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ABSTRACT 

This study defines fault segments and segment boundaries along the Hurricane 

fault in southwestern Utah and determines the geometric and kinematic relationship to 

other regional structunes. Fault segment identification is critical for understanding fault 

processes and seismic risk; segment length is the maximum earthquake rupture length 

along a fault Segment boundaries may act as barriers to earthquake propagation. 

Normal fault segmentation only recently has received attention and has never been 

studied along the Hurricane fault. The fault changes strike along its length, and is thus a 

segmented fault. This study documents one nonconservative segment boundary and two 

fault segments, the Ash Creek segment and the Anderson Junction segment, based on fault 

geometry, scarp shape. and shortening structures in the hanging wall and footwall. A 

rupture along the Ash Creek segment may affect Cedar City, UT, and a rupture along the 

Anderson Junction segment may affect St. George, UT and a number of smaller nearby 

towns. Previously undocumented surface offsets were observed along both segments. 

Evidence that Quaternary slip along the Hurricane fault is predominately normal includes 

offset of geochemically identical Quaternary (?) basalt, slickenlines, hanging wall dip 

analysis, and the 89" rake of the 1992 StGeorge earthquake. 

The Hurricane fault and the Gunlock-Grand Wash fault system, which lies 50 km 

to the west, may be a linked system whereby the two en echelon faults form a 

displacement transfer zone that generates the relatively wide transition zone between the 

Basin and Range province and the Colorado Plateau in the region. Data from both faults 

that support the existence of a transfer zone include symmetric changes in stratigraphic 

separation, similar timing of fault motion, and balanced regional cross sections. 
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CHAPTER 1 

INTRODUCTION 

The mechanics of nonnal faults have been modeled by many, but the processes 

involved remain unclear and controversial. Several different model~ have been 

constructed to explain the processes of intracontinental extension (Bally, 1981; Gibbs, 

1983; 1984; Wernicke, 1981; 1985; Lister and others, 1986; Buck, 1988; Buck and 

others, 1988; Wernicke and Axen, 1988), but they do not provide a single definitive 

answer. To further the understanding of extensional faulting processes, in particular 

fault kinematics, fault segmentation, displacement transfer and footwall flexure, this 

detailed study of the less-extended border region of the Basin and Range was conducted. 

This less-extended area is the physiographic province boundary region tenned the 

transition zone, which lies between the Basin and Range province to the west and the 

Colorado Plateau to the east (figure I). The Basin and Range province exhibits 

widespread Cenozoic nonnal faulting whereas the Colorado Plateau, a late Cenozoic 

epeirogenic uplift of the Cambrian to Mesozoic cratonal section, is only slightly 

extended (Bjamason and Pechmann, 1989). The transition zone is a complex structural 

zone that displays tectonic features common to both provinces. It has experienced less 

strain than internal parts of the Basin and Range and is an ideal location to study nonnal 

faulting because important data may not be obliterated by multiple overprinting faulting 

events such as in more highly extended regions in the Basin and Range. The transition 

zone, and the study of the nonnal faults therein, may provide a near end member model 
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Figure I: Location map of major faults in southwestern Utah and 
northwestern Arizona (bar and ball on downthrown side, stippled where 
the fault is concealed; teeth on upper plate.) G = Gunlock fault; GW = 
Grand Wash fault; H =Hurricane fault; R =Reef Reservoir fault; W = 
Washington fault; PVs =Pine Valley syncline; Va =Virgin anticline. 
Major thrust is the Sevier-age Square Top Mountain thrust. Symbols V, 
X, Y. and Z are referred to in the text. Area outlined near the town of 
Toquerville is the study area and is shown in greater detail in figure 3. 
Cross sections drawn along a-a', b-b', and c-c' are shown in figure 17. 
Structural data compiled from Hintze (1975) and Reynolds (1988). 
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on a continuum with the more extremely thinned Basin and Range province at the other 

end. 

A section of the Hurricane fault in southwestern Utah marks the western 

boundary of the Colorado Plateau, and so, lies within the transition zone (figure 1). The 

Hurricane fault is a major, active, high-angle west-dipping normal fault Because the 

strike of the fault changes along its length, the Hurricane fault is a segmented fault. The 

purpose of this study is to analyze in detail part of the Hurricane fault to defme segment 

boundaries and determine the geometric and kinematic relationship to other structures in 

the region. This study focuses on I) the kinematics of the fault, including total amount 

of stratigraphic separation, sense of motion, and direction of motion; 2) the amounts of 

stratigraphic separation observed in the Quaternary and the Holocene units; 3) the 

structural effects of fault segment boundaries on the hanging wall and footwall blocks; 

and 4) the potential geologic hazards of the area. On a more regional scale the 

relationship of the Hurricane fault to other nearby structures, such as regional scale folds 

and faults, is addressed. 

Fault segments were not identified previously along the Hurricane fault in Utah. 

This study documents a fault segment boundary near a major bend in the Hurricane 

fault. Along the fault segment to the north of the segment boundary. here termed the 

Ash Creek segment, motion is purely dip-slip, but along the southern fault segment, 

here termed the Anderson Junction segment, motion is dominantly normal dip-slip with 

a slight dextral component. Previous fault segmentation studies concluded that segment 

boundaries may be the sites of significant strain. may impede rupture propagation, and 

may greatly influence the locations of earthquakes (e.g., Schwartz and Coppersmith, 

1984; Bruhn and others. 1987; Bruhn and others. 1990; Susong and others,!990; 

DePolo and others, 1991). 

Holocene ruptures along much of the Hurricane fault have not been recorded 

previously. This study, however, documents three locations along the fault where 
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Holocene alluvium is offset within the study area; the greatest offset measures 6 m. A 

range of fault slip vectors was determined from the 450 m of stratigraphic separation of 

Quaternary (?) basalt cropping out in the hanging wall and footwall of the Hurricane 

fault and analyzed in this study to be geochemically the same. The slip vector data used 

in conjunction with hanging wall dip analysis, which provides direction of transport 

information (Scott and others, 1994), indicates a slip direction of approximately N75'W 

in the study area, which also agrees with regional stress field analyses (Zoback and 

Zoback, 1980: Arabasz and Julander, 1986). 

The Hurricane fault study area is located approximately 30 km northeast of St 

George, Utah (figure 2). The 92 km2 mapped area straddles the Hurricane fault with the 

relatively flat-lying strata of the Colorado Plateau to the east To the west are the Pine 

Valley Mountains, predominantly composed of a large Cenozoic laccolith, and the deep 

basins and high ranges typical of the Basin and Range province. Two regional scale 

anticlines, the Pintura fold and the Virgin anticline, crop out within the study area; based 

on gravity anomaly data (Cook and Hardman, 1967) and a balanced and restored cross 

section, the anticlines are interpreted to be genetically related, Sevier-age structures. A 

third large fold, the Toquerville fold, is unrelated to the other two folds but may be a 

product of footwall flexure (cf., Buck, 1988; Wernicke and A.xen, 1988). 

Previous studies (e.g., Huntington and Goldthwait, 1904; Dobbin, 1939; 

Gardner, 1941; Cook, 1957; Averitt, 1962; Hamblin, 1965; 1970; Lovejoy, 1964; 

Kurie, 1966; Watson, 1968; Anderson and Mehnert, 1979) provided a basis for this 

study but Jacked the more recent insights and hypotheses on normal fault kinematics 

and fault segmentation theories. Also, the present study employed a larger map scale 

than was previously utilized which furnished detail for the analysis of structures found 

in the hanging wall and footwall of the Hurricane fault to formulate more accurate 

interpretations in light of the new normal faulting theories. 
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Geologic Background 

The geologic history of southwestern Utah includes a time when the area was a 

passive margin, which was followed by a period of regional compression and uplift. 

Tectonic quiescence followed orogenic activity, and the current tectonic regime is 

extensional. A more detailed geologic history of the area follows. 

Southwestern Utah was the site of a passive margin during the late Paleozoic 

and into the Mesozoic. Sedimentary rock formations were deposited dominantly in the 

miogeocline of the passive margin and near the craton margin and record a fluctuating 

sea level but an overall regressive series for the area. The Paleozoic and Mesozoic units 

predate all deformation in the region (Armstrong, 1968). 

During the Cretaceoll~, thrust faults of the Sevier orogenic belt cut the area west 

and northwest of the Hurricane fault and Pine Valley Mountains (figures 1 and 2) 

(Armstrong, 1968; Cowan and Bruhn, 1992). Moderate folding and warping of 

Jurassic and older rocks occurred during this orogeny. Inconsistencies pervade the 

literature concerning the naming of the timing of this folding; some workers in the area 

prefer the term Laramide orogeny (i.e., Gardner, 1941; Kurie, 1966), which took place 

between the late Cretaceous and Middle Eocene, and others prefer the Sevier orogeny, 

occurring between early Cretaceous and Campanian time (i.e., Armstrong, 1968). The 

preferred designation for contractional structures in this discussion is Sevier for several 

reasons. Obviously, overlapping orogenic events may have occurred, but the Laramide 

predominately affected areas north and east of the Colorado Plateau (Dickinson and 

Snyder, 1978) and regional structures in southwestern Utah appear to parallel 

documented Sevier thrust belt frontal structures. Also, the structural style differs 

between the Sevier and the Laramide; the Sevier orogenic belt consists of thin-skinned 

thrust belts, in contrast, the Laramide orogeny resulted in large basement uplifts 

involving reverse to steeply dipping thrust faults. A major regional fold pair, the Virgin 

anticline and the Pine Valley syncline, occurs in the vicinity (figure 1) (E. Cook, 1957; 
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K. Cook and Hardman, 1967; Blank and Kucks, 1989). The Virgin anticline crops out 

within the study area (figures 1 and 3) and is within the hanging wall of the Hunicane 

fault. The folds may be footwall folds related to Sevier thrusting (Armstrong, 1968) or 

related to extension formed during flexure of this block (Buck, 1988; Wernicke and 

Axen, 1988). Footwall folding commonly accompanies extensional deformation 

(Spencer, 1984, 1990; Wernicke and Axen, 1988; Turner and Glazner, 1990; Yin, 

1991) whereas hanging wall flexure may be related to non-planar fault geometry 

(Hamblin, 1965; Gibbs, 1984; Bruhn and others, 1987). 

During the early and into middle Tertiary the study area underwent a period of 

tectonic quiescence (Cook, 1957). Early and middle Tertiary erosion of the thrust belt 

resulted in deposition of sediments of the late Paleocene to Oligocene Claron Formation 

(Gregory, 1951; Mackin, 1960; Bowers, 1972; Goldstrand, 1990; Taylor, 1993). Major 

regional magmatism occurred in the area during the Oligocene and Miocene, with 

volcanism beginning at about 33 Majust north of the Pine Valley Mountains and 

migrating southward in time (e.g., Rowley and others, 1979; Best and Grant, 1987; Best 

and others, 1989). Between -20 and 22 Mathe Pine Valley laccolith and other 

intrusions were emplaced (Armstrong, 1963; Nelson and others, 1992). Extension 

began in the Oligocene north of the Pine Valley Mountains and in the Miocene in the 

vicinity of the Pine Valley Mountains (Gardner, 1941; Cook, 1952; 1957; Mackin; 

1960; Taylor and Bartley, 1992; Axen and others, 1993). Extension continued from the 

Miocene into the Quaternary in the vicinity of the Pine Valley Mountains. 

The age of first motion of the Hunicane fault is unknown. Based on 

stratigraphic and structural relationships some workers suggest an initiation age of 

Miocene (Gardner, 1941; Averitt. 1964; Hamblin, 1970), contemporaneously with 

laccolith emplacement (Cook, 1957). and others suggest Pliocene or Pleistocene for 

some sections of the fault (Anderson and Mehnert, 1979; Anderson and Christenson, 

1989). Anderson and Mehnert (1979) assert that only up to 850 m of total displacement 
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Figure 3. Simplified structure map of the Hurricane fault field area in Utah. 
Cenozoic basalt fields are stippled. The Virgin anticline, the Pintura fold and 
the Toquerville fold are shown. Fault sections are labeled with large, bold A, 
B, C, and Dare referred to in the text. Cross sections A-A' through F-F' are 
shown constructed in figures SA to 8F. 
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occurred along the fault based on the structural level of the top of the Navajo Sandstone 

in the St George basin compared to the same contact on the Colorado Plateau. Near 

Toquerville, Utah, this study documents 450 m (1500 ft) of stratigraphic separation of 

Quaternary (?) basalt and a total stratigraphic separation of up to 2070 m ( 6800 ft). 

Because the Quaternary (?) basalt is offset less than older units, motion on the Hurricane 

fault initiated prior to basaltic volcanism and is likely to have begun as early as Late 

Miocene or Early Pliocene. However, the basalt in this area has not been dated, so rates 

of slip cartoot be defined. 

Although the age of onset of motion along the Hurricane fault is unknown, the 

fault is known to still be active. Recent seismicity on the Hurricane fault indicates that it 

is still active (Arabasz and others, 1992a; 1992b; Pechmann and others, 1992), and my 

new mapping of fault scarps provides evidence of Holocene and Quaternary surface 

motion. 

Field and Instrumental Methods 

Employing standard geologic mapping techniques, a base map scale of 1:12,000 

from enlarged I :24,000 scale U.S. Geological Survey topographic maps was used to 

generate a more detailed database than was currently available. The stratified rocks and 

major structures in the 92 Jan2 (35 mi2) study area were mapped during three months in 

the summer of 1993. 

A total of thirteen Quaternary ('!) basalt samples were analyzed to detennine 

whether lava flows in the footwall of the Hurricane fault were the same as the flow 

rocks in the hanging wall. If these are the same flows, then a slip vector and amount of 

Quaternary offset can be measured because the flows are essentially wide but linear 

features that fonn piercing points. Samples were collected from the footwall and the 

hanging wall of the Hurricane fault in three stratigraphic sections and analyzed for trace 

and major elements (Table 1). The trace and major element analyses were detennined 



by X-ray fluorescence spectrometry by Shirley A. Morikawa at the University of 

Nevada, Las Vegas. Detailed methods are listed in Appendix I. 
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Balanced cross sections were constructed along six different lines perpendicular 

to the strike of the Hunicane fault to analyze for along-strike variation. A discussion of 

the techniques used is in Appendix II. 



CHAPTER 2 

STRATIGRAPHY 

The rocks exposed in the field area are predominately Paleozoic and Mesozoic 

sedimentary units typical of the cratonal section of the Colorado Plateau (figure 4). The 

formations are briefly discussed here. Detailed descriptions can be found in Appendix 

III. 

The oldest unit cropping out in the study area is the Permian dolomite of the 

Pakoon Formation (McNair, 1951) that underlies Permian quartz sandstone of the 

Queantoweap Formation (McNair, 1951). The Toroweap Formation (McKee, 1938) 

overlies the Queantoweap Formation and comprises a lower gypsiferous member, a 

middle limestone member, and an upper gypsiferous member. The Permian Kaibab 

Limestone (Darton, 1910; Reeside and Bassler, 1922; Noble, 1928) conformably 

overlies the Toroweap Formation. 

Lying disconformably above the Kaibab Limestone is the Triassic Moenkopi 

Formation, composed largely of gypsiferous sandy mudstone with intercalated 

limestone beds (Ward, 1901; Reeside and Bassler, 1922; Gregory and Williams, 1947; 

Gregory, 1950). Disconformably above the Moenkopi Formation is the Triassic Chinle 

Formation (Thomas and Taylor, 1946; Gregory, 1950). The basal Shinarump 

conglomerate member of the Chinle Formation is cross-bedded sandstone that contains 

varying amounts of rounded pebbles (Powell, 1873; Gilbert, 1875). Above the 

Shinarump conglomerate, the Chinle Formation consists of alternating beds of 

11 



ROCK !!NITS 

allttvild. dune, colluvL1I, gravel deposits 
alluvial and ICrrace deposits 

~ _.,.----- unconformity ---------
~~~~~~eg~~~~~~m~7~5~m . . "' mtrus1ve contact 

intrusive contact 

Claron Formation-conglomemte, sandy Is; 130-235m 

Cannel Formation-Is; 200m I~~~~~~~~J=~=;;;~ angular unconfonnity 

Navajo Sandstone-cross-bedded quartz ss; 360m 

Chinle Formation-mudstone, siltstone, ss; 420m 

conglomerate-cross-bedded ss, cgl; 50m 
disconjonnity 

Combined Upper Red member-mudstone, 
siltstone, gypswn; 490-610m 

Umestone member-Is, ss, siltstone; 45m 
~~¥;'~~;:,!R~ed~nmember-mudstone, ss; 70-200m 

"" member-sandy Is; 15m 

I~~~~~~~~~~~: disconfonnity --------Kaibab Limestone-Is, some bedded chert; 300m 

Formation-Is unit, two gypswn uniL'; 90m 

Queantoweap Forn1ation-quartz ss; 450m 

Figure 4. Stratigraphic column of rock units in the study area showing relative 
thicknesses of each unit. The Kayenta and Moenave Formations do not crop out in 
the field but are inferred to be present in the cross sections due to local occurrence 
of these units in well logs. Abbreviations: ss = sandstone, Is = limestone, cgl = 
conglomerate 
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sandstone and shale. Although it does not crop out in the study area, the Triassic 

Moenave Formation disconformably overlies the Chinle Formation and is composed of 

alternating sandstone, siltstone and claystone (Harshberger and others. 1957). A 

sandstone unit with some minor conglomerate, the Triassic Kayenta Formation 

(Thomas and Taylor, 1946; Gregory, 1950; Averitt and others. 1955) is not exposed in 

the field area but regionally overlies the Moenave Formation. The Triassic-Jurassic 

Navajo Sandstone overlies the Kayenta Formation and is a very thick bedded cross­

bedded sandstone (Huntington and Goldthwait, 1904; Gregory and Williams, 1947; 

Williams, 1952). Comformably overlying the Navajo Sandstone is the Upper Jurassic 

Carmel Formation that consists of reworked Navajo Sandstone, gypsiferous shales, and 

arenaceous limestone (Gregory and Moore, 1931). In the study area, these Paleozoic 

and Mesozoic rock units have a total thickness of approximately 3230 m ( 10,600 ft). 

Early Paleocene to Oligocene rocks of the Claron Formation were deposited in a 

continental basin formed following the Mesozoic Sevier orogeny and record a change 

from compressional tectonics to Oligocene volcanism and possibly earliest extension in 

the area (Appendix III) (Taylor, 1993). Tertiary igneous rocks in the area include small 

intrusions related to the Pine Valley laccolith (Cook, 1957 and Appendix ill) and 

Quaternary (?) basalt. Intrusions are composed of gray monzodiorite. Four small 

Quaternary age basaltic cinder cones and flows crop out south of the area and one 

volcanic center occurs to the east (figure 2) (Hintze, 1963; Best and Brimhall, 1974; 

Hause! and Nash, 1977; Best and others, 1980; Hintze, 1980). These cones may have 

supplied the basalt that crops out within the study area. The stratigraphy of Quaternary 

(?) basalt flows occurring in both the footwall and the hanging wall of the Hurricane 

fault are an integral part of the study and are treated in detail below. 

Unconsolidated or poorly consolidated sedimentary deposits of Quaternary age 

include older terrace deposits, older alluvium, older stream gravel, younger stream 
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deposits, colluvium and alluvium. Older alluvium, with an unknown age. is faulted in 

three places along the Hurricane fault in the field area. 

Quaternary (?) Extrusive Rocks 

Basalt crops out in the hanging wall and footwall of the Hurricane fault and 

consists of five individual flows each from 3 to 9 m thick. The flows appear to have 

been extruded in a relatively brief time span because no evidence of soil fonnation 

between flows was observed. Surfaces are both pahoehoe and aa. The rocks have not 

been dated, but similar basalt in the vicinity was dated by the KJAr method and falls 

between 0.3 and 1.1 Ma (Best and others, 1980). 

Phenocryst composition in the basalt flows changes upsection. The lowest units 

are olivine-bearing basalt. Olivine crystals are 1-2 mm across, green and glassy. 

Upsection, the middle unit contains 1-4 mm blocky, acicular plagioclase crystals, and 

olivine crystals <1 mm across that commonly have an oxidation ring. The youngest 

basalt flow contains glomerocrysts of olivine 0.3 to I em in size in a matrix of 

plagioclase laths. All t1ow surfaces are shiny black, typically with desert varnish and/or 

lichen. Fresh surfaces are gray-black for all t1ows. The total thickness of the basalt 

section is up to 75 m (250 ft). 

Basalt from three locations was studied in thin section: AC (Ash Creek), T 

(Toquerville), and P (Pintura) (figure 5). For the purpose of correlating flows between 

the different sites two samples were collected at each of the three sites, one from the 

lowest flow and one from the youngest flow. At site Pin the hanging wall of the 

Hurricane fault, the lowermost flow has a trachytic texrure with aligned laths of 

plagioclase and subhedral olivine. There are two populations of plagioclase; xenocrysts 

up to 4 mm in diameter with highly corroded rims and acicular blades in the matrix, less 

than 1 mm in length. Euhedral olivine as long as 1.5 mm are altered to iddingsite and 

Fe-oxide and minor magnetite is present The uppermost flow has a felty texture and is 
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Dip analysis 

of l"!"'j Q (?) basalt 

0 sampling site 

_. \ _. anticline 

Toquerville C 37°15'N 

0 1km 

0 0.5 1 mile 

113°17'30"W 
Figure 5. General location map of basalts in the study area in southwestern Utah. 
Circles indicate where sections were sampled. T=Toquerville, AC=Ash Creek, and 
P=Pintura. The range of possible slip vectors was determined by geochemically 
correlating basalt at T with basalt at AC using the X-ray fluorescence method and 
assuming that the basalt field that AC was collected from is homogeneous. The 
Rose diagram in the upper left comer is a dip analysis of the bedding attitudes of 
basalt in the hanging wall of the Hurricane fault (after Scott and others, 1994). The 
computed mean vector is N84°W and the median is N75°W. The data (n = 20) 
were plotted on an equal area net using R.W. Allmendinger's Stereonet. 
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composed of randomly oriented plagioclase and subhedral olivine. Acicular plagioclase 

crystals are up to 2 mm long. Euhedral olivine crystals up to 1.9 mm long and display 

alteration to iddingsite and Fe-oxide. Magnetite is present in minor amounts. 

At site AC, also in the hanging wall, the lowermost flow is slightly vesicular and 

has a trachytic texture and contains plagioclase and subhedral olivine. Plagioclase 

crystals are up to 0.2 mm across. Olivine crystals are euhedral, up to 3.5 mm long and 

weakly altered to iddingsite. Minor amounts of magnetite are present The upper flow 

at site AC has a trachytic flow fabric, a matrix composed of plagioclase and olivine, 

plagioclase crystals are up to 2 mm long, and olivine crystals as long as 1.1 mm. 

Olivine rims are commonly altered to iddingsite and Fe-oxide. Magnetite is present in 

minor amounts. 

In the footwall at site T, the lowest flow has a semi-trachytic matrix of 

plagioclase and subhedral olivine. No plagioclase phenocrysts were observed. Olivine 

crystals, up to 0.8 mm in length, are highly corroded and altering to iddingsite. The 

rock contains small amounts of magnetite and minor amounts of calcite. The youngest 

flow at site Tis vesicular and has a felty texture with a matrix of plagioclase and olivine. 

Plagioclase phenocrysts are as long as 1.8 mm and olivine phenocrysts are up to 1.2 

mm long with a small amount of alteration to iddingsite and Fe-oxide. Magnetite in 

minor amounts is present. 

From thin section analysis there is no clear correlation of the upper and lower 

flows belonging to sites T, AC, and P. All sampled locations have very similar mineral 

assemblages. Although glomerocrysts of olivine and plagioclase are easily identifiable 

in hand sam pie, none were observed in thin section. 

Trace element composition of basalt is a fmgerprint for determining chemical 

correlations. Therefore, X-ray fluorescence (XRF) was conducted on basalt samples 

collected from two locations in the hanging wall of the Hurricane fault and one location 

from the footwall to establish a chemical stratigraphy (figure 5 and Appendix D. 
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Samples were collected from corresponding stratigraphic intervals at: AC (Ash Creek), 

T (Toquerville), and P (Pintura). Flow structures such as pipe amygdules occur in 

basalt in the footwall (site n indicating that the paleotopography was a valley during 

basalt extrusion. Care was taken to collect samples from the middle of this channel for 

the T sample. The trace element data (Table 1) were plotted versus stratigraphic 

position. The plotted data show striking positive correlations between !lows at different 

outcrops (figures 6 and 7). The lowest !lows at sites AC (in the hanging wall) and T (in 

the footwall) exhibit clear groupings in trace element plots suggesting that they are 

genetically related. The lowest unit at site P (also in hanging wall) is not related to the 

lowest unit at the two southern sampling sites (AC and n. Flows 2 to 5 at all three 

sampling locations appear to correlate. This agrees with mineral modes determined in 

hand specimen. The plot of NbiY (figure 7B), both highly incompatible elements in 

basalt, shows conclusively that !lows two and above are related at all three sampling 

sites and the lowest !low at the T and AC locations is a separate unit. These data agree 

with Watson (1968) who observed that the basalt in the footwall and the hanging wall of 

the Hunicane fault at locations close to AC and T (figure 5) were the same based on 

petrographic analysis. 

Tertiary-Quaternary Deposits 

The Tertiary-Quaternary and Quaternary age sedimentary deposits are discussed 

in detail because three observations of offset in some of these units indicate the relative 

recency of displacement along the Hunicane fault. Additionally, the Quaternary 

deposits of colluvium, older alluvium, and sand dunes pose a hazard to structures and 

persons living in the area. Geologic hazard issues will be discussed in a later section. 
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Figure 6. A shows a plot of Zr in ppm versus stratigraphic position for basalt 
flows collected at sites P, AC, and T which are labeled on figure 5. B is a 
plot for the element Sr and C is for the element Ni. The correlation of Ni is 
indicative of the presence of mafic minerals in constant proportions in flows 
two and above (stratigraphic positions 2 to 5). 
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Figure 7. A shows a plot of the incompatible element Nb in ppm 
versus stratigraphic position for basalt flows at sites P, AC, and T 
which are labelled on figure 5. B is a ratio of incompatible 
elements Nb and Y versus stratigraphic position for basalt flows at 
sites P, AC, and T. 
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Alluvial Deposits 

Unconsolidated alluvial deposits contain well-rounded boulders of monzodiorite 

similar to the Pine Valley laccolith, up to 4 min diameter. as well as cobbles of well­

rounded light gray fossiliferous limestone, chert, bedded yellow and brown quartzite, 

sandstone (Navajo), and clasts of Claron Formation. These deposits lie on top of and in 

cuts into Quaternary (?) basalt This alluvial deposit was called the Mohave Peneplain 

by Huntington and Goldthwait (1904) and has been interpreted to be the result of a 

considerable time period of erosion in the area (Gardner, 1941). The upper surface of 

this unit has a slope direction from west to east and is commonly planar. 

Terrace Deposits 

This unconsolidated deposit is composed largely of well-rounded boulders of 

Tertiary igneous rocks similar to the Pine Valley laccolith and minor amounts of well­

rounded cobbles of Paleozoic-Mesozoic sedimentary and metamorphic rocks of 

unknown provenance. This unit has a relatively planar upper surface and a slope 

direction typically from west to east Terrace deposits always occurs in the vicinity of a 

Tertiary igneous body. 

Gravel 

An unconsolidated to poorly consolidated stream channel deposit along La 

Verkin Creek, east of the Hurricane fault, occurs up to 6 m higher than the active stream 

deposit. The gravel unit contains well-rounded pebbles of limestone and sandstone and 

large boulders of basalt and Shinarump conglomerate. No metamorphic or 

monzodiorite clasts were observed in this unit. This gravel is up to 9 m (30ft) thick. 
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Alluvium (Older) 

This WJit is a basin deposit that accumulated in the resulting depression adjacent 

the Hurricane fault. The alluvium is a red to light red mudstone to fine-grained 

sandstone, the red color is probably derived from weathered red members of the 

Moenkopi Formation. It is loosely compacted near the base. Deposits are up to 15m 

(50 ft) thick and contain parallel laminated bedding. 

Dunes 

Adjacent to many Navajo Sandstone outcrops are orange to red-orange 

vegetation-anchored sand dunes. The dunes range from 15 em to I m high and are 

composed of the weathered quartz sand grains of the Navajo Sandstone. 

Colluvium 

The colluvium predominately comprises broken up basalt talus deposits. The 

mapped colluvium deposits are always associated with basalt flows and are the angular 

debris shed from the basalt. 

Alluvium 

The youngest alluvial deposits include active stream channel deposits and debris 

fall material. Alluvium comprises angular to roWJded clasts of Tertiary igneous rocks, 

basalt, limestone, sandstone, dolomite, and conglomerate. Clasts of Kaibab Limestone, 

Navajo Sandstone, Queantoweap Formation, and Shinarump Conglomerate formations 

were recognized. The clasts range in size from 3 m to 0.5 em in diameter. 



CHAPTER 3 

STRUCTURAL GEOLOGY 

Hurricane Fault Zone 

The Hurricane fault in southwestern Utah and northwestern Arizona is a 250 km 

long nonnal fault (figure 1). The southern part of the fault lies within the transition zone 

between the Basin and Range province and the Colorado Plateau and the northern part 

lies along the eastern boundary of the Basin and Range province. Near the town of 

Toquerville, Utah (figures 2 and 3), the Hurricane fault was found to be: 1) a dip-slip 

fault; 2) a segmented fault; 3) locally a fault zone or locally a single fault strand; and 4) 

an active fault In addition, the fault has a large stratigraphic separation. 

The Hurricane fault has been called a nonnal dip-slip fault (Huntington and 

Goldthwait, 1904; Gardner, 1941; Cook, 1957; Averitt, 1962; Hamblin, 1965; 1970; 

Kurie, 1966), a reverse fault (Lovejoy, 1964), and Moody and Hill (1956) proposed that 

the Hurricane fault had a significant left-slip component along it. The theory that the 

fault is a left-slip fault has again been recently suggested (Anderson and Barnhard, 

1993, fig. 22, p. 39). To detennine the direction of slip across the fault in the 

Quaternary, samples of Quaternary(?) basalt were collected from two locations in the 

hanging wall of the fault and one location in the footwall (figure 5). The x-ray 

fluorescence (XRF) analyses suggest that all the basalt units in the footwall at sampling 

site T, and all basalt units at sampling site AC in the hanging wall, are geochemically the 
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same. Trace element compositions of the lowermost flow at T and AC clearly correlate, 

whereas the lowermost flow at P, which is also in the hanging wall, geochemically does 

not group with T and AC (for example, figures 6-7). Evidence that motion on the 

Hunicane fault after basalt extrusion has been nearly perfect normal dip-slip is provided 

by the fact that the flows at sites T and AC are geochemically the same, are displaced 

nearly parallel to the fault dip direction, and the hanging wall site, AC, was 

downdropped relative to site T (figure 5). The flows at site AC and T were once 

adjacent to each other and now make up a large piercing point for motion on the 

Hunicane fault in the Quaternary. The magnitude of stratigraphic separation of the 

basalt is 450 m (1500 ft) (figure 8C; Plate 2-cross section C-C'). There is no evidence 

supporting a strike-slip sense of motion along the Hunicane fault in this location during 

the Quaternary. 

Normal dip-slip displacement is corroborated by four measured slickenside 

lineations exposed on the Hunicane fault The rakes of these lines of direction of last 

motion, found in four locations in this study, range from 74' to vertical (Plates !A and 

!B). Additional exposures of slickenlines were not observed. In addition, Kurie (1966) 

reported vertical slickenlines on the Hunicane fault near Pintura, Utah. From the P­

wave fust motions focal mechanism of the St. George, Utah, earthquake, that occurred 

on September 2. 1992, on a southern segment of the Hurricane fault, the rake of the 

shock was 89' (figure 9), indicating, as well, dip-slip movement for the fault (Lay and 

others, 1994 ). 

Total stratigraphic separation on the Hunicane fault in the study area ranges 

from 1740 m (5700 ft) to 2070 m (6800 ft). Measurements are constrained by 

downdropped outcrops of Triassic-Jurassic Navajo Sandstone in the hanging wall of the 

fault and projected locations of the Navajo Sandstone in the footwall where it and the 

older units were eroded away based on stratigraphic thicknesses. In the hanging wall, 

Quaternary (?) basalt rests unconformably on Navajo Sandstone and in the footwall the 
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Figure 9. Earthquakes in southwestern Utah since 1850 [modified from 
Christenson and Nava (1992) and Arabasz and others (1992b)]. Normal faults 
shown (ball and bar on downthrown side) are G-GW =Gunlock-Grand Wash 
fault system, W =Washington fault, and H = Hurricane fault. Circles indicate 
instrumental locations for July, 1962, through September, 1992. Squares indicate 
primarily non-instrumental locations for earthquakes that occurred between 1850 
and June, 1962. Epicenter size indicates approximate magnitude of shock. The 
smallest shown shocks are 2.0 and the largest is 6.3. The M5.6 St. George 
earthquake is shown with the P-wave first-motion focal mechanism (Pechmann 
and others, 1992). The average parameters for the quake are: strike, 188° ±10°; 
dip, 46° ±4°; rake, -89° ±14°; depth 15 ±5 km; and seismic moment, 2.2 ±0.6 x 
1Q24 dyne-em (Lay and others, 1994). The June 28·29, 1992, Cedar City swarm 
(Arabasz and others, 1992a) is also shown. The study area is outlined (same area 
as in figure 3) along the Hurricane fault. 
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geochemically identical basalt lies on Pennian Kaibab Limestone. Total nonnal 

stratigraphic separation along the Hurricane fault is shown in cross sections A-A'. B-B' 

and C-C' (figures SA, B, and C; Plate 2). Asswning pure dip slip as indicated above, 

along the A-A' cross section line heave on the fault is 790 m (2600 ft) and throw is 

2130 m (7000 ft), and along the C-C' line the heave of the fault is 240m (800ft) and the 

throw is 1030 m (3400 ft). A southward decrease in stratigraphic separation, heave and 

throw is suggested. 

A minimum of two episodes of nonnal faulting exist along the Hurricane fault 

in this area. One episode faulted Navajo Sandstone against Kaibab Limestone. This 

episode was followed by erosion and then basalt extrusion. The subsequent episode 

displaces that basalt (figure 8C; Plate 2-cross section C-C'). 

The Hurricane fault is a segmented fault. In the study area, this is shown by 

changes in the strike of the fault along its length (figure 3). In the south, the fault strikes 

Nl2'W (near "A" on figure 3). The fault is also a 1.5 km wide zone with several 

separate fault strands at this location. Northward, the fault strikes N37'W (near "B" on 

tigure 3), and further north it strikes Nl3'W (near "C" on figure 3). North of the town 

Toquerville (near "D" on figure 3), the fault changes strike to N2l'E. The trend of the 

line of intersection of the segments at the bend between C and Dis N85'W. In the 

vicinity of the bend in the fault between C and D (figure 3), there is a small scale 

anticline in the basalt (Plate lA and figure 5) with a 1', N72'E trending hinge zone that 

is nonnal to the fault, suggesting a segment boundary and a change in geometry of the 

fault (cf., Schlische, 1993). 

Cropping out between A and B (figure 3) in the footwall of the Hurricane fault is 

a small magnitude thrust fault exposed in Pennian Kaibab Limestone near La Verkin 

Creek (Plate lB and figure 8E; Plate 3-cross section E-E'). This thrust has an attitude of 

approximately N56"W, 5'SW and a stratigraphic separation of up to 5 m. Although 

this thrust fault is cut by minor nonnal faults which have steep dips and strike between 
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NlO'W and N20'W, it occurs in a structurally complex area. The thrust may be related 

to the presence of a restraining bend at a fault segment boundary. This point will be 

discussed further in the following section. 

As previously stated, in the southern part of the study area, the Hurricane fault is 

a zone 1 to U km wide (Plate lB; figure 10). Cross sections E-E' and F-F' (figures 8E 

and F; Plate 3) show the multiple fault strands in this area. In the central and northern 

part of the study area (figure 3), the Hurricane fault is a single surface as shown in cross 

sections A-A', B-B' and C-C' (Plate 2 ; figures 8A, B, and C). 

The Hurricane fault is an active fault as indicated by: 1) offset Quaternary(?) 

basalt; 2) offset Quaternary alluvium; and 3) recent seismic activity, such as the June 

28-29, 1992, earthquake swarm (Arabasz and others, 1992a), the September 2, 1992, 

earthquake (Arabasz and others, 1992b; Pechmann and others, 1992), as well as 

numerous small earthquakes that have occurred in the vicinity of the fault (Christenson 

and Nava, 1992; S. J. Nava, written communication, 1993). In three places along the 

Hurricane fault in the study area, unconsolidated Quaternary gravel or alluvium is offset 

(Plates lA and !B). The largest fault scarp in the alluvium has a scarp slope of 30' and 

a scarp height of 6 m; another scarp has a slope of 15' and a 3 m height. Scarp slopes 

were measured from the angle made by the horizontal surface in the footwall of the 

scarp to the middle of the steep face of the scarp slope (Bucknam and Anderson, 1979). 

At these two scarp sites, slip is apparently normal because down-dropped alluvium 

occurs in the hanging wall block. A third exposure of displaced Quaternary sediments 

is found in gravel in a narrow stream-cut channel near the town of La Verkin where two 

fault strands 3 m occur. There is 3 m of offset is along an 60'W dipping fault surface 

and 1.2 m of offset on a fault surface that dips 73'W. Exactly when fault motion 

created these scarps and offsets is unknown and it is not apparent whether motion was a 

single or multiple events. 
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The Hurricane fault lies within the Intermountain seismic belt (ISB) (Smith and 

Sbar, 1974) (figure 11). The ISB corresponds in part with the location of the transition 

zone between the thin crust of the Basin and Range province and the thicker crust of the 

Colorado Plateau and the Rocky Mountains and contains typical late Quaternary normal 

faults, small magnitude earthquakes with relatively shallow focal depths (15-20 km), 

and common earthquake swarm sequences (Arabasz and Smith, 1981). As is typical of 

seismicity in the ISB, epicenters and known active faults correlate only weakly (figure 

9) (Arabasz and Smith, 1981). 

From July, 1962, to September, 1993, the University of Utah Seismograph 

Stations recorded 776 earthquakes in southwestern Utah. Prior to July, 1962, there 

were 45 noninstrumentally reported earthquakes dating back to 1850. Most of the 

recorded quakes were M2.0 or less (S.J. Nava, written communication, 1993). A 

swarm of more than 60 earthquakes occurred on the Hurricane fault near Cedar City, 

Utah, on June 28-29, 1992, with the largest shock registering M4.1 (Arabasz and 

others, 1992a). This swarm happened within an hour of the Landers, California, M7.3 

quake, which is 490 km to the southwest of Cedar City (Hill and others, 1993). The 

cause of the marked increase in seismic activity after but relatively far from the Landers 

event is believed to be due to dynamic stresses associated with the passage of seismic 

waves and the critical loading of faults in a heterogeneous crust (Hill and others, 1993). 

The September 2, 1992, M5.6 earthquake, the largest temblor felt in Utah and 

surrounding areas since 1975 (Lay and others. 1994), occurred near the town of St. 

George, southwest of this area (figure 9) (Arabasz and others, 1992b). The quake 

occurred at 15 km depth and the surface projection of the west-dipping nodal plane lies 

close to the surface trace of the Hurricane fault which suggests, but is not conclusive 

evidence, that the main shock resulted from buried slip on the Hurricane fault 

(Pechrnann and others, 1992). Also, the focal mechanism solutions indicate normal 

dip-slip for this quake (figure 9) (Lay and others, 1994). 
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Interpretations of Field Data Along the 

Hurricane Fault Zone 
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This section discusses the faulting processes along the Hurricane fault based on 

field evidence. An emphasis is placed on kinematics and structures at fault segment 

boundaries. The fault was mapped for 13 krn along strike, so processes discussed here 

may not be applicable for the entire fault length of over 250 krn. 

Most previous studies of the Hurricane fault have indicated that the fault is a 

nonnal dip-slip fault. Based on slickenlines, the rake of the St. George earthquake, and 

the separation of Quaternary(?) basalt, it is without question that in the Quaternary the 

Hurricane fault is predominantly a dip-slip fault. The four slickenside lineations provide 

evidence of last motion on the fault being nonnal dip-slip. From the first motions focal 

mechanism for the St. George earthquake, the rake of the quake was 89°, which 

indicates the slip on the fault caused by the quake was nonnal dip-slip. The separation 

of the basalt in the footwall, which was sampled in the middle of a paleochannel, relative 

to geochemically identical basalt in the hanging wall is nearly perfect dip-slip. 

The basalt in the footwall at site ''T" was detennined by XRF analysis to be the 

same package of rocks as at site "AC" (figure 5). Basalt samples were not analyzed to 

the south of AC, but if it is assumed that the basalt field that the AC samples were 

collected from is homogeneous, then the slip vector could be between N70"W and 

S 18"W in the Quaternary (?). 

Scott and others (1994) propose a dip analysis method for evaluating fault 

geometry and fault kinematics in the absence of geophysical data or field kinematic 

indicators by using the dip direction of the synrift strata in the hanging wall block of a 

fault Theoretically, if the sense of motion on a fault is purely dip-slip, then the hanging 

wall dip direction will be exactly opposite to the dip of the fault. Therefore, dip analysis 

provides a mean direction of transport (Scott and others, 1992). Emphasizing that dip 

analysis is intended for regional studies, Scott and others (1994) developed the method 
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by using two apparent dips along two intersecting seismic profiles collected in a rift 

basin. A potential drawback with using the dip analysis techrtique in this study is that 

enough data points (n:20) may not have been available to produce a regional transport 

direction. However, locally this method is applicable to the discussion of direction of 

transport Dip analysis is not intended here or used here as a stand-alone technique. 

Bedding attitudes collected from the basalt in the hanging wall of the fault were plotted 

on a Rose diagram for fault motion direction analysis (figure 5). The Rose diagram 

indicates that a large number of basalt dip direction data plot between N70"W and 

N80'W. The median direction of motion of the hanging wall relative to the footwall is 

N75'W and the mean direction of motion is N84'W. In the basalt fields where dip data 

were collected, the fault strikes NI3'W (near "C" on figure 3) and N21 'E (near "D" on 

figure 3), so along these fault strands a mean direction of motion of N75'W would 

further indicate a normal sense of motion on the Hurricane fault in the Quaternary (?). 

Using the vector information interpreted from the offset basalt, from N70'W to 

S18'W, in conjunction with the hanging wall dip data collected on basalt and plotted as a 

Rose diagram (figure 5), all attitudes measured in the basalt field indicate a median 

vector of motion of about N75'W. If N75'W is the direction of motion along the entire 

fault length in this study area, then along the fault near site P, where the fault strikes 

N21 'E, faulting is nearly pure dip-slip, and motion along the fault near sites AC and T, 

where the fault strikes Nl3'W, is also dip-slip but with a small dextral component. 

These data verify that in the Quaternary no significant strike-slip motion occurred. In 

strike-slip scenarios, oblique en echelon folds may form in a narrow zone adjacent the 

fault in the hanging wall (Sylvester, 1988) and none were observed. A N75'W vector 

agrees with stress field data based on earthquake focal mechanisms for the transition 

zone which indicate a S78'E-N78'W ±21' orientation (figure 12) (Zoback and Zoback, 

1980; Arabasz and J ulander, 1986). 
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Previously, no major fault segments nor segment boundaries were documented 

on the Hurricane fault in Utah. Identification of fault segments is critical because fault 

segment boundaries may be the sites of significant amounts of accumulated strain and 

may influence localization of earthquakes (Bruhn and others, 1990). A long (>200 km) 

normal slip fault such as the Hurricane fault will rupture along only some fraction 

(perhaps ::;40 km) of its length during a surface faulting event and it is probable that 

segment boundaries control the location and extent of rupture (Schwartz and 

Coppersmith, 1984). Schwartz and Coppersmith (1984) identified fault segment 

boundaries along the Wasatch fault in central Utah, which is also a large displacement 

normal fault. By trenching and mapping along the Wasatch fault, they used variability 

of offset, timing of faulting events, scarp morphology, and fault geometry to define 

segment boundaries. In the present study, hanging wall and footwall shortening 

structures, scarp morphology, fault geometry, and increased complexity of faulting 

along the Hurricane fault are used as defmitive evidence for the existence of a fault 

segment boundary and two fault segments along the Hurricane fault 

Where a fault surface is nonplanar some internal deformation in the hanging 

wall will occur (Scott and others, 1994). Along a segmented normal fault, anticlines 

that trend normal to the fault strike typically occur at or near fault segment boundaries 

(Schlische, 1993, fig. 11, p. 1038). A fault segment boundary may not necessarily be 

sharply defmed and may be a zone up to a few kilometers in length (cf., Schwartz and 

Coppersmith, 1984). The occurrence of a small scale anticline in the basalt in the 

hanging wall near the bend between C and D (figure 3), which has an axial trend of I', 

N72'E (figure 5), is strong evidence for a fault segment boundary there. The fault 

segment north of this anticline is named the Ash Creek segment and south of the 

anticline the segment is named the Anderson Junction segment (figures 5 and 15). A 

segment boundary at this location is also suggested by the large change in strike of the 
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Figure 12. Map showing the locations of two fault segments. the Ash Creek 
segment and the Anderson Junction segment, along the Hurricane fault (with 
the field area outlined along it). Light weight arrows with ? indicates possible 
segment boundaries. The northem boundary of the Ash Creek segment and 
sou them boundary of the Anderson Junction segment are hypothesized from 
map view geometry (cf., Hintze, 1980). Thick, opposing arrows indicate 
regional stress field direction for the transition zone, N78°W-S78°E,;±;21 ° 
(Zoback and Zoback, 1980; Arabasz and Julander, 1986). Stippled areas in 
study area show basalt fields. Location of figure shown in inset map. 
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Hurricane fault here; along the Anderson Junction segment the fault strikes Nl3'W and 

along the Ash Creek segment the fault strikes N2l'E (figure 12). 

Antithetic and synthetic faults crop out along the Anderson Junction segment 

where the Hurricane fault is a zone as wide as 1.5 km (figures 8E and F; Plate 3-cross 

sections E-E' and F-F). Antithetic faulting in the hanging wall occurs to fill space on a 

non-planar fault just as reverse drag fllls space (Hamblin, 1965; Gibbs, 1984). A slight 

dextral component in slip on this fault segment might explain the complexity in geology 

and faulting in this area as compared to other sections of the field area. This complexity 

might be caused by the slight pushing to the north of the hanging wall block. The fault 

bend between the Ash Creek segment and the Anderson Junction segment (figure 12) 

may essentially be a slight restraining bend where the hanging wall is moving towards 

the bend. 

A restraining bend at the fault segment intersection requires creation of new 

faults and/or a change in the volume of rock. At this restraining bend is a 

nonconservative barrier whereby the multiple fault strands in the southern part of the 

field area accommodate slip along the fault that cannot be taken up solely on the main 

Hurricane fault A nonconservative barrier occurs along segmented faults where the slip 

vector is not parallel to the line created by the intersection of fault segments, effectively 

creating space along the fault (cf., King, 1986). The trend of the line of intersection 

between the Ash Creek segment and the Anderson Junction segment is approximately 

N85'W which roughly parallels the median vector of transport determined from dip 

analysis (N75'W) and lies within the range of vectors determined from offset basalt 

(N70'W to Sl8'W). This approximate parallelism would suggest a conservation of 

space across the fault plane, but field data suggest that there is, at least in part some 

nonconservation of slip. Likewise, the N85'W trend of the line of intersection between 

the fault segments does not parallel the axial trend of the small scale anticline in the 

footwall (1', N72'E), further indicating the existence of a nonconservative barrier. 
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A small thrust fault, which has an attitude of approximately N56'W, 5'SW and 

a stratigraphic separation of up to 5 m, is exposed in Permian Kaibab Limestone in the 

footwall of the Hurricane fault near La Verkin Creek (Plate !B and figure 8E; Plate 3-

cross section E-E'). Although this thrust fault is cut by minor normal faults, it is 

possible that, given the slight dextral component of motion on the fault in this vicinity 

and the northward push of the hanging wall block, this thrust is related to extension. 

The thrust's formation would be caused by compression at a fault segment boundary. 

This small thrust fault exists in the vicinity of a structurally complex area (between "A" 

and "B" on figure 3), although, structures of this nature were not observed elsewhere in 

locations that are equally complex, such as further south. It is also possible, however, 

that the thrust fault is related to a smaller bend in the fault rather than the large strike 

change at the documented segment boundary; the fault strikes N12'W near "A" on 

figure 3 and further north. and north of the thrust, the strike of the fault is N37'W (near 

"B" on figure 3 ). This again suggests that the thrust is related to extension and local 

compression at a fault bend. 

Scarps in Quaternary alluvium are observed at two locations along the Ash 

Creek segment (Plate lA). One scarp has a slope of 15' and is 3m high, the larger 

scarp has a height of 6 m and a slope of 30'. The two scarps along the Ash Creek 

segment were ploned as maximum scarp-slope angle versus scarp height to determine a 

broad approximation of timing of faulting (figure 13). Over time a scarp will degrade 

and its slope will decrease (Nash, 1980). The scarp-slope data points fall between the 

1,000 y.o. Fish Springs scarps regression line and the 15,000 y.o. Bonneville shoreline 

scarps regression line which were determined from previous scarp-slope studies in 

central Utah (Bucknam and Anderson. 1979), suggesting that the timing of faulting 

along the Ash Creek segment can be approximated to within 1,000 and 15,000 years 

ago. Clearly, scarp lay back angles are controlled by multiple variables (Pierce and 
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Figure 13. Plot of maximum scarp-slope angle versus the scarp height for 
two scarps in the alluvium on the Hurricane fault in the field area (indicated 
by circle and cross symbols). The labeled regression Jines are from scarp­
slope data from the approximately 1,000 y.o. Fish Springs scarps. the 
10,000 y.o. Drum Mountains scarps. and the 15.000 y.o. Bonneville 
shoreline scarps, all located in Utah, from Bucknam and Anderson ( 1979). 



Colman, 1986). Such factors as alluvial cementation, slope aspect, vegetation, and 

microclimate were considered to be uniform on Holocene fault scarps in this study. 
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At one location along the Anderson Junction segment, offset in Quaternary 

gravel is exposed in a stream-cut channel near the town of La Verkin (Plate !B). 

Faulting occurred along two fault strands 3 m apart. On the more western strand there 

is 3 m of offset in the gravel and the fault surface dips 60°W, The eastern strand 

displays 1.2 m of displacement and the fault dips 73°W and strikes Nl2°W. This 

exposure does not form scarps so was not plotted in figure 13. The smaller amount of 

stratigraphic separation in the Quaternary sediment along the Anderson Junction 

segment compared to the Ash Creek segment suggests that the two segments have 

differing faulting histories, which is expected along a segmented fault The lack of 

scarps along the Anderson Junction segment suggest the last surface rupture along it 

occurred before that of the Ash Creek segment. 

The fault segments along the Hurricane fault can be further broken up into 

smaller fault sections. Within the field area the Anderson Junction segment (figure 12) 

comprises three fault sections, each with differing strikes (A, B, and C of figure 3). 

Along strike the Anderson Junction segment is not continuously curved, but has 

discrete sections of nearly constant strike. The total length of the Anderson Junction 

segment may be at least 25 km long or at most 49 km long, based largely on map view 

geometry and the major changes in the strike of the Hurricane fault (cf .. Hintze, 1980). 

However, the epicenter of the September 2, 1992, St. George earthquake coincides with 

a large bend in the fault (figure 9), thus making the 25 km segment length more likely. 

Additionally, a 49 km fault segment length for the Anderson Junction segment is longer 

than general maximum segment lengths (cf.,Jackson and White, 1989; DePolo and 

other, 1991). The Ash Creek segment may be as long as 19 km based on the same 

geometric criteria as above. A more detailed database of smaller scale mapping and 

trench studies along the Hurricane fault could help to better identify the fault's other 



major fault segments and boundaries. Additionally, close attention to the bedding 

attitudes in the synrift sediments and basalt will aid in clarifying other segment 

boundaries (cf., Schlische, 1993; Scott and others, 1994). 
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The timing of first motion on the fault is difficult if not impossible to calculate 

with the available data. If it is assumed that the basalt in the field area is from 0.3 to 2 

Ma and has been displaced 450 m, then it is possible considering the total stratigraphic 

separation of up to 2520 m to back calculate an age of faulting to Pleistocene to Late 

Miocene. This, however, is highly conjectural and assumes a constant strain rate. 

The discussion thus far has been confmed predominantly to the utilization of 

attitudes in the Quaternary (?) basalt to address fault kinematics, which only provides a 

relatively short time period of observed motion along the Hurricane fault, the time after 

extrusion of the basalt to the present It is obvious that the fault existed as a normal fault 

before the basalt was erupted because in the footwall, basalt flowed on to Permian rocks 

and in the hanging wall those same flow rocks lie on Triassic· Jurassic strata. No other 

clear kinematic indicators were found for the time period before the lava flows, so the 

sense of motion on the Hurricane fault prior to basalt extrusion is not as simply defined 

as the Quaternary motion. Additionally, no evidence was found for the Hurricane fault 

being a reactivated reverse fault as has been noted along other normal faults in the Basin 

and Range province and the transition zone (e.g., Royse and others, 1975; MacDonald, 

1976; Allmendinger and others, 1983; Villien and Kligfield, 1986). If the Hurricane 

fault was active as a reverse fault, faulting would have occurred during the Sevier 

orogeny in the Cretaceous period. However, no stratigraphic evidence exists in this 

location that may provide a kinematic indicator on the fault for that time. Lastly, there 

are no exposures to support or refute the theory of the Hurricane fault being an even 

older structure, such as Precambrian in age (cf., Huntoon, 1990). 
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Virgin Anticline 

The Virgin anticline is a regional fold (figure 1) that is exposed in Triassic· 

Jurassic Navajo Sandstone within the hanging wall of the Hurricane fault in the study 

area (Plate lA; tigure 10). The fold is exposed for 45 km along strike (Hintze, 1980). 

Hintze (1986) termed this fold the Bloomington-Washington-Harrisburg anticline, 

perhaps because Dobbin ( 1939) notes three domes with those names along strike of the 

fold, but most workers refer to this fold as the Virgin anticline (Dobbin, 1939). Near 

Hurricane, Utah, the Virgin anticline is a beautifully exposed, doubly plunging anticline. 

In the field area, the anticline is upright, gently-plunging, open, and the fold axis 

orientation is 5", S21 ·w (ligures 14, 8B and C; Plate 2-cross sections B-B' and C-C'). 

Beds in the western limb of the Virgin anticline strike from N-S to N50'E and dip from 

w· to 30· to the west. Bedding tlips on the eastern limb of the anticline range from 

lO'E near the hinge to 41 'Eon the limb. The strike of beds on the eastern limb range 

from Nl2'E to N35'E. 

Pintura Fold 

The Pintura fold is an anticline exposed within the footwall of the Hurricane fault 

(Plate lA and figures 3 and 10) with a total along-strike length of approximately 23 km 

(Anderson and Mehnert, 1979). Some workers (i.e., Gregory and Williams, 1947; 

Anderson and Mehnert, 1979) call this anticline the Kanarra fold and others (i.e., 

Gardner, 1941; Neighbor, 1952) refer to the structure as the Pintura fold. From the 

literature the terms "Kanarra" and "Pintura" refer to the same fold and here the term 

Pintura fold is used because of the fold's proximity to the town of Pintura, Utah. 

The fold axis of the Pintura fold is oriented 8', S24'W (figure 14) and Permian 

rocks of the Pakoon, Queantoweap, and Toroweap Fmmations and Kaibah Limestone 

are exposed in the fold (figures 8A and B; Plate 2-cross sections A-A' and B-B'). Beds 

in the western limb of the Pintura fold strike from NlO'E to N42'E and dips range 

from 14'W near the hinge to 75'W close to the Hurricane fault The eastern limb of the 
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fold contains beds that dip from 10' to 41' to the east and strike from Nl2'E to N35'E. 

The Pintura fold is an upright, gently-plunging to horizontal, open anticline. The shape 

of the fold may be distorted as a result of movement on the Hurricane fault; the effect of 

drag would be that beds in the western limb of the Pintura fold dip more steeply now 

than prior to faulting. 

Toquerville Fold 

The Toquerville fold (Lovejoy, 1964) is a gently-plunging upright anticline that 

roughly parallels the strike of the Hurricane fault and lies within the footwall of the fault 

(Plate lA and figures 80 and E; Plate 3-cross sections D-D' and E-E'). The Toquerville 

fold appears to be unrelated to either the Virgin anticline or the Pintura fold. The fold is 

exposed in the Permian Kaibab Limestone and the Triassic Moenkopi Formation. The 

attitude of the fold axis is 8', Sl3'E (figure 14). Bedding dips in the western limb of 

the fold range from 11 'W to 35'W and strikes range from NJO'W to N34'W. The 

beds in the eastern limb strike between N18'W and N52'E and dip from lO'E near the 

axis to 36'E away from the axis. 

Discussion of the Major Folds 

and Age of Folding 

The age of formation of the Virgin anticline is unclear but has been suggested to 

be a result of Laramide-age contraction (Gardner, 1941), Sevier contraction (Armstrong, 

1968; Grant. 1987), emplacement of the Miocene Pine Valley laccolith (Cook, 1952), or 

Cenozoic extension (cf., Buck, 1988; Wertticke and Axen, 1988). The related Pine 

Valley syncline (Dobbin, 1939) exposed to the west of the Virgin anticline (figure 1), 

folds the Tertiary Claron Formation (Cook, 1957), suggesting that folding continued 

into the Tertiary. The shape of the Pine Valley syncline is broader and only roughly 

parallels the Virgin anticline indicating perhaps the occurrence of an overprinting event 
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whereby the inuusion of the Pine Valley laccolith emplaced preferentially or 

coincidentally within the Pine Valley syncline and may have instigated folding of the 

underlying Claron Formation. In the field area. smalllaccolithic intrusions are 

commonly localized at or near the Virgin anticline hinge (Plate lA; figure 10). In the 

Pine Valley Mountains, Cook (1957. fig. 46, pg. 95) mapped Cretaceous rocks 

immediately below the Tertiary Claron Formation with dips greater than the Claron and 

interpreted the Pine Valley syncline to be are-depressed Laramide downwarp. The 

scenario preferred here is that the Pine Valley syncline and the Virgin anticline formed 

during the Sevier orogeny, based in part on parallelism to Sevier-age structures, and 

then the laccolith intruded the Pine Valley syncline and deformed the Tertiary Claron 

Formation. 

The Pintura fold is truncated by the Hurricane fault near a fault segment 

boundary (between C and Don figure 3). This truncation was also noted by Watson 

(1968) and is evidence that the fold is older than the Hurricane fault. Armstrong (1968) 

placed the time of folding of the Pintura fold during the Sevier orogeny, which agrees 

with the overall parallel trend of the fold axis to Sevier structures. 

From Bouger gravity anomaly data gathered along the Hurricane fault (Cook 

and Hardman, 1967-Plate 1), two apparent gravity highs occur on either side of the fault 

corresponding to the Virgin anticline and the Pintura fold. Between these two highs is a 

gravity low that is interpreted here as a syncline (figures 8B; Plate 2-cross sections B­

B'). Figure 15 (Plate 4) is the restoration of cross section B-B' and shows both the 

Pintura fold and the Virgin anticline with a syncline between the two folds. Hamblin 

(1965, fig. 8, p. 1153) mapped a syncline along strike to the south. These two anticlines 

and the syncline, each having approximately similar wavelengths of about 10 km. 

apparently parallel each other for at least 65 km along trend. Also, the two anticlines 

have similarly trending fold axes; the Virgin anticline fold axis has an attitude of 5", 

S21 "Wand the Pintura fold has a fold axis attitude of 8", S24"W (figure 14). Therefore, 
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the folds are here interpreted to be genetically related. If the Pintura fold and the Virgin 

anticline are related anticlines. then the Pintura fold cannot be a monoclinal drape fold 

(cf., Davis, 1978) as is observed north of Cedar City, Utah (Threet, 1963). That fold, 

the Cedar City-Parowan monocline, is interpreted to have formed by Cenozoic normal 

faulting (Threet. 1963). Because the Pintura fold is cut by the Hurricane fault in the field 

area and the Washington fault cuts the Virgin anticline (figure 1) near Washington. Utah 

(Dobbin, 1939; Hamblin, 1970), these folds are both older than the active, extensional 

faulting in the area. Both the Virgin anticline and the Pintura fold generally parallel 

regional structures related to Sevier compression (cf., Armstrong, 1968) and are 

interpreted here to have formed during the early Cretaceous to late Cretaceous Sevier 

orogeny and are not related to extension. 

The Toquerville fold, like the Pintura fold, is within the footwall of the Hurricane 

fault (Plate lA; figure 10) and may have existed previously, but because the axial trends 

of the Toquerville fold and the Pintura fold are not parallel to each other they appear to 

be unrelated genetically (figure 14). The anticlines occur near fault sections with 

different strikes and have fold axes that parallel the strike of the fault, criteria required 

for extension related footwall flexure. One or both of these folds could be caused by 

footwall folding in a breakaway zone (Buck, 1988; Wernicke and Axen, 1988). 

However, as has already been interpreted, the Pintura fold is an older, pre-extensional 

structure. The Toquerville fold could be related to flexure of the footwall due to isostatic 

rebound of the footwall or lithospheric flexure accompanying the initial break of and 

motion along the Hurricane fault. With footwall flexure due to isostatic rebound, 

rotation can occur by motion of vertical footwall shear zones (Wernicke and Axen, 

1988). In lithospheric flexure, nol1!1al faults are affected by anelastic behavior of the 

upper crust and the footwall bends in response (Buck, 1988). The Pintura fold. existing 

prior to faulting, may have been modified by footwall flexure but it is difficult if not 

impossible to determine if this is the case with the available data. The trend of the 
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Toquerville fold axis does not parallel regional Sevier stroctures (cf .. Armstrong, 1968), 

further suggesting it is not a Sevier-age fold. Without further data such as continued 

detailed mapping to the south of this study area, an interpretation of the genesis of the 

Toquerville fold is equivocal. 

Taylor Creek Fault 

A small displacement thrust fault with an average strike of N15'E and a dip of 

30'E crops out east of the Hurricane fault and east of the Hurricane Cliffs (Plate !A). 

This thrust is the southern portion of the Taylor Creek fault (Lovejoy, 1964) and is 

considered a flank thrust to the Pintura fold (Grant, 1987; Noweir, 1990). The Taylor 

Creek fault may have formed in the Late Cretaceous or Early Tertiary during the 

Laramide orogeny (Kurie, 1966), but probably formed during Sevier compression 

because it generally parallels the trend of regional Sevier stroctures, such as the Pintura 

fold (8', S24'W) and the Virgin anticline (5', S21 'W) (cf., Armstrong, 1968). In the 

study area, the Taylor Creek fault has a maximum displacement of 15 m (50ft) (figures 

SA, B, and C; Plate 2-cross sections A-A', B-B', and C-C'). Farther north near Zion 

National Park, the Taylor Creek thrust fault has more than 600 m (2000 ft) of vertical 

and 760 m (2500 ft) of horizontal displacement (Kurie, 1966). 



CHAPTER 4 

RELATIONSHIP OF THE HURRICANE FAULT 

TO NEARBY STRUCTURES 

In southwestern Utah, two large displacement nonnal faults are exposed that 

accommodated Quaternary extension in the transition zone; the Hurricane fault and the 

Gunlock-Grand Wash fault system (figure 1). A third fault with less stratigraphic 

separation, the Washington fault, also lies in the transition zone. Because these faults 

have been active at about same time, have similar geometries and have similar amounts 

of offset, it is possible that these faults fonn a displacement transfer zone. A transfer 

zone is the overlapped ends of faults in which decreasing slip on one fault is 

compensated by increasing slip on the other (Dahlstrom, 1969). The transfer zone may 

fonn by a relay ramp structure (Larsen, 1988). By definition, a relay ramp requires that 

the two en echelon faults are connected at depth. This transfer zone may be the reason 

for the relatively wide width of the transition zone in this region (figure 16). For 

example, in southwestern Utah the transition zone is 130 km wide, however, in central 

Utah the transition zone is less than 1 km wide along the Wasatch fault. The Wasatch 

fault is a large displacement, active nonnal fault, similar to the Hurricane fault, but there 

is no paired, parallel nonnal fault near the Wasatch fault (e.g., Gilbert, 1928; Schwartz 

and Coppersmith, 1984; Arabasz and Julander, 1986; Bruhn and others, 1987). 

Consequently, adjacent to the Wasatch fault there is no displacement transfer zone and 

the transition zone is much narrower. 
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Figure 16. Schematic block diagram describing the displacement transfer 
zone relationship between the Gunlock-Grand Wash fault system, the 
Washington fault, and the Hurricane fault. Displacement dies out at the tip 
line of the Gunlock fault as displacement increases on the Hurricane fault, 50 
km to the east. This relationship could be generating the relatively wide width 
of the Transition Zone in this region. The Basin and Range province is to the 
west of the Gunlock-Grand Wash fault and the Colorado Plateau is to the east 
of the Hurricane fault. Diagram is not to scale. 
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The Hurricane fault increases stratigraphic separation from south to north 

(Gardner, 1941). Near the south end of the fault (near "Z" on figure 1), there is less 

than 61 m of stratigraphic separation (Hamblin, 1970). At the Grand Canyon (near "Y" 

on tigure 1) 450 m of stratigraphic separation was measured (Hamblin, 1970). Near the 

town of Toquerville, Utah, I documented 2070 m of total stratigraphic separation 

(figures 8A and B; Plate 2-cross sections A-A' and B-B'). Along its length the 

Hurricane fault displaces Quaternary basalt in at least seven locations (Gardner, 1952). 

In this study, 450 m of down-to-the-west stratigraphic separation of Quaternary basalt 

was mapped (Plate !A; figure 10). 

The Gunlock-Grand Wash fault system lies 50 km to the west of the Hurricane 

fault (figure 1) and is a large, 160 km long, down-to-the-west normal fault system 

(Moore, 1972). The Grand Wash fault was termed the Cedar Pocket Canyon fault in 

Utah by Dobbin (1939), but recent literature refers to the fault as the Grand Wash fault 

and that designation is used here. Stratigraphic separation on the Gunlock-Grand Wash 

fault system increases from north to south, opposite that of the Hurricane fault (Dobbin, 

1939). South of Gunlock, Utah (figure 1), approximately 150m of stratigraphic 

separation is documented (Anderson and Barnhard, 1993). Hamblin (1970) measured 

450 m of stratigraphic separation near the Utah-Arizona state line. Lucchitta (1966) 

reported up to 4800 m of stratigraphic separation near the mouth of the Grand Canyon 

(near "V" on figure 1). This system, like the Hurricane fault, locally displaces 

Quaternary basalt (Anderson and Christenson, 1989). There are fourteen mapped 

scarps in alluvium along the Grand Wash fault (Pearthree and others. 1983). A reverse 

fault called the Reef Reservoir fault (Hintze, 1986) lies along strike between the Gunlock 

fault and the Grand Wash fault (figure !); this fault was previously named the Shebit 

fault (Dobbin, 1939), but the name Reef Reservoir is the more recently used, name and 

is used here. Because of reverse slip along this up-on-the-west fault, Hintze (1986) 

suggested this structure is Laramide in age. Anderson and Barnhard (1993) 
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Figure 17. Unit and pattern explanation and scale for regional cross 
sections (following page) for lines a-a', b-b', and c-c' of figure 1. Major 
labeled faults are H =Hurricane, W =Washington, G =Gunlock, RR = 
Reef Reservoir, and GW =Grand Wash; labeled folds are Ss = 
Shivwitz syncline, PVs =Pine Valley syncline, Va =Virgin anticline, 
Tf = Toquerville fold. The surface geology and stratigraphic unit 
thicknesses are from Hintze (1980), scale 1:500,000. Mapping from 
the present study was incorporated into the structural geology along 
a-a' and consistency of structures was drawn along strike of the 
Hurriance fault Regional structures were inferred from geophysical 
data of Cook and Hardman ( 1967). Question marks are drawn where 
the kinematics of the detachment fault are questioned. Other data that 
would be useful for defining the at-depth geometries of these faults 
would include more accurate earthquake location data, deep seismic 
profiles, and/or well data. 
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contend that because of the coincident strikes of the Gunlock. Reef Reservoir. and 

Grand Wash faults the faults are genetically related. They cite regional sinistral faulting 

in the Neogene as a factor for the opposing dip direction on the Reef Reservoir fault. 

The reverse polarity of dips in this fault system may be caused by linkage of sinusoidal 

border faults along a rift boundary creating an accommodation zone between the ends of 

the Grand Wash fault and the Gunlock fault (cf., Rosendahl and others, 1986, fig. 4, p. 

33). The genetic relationship of the Reef Reservoir fault to the Gunlock-Grand Wash 

fault system is beyond the scope of this project and is not critical to the discussion of 

displacement transfer and so will not be considered further. 

The Washington fault lies between the Hurricane fault and the Gunlock-Grand 

Wash fault system, about 20 km west of the Hurricane fault. It is exposed for 58 km 

along strike from Utah into Arizona (figure 1). Like the Gunlock-Grand Wash fault 

system, the Washington fault is a normal fault that dips to the west and increases 

stratigraphic separation from north to south (Dobbin, 1939). Petersen (1983) mapped 

660 m of stratigraphic separation 6 km south of the Utah-Arizona state line (near "X" 

on figure l) and observed normal displacement of Quaternary alluvium. In northern 

Arizona, the last motion on the Washington fault was less than 20,000-150,000 years 

ago, but a unit 5,000 years old is not offset (Menges and Pearthree, 1983). These data 

suggest that the Washington fault may have moved concurrently with the Hurricane 

fault and the Gunlock-Grand Wash fault system. 

Seismic activity has been documented on all three faults, although the Hurricane 

fault has had the larger magnitude and more frequent earthquakes (figure 9). Rare 

seismicity has been documented along the Gunlock-Grand Wash system (i.e., Pearthree 

and others, 1983. fig. 2; Brumbaugh, 1990, fig .1, p. 436). A lack of earthquake data 

does not necessarily preclude a lack of activity because seismic monitoring stations are 

sparsely located throughout the transition zone in southwestern Utah and northwestern 

Arizona, with only five stations located within the area of figure I (Smith and Arabasz, 
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1991, fig. 8B, p. 196). This deficiency of stations greatly hinders thorough and accurate 

data collection and given that the majority of seismicity in the ISB is :> M2.0. many 

shocks probably go unobserved (Arabasz and Smith, 1981). However, recorded 

quakes scattered throughout southwestern Utah suggests that the Gunlock-Grand Wash 

fault system and the Hurricane fault are active. 

Interpretations or the Relationship 

to Nearby Faults 

The hypothesis that the Hurricane fault and the Gunlock-Grand Wash fault 

system are kinematically and structurally linked was discussed by Moore (1958) and is 

re-analyzed here. These two subparallel fault systems are of similar age. Stratigraphic 

separation increases in opposite directions suggesting that there may be displacement 

transfer between the Hurricane fault and the Gunlock-Grand Wash fault system (figure 

16). Because the Gunlock-Grand Wash fault system and the Washington fault increase 

stratigraphic separation in the same direction and because the Washington fault has a 

smaller stratigraphic separation the discussion of the displacement transfer zone will be 

simplified by focusing on the Hurricane fault and the Gunlock-Grand Wash fault 

system. 

In a displacement transfer zone, extension is accommodated across strike of two 

or more large en echelon faults. In addition. slip on one fault dies out at a tip line and is 

translated or transferred to increasing slip on another fault. These faults must be active 

concurrently. A relay ramp structure may be accommodating extension in the transfer 

zone, and if so, extension is transferred between the Hurricane fault and the Gunlock­

Grand Wash fault system by movement along a subhorizontal fault or ductile s.hear 

zone at depth (Larsen, 1988). Along the Hurricane fault, the Gunlock-Grand Wash fault 

system and the Washington fault, Quaternary basalt are offset suggesting that all of 

these faults systems have been active in the Quaternary. Because the faults have been 
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active in the Quaternary and remain active (figure 9) a transfer zone is chronologically 

possible. 

A transfer zone may explain the relatively wide width of the transition zone in 

southwestern Utah. For instance, the Gunlock-Grand Wash fault system marks the 

eastern boundary of the Basin and Range province (figure 1), but at the tip line of this 

fault system, in the north, the boundary of the Basin and Range province makes a step­

over to the Hurricane fault (figure 16), where stratigraphic separation on the fault is 

relatively increasing. Normal fault interactions between the en echelon Gunlock-Grand 

Wash fault system and the Hurricane fault accommodate extension and are probably 

generating the width of the transition zone in southwestern Utah and northwestern 

Arizona compared with the transition zone further north in central Utah along the 

Wasatch fault The Wasatch fault has no en echelon fault and there the transition zone is 

only I km wide. 

Across strike of the Hurricane fault, the Gunlock-Grand Wash fault, and the 

Washington fault the sums of stratigraphic separation are not equal. However, the 

difference could be due to a number of intervening smaller structures, such as mapped 

faults that were not included in the calculation, unexposed faults or extension-related 

compressional structures. The significance of these smaller faults can be observed in 

the regional cross sections (figure 17). 

To test whether the Hurricane, Washington, and Gunlock-Grand Wash faults 

represent a linked fault system, a series of three balanced cross sections were 

constructed across the Hurricane fault, the Washington fault, and the Gunlock-Grand 

Wash fault system (figure 17) using the geologic map of Utah by Hintze (1980). The 

section lines were drawn normal to the strikes of the major faults. The cross section 

were drawn using the balanced cross section techniques of Gibbs (1983), and assuming 

that the three faults in question are hard linked by a subhorizontal detachment The 

hypothesized depth to the detachment is drawn at approximately 15 km. This depth is 
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based on typical deep earthquakes that occur in the Intennountain seismic belt. which 

are between 15 to 20 krn (Arabasz and Smith, 1981), as well as on the epicenter depth 

of the September 2, 1992, St. George earthquake, which occurred at 15 krn (Arabasz 

and others, 1992b; Pechmann and others. 1992). The curvature of the Hurricane fault at 

depth is interpretive. However, the epicenter for the St. George quake was 

approximately 16 krn west of the Hurricane fault, thus if the quake occurred on the 

Hurricane fault, the fault must be curved. Curvature on theW ashington fault and the 

Gunlock-Grand Wash fault system is also interpretative and has been drawn to mimic 

that of the Hurricane fault. Clearly, other scenarios may be possible for the faults at 

depth. A detachment fault is not necessary for the existence of a transfer zone by the 

Dahlstrom (1969) definition. However, if a detachment fault does link the Gunlock­

Grand Wash and the Hurricane faults, then the detachment would probably have to 

continue to the west, as shown on the cross sections (figure 17), to be volumetrically 

feasible. Alternatively, the faults may die out downward and mechanical and geometric 

continuity is accomplished through internal strain of the block between the faults. 

On the basis of: 1) the series of regional cross sections (figure 17); 2) the reverse 

symmetry of stratigraphic separation on the Hurricane fault and the Gunlock-Grand 

Wash fault; 3) the similar timing of faulting along all faults including stratigraphic 

separation of Quaternary basalt; and 4) recent earthquake activity, a displacement 

transfer zone accommodated by a relay ramp is a reasonable hypothesis in southwestern 

Utah. This structural link between the Gunlock-Grand Wash fault, the Washington 

fault, and Hurricane fault is very likely generating the wide width of the transition zone 

in this region relative to other parts of the transition zone. 



CHAPTER 5 

GEOLOGIC HAZARDS 

Southwestern Utah experienced rapid population growth over the past decade 

which increased urban and rural development in a geologically hazardous area. The 

study area is located between the cities of St. George (population 32,700) and Cedar 

City (population 13,443) as well as several small towns (combined population 6757) 

(figure 3). This section focuses on the general geologic hazards expected in 

southwestern Utah and specifically on hazards near the towns of La Verkin and 

Toquerville. These hazards include, but are not limited to, earthquakes, landslides and 

rock falls, poor soil conditions, and active sand dunes. 

Earthquakes and Other Seismically· 

induced Hazards 

The Gunlock fault, the Washington fault, and the Hurricane fault are major, 

active, normal faults that lie within the Intermountain seismic belt (ISB) in southwestern 

Utah (figure II), a belt of recent seismicity that poses the greatest seismic risk in 

southwestern Utah (Christenson and Nava, 1992). Because the ISB is an extensive 

zone of pronounced intraplate earthquake activity (Smith and Sbar, 1974), earthquake 

hazards in the area include ground shaking, surface rupture, liquefaction, and rock falls 

(Christenson, 1992). 
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Although most of the seismic activity in the ISB in southwestern Utah has been 

M2.0 or less (S.J. Nava. written communication, 1993), a few shocks of greater 

magnitude have been recorded. Most notably, a M6.0 occurred in the Pine Valley 

Mountains in 1902 (Arabasz and Smith, 1981) and a M5.6 quake occurred on 

September 2, 1992, east of St. George, Utah (Arabasz and others, 1992b). In fact, 

based on previous late Quaternary scarp-forming earthquakes, the occurrence of a 

M;:: 7.0 earthquake is reasonably likely on one of these faults (Arabasz and Smith, 

1981 ). In the event of a M6.0 earthquake, which has an estimated recurrence interval of 

200-300 years in the ISB, an estimated one foot of surface offset could occur across any 

of these faults (Christenson, 1992). Additionally, the tectonic stress patterns of the ISB 

tend to produce earthquake swarms (Arabasz and Smith, 1981). One such swarm of 

over 60 shocks occurred on the Hurricane fault on June 28-29, 1992, near Cedar City, 

with the largest temblor measuring M4.1 (Arabasz and others, 1992a). Many of these 

smaJI quakes were felt by people living in the area. 

Along strike, the Hurricane fault is a segmented fault. When an earthquake and 

surface rupture occurs on a long normal fault, such as the Hurricane fault, the fault will 

rupture for some fraction of its length (Schwartz and Coppersmith, 1984). Commonly, 

this limited surface rupture distance is related to fault segment barriers and boundaries; 

segment boundaries will act as a barrier to rupture propagation in the event of an 

earthquake and may be the site of accumulated strain (Bruhn and others, 1987). Within 

the study area, there is one fault segment boundary and two fault segments (figure 12) 

indicating that surface rupture is possible along the Hurricane fault in the study area. 

Although historic surface offsets on the Gunlock, Washington. or Hurricane 

faults have not been documented, there is abundant evidence for surface rupture during 

the Quaternary on each fault (Christenson, 1992). In this study, three scarps or offset in 

Quaternary sediments are documented. Along the northern fault segment there are two 

scarps in alluvium (Plate lA). the largest is 6 min height, has a scarp slope of 30', and 
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has a broad potential age of surface offset of between 1,000 years and 15,000 years 

(figure 13). A third offset in Quaternary gravel is located on the southern fault segment 

and has a maximum of 3m of separation (Plate !B). Following the characteristic 

earthquake model of Schwartz and Coppersmith (1984) which suggests that a fault will 

have typical or characteristic magnitude events or amounts of slip, the two fault 

segments appear to have separate faulting histories and it can be expected that similar 

rupture events along these discrete segments will recur. 

Liquefaction, the loss of soil bearing strength in poorly graded sands and silts, 

will result from ground shaking in areas with a shallow water table. Such a shallow 

water table (less than 3 m) is found in unconsolidated deposits along stream flood plains 

in southwestern Utah (Christenson, 1992). Although liquefaction susceptibility for 

southwestern Utah has not been quantified locally, it is a potential hazard on flood plains 

and adjacent lowlands (Christenson and Nava, 1992). Ash Creek lies north and west of 

Toquerville and the creek channel is 450 m wide. The water table is probably relatively 

close to the surface, which poses a site for high liquefaction potential. Near La Verkin 

the confluence of La Verkin Creek with Ash Creek widens the flood plain to 1200 m. 

Highway 17 and at least 15 homes are constructed near this creek confluence (Plate !B) 

and those structures could be adversely effected in the event of ground shaking and 

liquefaction. Damage to Highway 17, one of two main roads leading into Zion National 

Park from the west, could decrease park visitation as well as inconvenience or strand 

local residents. 

Landslides and Rock Falls 

Slope-failure or landslides are a common geologic hazard in southwestern Utah 

(Harty, 1991). Landslides, driven by gravity, commonly result from heavy 

precipitation. earthquakes, or over-irrigation. In arid southwestern Utah, rain-induced 

landslides are not common. but in urban areas, over· watering of lawns that are on hill 



tops and that are Wlderlain by clay-rich material can induce slope-failure. As 

urbanization increases in areas such as St. George, development on hill slopes will 

continue (Harty, 1991; 1992). 
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The geologic Wlit most prone to landsliding in the region is the clay-rich Chinle 

Formation (Harty, 1992), which crops out extensively near St. George (Hintze, 1980) 

but occurs sparsely in the study area. Rock slides, however, occur in the area; there are 

two talus slides mapped by Harty (1991) near the town of Toquerville as well as a pair 

of small, deep-seated landslides near La Verkin. 

Earthquakes commonly trigger landslides. For instance, the 1992 M5.6 St. 

George earthquake caused a massive, destructive, landslide near Springdale, Utah, that 

blocked the highway into Zion National Park, 60 km northeast of the epicenter (Arabasz 

and others, l992b). In this seismically active area, earthquakes near mesas that are 

capped by resistant rock, such as the Shinarump conglomerate or basalt, can trigger 

major rock falls (Christenson, 1992). 

Eight colluvial rock falls that consist primarily of basalt boulders are labeled Qc 

on Plates lA and lB of this study. Toquerville Hill contains I km2 of rock fall material 

that lies in the town of Toquerville where a number of homes are built and more are 

down slope of a potential fall. Highway 17 is built along the base of Toquerville Hill 

and could be blocked by a boulder landslide. Areas that may experience rock falls in the 

future would include the base of the Hurricane Cliffs near Toquerville due to loosening 

of basalt material at the top of the cliffs, and near Toquerville Hill, where previous falls 

have occurred. 

Soil Conditions 

In southwestern Utah, a number of hazards exist arising from soil conditions. 

These problem soils include: l) expansive and collapsible soil caused by swelling clays; 
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2) gypsum and gypsiferous soils prone to dissolution and chemical attack of concrete; 

and 3) limestone susceptible to karst or solution collapse (Mulvey, 1992). 

Foundation problems caused by poor soil conditions exist in southwestern Utah 

where structures have been built directly on the Chinle or Moenkopi formations. These 

fmc-grained, clay-rich, units typically produce an overlying expansive soil (Christenson, 

1992). Calcareous formations such as the Kaibab Limestone and the Pakoon Dolomite 

are also common throughout southwestern Utah and increase the likelihood of sinkholes 

or karst collapse locally (Mulvey, 1992). 

In the study area, gypsiferous and expartsive soils may cause problems near the 

town of La Verkin, east of Highway 17, where at least 2 km2 of a Quaternary sediment 

(labeled Qa2 on Plate !B) is derived from erosion of the Moenkopi Formation. This 

deposit is in some locations 20m thick. Expansive clays occur in the Moenkopi 

Formation (Averitt, 1962) and the formation is prone to piping, or localized subsurface 

erosion (Christenson, 1992). Because Qa2 is composed of fine-grained, clay-rich, 

gypsiferous soil, the mapped area is probably highly susceptible to sink holes and/or 

foundation instability. A thorough, quantitative soil-foundation investigation will be 

required to measure the extent of this hazard. At the close of the field season in 1993 

grading had begun for future development of this area near La Verkin. Many trailer 

parks and camp grounds already exist in the area because of the close proximity to Zion 

National Park. 

Sand Dunes 

In this study, dune fields (labeled Qd on Plate lA) comprise over 7.5 km2 and 

are located near Toquerville and east and west of Interstate 15. These dune fields are 

typically stabilized with vegetation and are inactive. Some hazards arising from 

urbanization in or near sand dune fields include the likely reactivation of the dune field 

due to removal of, or damage to, vegetation. This increases wind blown sand and 



allows sand dune migration over roads and into irrigation channels. Another hazard 

associated with dune fields is the probable contamination of ground water from the 

disposal of wastewater into the highly permeable material (cf., Mulvey, 1992). 
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CHAP1ER 6 

CONCLUSIONS 

The Hurricane fault in southwestern Utah, near the town of Toquerville (figure 

3), is an active high-angle nonnal fault Nonnal faulting fonned up to 2070 m of 

stratigraphic separation prior to extrusion of Quaternary (?) basalt Following basaltic 

volcanism, there was an additional450 m of stratigraphic separation for a total 

stratigraphic separation of 2520 m. Unconsolidated Holocene gravels were displaced up 

to 6 m. From measurement of displaced basalt (figure 8C; Plate 2-cross section C-C'), 

slickenlines, and basalt dip analysis (figure 5), the relative motion for the northern 

portion of the fault in the field area, named the Ash Creek fault segment, is nearly 

perfect dip-slip. The relative motion in the southern section, tenned the Anderson 

Junction segment, is dominantly dip-slip but has a slight dextral component to it. 

Between the Ash Creek and Anderson Junction fault segments, a small scale 

anticline crops out in the hanging wall. This anticline trends nonnal to the fault and 

suggests a segment boundary in the vicinity of a large change in fault strike (Schlische, 

1993). This segment boundary is a nonconservative barrier and faulting in the hanging 

wall may be accommodating slip along the fault (cf., King, 1986). The Anderson 

Junction segment has three fault sections within the field area (figure 3), although there 

may be more along strike. The Ash Creek segment is probably 19 krn long and the 

Anderson Junction segment is at least 25 krn long (figure 12). 
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The Hurricane fault may form a displacement transfer wne with the Gunlock­

Grand Wash fault and the Washington fault (figure 16). The Hurricane fault increases 

stratigraphic separation from south to north while the Gunlock-Grand Wash fault, 50 

km to the west, increases stratigraphic separation from north to south. This 

information, along with the similarity of the fault ages, and recent seismic activity on 

both faults, suggests that a displacement transfer exists between the two faults. 

Balanced cross sections constructed perpendicular to the strikes of these faull<> suggest 

that a displacement transfer zone is possible with the depth to the detachment at 

approximately 15 km (figure 17). The transfer zone probably generates the 40+ km 

width of the transition zone in this region (figure 1 ). 

Two large scale anticlines, the Virgin anticline and the Pintura fold, crop out in 

the study area. The Virgin anticline is cut by the Washington fault and the Pintura fold 

is truncated by the Hurricane fault. Based on these cross cutting relationships, the 

restored cross section along B-B' (figure 15; Plate 4), and Bouger gravity evidence for 

the existence of a syncline paralleling and between the Virgin anticline and the Pintura 

fold (Cook and Hardman, 1967), these folds are interpreted to be genetically related to 

each other and are older than extensional faults. Because the anticlines parallel nearby 

Sevier-age structures they are interpreted to be Sevier-related folds. It may be possible 

that the Virgin anticline, the Pintura fold, and the regionally related Pine Valley syncline, 

are compressional structures and that the Pine Valley syncline was reactivated by 

emplacement of the Pine Valley laccolith. 

Another large fold in the area, the Toquerville fold, has a fold axis trend that 

does not parallel either the Virgin anticline or the Pintura fold (figure 14). The 

Toquerville fold is probably unrelated to those two folds, and consequently, may not be 

related to Sevier contraction. Where this fold crops out, the fold axial trend parallels the 

strike of the Hurricane fault along the Anderson Junction segment. The Toquerville fold 

may be caused by isostatic uplift of the footwall created by normal fault motion. 
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However, the fold does not appear to trend the length of the fault segment, so footwall 

flexure may on! y in part explain this footwall anticline. 

Southwestern Utah contains several small but growing urban centers. With 

increased encroachment and development upon geclogically unstable areas, such as hard 

rock capped mesas, flood plains, and regions that have previously experienced land 

slides, major damage to property and structures can be expected. Earthquakes 

commonly occur in the area and large earthquakes will trigger hazards which include 

liquefaction, ground shaking, surface rupture, and rock falls. Other geologic hazards to 

be expected include problems presented by poor soil conditions and migrating sand 

dunes. 



APPENDIX I 

XRF LABORATORY METIIODS 

The following analytical methods are modified from Morikawa (1993). These 

are the standard methods employed at the University of Nevada, Las Vegas. 

Approximately 1-1.5 kg of fresh, unweathered sample were collected for each 

analysis. Samples were initially pulverized to <100 mesh in a Dyna Mill Supercollider 

air suspended impact attrition mill. A geochemical split (approximately 300 ml in 

volume) was separated from each pulverized sample and powdered to <200 mesh using 

a Pulverisette automated agate mortar and pestle. 

Samples were processed into fused glass disks for major element analysis by 

heating 1.0 g sample, 9.0 g lithium tetraborate, and 0.16 g ammonium nitrate to !lOOT 

in gold-platinum crucibles and pouring the resultant melt into heated Au-Pt molds 

(Noorish and Hutton, 1969; Mills, 1991). Samples for trace element analysis were 

prepared by mixing 2.5 g sample with 0.5 g methyl cellulose, enclosing this mixture 

with a rim and backing of additional methyl cellulose, and compressing to 10,000 psi in 

a Buehler specimen mount press to form a disk (Hutchison, 1974). All samples and 

reagents were weighted to ± 0.0002 g. All prepared samples were stored in dessicators 

prior to analysis. 

X-ray fluorescence analyses of major and trace elements were completed using 

the Rigaku 3030 X-ray fluorescence Spectrometer at the University of Nevada, Las 

Vegas. 
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sample# P-0-93 P-1-93 P-2-93 P-3--93 P-4·93 AC-1-93 AC-2-93 AC-3-93 T-1-93 T-2-93 T-3·93 T-4-93 T-5·93 BIR-1 

WT% 
Si02 
li02 
Al203 
Fe203 
MlO 
MgO 
CaO 
Na20 
1<20 
P205 

49.5 51.8 51.2 51.7 
1.6 1.5 1.5 1.5 

16.6 16.2 15.2 16.0 
10.7 9.9 9.9 9.8 
0.1 0.1 0.1 0.1 
6.2 5.5 5.6 5.5 

10.4 9.1 9.3 9.3 
2.7 2.8 2. 7 2.8 
0.7 1.0 0.9 1.1 
0.3 0.3 0.3 0.3 

51.7 
1.6 

16.2 
10.4 

0.1 
6.5 
9.1 
3.4 
1.1 
0.3 

50.2 
1.9 

16.1 
10.0 

0.2 
8.2 
8.1 
3.8 
1.4 
0.5 

50.4 
1.9 

15.8 
12.0 
0.2 
6.3 
9.7 
3.4 
0.9 
0.3 

Precision Accuracy 

50.4 49.5 51.3 50.5 48.9 48.9 0.32 0.06 
1.6 2.0 1.6 1.7 1.8 1.6 0.84 1.04 

16.1 15.8 16.2 16.1 15.8 16.3 0.54 2.40 
11.3 10.6 11.2 11.3 12.6 12.0 0.47 0.26 
0.2 0.2 0.2 0.2 0.2 0.2 2.91 3.89 
6.7 8.0 6.6 6.6 7.4 7.4 • 1.82 • 2.99 
9.5 8.4 9.4 9.7 10.1 10.1 2.86 2.12 
3.3 3.5 3.4 3.4 3.2 3.1 1.36 1.90 
0.9 1.4 1.0 0.9 0.7 0.6 0.22 0.59 
0.3 0.5 0.3 0.3 0.3 0.3 • 2.50 • 15.18 

Total wt.% 98.6 98.2 96.8 98.1 100.3 100.3 100.7 100.3 99.9 101.3 100.6 100.8 100.5 

ppm 
R> 
8a 
Nb 
Sr 
ZI 
y 

Cr 
Ni 

10.0 
395 
9.9 
436 
162 

21.9 
214 
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18.0 11.9 19.8 
644 758 635 
10.1 10.9 12.3 
54 7 545 534 
206 210 212 

21.9 22.4 22.9 
227 334 370 

72 73 70 

20.3 
745 

10.3 
539 
215 

23.1 
259 

63 

16.9 
519 

23.6 
703 
263 

22.2 
93 

162 

18.6 
444 
11.9 
453 
188 

22.8 
148 
55 

BHV0-1 
Precision Accuracy 

18.5 17.3 18.8 17.3 13.3 8.7 2.04 2.42 
551 538 546 540 427 384 7.34 78.96 
10.3 24.3 9.4 11.6 10.0 9.0 8.22 19.62 
505 715 515 508 473 439 0.66 3.96 
187 272 193 192 177 162 1.82 1.71 

22.6 21.8 22.4 21.8 22.1 21.1 1.53 21.27 
185 217 295 193 208 146 5.65 5.33 

64 175 56 70 71 62 31.82 5.19 

Table 1. Major and trace elements detennined by the XRF technique for basalt samples. Sample number (P, AC, T) 
corresponds to locations shown in figure 5. Analytical precision and accuracy in% are compared with the standard 
BIR-1 (*indicates comparison with GSP-1) for major elements and BHV0-1 for trace elements. All are 
USGS standards. 
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APPENDIX II 

CROSS SECTION CONSTRUCTION TECHNIQUE 

Structural and stratigraphic relationships observed in the field, as well as by 

previous workers, were employed to construct balanced cross sections for the area 

(figures 8A-F ; Plates 2 and 3). All cross sections were drawn perpendicular to the 

strike of the fault to analyze for along-strike variation. Cross sections were constructed 

assuming plane strain meaning no material moved in or out of the cross section plane. 

Bed-length balancing was employed and consistency between hanging wall and footwall 

cut-off lengths across the fault(s) for individual cross sections was maintained (Rowan 

and Kligfield. 1989; Groshong, 1989). Volume is assumed to remain constant during 

deformation (Dahlstrom, 1969). Constant thickness (in the east-west direction) was 

maintained along an individual section. Where noted, some unit thicknesses increased 

to the south. Most structural features such as fault dip(s), hanging wall structures and 

inferred, unmapped, faults were assumed to maintain lateral continuity and were 

constructed consistently between cross sections. 
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APPENDIX III 

STRATIGRAPHY AND IGNEOUS ROCKS 

Paleozoic Sedimentary Formations 

Permian Pakoon Formation 

The lowest stratigraphic unit in the map area is the Permian dolomite of the 

Pakoon Formation. The type locality is near Grand Wash, Arizona (McNair, 1951). 

The top of the Pakoon is gypsiferous silty mudstone that is recessive, red, 

yellow and tan. Gypsum layers from 1 mm to 2 m thick are common and interbedded 

limestone, dolomite and mudstone are from 1-10 em thick. Below the mudstone is 

dolomite that is yellow-tan to gray-brown weathered, and gray-tan to light gray fresh, 

with 5· 30 em thick beds and some bedded chert. The base of the Pakoon is not 

exposed in this area so the local thickness is uncertain, however, 225m (740ft) of 

Pakoon was logged in a well drilled west of Pintura, Utah (Drilling Records for Oil and 

Gas in Utah, 1965). 

Permian Queantoweap Formation 

The Queantoweap Formation, named for exposures in Queantoweap 

(Whitmore) Canyon near the Grand Canyon (McNair, 1951), is a quartz sandstone that 
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is buff to white to light orange colored on both fresh and weathered surfaces, well­

sorted, and fine- to medium-grained. Locally parallel laminations, high- and low-angle 

cross bedding, and iron staining along bedding occurs. The Queantoweap has a 

calcareous cement, is porous, but is a resistant unit. The total thickness is 457 m (1500 

ft) 

Permian Toroweap Formation 

The Toroweap Formation stratigraphically overlies the Queantoweap Formation. 

The type section is found in Toroweap Valley, Mohave County, Arizona (McKee, 

1938). It is formally divided into the basal Seligman Member, the middle Brady 

Canyon Member, and the upper Woods Ranch Member, but in this study the Toroweap 

Formation was mapped as a single unit. 

The base of the Toroweap is a slope forming sandstone with interbedded 

gypsum layers. The sandstone is composed of well-rounded, medium-sized quartz 

grains and is tan to yellow-tan in color, but grades to white with increased amounts of 

gypsum. The resistant middle portion of the Toroweap is composed of dolomite and 

limestone and contains chert layers about 0.5 m thick and limestone beds 1.5 to 1.8 m 

thick. The recessive upper section of the Toroweap is 50% white to dark gray laminated 

gypsum and 50% tan gypsiferous siltstone and thin-bedded dolomite. Total thickness 

for the Toroweap is 91 m (300 ft). 

Permian Kaibab Limestone 

The Kaibab Limestone (Darton, 1910) conformably overlies the Toroweap 

Formation. Type locations include the northern Kaibab Plateau, Utah (Noble, 1928) and 

the Virgin River Valley, Utah (Reeside and Bassler, 1922). 

This resistant limestone is gray, tan, red and yellow on weathered surfaces and 

gray to tan on fresh. Bedded chert layers are common, as are criniod fragments and 
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brachiopods. The matrix is micrite. Some outcrops contain a basal conglomerate. The 

Kaibab is commonly brecciated where faulted. Regionally, the thickness of the Kaibab 

is approximately 305m (1000 ft) measured in Virgin Valley, south of the field area by 

Reeside and Bassler ( 1922). 

Mesozoic sedimentary fonnations 

Triassic Moenkopi Formation 

Lying disconformably above the Kaibab Limestone is the Moenkopi Formation. 

The type locality is in the Grand Canyon east of Arizona (Ward, 1901). The Moenkopi 

Formation is formally subdivided into six members: the Timpoweap member (Gregory 

and Williams, 1947; Gregory, 1950), the Lower Red member (Gregory, 1950), the 

Virgin Limestone member (Reeside and Bassler, 1922), the Middle Red member 

(Gregory, 1950), the Shnabkaib member (Reeside and Bassler, 1922), and the Upper 

Red member (Gregory, 1950). In this study, the Middle Red, Shnabkaib, and Upper 

Red members were combined and mapped as a single unit, but are still called and 

labeled the upper red member (see Plate I). 

Timpoweap Member 

The lowermost member of the Moenkopi Formation is the Timpoweap 

member. This limestone unit is very nonresistant and commonly occurs as rolling hills 

overlying the very resistant Kaibab Limestone. The Timpoweap member is a fine­

grained limestone and shale that is yellow to tan and breaks in platy fragments. Total 

thickness of the Timpoweap is 15 m (50ft). 
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Lower Red Member 

Overlying the Timpoweap member is the Lower Red member which is 

composed of fmely-laminated mudstone to thin beds of sandstone. The color is red to 

brown red with 1-10 em thick layers of gray mudstone. Thin interbeds of gypsum are 

common. The slope-forming Lower Red member varies in thickness from 70 m (230 

ft) in the north part of the study area to 213 m (700ft) in the south. 

Virgin Limestone Member 

Above the Lower Red member is the Virgin Limestone member. This unit 

forms a resistant ledge, light in color, between two nonresistant red members. The 

Virgin Limestone member comprises interbedded limestone, sandstone, and siltstone. 

The limestone beds are 3 to 6 m thick. The sandstone beds are from 1.5 to 9 m thick, 

are gray to tan on both fresh and weathered surfaces, contain calcite cement, and are 

porous. On weathered surfaces the limestone is yellow-tan to light gray and on fresh 

surfaces is yellow-gray and crystalline. Total thickness of the Virgin Limestone is 45 m 

(150ft). 

Combined Upper Red Member 

The combined upper red member of the Moenkopi Formation as used in this 

study comprises red to maroon to gray-white mudstone beds 1 em to 1 m thick that 

form slopes. Gypsum layers, 5-15 em thick, form slightly more resistant white-gray 

layers. There is a conspicuous white to gray band of gypsiferous mudstone and 

siltstone (the Shnabkaib member) that has gradational contacts above and below 

between the two red members (the Middle Red member and the formal Upper Red 

member). The uppermost portion of the combined upper red member is red-brown to 

maroon mudstone. Total thickness of the combined upper red member is from 490 m 

(1600 ft) to 610 m (2000 ft). 
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Triassic Chinle Fonnation 

The Chinle Fonnation contains a basal sandstone, the Shinarump conglomerate 

member (Gilbert, 1875), which overlies the Moenkopi disconfonnably. The type 

locality for the Shinarump conglomerate is in the Kanab area of Kane County, Utah 

(Powell, 1873). The Shinarump is confonnable with the overlying part of the Chinle 

Fonnation (Thomas and Taylor, 1946; Gregory, 1950). The Chinle Fonnation type 

locality is in eastern Iron County, Utah (Gregory, 1950). 

The Shinarump conglomerate is a cross-bedded sandstone composed of angular 

quartz grains and silica cement Commonly forming a caprock, the Shinarump is very 

weather resistant and has a sugary appearance. On weathered surfaces the Shinarump is 

light gray to yellow and on fresh it is white to light gray. Pebbles make up 0-80% of the 

unit The pebbles are well-rounded metamorphic rocks, 0.5-5 em in diameter. Petrified 

wood occurs in minor amounts. Total thickness of the Shinarump is 49 m (160ft). 

The Shinarump grades upward into the nonresistant mudstones, siltstones, and 

sandstones of the Chinle Fonnation. The color ranges from light gray to gray-red. but 

generally there is a distinctive purple cast to the Chinle. Petrified wood is common. 

The upper contact with the Moenave Fonnation is not exposed in the field area. Cook 

(1957) reported 420 m (1380 ft) of Chinle Fonnation, not including the Shinarump 

conglomerate, from a well-log drilled two miles west of Pintura. 

Triassic Moenave Fonnation 

The alternating sandstone, claystone and siltstone of the Moenave Formation 

(Harshberger and others, 1957), although not exposed in the study area, regionally 

disconfonnably overlies the Chinle Fonnation. The type locality for the Moenave is on 

the Navajo Indian Reservation in northern Arizona (Harshberger and others, 1957). 

Regionally, the Moenave is 140 to 155m (460 to 510ft) thick (Averitt, 1962). 
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Triassic Kayenta Fonnation 

A sandstone unit with some minor conglomerate, the Kayenta Fonnation 

(Thomas and Taylor, 1946; Gregory, 1950), unconfonnably overlies the Moenave. The 

type location is at the Red Hill north of Coal Creek, Utah (Averin and others, 1955). 

The Kayenta does not crop out in the field area so is not here described. However, 

regionally the thickness is 36m (118ft) (Gregory, 1950). 

Triassic-Jurassic Navajo Sandstone 

The Navajo Sandstone, which fonns the spectacular cliffs in Zion National Park, 

Utah, overlies the Kayenta (Huntington and Goldthwait, 1904; Gregory and Williams, 

1947; Williams, 1952). Composed of well-sorted, subangular to angular quartz grains 

with minor feldspar and black flecks of magnetite and biotite, the Navajo Sandstone is a 

resistant fonnation. Large cross beds are ubiquitous. The Navajo contains silica 

cement. is very porous and typically friable. On fresh and weathered surfaces the color 

can be white, orange, pink or red. Due to fracturing and faulting related to the Hurricane 

fault the Navajo exposed in the study area does not fonn large cliffs. The regional total 

thickness is 366m (1200 ft) (Gregory, 1950). 

Jurassic Carmel Fonnation 

The Carmel Fonnation was named by Gregory and Moore (1931) for an 

exposure near the town of Mount Carmel in Kane County, Utah. This unit comprises a 

thin-bedded, micritic limestone that is light gray to light yellow on both fresh and 

weathered surfaces. Limestone beds are 15 to 60 em thick, with some rare thin 

interbeds of mudstone. Some thick beds are resistant but generally the Carmel is a 

friable, platey, slope fanning unit. No fossils were observed. The upper contact did not 
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crop out in the study area so the thickness can not be calculated, however, Cook (1952) 

measured 206m (675ft) of Cannel Formation in the nearby Pine Valley Mountains. 

Tertiary Sedimentary Formatiom 

Early Paleocene to Oligocene Claron Formation 

The Claron Formation was named by Leith and Harder (1908) for Mount 

Claron near Iron Mountain, Utah. Where exposed in the field area, the base of the 

Claron Formation is faulted. 

The Claron is composed of a red basal conglomerate overlain by red-orange 

sandy limestone and mudstone and gray to white fresh water limestone upsection. The 

upper and lower contacts of the Claron are not exposed in the study area. In many 

locations, a clastic unit overlies the limestone, but that unit is missing in this area 

Thicknesses of 128m (420ft) at Leeds Creek near Leeds, Utah and 235m (770ft) in 

the Pine Valley Mountains are reported (Taylor, 1993). 

Tertiary Igneous Rocks 

There are four small stocks of monzodiorite that may be related to the Pine 

Valley laccolith (Cook, 1957), a very shallow intrusion. The monzodiorite is 50% gray 

cryptocrystalline to fine-grained groundmass, and 50% phenocrysts of plagioclase 2-5 

mm in diameter, augite, hypersthene, euhedral biotite, hornblende, and minor amounts 

of magnetite and ilmenite. On fresh and weathered surfaces the monzodiorite is gray. 

The surface is well-weathered and jointing is common. 
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