for these textures. 

Alpha and n parameters for the fine-grained sediments matched expected results 

even more closely. Alpha values ranged from 0.018 cm·1 to 0.023 cm·1 (h, = -43 em to 

-54 em). HYDRUS-2D provides values 0.019 cm·1 to 0.027 cm·1 for the a parameter of 

these textures. The shape of the water retention curve proved, as expected, to be far 

more gentle in the silts and clays than the sands, with average n values equaling 1.28. 

This result matches closely the HYDRUS-2D range of 1.23 to 1.31. Bechtel Nevada 

(1998d) and Shott et al. (1997) did not test for hydraulic properties of fine-grained soils, 

therefore no comparison can be made. 

Final Modeling Scenario 

Physical characteristics of crater USa support the conclusion that an extremely 

large ponding event occurred since crater formation. Three pieces of evidence exist: 

(I) A ring of depositional material is clearly evident at a height of 20 m above 

the current crater floor. Stage-volume relationships of the initial crater 

dimensions place such a pond's volume at approximately 63,000 m3
. 

(2) Large erosional gullies suggest intense high energy surface water events. 

Distinct channels tracked for 8 km back toward the mountain ridges suggest 

extremely large events are possible, much greater than the 0.65 km2 used in 

runoff prediction. 
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(3) Particle size analysis of the upper 6 m provides additional evidence of a 

large scale, one-time deposit of sediment. Soil texture becomes coarser with 

depth, with a clayey playa at the surface grading to sands and gravels. More 

recent surface flow into the crater has deposited a layer of coarse material 

along the crater surface but the visible sands and gravel do not represent the 

entire rubble chimney. 

Method of Final Modeling Scenarios 

A more precise estimation of recharge potential at crater U5a was undertaken by 

incorporating data determined in the field and laboratory into a final modeling scenario. 

This process was divided into two separate procedures, an initial large pond event of 

63,000 m3 followed by a series of 14 smaller ponding and drainage events. 

The large pond event indicated by depositional high water marks and laboratory 

particle size analysis was assumed to occur in the crater represented by the topography 

immediately following detonation. Neither playa surface nor depositional sequence 

would have existed and no spatial trend of hydraulic properties were assumed with 

depth. There is no question that heterogeneity exists in the subsurface, however a 

homogeneous media was selected for the modeling process. Subtle layering as 

examined by Bechtel Nevada (1998d) was not used. The preferred pathways for 

vertical flow that may exist due to the bulking of the rock or instrumentation of the shot 

hole were also not considered. Soil properties for the undisturbed alluvium were 

selected from the Area 5 PA (Shott et al., 1997) and discussed earlier in Table 2. Initial 

conditions were set in equilibrium with a water table along the bottom boundary. 
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Matric heads were a function of depth and ranged from 0 at the water table to -200 m at 

the top boundary. As in Sensitivity Analysis I, no-flow boundaries were assigned along 

the vertical sides and free drainage along the bottom boundary. During infiltration of 

the pond, a constant pressure head along the crater surface to a height of 20m above the 

crater floor was used. The remainder of the top boundary was a no flow condition. 

Following infiltration of 63,000 m3 of water, the entire top boundary was changed to an 

atmospheric condition. Evapotranspiration rates for the 30 years of drainage following 

infiltration were taken from the Area 5 PA (Shott eta!., 1997) (Figure 22). The 

monthly average ET was divided by 30 days and applied uniformly throughout the 

month. The dimensions of the domain for this modeling scenario are shown in Figure 

23. Depth to the water table was 200m but a wider domain in the x direction (110m) 

was chosen to avoid the influence of the right side no-flow boundary condition. 

MESHGEN-2D generated a mesh of 3729 nodes, 7217 triangles, and 10,945 

line segments for the domain. Finer discretizations were once again used near the soil 

surface to handle the region of distinct differences in fluxes and pressure gradients. The 

maximum vertical discretization was 6 m near the bottom boundary and minimum 

discretization was 0.5 m along the surface. 

Infiltration of the pond was accomplished incrementally to capture some of the 

change in head that would occur as the water level initially rises. The time for the 

model to complete infiltration, therefore, does not accurately represent the actual time 

required. Head was increased with each successive day, with the greatest increase along 

the crater bottom. The first two head conditions ran for I day each, the second two 

head conditions ran for 5 days each, and the fifth head condition ran for 1.2 days. At 



this location, the constant head went from 1 m to 20 m. After 13.2 days, simulated 

infiltration of 63,000 m3 was completed and the top boundary was changed to an 

atmospheric condition. Redistribution for a period of 30 years was then simulated. 
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The second procedure consisted of modeling the 14 (relatively) small 

ponding/drainage cycles. A smaller, more detailed model domain was constructed to 

closely examine the effects of layered soil types on vadose-water flow. Also taken into 

consideration was actual surface topography that currently exists in crater USa. 

Dimensions are shown in Figure 23 and 24. Sediment deposition since crater formation 

has been surveyed as a thickness of 14.6 m. The model extends approximately 5 m 

below that region. The actual crater surface is almost completely level throughout the 

playa region and then rises gradually to the steep walls. This gradient is captured in the 

model with a flat surface for the first 16 m, a slope of 0.03 over the next 29 m, and 

finally a slope of 0.87 over the next 15m. Initial conditions were set throughout the 

domain at-10m. This value represents the relatively wetter conditions that would have 

existed following the large ponding event previously discussed. This matric head is 

certainly higher than the initial conditions found in the undisturbed region adjacent to 

the crater in 1996 but considerably lower than the saturated (h = 0) condition that would 

have existed following large pond deposition. 

The same method and pond/drain characteristics were used as discussed in 

Sensitivity Analysis II. ET rates were identical to those discussed in Shott et al. ( 1997). 

Initial conditions, soil types, and model domain were quite different from any 

previously discussed and most closely represented actual conditions observed in the 

field. 
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Six soil textures in seven layers were modeled to represent the subsurface. 

Hydraulic properties and sources for the values are summarized in Table 11. A 

simplified cross section is shown in Figure 21. The top layers of silty clay and loamy 

sand are more recent depositions from the smaller series of ponding events. The 

remainder of the underlying sediments is most likely from the large ponding event that 

eroded the bulk of the erosional gullies found at the north end of the crater. The 

sediment suspended within the 63,000 m3 pond was deposited based on the soil texture, 

represented by the coarsening with depth. 

MESHGEN-20 generated a mesh of2610 nodes, 4969 triangles, and 75781ine 

segments for the domain. As in all previous modeling scenarios, finer discretizations 

were used near the soil surface to manage the region of distinct differences in fluxes and 

pressure gradients. In this scenario, though, it was even more critical in order to handle 

the sharp contrast in soil types in the multi-layered system. The maximum vertical 

discretization was 2.5 m near the bottom boundary and minimum discretization was 

0.12 m along the surface. 

The final modeling scenario incorporated all field and laboratory data, as well as 

the information learned from the two sensitivity analyses, to predict potential recharge 

beneath crater USa. The conceptual model for this simulation represents the most 

appropriate boundary conditions, initial conditions and soil properties and ponding 

event. Data and field observations point to a large ponding event measuring 63,000 m3 

in volume. Although this was possibly not the first runoff event to reach the crater, it 

was definitely the most significant in terms of size and recharge. Therefore, no ponding 

events were considered prior to the ultimate pond. A pond of this magnitude would 
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have saturated the initially dry crater which consisted of the collapsed original surface 

material. Evapotranspiration of this infiltrated water would prove to be negligible 

because (I) the sediment from this large pond would have covered the infiltrated water 

and (2) no salt cedar or other vegetation would have existed to transpire the infiltrated 

water. The entire volume ofthe pond could be considered available for infiltration and 

potential recharge. After the pond drained into the mbble chimney, the hydraulic 

gradient would redistribute the wetting front predominantly downward while 

subsequent smaller series of ponding/drainage events would continue. One 

complication with modeling the large pond event is the inability of HYDRUS-2D (and 

other numerical models of Richards' equation) to handle a change in the flow domain 

geometry midway through the simulation. Thus, the deposition of 14.6 m of sediment 

following infiltration of this large event cannot be modeled as a continuous infiltration­

redistribution process. To adequately capture this process, the final modeling effort was 

separated into two parts: (1) infiltration of the large pond followed by 30 years of 

drainage using the original crater surface and (2) infiltration and drainage of 14 smaller 

ponds over a period of 30 years using the current surface features and the water content 

profile at the time the pond volume had infiltrated. 

Results of Final Modeling Scenarios 

Infiltration of the large pond was simulated by progressively decreasing heads 

along the crater bottom and the sloped crater walls and allowing the model to mn for set 

periods of time that approximated the falling head. The elapsed time that the model 

predicted for the pond to fully infiltrate is not accurate but the behavior of the wetting 



76 

front as it redistributed through the homogeneous media over the subsequent 30 years is 

a fair representation. Results are summarized in Table 12. 

The modeling of the large pond examined five different steps for a simulated 

13.2 days. Over this time 63,400 rn3 of surface water was infiltrated. The downward 

movement of the wetting front reached a depth of 38 m in this 13.2 days (Figure 25). 

The water content at this depth was 0.35 m3/m3
, which is greatly elevated over the 

undisturbed condition of 0.075 m3/m3
. The pond fully saturated the soil prior to and 

during the deposition of the 14.6 m of sediment. 

The end of the infiltration of the large pond was considered Time = 0 for the 

beginning of the 30 year redistribution. The domain remained constant, ignoring the 

presence of the sediment occurring from deposition. The upper boundary condition was 

switched from a constant head to an atmospheric condition, where ET was allowed, and 

the wetting front allowed to drain. The movement of that wetting front reached a depth 

of 140m below the original crater bottom in just I 0 years (Figure 26). According to 

this simulation, surface water from the original ponding event reached the water table at 

200 m below land surfaee within 30 years (Figure 26). The rate of movement of the 

wetting front towards the end of the simulations was 2.5 m/year. Net rate of water loss 

from the bottom boundary (water table) during the final time step was 21.3 m3/yr. Loss 

due to evapotranspiration over this same time period equaled 2400 m3
, 3.8% of the 

originally infiltrated water, with some of this total loss coming from the undisturbed 

region adjacent to the crater. A more likely scenario is that the ET loss would be lower 

than this due to the surface sealing for the sediment and lack of vegetation. Thus, the 

time to reach the water table may actually be sooner than predicted. 



Volumetric water contents of borehole U5a-Nl determined from neutron 

moisture meters showed an increase from the undisturbed values of borehole U5a-N2 
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(Hokett and Gillespie, 1996) (Figure 27). A dramatic shift in water contents occurs 8 to 

I 0 m deep at the crater playa region, being highly water stressed above 8 meters. 

Previous modeling attempts by Hokett and French (1998) have been unable to duplicate 

these results. The modeling of periodic, small ponding events in the range of 300 m3 to 

500m3 never penetrated below the fine-grained playa region, leaving predicted matric 

potentials extremely low in the area of the borehole measurements. Hokett and French 

(1998) predicted focused recharge with high e along the peripheral region of the playa 

but the area directly beneath the playa remained similar to the undisturbed, pre-test 

initial conditions. However, simulation of the large pond on coarse-grained soil 

reproduced these wetter conditions and closely reflected the observed measurements. 

Throughout the modeled depth profile, volumetric water contents were in the range of 

0.10 to 0.15 m3/m3
• The exact time elapsed since the proposed large ponding event is 

unknown so the time step that best represents current conditions and the maximum 

depth of the wetting front cannot be determined. The modeling performed in this study, 

however, most closely reflects the increased matric head found with depth beneath the 

playa. 

A basic understanding of a large pond on the original crater surface was 

achieved by modeling 30 years of subsequent drainage. This exercise provided no 

insight into the hydraulic behavior of the crater surface following the deposition of 14.6 

m of sediment from the large pond as it now exists. The crater surface, immediate! y 

following detonation of the "Wishbone" event, consisted of coarse sandy loam and 
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loamy sand, providing a transmissivity for rapid infiltration. Sediment suspended in the 

large pond settled out in the manner of a sedimentation cylinder with progressively 

coarser material with depth. Know ledge of the ability of the crater's "natural cap" to 

retard or allow water movement was required to properly quantify current and future 

recharge potential. This study attempted to discern this ability by examining six smaller 

ponding events on the sediment infill. 

A smaller modeling domain was created to investigate the hydraulic properties 

of the depositional material. This approach permitted the layering required to 

adequately capture the heterogeneous nature of the shallow surface sediments, including 

the hydraulic parameters of the fine-grained playa material. The ability of these soils to 

transmit or prevent flow would lend much understanding to the recharge potential of a 

subsidence crater after a natural capping had occurred. 

Six separate ponding events were placed on the crater bottom and allowed to 

infiltrate their respective volume of water, using the previously discussed method. Each 

was then followed by an associated drainage period. The initial condition of the entire 

domain was set at-10m to reflect the sufficient period for drying before the next. 

Pond infiltration occurred extremely rapidly, owing to the lateral spread of the pond 

extending across the coarse soil. During drainage periods, much of the moisture loss 

occurred in the area adjacent to the crater, an undisturbed region set at a matric head 

equal to -10 m for model simplicity. The total net inflow of water to the subsurface 

showed a generally cyclic pattern (Table 13). Immediately following ponding events, 

the upper layers of the model increased in water content, as expected. Over the 

drainage period, however, most of that moisture was evapotranspired to the atmosphere. 
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The domain was separated into four observation areas to examine net 

inflow/outflow (Figure 28) and the results summarized in Table 14. The uppermost 

portion of the crater (region I) had a net loss of water and the deepest portion (region 4) 

remained unchanged, indicating no water movement reached a depth of 18m. Region 

2 had an increase in total water volume. Region 3 included the entire undisturbed area 

of the crater, so the significant loss of water directly reflects this fact. HYDRUS-2D 

output (Figure 29) shows graphically the penetration of the wetting front into regions 2 

and 3. These results show that although a large portion of the precipitation does not 

become available for recharge, a small percent can. 

Modeling results show that the closure of a subsidence crater by the deposition 

of fine-grained sediments can act to prevent infiltration. This hydraulic barrier is 

provided by the sufficient layering of heterogeneous soils and associated increased 

storativity of the fine-grained surface material. The size and frequency of the modeled 

ponds may greatly exceed the actual occurrence, yet the simulated crater with layered 

sediments performed adequately in prohibiting deep percolation. The presence of the 

wetting front beneath the uppermost layers outside the playa region does exist and 

should not be ignored, however the relatively small volume places it into perspective. 

The playa can restrict percolation. The coarse material edges can serve as a preferred 

flow region, as predicted by Hokett and French (1998) if the pond is extended beyond 

its border. If these conditions are met, the whole of the pond's volume is focused in a 

small peripheral area and deeper movement of the wetting front will occur. The larger, 

deeper ponds modeled along the gentle grade of the crater bottom spreads the 

infiltration across a large surface area, resulting in muted recharge potential. The flow 



of water through the clay layers or tlow from the loamy sands into the silts and loams 

limit the amount of water available for deeper percolation. 

Conclusion of the Final Modeling Scenario 

so 

Three pieces of evidence were discussed previously to support the conclusion 

that an extremely large ponding event occurred since crater formation. Verification of 

this conclusion comes from modeling results. The simulated water contents matched 

closely those determined in the field and laboratory. The instrumented borehole 

admittedly reaches only 30m, so validation of modeling results is impossible beyond 

this depth. The most credible explanation for the wet conditions directly beneath the 

playa point to a large ponding event occurring before the layered sediment that 

constitutes the current crater morphology was deposited. 

Future recharge, above and beyond the water that already resides in the system, 

is controlled by the current hydraulic parameters. The large pond did flow onto the 

coarse sands and gravel and readily infiltrated the surface. Given time to redistribute, 

the model predictions had the wetting front reaching the deep water table in 30 years. 

Nearly 15m of layered soils, including a sequence of clay, silt and sandy loam layers 

with depth, effectively prohibit significantly more recharge. Assuming infrequent 

ponding events two orders of magnitude less volume than the large pond, the deposited 

sediment will recycle much of the precipitation and ponded surface water. A natural 

crater closure is therefore provided. 
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Figure 12. HYDRUS-2D modeling results for SA I showing depth of 
infiltration after 2 ponding events for 30 and 90 em head at two lateral 
extents. The flow domain was 40 m deep. 
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Figure 13. Modeling results for SA I showing the depth of water 
movement into the 40 m deep domain after 2 ponding events for 
5, 12, 15, and 20m lateral extent of ponds. 
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Figure 14. HYDRUS-2D modeling results of SA II indicating the initial conditions tested (WT =equilibrium with 
the water table; NWT =-200m matric head throughout domain) at two selected time periods. 
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Figure 15. Maximum depth of water movement for 33 years of simulations for (a) initial conditions of-200m 
throughout the domain (NWT) and (b) initial conditions set in equilibrium with water table at the 
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Figure 17. Water retention measurements (symbols) and van Genuchten model (line) 
for three representative soil types. 
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Figure 19. Picture of surface playa in crater U5a. 
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Figure 21. Simplified cross-section of crater USa based upon analysis of the drilling samples. 
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Figure 22. Potential evapotranspiration calculated with the Penman combination 
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Figure 23. Diagrams showing the mesh and domain for the final modeling scenarios: (a) original crater surface to the 
water table and (b) present crater with sediment infill. 
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Figure 24. Domain and geometry depicting sediment layering for a) entire domain 
and b) crater infill region. 
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Figure 25. Modeling results showing water movement to the bottom of the 200m deep domain following infiltration 
of 63, 000 m3 ponding event. 'R 
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Figure 26. Modeling results of water content (m3/m3) versus depth (m) from the center of the playa region following 
infiltration of 63,000 m3 ponding event. \D 
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Figure 27. Water contents measured with a neutron moisture meter during the spring 
and summer of 1996 for U5a-N I (From Hokett and Gillespie, 1996). 
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Figure 28. Multi-layered sediment observation regions for examination 
of inflow/outflow. 
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Figure 29. HYDRUS-20 modeling results showing water content distribution 
in the multi-layered sediment in the crater at the end of (a) infiltration of the 
2nd pond, (b) redistribution of the 2nd pond, (c) infiltration of the 6th pond, 
and (d) redistribution of the 6th pond. 
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Table 5. Combined time (in days) for infiltration of 2 pond events. 

Denth 5m 12m 15m 20m 
30cm 60 0.9 0.3 0.1 
90cm 60 0.6 0.2 0.08 

Table 6. Maximum depth (in meters) of water movement. 

oenth 5m 12m 15m 20m 
30cm 11.4 18.6 16.9 11.2 
90cm 10.9 18.7 16.9 11.6 
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Table 7. Particle size analysis along crater transect. 

STA Texture Gravel% Sand% Silt% Clay% 

20S SL 0.2 66.2 26.2 7.4 
10S SL 1.5 68.0 28.2 2.3 
00 SiC 0.7 6.5 44.0 48.8 
10 SiC 0.2 3.2 42.8 53.9 
30 SiCL 0 1.7 58.8 39.5 
40 SiCL 0 0.7 69.5 29.8 
50 SiCL to Sil 0 0.3 72.3 27.4 
60 SiL 0 0.5 89.3 10.2 
70 SiC 0 1.0 54.9 44.1 
80 SiL 0.7 15.4 68.2 15.8 
90 LS 1.0 77.8 16.3 4.9 

105 LS 1.0 76.1 17.3 5.6 
120 LS 1.9 81.3 12.0 4.8 
135 SL 0.7 74.2 13.7 11.4 
150 LS 4.8 78.5 12.8 3.9 
165 LS to SL 0.9 77.1 16.4 5.5 
A LS 3.5 75.1 17.2 4.2 
8 SL 4.1 65.8 21.5 8.6 
c LS to SL 2.6 74.5 16.4 6.5 



Table 8. Particle size analysis for depth (m) at transect locations 30, 
70, 120, and !50 for very fine sand (VFS), fine sand (FS), medium 
sand (MS), coarse sand (CS), and very coarse sand (VCS). 

Sta 30 VFS FS MS cs vcs 
0.76 0.2 0.2 0 0 0 
1.07 0.1 0.1 0 0 0 
1.98 0 0 0 0 0 
2.29 0 0 0 0 0 
3.35 1.0 1.0 0 0 0 
4.72 12.6 18.8 5.8 0 0 
5.33 26.9 42.5 3.9 0.3 0 
5.64 30.0 50.8 4.3 0.2 0.1 
5.94 16.6 31.4 10.2 4.9 4.9 

Sta 70 VFS FS MS cs vcs 
0.91 0.3 0.4 0 0 0 
1.37 0.2 0.3 0.1 0 0 
2.04 0.3 0.3 0 0 0 
2.44 0.1 0.1 0 0 0 
3.66 0.2 0.2 0 0 0 
4.27 12.0 16.7 1.1 0.1 0 
5.03 27.7 47.7 5.8 0.4 0 
5.64 22.5 48.1 14.1 2.6 0.6 
5.94 14.7 29.5 11.8 6.4 6.8 

Sta 120 VFS FS MS cs vcs 
0.91 16.1 34.0 16.6 7.3 3.0 
1.37 7.8 17.1 8.5 4.0 3.1 
1.83 17.0 34.6 13.7 7.0 7.0 
2.44 6.3 13.3 6.2 3.1 3.0 
3.35 4.0 8.4 3.8 1.9 1.7 
3.96 10.3 15.4 1.3 0.4 0.2 
4.88 22.9 35.6 3.1 0.2 0.1 
5.49 25.0 44.7 8.5 1.4 0.2 
5.94 18.0 35.3 12.4 5.1 3.5 

Sta 150 VFS FS MS cs vcs 
2.43 6.9 16.9 10.0 4.8 4.1 
3.81 1.1 2.7 1.5 0.6 0.5 
5.34 23.6 38.4 4.3 0.4 0 
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Table 9. Hydraulic conductivities for sampling stations. 

STA Texture Ksat (m/day) K(h = -15 em) (m/day) 

20S SL 1.3 0.5 

10S SL 1.7 0.04 

00 SiC 0.1 O.Q1 

10 SiC 0.05 0.003 
30 SiCL 0.05 0.09 

40 SiCL 0.02 0.08 

50 SiCL to SiL 0.02 
60 SiL 0.04 0.0005 
70 SiC 0.05 0.008 
80 SiL 0.06 
90 LS 3.6 2.2 
105 LS 7.0 6.2 
120 LS 5.0 2.0 
135 SL 4.3 1.4 
150 LS 6.7 4.1 
165 LS to SL 2.5 1.4 

Avg coarse-grain 4 0.05 
Coeff of variation 52% 60% 

Avg fine-grain 2.2 0.03 
Coeff of variation 91% 133% 
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TabellO. Laboratory and RETC results for soil properties. 

Texture Station Bulk density theta r thetas alpha ( -1 /em) n 
SL 208 1.41 0.065 0.42 0.051 1.67 

20S 1.42 0.065 0.43 0.033 1.9 
108 1.45 0.065 0.43 0.041 1.62 
10S 1.35 0.065 0.44 0.059 1.48 
135 1.36 0.035 0.3 0.044 1.71 
135 1.37 0.035 0.38 0.034 2.06 

Avg 1.39 0.41 0.04 1.74 

SiC 00 1.1 0.12 0.48 0.035 1.34 
00 1.25 0.12 0.55 0.022 1.44 

10 1.2 0.12 0.51 O.D18 1.3 
10 1.19 0.12 0.51 0.028 1.25 
70 0.1 0.53 0.019 1.32 
70 0.1 0.51 O.D18 1.3 

Avg 1.18 0.52 0.023 1.32 

SiCL 30 1.13 0.12 0.5 0.013 1.38 
30 1.09 0.12 0.54 0.03 1.3 
40 1.15 0.12 0.53 0.022 1.29 
40 1.06 0.12 0.51 0.029 1.26 
50 0.095 0.53 0.021 1.28 
50 0.095 0.51 0.027 1.25 

Avq 1.11 0.52 0.02 1.29 

LS 90 1.36 0.05 0.46 0.021 1.53 
90 1.36 0.05 0.47 0.037 1.55 

105 1.47 0.05 0.37 0.037 1.76 
105 1.44 0.05 0.41 0.034 1.79 
120 1.47 0.05 0.41 0.054 1.86 
120 1.29 0.05 0.46 0.036 1.73 
150 1.64 0.035 0.37 0.047 1.96 
150 1.36 0.035 0.4 0.032 1.74 
165 1.33 0.057 0.43 0.038 1.8 
165 1.48 0.057 0.4 0.042 1.73 

Avg 1.42 0.42 0.04 1.75 

Si to SiL 60 1.14 0.12 0.51 0.045 1.21 
60 1.11 0.12 0.48 0.064 1.18 
80 0.095 0.54 0.04 1.26 
80 0.095 0.48 O.Q19 1.3 

Avg 1.12 0.5 0.042 1.24 
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Table 11. Hydraulic properties for soil types used in the final modeling scenario. 

Soil Qr Qs Qa Qm alpha n Ks Kk Qk Source 
Loamy sand 0.05 0.41 0.05 0.41 8.5 1.45 4.8 4.8 0.41 field, lab 
Loam 0.078 0.43 0.078 0.43 3.6 1.56 0.25 0.25 0.43 HYORUS-20 
Sandy loam 0.075 0.36 0.075 0.361 1.83 1.9 0.64 0.64 0.36 Area 5 PA 
Silt loam 0.034 0.46 0.034 0.46 1.6 1.37 0.06 0.06 0.46 HYORUS-20 
Silty clay loam 0.12 0.52 0.12 0.52 2.0 1.29 0.02 0.02 0.52 field, lab 
Silty clay 0.12 0.51 0.12 0.51 2.3 1.33 0.04 0.04 0.51 field, lab 
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Table 12. Summary of large pond infiltration/drainage simulation. 

Time (days) Volume of water (m0
) Inflow (m0

) Total inflow (m ) 
0 632500 0 0 
1 638600 6100 6100 
2 644600 6000 12100 
7 664900 20300 32400 
12 690200 25300 57700 

13.2 695900 5700 63400 
11070 693500 -2400 61000 
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Table 13. Summary of layered profile infiltration/drainage simulation. 

Event Time (davsl Inflow (m") Cumulative inflow (m") 
P1 890 890 

D1 210 -1359 -469 

P2 390 -79 
D2 2280 -924 -1003 
P3 342 -661 
D3 1050 -369 -1030 
P4 276 -754 
04 990 -380 -1134 
P5 418 -716 
D5 690 -242 -958 
P6 1374 416 
D6 690 -609 -193 



Table 14. Total inflow/outflow of water for six infiltration/ 
drainage events. 

Time Region 1 Region 2 Region 3 

Initial 920 m" 6470 m" 97600 m" 
Final 861m" 8390 m" 96000 m" 
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Region 4 

8730 m" 
8730 m" 



CHAPTER4 

SUMMARY 

Not all surface flow resultant from intense summer convective storms or 

prolonged winter precipitation may pass along the gentle slopes of the alluvial fans to 

the low spots of the Flats, with unsubstantial infiltration along the way. Some of this 

flow is now funneled into subsidence craters creating artificial recharge basins. A 

relatively small amount of rainfall, formerly spread throughout a large area maybe 

focused into a depression. Potential for significant recharge exists. 

The physical characteristics of crater USa provide the evidence necessary to 

determine the possibility of anomalous recharge. Vegetation, deep erosional gullies, 

14.6 m of sediment washed into the crater in 30 years, and a fine-grained playa are all 

associated with periodic surface water events captured by crater USa. Hokett and 

Gillespie (1996) recognized this fact and began a more intense examination of the 

subsurface conditions and runoff mechanisms. They found that water content beneath 

the crater's low spot was 38% greater than in an adjacent, undisturbed location. 

Preliminary modeling for a simplified scenario demonstrated the ability of a given 

volume of water to infiltrate through the coarse material on the periphery of the playa 

region. 
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The first objective of this study was to evaluate the uncertainty in the crater 

recharge estimates of Hokett and French ( 1998) due to model assumptions (0.3 m deep 

and 12m wide). To accomplish this task, different boundary and initial conditions 

were tested for sensitivity. Two ponding events separated by a drainage event were 

modeled using constant head upper boundary conditions of 0.3 and 0.9 m and extending 

5 m, 12 m, 15 m, and 20 m. The 5 m pond was unable to infiltrate through the fine­

grained material that extended I 0 m laterally but the other three conditions 

demonstrated preferential flow through the periphery of the playa. Deepest water 

movement occurred in the pond extending only 2m beyond the edge of the playa, 

where the set volume of water was focused through the smallest area of coarse material. 

Thus, the approach of Hokett and Gillespie (1998) provides a worst-case scenario. The 

effects of the depth of ponds tested were negligible. The greater head infiltrated faster, 

but the depth of the wetting front was nearly identical in both cases. This was reasoned 

to be due to an equal volume being infiltrated under each head. If these heads were 

infiltrated for equal amounts of time, the longer head would provide a larger volume 

and likely deeper infiltration. 

The second sensitivity analysis examined the effects of varying initial 

conditions on the depth of water movement beneath the crater. Three scenarios were 

modeled: (I) initial matric head of -10 m throughout the domain, (2) initial matric head 

of -200 m throughout the domain, and (3) initial matric head set in equilibrium with the 

water table at the bottom boundary. This latter case (3) most closely approximates 

actual conditions at the NTS alluvial fans. After simulating 14 pond/drainage cycles 

over 32 years, depth of water movement in all three cases was approximately 130m, 





II 0 

consistent with the results of Hokett and French (1998) who set the initial condition at 

-I 0 m. The similar depths for all three conditions can be explained by the dependence 

of unsaturated hydraulic conductivity and water storage on head or water content. The 

entire range of initial conditions is very dry and K(h) remains nearly the same low 

value. In the case of matric head being linearly distributed with depth, as the wetting 

front reaches a closer proximity to the saturated zone, hydraulic conductivity will 

nonlinearly increase and water storage capacity will decrease. It is expected that this 

would result in accelerating the t1ow rate as the wetting front approaches the water 

table. 

The final objective of this study was to assess media properties of the crater and 

incorporate them into two final modeling scenarios to refine estimates of recharge 

potential beneath a subsidence crater. The work of Hokett and Gillespie (1998) focused 

recharge along the periphery of the playa. While this work reflects attributes of the 

current crater morphology, it failed to produce water contents beneath the playa that 

resembled the borehole measurements. Field observations of crater U5a offered three 

pieces of evidence to suggest an extremely large ponding event occurred on the initial 

crater surface creating the current crater morphology: (I) a ring of depositional material 

high on the crater walls, (2) deep, wide erosional gullies suggestive of high intensity 

surface water, and (3) soil textures that become coarser with depth, grading from clays 

at the surface to gravel at 6 m below land surface. A stage-volume relationship for the 

original crater surface estimated a volume of such a pond to be nearly 64,000 m3. The 

first scenario modeled the infiltration and redistribution of this large pond through the 

coarse material that was present throughout the rubble chimney predicted the wetting 
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front reaching the water table in 30 years. A fourth evidence for this large event was 

the observation that the borehole measurements of Hokett and Gillespie (1996) closely 

matched the predicted water contents. 

The modeling of this large pond utilized a homogeneous soil throughout the 

rubble chimney. It was not the intent of this study to suggest such a domain actually 

exists, but rather to incorporate field and laboratory observations as closely as possible. 

Modeling attempts discussed earlier used a domain with ten subtle, continuous layers 

that proved to be a barrier to flow. A similar approach was not taken in this study due 

to the lack of evidence to support such layering. Any layers that may have existed 

before the weapon detonation most likely would not remain after the collapse of the 

rock and soil. In fact, the preexisting layers may actually be slanted inwards, creating a 

funnel for water flow. The method used in this study could also not be considered a 

true "conservative approach" either. Preferential flowpaths due to the bulking of the 

geologic media and instrumentation of the shot hole were ignored. Subsurface 

characterization has failed to identify these features but the likelihood of locating a 

narrow vertical pathway with a single vertical borehole is slim. Admittedly, any of the 

above listed could exist, but it was felt that this study incorporated characteristics most 

closely resembling reality. 

The second scenario modeled in this study was to qualify the potential for future 

recharge through the layered soil deposited by the large pond. A smaller model domain 

was created incorporating the hydraulic properties of six soil textures. Six 

ponding/drainage cycles were applied to the surface, with depths and lateral extents 

consistent with the predicted pond volume. At the conclusion of the simulation, water 
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movement through the layered domain was minimal, with most precipitation being 

recycled back to the atmosphere. From these results, it can be concluded that the 

deposited sediment acts as a barrier to future flow. The low hydraulic conductivity and 

high water storage capacity of the deposited material provided a favorable environment 

for deep rooting plants which further prevent future recharge by recycling water to the 

atmosphere. 

This study does not suggest that all, or even most, craters exhibit similar 

hydraulic behavior. Crater USa was originally chosen for study because it displayed 

evidence for a "worst-case" scenario of crater recharge. Another undisturbed crater, 

within a few kilometers of USa, shows little evidence of surface water capture. Other 

craters have shown in preliminary investigations to capture numerous small ponding 

events but not large volumes. The location of the crater on the alluvial fan or its 

position relative to surface water flow channels is probably the most significant 

determinant of its ability to act as a recharge basin. In addition, crater U5a has been left 

undisturbed since its creation. Current engineering practices at the Area 3 and Area 5 

RWMS may be able to prohibit flow into craters by the construction of berms, caps, or 

liners. Additionally, these findings suggest that craters, like USa, that exhibit a high 

potential for surface water capture, thus recharge, can self-heal in a short time. The 

self-healing nature of craters has important implications to the impacts of subsidence at 

the RWMS low level waste trenches that warrant further study. 

The threat of recharge through a nuclear subsidence crater cannot be easily 

dismissed. Surface water capture by each crater will differ, however, the landscape 

position, fan infiltration properties, as well as the physical characteristics of the crater 
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can provide predictive capability for the potential to capture runoff. The soil 

morphology of the shallow subsurface and surface biology can provide evidence of the 

potential for recharge. Only after a flux of water toward the water table can be 

confidently estimated, can the possibility of radionuclide migration by the wetting front 

be legitimately studied. This single crater type of analysis can then be extended to a 

regional scale assessment of the potential for focused recharge in craters to impact 

groundwater flow pathways and contaminant migration. 
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Results of t1eld "feel" test by G.V. Wilson. 
Depths (ft)are mid-interval at sampling stations 

lOS 10 

6'~8" SiCL I SiCL 
28"-30" SiCL-SiL 2 SiCL 
3011 -55u SiL 4 SiCL (<C) 
60"-66" SiL 6 SiCL 
6T'~72u Si-L 7 SiCL 

8 L(S,G) 9 SiCL 
10 GL 12 SiL 

10.5 GL 14 SiL 
16 SiL 
17 SiL-L 

70 90 
I SiCL I L-LS 
4 SiCL 2 SiL-SiCL 
5 SiCL (<C) 2.5 SiL-SiCL 
6 SiCL!<Cl 5 SiCL 
7 SiCL 6 SiCL (<C) 
9 SiCL 10 SiCL («Cl 
13 SiL 13 SiL 
15 SiL 14 SiL-L 
17 SiL-L (fs) 17 L (fs,ms) 
19 L (fs,ms) 19 GL 
20 GL 20 LS 

150 185 

4 GLS I GLS 
5 GLS 4 GLS 
6 GL 6 GLS 
10 GSiL 8 GSiL 
15 SiCL 10 GSiL-L 
19 SiL (fs) 12 GSiL-L 
20 SiCL-SiL 14 GSiL-L 

16 GSiL 
18 GSiL 

123 

30 
1 SiCL 
3 SiCL 
4 SiCL (<C) 
6 SiCL 
7 SiCL 
8 SiCL 
12 SiL 
14 SiL 
16 SiL 
18 SiL-L (fs) 

19 L (>fs) 
20 L (ms,cs) 

120 
0 GLS 
4 GLS 
5 SiL-SiCL 
7 SiL 
9 SiCL (Gl 
12 SiL 
14 SiL 
17 SiL-L (fs) 

19 L 
20 LS 
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STA20S avg head= 4.75 

Ksat 
Time (minl Vol (Ll Infiltration (em) Rate (em/min) Rate (mid) 

0 0 0 0 0 
12 1.25 2.608712536 0.217392711 3.130455 
27 2.5 2.608712536 0.173914169 2.504364 
54 3.75 2.608712536 0.096618983 1.3913134 
82 5 2.608712536 0' 093168305 1.3416236 

with insert 1 em - 3.36 cm3 . 

K(h) inftl (em) Rate (em/min) Rate (mid) 
Time (sec) 18.5 

0 18.5 0 0 0 
15 19.6 1.1 0.000768861 0.6642963 
30 20.2 0.6 0.000419379 0.3623434 
45 21.3 1.1 0.000768861 0.6642963 
60 22.3 1 0.000698965 0.6039057 
75 23.3 1 0.000698965 0.6039057 
90 24.3 1 0' 000698965 0.6039057 

105 25.3 1 0. 000698965 0.6039057 
120 26.2 0.9 0.000629068 0.5435151 
135 27.2 1 0.000698965 0.6039057 
150 28.1 0.9 0' 000629068 0.5435151 
165 29 0.9 0.000629068 0.5435151 
180 29.9 0.9 0. 000629068 0.5435151 
195 30.8 0.9 0.000629068 0.5435151 
210 31.7 0.9 0.000629068 0.5435151 
225 32.6 0.9 0.000629068 0.5435151 
240 33.5 0.9 0.000629068 0.5435151 
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STA lOS 

Ksat 
Time (min) Vol (L) Intiltration (em Rate (cmlmin) Rate (mid) 

0 0 0 0 
7.5 1.25 2.608712536 0.347828338 5.00872807 

12.25 2.5 2.608712536 0.549202639 7.908518 
70 5 5.217425071 0.090345023 1.30096833 
95 6.25 2.608712536 0.104348501 1.50261842 
120 7.5 2.608712536 0.104348501 1.50261842 
141 8.75 2.608712536 0.124224406 1.78883145 
163 10 2.608712536 0.118577843 1.70752093 

with insen 1 em"' 3.36 em3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (min) reading (em) 

0 19 19 0 0 
1 19.5 0.5 0.005242237 0.075488215 
2 19.7 0.2 0.002096895 0.030195286 
3 20 0.3 0.003145342 0.045292929 
4 20.2 0.2 0.002096895 0.030195286 
5 20.5 0.3 0.003145342 0.045292929 
6 20.8 0.3 0.003145342 0.045292929 
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STAOO 

Ksat 
Time (mi Vol (L) Infiltration ( cr Rate (cm/mi Rate (m/d) 

0 0 0 0 0 
12 0.3 0.626091009 0.05217425 0.751309 
32 0.55 0.521742507 0.02608713 0.375655 

282 2.05 3.130455043 0.01252182 0.180314 
735 3.65 3.339152046 0.0073712 0.106145 

1350 5.8 4.486985561 0.00729591 0.105061 

with insert 1 em= 3.36 em 3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (mi em Rate (em/min Rate (m/d) 

0 0 0 0 0 
2 0.1 0.1 0.00052423 0.00754891 
8 0.3 0.2 0.000349487 0.00503261 

12 0.5 0.2 0.00052423 0.00754891 
14 0.7 0.2 0.00104846 0.01509783 
16 0.9 0.2 0.00104846 0.01509783 
18 1.2 0.3 0.00157269 0.02264674 
20 1.4 0.2 0.00104846 0.01509783 
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STA 10 

Ksat 
Time (mi Vol (L) Infiltration ( Cl Rate (cm/mi Rate (mid) 

0 0 0 0 0 
5 0.4 0.834788011 0.1669576 2.404189 

294 1.25 1.773924524 0.00613815 0.088389 
622 1.8 1.147833516 0.00349949 0.050393 

1362 3 2.504364034 0.00338428 0.048734 ... 

with insert 1 em = 3 .36 em3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (mi em Rate (em/min Rate (mid) 

0 0 0 0 0 
5 0.1 0.1 0.000209692 0.00301957 

10 0.2 0.1 0.000209692 0.00301957 
15 0.3 0.1 0. 000209692 0.00301957 
20 0.4 0.1 0. 000209692 0.00301957 
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STA30 

Ksat 
Time (mi Vol (L) Infiltration (cr Rate ( crnlmi Rate (mid) 

0 0 0 0 0 
235 1.15 2.40001553 0.01021283 0.14706 
355 1.65 1.04348501 0.00869571 0.12522 

1045 2.8 2.40001553 0.00347828 0.05009 

with insert 1 em= 3.36 cm3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (mi em Rate (em/min Rate (rnld) 

0 0 0 0 0 
1 0.5 0.5 0.0052423 0.07548913 
2 1.1 0.6 0.00629076 0.09058695 
3 1.7 0.6 0.00629076 0.09058695 
4 2.3 0.6 0.00629076 0.09058695 
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STA40 

Ksat 
Time (mi Vol (L) Infiltration (c Rate (crn/n Rate (mid) 

0 0 0 0 0 
267 0.5 1.04348501 0.0039082 0.05628 
492 1 1.04348501 0.0046377 0.06678 
612 1 1.04348501 0.0030246 0.04355 

1302 1.55 1.14783352 0.0016635 0.02395 

with insert 1 em = 3.36 cm
3 

K(h) reservoir infil (em) Rate (em/min Rate (mid) 
Time (mi em 

0 0 0 0 0 
2 1.1 1.1 0.00576653 0.083038 
4 2.1 1 0.0052423 0.0754891 
6 3.2 1.1 0.00576653 0.083038 
8 4.2 1 0.0052423 0.0754891 
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STA50 

Ksat 
Time (mi Vol (L) Infiltration (c Rate (cm/n Rate (m/d) 

0 0 0 0 0 
128 1.25 2.60871254 0.0203806 0.29348 
370 1.875 1.30435627 0.0053899 0.07761 

1060 2.375 1.04348501 0.0015123 0.02178 
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STA60 

Ksat 
Time (mi Vol (L) Infiltration (c Rate (cm/mi Rate (mid) 

0 0 0 0 0 
19 0.2 0.41739401 0.0219681 0.31634 
29 0.05 0.1043485 0.0104349 0.15026 

209 0.25 0.52174251 0.0028986 0.04174 
469 0.3 0.62609101 0.002408 0.03468 

with insert 1 em = 3.36 em' 
K(h) infil (em) Rate (em/min) Rate (m/d) 

Time (min) 
0 0 0 0 

32 0.1 3.2764E-05 0.0004718 
84 0.1 2.0163E-05 0.0002903 

140 0.1 1.8723E-05 0.0002696 
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STA 70 

Ksat 
Time (mi Vol (L) Infiltration (c Rate ( crn!mi Rate (rnld) 

0 0 0 0 0 
80 0.2 0.41739401 0.00521743 0.07513 

275 0.85 1.35653052 0.00695657 0.10017 
525 1.65 1.66957602 0.0066783 0.09617 

1293 2.85 2.50436403 0.00326089 0.04696 

with insert 1 em = 3.36 em 3 

K(h) reservoir infil (em) Rate (crnimin) Rate (mid) 
Time (mi em 

0 2.2 0 0 0 
1 2.3 0.1 0.00104846 0.01509783 
2 2.35 0.05 0.00052423 0.00754891 
3 2.4 0.05 0.00052423 0.00754891 
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STABO 

Ksat 
Time (mi Vol (L) Infiltration (en Rate (cm/n Rate (m/d} 

0 0 0 0 0 
10 0.5 1.043485014 0.1043485 1.50262 
89 1 1.043485014 0.0132087 0.1902 

284 1.9 1.878273026 0.0096322 0.1387 
534 2.5 1.252182017 0.0050087 0.07213 

1301 4.1 3.339152046 0.0043535 0.06269 
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STA90 

Ksat 
Time (min Vol (L) Infiltration (c Rate (cm/m Rate (mid) 

0 0 0 0 0 
3.75 1.25 2.60871254 0.6956567 10.0175 

12.25 2.5 2.60871254 0.3069074 4.41947 
21.25 3.75 2.60871254 0.2898569 4.17394 
30.25 5 2.60871254 0.2898569 4.17394 
39.75 6.25 2.60871254 0.2746013 3.95426 

52 7.5 2.60871254 0.2129561 3.06657 
62.5 8.75 2.60871254 0.2484488 3.57766 

73 10 2.60871254 0.2484488 3.57766 

1 em= 15.34 cm3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (min em Rate (cm/mi Rate (m/d) 

0 7.8 7.8 
0.25 8.4 0.6 0.11488127 1.6542903 
0.5 8.5 0.1 0.01914688 0.275715 

0.75 9.4 0.9 0.1723219 2.4814354 
1 10.2 0.8 0.15317502 2.2057203 

1.25 11 0.8 0.15317502 2.2057203 
1.5 11.8 0.8 0.15317502 2.2057203 

1.75 12.5 0.7 0.13402815 1.9300053 
2 13.4 0.9 0.1723219 2.4814354 

2.25 14.3 0.9 0.1723219 2.4814354 
2.5 15.1 0.8 0.15317502 2.2057203 

2.75 16 0.9 0.1723219 2.4814354 
3 16.8 0.8 0.15317502 2.2057203 

3.25 17.8 1 0.19146878 2.7571504 
3.5 18.7 0.9 0.1723219 2.4814354 

3.75 19.5 0.8 0.15317502 2.2057203 
4 20.2 0.7 0.13402815 1.9300053 

4.25 21.2 1 0.19146878 2.7571504 
4.5 22.1 0.9 0.1723219 2.4814354 

4.75 23.1 1 0.19146878 2.7571504 
5 23.9 0.8 0.15317502 2.2057203 

5.25 24.8 0.9 0.1723219 2.4814354 
5.5 25.6 0.8 0.15317502 2.2057203 
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STA 105 
Ksat 
Time (mi Vol (L) Infiltration (c Rate (cm/rr Rate (m/d) 

0 0 0 0 0 
3.75 2.5 5.21742507 1.3913134 20.0349 
10.5 5 5.21742507 0.7729519 11.1305 

19.75 7.5 5.21742507 0.564046 8.12226 
29.25 10 5.21742507 0.5492026 7.90852 
39.25 12.5 5.21742507 0.5217425 7.51309 
49.75 15 5.21742507 0.4968976 7.15533 
60.5 17.5 5.21742507 0.4853419 6.98892 

71.25 20 5.21742507 0.4853419 6.98892 

1 em= 15.34 cm3 

K(h) reservoir infil (em) Rate (em/min Rate (rnld) 
Time (mi em Rate (cm/mi Rate (mid) 

0 16 0 0 0 
0.25 20 4 0.76587512 11.028602 

0.5 21 1 0.19146878 2.7571504 
0.75 23.5 2.5 0.47867195 6.8928761 

1 25.75 2.25 0.43080476 6.2035885 
1.25 28 2.25 0.43080476 6.2035885 

1.5 30 2 0.38293756 5.5143009 
1.75 32.5 2.5 0.47867195 6.8928761 

2 34.5 2 0.38293756 5.5143009 
2.25 36.5 2 0.38293756 5.5143009 

2.5 38.5 2 0.38293756 5.5143009 
2.75 40.75 2.25 0.43080476 6.2035885 

3 43 2.25 0.43080476 6.2035885 
3.5 47 4 0.38293756 5.5143009 

3.75 49.5 2.5 0.47867195 6.8928761 
4 51.25 1.75 0.33507037 4.8250133 

4.25 53.5 2.25 0.43080476 6.2035885 
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STA 120 

Ksat 
Time (min Vol (L) Infiltration (err Rate (cm/n Rate (m/ d) 

0 0 0 0 0 
4 1.25 2.608712536 0.6521781 9.39137 

8.25 2.5 2.608712536 0.6138147 8.83893 
12.25 3.75 2.608712536 0.6521781 9.39137 

19 5 2.608712536 0.3864759 5.56525 
26.5 6.25 2.608712536 0.3478283 5.00873 

34 7.5 2.608712536 0.3478283 5.00873 
40.25 8.75 2.608712536 0.417394 6.01047 
47.75 10 2.608712536 0.3478283 5.00873 
55.75 11.25 2.608712536 0.3260891 4.69568 

1 em= 15.34 em 3 

K(h) reservoir infil (em) Rate (em/min) Rate (m/d) 

Time (min em Rate (em/min Rate (mid) 
0 13 0 0 0 

0.25 13.7 0.7 0.134028146 1.9300053 
0.5 14.5 0.8 0.153175024 2.2057203 

0.75 15.3 0.8 0.153175024 2.2057203 
1 16 0.7 0.134028146 1.9300053 

1.25 16.8 0.8 0.153175024 2.2057203 
1.5 17.6 0.8 0.153175024 2.2057203 

1.75 18.3 0.7 0.134028146 1.9300053 
2 19.1 0.8 0.153175024 2.2057203 

2.25 19.9 0.8 0.153175024 2.2057203 
2.5 20.7 0.8 0.153175024 2.2057203 

2.75 21.5 0.8 0.153175024 2.2057203 
3 22.3 0.8 0.153175024 2.2057203 

3.25 23.1 0.8 0.153175024 2.2057203 
3.5 23.9 0.8 0.153175024 2.2057203 

3.75 24.6 0.7 0.134028146 1.9300053 
4 25.4 0.8 0.153175024 2.2057203 

4.25 26.2 0.8 0.153175024 2.2057203 
4.5 27 0.8 0.153175024 2.2057203 

4.75 27.8 0.8 0.153175024 2.2057203 
5 28.5 0,7 0.134028146 1.9300053 
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STA 135 

Ksat head = 0 to 4cm 
Time (min) Vol (L) Infiltration (err Rate (crn/n Rate (mid) 

0 0 0 0 0 
6.5 1.25 2.608712536 0.4013404 5.7793 

11.5 2.5 2.608712536 0.5217425 7.51309 
20 4 3.130455043 0.3682888 5.30336 

24.5 4.5 1.043485014 0.2318856 3.33915 
31 6.75 4.695682564 0.7224127 10.4027 

37.75 8 2.608712536 0.3864759 5.56525 
44.75 9 2.086970029 0.2981386 4.2932 
51.75 10 2.086970029 0.2981386 4.2932 

1 em= 15.34 cm3 

K(h) reservoir infil (em) Rate (em/min) Rate (m/d) 
Time (min) em Rate (em/min) Rate (mid) 

0 24.4 0 0 0 
0.25 25 0.6 0.114881268 1.6542903 
0.75 26 1 0.09573439 1.3785752 

1.5 27.7 1.7 0.108498975 1.5623852 
2 28.8 1.1 0.105307829 1.5164327 

2.5 29.9 1.1 0.105307829 1.5164327 
3 31 1.1 0.105307829 1.5164327 

3.5 32 1 0.09573439 1.3785752 
4 33 1 0.09573439 1.3785752 

4.5 34.1 1.1 0.105307829 1.5164327 
5 35.2 1.1 0.105307829 1.5164327 

5.5 36.1 0.9 0.086160951 1.2407177 
6 37.4 1.3 0.124454707 1.7921478 

6.5 38.4 1 0.09573439 1.3785752 
7 39.5 1.1 0.105307829 1.5164327 

7.5 40.5 1 0.09573439 1.3785752 
8 41.5 1 0.09573439 1.3785752 
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STA 150 

Ksat 
Time (mi Vol (L) Infiltration (c Rate (cmlm Rate (mid) 

0 0 0 0 0 
8.25 2.5 5.21742507 0.6324152 9.10678 
17.5 5 5.21742507 0.564046 8.12226 

28 7.5 5.21742507 0.4968976 7.15533 
39.75 10 5.21742507 0.4440362 6.39412 

51 12.5 5.21742507 0.4637711 6.6783 
62 15 5.21742507 0.4743114 6.83008 
73 17.5 5.21742507 0.4743114 6.83008 

84.25 20 5.21742507 0.4637711 6.6783 

1 em= 15.34 em 
3 

K(h) reservoir infil (em) Rate (cmhnin) Rate (mid) 
Time (mi em Rate (cm/mi Rate (mid) 

0 6 0 0 0 
0.25 14 8 1.53175024 22.057203 

0.5 16.5 2.5 0.47867195 6.8928761 
0.75 18 1.5 0.28720317 4.1357257 

1 20 2 0.38293756 5.5143009 
1.25 21.5 1.5 0.28720317 4.1357257 

1.5 23 1.5 0.28720317 4.1357257 
1.75 24.5 1.5 0.28720317 4.1357257 

2 25.5 1 0.19146878 2.7571504 
2.25 27.5 2 0.38293756 5.5143009 

2.5 29 1.5 0.28720317 4.1357257 
2.75 30.2 1.2 0.22976254 3.3085805 

3 31.5 1.3 0.24890941 3.5842956 
3.25 33 1.5 0.28720317 4.1357257 

3.5 34.5 1.5 0.28720317 4.1357257 
3.75 35.5 1 0.19146878 2.7571504 

4 37 1.5 0.28720317 4.1357257 
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STA165 

Ksat 
Time (min) Vol (L) Infiltration (en Rate (cm/rr Rate (m/ d) 

0 0 0 0 0 
1.5 0.5 1.04348501 0.6956567 10.0175 

6 1.75 2.60871254 0.5797139 8.34788 
15.75 3 2.60871254 0.2675603 3.85287 
26.25 4.25 2.60871254 0.2484488 3.57766 
40.5 5.5 2.60871254 0.1830675 2.63617 

56 6.75 2.60871254 0.168304 2.42358 

I em= 15.34 em 3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (min) em Rate (em/min Rate (mid) 

0 6.7 0 0 0 
0.25 7.1 0.4 0.07658751 1.1028602 
0.5 7.2 0.1 0.01914688 0.275715 

0.75 7.5 0.3 0.05744063 0.8271451 
1 7.7 0.2 0.03829376 0.5514301 

1.25 8.1 0.4 0.07658751 1.1028602 
1.5 8.3 0.2 0.03829376 0.5514301 

1.75 8.5 0.2 0.03829376 0.5514301 
2 8.8 0.3 0.05744063 0.8271451 

2.25 9 0.2 0.03829376 0.5514301 
2.5 9.1 0.1 0.01914688 0.275715 

2.75 9.6 0.5 0.09573439 1.3785752 
3 10 0.4 0.07658751 1.1028602 

3.25 10.4 0.4 0.07658751 1.1028602 
3.5 10.9 0.5 0.09573439 1.3785752 

3.75 11.3 0.4 0.07658751 1.1028602 
4 11.9 0.6 0.11488127 1.6542903 

4.25 12.3 0.4 0.07658751 1.1028602 
4.5 12.7 0.4 0.07658751 1.1028602 

4.75 13.2 0.5 0.09573439 1.3785752 
5 13.7 0.5 0.09573439 1.3785752 
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STAA 

Ksat 
Time (min) Vol Infiltration (c Rate (crn/m Rate (m/d) 

0 0 0 0 0 
17 0.75 1.56522752 0.0920722 1.32584 
54 1 0.52174251 0.0141011 0.20306 
95 1.5 1.04348501 0.0254509 0.36649 

- -·-· 
1 em= 15.34 em3 

K(h) reservoir infil (em Rate (em/min) Rate (mid)_ 
!-~··--· 

Time (min) em Rate (cm/mi Rate (m/d) 
0 6.4 0 0 0 
3 6.5 0.1 0.00159557 0.0229763 
6 6.6 0.1 0.00159557 0.0229763 
9 6.8 0.2 0.00319115 0.0459525 

12.25 6.9 0.1 0.00147284 0.0212088 
16 7.1 0.2 0.00255292 0.036762 
19 7.2 0.1 0.00159557 0.0229763 
24 7.4 0.2 0.00191469 0.0275715 
29 7.6 0.2 0.00191469 0.0275715 
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STAB 

Ksat 
Time (min) Vol Infiltration (c Rate (cm/rr Rate (mid) 

0 0 0 0 0 
20 0.75 1.56522752 0.0782614 1.12696 
60 2 2.60871254 0.0652178 0.93914 
90 2.5 1.04348501 0.0347828 0.50087 

1 em= 15.34 em3 

K(h) reservoir infil (em) Rate (em/min) Rate (mid) 
Time (min) em Rate (cm/mi Rate (mid) 

0 7.6 0 0 0 
5 7.9 0.3 0.00287203 0.0413573 

10 8.2 0.3 0.00287203 0.0413573 
12 8.3 0.1 0.00239336 0.0344644 
15 8.5 0.2 0.00319115 0.0459525 
17 8.6 0.1 0.00239336 0.0344644 
20 8.8 0.2 0.00319115 0.0459525 
24 9.1 0.3 0.00359004 0.0516966 
30 9.5 0.4 0.00319115 0.0459525 
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STAG 

Ksat 
Time (min) Vol Infiltration (c Rate (cm/mi Rate (m/d) 

0 0 0 0 0 
15 0.5 1.04348501 0.0695657 1.00175 
27 1 1.04348501 0.0869571 1.25218 
62 1.5 1.04348501 0.0298139 0.42932 

105 2.25 1.56522752 0.0364006 0.52417 

1 em= 15.34 cm3 

K(h) reservoir infil (em) Rate (em/min Rate (m/d) 
Time (min) em Rate (cm/mi Rate (mid) 

0 7 0 0 0 
3 7.1 0.1 0.00159557 0.0229763 
7 7.3 0.2 0.00239336 0.0344644 

10 7.4 0.1 0.00159557 0.0229763 
12.5 7.6 0.2 0.00382938 0.055143 

18 8 0.4 0.00348125 0.05013 
22 8.4 0.4 0.00478672 0.0689288 
25 8.6 0.2 0.00319115 0.0459525 
29 8.9 0.3 0.00359004 0.0516966 
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Station IF=~~;=f:~~~~~~E~"B¥-~~~~~~~~B1E~~-E~~~~5;,;&~§EC 
20S 
1os t 157.11 1 249.32 1 241.32 1 230.58 121_8.88 1 215.12 t 212.87 t 210.31 1 209.11 1 208.49 1 191.99 
oo T 155.49 I 209.83 I 2oo.8 I 195.74 I 192.31 I 190.35 I 188.39 I 186.11 I 183.4 I 18o.5l!T146)1J 

I 10 156.99 226.43 220.5 216.69 214.15 212.25 209.53 206.88 203.8 200.57 158.98 
I 30 158.96 215.92 210.07 206.21 203.86 201.9 199.55 197.23 195.79 193.51 149.78 

40 158.78 222.27 213.24 209.8 207.38 205.54 202.77 200.48 197.8 194.61 151.68 
60 . I 154.12 I 218.5 I 208.28 I 206.89 I 204.27 I 2o2.o5 I 201.48 I 200.48 I 198.62 I 197.93 I 150.83 
90 179.42 

105 194.14 
120 194.11 
135 180.56 
150 157.4 266.35 260.08 237.25 230.2 228.55 227.7 227.33 226.08 225.4 216.89 
165 156.95 232.49 223.91 210.94 198.76 194.83 191.36 188.06 186.09 184.43 175.43 

A 156.79 256.27 243.43 240.7 230.05 229.28 228.55 226.36 225.36 224.97 212.02 
1_ 1 B I 155.5 I 252.11 I 240.75 233.87 228.5 228.3 227.55 227.54 227.24 226.95 216.86 
I I C I 158.24 I 231.79 I 221.52 215 203.01 201.09 199.65 198.5 197.63 197.25 188.41 

20S 
10S 
00 
10 

30 
40 
60 

BulkDen Saturated 15cm 50cm 100cm 150cm 200cm 500cm 750cm 11000cm 
-lheta Q g/cmo theta v theta v theta v theta v theta v til eta v theta v theta v theta v 

54.87 0.2936 1.41156 0.41526 0.35297 0.24937 0.17399 0.15636 0.13365 0.10527 0.09491 
57.33 0.29861 1.45008 0.43387 0.37333 0.29205 0.2035 0.17505 0.15802 0.13865 0.12956 0.12<\l 
63.68 0.43572 1.10385 0.48193 0.41359 0.3753 0.34934 0.33451 0.31967 0.30242 0.28191 0.260! 
67.45 0.42427 1.20076 0.51046 0.46558 0.43675 0.41753 0.40315 0.38256 0.36251 0.3392 0.31475 
66.14 0.44158 1.13127 0.50055 0.45628 0.42706 0.40928 0.39444 0.37666 0.3591 0. 
70.59 0.46539 1.14562 0.53423 0.46589 0.43985 0.42154 0.40761 0.38665 0.36932 0 
67.67 0.44865 1.1392 0.51213 0.43478 0.42426 0.40443 0.38763 0.38332 0.37575 0. 

0.33541 1.35514 0.45544 0.42351 0.37499 0.27911 0.25686 0.2443 0.23204 0.22023 0.21259 
I I ow I ~-- •u 0.25332 1.46531 0.37219 0.32664 0.23922 0.14258 0.136 0.12972 0.09922 0.08325 0.0777: 
I I ·~~ I "" "~ 0.2766 1.46609 0.40633 0.33072 0.20343 0.11995 0.10292 0.09687 0.06476 0.07666 0.0732< 

0.27215 1.36375 0.37189 0.26397 0.17876 0.11004 0.09899 0.09339 0.08892 0.08173 0.07411 
150 49.46 0.22804 1.63814 0.37431 0.32686 0.15408 0.10073 0.08824 0.08181 0.07901 0.0694 

I I 165 57.06 0.32526 1.325 0.43183 0.3669 0.2687 4 0.17656 0.14682 0.12056 0.09558 0.08067 0.06811 
I A 44.25 0.20871 1.60136 0.33488 0.23771 0.21705 0.13645 0.13062 0.1251 0.10853 0.10096 0.09801 

B 35.25 0.16255 1.63792 0.26677 0.1808 0.12873 0.08809 0.08658 0.0809 0.08083 0.07856 0.07636 
C 43.38 0.23024 1.42304 0.3283 0.25058 0.20123 0.11049 0.09596 0.08506 0.07636 0.06978 OOnfi!'l 

. . . 

IVcoAECm
3
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Station Cell Initial 15 em 50 em 100cm 150cm 200cm 500cm 750cm 1000 em Dry i 

mass (g) mass (g) mass (g) mass (g) mass (g) mass(~) mass (g) mass (g) mass (g) mass (g) mass (g) 
20S 156.83 244.79 237.26 226.99 210.63 207 203.01 202.68 202.31 200.99 188.43 
108 157.04 237.12 227.43 214.62 206.5 203.74 201.94 201.2 200.59 198.8 178.32 
00 157.04 238.27 229.12 223.18 220.69 216.99 212.14 202.96 197.73 217 165.97 
10 157.73 228.33 218.6 213.83 210.86 209.17 208.27 207.03 206.2 205.39 157.66 
30 157.12 217.03 207.48 202.3 199.64 197.11 195.54 194.19 193.29 192.33 145.41 
40 158.45 212.79 202.44 196.35 193.63 191.61 190.66 189.4 188.21 187.17 141.1 
60 157.21 216.84 201.49 199.58 197.99 196.77 195.78 193.14 191.98 191.35 147.61 
90 157.46 241.98 234.74 224.91 209.7 207.53 204.3 203.45 202.84 202.22 180.37 
105 158.44 244.86 238.17 226.29 211.82 208.3 207.08 206.36 206.02 204.7 190.2 
120 156.84 231.67 221.67 211.21 195.69 190.7 188.46 187.72 187.09 186.48 170.19 
135 157.31 232.93 225.03 212.04 195.61 193.13 192.01 191.66 191.36 190.38 181.94 
150 157.48 233.11 228.77 215.66 200.94 197.5 196.82 196.19 195.73 194.37 179.77 
165 154.5 248.61 241.77 227.94 217.49 214.01 211.98 211.33 211.05 210.64 195.61 

Initial-Dry BulkDem Saturated 15cm 50 em 100cm 150cm 200cm 500cm 750cm 1000cm 
Station (q} theta Q g/cm" theta v theta v theta v theta v theta v theta v theta v theta v theta v 

20S 56.36 0.2991 1.42319 0.42653 0.36955 029182 0.16801 0.14054 0.11034 0.10784 0.10504 0.09505' 
10S 58.8 0.32974 1.34583 0.445 0.37166 0.27472 0.21327 0.19238 0.17876 0.17316 0.16854 0.15499 
00 72.3 0.43562 1.25355 0.54717 0.47792 0.43297 0.41412 0.38612 0.34941 0.27994 0.24036 0.3862 
10 70.67 0.44824 1.19079 0.53483 0.46119 0.42509 0.40262 0.38983 0.38302 0.37363 0.36735 0.38122 
30 71.62 0.49254 1.09826 0.54202 0.46975 0.43054 0.41041 0.39127 0.37938 0.36917 0.36236 0.35509 

I 40 71.69 0.50808 1.06571 0.54255 0.46422 0.41813 0.39755 0.38226 0.37507 0.36553 0.35653 0.34866 
60 69.23 0.46901 1.11488 0.52393 0.40776 0.39331 0.38128 0.37204 0.36455 0.34457 0.33579 0.33102 
90 61.61 0.34158 1.36231 0.46626 0.41147 0.33708 0.22197 0.20555 0.1811 0.17467 0.17005 0.16536 

105 54.66 0.28738 1.43656 0.41367 0.36304 0.27313 0.16362 0.13698 0.12775 0.1223 0.11973 0.10974 
120 61.48 0.36124 1.28542 0.46528 0.3896 0.31044 0.19298 0.15522 0.13827 0.13267 0.1279 0.12328 
135 50.99 0.28026 1.37417 0.38589 0.32611 0.2278 0.10345 0.08469 0.07621 0.07356 0.07129 0.06387 
150 53.34 0.29671 1.35778 0.40368 0.37083 0.27162 0.16021 0.13418 0.12903 0.12427 0.12079 0.11049 
165 53 0.27095 1.47742 0.4011 0.34934 0.24467 0.16559 0.13925 0.12389 0.11897 0.11685 0.11375 

VcoRE Cffi
3
= 132.4 --1>-

0\ 
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Station Porosity 500em 1000 em 3000em Dry Ring 
(g) (g) (g) (g) (g) 

20S 1.42 29.51 29.8 29.21 26.18 3.95 
10S 1.43 32.56 32.68 32.05 28.78 3.95 
00 1.51 35.81 35.48 34.16 27.38 3.95 
10 1.54 30.23 30.52 29.42 22.95 3.95 
30 1.5 33.2 32.82 31 '1 24.8 3.95 
40 1.53 36.21 35.98 34.08 26.69 3.95 
50 1.53 31.45 30.96 29.56 23.5 3.95 
60 1.54 34.22 34.38 33.28 25.44 3.95 
70 1.53 36 34.94 34 26.86 3.95 
80 1.53 32.51 31.91 30.72 25.1 3.95 
90 1.46 28.75 28.37 26.25 3.95 

105 1.37 31.95 31.6 29.49 3.95 
120 1.41 35.18 34.85 32.48 3.95 
135 1.3 29.71 28.86 27.25 3.95 
150 1.37 33.66 32.92 31.23 3.95 
165 1.43 33.08 32.63 30.23 3.95 
A 1.33 29.02 28.42 26.68 3.95 
B 1.27 23.52 23.09 21.58 3.95 
c 1.33 

Station Porosity 500em 1000 em 3000em Dry 
(g) (g) (g) (g) 

20S 1.42 27.06 27.35 26.76 22.23 
10S 1.43 30.11 30.23 29.6 24.83 
00 1.51 33.36 33.03 31.71 23.43 
10 1.54 27.78 28.07 26.97 19 
30 1.5 30.75 30.37 28.65 20.85 
40 1.53 33.76 33.53 31.63 22.74 
50 1.53 29 28.51 27.11 19.55 
60 1.54 31.77 31.93 30.83 21.49 
70 1.53 33.55 32.49 31.55 22.91 
80 1.53 30.06 29.46 28.27 21.15 
90 1.46 26.3 25.92 22.3 
105 1.37 29.5 29.15 25.54 
120 1.41 32.73 32.4 28.53 
135 1.3 27.26 26.41 23.3 
150 1.37 31.21 30.47 27.28 
165 1.43 30.63 30.18 26.28 
A 1.33 26.57 25.97 22.73 
B 1.27 21.07 20.64 17.63 
c 1.33 
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