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ABSTRACT 

In the eastern Grand Canyon, secondary porosity created by north trending faults, 

folds, and breccia pipes, facilitates groundwater flow through the South Rim 

carbonate aquifer. Springs associated with the South Rim Aquifer have low 3H 

concentrations, [Ca2']/[Mg2
'] ratios close to unity, and variable uranium 

concentrations. For a geochemical comparison, springs are subcategorized on the 

basis of geology and discharge. Type I springs are associated with high-angle normal 

faults and have high discharge rates. These springs discharge Ca2+-Mg2+, HC03-

waters, have 3H concentrations < 2 TR, and 234UF38U activity ratios > 3 AR, which 

suggest long groundwater residence times. Type II and IV springs are located on 

canyon mesas and have low discharge rates. These springs are predominantly Ca2+

Mg2
+, SO/ waters, have tritium ratios between I and 6 TR, and 234U/238U activity 

ratios between I and 2 AR Higher 3H and 238U concentrations and low 234U/238U 

activity ratios in the latter waters may be due to shorter groundwater residence time. 

Based on 3H concentration, the occurrence of dedolomitization, and the resultant 

uranium isotope fractionation in groundwater, the minimum residence time of water 

discharging from the South Rim Aquifer is indicated to be > 40 years 
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CHAPTER! 
INTRODUCTION 

PURPOSE OF STUDY 

A study of springs in the eastern Grand Canyon was undertaken to determine 

the subsurface residence time of meteoric-water in the South Rim. Tritium, major 

ion, and uranium isotope concentrations in groundwaters were used to date relative 

ages, characterize the geochemical evolution, and fingerprint groundwaters 

discharging from the South Rim Aquifer. Since the latter aquifer is deep (i.e., > 2000 

feet) and composed of non-porous fractured carbonate rock, traditional 

hydrogeologic methods have limited applicability. Environmental isotopes (i.e., 

tritium and uranium) are an alternative aquifer characterization method which are 

non-invasive, in-situ, and low cost. 

The residence time of subsurface water was estimated by measuring the 

concentration of tritium in groundwater. High-yield thermonuclear testing in the 50's 

and 60's over saturated the atmosphere with anthropogenic tritium. As a result, the 

tritium bomb-pulse "peak" provides a reference point in time that is used by 

hydrogeologists to estimate the relative age of young waters (i.e., <50 years). Gross-

chemistry and uranium isotopes concentrations in South Rim spring waters were used 



to interpret the geochemical evolution and the subsurface residence time of 

groundwater. 

Over the duration of the investigation ( 1994-1996), spring waters were 

sampled from both sides of the Colorado River (Figure I). Although this thesis 

introduces and discusses all of the Grand Canyon springs sampled in the 

reconnaissance, the focus is on South Rim springs (Figure I). The first four chapters 

in this thesis introduce background material necessary to support the conclusions 

made in the final two chapters. A complete list of data collected is provided in 

Appendices I and II. 

LOCATION OF STUDY 

2 

The project site is located in northern Arizona on the South Rim of the eastern 

Grand Canyon and encompasses an area of about 350 km2 (Figure I). Tusayan and 

the Grand Canyon Village are located south of the South Rim springs. This study 

investigates the discharge zone of the South Rim Aquifer, at the northern edge of the 

South Rim or Coconino Plateau, and water samples were collected from spring 

outlets located between Hermit and Page Springs. 

JUSTIFICATION OF STUDY 

Public and commercial development on the South Rim is increasing due to the 

amount of tourism to the Grand Canyon. The projected increases in development will 

require increased use of natural resources, including water. Currently, the majority of 

water used in Grand Canyon Village is piped from the North Rim, in addition to four 

production wells which pump groundwater from the South Rim Aquifer. Using 



3 

geologic and geochemical evidence, this investigation indicates that groundwater tlow 

through the South Rim Aquifer has a residence time greater than 40 years. If this 

minimum residence time is correct, then groundwater withdrawal from the South Rim 

Aquifer may cause decreases in aquifer and basin yield This thesis will hopefully aid 

in the accurate prediction of the effects of projected increases in groundwater 

withdrawal by estimating the relative age of groundwater. 

In an arid environment, plant and animal communities evolve in order to 

survive in otherwise inhospitable conditions. Springs and seeps that discharge 

groundwater onto the Tonto Plateau in the eastern Grand Canyon are a vital source of 

water for plants, wild animals, and humans. Projected increases in anthropogenic 

need for groundwater might induce long-term decreases in spring discharge. 

Therefore, a better understanding of the South Rim Aquifer hydrogeology is needed 

to prevent the "mining" of groundwater. 

Besides a fragile desert ecosystem, the Grand Canyon is also a sacred place 

for several Native American tribes (Hopi, Pueblo, Havasu, and Navajo). 

Interconnections between Native American religions and the Grand Canyon create a 

moral responsibility to prevent the destruction of the Grand Canyon's spring systems. 

In other words, the Grand Canyon is morally and intrinsically valuable, and 

anthropogenic impacts should be minimized if possible. 

PREVIOUS INVESTIGATION 

The lithology, stratigraphy, and structural geology of the Grand Canyon is 

described by Beus and Morales (1990), Huntoon (1974, 1982), Wenrich (1986) and 



numerous others. Moreover, articles and several geologic maps have been published 

discussing and interpreting the geology of the Grand Canyon (e.g. Huntoon 1970, 

1974, 1980; Wenrich, 1985,1986}. 

4 

The hydrology of the Grand Canyon was first investigated by Metzger ( 196! ), 

who assessed the potential water supply within Grand Canyon National Park. In 

addition, Huntoon (1982), described the surface and groundwater flow on and 

through the North and South Rims of the Grand Canyon. More recently, the USGS, 

National Park Service, and researchers at the University of Nevada, Las Vegas have 

investigated and described the hydrogeology of the South Rim Aquifer. Previous 

investigations of the Grand Canyon National Park's spring water chemistry have been 

conducted by Metzger (1961), Huntoon (1974, 1981) Foust and Hoppe (1985), 

Goings (1985), and Zukosky (1995}. These past studies have focused on establishing 

seasonal trends and baseline values for major and trace dissolved constituents in 

spring waters. 

Water chemistry trends. established by previous research, support further 

hydrogeochemical investigations. Measurements for tritium in the Grand Canyon 

springs have not been reported in the literature. Foust and Hoppe ( 1985), Goings 

(I 985}, and Zukosky ( 1995) provide baseline data which was used in conjunction 

with radioactive environmental isotopes (tritium and uranium) to determine the 

residence time of subsurface waters in the South Rim of the eastern Grand Canyon. 
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CHAPTER2 
SITE CHARACTERIZATION 

INTRODUCTION 

Geologic and hydrologic information is provided in this chapter to 

characterize the project site and support conclusions made in this thesis. Topics 

relevant to the investigation include site climate and vegetation, geology, hydrology, 

and hydrogeochemistry. In northern Arizona, flat lying plateaus juxtapose the 

Colorado River gorge to the north, south, and east. To the north and south of the 

Colorado River are the Kaibab and Coconino (Le., North and South Rims) Plateaus 

respectively. Grand Canyon springs discharge from Paleozoic sedimentary rocks 

which are deeply incised by the Colorado River. 

Climate and Vegetation 

Typical of a semi-arid climate, the South Rim has an average winter air 

temperature of0.5 °C (33 °F) and light snowpacks form. Summers are mild on the 

South Rim, with an average air temperature of 14 °C (67 °F). Spring and Fall, being 

transitional seasons are a variation of the latter. The inner gorge of the Colorado 

River has an average winter air temperature of 15 °C, while during the summer, air 

temperatures exceed 25 °C. Snow and rain in the winter are coupled by convection 

6 
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storms in the summer (Brown and Moran, 1979). Within the Colorado River gorge 

and on the South Rim, the average annual precipitation over the past eleven years was 

40 cm/yr (NPS, 1996). 

The South Rim is vegetated by conifer, hardwood, shrub, juniper and cacti as 

a function of physiographic features (Figure I). Where the Coconino Plateau 

decreases topographically to the south, high desert plant communities flourish. 

Approximately 50 miles south of the project site the land surface rises due to the San 

Francisco Volcanic Field (Figure I). 

GEOLOGY 

Within the Colorado River gorge, igneous, metamorphic, and sedimentary 

rocks are exposed by the down-cutting of the Colorado River. Recent erosion (i.e., 6 

Ma) displays large pieces of a complex geologic puzzle that records the history of the 

earth over the past 2 Ga. Of particular interest to this study are the Paleozoic 

sedimentary rocks where the majority of input to the groundwater system is stored. 

The site mineralogy, lithology, stratigraphy, and structure are discussed in this section 

to support interpretations made regarding the South Rim carbonate aquifer and the 

geochemical evolution of groundwater . 

Lithology 

Precambrian Rock 

The Precambrian basement in the Colorado River gorge, is composed of 

igneous, metamorphic, and metasedimentary rocks. Within the project site, the oldest 

rocks are the Zoroaster granite and the Vishnu Schist which have absolute ages of I. 7 
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Figure 2. Stratigraphic column, South Rim eastern Grand Canyon. 
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Ga (Sears, 1990). Unroofed by erosion, these crystalline rocks form basement blocks 

that provide the foundation for siliciclastic and carbonate material deposited in the 

Paleozoic. The Great Unconformity, classified as a nonconformity, represents over I 

Ga of non-deposition and erosion, and separates the Precambrian basement from the 

Paleozoic sedimentary rocks (Sears, 1990) (Figure 2). 

Tapeats Sandstone 

The Tapeats Sandstone consists of clastic material eroded from the 

Precambrian basement (Middleton and Elliott, 1990). Positive grading is present in 

the formation, with beds that are typically less than I meter (3.3 feet) thick 

(Middleton and Elliott, 1990). The sandstone contains feldspar and quartz and is 

lithified with a calcareous cement. Within the project area, the sandstone is 

approximately 77 meters (250 feet) thick (Figure 2). 

Bright Angel Shale 

The Bright Angel Shale contains interbedded sandstone, siltstone, and shale 

with beds that pinch out to the west. The shale also grades into the underlying 

Tapeats Sandstone and the overlying Muav Limestone. Lithologically, the Bright 

Angel Shale contains quartz, rock fragments, a small percentage offeldspar, and 

authigenic glauconite. 

The sandstone and siltstone beds are cemented with iron oxide and contain 

hematitic ooids. The shale member is dominantly illitic clay with trace amounts of 

kaolinite. In addition, fossils and sedimentary structures are abundant in the 



formation (Middleton and Elliott, 1990). The thickness of the Bright Angel Shale 

within the study area is about 61 meters (200 feet) (Figure 2). 

Muav limestone 

10 

Carbonate beds in the Muav Limestone are complexly interbedded with shale 

layers in the Bright Angel Shale. Regionally, the formation pinches out to the east of 

the project site (Middleton and Elliott, 1990). The formation consists of mottled 

dolomitic and calcareous mudstone and packstone (Middleton and Elliott, 1990). 

Small beds of micaceous shale and siltstone, and cliff forming fine-grained sandstone 

and silty limestone are interbedded in the formation. The thickness within the study 

area is 139 meters (450 feet) (Figure 2). 

Temple Butte Limestone 

The Temple Butte Limestone is a thin, discontinuous formation that fills 

paleochannels scoured in the Muav Limestone. Lithologically, the Temple Butte 

Formation is dolomite with a small percentage of sandstone and limestone beds and is 

bound by unconformities (Beus, 1990). Within the project site, the Temple Butte 

Limestone is between 0 and 43 meters (140 feet) thick (Figure 2). 

Redwall Limestone and Surprise Canyon Formation 

The Redwall Limestone is a thick carbonate formation with four prominent 

members deposited during Mississippian time. The four members of the Red wall 

Limestone in ascending order are the Whitmore Wash Member, Thunder Springs 

Member, Mooney Falls Member, and the Horseshoe Mesa Member (Figure 2). The 



Red wall Limestone is the predominant Mississippian strata deposited over much of 

northern Arizona (Beus, 1990). 

II 

The Whitmore Wash Member of the Redwall Limestone consists of dolomite 

in the eastern Grand Canyon Beus (1990) reports that the Whitmore Wash Member 

is almost pure carbonate with trace amounts of gypsum. In the vicinity of the project 

area the member is about 30 meters (1 00 feet) in thickness. Distinguished by thin 

beds of chert and dolomite, the Thunder Springs Member is about 30 meters (I 00 

feet) thick in the eastern Grand Canyon. The thickest member of the Red wall 

Limestone is the Mooney Falls member (122m (400ft)), and it is composed of 

carbonate material (Beus, 1990). The Mooney Falls Member is conformably overlain 

by the Horseshoe Mesa Member which is only 14 meters ( 45 feet) thick in the eastern 

Grand Canyon (Beus, !990) (Figure 2). The Horseshoe Mesa Member consists of 

limestone with small beds of chert. 

The total thickness of the Redwall Limestone is about 200 meters (600 feet) in 

the eastern Grand Canyon (Figure 2). The Redwall Limestone is unconformably 

overlain by the Surprise Canyon Formation (Beus, 1990). The Surprise Canyon 

Formation consists of siliciclastic rocks which fill paleochannels and karst features in 

the Red wall Limestone (Beus, 1990). 

Supai Group and Hermit Formation 

The Supai Group unconformably overlies the Surprise Canyon Formation and 

Redwall Limestone. In ascending order, the four formations of the Supai Group are 

the Watahomigi, Manakacha, Wescogame, and Esplanade Sandstone (Figure 2). The 
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formations of the Supai Group are composed mainly of sandstone and siltstone, with 

thin limestone beds only present in the Watahomigi Formation. In addition, isolated 

evaporite minerals are contained within the Supai Group (Blakey, 1990). 

The Hermit Shale has not been well studied in the past and current trends in 

Grand Canyon nomenclature suggest that the formation be subdivided in the Supai 

Group. The Hermit Formation, which commonly overlies the Supai Group, is called a 

shale, but this terminology is misleading because the formation is composed mainly of 

silty sandstone and sandy mudstone (Blakey, 1990). The contact with the overlying 

Coconino Sandstone is sharp, and desiccation cracks in the Hermit Formation are 

filled with sands found in the Coconino Sandstone (Blakey, 1990). The thickness of 

the Supai Group in the study area is over 308 meters (1 000 feet), and the thickness of 

the Hermit Formation is about 31 meters (100 feet) (Figure 2). 

Coconino Sandstone 

The Coconino Sandstone was deposited in an aeolian environment in Permian 

time (EIS, 1985). The formation is regionally extensive and contains calcareously 

cemented cross-bedded sandstone. The thickness in the study area is 170 meters (550 

feet) (Figure 2) 

Toroweap Formation 

The Toroweap Formation conformably overlies the Coconino Sandstone and 

thins to the south of the Grand Canyon, where it is interbedded with the upper 

Coconino Sandstone (EIS, 1985). The basal member of the formation is a gypsum 
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evaporite bed that is overlain by carbonate and siliciclastic rock. The thickness in the 

study area is 92 meters (300 feet) (Figure 2). 

Kaibab Limestone 

The Kaibab Formation is the cap rock on the South Rim which is commonly 

exposed at the surface. This Triassic formation is a mix of carbonate and siliciclastic 

material (EIS, 1985). Approximately 92 meters (300 feet) thick in the project site, 

the formation has extensive karst development (Huntoon, 1974) (Figure 2). 

Breccia Pipes 

The Colorado Plateau contains thousands of karst breccia pipes which have 

stoped upward in the Paleozoic strata since the Mississippian and Triassic (Wenrich, 

1986). The typical breccia pipe has near vertical "ring fractures" that juxtapose the 

surrounding horizontal strata which suggests they collapse inward (Wenrich, 1986). 

Breccia pipes occur in clusters and follow linear trends across the Colorado Plateau 

and also tend to follow the cave systems developed in the Redwall Limestone during 

karst formation. Huntoon ( 197 4) showed that the cave systems in the Red wall 

Limestone members have orientations that trend north-east and north-westerly. As a 

result, above cave systems, mineralized breccia pipes are commonly present (Wenrich, 

1986). As many as eleven mineralized breccia pipes have been documented along 

north trending lineaments (Huntoon, 1974). 

Karst development in the late Mississippian served as a nucleation point which 

facilitated the development of breccia pipes. Late Cretaceous (i.e., Laramide 
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Orogeny) uplift to the south of the modem Grand Canyon, created a rapidly flushing 

groundwater system which led to further cave formation in the Redwall and Muav 

Limestone, Wenrich (1986) suggested the latter features control present groundwater 

flow, 

Wenrich (1985) found the breccia pipes in the Redwall Limestone to be 

heavily mineralized with sulfide and uranium minerals, while younger Triassic pipes 

tend to be unmineralized, Large amounts ofCu, U, Pb, Zn, Ni, Co, Mo, and As are 

mined from the mineralized breccia pipes, Moreover, anomolously high levels ofHg, 

V, As, and Se are present are found in the pipes, The paragenetic sequence of breccia 

pipe mineralization is summarized into five steps by Wenrich (1985): I) deposition of 

calcite, dolomite, barite, siderite, anhydrite, and kaolinite by a saline brine similar to 

Mississippi Valley Type (MVT) deposits; 2) deposition of siegenite, bravoite, pyrite, 

arsenopyrite, and marcasite rich in Ni, Co, and As; 3) deposition ofCu-Fe-Pb 

sulfides; 4) deposition ofuraninite by low temperature groundwater onto coarsely 

crystalline calcite matrix, in vugs, and detritus quartz grains; and 5) deposition of CuS 

minerals including malachite, azurite, and covellite, 

The source and mechanism of uraninite precipitation in mineralized breccia 

pipes is not well understood, Wenrich (1986) suggested that silicic volcanic rocks of 

the Mogollon Highland, to the south of the Grand Canyon, could be source of 

uranium, From U-Pb age dates, Wenrich (1986) also suggested that uranium-rich 

groundwater flowed north along cave systems in the Red wall Limestone or in 

Surprise Canyon Formation, Under artesian pressure, the fluids were forced upward 



through the breccia pipes. Precipitation of uraninite could have resulted from 

reduction due to sulfide minerals or degassing of C02 (Wenrich, 1986). The breccia 

pipes above cave formations are thought to be conduits for upward fluid flow in the 

past and downward flow in present (Wenrich, 1986). 

Soils 
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The soil zone than partially covers the South Rim, is a fine-sandy loam, thin 

(20 to 60 inches), with moderate soil permeability. The EIS (1985) reports 136,000 

acres of soil zone in the Tusayan Ranger district. Lithic Ustochrept soils, typically I 0 

to 19 inches thick, are found at the northern edge of the South Rim and is produced in 

the forest. The latter soil has a low to moderate permeability rating, and it remains 

saturated 2 - 3 weeks a year during spring snow melt (EIS, 1985). 

Inner Basins 

Tributaries to the Colorado River, which downcut the northern tip of the 

South Rim, are filled with debris eroded from the surrounding canyon walls. For the 

purpose of this investigation, the surface and groundwater drainage area within 

tributaries below the South Rim is classified as the inner basin. The volume of debris 

present in the inner-basin is a function surface-water drainage area below the rim. As 

this investigation will show, the inner basins at the base of the South Rim appear to 

have developed micro-aquifers which influence annual discharge and water chemistry 

of springs. 
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STRUCTURAL GEOLOGY 

The Colorado Plateau fanned as a result of tectonic uplift and erosional 

events (Huntoon and Sears 1975). The initial defonnation of the basement in the 

Proterozoic has controlled subsequent faulting, folding, karst fonnation, and collapse 

of the Paleozoic strata (Huntoon and Sears, 1975; Wenrich, 1986). The Precambrian 

crystalline basement was first defonned during the late Proterozoic when tectonic 

forces shortened the lithosphere and northeast trending thrust faults took up the 

compressional forces (Huntoon and Sears, 1975). Subsequent crustal extension 

facilitated the fonnation of northwest trending transverse nonnal faults, which are 

conjugate to the northeast oriented thrust faults. The scissors-like set of faults create 

a mosaic of Precambrian bedrock-blocks bounded on all sides by faults (Huntoon, 

1974). 

Erosion of the basement and deposition of Paleozoic sedimentary rocks 

preceded the folding caused by the Laramide Orogeny. Crustal compression during 

the Laramide Orogeny caused the horizontal Paleozoic rocks to buckle, and, as a 

result, reactivated the Precambrian faults in a reverse direction. Anticline and syncline 

folds developed in the originally flat lying Paleozoic sedimentary rocks with northwest 

oriented fold axes. The latter episode of deformation resulted in the formation of the 

Havasu Syncline, Supai Monocline, Ermita Monocline, Grandview Monocline, and 

East Kaibab Monocline which are all located in the study site. These folds are 

recognizable in modern surface topography of the Coconino Plateau. Basin and range 

crustal extension reactivated Precambrian faults in a reverse direction (Huntoon, 



1974). Modern displacement along the Hennit, Bright Angel, Flash, Mckee, and 

Vishnu Faults ranges from I 0 to 200 feet within the project site (Huntoon, 1974) 

(Figure 1). 

HYDROLOGY 
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Because the South Rim has a semi-arid climate, thin soil zone, and paleo-karst 

formations, the majority of streams on the South Rim are intermittent (Huntoon, 

1982). On the Coconino Plateau, the development oflow and high order streams is 

controlled by the geomorphic features which are a function of the structural geology. 

Huntoon (1982) showed that most surface water drainage is along structural features 

which facilitate infiltration of water into the subsurface. Within the South Rim 

watershed (Figure I), the surface topography slopes to the southwest and mimics the 

regional dip of the Paleozoic strata. Surface water drains west to the Havasu 

Downwarp (Figure 1). East of Cottonwood Spring, the Grandview Monocline causes 

surface water to drain southeast to the Little Colorado River (Figure I). 

HYDROGEOLOGY 

Hydrostatigraphic units are defined by a rock formations effective porosity, 

hydraulic conductivity, storage capacity, and do not coincide with traditional 

stratigraphic boundaries. Huntoon (1974) divided the Grand Canyon strata into five 

hydrostratigraphic units I) the Precambrian Basement; 2) Lower Clastic; 3) Lower 

Carbonate; 4) Upper Clastic; 5) Upper Carbonate Units (Figure 2). At present, there 

are no quantitative descriptions of the hydrostratigraphic properties available in the 



literature. Qualitative descriptions, however, of the hydrostratigraphic units were 

published by Metzger (1961) and Huntoon (1974). 

Precambrian rock is the lowest hydrostratigraphic unit where no significant 

groundwater flow occurs; therefore it is defined as an aquiclude (Metzger, 1961 ; 

Huntoon, 1982). Separated from the Precambrian Basement by the Great 

Unconformity, the Lower Clastic Unit is composed of the Tapeats Sandstone and 

Bright Angel Shale (Figure 2). Huntoon (1982) reports that the lithified sandstone 

and shale form a quasi-impermeable boundary (i.e. an aquitard). 
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Conformable, and complexly-interfingered with the shale beds in the Bright 

Angel Shale, carbonate rock in the Muav Limestone is the basal material in the Lower 

Carbonate Unit. This unit also incorporates the Temple Butte and Redwall 

Limestones (Figure 2). The Lower Carbonate Unit has high secondary porosity and is 

typically saturated at both regional and local scales. The Muav and Redwall 

Limestones form the major confined aquifer in the project site (i.e., South Rim 

Aquifer) (Huntoon, 1982). 

The Upper Clastic Unit includes the Supai Group and Hermit Shale. Fine

grained siliciclastic material forms a semi-permeable boundary to vertical upward and 

downward flow (Huntoon, 1982). The Upper Carbonate Unit consists of the 

Coconino Sandstone, Toroweap Formation, and Kaibab Limestone (Figure 2). 

Perched aquifers, with limited lateral extent, are present in the Upper Clastic and 

Carbonate Units (Metzger, 1961; Huntoon, 1982). 



19 

Recharge and Intermediate Zones 

Physiographic features (i.e., faults, folds, and breccia pipes) on the South Rim 

capture precipitation and facilitate infiltration. The unsaturated zone above the South 

Rim Aquifer is extremely thick, and water must infiltrate 2500 feet before it reaches 

the saturated zone. Due to the lack of wells penetrating the South Rim Aquifer, 

groundwater boundaries are poorly defined. The aquifer, however, is bound to the 

north by the Colorado River gorge, where contact springs issue from the outcrop at 

various elevations. 

The intermediate zone (i.e., vadose zone) is fractured and jointed by high

angle normal faults. Water is transmitted from the surface to the zone of saturation 

through fault and dissolution networks (Huntoon, 1982). Metzger ( 1961) suggested 

that brittle layers (e.g., Tapeats Sandstone, Red wall Limestone, and Coconino 

Sandstone) tend to transmit water vertically and ductile formations (e.g., Bright Angel 

Shale, Muav Limestone, and Supai Group) distribute flow laterally (Figure 2). 

Saturated and Discharge Zones 

Owing to lithification, the Paleozoic sedimentary rock have low primary 

porosity that decreases with depth (Huntoon, 1982). Faults, joints, folds, karst 

features, and breccia pipes form a network of secondary porosity that concentrates 

zones of high hydraulic conductivity (Metzger, 1961; Huntoon, 1982; Allocco et al., 

1989; Milanovic, 1981 ). High-angle normal faults in the study site tend to have sub

parallel sets of joints and fractures associated with the main slip plane (Huntoon, 

1974). In the Lower Clastic Unit, faults commonly cut the quasi-plastic Bright Angel 
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Shale, but fractures and joints do not. Consequently, the subparallel joints and 

fractures may terminate in the plastic shale formation (Huntoon, 1974) According to 

Huntoon (1974), brittle formations in the Lower Carbonate Unit have high total 

porosity, but do not readily transmit water vertically, because they are sealed above 

and below by the quasi-plastic shale in the Watahomigi Formation and Bright Angel 

Shale respectively. Horizontal flow, therefore, tends to be concentrated along the 

aquitard (i.e., Bright Angel Shale). Major fracture networks in limestone are 

enhanced due to carbonate dissolution. As a result, the flow of groundwater is 

confined in the Lower Carbonate Unit (Metzger, 1961; Huntoon, 1982). 

Fractures in the Paleozoic strata create the regional South Rim Aquifer. 

Havasu and Blue Springs are likely directly associated with these fracture systems 

(Huntoon, 1982), and these regional springs discharge at a constant annual rate 

(Metzger, 1961; Huntoon, 1982). Huntoon (1982) states that the constant discharge 

at Havasu and Blue Springs indicates the South Rim Aquifer is in dynamic 

equilibrium. 

Regional Springs 

The Lower Carbonate Unit is the regional confined aquifer that delivers 

waters to the Havasu and Blue Springs. Issuing from faults, Havasu and Blue Springs 

flow at fairly constant rates and are the main discharge points from the South Rim 

Aquifer. However, they have different gross chemistry, calcium-magnesium

bicarbonate, and sodium-chloride respectively (Metzger, !961; Huntoon, 1982; Foust 

and Hoppe, 1985) (Table I). 
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The Havasu Springs are located along the Havasu Downwarp in the 

Havasupai Indian Reservation (Figure 1 ). Issuing from the Red wall Limestone at 

3256 feet above mean sea level (amsl), the springs discharge 65 cfs (44,000 gpm) 

(Huntoon, 1982). Normal faults, that are transverse to the northwest plunging 

Havasu Monocline, are thought to be responsible for the location of the Havasu 

Springs (Metzger, 1961 ). The springs are calcium-magnesium-bicarbonate waters 

and are brackish (TDS > 1000 mg/1). Uranium-238 concentrations measured in the 

waters are low, whereas, 234UP'"u activity ratios are high (e.g. AR = 2.8) (EIS, I 985) 

(Table I A)). 

Table 1. Historic data from Regional South Rim Springs (from EIS, 1 985). 
A) 
Spring Name Date Elv Q tgpmJ T (C) pH TDS(mgiiJ AR 1·cr 

Havasu Springs 5116/85 3250 44000 21.5 6.7 605 2.8 0.2 

5/16/85 21.5 6.7 614 1.9 0.9 

12/18/85 21 6.9 615 2.8 0.2 

12118/85 21 6.9 552 2.5 0.2 
Average 21.3 6.8 597 2.5 
Std Dev 0.3 0.1 30 0.4 

Max 21.5 6.9 615 2.8 
Min 21.0 6.7 552 1.9 

B) 

Spring Name Date Elv Q (gpmJ T (C) pH TDS(mgiiJ AR 1-<> 

1 Blue Springs 5/16/85 3165 1E+05 20.5 6.3 2315 2.4 0.1 

I 

I 

5/16/85 
12118/85 
12/18/85 

19.5 6.4 

Average 20.0 6.4 
Std Dev 0.7 0.1 

Max 2o.5 6.4 
Min 19.5 6.3 

3.1 0.8 

2455 2.3 0.2 
3.2 0.4 

2385 2.8 
99 0.5 

2455 3.2 
2315 2.3 

The Blue Springs are located on the south side of the Little Colorado River 

(Figure!). The springs have a total discharge of220 cfs (99,000 gpm) (Huntoon, 

I 982) (Table I B)). Water issues from the outcrop between 2,850 to 3,400 feet amsl, 
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and in the vicinity of the springs, the strata dip to the southeast. Groundwater 

discharges from the Tapeats Sandstone and the basal portion of the Supai Group, but 

the majority of water issues from the Mooney Falls Member of the Redwall 

Limestone (Huntoon, 1982). Blue Spring waters are sodium-chloride groundwater 

and have a low mu concentration and high 234UI238U activity ratios (e.g. AR = 2.4) 

(EIS, 1985) (Table I). 

Existing Wells 

Presently on the South Rim, five wells penetrate the South Rim Aquifer. The 

five wells, with depths greater than 2000 feet, include two Squire Inn Wells, the 

Canyon Mine Well, and two Valle Wells (Figure I and 3) (USGS, 1996). Well 

construction, lithologic log, and static water level data are available for only four of 

the five existing wells. Depth to water (i.e., potentiometric surface) on the South Rim 

ranges from about 2000 to 3000 feet (USGS, 1996). Figure 3 is a north south cross

section drawn through the Tusayan, Canyon Mine, and Valle Wells (Figure 1 ). 

The Squire Inn Well is a pumping well located at 6900 feet amsl, and it has a 

total depth of approximately 3000 feet (Figure 3). The well fully penetrates the top 

two hydrostratigraphic units. The Redwall Limestone is first encountered at 2250 

feet, the Muav Limestone is intersected from 2500 to 2850 feet, and the Bright Angel 

Shale is encountered at 2850 feet, but was not fully penetrated. The static water level 

in the well is about 2400 feet below the surface (USGS, 1996). 

The Canyon Mine Well is a monitoring well located at 6500 feet amsl and it 

has a total depth of3086 feet (Figure 3). The Redwall Limestone is encountered 
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between 2242 and 2670 feet, the Muav Limestone is intersected from 2780 to 2980 

feet, and the Bright Angel Shale was not fully penetrated. Exploration wells drilled at 

the Canyon Mine site had static water levels at about 2525 feet below the surface. 

The Valle Well, which is a production well at an elevation of 6000 feet and 

has a total depth of3450 feet (Figure 3), is located 40 miles south of Grand Canyon 

Village. Within the Valle Well, the Redwall Limestone is intersected at 2970 to 3240 

feet, and the Muav Limestone is not fully penetrated. The static water level in the 

well is 2550 feet below the surface (USGS, 1996). 

HYDROGEOCHEMISTRY 

Several research groups have investigated and established baseline water 

chemistry for many of the Grand Canyon Springs. Foust and Hoppe (1985), for 

example, conducted a 10-year hydrogeochemical survey of both North and South Rim 

springs. Graduate students from the University of Nevada, Las Vegas (UNL V) have 

studied South Rim spring water geochemistry since 1984. In 1985, Energy Fuels 

Incorporated, drafted an Environmental Impact Statement (EIS, 1985), which 

monitored major ion and radionuclides at the Canyon Mine Well, as well as, Indian 

Garden (i.e., Two Trees Spring), Havasu, and Blue Springs. 

Foust and Hoppe (1985) established baseline physiochemistry, major ion, and 

trace metal concentrations for the majority of Grand Canyon Springs. The study 

found most Grand Canyon Spring waters have basic pH, are oxidizing, fixed Pc02, and 

are heavily mineralized (i.e., high calcium-magnesium bicarbonate concentrations). 

The latter findings are in agreement with other studies (Metzger, 1961; Goings, !985; 
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EIS, 1985; Zukosky, 1995). Dolomite and limestone lithologies in the Lower Clastic 

and Carbonate Units are likely responsible for Grand Canyon Spring water 

geochemistry (Metzger, 1961; Huntoon, 1974; Foust and Hoppe, 1985). 

Foust and Hoppe (1985) also found that baseline gross-constituents in spring 

waters, analyzed during periods of low flow, will provide the most accurate 

representation of spring chemistry. The exceptions are dissolved fluoride and 

bromide, where their concentration remained constant regardless of flow volume. In 

addition, trace-constituents were determined to provide accurate water type 

"fingerprints" of various Grand Canyon spring water types (Foust and Hoppe, 1985). 

Zukosky (1995) collected water samples from South Rim Springs for stable 

hydrogen and oxygen isotopes and heavy and light rare earth elements (HREE and 

LREE). Zukosky (1995) concluded that stable isotope plots indicate a common 

source of recharge to the South Rim Aquifer with minimal evaporation in the vadose 

zone. 



CBAPTER3 
GEOCHEMICAL THEORY 

INTRODUCTION 

Environmental isotopes were used in this study to interpret the relative ages of 

groundwaters; therefore a description of their chemistry, occurrence, and application 

is provided in this chapter. The understanding and validation of environmental 

isotope geochemical methods, stem from integrated research conducted by geologists, 

hydrologists, and chemists (e.g. Fritz and Fontes, 1980; Buttlar and Libby, !954; 

lvanovich and Harmon, !992; Cowart, 1974; Kaufman, 1974; Osmond, 1980; 

Gaspar, 1987; and Holloway, 1993; Kronfeld et aJ., 1994). 

TRITIUM 

Tritium is used in hydrogeochemistry as a relative age dating method for both 

surface and ground waters. High-yield thermonuclear testing in the 1950's and 1960's 

exponentially elevated the level of tritium in the atmosphere. In the mid-1960s, 

termination of above ground thermonuclear testing stopped large anthropogenic 

inputs of tritium to the atmosphere. As a result, this bomb-pulse "peak" is used as a 

reference point to relative age date waters on the basis of their tritium concentration. 

The tritium isotope has a half life of 12.42 ± 0.05 years and is expressed as an 

26 
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abundance ratio (Tritium Ratio = TR), relative to stable hydrogen. 

Atmospheric tritium, similar to 14C, is naturally produced in the atmosphere by 

cosmic ray spallation (Buttlar and Libby, 1954). Tritium assumes three molecular 

forms in the atmosphere that are listed here in order of abundance: I) tritiated water; 

2) hydrogen gas; and 3) methane (Murphy, 1993). The oxidation of 3H atoms, and 

subsequent hydrogen bonding with oxygen, is described by the following (Fontes, 

1980): 

3 I 3 I 
2 H+2 H+0

2
=>2 HHO. 

In the troposphere, tritiated water molecules have a residence time of 21 to 41 days, 

where they rapidly oxidize, resulting in precipitation of tritiated water (Murphy, 

1993). The residence time of 3H in the atmosphere is short owing to rapid beta decay 

ofN and 0 gases, which results in autocatalysis and subsequent spontaneous 

oxidation of 3H to the liquid phase (Gaspar, 1987; Murphy, 1993). 

The volume of natural tritiated water in the troposphere varies spatially and 

temporally. In effect, longitude in the northern hemisphere influences the 3H 

concentration in precipitation, where the TR is unity near the ocean and increases 

inward toward the continent (Buttlar and Libby, 1954). Turbulence and turnover in 

the atmosphere causes 3H concentration to vary annually, such that, the natural 3H in 

meteoric water tends to be high in the summer and low in the winter (International 

Atomic Energy Agency, 1960-1974; Holloway, 1993). The natural level of tritiated 

water in precipitation is estimated to be between 5-20 TR (Buttlar and Libby, 1954; 
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Figure 4. Historic environmental isotope data eH) collected by the IAEA (1960-1991) in A) 
Flagstaff, Arizona and B) Albuquerque, New Mexico 



Holloway, 1993). Prior to 1951, few tritium analyses were performed on 

precipitation (Holloway, 1993). 
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The advent of above ground thermonuclear testing in 1952, resulted in an 

increase in the volume of 3H in the atmosphere. Since 1952 the International Atomic 

Energy Agency (IAEA) has monitored the concentration of tritium in precipitation. 

Over Ottawa Canada, bomb-pulse 3H in precipitation peaked at I 0,000 TR in 1963 

(International Atomic Energy Agency, 1963). Figure 4 is a plot illustrating the 

variation of the average monthly anthropogenic 3H concentration relative to the 

average monthly precipitation at Flagstaff, Arizona, from 1962 to 1974 and 

Albuquerque, New Mexico, from 1976 to 199\. During high-yield thermonuclear 

testing (i.e., 1952 to 1964), the 3H concentration did not fluctuate as a function of 

precipitation, whereas, after thermonuclear testing (i.e., 1964), the abundance of 

tritiated water became more dependent on the amount of precipitation (Figure 4 ). 

After termination of above ground nuclear testing in the 1960s, the TR in 

precipitation exponentially decreased (Figure 4 ), and is presently thought to be 

approaching natural levels (Holloway, 1993). In this investigation 3H data collected 

in Flagstaff, Arizona from 1962 to 1974, and Albuquerque, New Mexico from 1976 

to 199\, has been used to establish the historic and modem annual average baseline 

TR in precipitation over the project site (Figure 4). 

As previously stated, condensation of tritiated water molecules delivers 3H to 

the terrestrial stage of the hydrologic cycle. Tritiated water enters the soil zone as a 

gas and/or liquid (Murphy, 1993). Within the A-soil horizon, plants and 
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microorganisms use a small fraction of tritiated water, but relative to capillary and 

gravity forces acting on tritiated water, organic activity is negligible (Murphy, 1993) 

Therefore, although the volume of soil water will change, the TR will not change. In 

addition, once soil water infiltrates below the upper weathered zone, aqueous 3H is 

not effected by soil zone processes (Murphy, 1993). 

URANIUM-SERIES DISEQUILffiiRIUM 

Uranium-series disequilibrium is useful in hydrogeochemistry due to 

fractionation that occurs between 238U and 234U in aqueous solution. The 234U/238U 

activity ratio (AR) is used by hydrogeochemists to fingerprint water types, interpret 

rock-water interactions, and estimate groundwater residence time. Because of the 

various complexities involved in the evolution and fractionation of uranium isotopes 

in groundwater systems, the following section describes the concert of chemical 

reactions which affect uranium sequentially from the weathered zone to discharge 

zone. 

The naturally occurring isotopes of uranium are 238U, 235U, and 234U. 238U 

decays to 206Pb through a series of progeny, by alpha and beta decay. 238U has a long 

halflife (tJ/2 = 4.47 x 109 years) relative to the first three progeny in the decay series, 

234Th (t 112 = 24.1 days) and 234U (t 112 = 2.48 x 105 years) which facilitates the use of 

isotopic fractionation between 234U and 238U. In the solid or mineral phase, the 

234U/238U activity ratio (AR) is assumed to be in secular equilibrium (i.e., AR- l) 

where their respective rates of decay are equal; this is under the assumption that there 



is no addition or loss of uranium from the solid. The 234U/238U activity ratio (i.e., A 

N21JA Nm) is mathematically defined as: 

AR = A N"JA Nm 

where f.. is the decay constant and N is the neutron number. 
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In natural waters, the 238U concentration typically falls in a range between 0.1 

to I 0 J.tg/1 (ppb ), and the 234U/238U activity ratio usually ranges from 0. 7 to 5. 0 AR 

(Osmond and Cowart, 1976). The wide range of AR in groundwater is due to 

fractionation processes that occur in the subsurface. The 234UP8U activity ratio in 

solution changes or "fractionates" when fluids interact with the solid phase. 

In oxidized aqueous solution, dissolved tf+ is chemically conservative, 

whereas in reduced solution, U4+ is highly insoluble (Osmond and Cowart, 1976). As 

with most metals, uranium complexation in aqueous solution is a function of initial 

uranium concentration, mineralogy, pH, and Pco2 of the system. At low pH, the metal 

remains a free cation (M"+) , but as pH increases, the metal will become complexed. 

In a carbonate groundwater system, hydroxyl and carbonate uranium complexes are 

common and occur as a function of solution pH and alkalinity (Morse et al., 1983). 

At low pH the uranyl complex (UOl+) is stable in solution; as pH increases, 

the uranyl species tend to adsorb to carbonate minerals, and as a result, uranium is 

removed from solution (Morse et al., 1984). Additionally, sorbed uranium hydroxyl 

complexes form a coating over the carbonate mineral surface (i.e., carbonato 

complex) as carbonate minerals are precipitated (Morse et al., I 984; Ivanovich and 

Harmon, !992). 
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Meteoric precipitation typically has a negligible uranium concentration and an 

acidic pH ~ 5. 65 at steady state conditions. As water infiltrates through the 

weathered zone, acid-base and redox reactions dissolve uranium, thus "fingerprinting" 

the water with a characteristic 234U/23"U activity ratio and total 238U concentration. 

The amount of uranium leached is a function of pH, oxidation state, solid mineral 

composition, and crystal surface area (Osmond and Cowart, 1976; Osmond, 1980). 

As part of the large ion lithophile group of elements, uranium is highly incompatible in 

magmatic systems and becomes enriched in the liquid phase during partial melting as 

well as fractional crystallization. Therefore, at the surface, where uranium minerals 

are unstable, the uranium isotopes are susceptible to chemical weathering processes. 

Rock-water interactions in the weathered zone result in leaching of uranium 

from the solid. In general, uranium minerals will typically have higher uranium 

content than the liquid (Cowart et al., 1978; Osmond and Cowart, J 976). Uranium 

dissolution and precipitation follow the law of mass balance, the relative 234U/238U 

activity ratio in the solid is expected to decrease, while 234U/238U activity ratio in the 

liquid is increased and, therefore, the 234U/238U activity ratio and total 238U 

concentration are inversely proportional in solution (Osmond and Cowart, 1976; 

Ivanovich and Harmon, 1992). 

Once infiltrating water enters the saturated zone, the uranium "fingerprint" 

will either remain conservative or non-conservative as a function of geologic and 

geochemical environment. There are three basic types of groundwater systems with 

respect to uranium: 1) steady state; 2) augmenting; and 3) decaying. The steady 
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state system typically has high buffering capacity, high Po2, and high Pc02. 

Consequently, the carbonate species is stable, and the 234U/238U activity ratio and total 

238U concentration remain constant (Morse et al., 1984; Ivanovich and Harmon, 

1992). 

The augmenting system is geochemically closed as a result of changes in pH, 

redox potential, and Pco2· Most documented augmenting systems contain a reducing 

zone which converts lf+ to ~+, consequently causing the precipitation of uraninite 

(U02) (Osmond and Cowart, 1976). Decaying systems are also closed, but have long 

ground residence times allowing the 234U activity to decrease due to radioactive decay 

(Osmond and Cowart, 1976). It necessarily follows that in a decaying system, the 

longer the groundwater residence time, the lower the 234UP38U activity ratio will 

become. If the system is decaying, the groundwater velocity is slow relative to the 

234U half life (t112 = 2.48 x 101 years), the 234U/238U activity ratio will decrease, and the 

total 238U (i.e., t 112 = 4.47 x I 09 years) will remain constant. (Ivanovich and Harmon, 

!992; Os!!!O!!d a!!d Cowart, !976; .Kro!'ie!c! eta!. !994). 

In a closed augmenting or decaying system, the abundance of uranium oxide 

and degree of isotopic fractionation are a function of rock geochemistry. Isotopic 

fractionation in the saturated zone results from two processes: I) alpha recoil; and 2) 

selective leaching of234U. Osmond and Cowart (1976) report that alpha recoil is the 

primary mechanism of fractionation in reducing aquifers. Alpha recoil is the sudden 

reactive movement of progeny through a distance of a few hundred angstrom units, 

when an alpha particle is expelled in the opposite direction (Ivanovich and Harmon, 



1992). Alpha recoil, a product of 238U decay, can result in the progeny e34Th), 

escaping the crystal lattice and, therefore, causing 234Th to transfer across the solid

liquid interface. Due to the short half-life of 234Th (24.1 days), 234U is rapidly 

produced and, consequently, increases the 234UI238U activity ratio in solution. 
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The second isotopic fractionation mechanism is selective leaching which rests 

on the inference that 234Th and 234U are both more "susceptible" to dissolution as a 

result of the "recoil effect." In this case, instead of directly transferring the progeny 

to aqueous solution, alpha recoil displaces progeny to the outer margins of the crystal 

lattice. Subsequent rock-water interactions selectively leach the 234Th and/or 234U 

from the rock (Osmond and Cowart, 1976). 

Kronfeld et al. (1994) pose an alternate avenue for elevated 234U/238U activity 

ratios resulting from alpha recoil in an oxidizing system. Alpha recoil typically occurs 

in a reducing system where precipitation ofU02 is occurring. Kronfeld et aL (1994) 

have shown that in an oxidized carbonate systems, ion exchange and/or sorption of 

uranium complexes on carbonate mineral surfaces provide an effective source of 238U 

which will increase 234U in solution as a result alpha recoil. Kronfeld et al. ( 1994) 

also found that the amount of radiogenic fractionation is a function groundwater 

residence time, such that the longer the groundwater residence time, the higher the 

234UI238 U activity ratio. 



CHAPTER4 
MATERIALS AND METHODS 

THEORETICAL DESIGN 

Hydrogeologic and hydrogeochemical methods were used in this investigation 

to estimate the residence time of South Rim spring waters. Individual springs were 

grouped into populations based on discharge and geology. Differences and 

similarities between spring populations were used to interpret the residence time and 

geochemical evolution of groundwater; including: 1) location; 2) elevation; 3) 

position in strata; 4) lithology; 5) structure; 6) flow volume; 7) temperature; 8) pH; 9) 

alkalinity; I 0) conductivity II) total dissolved solids 12) major-ion concentrations; 

and 13) environmental isotopes (i.e., tritium and uranium). 

MATERIALS 

A variety of analytical equipment was used in the field to measure the latter 

field parameters (e.g. pH, alkalinity, conductivity). A standardized field equipment 

packing list was developed to maintain sampling consistency throughout the duration 

of the study. Because Grand Canyon springs are typically reached by foot, basic 

backpacking equipment was used to transport equipment and samples. 
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Topographic maps were used for land navigation and as base maps for 

hydrogeologic mapping. The 7.5 minute quadrangles that cover the project site are 

Grandview Point, Cape Royal, Phantom Ranch, Tusayan East, and Tusayan West 

Quadrangles. The geologic maps drafted by Huntoon et aL (1980) and Metzger 

( 1961) were used to correlate the hydrology to stratigraphy and geologic structure. 

The Arizona State Geologic Map was used to relate the project site to the regional 

geology and hydrology. A Global Positioning System (GPS) was used to 

approximate the longitude and latitude of sample stations. The altitude of sample 

stations was derived from the topographic maps. 
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Field portable instruments were used to measure basic field parameters. The 

instruments used in the field included a thermometer, pH meter, conductivity-TDS 

meter, and alkalinity titration kit. 

METHODS 

Water samples were collected from springs, seeps, creeks, and wells on the 

North and South Rims of the eastern Grand Canyon. The majority of the springs that 

drain into the Colorado River basin have been sampled for gross dissolved 

constituents, tritium, and uranium. Geologic and hydrologic characteristics and 

properties of springs were recorded in a field notebook and plotted on a topographic 

base map. The field descriptions include sample location, altitude, weather, 

vegetation, stratigraphy, structure, discharge, physiochemistry, and any other notable 

characteristic. 
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Discharge at Hermit, Two Trees, Pipe, and Cottonwood Springs is measured 

by stream gages installed by the USGS (Figure 5). Stream gages at Hermit, Pipe, and 

Cottonwood Spring are located down stream from the spring orifice. Consequently, 

the latter gages measure total discharge from the spring and inner basin alluvium. For 

the remaining springs, discharge was measured volumetrically. 

Water samples from South Rim springs were collected, handled, and analyzed 

following currently accepted quality assurance procedures (Wood et al., 1993; 

Osmond and Cowart, 1976). Springs were sampled, as much as possible, from the 

point of issuance. For "outcrop" type springs (i.e., contact springs), water samples 

were collected at the same location, whereas, samples collected from inner basin 

alluvium, were sampled where the water first surfaced. Because of sample location 

restrictions, the alluvium samples were often collected at different locations within the 

same inner basin (i.e., Chapter 2). 

Major ion samples were collected in 120 ml precleaned polyethylene bottles. 

The water sample was filtered through a 0.45 ~tm filter, using a hand-held peristaltic 

pump. Cation samples were acidified to pH < 2, with ultra-pure, concentrated nitric 

acid. Traditionally, anion samples are preserved by keeping them cool and 

performing the analyses within 48 hours of sample collection. Due to the remote 

sample locations, the anion samples collected in this study had variable temperatures 

and were stored in their sample bottles for seven days. Because of these limiting 

factors, the PO/ species, which can be affected by temperature and long storage, 

were not considered in the anion analysis. 
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Tritium samples were collected as "grab" samples in one-liter glass bottles. A 

500 ml sample is needed for isotopic enrichment analysis (Wood et al., 1993), but a 

1 000 m1 sample was collected at each site. 

Uranium samples were collected in one liter, acid precleaned, polyethylene 

bottles. One liter, "grab" samples for uranium were collected at each spring. Samples 

were filtered through a 0.45 ~m filter, and acidified in the field to pH< 2, with ultra

pure, concentrated nitric-acid. Filtered and unfiltered samples were both collected 

depending on the turbidity of the water at each sample site. Past research indicates 

that filtering uranium water samples is typically not necessary, with the exception of 

high turbidity surface water (Osmond and Cowart, 1976). 

SAMPLE ANAL VSJS 

Major ion samples were analyzed at the Harry Reid Center for Environmental 

Studies (HRC). The four major cations (i.e., sodium, magnesium, calcium, and 

potassium) were measured by atomic adsorption spectroscopy (AA) The detection 

limit of the AA method is approximately 0.01 ± 0.05 mg/1. Dilution correction factors 

were used to statistically support the accuracy and precision of the average sample 

concentration. Anion samples were analyzed using a Dionex ion chromatography 

(IC) system. Similar to the cation accuracy, the detection limit ofiC is 0.01 ± 0.05 

mg/1. 

Tritium analyses were performed at the Desert Research Institute, Reno 

(DRI), and at the Environmental Protection Agency, Las Vegas (EPA). Both labs use 

the same method and have similar limits of detection of 1 to 2 TR. The water sample 
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is enriched by electrolysis and then placed into a liquid scintillation counter which 

records beta decay in disintegrations per unit time. If electrolytically enriched before 

liquid scintillation, the method has a detection limit of2 TR or 6 pCi/1 (Moser et aL, 

1988) 

Uranium samples were analyzed at the Trace Metals Lab, University of 

Nevada Las Vegas (UNL V). Uranium disequilibrium analysis, described below, was 

conducted using the anion-exchange method described by the US EPA (1979). First, 

232U is added to the samples as a tracer to quantifY the percentage of uranium isotope 

recovery. Uranium is then removed from solution by coprecipitating uranium 

isotopes with ferric hydroxide. The precipitate is then dissolved in hydrochloric acid, 

and the solution is passed through columns to separate uranium isotopes from other 

metals. Ion exchange is achieved by flushing the columns with acid and collecting the 

analyte. The uranium is then plated on a stainless steel planchets by 

electrodeposition, and a high resolution solid-state alpha particle spectrometer is used 

to count the alpha emissions. The samples are counted for 1000 minutes, and the 

resultant disintegrations per unit time are used to calculate the concentration of 

uranium in solution. Blanks are run through the entire laboratory analysis and provide 

a correction factor for counting background. The minimum detection limit for 

uranium isotopes is less than 0.01 !lg/1, with a !-sigma error=± 5% for uranium 

concentration and ± 3% for AR (Ivanovich and Harmon, !980). 



CHAPTERS 
RESULTS 

INTRODUCTION 

Results reported in this chapter include seasonal sampling, sample limitations, 

spring outcrop geology, field physiochemistry, and major ion, tritium, and uranium 

analyses. Major ion samples were collected in July 1995, tritium samples were 

collected from January 1994 to February 1996, and uranium samples were collected 

from March 1994 to November 1995. Appendix I is composed of field data sheets 

which summarize all data collected during the investigation. Additionally, Appendix 

II lists the results from water sample analyses for tritium, major ions, and uranium. 

Discharge measurement for the 1994-1995 water year are tabulated in Appendix IlL 

SEASONAL DATA 

In order to establish seasonal variations in environmental isotope 

concentrations, tritium samples were collected periodically. Table 2 A) and B) list the 

annual average tritium and uranium concentrations in spring waters and their variance 

from the sample mean. Both tritium and uranium concentrations in spring water had 

minimal variability during 1994 and 1995 (Table 2 A) and B)). Samples collected 
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directly at the spring orifices show minimal variability in their tritium and uranium 

concentrations throughout the year, whereas samples collected from inner basin 

sediment exhibit a higher degree of variance. 

Table 2. A) Seasonal sampling results for tritium measurements 
Spring Name Date TR 2-o 

Page Spring 

Spring Name 

Cottonwood Creek 

Spring Name 

Pipe Creek 

Spring Name 

Two Trees Spring 

Spring Name 

!Horn Creek 

11/11194 1.08 0.83 

5112195 1.25 1.88 
7/16195 1.88 1.88 

Average_:,1:..;.4.;,.1 __ 
Std Dev 0.42 

Date TR 2-<T 
11/11194 1.44 0.93 

11/12194 1.06 1.08 

2/25/95 2.23 1.88 

7/16195 1.57 2.19 

Average 1.57 
---

Std Dev 0.48 

Date """r~R=2~..,-

4129194 0.94 3.13 

11/14194 1.99 0.87 

9/26194 1.45 0.89 

Average -=1 :.,·46,;_ __ 
Std Dev 0.52 

Date 

4130194 

9/29/94 

1 1/28/94 

4130195 

5/18/95 

TR 2-a 

0.82 0.85 

0.99 0.87 

0.66 1.57 

-0.47 3.13 

-009 2.19 

0.38 1.72 

0.63 0.97 

Date TR 2., 

4130194112.3212 191 
6/5195 4.39 1.88 

Average _:;3.::.3,;:.5 __ 
Sid Dev 1.46 ......,..;..__ 

41 



,, 

11z0 15' 

36"05' 1 ,., ~ ? 'l-, ,. ,. '/ rv ~ • ~ 
(J.l ~~ ~· ~o_!l\Ja (/~®"?/"f"-t ?.,~ Ln~f J ~/) 
(__ ..J f - J> i-'""'~106\ v '- (/ _. ' ( C, ' X ' ' ') ' }

,.-

11

ft.,./ \.,lj . ' "\ . c/ ' rL.c! "'"'' ooooo• I ( \ 1Z /9 ..... ~i. ;'""v ;· ) 
·V •• \\ ~ . A,, 

J, 19 

1

•' dCanyonVlllage "\_\ /r-- 4 ./ ..• - ._"\ 

' 0 '"' >' CJ. '. . . / . ···~ ~ ., ... - . . -, .~ ' . . " . . •• . ' . ,, 'f 
·, ...... . 

•o,r \ 

Spring Legend ,,... 
2 Cottoowood 

/./·' 

/ 

/ 
/ 

.-~1' 

. . . . . ' . ' .// .,_. r·-:--.... '\ t- \'( ., 
F > ,- \ ~"1 ~ g 2 . ~ /•·, ' . 

/ 

r / .,..~, ' ll...\ •'-". 
r ' \• ' • • 

--
_./ 

;"' .. -
/ .... // -'\, \@ ~ 

' <(, \ ·., .,'!,. \ 
\ 

'· 
' ·. "\ . 

4 Grapevtlle East X Mlnetaliud bfecd& pipe 
3 CottcnwoodWesl ® 
SGrapevme 

_/;;' 
/ .. -·/ 

/ 
\\,_ ·\ . .,_ \\ ·-7lonetrM b Spring and O!fentation ~ 0Ii1ice 

asamMagoe 

if§ T"" J v'<~"~::: 
n~ I / -~ 
16MontlmMt 

·-..... \ .\ ., 
\ 

··~\ 

' 

/_/'' 

Well \\ 

~~~ fineh•3.2 ktn 
t9 Santa Malia 
200. )ripplrJG 

-----------------------------------------------------------------------------------------------------------1--~•ss 
Figure 5. Spring location map 1 12" 57' ~ 



43 

Table 2. B) Seasonal sampling results for uranium measurements 

Spring Name Date ur·(ppb) 1-cr AR 1-<> 

Page Spring 5112195 3.9 o.1 II 1.6 O.t39 

9/9195 3.7 0.2\1 1.6 0.111 

Average 3.8 1.60 0.13 
Std Dev 0.1 0.00 0.02 

Spring Name Date UT"(ppb) l-<1 AR 1-<r 

I Pipe c,.,ok 

I ~=II 
2.0 

I~·~ II ~·~ I :;s; I 2.4 

Average 2.2 2.75 0.34 

Std Dev 0.3 0.07 0.26 

Spring Name Date ur•(ppb) 1-<r AR 1-<r 

Two Trees Spring 4130/94 0.6 0.2 3.5 0.654 

6/5/95 0.6 0.2 3.7 0.31 

Average 0.6 3.60 0.46 
--,..----::--::-:--;:-:::-:,-Sid Dev 0.0 0.14 0.24 

Spring Name Date ~U~T"~(~pp~b~)~I--<>--~A;R--~1..,== 

Horn Creek 4130/94 24.7 0.3 0.94 0.032 

3/19/95 92.7 0.2 0.8 0.011 

6/5/95 27.6 0.3 1 0.023 

Average 46.3 0.91 0.02 
--;::::-;;---;:-:.,...--:,..,...-

StdDev 38.5 0.10 O.Q1 

• UT = total "'U (ppb) 

SAMPLE LIMITATIONS 

Contact springs discharging directly from the rock outcrop are ideal sampling 

locations because the geology that the groundwater issues from can be directly 

observed, and there is minimal risk of chemical changes in water chemistry. Ideally, 

the sample is collected directly from the rock outcrop, but in the Grand Canyon 

sample location is limited by the presence of inner-basin sediment described in 

Chapter 2. At several sample sites modem alluvium has buried the spring orifice, and 

water that flows from the Paleozoic rock and into alluvium interacts with sediment 

and modem meteoric water. Cottonwood, Grapevine, Pipe, Hom, and Monument 



Springs all discharge from inner basin sediment (Figure 5). Additional sample error 

could arise from evaporation and/or mixing with modem precipitation at the spring 

orifice. For example, in the case of tritium, the TR is expected to be higher if 

evapotranspiration and/or mixing occurs. 
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Major ion samples were not collected from all South Rim springs. As 

discussed in Chapter 2, Foust and Hoppe (1985) suggested that major ion water 

samples should be collected during low-flow conditions to accurately represent the 

dissolved constituents in spring waters. Intermittent springs were dry during the time 

of major ion sampling, and perennial springs were assumed to be at low flow 

conditions (Foust and Hoppe, 1985; Goings, 1985). Consequently, intermittent 

springs were not sampled for major ions but were sampled for tritium and uranium. 

Several of the springs sampled in this study have not previously been sampled; 

therefore no historic discharge or hydrogeochemical data exists for comparison. 

Springs that lack historic data include Page, Cottonwood, Cottonwood West, 

Grapevine Hell, Grapevine East, Grapevine, Boulder, Lonetree, Sam Magee, 

Cremation, Ko:b, Cedar, and Matkatamii:Ja Springs (Figure 5). 

SPRING OUTCROP GEOLOGY 

Spring waters that were sampled from the Paleozoic carbonate rock outcrop 

include Page, Cottonwood West, Grapevine-Hell, Grapevine East, Lonetree, Sam 

Magee, Burro, Kolb, Two Trees, Salt, Cedar, Hawaii, Hermit, Santa Maria, and 

Dripping Springs (Figure 5). Cottonwood, Grapevine, Pipe, Hom, and Monument 
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Springs are locations were water flows through inner basin sediment before surfacing; 

therefore samples were collected from inner basin sediment. 

The majority of contact springs (i.e., Paleozoic orifice) discharge from the 

Bright Angel Shale-Muav Limestone contact. Dripping, Santa Maria, and Kolb 

Springs issue from the Upper Clastic Unit and are associated with perched aquifers 

(Metzger, 1961; Huntoon, 1982) (Figure 2). The remaining contact springs issue 

from the outcrop between the Thunder Springs Member of the Redwall Limestone 

and the Tapeats Sandstone (Figure 2). 

SPRING DISCHARGE 

Discharge from springs that issue from the South Rim walls of the eastern 

Grand Canyon is fairly constant (USGS, 1996; Metzger, 1961; Huntoon, 1982). 

Appendix III lists the measured discharge from South Rim springs for the 1994-1995 

water year. In general, outcrop springs have relatively constant discharge. However, 

spring water which flows through alluvium tends to have a seasonally variable 

discharge. Diurnal fluctuations in stream discharge were observed at Grapevine 

Spring where surface-water flow ceases at night. 

Several of the springs sampled in this study flow intermittently which include 

Cottonwood West, Grapevine Hell, Boulder, Cremation, Kolb, and Cedar Springs 

(Appendix III). Intermittent springs are classified as seeps because their maximum 

discharge is less than I liter per minute. The latter springs typically cease flowing 

during the summer months and begin flowing in January-March. 



FIELD PHYSIOCHEMISTRY 

Standard water quality parameters were measured each time a spring was 

sampled for environmental isotopes. Table 3 lists the results of field physiochemical 

measurements for all springs sampled. In summary, South Rim springs are below 

standard state temperature (i.e., 25 •c), have high buffering capacity (pH> 6), and 

abundant dissolved solids (Table 3). 

MAJOR ION CONCENTRATIONS 
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Owing to lithology, most South Rim springs are heavily mineralized and of 

poor water quality. The major ion data collected in July 1995 is plotted on a Piper

diagram in order to display chemical variation between spring waters (Table 4) 

(Figure 6). In general, anion species in South Rim waters vary, whereas cation 

concentrations do not significantly differ (Figure 6}. North Rim water, sampled from 

the Indian Garden Pump Station, is a calcium-bicarbonate water (Figure 6). South 

Rim spring waters, however, are predominantly calcium-magnesium-bicarbonate 

waters, although some are calcium-magnesium-sulfate waters (Figure 6). In South 

Rim waters, bicarbonate and sulfate concentrations are variable while chloride is semi

constant. Additionally, the magnesium to calcium ratio is 1 for the majority of South 

Rim springs (Table 4) (Figure 6). 

TRITIUM 

Springs and wells sampled from the South Rim Aquifer had minimal variation 

in their 3H concentrations (Table 2 A)). Twelve of the sample locations have tritium 

ratios between -1 and 2 TR which include Page, Cottonwood, Grapevine East, 
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Grapevine, Sam Magee, Burro, Pipe. Two Trees, Hawaii, Hermit, Dripping Springs, 

the Canyon Mine, and the Squire Inn Wells (Figure 7) (Table 5 A)). The remaining 

South Rim springs (i.e., Cottonwood West, Boulder, Lonetree, Kolb, Horn, Cedar, 

Monument, and Santa Maria Springs) had tritium concentrations that are between 2 

to 5 TR (Figure 7) (Table 5 A)). 

URANIUM 

In general, South Rim springs showed a large variance in their 234U/238U 

activity ratio and total 238U concentration. For example, Horn Spring, located just 

east of Two Trees Spring (Figure 5), had a very high total 238U concentration and an 

average 234U/238U activity ratio of 1 AR (Table 2 B)). Conversely, Cottonwood, 

Grapevine, Two Trees, and Dripping Springs have dilute total 238U concentrations 

and 234UJ238U activity ratios that fall between 3 and 4 AR (Table 5 B)). Burro, Pipe, 

Hawaii , and Hermit Springs have intermediate total 238U concentrations and 234U/238U 

activity ratios at approximately 3 AR (Table 5 B)). The remaining springs (i.e., 

Cottonwood West, Grapevine Hell, Boulder, Lonetree, Sam Magee, Salt, Cedar, 

Monument, and Santa Maria Springs), have high total 238U concentrations and 

234UP38U activity ratios that range between 1.5 and 2.5 AR (Table 5 B)). 
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Table 4. Major ion concentrations (mg/1) in South Rim Springs, collected in July, 1995. 
Sample Stolion ca 2-<! Mg 2.., Na 2-a K 2_, S04 2_, HC03 Cl 

Page Spring 24.56 0.29 33.77 0.35 0 NA 3.82 0.02 42.7 0.28 125 23 

Cottonwood Spring 81.62 1.79 62.13 123 1222 0.31 4.41 0.02 31 0.175 390 20 

Grapevine East Spring 77.59 1.8 74.72 2.19 19.2 0.09 703 0.09 173 2.61 272 35 

Grapevine Spring 62.66 0.95 36.87 0.24 6.24 0.1 1.86 0.08 12.4 0.041 256 9.17 

Lonetree Spring 115.69 3.03 121.17 0.09 50.66 1.24 14.37 0.06 303.5 1.44 450 57 

Sam Magee Spring 55.45 0.64 57.09 0.6 20.54 0.16 6.63 0.17 186 0.134 136 29.9 

Burro Spring 56.95 0.56 47.11 1.23 15.84 0.04 4.29 0.002 75.9 0.087 220 20.1 

Pipe Spring 65.52 0.64 50.48 1.25 14.59 0.11 4.69 0.08 110.5 0.018 208 19.6 

Two Trees Spring 46.46 0.71 34.77 0.86 7.43 0.02 1.51 0.04 22.2 0.002 196 12.5 

IGS 42.01 0.92 33.86 1.1 7.25 0.05 1.74 0.06 21.8 0.001 176 12.7 

IGPS 37.23 0.65 17.61 0.32 1.28 0.006 0.58 0.01 3.72 0.011 150 3.31 

Hom Spring 87.78 1.71 81.99 1.06 32.51 0.18 13.86 0.21 239.1 0.701 280 39.3 

san Spring 126.99 3.16 143.8 0.38 47.73 0.21 19.16 0.24 674.3 0.695 190 38.1 

Monument Spring 89.48 2.37 72.91 0.56 92.63 6.99 8.48 0.24 199.8 4.37 234 162.9 

Hawaii Spring 49.30 0.003 36.3 0.53 12.29 0.34 2.54 0.003 42 0.012 190 14.9 

Hermft Spring 49.00 0.39 31.5 1.18 6.36 0.13 1.5 0.02 13.5 0.003 194 10.9 

Santa Maria Spring 27.71 0.4 41.22 0.68 12.83 0.08 3.85 0.02 23 0.06 167 26.7 

Dripping Spring 30.50 0.62 27.65 0.97 4.57 0.03 1.08 0.01 8.72 0.05 134 11.8 

2-« F 2 .... Br 

0.33 0 0.197 

0.03 0 0.166 

0.132 0.141 0 0.236 

0.091 0.093 0.002 0.09 

0.06 0 0.451 

0.3 0.5 0.025 0.269 

0.094 0 0.157 

0.137 0 0.126 

0.23 0 0.113 

0.198 0.094 0.004 0.11 

0.032 0.1 0.005 0 

0.203 0 0.207 

0.365 0 0.16 

0.572 0 0.482 

0.129 0 0.11 

0.14 0.099 0.001 0.087 

0.051 0 0.228 

0.189 0.154 0.003 0.13 

2-o N03 N04 2-<"J 

0.01 5.64 1.27 0.068 

0.008 0.102 0.02 0.002 

0.008 0.145 0.03 0.01 

0.003 0.369 0.083 0.002 

0.012 0.087 0.02 0.003 

0.007 15.4 3.48 0.159 

0.006 1.79 0.404 0.012 

0 1.734 0.392 0.033 

0.005 2.09 0.47 0.003 
0,006 2.81 0.63 0.01 

0.862 0.195 0.021 

0.01 0.549 0.124 0.002 

0.006 4.38 0.989 0.058 

O.Df5 9.66 2.18 0.316 

0.002 2.79 0.63 0.021 

0.003 2.9 0.655 0.064 

0 6.24 1.41 0.021 

0.001 5.7 1.29 0.024 

v. 
0 
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Table 5. A) Tritium results from South Rim springs. 
Sample Station Date pCI/I 2-<> TR 2-<> 

Indian Garden Pump Station 4130194 20 6 6.27 1.88 
Canyon Mine Well 5114194 ·1 .4 8 -0.44 2.51 
Pipe Spring 9/26194 4.629 2.845 1.43499 0.89 
Indian Garden Spring 9/26194 3.222 2.m 0.99882 0.87 
Page Spring 11/11194 3.446 2.636 1.08826 0.63 
Cottonwood Spring 11/11194 4.581 2.974 1.42011 0.93 
Cottonwood Spring 11/12194 3.391 3.449 1.05121 1.08 
Grape East Spring 11/12194 5.118 2.988 1.58858 0.94 
Cottonwood West Spring 11/12194 7.25 2.71 2.2475 0,85 
Grapevine Spring 11/12194 6.112 2.854 1.89472 0.89 
Lonetree Spring 11113194 11.627 3.073 3.60437 0.98 
Sam Magee Spring 11/14194 2.791 3.344 0.86521 1.05 
Pipe Spring 11/14194 6.337 2.776 1.98447 0.87 
Squire Inn Well 11/15194 2.767 3.315 o.85m 1.04 
Indian Garden Pump Station 11126194 2.1 5 066 1.57 
Indian Garden Pump Statton 11/26/94 13.613 3.032 4.22003 0.95 
Two Trees Spring 11/26194 2.577 2.703 0.79667 0.85 
Kolb Spring 11127/94 10.555 2.713 3.27205 0.85 
Lab Blank "Fossil Wale(' 12120194 4.432 3.468 1.37392 1.09 
South-rim rain~water 2125195 34.1 7 10.69 2.19 
Cottonwood Spring 212$/95 7.1 6 2.23 1.88 
Santa Maria Spring 3/17/95 9.4 6 2.95 1.88 
Dripping Spring 3/17195 0.5 7 0.16 2.19 
Upper Herm~ Creek 3/17195 19.9 7 6.24 2.19 
Hermit Spring 3/17/95 3.6 a 1 '13 2.51 

Hawaii Spring 3/18/95 1.6 8 0.50 2.51 

Monument Creek 3/18/95 9.1 7 2.85 2.19 
Cedar Spring 3/18/95 8,8 6 2.76 1.88 
Salt Creek 3/19195 18 9 5.64 2.a2 

Burro Spring 4129195 6.1 9 1.91 2.82 
Pipe Spring 4129195 3 10 0.94 3.13 
Bright Angel Creek 4130195 19 13 5.98 4.08 
Two Trees Spring 4130/95 ·1.5 10 -0.47 3.13 

Hom Creek 4130195 7.4 7 2.32 2.19 
Page Sprtng 5112195 4 6 1.25 1.88 
Squire Inn Well 5/17195 -1.3 10 -0.41 3.13 
Two Trees Spring 5118195 -0.3 7 .{),09 2.19 
Boulder Spring 6/3195 12 5 3.76 1.57 

Cremation Spring 6/4195 23 8 7.21 2.51 

Page Spring 7/16195 6 6 1.88 1.88 
Cottonwood Spring 7/16195 5 7 1.57 2.19 
Indian Garden Pump Station 7/19195 6.6 10 2.07 3.13 

Fence Fault Spring (S) 7/31/95 9 8 2.82 2.51 

Fence Fault Spring (N) 7/31195 a 9 2.51 2.82 
Vacys Paradise Spring 8/1195 16 8 5.02 2.51 

Monkey Flower Spring 8/1195 14 8 4.39 2.51 
Deer Spring South 8/4195 9 a 2.82 2.51 
Tapeats Creek 8/4195 16 10 5.02 3.13 

Matkatiamiba Spring 8/5195 4 8 1.25 2.51 
Ledges Spring 8/5195 <1 0 
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Table 5. B) Uranium results from South Rim springs. 
Sample Station Date 238 (pCill) 1.., 238 (ugn) 234 (pCill) AR 1., 

Dripping Spring 3117195 0.47 0.05 1.3 1.65 3.5 0.946 
Santa Marta Spring 3117195 221 0.03 6.2 4.3 1.9 0.083 
Hawaii Spring 3/18195 0.94 0.02 2.6 2.68 2.8 0.21 
Hermn Source Spring 3118195 1.01 0.02 2.8 2.89 2.9 0.18 
Monument Creek 3118195 3.24 0.04 9 6.71 2.1 0.056 
Cedar Spring 3118195 5.57 0.05 15.6 10.59 1.9 0.052 
Satt Creek 3119195 5.23 0.05 14.6 8.03 1.5 0.041 
Hom Creek 4130194 8.76 0.09 24.7 6.22 0.94 0.032 

3/19195 33.21 0.12 92.7 27.82 0.8 0.011 
6/5195 9.9 0.08 27.6 9.48 1 0.023 

Two Trees Spring 4130194 0.643 0.05 1.81 2.26 3.5 0.654 
6/5195 0.59 0.02 1.6 2.16 3.7 0.31 

Pipe Creek 4129/94 0.723 0.05 2.04 2.04 2.8 0.52 
6/4195 0.85 0.02 2.4 2.33 2.7 0.157 

Burro Spring 4129194 0.861 0.08 243 2.23 2.6 0.59 
Cremation Creek 6/4195 2.72 0.06 7.6 5.35 2 0.108 
Sam Magee Spring 6/3195 1.35 0.02 3.8 2.2 1.6 0.063 
Lonetree spring 613195 1 71 0.03 4.6 2.71 1.6 0.071 
Boulder Creek 613195 2.48 0.03 6.9 4.54 2 0.084 

Grape~ne Spring 5113195 0.42 0.01 1.2 1.54 3.6 0.286 

Grapevine East Spring 5113195 1 0.05 2.6 1.68 1.7 0.198 
Grapevine-Hell Spring 5/13195 2.5 0.06 7 4.94 2 0.117 
Cottonwood Spring 5/12/95 0.41 O.ot 1.1 1.47 3.6 0.42 
Cottonwood West Spring 5/13195 1.6 0.03 4.5 3.53 2.2 0.095 
Page Spring 5/12195 1.41 0.05 3.9 2.24 1.6 0.139 

9/9195 1.31 0.03 3.7 2.09 1.6 0.111 
Indian Garden Pump Station 4130/94 0.074 0.06 0.21 0.356 4.8 9.25 
Bright Angel Creek (N. Rim) 4130/94 0.154 0.08 0.055197 0.819 3.8 5.32 



CHAPTER6 
DISCUSSION 

INTRODUCTION 

Various lithologies and structures in the Paleozoic strata are controlling 

groundwater flow and ultimately the residence time and resultant water chemistry of 

South Rim spring waters. For the purpose of discussion, springs are grouped on the 

basis of their associated geology and annual average discharge. This latter dichotomy 

permits a comparison of springs that is dependent on spring geology, and not 

geochemistry. Five groups of springs are thus classified under tlus convention. 

In general, Type I through IV springs discharge from the South Rim of the 

Grand Canyon, and Type V springs issue from the southern and eastern edges of the 

North Rim (Figure 1 and 5). Type I springs generally have moderate discharge and 

are associated with high-angle normal faults (Table 6); Type II springs have low 

discharge and issue from hydrogeologically isolated canyon mesas (Figure 5) (Table 

7); Type III have low discharge and issue from the Upper Clastic Unit (Table 8); 

Type IV are geologically similar to Type II springs but have intermittent flow (Table 

9); and Type V springs have highly variable discharge and issue from the North Rim 

Aquifer (Table 10). 
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SPRING TYPES 

Type I Springs 

The Type I springs typically surface near the head waters of tributaries to the 

Colorado River. Spring waters discharge from the Lower Clastic and Carbonate 

Units, between the Bright Angel Shale and the basal members of the Red wall 

Limestone (Figure 2). Major faults and/or folds in the Paleozoic strata appear to 

dictate the flow path of Type I spring waters (Figure 5). 

Table 6. South Rim spring data, collected (1994·1995) from Type I springs. 

Spring Name Elv' Q (gpml T tCJ pH TDS TR 2-a AR 1-cr U ppb" 1-<> 

Hawaii Spring 4240 3 19.6 8.3 

Hermrt Spring 4320 314' 19.6 8.5 

Two Trees Spring 3760 221' 22.7 7.4 

Pipe Spring 3660 104' 22.6 8.4 

Burro Spring 3700 4 20 8.4 

Grapevine Spring 4000 5 19 7.2 

Cottonwood Spring 3680 5.4" 19 7.9 

Average 109 20.8 8.0 

Std Oev 132 1.6 0.2 

Max 314 22.7 8.4 

Min 3 19.0 7.2 

Field measurements are average values for individual springs 

A Elevation, feet above mean sea level 

•• Total uranium~238 
• USGS, oral communication 1995 

260 0.5 2.5 2.8 0.2 2.6 0.05 

216 1.1 2.5 2.9 0.2 2.8 0.06 

236 0.2 0.9 3.6 0.3 1.7 0.04 

321 1.5 0.9 2.8 0.2 2.2 0.13 

321 1.9 2.8 2.6 0.6 2.4 0.22 

320 1.9 0.9 3.6 0.3 1.2 0.04 

396 1.6 0.9 3.6 0.4 1.1 0.04 

278 1.2 3.0 2.2 

47.7 0.7 0.4 0.6 

396.0 1.9 3.6 2.8 

216.0 0.2 2.6 1.1 

The fact that Hermit, Hawaii, Two Trees, Pipe, Burro, Grapevine, and Cottonwood 

Springs are associated with the Hermit, Bright Angel, Flash, Vishnu, and Mckee 

Faults, respectively, is strong evidence that geologic structures are controlling 

groundwater flow to Type I springs (Figure 5). 
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For the 1995 water year, high flow occurred from January to February and 

low discharge was in July (Appendix IV). Averaging flow from Type I springs, 

produces a mean annual discharge of I 09 gpm, though individual spring flow varied 

by± 132 gpm (Table 6). Hermit and Two Trees Springs had the highest flow rates, 

314 and 221 gpm. respectively (USGS, 1995). As stated in Chapter 5, springs that 

issue directly from the outcrop tend to discharge at a fairly constant annual rate. 

Conversely, springs that discharge from inner basin alluvium, tend to fluctuate in flow 

diurnally and annually. Hawaii, Two Trees, and Burro Springs flow at a fairly 

constant rates, whereas, Hermit, Pipe, Grapevine and Cottonwood Springs have 

variable discharge. 

The average water temperature and pH measured for Type I springs were 20 

•c and 8.0, respectively, and the average IDS value was 263 mg/1 (Table 6). Type I 

springs are Ca2+- Mg2+- HC03' waters that have a [Mg2+]/[Ca2+] ratio typically less 

than I. Additionally, sulfate values are low relative to bicarbonate (Figure 6). 

Tritium concentrations in Type I springs are low relative to modern 

precipitation levels (Table 5 A)). The mean concentration for the spring population is 

1.2 TR and varies by± 0.2 TR. Burro and Grapevine Springs exhibited the greatest 

3H concentration (I. 9 TR), and Two Trees Spring water contained the least amount 

of 3H (0.2 TR) (Table 5 A)). 

Trace amounts of 238U were measured in Type I springs, with an average 

concentration of2.0 ppb (Table 5 B)}. Hermit and Cottonwood Spring waters had 

the highest and lowest 238 U concentrations respectively (Table 5 B)). Type I Springs 



were found to have high AR, with a mean 234U/238U activity ratio of 3. I AR. Two 

Trees, Grapevine, and Cottonwood Springs had the highest 234U/238U activity ratio 

(3.6 AR) (Table 5 B)), whereas Hermit, Hawaii, Pipe, and Burro Springs had lower 

ARs, which range from 2.6 to 2.9 AR. 

Type II Springs 
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Type II springs issue from Grand Canyon mesas, which extend out from the 

South Rim and generally dip toward the Colorado River gorge (Figure 5) (Table 7). 

Originating from the Lower Clastic and Lower Carbonate hydrostratigraphic units, 

Type II springs discharge between the Tapeats Sandstone and the Redwall Limestone 

(Figure 2). Groundwater typically flows from siliciclastic beds in the Bright Angel 

Shale. Monument, Salt, Hom, Lonetree, and Grapevine East Springs all issue from 

the upper portion of the Tapeats Sandstone, whereas Sam Magee and Page Spring 

flow from the contact between the Muav and Redwall Limestones (Figure 2). 

Type II springs are not located in the proximity of large faults but are 

associated with northwest trending Grandview Monocline (Figure 5). Sam Magee, 

Lonetree, Grapevine East, and Page discharge along the fold axis of the Grandview 

Monocline. In addition, mineralized breccia pipes, that extend vertically into the 

Redwall Limestone, are present on the South Rim, above the majority of Type II 

spring orifices (Figure 5). 

Discharge from Type II springs is low and almost constant diurnally and 

annually. During the 1995 water year, the average flow for Type II springs was I .5 
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gpm. Monument Spring had the highest average discharge of 5 gpm, and the 

remaining springs discharged less than 2 gpm. (Table 7). 

Table 7. South Rim spring data, collected (1994-1995) from Type II springs. 

Spring Name Ell"' Q (gpmJ T (C) pH TDS TR 2-o AR l-<1 U ppb'' 1-o 

Monument Spring 3300 5 23.5 7.6 668 2.9 2.19 2.1 0.1 9.0 0.11 

SaH Spring 3900 0.3 20.9 7.9 811 5.6 2.82 1.5 0 14.6 0.13 

Hom Spring 3900 0.5 21.5 7.5 503 3.4 1.88 0.9 0.1 48.3 O.ZI 

Sam Magee Spr1ng 4000 0.25 19.8 8.1 377 0.9 1.05 1.6 0.1 3.8 0.07 

Lonetree Spring 3880 0.75 24.6 7.2 720 3.7 0.96 1.6 0.1 4.8 0.08 

Grapevine E Spring 3640 2 26.2 7.6 453 1.6 0.94 1.7 0.2 2.8 0.14 

Page Spring 4320 1.5 16.5 8.2 218 1.4 0.8 1.6 0.1 3.8 0.07 

Matkatamiba Spring 2800 1 25 1.3 2.5 

Average 1.5 21.9 7.7 536 2.6 1.6 12.4 

Std Oev 1.7 3.2 0.5 208 1.6 0.4 16.3 

Max 5 26.2 8.2 811 5.6 2.1 48.3 

Min 16.5 6.7 218 0.9 0.9 2.8 

Field measurements are average values for individual springs 

'Elevation, feet above mean sealevel 

.. Total uranium-238 

Type II springs have an average water temperature of 22 •c and average pH 

of7.7. The spring waters are abundant in dissolved salts, with an average TDS of 

536 mg/1 (Table 7). Type II springs are classified as intermediate Mg2
+- Ca2

+- HC03' 

- SO/ waters and show a large variation in anionic species (Figure 6). The 

[Mg2+]/[ Ci+] ratio is greater than I, and bicarbonate concentrations appear to be 

inversely proportional to sulfate concentrations. In Salt and Sam Magee Springs, the 

sulfate concentration is greater than bicarbonate, and Monument Spring contains high 

levels of chloride (Figure 6) (Table 7). In general, for Type II springs, the TDS 

values are on average a factor of 2 greater than Type I springs. The higher TDS in 
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Type II springs could be due to one of two processes: I) long groundwater residence 

time or 2) high mineral concentration due to small flow volume. 

The concentration of tritiated groundwater in Type II springs is low relative to 

modem levels, but is higher than Type I springs. The average 3H concentration found 

in Type I spring waters is 2.6 ± 1.6 TRover the spring population (Table 7). 

Lonetree Spring had the highest 3H concentration (5.6 TR), and Sam Magee had the 

lowest 3H concentration (0.9 TR). 

Total 238U concentrations in Type II spring waters were extremely high. The 

average 238U concentration for the population was I 1.7 ppb and varied by !6.3 ppb. 

During March 1995 a 238U concentration of 48.3 ppb was measured in Hom Spring 

water. Of Type II springs, Grapevine East Spring had the lowest 238U concentration 

(2.8 ppb) (Table 7). The average 234U/238U activity ratio in Type II waters was 1.6 ± 

0. 4 AR. Monument Spring had the highest 234U/238U activity ratio (2. 1 AR), anC: 

Hom Creek, had the lowest 234U/238U activity ratio, which was equal to unity. 

Type Ill Springs 

Santa Maria and Dripping Springs are separated from other South Rim springs 

because they discharge from the Upper Clastic hydrostratigraphic unit (Figure 2). 

Both springs are located in the eastern portion of the study area, and they are in the 

vicinity of the Hermit Fault. Santa Maria Spring issues from the Esplanade Sandstone 

Formation in the Supai Group, and Dripping Spring discharges from the Hermit 

Shale-Coconino Sandstone contact (Figure 2). Santa Maria Spring discharges 

laterally along sandstone beds, whereas at Dripping Spring, flow is concentrated 
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along fractures in the Coconino Sandstone, below the north dipping Ennita 

Monocline (Figure 5). 

Table 8. South Rim spring data, collected (1994-1995) from Type Ill springs. 

Spring Name Elv' Q C.Pml T (C) pH TOS TR 2-~ Afl 1-<'1 U ppb'' 1-<'1 

Dripping Spring 6400 1 16.8 7.8 169 0.2 2.2 3.5 0.9 1.3 0.13 

Santa Maria Spring 5400 0.5 16 7.8 m 2.9 1.66 1.9 0.1 6.2 0.09 

Average 0.8 16.4 7.8 221.0 1.6 2.7 3.8 

Std Dev 0.4 0.6 0.0 73.5 2.0 1.1 3.5 

M"" 1.0 16.8 7.8 273.0 2.9 3.5 6.2 

Min 0.5 18.0 7.8 169.0 0.2 1.9 1.3 

Field measurements are average values for individual springs 

"' Elevation, feet above mean sea level 
.. Total 238U 

Santa Maria and Dripping Springs have low discharge rates relative to Type I 

and V springs (Table 8). Discharge from Santa Maria Spring varies annually, with 

high flow occurring in spring, whereas Dripping Spring discharges at a fairly constant 

annual rate. 

The average temperature and pH measured during the investigation were 16.4 

°C and 7.8, respectively. Dissolved salts in solution averaged about 200 mg/1 for 

Type III springs (Table 8). 

Dripping and Santa Maria Springs have different abundances of tritium and 

uranium isotopes. Both springs were sampled for tritium and uranium in March 1995. 

Santa Maria Spring had a 3H concentration of3.0 ± 1.9 TR, and Dripping Spring had 

a 3H concentration of 0.2 ± 2 TR. Uranium samples had a 234U/238U activity ratio of 

1.9 ± 0.1 and 3.5 ± 0. 9 for Santa Maria and Dripping Springs, respectively. Santa 

Maria Spring contained 6.2 ppb of 238U, in contrast to Dripping Spring, which 
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contained I J ppb 238U (Table 8). From the latter information, it is apparent that 

Santa Maria and Dipping Springs waters are both geologically and geochemically 

unrelated. 

Type IV Springs 

Similar to Type II springs, Type IV springs typically discharge from canyon 

mesas within the Lower Clastic Unit. The Type IV spring waters, however, have 

intermittent discharge. Kolb Spring discharges from the Coconino Sandstone and is 

in the vicinity of the Bright Angel Fault (Figure 5). Discharge from Type IV springs 

generally terminates during summer and begins in Spring. All the Type IV springs 

are classified as "intermittent seeps", because their high flow rate is less than I lpm. 

Table 9. South Rim spring data, collected (1994-1995) from Type IV springs. 

Spring Name Elv" Q (9oml T (C) pH 

Cedar Spring 3450 int 15 7.5 

Kolb Spring 6000 int 

Cremation Spring 3600 int 18.7 7.12 

Boulder Spring 3520 int 21.5 7.08 

Grapevine Hell Spring 3760 int 22.7 8.44 

Cottonwood w Spring 3840 int 21.8 7.8 

Average 19.9 7.6 

Std Dev 3.1 0.6 

M"" 22.7 8.4 

Min 15.0 7.1 

Field measurements are average values for individual springs 

" Elevation, feet above mean sea level 

•• Total uranium-238 

TDS TR 2-a AR 1-o U .,,.. 1-<r 

433.5 2.8 1.9 1.9 0.1 15,6 0.13 

3.4 0.9 

wn 7.2 2.5 2.0 0.1 7.6 0.16 

898 3.8 1.6 2.0 0.1 6.9 0.09 

892 2.0 0.1 7 0.15 

2.4 0.00 2.2 0.1 4.5 0.08 

823.9 3.9 2.0 8.3 

273.3 1.9 0.1 4.2 

1072.0 7.2 2.2 15.6 

433.5 2.4 1.9 4.5 

The Type IV springs have an average water temperature of20 •c and a pH of 

7.6. Salty to brackish waters discharge from Type IV springs which have a mean 

TDS of 824 mg/1 (Table 9). One of the brackish springs, Cremation Spring, had a 
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TDS value of 1072 mgll in May 1995. The Type IV springs have a relatively high 

tritium concentrations, with an average of3.9 ± 2.0 TR. The average 234U/238U 

activity ratio is 2.0 ± 0.1 AR, and the average 238U concentration is 8.7 ± 4.2 ppb 

(Table 9) 

Type V Springs 

The North Rim springs (i.e., Type V springs), discharge water from the 

Kaibab Plateau. Huntoon (1974), developed a hydrogeologic model of the North 

Rim Aquifer. Much like South Rim springs, Type V springs discharge from the 

Lower Carbonate and Clastic hydrostratigraphic units, and groundwater circulation is 

associated with faults and folds. Conversely, groundwater flow from the North Rim 

Table 10. North Rim spring data, collected (1994-1995) from Type V springs. 

Spring Name Elv' 0 (gpm) T tCI pH TDS TR 2-a AR 1.., U PW' 1-a 

Fence Faun Spring (S) 

Fence Fautt Spring (N) 

Vacy's Paradise Spring 

Monkey Flower Spring 

Bright Angel Creek t5.3 6 

Indian Garden Pump Station 3740 24.1 8.02 

Deer Spring South 

Tapeats Creek 

Ledges Spring 

Average 19.7 7.0 

Std Dev 1.4 

Max 8.0 

Min 6.0 

Field measurements are average values for individual springs 

(I Elevation, feet above mean sea level 

•• Total uranium-238 

2.8 2.5 

2.5 2.8 

5.0 2.5 

4.4 2.5 

117 6.0 4.1 3.8 5.3 0.43 022 

152 2.5 47.6 4.8 9.3 0.21 0.18 

2.8 2.5 

5.0 3.1 

NO 

135 3.5 • .3 0.3 

24.7 1.8 0.7 0.2 

152.0 6.0 4.8 04 

117.0 0.0 3.8 0.2 

migrates rapidly through large fractures as a function oflarge effective fracture 

porosity (Huntoon, 1974). Total discharge from the North Rim is not well 

0 
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documented, but discharge fluctuates significantly on an annual basis (Huntoon, 1974; 

Brown and Moran, 1974). 

North Rim water samples were collected along the Colorado River and from 

the Indian Garden Pump Station. Unlike the South Rim Aquifer, historic data 

indicates that North Rim water chemistry varies significantly on an annual basis 

(Hoppe and Foust, 1985). Milanovic (1981) suggests that variable water chemistry in 

carbonate aquifers (i.e., North Rim Aquifer) is an indication of rapidly flushing 

groundwater system. The Type V waters are Ca2
+- HC03• waters (Figure 6), and 

have an average tritium concentration of 3. 5 ± 1. 8 TR. The springs that were 

measured for uranium had high 234U/238U activity ratios and very dilute amounts of 

238U (Table 10). 

GROUNDWATER RESIDENCE TIME 

Relative Age Date ('H] 

Using historic precipitation data from Flagstaff, Arizona and Albuquerque, 

New Mexico, the ages of spring waters (i.e. the travel time of groundwater) in the 

South Rim Aquifer were estimated to be greater than 40 years or pre-thermonuclear 

testing. Pre-thermonuclear testing data from Buttlar and Libby (I 954), and the IAEA 

(1960-1991), provide baseline annual 3H levels in precipitation over the project site 

(Figure 4) (Table 11 and 12). These data sets indicate the following: 1) water 

recharged prior to 1940 should have little to no 3H; 2) water recharged between 1940 

and 1951 may have between 0.2 and 2 TR (Buttlar and Libby, 1954); 3) water 

recharged between 1951 and 1966 will have a 3H concentration greater than I 00 TR 
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(Table 12); 4) water recharged between 1967 and 1978 may have between 20 and 60 

TR (Table 12) and; 5) post 1980 water should have 3H concentrations greater than 

10TR. 

South Rim precipitation had a 3H concentration of I 0.69 ± 2.19 TR in January 

1995 (Table 5 A)). For the purpose of interpretation, the 1995 rainwater sample is 

assumed to represent the average concentration of tritium in modem precipitation 

over the South Rim. Storm runoff at Hermit Creek and Cremation Creek both have a 

tritium concentration between 7-14 TR which indicate current 3H levels in modem 

meteoric water are around 10 TR (Table 5 A)). Further, the 3H concentration in 

precipitation over Albuquerque, New Mexico was 10 TR in 1991 (Figure 4) 

(International Atomic Energy Agency, 1991 ). 

In order to relative age date groundwater using tritium, two sets of 

assumptions were made. First, precipitation is the only source of 3H, the TR remains 

conservative within the subsurface, and the only loss of tritium is through radioactive 

decay. Second, within the soil and vadose zones, there is limited evaporation, 

negligible organic activity, and no significant dilution caused by mixing of old and 

modem precipitation. 

Because 3H is bonded in the water molecule, it is a safe to assume that 3H 

remains chemically conservative in the subsurface (Murphy, 1993). Soil 

characteristics and surface-water drainage patterns on the South Rim strongly support 

the second set of assumptions discussed above. The soil zone for example is thin (20 

to 60 inches), has moderate permeability, and remains saturated 2- 3 weeks per year 
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(EIS, 1985); therefore wet deposition will have a short residence time in the soil zone. 

Additionally, once soil water enters the Kaibab Limestone, infiltration is rapid due to 

dissolution cavities enhanced by faults and folds (Metzger, 1961; Huntoon, 197 4; 

Milano vic, 1981). The lack of perennial streams on the South Rim is another 

indication that wet deposition rapidly infiltrates into the vadose zone (Metzger, 1961 ). 

Zukosky (1995), using stable oxygen and hydrogen isotopes, suggested that limited 

evaporation occurs in the vadose zone. The consistently different, yet internally 

constant, 238UP34U activity ratio "fingerprints" of Type I through IV spring waters, 

help support the assumption that there is limited mixing of old and modem water in 

the unsaturated zone. 

Table 11. Possible levels of tritium in South Rim precipitation prior to thermonuclear testing. 
Decay corrected tritium level (PTR) to 1996 relative to a given time (e.g. 1942). 

Natural level Range of values 
Year TR TR PTR' PTR' 

1940 5 20 0.2 0.9 

1941 5 20 0.2 0.9 
1942 5 20 0.2 1.0 

1943 5 20 0.3 1.0 

1944 5 20 0.3 1.1 
1945 5 20 0.3 1.2 

1946 5 20 0.3 u 
1947 5 20 0.3 1.3 

1948 5 20 0.3 1.4 
1949 5 20 0.4 1.5 

1950 5 20 0.4 1.5 

1951 5 20 0.4 1.6 

" Decay corrected present tritium ratio (PTR) 

Under the second group of assumptions, it follows that precipitation which 

enters the South Rim during a particular time period serves as a reference point 

indicating when the groundwater residence time "clock" starts. The reported data 
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suggest that the TR in spring waters will reflect the following relative age correlations 

(Table II and 12). 

• Waters with less than 0.5 TR are older than 1940. 

• Waters with 0.5 to 2 TR were likely recharged between 1940 and 1950. 

• Waters with 2 to I 0 TR are post 1951 or a mix of old and modem water. 

Table 12. Historic precipitation isotope data from the IAEA. 
Flagstaff, Arizona Albuquerque, New Mexico 

Year TR PTR' Year TR PTR' 

1962 952 143.3 1975 60 18.6 

196J 1415 225.2 1976 60.3 19.8 

1964 980 164.9 1an 49.7 17.2 

1965 455 60.9 1978 45.4 16.7 
1966 572 107.6 1979 22.9 8.9 
1967 344 68.3 1980 23.3 9.6 

1968 115 24.2 1981 35.7 15.5 

1969 153 34.0 1982 26.9 13.3 

1970 97 22.8 1983 16.2 7.9 

1971 100 24.8 1984 16.5 8.5 

1972 47 12.3 1985 19.7 10.7 
1973 136 37.8 1986 17.3 9.9 
1974 68 20.0 1987 11.2 6.8 

1968 18.9 12.1 

1989 10 6.8 

1990 11.4 8.2 

1991 8.6 6.5 

1995** 10.7 10.1 

• Time from present (1995) 

' Decay corrected present tritium ratio (PTR) 

•• Ppt sample from the eastern Grand Canyon, collected 2195 

The concentration of tritiated water measured in South Rim springs is below 

the concentration of 3H in 1995 precipitation (Figure 7) (Table 12). In addition, 

South Rim springs contain no obvious bomb-pulse 3H recharged between 1951 and 

1971 (Table 12). The Canyon Mine and Squire Inn Wells have less than 0.5 TR 

which may mean that groundwater south of the Colorado River gorge (i.e., Grand 
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Canyon) is likely to be greater than 51 years old (Figure 7) (Table 5 A)). Moreover, 

Dripping, Hawaii, and Two Trees Springs also contain less than 0.5 TR, indicating 

their waters are greater than 51 years old (Table 5 A)). 

11!1.0 

10.0 I-"·-~,.,_ 
~ 
I 
j ••• 
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::r:III I - !\liD!:, 

0.0 I 
East West 

Figure 7. Measured 3H concentrations in eastern Grand Canyon springs. 

Hermit, Pipe, Burro, Sam Magee, Grapevine, Grapevine East, Cottonwood, and Page 

Springs have less than 2 TR, meaning their waters were deposited on the South Rim 

between 1940 and !950 (Figure 7) (Table 5 A)). 

Spring waters with 3H concentrations greater than 2 TR may be a mix of old 

and modem waters (Figure 7) (Table 5 A)). This hypothesis is especially valid for 

springs that discharge from inner basin alluvium as discussed in Chapter 2 (e.g., 



Monument, Salt, Hom, and Lonetree Springs). Under this hypothesis, pre-bomb 

pulse 3H in groundwater, which discharges from the Lower Clastic and Carbonate 

hydrostratigraphic units and subsequently percolates through quaternary alluvium, 

' would mix with modem precipitation captured in the inner basin sediment 
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An example of effective mixing with modern precipitation is Lonetree Spring 

which is spatially and stratigraphically related to Sam Magee Spring (Figure 2), yet 

their TRs vary substantially (Table 7). This inconsistency could be due to analytical 

error, mixing with modern rainwater, and/or evaporation at the spring orifice. The 

234U/238U activity ratio fingerprint is a good indicator of mixing when compared with 

tritium levels, because the AR does not change when mixed with a solution containing 

no uranium (Osmond and Cowart, 1976). Lonetree Spring sample has a higher TR 

than Sam Magee Spring while their 234U/238U activity ratio remains constant. Modem 

precipitation may have mixed with groundwater at the spring orifice which contains 

no uranium. Lonetree Spring was sampled in November !995, while it was raining; 

therefore mixing with modem rainwater at Lonetree Spring is the probable cause for 

the TR anomaly that exists between Lonetree and Sam Magee Springs. 

Santa .V:aria Spring, which is associated with a perched aquifer (i.e., ~ype ~~~ 

spring) (Metzger, 1961 ), appears to be younger than waters that discharge from the 

lower hydrostratigraphic units. Dripping Spring, which is also a Type III spring, is 

stratigraphically higher than Santa Maria Spring, yet has one of the lowest measured 

TR in the project site (0.2 TR) (Table 5 A)). Perched water west of Hermit spring 

basin appears to be pre-bomb water, whereas perched water east of Hermit spring 
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basin contains post-1951 3H (Figure 7). This inconsistency illustrates the variety of 

groundwater bodies present in the South Rim. In addition, the geology present at 

Type III springs does not positively correlate with water chemistry unlike Type I and 

II springs 

Hydrogeochemical Evolution 

Dedolomitization may occur in aquifers containing limestones, do1ostones, in 

combination with sulfate minerals (i.e., gypsum and anhydrite) (Plummer et at., 1990); 

this process results from the irreversible dissolution of gypsum and subsequent 

saturation of the solution with respect to the mineral calcite. Dedolomitization is 

defined as a chemical process where dolomite dissolves while calcite precipitates as a 

result of gypsum dissolution. 

Water chemistry trends in spring waters indicate that dedolomitization is 

occurring in the South Rim Aquifer. Gypsiferous layers are present in the Lower 

Carbonate Unit (Chapter 2), and both Type I and II waters have [Mg2+]/[Ca2
'] ratios 

that are about unity (Figure 8). Additionally, past research suggest that lithology is 

controlling water chemistry (Foust and Hoppe, 1985; Metzger, 1961). Based on the 

results from measured major ion concentrations in spring waters and generated output 

from the geochemical model PHREEQE (Parkhurst et al., 1993), data suggest that 

calcite is precipitating while dolomite is dissolving, as a result of irreversible gypsum 

dissolution in the South Rim Aquifer. 
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concentrations in all measured South Rim spring waters. 
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Dedolomitization occurs in a closed carbonate aquifer (i.e., fixed Pc02) which 

contains calcite and dolomite minerals, where the [Ca2.]/[Mg2
•] ratio evolves toward 

unity. 

Ca2
• + CaMg(C01h = 2CaCOl + Mg2

• 

K""' = [Mg2+]/[Ca2
•]. 
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At equilibrium, dolomite is highly insoluble relative to calcite and the [M~f+]/[Ca2•] 

ratio remains fixed (Appelo and Postma, 1994). However, if gypsum or anhydrite are 

present, dissolution of dolomite can occur where the SO/" concentration increases 

coeval with the [Mg2.]/[Ca2+] ratio. The disassociation of gypsum reacts as follows: 

CaS04*2(H20) = Ca2
+ +SO/+ 2H20 

Kgyp = [Ca2+][SO/')[Hz0)2 

Through substitution, the equilibrium constants can be combined to form: 

Km = [Mg2+]/[Ca2+] = l<.toliKca? "10'17
'
09/(10'8'

48? = 0.8. 

As gypsum dissolves, the Ca2+ concentration in solution increases to the point of 

calcite saturation which results in the precipitation of calcite. Consequently, the total 

alkalinity decreases by consumption of carbonate, which in tum facilitates the 

dissolution of dolomite; thus increases the Ca2+ and Mg2
+ concentrations in solution. 

The [Mg2+]/[Ca2+] ratio remains close to unity in accord with equilibrium between 

calcite and dolomite, but the S04 
2
• concentration increases ( Appelo and Postma, 

!993; Plummer eta!., 1990). 

The magnesium concentration in South Rim spring water increases coincident 

with the SO/ concentration (Figure 9). Dissolution of gypsum lowers the pH which 

results in enhanced dissolution of dolomite. Moreover, the consumption of C03 2' 

species by precipitation of calcium carbonate reduces the buffering capacity of 

groundwater. The end result is a constant [Mg2+]/(Ca2+] of- 0.8 and precipitation of 

calcium carbonate. 
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Figure 9. Magnesium versus sulfate concentrations in all measured South Rim springs. 
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Figure 10 is a plot of calcite and gypsum saturation indices (SI) versus sulfate 

concentration. Calcite clusters around equilibrium regardless of S04 z. concentration, 

whereas the SI of gypsum approaches equilibrium with increases in SO/ 

concentration. The chemical trends indicate most spring waters are over-saturated 

with respect to calcium, whereas the solution approaches gypsum saturation with 

increases in sulfate concentration (Figure I 0). 

A comparison of measured and modeled concentrations ofCa2
\ Mg2

•, HC03·, 

and SO/. in Type I and II spring waters also supports the hypothesis that 

dedolomitization is occurring in the South Rim Aquifer (Table 13). A two step 

computer simulation was conducted to depict the evolution of South Rim 

ground waters. 
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Target solutions, which contain the average measured major ion 
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concentrations in Type I and II springs, were equilibrated with calcite, dolomite, and 

gypsum, in order to calculate their respective SI. The second step attempted to 

predict the average major ion concentration in groundwater using the average annual 

pH and dissolved constituents in South Rim precipitation (NPS, !996). 

For Type I and II springs PHREEQE predicted measured pH values and major 

ion concentrations with errors ofO to 20% of modeled values(Table !3). Since the 
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measured values are averaged over the spring populations, the percent differences 

between model output and measured data are probably not statistically significant. 

PHREEQE calculated negative !!. phase values for the mineral calcite for both Type I 

and II springs. The model predicts calcite is precipitating. 

Table 13. A) and B): Type I and II springs average measured parameters compared to 
modeled output. 
A) Measured Modeled 

Parameter Molality Molality %Error 

pH 8.0 8.0 0 

Calcium 0.001463 0.001162 21 
Magnesium 0.001757 0.001397 20 
Bicarbonate 0.003656 0.0040482 ·11 
Sulfate 0.000457 0.0005398 15 

•• negative d phase values indicate precipitation of mineral. 

B) Measured Modeled 

Parameter Molality Molality %Error 

pH 7.7 7.7 0 

Calcium 0.00206 0.0017867 13 

Magnesium 0.0034418 0.0031622 8 

Bicarbonate 0.0034931 0.0039266 -12 

Sulfate 0.0027063 0.0030349 11 
.. negative~ phase values indicate precipitation of mineral. 

.1. Phaseu 

-0.00077 

0.0014 

0.000535 

-0.004408 

0.0031609 

0.0030298 

The following lines of evidence strongly support the hypothesis that 

dedolomitization is occurring in the South Rim Aquifer: I) water chemistry trends 

previously discussed (Figure 8 and 9); 2) gypsiferous beds are present in the Lower 

Carbonate Unit (i.e., Chapter 2); and 3) PHREEQE output predicts a dependence on 

sulfate concentration and precipitation of calcite (Figure 9) (Table 13). These results 

show that groundwater chemistry is dependent on rock mineralogy (i.e., carbonates) 

and groundwater residence time. 



Uranium-series Disequilibrium 

Uranium data indicate that the 234U/238U activity ratios in South rum springs 

are not conservative and may increase in solution with increases in rock-water 

interaction. In addition, the South Rim Aquifer appears to be an open-augmenting 

system (Chapter 3), where dissolved uranium is not conservative as a result of 

dedolomitization. Plotting uranium isotope data on 2-D scatter plots in accordance 

with standard methods (Osmond and Cowart, 1974), reveals consistent trends 

between 234UF38U activity ratios and total 238U in South Rim spring waters. Due to 

the dedolomitization process, calcium carbonate precipitated on the aquifer matrix 

may be capturing uranium complexes; therefore producing an effective medium for 

the transfer of234U into solution through alpha recoil (Chapter 3). As a result, the 

longer the groundwater residence time, the higher the 234U/238U activity ratio. A 

similar trend in uranium chemistry was recognized by Kronfeld et al. (1994) who 

suggested that the 234U/238U activity ratio in solution increases with increased rock

water interactions. 
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A positive correlation (r; 0.80), was calculated between individual 234U/238U 

activity ratio and S (lltotal 238U (ppb)) in spring waters (Figure II). The latter 

correlation coefficient is statistically significant and conforms to the relationship noted 

by Osmond and Cowart ( 1976), such that as the total 238U concentration increases, 

the 234U/238U activity ratio decreases. Two important conclusions can be made from 

this relationship: I) the data is of good analytical quality; and 2) the South Rim 

Aquifer can be compared to similar groundwater systems. 
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Figure 12 is a plot of excess 234U as a function of total 238U concentration and 

reveals the presence of a common uranium mineral source with an 234UP8U activity 

ratio of- 1 AR for all South Rim springs. This uranium "fingerprint" is a result of 

acidic waters infiltrating through the weathered zone which leach uranium and other 

metals from the solid phase (Chapter 3). A possible source of uranium on the South 

Rim could be uraninite deposited in breccia pipes (Chapter 2). From the 234U excess 

graph (Figure 12), Type I springs group along the same linear trend with Havasu and 

Blue Springs, while Type II springs plot separately. 

10.0 
uranium 23.41238 actlv1ty ratio (AR) 

1.0 

inverse of total uranlum~238 (1/ppb) 

0.1 

0.0 ......_ __________________ _ 

East West 

Figure 11. Plot illustrating a positive correlation (r = 0.80) between 234Uf38U activity and 
1/total e38U] (S). 

Type II springs, in the eastern portion of the project site, also plot along a 

linear trend, but may be unrelated to Type I springs. Page, Grapevine East, Lonetree, 
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and Sam Magee Springs are all hydrostratigraphically and structurally related and plot 

along a distinctive linear trend (Figure 12). On the other hand, Type I springs plot 

along a linear trend with Havasu and Blue Springs. These trends indicate uranium is 

not conservative within the South Rim Aquifer. 
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Figure 12. 234U excess versus total 238U concentration diagram, which illustrates possible 
geochemical evolution of groundwater in the South Rim Aquifer. 

Figure 13 illustrates 234U/238U activity ratio versus S which further supports 

the latter hypothesis that uranium is not conservative in the South Rim Aquifer. Two 

groups of South Rim springs are apparent in Figure 12: I) Type I springs have high 
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234U/238U activity ratios; 2) on the other hand, Type II and IV springs have low 

234U/238U activity ratios. 

Type I springs plot as two distinct groups (Figure 13 ), where Type lA springs 

have 234U/238U activity ratios> 15 AR and totai 238U < 2 ppb (i.e., S-- 0.5). Type I8 

springs have lower 234U/238U activity ratios and lower total 238U values (Figure 13). 

Type II springs also plot into two distinct groups: I) Type IIA springs have 234U/238U 

activity ratios of 1.6 AR and total 238U < 5 ppb (i.e., S = 0.2); 2) Type Il8 springs plot 

separately with total 238U > 15 ppb (i.e., S = 0.06) (Figure 13). Type III springs do 

not appear to be related to one another. 
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Figure 13. Plot of 234UP38U activity ratio versus S, which illustrates different types of South 
Rim springs. 
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Figure 14, a plot of 234U/238U activity ratio as a function of the tritium ratio, 

illustrates a sympathetic inverse relationship between Type I and II springs. Based on 

the relative ages determined with tritium, the preceding negative correlation indicates 

that higher 234U/238U activity ratios may be a result oflonger groundwater residence 

times. The latter conclusion is in agreement with Kronfeld et al. ( 1994) which 

correlated groundwater residence time to 234U/238U activity ratio. The two spring 

clusters in Figure 14 may indicate that Type I springs have a longer subsurface 

residence time than Type II springs. In addition, Type lA springs have higher 

234U/238U activity ratios and lower 3H concentrations than Type Ia springs which may 

be due to an even longer travel time (Figure 14). 
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Figure 14. Scatter plot of 234UP'"u activity ratio as a function of the tritium ratio (i.e. age of 
spring water). Two clusters are recognizable and plot as Type I and II springs. Graph may 
indicate that older waters have higher activity ratios. 
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Short Residence Time Aquifer 

Hom Spring is located directly below a mineralized breccia pipe west of Two 

Trees Spring (Figure 5) and discharges from the Bright Angel Shale and i!Uler basin 

sediment. Data suggest that base flow from Hom Spring is a product of spring 

discharge from Paleozoic carbonate rocks, whereas high flow results from 

groundwater which discharges from i!Uler basin sediment. Seasonal water chemistry 

data at Hom Spring (Table 2) also suggest that at high flow Hom Spring waters are 

derived from a short lived groundwater system (i.e., short residence time). The latter, 

in tum, provides a key piece of evidence that supports the conclusion that South Rim 

spring waters have a long groundwater residence time (i.e., > 40 years). 

Counterintuitive to common hydrogeochemical expectations, total 238U was present in 

greater abundance in Hom Spring waters during high flow regimes than during low 

flow periods (Table 2). 

Discharge at base flow has a fixed Pc02, high buffer capacity, and an average 

238U concentration of24 ± 0.3 ppb. Water discharging during high flow has a pH of 

6, and a 238U concentration of92.7 ± 0.1 ppb. The Hom Spring i!Uler basin aquifer is 

unconfined and open system, so that at high flow regimes, theoretically, there is an 

infinite reservoir of C02 gas available. As a result, the solution pH is slightly acidic 

(pH = 6), which can actively leach uranium from the mineral phase; therefore the 

solution contains high total 238U concentration and 234U/238U activity ratio < I during 

high flow. 
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Since Hom Spring waters have a 3H concentration > 2 TR and the dissolution 

and transport of uranium may occur over a short-time scale, this system may 

represents the rapid geochemical evolution of ground waters. By comparing Hom 

Spring at high flow to other South Rim springs, it is evident that the Horn Spring has 

a significantly different groundwater residence time. 

GEOLOGIC CONTROL 

The majority of South Rim springs discharge from the Lower Clastic and 

Carbonate hydrostratigraphic units (Figure 2), and contact springs are associated with 

the Bright Angel Shale and Muav Limestone. Major ion data indicates that various 

lithologies in the Paleozoic strata are influencing spring chemistry on a local scale 

which is in agreement with Foust and Hoppe (1985). Monument Spring is an 

example of the latter, where high concentrations ofNa' and crwere measured 

(Figure 6); this may be due to local evaporite beds (KCl or NaCl) in the Supai Group 

(Foust and Hoppe, 1985). 

Deformation and dissolution features in the Paleozoic carbonate rocks control 

the infiltration and circulation of water into and through the South Rim Aquifer 

(Metzger, 1961; Huntoon, 1974). As noted previously, secondary porosity created 

by South Rim faults, dissolution features, and folds have controlled the transmission 

of water through the Colorado Plateau since 190 to 200 Ma (Wenrich, !986; Metzger 

961; Huntoon, 1974). The three types of structures controling groundwater flow 

1rough the South Rim Aquifer are northeast and northwest trending normal faults, 



dissolution features/breccia pipes, and north-west trending folds (Metzger, 1961; 

Wenrich, 1986; Huntoon, 1974). 
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The preceding relationship and location of South Rim springs may indicate 

that northwest trending faults and folds may be conduits for groundwater flow, 

whereas northeast trending faults may act as partial groundwater boundaries (Figure 

15). An example of a potential boundary are faults transverse to the Bright Angel 

Fault (Figure 15). The static water level in the Tusayan Well indicates that the 

potentiometric surface of the South Rim Aquifer slopes toward the Colorado river 

with a gradient- 0.01 (Figure 3). The Bright Angel Fault has 200 feet of offset 

(Huntoon and Sears, 197 5) and places the Muav Limestone next to the Bright Angel 

Shale. Since the hydraulic gradient east of the Bright Angel Fault appears to be 

generally to the north-northwest, the Bright Angel Fault may act as a lateral boundary 

to groundwater flow east of the fault (Figure 15). Therefore, lateral boundaries 

created by structures could potentially isolate various groundwater bodies which 

evolve a unique array of chemistry (e.g., Type I and II springs). 

Different groundwater flow patterns are also apparent in various plots of 

spring geochemical components as a function of latitude (Figure 16). This line-plot 

illustrates positive and negative correlations between major faults and spring 

chemistry. The Vishnu, Bright Angel, and Hermit Faults may be groundwater 

boundaries to groundwater flow, whereas, transverse faults and folds (not illustrated 

in cross-section) facilitate circulation east and west. 
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Figure 16. Cross-section plot illustrates changes in spring chemistry relative to high-angle 
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CHAPTER 7 
CONCLUSIONS 

The purpose of this study was to determine the residence time of 

groundwaters discharging from the South Rim Aquifer using in-situ environmental 

isotopes (i.e., tritium and uranium); these results indicate subsurface residence times 

are greater than 40 years. This primary conclusion is supported by three lines of 

evidence which resulted from different facets of the study: 1) relative age of 

groundwaters is indicated to be greater than forty years by low 3H concentrations in 

South Rim waters; 2) the geochemistry of groundwaters reflect the process of 

dedolomitization; and 3) Uranium-series disequilibrium in spring waters indicates that 

uranium is not chemically conservative in the South Rim Aquifer as a result of 

dedolomitization, because uranium can be sorbed to calcite, indirectly increasing the 

234U/238U activity ratio in solution. Further, uranium data suggest that long 

groundwater residence times are associated with high 234U/238U activity ratios in 

solution. 

On a larger scale, this investigation suggests that Type I and II spring waters 

are the product of regional and local recharge respectively. High 234U/238U activity 

ratios in Type I springs may be the result of longer groundwater residence time, 

where Type II springs have low 234U/238U activity ratios and high 238U concentrations, 
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indicating shorter subsurface residence time. From the data collected in this 

investigation, it is apparent that groundwater is not rapidly transmitted through the 

Paleozoic strata; therefore the conclusion that the 234U/mU activity ratio increases 

with longer travel times is strongly supported. 

FURTHER RESEARCH 
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With respect to development on the South Rim, this study indicates that 

increases in pumping from the South Rim Aquifer could reduce aquifer yield to the 

point where small seeps would dry-up or become intermittent. Further monitoring 

and research would further constrain this conclusion. Since this investigation is based 

on reconnaissance data and a small window of sampling time, South Rim springs 

should be periodically monitored for physiochemistry, major ions, uranium, and 

discharge. Future studies should include the use of chlorine-36 to determine the 

absolute age of groundwaters. Additionally, radium-226 and radon-222 are 

radionuclides which could be used to further investigate the geochemical evolution of 

uranium in the aquifer. 



APPENDIX 1: Spring Data Sheets 

Dripping Spring 

Spring Elevation 5600' 

Geology Hermn Shale-Coconino Sandstone contact 

LongHudellAtHUde 36-()3"98' 112-14"78' 

Hydrochemical Data 
Date of sample pH EC(mS/em) TDS(g/1) T (C) T air (C) Alk (mgll) 

3117/95 7 0.302 0.152 14.6 18.6 145 

7r22195 8.5 0.338 0.169 16.8 21.5 134 

Average 7.8 0.320 0.161 15.7 20.1 140 

Std Dev 1 '1 0.025 0.012 1.6 2.1 a 

Date of sample TR AR 2-<f J-238 (ug/1 2"' 

3/17/95 0.16 2.19 3.5 0.946 1.3 0,01 

Chemical Facies calcium-magnesium bicarbonate 

Q(Um) 

0.75 

0.9 

0.18 

Conments: Dripping Springs fiows from the outcrop at the Hermtt Shale-Coconino Sandstone. 

The spring orifice faces south--east, and fractures in the out crop are vertical. 

Discharge constant, water~samples collected from main drip above rock pool. 

Santa Maria Spring 

Spring Elevation 5120' 

Geology Esplanade Sandstone 

LongHude/LatHude 36-Q3"5T 112-13"19' 

Hydrochemical Data 
Dale of sample pH EC(mS/cm) TDS(g/1) T (C) T air (C) Alk (mg/1) Q(Um) 

3/17/95 7 0.290 0.145 14 27.1 194 1 

7r22195 8.63 0.475 0.237 16 19.7 167 0.5 

Average 7.8 0.383 0.191 15.0 23.4 181 0.8 

Std Dev 1.2 0.131 0.085 1.4 5.2 19 0.35 

Date of sample TR AR 2-<Y J-238 (ug/1 2 ... 

3/17/95 2.95 1.88 1 .9 0.083 6.2 0.02 

Chemical Facies magnesium-calcium bicarbonate 

Comments: Santa Maria Spring issues from sandstone beds in the Esplanade Formation. 

No associated structure but spring continuous laterally along bedding planes. 

Discharge varies annually, high flow during Mareh. 

Water samples collacted from the outcrop, above the rock shefter. 

During wet season springs abundant In laterally equivalent Esplanade Sandstone 
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Hawaii Spring 

Spring Elevation 3600' 

Geology Muav Limestone 

Longitude/Latrtude 36.04"30' 112-13"06' 

Hydrochemical Data 
Date of sample pH EC(mSicm) TDS(g/1) T (C) T air (C) Alk (mg/1) Q (lim) 

3/18/95 6 18 13.6 210 3 
7/21195 8.15 0.522 0.260 19.8 21.9 190 3 

11/25195 8 0.250 0.070 17.9 15.6 206 3 

Average 7.4 0.388 0.17 15.6 17.0 202 3.0 

Sid Dev 1.2 0.192 0.13 1.1 4.3 11 

Date of sample TR 2-a AR 2-a U-238 (ug/1) 2-<r 

3118195 0.50 2.51 2.8 0.21 2.6 0.01 

Chemical Facies magnesium bicarbonate 

Comments: Discharge constant throughout duration of investigation. 

Hermit Source Spring 

Spring Elevation 4320' 
Geology RedWall Limestone 

Longkude/LaiHudo NA 

Hydrochemical Data 
Date of sample pH EC(mS/cm) TDS(g/1) T (C) T air (C) Alk (mg/1) Q(Um) 

3/18/95 7 17.5 15 208 3 
7/21/95 8.59 0.439 0.216 19.6 20.4 194 0.125 

Average 7.8 18.6 17.7 201 1.6 

Sid Dev 1. I 1.5 3.8 10 2.0 

Date of sample TR AR 2-<r U-238 (ug/1) 2-a 

3/18195 1.13 2.51 2.9 0.18 2.8 0.010 

Chemical Facies calcium·magnesium bicarbonate 

Corrments: Discharge constant throughout duration of investigation. Initial flow from the 

Temple Butte Limestone. No significant stream flow above the Redwall Limestone. 
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Monument Spring 

Spring Elevation 3280' 
Geology Tapeats Sandston&-Bright Angel Shale 

Longitude/latitude 36-04"94' 112·11 "14' 

Hydrochemical Data 
Date of sample pH EC(mSJcm) TDS(g/11 T (CI 

3/11l/95 7 1.978 0.989 18 
7120195 7.58 1.327 0.663 23.5 

11/25196 8 0.988 0.492 17.9 
Average 7.5 1.4 0.7 19.8 
Sid Dev 0.5 0.5 0,3 3.2 

Date of sample TR z.., AR t-<J 
3111l/95 2.85 2.19 2.1 0.07 

Chemical Facies calcium-sodium chloride 

T air (C) Alk (mg/11 Q (1/m) 

26 218 1 
34.5 234 3 
14.2 200 5 

24.9 217 3.0 
10.2 17 2.0 

U-238 (Ug/11 1.,-

9 0.1 

Comnents: Samples collected from inner-basin sediment. Significant influx and deposition of 
sediment during the study. 

Cedar Spring 

Spring Elevation 3450' 
Geology Topeats Sandstone-Bright Angel Shale 

Longitude/Latitude 36-05"15' 112.08"66' 

Hydrochemical Data 
Date of sample pH EC(mSicm) TDS(g/1) T (C) T air (C) Alk (mg/1) Q (lim) 

3/18195 7 0.934 0.466 15 20.7 250 
7120195 

11/26/95 8 0.799 0.401 10 13.3 221 
Average 7.5 0.8665 0.4335 12.5 17 236 
Std Dev 0.71 0.10 0.05 3.54 5.23 21 

Date of sample TR 2 ..... AR t ..... U-238 (ug/11 t ..... 
3118195 2.76 1.88 1.9 0.052 15.6 0.04 

Chemical Facies 

Conments: Dry in the summer months, when discharing only small pools present 
High levels of dissolved uranium noted. 

0.5 
DRY 
0.5 

0.5 
0.00 
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Salt Creek 

Spring Elevation 3760' 
Geology Tapeats Sandstone-Bright Angel Shale 

Longitude/Latitude 36-<l5"12' 112.09"71' 

Hydrochemical Data 
Date of sample pH EC(mSI<ml TDS(g/1) T (C) 

3/19195 7 1.52 0.758 13.3 
7120/95 7.90 1.623 0.811 20.9 

11126195 8 1 ,41 0.705 10.1 
Average 7.6 1.516 0.758 14.8 
Std Dev 0.6 0.107 0.053 5.5 

r air (C) Alk (mg/1) Q (Um) 

12.7 191 0.25 
20.7 0.25 
20.4 194 0.25 

17.9 193 0.3 
4.5 2 0.0 

Date of sample TR AR 1-<> U-238 (ug/1) 1., 
3/19/95 5.64 2.82 1.5 0.04 14.6 0.03 

Chemical Facies intermediate sulfate 

Comments: Seeps now from the Tapeats Sandstone mainly from opening in cross-bedding. 

Horn Spring 

Spring Elevation 3600' 
Geology Bright Angel Shaie-Muav Limestone 

Longitude/latitude 36.0S"1 5' 112·08"66' 

Hydrochemical Data 
Date of sample pH EC(mSicml TDS(g/1) T (C) T air (C) Alk (mg/1) Q (1/m) 

3/19195 6 1.049 0.527 13.5 14 198 1.5 
615195 7.09 1.03 0.522 17.2 26.3 235 0.25 

7/19/95 7.47 1.005 0.503 21.5 25.4 280 0.25 
11126195 7 14 17.8 272 0.25 
Average 6.89 1.028 0.517 16.6 20.9 246 0.56 

Sid Dev 0.53 0.022 0.013 3.7 6.0 38 0.6 

Date of sample TR 2 .... AR 1..,. U-238 (ug/1) '"' 4130194 2.32 2.19 0.94 0.03 24.7 0.01 
3/19195 0.8 0.01 92.7 0.21 

615195 4.39 1.88 0.02 27.5 0.05 
Average 3.4 0.9 46.3 
Std Dev 1.5 0.1 38.5 

I)() 8H 

4130/94 ·11.8 -89 

Chemical Facies calcium~magnesium sulfate 

comments: Samples collected from inner-basin sediment. At high flow regimes samples 
collected about 314 mile up the drainage from the Tonto Trail. Samples collected 
200 feet from the trail at low flow. Western drainage typically dry. 
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Two Trees Spring 

Spring Elevation 3760' 

Geology Bright Angel Shale-Muav Limestone 

LongHudeJLatitude 36-04''69'/112·07"54' 

36-04,52'/112-07''60' 

Hydrochemical Data 
Date or sample pH EC(mS/cm) TDS(g/J) T (C) T air (C) Alk (mg/1) 

1/11/94 7 0.430 0.210 18.1 4.4 

11114194 0.440 0.210 18.2 9.3 

7119/95 7.65 0.444 0.222 18.7 26.4 176 

11126195 7 0.423 0.211 18.3 14.8 184 

6/5195 7.54 0.491 0.115 16.3 27.9 

7119/95 744 0.472 0.236 22.7 25.8 196 

Average 7.3 0.450 0.201 19.1 18.1 185.3 

Sid Dev 0.3 0.026 0.043 1.8 10.0 10.1 

Date of sample TR 2-<r AR 1-<r U-238 (Ug/1) 1-<r 

4130/94 0.82 0.85 3.5 0.7 0.84 0.05 

9129/94 0.99 0.87 

11/26194 0.66 1.57 

4130195 -0.47 3.13 

5116195 -0.09 2.19 

6/5195 3.7 0.31 0.59 0.02 
Average 0.38 1.72 3.60 0.84 

Sid Dev 063 0.97 0.14 0.04 

liO aH 

1111/94 ·12.2 -93 

4130/94 ·12.3 ·91 

4130/94 ·12.4 ·91 

Chemical Facies calcium-magnesium bicarbonate 

Comments: An anematiVe name for this spring are 1) Pump House Spring; 

2) Indian Garden Spa. Discharge gage onen failed during 

this investigation. Samples collected from below two trees on eastern 

canyon wall. 
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Pipe Spring 
Spring Elevation 3840' 

Geology Bright Angel Shale--Muav Limestone 

LongHudeilatHude 36-04,24' 112~,89' 

Hydrochemical Data 
Date of sample pH EC(mS/cml TDS(gll) T (C) T air (C) Alk (mg/1) 

1/11/9.4 0.47 0.23 4 3.2 

4129/9.4 7 0.567 0.285 16 13 142 

11/14194 0.62 0.3 11.5 9.2 

11126194 
6/4195 7.14 0.671 0.333 16.6 39.5 190 

7/19195 8.04 0.837 0.321 22.6 37.7 
Average 7.4 0.6 0.3 14.1 20.5 166 

Std Dev 0.6 0.1 0.0 6.9 16.9 34 

Date of sample TR 2-<> AR 1-<r U-238 (ug/1) ,..,. 
4129/9.4 0.94 3.13 2.8 0.52 2.04 0.01 

11/14194 2.02 0.87 

11/26/94 1.46 0.89 

614195 27 0.157 0.85 0.00315 

Average 1.5 1.6 2.8 0.3 0.9 0.0 

Std Dev 0.5 1.3 0.1 0.3 

60 SH 
1/11/94 -12.4 -92 
4129194 -12.4 -91 

Chemical Facies calcium-magnesium bicarbonate-sulfate 

Comments: Samples collected from inter-basin sediment. Flow fluctuates, 

higher during Mar<:h through May. 

Burro Spring 
Spring Elevation 3760' 

Geology Bright Angel Shale-Muav Limestone 

LongHude/LatHude 36-04"61 · 112-06"06' 

36-04,60 112-06,01' 
Hydrochemical Data 
Date of sample pH EC(mS/cml TDS(g/1) T(C) T air (CI Alk (mg/1) 

1111/9.4 6 0.55 0.27 8.3 11 

4129194 7 0.6 0.3 13 20 215 

11/14194 0.57 0.28 11.5 16.5 

7/19195 8.36 0.643 0.321 20 28.2 220 
Average 7.1 0.591 0.293 13.2 18.4 218 

Sid Dev 1.2 0.040 0.023 4.9 6.4 

Date of sample TR 2-<r AR 1..,. U-238 (ug/1) 1-<J 

4129/9.4 1 .91 2.82 2.6 0.59 2.43 0.02 

llO 5H 

1111194 -12.2 -92 

4129/94 ·12.2 -90 

Chemical Facies ealcium~magnesium bicarbonate 

Conments: Abundant vegetative growth around the spring orifice. Constant 

annual discharge. 

4 

91 

Q (lim) 

gage 

Q(Vml 

3 

5 
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Cremation Creek 

Spring Elevation 3600' 
Geology Tapeats Sandstone 

Longitude/Latitude 

Hydrochemical Data 
Date of sample pH EC(mS/cm) 

11/14/94 
6/4195 7.12 2.16 

Date of sample TR 2-<Y 
6/4195 7.20 2.50 

TDS(g/1) T(C) T air (C) Alk(mgn) 

1D72 18.7 25.2 

AR 1-<Y U-238 (ug/1) 1o0' 
2 0.106 7.6 0.022 

Comments: Spring dry the majority of the time. Abundant salt precipttate in creek bed. 

sam Magee Spring 

Spring Elevation 4000' 
Geology Bright Angel Shale-Muav Limestone 

Longitude/Latitude 36-04"73' 112-03"90' 

Hydrochemical Data 
Date of sample pH EC(mS/em) TDS(g/1) T (C) 

11/14194 0.460 0.230 9.5 
613195 7.6 0.788 0.394 17 

7119195 8.1 0.754 0,377 19.8 
Average 7.9 0.557 0.334 15.4 
Sid Dev 0.4 0.180 0.090 5.3 

Date of sample TR 2-o AR 1-<r 
11/14/94 0.89 1.05 

613195 1.6 0.083 

Chemical Facies calcium~magnesium sulfate 

T air (C} 

7.9 
20 

22.8 
15.9 
7.9 

U-238 (ug/1) 

3.8 

Comments: Very low rate of discharge. Spring located at the 
Bright Angel Shale-Muav Limestone contact. 

Alk (rng/1) 

136 
136 

136 

1-o 

0.012 
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Q (lim) 

DRY 
POOL 
DRY 

Q (lim) 

0.25 
0.25 
0.25 

0.25 
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Lonetree Spring 

Spring Elevation 3680' 
Geology Tapeals Sandstone--Bright Angel Shale 

LongHude/LatHude 36-04"27' 112-02"73' 

Hydrochemical Data 
Date of sample pH EC{mS/cm) TDS(glll T (C) Tair(C) Alk (mgnj Q(Vm) 

1/10/94 6 1.28 0.630 2.9 13.9 
11/13194 1.43 0.700 9.8 14.4 0.2 

6/3195 6.95 1.21 0.607 19.7 38.8 360 2 
7/18195 7.21 1.441 0.720 24.6 34.2 4SO 

Average 6.7 1.340 0.664 14.3 24.8 405 1.1 
Sid Dev 0.6 0.114 0.054 9.8 12.4 64 09 

Dale of sample TR 2-<1 AR ,.., U-238 (ug/1) 1-o 
11/13194 3.71 0.96 

613/95 1.6 0.071 4.8 0.014 

Chemical Facies calcium~magnesium sulfate 

Comments: Actual spring orifice buned by modem sediment. 
Tritium sample collected while raining. 

Boulder Creek 

Spring Elevation 3520' 
Geology Tapeats Sandstone 

LongHude/Latttude 36-00"97' 112-00"37' 

Hydrochemical Data 
Date of sample pH EC(mS/cm) TDS{g/1) T {C) T air (C) Alk (mg/1) Q(l/m) 

11/13195 DRY 
613195 7.08 1.797 0.898 21.5 30 0.1 

7/18195 DRY 

Date of sample TR 2-<J AR 1-<t U-238 (ug/1) ,.., 
613195 3.76 1.57 2 0.084 6.9 0.019 

Comments: Dry the majority of the time. Spong water flows from the Tapeats sandstone. 



Grapevine Spring 

Spring Elevation 4000' 
Geology Bright Angel Shale--Muav Ltmestone 

Longitude/Latitude 36-01"39' 112-00"79' 

Hydrochemical Data 
Date of sample pH EC(mS/cm) TOS(g/1) T(C) 

119/94 6 0.67 0.33 5.6 
1/10194 6 0.66 0.32 2.7 

11/12194 0.73 0.36 11.7 
5/13195 7.2 0.559 0.279 12.8 
7/17195 7 0.315 0.157 19 

Average 6.6 0.6 03 10.4 
Sid Dev 0.6 0.2 0.1 6.4 

Date of sample TR 2-a AR 1"" 
11112/94 1.95 0.89 
5/13/95 3.6 0.29 

60 ~H 

119194 ·10.1 -80 
1/10/94 -12.4 ·92 

Chemical Facies caleium~magnesium bicarbonate 

T air (C) Alk (mg/1) Q(Um) 

12 

·1 .6 
11 .5 5 
18 265 5 

34.4 256 3 
14.9 261 4.3 
13.1 6 1.2 

U-238 (ug/1) 1-<J 

1.2 0.03 

Comments: Spring orifice burled by modem sediment. Flow fluctuates on a diurnal basis. 
Sample location 1 to 3 miles above Tonto Trail. 

Grapevine East Spring 

Spring Elevation 3660 
Geology Bright Angel Shale 

Longitude/Latitude 36-02"57' 112-00"81' 

Hydrochemical Data 
Date of sample pH EC(mS/cml TDS(g/1) 

11/12/94 0.85 0.24 
5113/95 8.1 0.687 0.344 
7/17/95 7 0.906 0.453 
Average 7.6 0.814 0.346 

Sid Oev 0.8 0.114 0.107 

Date of sample TR 2-a AR 

11/12/94 1.63 0.94 

5113195 1.7 

60 6H 

1110194 ·11 .6 ·88 

Chemical Facies calcium~magnesium sulfate 

T (C) T air (C) 

10.1 21.3 
20 33.3 

26.2 42.1 
16.8 32.2 

8.1 10.4 

1-a U-238 (ug/1) 

0.2 2.8 

Alk (mg/1) Q (lim) 

3 

150 
272 3 

211 
86 

1 ... 

0.03 

Convnents: Discharge constant, heavy vegetation growth around spring orifice. 
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Grapevine Hell Spring 

Spring Elevation 3760' 
Geology Bright Angel Shale 

Longnude/Latttude 

Hydrochemical Data 
Date of sample pH EC(mS/oml 

11/12/94 
5113/95 8.44 1.783 
7/17195 

Date of sample TR 2"" 
5113195 

TOS(g/11 T (C) T air (C) Alk (mg/11 

0.892 22.7 26.7 301 

AR 1-<J U-238 (ugn) 1-o: 
.2 0.12 7 0.01 

Conments: Dry the majority of the year. Abundant sa~ deposits around orifice 

Cottonwood West Spring 

Spring Elevation 3680' 
Geology Tapeats Sandstone-Bright Angel Shale 

Longitude/Latitude 

Hydrochemical Data 
Date of sample pH EC(mS/cml TDS(g/11 T (CI 

11/12194 1.13 0.57 12.7 
5113/95 7.8 1.293 0.647 21.8 
7/17/95 

Avetllge 1.212 0.609 17.3 
Std Oev 0.115 0.054 8.43 

Tair(CI 
16.4 
26.7 

21.8 
7.28 

Date of sample TR 2-<> AR t ... U-238 (ugltl 

11112194 2.32 0.87 

5/13/95 2.2 0.1 4.5 

Alk (mgn) 

420 

1-<> 

0.01 

Q(Uml 
DRY 

DRY 

Q(Um) 

0.02 
0.02 
DRY 

Comments: Intermittent discharge, when flowng very small volume from the Tapeats Sandstone. 
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Cottonwood Spring 
Spring Elevation 3920' 

Geology Bright Angel Shale-Muav Limestone 

LongHude/LatHude 36-01 "30' 111-59"30' 

Hydrochemical Data 
Date of sample pH EC(mS/cm) TDS(g/1) T(C) 

119194 6 0.48 0.240 
11/11194 0.701 0.360 13.4 
11/12194 1 .13 0.570 12.7 

5112196 7.49 0.681 0.340 13 
7/16/95 7.97 0.798 0.396 19 

Average 72 0.758 0.379 14.5 
Std Dev 1.0 0.238 0.121 3.0 

Date of sample TR 2-o AR ,.., 
11{11/94 1.46 0.93 
11112/94 1.08 1.08 

5112196 3.6 0.42 
7/16/95 1.57 2.19 

Average 1.4 
Sid Dev 0.3 

60 6H 

1/9194 -12.5 -93 

Chemical Fa<ies calcium-magnesium bicarbonate 

T air(C) Alk (mg/1) Q(Um) 

gage 
16.3 
16.4 
21.3 300 
27.8 390 

20.5 345 
5.4 64 

U-238 (ug/1) 1-<J 

1 '1 0.006 

Comments: Samples collected at USGS stream gage. Abundant riparian vegetation and plant 
waste in stream bed. Springs on the east side go dry dUring summer. More 
discharge below USGS gage from the Bright Angel Shale. 

Page Spring 
Spring Elevation 4320' 

Geology Muav Limestone-Bright Angel Shale 

LongHudellatitude 36.00"97' 111-58"38' 

Hydrochemical Data 
Date of sample pH EC(mS/cm) TDS(g/1) T (C) T air (C) Alk (mg/1) Q(Um) 

118/94 0.420 0.214 8 11.4 
11/11194 0.418 0.206 13.1 19 

5112196 8.2 0.383 0.191 12.6 20.1 142 
7/18/95 8.23 0.436 0.218 16.5 21.7 125 

919195 8.27 0.460 17.4 
Average 8.2 0.423 0.207 13.5 18.1 134 1.0 
Std Dev 0.04 0.028 0.012 3.72 4.57 12 

Date of sample TR 2-o AR ,.., U-238 (ug/1) ,.., 
11111/94 1.10 0.83 
5/12/95 1.28 1.88 1.6 0.14 3.9 0.013 
7116195 1.92 1.68 

9/9/95 1.6 0.11 3.7 0.012 
Average 1.4 1.529 1.600 0.1 3.8 
Sid Dev 0.43 0.606 0.000 0.02 0.14 

1/8/94 80 aH 
-12.2 -93 

Chemical Facies calcium bicaribonate 

comments Page Spring was sampled directly from the outcrop. Flow constant throughout 
the duration of investigation. 
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APPENDIX II: Geochemical Data 

Results from tritium analysis listed in chronological order. 

~~Station Date pCi/1 2-~ TR 2-o- •m• .c. 

[rnilliiiGarden PumpStation 4130/94 <U •.Lr 1.00 
Lab 

>Pring 

11115194 L. Of l.O~f, 

i :::-' >§lation 11126194 13.613 3! l2 '-~~ 4.~~~ 
11/26/94 2.bll l. Uo U.IHOOI l.Oo 4.JOO "A E 

1n01ian 1Ga~e~~·~S~io~n~I1~~~9~4~L~.t#~P.PU~I .. IO~O~~:g~tt~ 

lpper 1ern ·;Creek Jill/"" i.L4 L 

1ermn ;pnng 3117195 3. 1. L. 

3

~ UKI 

1awaii >pnng 1.6 8 

:adar Sorin~ DRI 

1.50 2.51 

-ri~t \nget Greek lb 

lorn 
'age i 
:qu;r• , vven 
wo 1 :>pnng 

1 oou.,er :spri 
i 'Spring 

1 Page Spring_ 
I spring 

5117195 

•· . 

4 

-u -u.· 
-Q,J -0.09 

,Of 

B i1 
DRI 
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Major ion concentrations (mg/1) in South Rim Springs, collected in July, 1995. 
Sample station Ca 2-tr Mg 2-<r Na 2-<r K 2-<> S04 2-a HC03 Cl 

Page Spring 24.56 0.29 33.77 0.35 0 NA 3.82 0.02 42.7 0.28 125 23 

Cottonwood Spring 81.82 1.79 62.13 1.23 12.22 0.31 4.41 0.02 31 0.175 390 20 

Grapevine East Spring 77.59 18 74.72 2.19 19.2 0.09 703 0.09 173 2.61 272 35 

Grapevine Spring 82.68 0.95 36.87 0.24 6.24 0.1 1.86 0.08 12.4 0.041 256 9.17 

Lonetree Spring 115.69 3.03 121.17 0.09 50.86 1.24 14.37 0.06 303.5 1.44 450 57 

Sam Magee Spring 55.45 0.84 57.09 0.6 20.54 0.16 6.63 0.17 186 0.134 138 29.9 

Burro Spring 56.95 0.56 47.11 1.23 15.84 0.04 4.29 0.002 75.9 0.067 220 20.1 

Pipe Spring 65.52 0.84 50.48 1.25 14.59 0.11 4.69 0.08 110.5 O.D18 206 19.6 

Two Trees Spring 46.46 0.71 34.77 0.86 7.43 0.02 1.51 0.04 22.2 0.002 196 12.5 

IGS 42.01 0.92 33.86 1.1 7.25 0.05 1.74 0.06 21.8 0.001 176 12.7 

JGPS 37.23 0.65 17.61 0.32 1.28 0.006 0.58 0.01 3.72 0.011 150 3.31 

Horn Spring 87.78 1.71 81.99 1.06 32.51 0.18 13.66 0.21 239.1 0.701 280 39.3 

Satt Spring 126.99 3.16 143.8 0.38 47.73 0.21 19.16 0.24 674.3 0.695 190 38.1 

Monument Spring 89.48 2.37 72.91 0.56 92.63 6.99 8.48 0.24 199.8 4.37 234 162.9 

Hawaii Spring 49.30 0.003 36.3 0.53 12.29 0.34 2.54 0.003 42 0.012 190 14.9 

Hermit Spring 49.00 0.39 31.5 1.18 6.36 0.13 1.5 0.02 13.5 0.003 194 10.9 

Santa Maria Spring 27.71 0.4 41.22 0.68 12.83 0.08 3.65 0.02 23 0.06 167 26.7 

Qtippin_g ~_!~~9_ ___ 30.50 0.62 27.65 0.97 4.57 0.03 1.08 0.01 8.72 0.05 134 11.8 

2-<> F 2-n Br 

0.33 0 0.197 

0.03 0 0.166 

0.132 0.141 0 0.236 

0.091 0.093 0.002 0.09 

0.06 0 0.451 

0.3 0.5 0.025 0.269 

0.094 0 0.157 

0.137 0 0.126 

0.23 0 0.113 

0.196 0.094 0.004 0.11 

0.032 0.1 0.005 0 

0.203 0 0.207 

0.365 0 0.16 

0.572 0 0.482 

0.129 0 0.11 

0.14 0.099 0.001 0.087 

0.051 0 0.228 

0.189 0.154 0.003 0.13 

2...- N03 N04 2-« 

0.01 5.64 1.27 0.068 

0.008 0.102 0.02 0.002 

0.006 0.145 0.03 0.01 

0.003 0.369 0.083 0.002 

0.012 0.087 0.02 0.003 

0.007 15.4 3.48 0.159 

0.006 1.79 0.404 0.012 

0 1.734 0.392 0.033 

0.005 2.09 0.47 0.003 

0.006 2.81 0.63 O.D1 

0.862 0.195 0.021 

0.01 0.549 0.124 0.002 

0.006 4.38 0.969 0.058 

0.015 9.66 2.18 0.316 

0.002 2.79 0.63 0.021 

0.003 2.9 0.655 0.064 

0 6.24 1.41 0.021 

0.001 5.7 1.29 0.024 

"' 00 
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Results from spring water uranium analyses. 

Sample Station Date 238 (pCill) 1·cr 238 IQII) 234 pCin) AR 1-cr 
!ripping Spring u.""" 
ianta Mari Spnng 1.083 

9.9 08 9.48 
Two frees Sorina 4r. 0.643 OS 2.26 3.5 J.o: ;-

l.59 l2 u." 
~Creek 41: '23 J5 2.8 0.52 

).85 2.7 '.1>1 

ouh ter ~~lng ""•'"" ~ 
:ast Spring "'"""" 

I ~~~1ng >11JI•> ;<, 
5112195 0.41 U.l 1. I .41 

I SoriM 5113195 1 .o U.U> 4.5 3.o• 

~~--=~"-=~~~+-~~112195~-,~7-t-~n~l"3~-i;~'··'9.-t-~'~,49~r7~1.:~·~~::~~~~~ 
hlln;;:,;dla~nl Gtard:,;;""-',;., p·~uumP;;' ST'EtalttliSon-+_47:ilii94~~,-t--;~c;-+*wH...,.,.~ 56 4.0 "·"" 

Bnaht Angel creek (N. Him) 4130/94 OB J~97 . 19 3.8 5.32 



APPENDIX Ill: Discharge measurements from South Rim springs for the 1994-1995 water year. 

MeanQ Max Min 

Station Water Year cfs gpm Ym cfs gpm cfs gpm Source 

Blue Springs 1994-1995 220.0 98742.6 373824.0 230 1()3231 Huntoon, 1982 

Havasu Springs 1994-1995 65.0 29174.0 110448.0 66.6 29892 Huntoon, 1982 

Page Springs 1994-1995 0.00059 0.3 1 This Study 

Cottonwood Spring 1994-1995 0.01200 5.4 0.029 0.002 USGS 

Cottonwood West Spring 1994-1995 0.00015 0.1 0.25 0 This Study 

Grapevine Hell Spring 1994-1995 0.00012 0.1 0.2 0 This Study 

Grapevine Easl Spring 1994-1995 0.00118 0.5 2 This Study 

Grapevine Spring 1994-1995 0.00029 0.1 0.5 This Study 

Boulder Spring 1994-1995 0.00007 0.0 0.125 0 This Study 

Lonetree Spring 1994-1995 0.00059 0.3 1 This Study 

Sam Magee Spring 1994-1995 0.00029 0.1 0.5 This Study 

Cremation Spring 1994-1995 0.00003 0.0 0.05 0 This Study 

Burro Spring 1994-1995 0.00235 1.1 4 Thjs Study 

Pipe Spring 1994-1995 0.061 27.4 104 0.23 103.2 O.ol 4.5 USGS 

Two Trees Spring 1995 0.13 58.3 221 0.16 71.8 0.12 53.9 USGS 

SDTankiGS 1994-1995 1.09 489.2 1852 1.6 718.1 0 0.0 USGS 

Kolb Seep 1994-1995 0.0018 0.8 3 0 This Study 

lndian Garden Creek 1994-1995 1.35 605.9 2294 1.6 718.1 0.48 215.4 USGS 

Horn Spring 1994-1995 0.00029 0.1 0.5 This Study 

Salt Spring 1994-1995 0.00015 0.1 0.3 This Study 

Cedar Spring 1994-1995 0.00006 0.0 0.1 0 This Study 

Monument Spring 1994-1995 0.00294 1.3 5.0 This Study 

Hawaii Spring 1994-1995 o.oo1n 0.8 3.0 This Study 

Hermit Source Spring 1994-1995 0.00294 1.3 5.0 This Study i 

Hermit/Hawaii Spring 1994-1995 0.70 314.2 1189 1.9 852.8 0.49 219.9 USGS 

Santa Maria Spring 1994-1995 0.00029 0.1 0.5 This Study 

Dripping Sprin~--. _ 1994-1995 0.00059 0.3 1.0 This Study 
-

0 
0 
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