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Abstract 

The Dolan Springs volcanic field (DSV), of northwestern Arizona, is 

dominated by andesite and basaltic-andesite flows and breccias, with minor 

amounts of basalt, rhyolite, and ash-flow tuff. Geochemistry is used here as a 

tool to evaluate the roles and contributions of the lithospheric and 

asthenospheric mantles to magmatism related to Miocene extension in the 

Colorado River extension corridor (CREC). The majority of synextensional 

volcanic rocks in the DSV are geochemically similar to regional trends, but 

rare tholeiitic basalts erupted near the end of extension. The tholeiites have 

trace element signatures similar to ocean island basalt (OIB), but have isotopic 

values indicative of a source in the lithosphere. The tholeiites represent the 

endpoint in a progressive decrease in the depth of lithospheric melting (22-8 

Ma) that occurs just prior to the onset of asthenospheric volcanism at 6 Ma. 

Using geochemical arguments, models are presented here for trace element 

stratification in the lithospheric mantle and magma genesis in the CREC. 
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CHAPTERl 

Introduction and Geologic Background 

Introduction and Purpose 

Magmatism is associated with Cenozoic lithospheric extension in the 

Basin and Range Province. The geochemistry of synextensional magmatic 

rocks is key to understanding the relationship between magmatism and 

extension and magma genesis. In this study, the stratigraphy, structure, and 

geologic history of a Miocene volcanic complex provide a context in which to 

examine geochemical changes during the course of extension. In particular, 

this study focuses on the relative roles and contributions of the lithosphere 

and asthenosphere to synextensional magmatism. 

In northwestern Arizona, volcanic rocks make up most of the 

accessible Miocene magmatic record. Exposures of synextensional plutons are 

rare except in the more highly dissected areas such as the Colorado River 

extensional corridor (CREC; Howard and John, 1987). This study investigates 

the Dolan Springs volcanic field (DSV) which lies in the northern part of the 

CREC in the southern White Hills, of northwestern Arizona (Fig. 1-1). The 

DSV is dominated by andesite and basaltic-andesite flows and breccias, with 

minor amounts basalt, rhyolite, and ash-flow tuff. 

Synextensional rocks of the DSV share the trace element and isotopic 

characteristics of other CREC synextensional rocks that are thought to have an 
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2 
origin in the lithospheric mantle. The DSV fits in a well established regional 

geochemical framework of synextensional volcanic rocks, but also includes a 

unique group of tholeiitic basalts that figure prominently into a model 

presented here for magma genesis during crustal extension. A literature 

survey identified other chemically and spatially similar tholeiitic basalts in 

the CREC which are also used in developing the model. 

The first chapter of this thesis briefly describes the geologic background 

and previous work near the DSV. The second, third, and fourth chapters 

describe the stratigraphy, structure, and geologic history of the volcanic field. 

Major element, trace element, and isotopic geochemistry of the DSV rocks are 

presented in Chapter 5. Finally, chapter 6 discusses the origin of mafic 

magmas and the trace element character of the mantle. Chapter 6 finishes by 

presenting models for trace element enrichment of the lithospheric mantle 

and magma genesis in the CREC. 

Location and Region Description 

The Dolan Springs volcanic field (DSV) is in the southern White Hills, 

northwestern Arizona, 50 km south of Lake Mead (Fig. 1-1). The study area is 

roughly defined by a triangle with legs along US Highway 93, the Pearce Ferry 

Road, and the White Hills Road (Fig 1-1, Plate I). North of the DSV is the 

central White Hills, an area dominated by Precambrian metamorphic 

basement. In the northern White Hills the Tertiary volcanic section crops out 

in the upper plate of a low-angle normal fault (Cascadden, 1991). The DSV is 

bordered to the west by Detrital Valley and the central Black Mountains. The 



3 
northern Black Mountains are dominated by Precambrian metamorphic rock. 

In the central Black Mountains the metamorphic basement is intruded by 

several Tertiary plutons and overlain by Tertiary volcanic rocks. To the south 

of the DSV are the Cerbat Mountains composed dominantly of Precambrian 

metamorphic rocks and Mesozoic intrusions. At the extreme northern end of 

the Cerbats, just south of the DSV, is a several kilometer thick section of 

Tertiary volcanic and volcaniclastic rocks. The dry Red Lake separates the 

eastern edge of the DSV from the Grand Wash Cliffs. The latter marks the 

eastern limit of extension and the edge of the Colorado Plateau and Paleozoic 

and Mesozoic sedimentary rocks. 

Geologic Background and Previous Work 

The DSV lies on the eastern edge of the CREC, a 50-100 km wide zone 

of large magnitude mid-Miocene extension that follows the Colorado River 

from Lake Mead south to the Whipple Mountains (Howard and John, 1987; 

Weber and Smith, 1987; Duebendorfer et al., 1990; Faulds eta!., 1990; Faulds et 

a!., 1994). Regional-scale low-angle detachment faults, strike-slip faults, and 

associated upper plate high-angle normal faults accommodated extension 

across the CREC (e.g., Anderson, 1971; Meyers, 1984; Weber and Smith, 1987; 

Duebendorfer et al., 1990; Cascadden, 1991). The net displacement of the 

Colorado Plateau relative to the Sierra Nevada along a transect parallel to the 

direction of extension (S73°±l2°E) has been estimated at 247±56 km near the 

latitude of Las Vegas (Wernicke eta!., 1988). This transect is presently 360 km 

wide. The stretching factor, P (extended length/original length), is 

approximately 3 for the entire transect with much higher P locally (Wernicke 
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et al., 1988). 

In the Mt. Perkins block (Fig. 1-1), a portion of the Black Mountains 

west of the DSV and Detrital Valley, the age of extension is bracketed between 

15.7 and 11.3 Ma with peak extension between 15.2 and 14.3 Ma (Faulds et aL, 

1995). The age and duration of extension in the DSV is similar to that in the 

Mt. Perkins block, though extension in the former appears to have begun 

slightly earlier, between 17.98 and 16.09 Ma (see Chapters 2 and 3). 

Faulds et a!. (1990) delineated a structural accommodation zone that 

begins in the northern Black Mountains and runs southeast through the 

DSV. In the northern Black Mountains the accommodation zone is a wide 

zone of complex splaying faults separating east-tilted strata and west dipping 

normal faults to the north from west-tilted strata and east dipping normal 

faults to the south. Where it intersects the western DSV the accommodation 

zone narrows to an anticlinal structure. In the DSV the division between 

these east and west tilted domains runs north-south through a wash in 

sections 19, 18, and 7, T.26N., R.19W. (Plate I). The DSV is almost entirely in 

the east tilted limb of the accommodation zone. 

Previous work in the White Hills concentrated on the northern and 

central sections. Meyers (1984) mapped the regionally extensive Miocene 

Cydopic Mine detachment fault in the central White Hills and documented 

two periods of gold mineralization in Precambrian rocks: one Precambrian in 

age and a second associated with the Tertiary detachment fault. In the 

northern White Hills, Cascadden (1991) described three coeval Miocene 

volcanic centers in the upper plate of the Salt Spring detachment fault, a 
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continuation of the Cyclopic Mine fault. These detachment complexes lie 20-

30 km west of the Grand Wash Fault and represent the easternmost 

extensional allochthon of the Basin and Range Province. 

Volcanic rocks dominate the Miocene depositional record in the CREC. 

In the CREC at least 27 Miocene volcanic centers and 10 plutons have been 

identified (Smith and Faulds, 1994). Volcanism swept northward through the 

CREC, beginning in the late Oligocene in the southern CREC and reaching the 

latitude of the DSV at approximately 20 Ma (Glazner and Bartley, 1984; Faulds 

et al., 1994; Faulds et al., 1995). Volcanism preceded the onset of extensional 

faulting by approximately 1-2 m.y. (Faulds eta!., 1995). 

As with most of the Miocene volcanic rocks in the Basin and Range 

Province, the CREC is dominated by intermediate calc-alkaline and alkalic

calcic suites. Primitive mafic rocks in these suites are typically alkali basalts. 

A number of recent studies of intermediate suites in the Basin and Range 

Province concluded that mixing of felsic crustally derived magmas and mafic 

mantle derived magmas was important to the production of intermediate 

rocks (Glazner, 1990; Larsen and Smith, 1990; Smith et a!., 1990; Turner and 

Glazner, 1991). Magma mixing has been found to be a major process 

controlling the evolution of CREC calc-alkaline intrusive suites in the 

Wilson Ridge pluton (Larsen and Smith, 1990; Smith eta!., 1990), the Mt. 

Perkins pluton (Metcalf eta!., 1993; Metcalf eta!., 1995), and the Aztec Wash 

pluton (Falkner, 1993; Falkner et a!., 1995). 

To understand the mechanisms of magma genesis and evolution, 

primitive basalts are often the focus of geochemical studies, because these 
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basalts are believed to be the parental mafic magmas which drive the 

processes forming the intermediate suites. Primitive basaltic volcanism in 

the CREC can be divided into two genetic and chronologie groups (Bradshaw, 

1991; Fitton et a!., 1991; Kempton et a!., 1991, Bradshaw et a!., 1993; Feuerbach 

et a!., 1993). Pre-6 Ma basaltic volcanism which broadly coincides with 

extension is commonly alkalic, displays enriched isotopic ratios (ENct = -4 to 

-11; 87Srj86Sr(i) = 0.705-0.710), and has a source in the lithospheric mantle. A 

marked transition occurred at 6 Ma to asthenospherically derived alkali 

basalts with depleted isotopic ratios (ENd= -l to +7; 87Srj86Sr(i) = 0.703-0.705). 

Fitton et al. (1991), Kempton et a!. (1991), and Bradshaw et a!. (1993) 

characterized the lithospherically derived basalts as having trace element 

signatures similar to that seen in subduction related settings. These rocks 

have large ion lithophile elements (LILE) and the light rare-earth elements 

(LREE) enriched relative to the high field strength elements (HFSE) and 

heavy rare-earth elements (HREE). In contrast, the basalts derived by melting 

of the asthenospheric mantle are less enriched in trace elements with less 

disparity between the LILE-LREE and HFSE-HREE, producing a signature 

typical of ocean island basalt (OIB). Although these patterns of volcanism are 

observed in the DSV, the DSV tholeiitic basalts constitute a previously 

unrecognized magma type in the CREC. These tholeiitic basalts, erupted 

during the latest phase of extension, have both an enriched isotopic signature 

denoting a source in the lithosphere, and OIB-like trace elements displayed by 

the later asthenospheric basalts. The geochemical characteristics outlined by 

other workers will be discussed in light of these new findings. 

The volcanic history of the southern White Hills has not been studied 



7 
in detail. Chemical data from DSV rocks is restricted to several tuff analyses 

by Morikawa (1993) and a single basalt analysis by Bradshaw eta!. (1993). 

During a regional study of the 15.23 ± 0.14 Ma (Bridwell, 1991) tuff of Bridge 

Spring, Morikawa (1993) eliminated the possibility that a tuff in the DSV 

(named here tuff 2 of Culdesac Wash) was related to tuff of Bridge Spring. 

Morikawa (1993) based this observation on geochemistry, modal mineralogy, 

and radiometric dating. An 40 Ar /39 Ar biotite age of 16.09 ± 0.15 Ma was 

reported by Morikawa for pumice fragments of tuff 2 of Culdesac Wash 

(Sample Tct2-4.1, appendix A). 

Morikawa (1990) suggested that tuff 2 of Culdesac Wash might be 

related to the 15.96 ± 0.06 Ma Mt. Perkins pluton (40Ar / 39Ar, biotite age; 

Faulds, 1993a) on the basis of the similar age and radiogenic isotope data. This 

proposed correlation is explored further here and is found to be permissive, 

but not compelling (Chapter 6). Faulds et al. (1995) suggested that the tilted 

Mt. Perkins block represents an exposed cross-section of a plutonic-volcanic 

system. Using geochemistry and field relationships, Faulds et a!. (1995) 

correlated felsic phases in the Mt. Perkins pluton with the Golden Door 

volcanic rocks exposed to the west near the Colorado River (Fig. 1-1) 

structurally above the pluton. 
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CHAPTER2 

Stratigraphy of the Dolan Springs 

Volcanic Field 

Introduction and Methods 

Miocene volcanic and sedimentary rocks in the Dolan Springs volcanic 

field (DSV) are divided here into nine stratigraphic units. Coarse-grained 

clastic sedimentary units both at the base and top of the section can not be 

dated but are inferred to be of Tertiary age. Quaternary deposits occupy 

modern drainages and contain detritus derived from the Tertiary section. 

This chapter includes field and petrographic descriptions of the nine 

main units and their members. A total of 57 thin sections were examined 

and used to visually estimate the modal percentages of minerals and lithic 

fragments. Two different schematic stratigraphic columns are required 

because of differences in stratigraphy between the northern and southern 

parts of the study area (Fig. 2-1 & 2-2). A correlation between the two 

representative columns can be made for andesite of Rodeo Grounds based on 

field, petrographic and geochemical observations (Fig. 2-1). The stratigraphic 

sections are described in chronological order first for the northern section 

then the southern section. References to conformable contacts are based on 

the absence of angular unconformities and erosional features. 

9 



Stratigraphy of the Northern Dolan Springs 

Volcanic Field 

10 

The northern DSV (Fig. 2-2) stratigraphic section is dominated by 

Tertiary conglomerates, including megabreccia blocks, and felsic to mafic lava 

flows. 

Tertiary gravel conglomerate unit 1 ITgll 

The basal unit in the northern DSV is a poorly sorted, loosely to 

unconsolidated conglomerate named here the gravel conglomerate unit 1 

(map unit Tg1, Plate I and Fig. 2-1). The conglomerate is composed primarily 

of sand and gravel, but also angular to rounded cobbles, boulders, and 

megabreccia clasts >30 m across. Clasts are exclusively Precambrian and 

Mesozoic(?) crystalline rocks including: quartzofeldspathic gneiss, muscovite

biotite schist, amphibolite, and Cretaceous(?) granitoids including muscovite

biotite granites (lithologically similar to nearby rocks radiometrically dated by 

Theodore et al., 1982). Gravel conglomerate unit 1 is distinguished from 

other DSV Tertiary sedimentary units based on the conspicuous absence of 

volcanic clasts. 

Exposures of gravel conglomerate unit 1 are poor except where the 

megabreccia blocks provide large outcrops (30+ m across). Megabreccia blocks 

are sufficiently large to appear as outcrops of bedrock and are mapped as such 

on the Arizona Geological Survey's Geologic Map of Arizona (Reynolds, 

1988). The megabreccia clasts are interpreted here as landslide blocks. 

Gravel conglomerate unit 1 lies stratigraphically below the volcanic 
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rocks in the DSV. The only occurrence of volcanigenic rocks in gravel 

conglomerate unit 1 is a 3 m wide, 2 m thick channel fill of ash and small 

lithic fragments at 35°38'30" /114°20'00". The channel fill is graded and 

appears to be reworked rather than a primary volcanic rock. No other similar 

deposits were observed in gravel conglomerate unit 1. 

The largest exposures of gravel conglomerate unit 1 are in the northern 

DSV south of the White Hills Road (Fig. 2-2). The upper contact of gravel 

conglomerate unit 1 appears to be conformable with the overlying andesite of 

Rodeo Grounds, but a lack of bedding makes it difficult to determine if dips 

fan below this contact. The total thickness of the unit is unknown because 

the lower contact is not exposed in the study area. If the dip is assumed to be 

the same as the overlying andesite (~5°) then the exposed thickness is 

approximately 1400 m. 

Tertiary andesite/tuff of Rodeo Grounds (Tra. Trt) 

Overlying gravel conglomerate unit 1 is a set of dark-red to black and 

gray basalt, basaltic andesite, andesite, and dacite flows named here andesite of 

Rodeo Grounds (map unit Tra, Plate I and Fig. 2-1). The andesites and basaltic 

andesites are porphyritic (15-35% phenocrysts) with phenocryst assemblages 

dominated by plagioclase (10-30%) and clinopyroxene (5-15%), and by Jesser 

amounts of orthopyroxene ( <5%) and olivine (5-10%). Olivine is altered to 

reddish-brown iddingsite. In the andesites and basaltic andesites the amount 

of olivine increases inversely to the amount of clinopyroxene in the more 

mafic rocks while the amount of plagioclase phenocrysts remains fairly 
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constant relative to the ferromagnesian minerals. The matrix of these rocks 

is typically altered to fine-grained grayish opaque minerals. One sample of 

andesite contained abundant quartz xenocrysts and a xenolith of coarse

grained plagioclase and opaque oxides. Dacite flows are porphyritic (10-25 % 

phenocrysts) with plagioclase (10-20%) and hornblende (5-10%) with some 

clinopyroxene (<5%) and sanidine (0-10%) phenocrysts. 

Lava flows are intercalated with reddish-brown debris flows containing 

exclusively volcanic clasts and matrix, and matrix-supported scoriaceous 

volcanic breccias. Breccia clasts are typically uniform in size (10-15 em) while 

the debris flows have clasts up to 3 m in diameter. Three isolated lens ( < .5 

km2, 20 m thick) of a tan dacitic tuff were found only within the southern 

section of andesite of Rodeo Grounds (Fig. 2-2). These lens was mapped 

separately as tuff of Rodeo Grounds (map unit Trt, Plate I and Fig. 2-1). This 

tuff is bound above and below by debris flows that grade vertically up and 

down into lava flows (possibly auto-brecciated). The tuff is moderately 

welded, lithic-rich (dacite and andesite clasts), well-bedded, poorly sorted, and 

contains little pumice. 

Andesite of Rodeo Grounds is the most voluminous and widespread 

unit in the study area. Individual lava flows and breccia rarely exceed 10-20 m 

in thickness and appear conformable but are laterally discontinuous. The 

estimated minimum total thickness of the andesite of Rodeo Grounds is 1400 

m. The thickness was measured from the map across the largest continuous 

section where flow foliations allow attitude measurement, but is a minimum 

estimate because upper and lower contacts are not exposed in that section. 

The base of the andesite of Rodeo Grounds is only exposed in the northern 
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part of the study area where it conformably overlies the coarse gravels of the 

pre-volcanic gravel conglomerate unit 1. Andesite of Rodeo Grounds reaches 

its maximum exposed thickness (> 1 km) in the southern part of the field area 

and thins to <20 m near the Table Mountain Plateau to the north (Plate I). 

The thickness estimate of andesite of Rodeo Grounds in the southern section 

may be overestimated because the unit may be repeated by normal faults 

Tertiary gravel conglomerate unit 2 (Tg2) 

Unconformably overlying the andesite of Rodeo Grounds is a 

conglomerate named here gravel conglomerate unit 2 (map unit Tg2, Plate I 

and Fig. 2-1). This unit includes two lithologically different sections. The 

first, making up the lower two-thirds of the unit is a poorly sorted, 

moderately to unconsolidated conglomerate composed primarily of sand and 

gravel, but also containing rounded to angular cobbles, boulders, and 

megabreccia clasts >20 m across. The remaining approximately upper one

third of the unit, exposed below Table Mountain Plateau, is a cross-bedded, 

coarse sand and gravel conglomerate. Bedding within the upper portion 

strikes Nl2°W to Nl5°E and dips east, with dips decreasing up section from 

approximately 30-40° near the base to 12° below the capping basalt. A dark-red 

paleosol on top of the uppermost gravel directly underlies the basalt of Table 

Mountain. It is impossible to determine if the upper and lower portions of 

gravel conglomerate unit 2 are conformable due to the poor exposures below 

the cross-bedded sections. 

Clasts in gravel conglomerate unit 2 are of both Precambrian and 
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Cretaceous(?) lithologies similar to gravel conglomerate unit 1, but also 

include andesitic rocks similar to the underlying andesite of Rodeo Grounds. 

Gravel conglomerate unit 2 is distinguished from gravel conglomerate unit 1 

by the presence of these volcanic clasts. Megabreccias in gravel conglomerate 

unit 2 exhibit the same range of clasts lithologies and are interpreted as 

landslide deposits. Gravel conglomerate unit 2 is poorly exposed, except for 

the large megabreccia blocks and the upper cross-bedded conglomerate. 

This unit crops out predominately in the northern DSV (Fig. 2-2) 

where it reaches an estimated maximum thickness of 1250 m (calculated 

assuming an average dip of 30°). The unit thins to the south. An isolated 

outcrop in the southern DSV that is approximately 80 m thick. 

Tertiary tuff of Table Mountain (Ttmt) 

Contained within the lower part of gravel conglomerate unit 2 is a lens 

of pale yellow to chalky white ash-flow tuff named here tuff of Table 

Mountain (map unit Ttmt, Plate I and Fig. 2-1). The lower half of the tuff is 

poorly to non-welded, and the upper portion is moderately-welded. The tuff 

contains small lithic fragments of andesite and rhyolite ( <2 mm), abundant 

small pumice fragments (<4 mm), and phenocrysts of sanidine (15-20%) and 

biotite (<5%). This unit lies within gravel conglomerate unit 2 and forms a 

prominent north-south trending ridge in the extreme northern part of the 

field area that continues to the north of the mapped area (Plate I). Tuff of 

Table Mountain reaches a maximum thickness of 25 m in the study area, but 

pinches out south of the Table Mountain Plateau. 



Tertiary basalt of Table Mountain (Ttmb) 

Overlying gravel conglomerate unit 2 and capping the northern DSV 

section (Fig. 2-2) are porphyritic (10-15% phenocrysts) vesicular tholeiitic 

basalt flows named here the basalt of Table Mountain. The basalt contains 

phenocrysts of olivine (5-8%), clinopyroxene (5-8%), and plagioclase (5-10%). 

The groundmass is made up of clinopyroxene, fine laths of plagioclase and 

opaque oxides. Both plagioclase phenocrysts and matrix crystals display a 

weak trachytic texture. Plagioclase and clinopyroxene phenocrysts are 

commonly found as glomerocrysts. Although the basalt of Table Mountain 

contains abundant amygdules filled with calcite, it is the least altered of any 

volcanic unit at the DSV. 
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Basalt of Table Mountain consists of 2-5 m thick flows with no 

intervening soil horizons. The minimum thickness of the basalt of Table 

Mountain was estimated in the field to be approximately 100 m suggesting the 

unit is composed of between 20-50 individual flows. The unit occurs only in 

the northwestern part of the study area forming the Table Mountain Plateau, 

the most physiographically prominent feature in the field area. Table 

Mountain Plateau should not be confused with the nearby Table Mountain 

which lies approximately 12 km east of the plateau on the east side of the 

Pearce Ferry Road (Plate I). 



Stratigraphy of the Southern Dolan Springs 

Volcanic Field 
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Two of the units present in the northern stratigraphic section correlate 

with units in the southern section, specifically gravel conglomerate unit 1 

and andesite of Rodeo Grounds (Fig. 2-1). A description of these units is not 

repeated here. A major feature of the southern DSV (Fig. 2-2) is a package of 

rhyolitic lavas and pyroclastic flows collectively named here the Culdesac 

rhyolite complex. 

Culdesac rhyolite complex 

A complete section of the Culdesac rhyolite complex crops out only in a 

single wash, here named Culdesac Wash, in sections 19 and 30, T.26N., 

R.19W. (Fig. 2-2 and Plate I), though individual tuff units continue outside 

the wash. The lower contact of the Culdesac rhyolite complex lies 

unconformably over tilted flows of andesite of Rodeo Grounds, but no 

angular unconformities are present between units of the complex. 

Tertiary tuff 1 of Culdesac Wash (Tctl) 

The basal unit of the Culdesac rhyolite complex is a yellowish

gray, poorly-welded, pumice-rich, lithic tuff named here tuff 1 of 

Culdesac Wash (map unit Tctl, Plate I and Fig. 2-1). It contains 

abundant chalky-yellow zeolitized pumice fragments ( < 2 em) and 

abundant subangular lithic fragments (rhyolite and andesite). The 

matrix has eutaxitic ash shards and is moderately devitrified. 

Phenocrysts phases include sanidine (1-3%), plagioclase (<2%), biotite 
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(«1%), and opaque oxides (<1%), Tuff 1 of Culdesac Wash is 

approximately 30m thick (estimated from the map). Tuff 1 of 

Culdesac Wash is distinguished from the tuff of Table Mountain by the 

presence of zeolitized pumice that the latter lacks, 

Tertiary rhyolite flows of Culdesac Wash (Icrl 

Discontinuous flows chemically transitional between rhyolite 

and dacite overlie tuff 1 and are named here the rhyolite flows of 

Culdesac Wash (map unit Tcr, Plate I and Fig. 2-1). The flows have a 

finger like morphology each consisting of (1) massive and flow-banded 

pinkish-gray stony rhyolite interiors, (2) a chilled margin of dark gray 

glassy vitrophyre surrounding the stony rhyolite, and (3) upper and 

lower bounding layers of breccia with angular clasts (up to 1 m) of 

rhyolite, vitrophyre, and pumice in a tuffaceous matrix, Perlitic 

alteration is present throughout the glass of the flows. Sanidine (2-4%), 

plagioclase (2-4%), biotite with rutile rims ( <1 %), hornblende ( <1 %), 

and opaque oxides (<2%) are phenocrysts in the vitrophyre, rhyolite, 

and pumice fragments. Also present in the rhyolites, vitrophyres, and 

tuff matrix are glomerocrystic xenocrysts of clinopyroxene (1-2%) and 

plagioclase. These minerals are designated xenocrysts because they are 

not present in pumice fragments, Pumice mineral phases probably 

represent the phases in the magma prior to eruption. The rhyolite 

flows reach a maximum estimated thickness of 90 m (estimated from 

the map). 
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Tertiary surge of Culdesac Wash (Tcs) 

Where rhyolite flows are not present, tuff 1 of Culdesac Wash is 

overlain by a well-bedded, lithic-dominated, yellow pyroclastic surge 

named the surge of Culdesac Wash (map unit Tcs, Plate I and Fig. 2-1). 

Individual beds range in thickness from 1-5 em, are poorly graded, 

display bimodal sorting (lithics and phenocrysts are equigranular in a 

fine ash matrix), and are locally cross-bedded. The unit contains 

subrounded lithic clasts (rhyolite and andesite), minor pumice, and 

abundant angular broken fragments of sanidine and plagioclase. The 

unit is only associated with the rhyolite flows and has a maximum 

estimated thickness of 48 m (measured from the map). 

The surge unit laps up onto the margins of rhyolite flows in 

Culdesac Wash, but do not appear on top of them. The surge may have 

either been eroded off the top, or the steep rhyolite flow fronts may 

have provided a topographic barrier to deposition. 

Tertiary tuff 2 of Culdesac Wash (I.ct2). 

The upper most unit of the Culdesac rhyolite complex is a 

rhyolitic tuff named here tuff 2 of Culdesac Wash (map unit Tct2, Plate 

I and Fig. 2-1). Tuff 2 is the thickest and most widespread of the 

Culdesac units and is present in both Culdesac Wash and to the north 

and west of the wash (Plate 1). Tuff 2 overlies one of three units: surge 

of Culdesac Wash, rhyolite of Culdesac Wash, or andesite of Alta 
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Spring. Where tuff 2 overlies andesite of Alta Spring (described below), 

fragments of the andesite are incorporated into the lower part of tuff 2. 

In Culdesac Wash tuff 2 is composed of a dark-orange upper cooling 

unit of moderately-welded, lithic-rich, vitric tuff and a pale orange, 

poorly-welded lower cooling unit. The moderately-welded unit shows 

weak columnar jointing, and a eutaxitic fabric defined by black and 

brown glass fiamme (up to 2 em in length) and the ash shards of the 

matrix. Both cooling units contain subangular lithic fragments 

(rhyolite, andesite, and basalt), large pumice clasts (up to 10 em), and 

phenocrysts of sanidine (3-5%), plagioclase (1-4%), quartz (<2%), biotite 

(1-4%), and opaque oxides (2%). Clinopyroxene (2%), hornblende 

(<2%), and plagioclase grains are interpreted as xenocrysts, because they 

are present only in the tuff matrix and not in the pumice fragments. 

Pumice fragments contain phenocrysts of sanidine (<2%), plagioclase 

(<1%), biotite (<1%), and trace amounts of opaque oxides. Near the 

locality of Alta Spring (Fig. 2-2 and Plate I), tuff 2 grades into a breccia 

containing andesite clasts (up to 1.5 m in diameter) in an ash matrix. 

Tuff 2 of Culdesac Wash reaches its maximum thickness, 

approximately 70 m, in the north part of section 17, T.26N., R.19W. 

which lies approximately 2 km north of the Culdesac Wash. Morikawa 

(1993) reported an 40Ar/39Ar biotite age of 16.09 ± 0.15 Ma for pumice 

(sample Tct2-4.1) collected from this tuff near Culdesac Wash. Tuff 2 of 

Culdesac Wash is distinguished from the tuff of Table Mountain by the 

presence of large pumice fragments and glass fiamme that the latter 

lacks. 
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Tertiary andesite of Alta Spring (Tasa) 

A thin vesiculated A'a flow of andesite named here andesite of Alta 

Spring (map unit Tasa, Plate I and Fig. 2-1) lies conformably between the surge 

and tuff 2 of the Culdesac Wash. Andesite of Alta Spring is also found 

unconformably overlying tilted flows of andesite of Rodeo Grounds outside 

the Culdesac Wash near the locality of the Alta Spring (Fig. 2-2 and Plate I). 

Andesite of Alta Spring is porphyritic with 20~35% phenocrysts. Phenocrysts 

include biotite with rutile rims (5-8%), clinopyroxene (5-15%) and plagioclase 

(10-35%), with lesser amounts of iddingsite after olivine (0-10%) and 

orthopyroxene (<2%). The matrix is rich in fine grained opaque oxides, 

which appear to be in part alteration products. Flows of andesite of Alta 

Spring are thin and laterally discontinuous. It is deposited only in the 

southern DSV (Fig. 2-2) and pinches out in several places near the Culdesac 

Wash. The unit reaches a maximum estimated thickness of 20 m (measured 

from the map). 

Tertiary andesite of Powerline Road (Tpa) 

Above tuff 2 of Culdesac Wash is a section of lava and debris flows 

ranging from basalt to andesite with basaltic andesite predominating. Titis 

unit is named here the andesite of Powerline Road (map unit Tpa, Plate I and 

Fig. 2-1). The lava flows are highly brecciated with intervening layers of 

monolithologic debris flows, matrix-supported scoriaceous breccias, and lesser 

amounts of intercalated coarse grained cross-bedded conglomerates. The 

conglomerates are dominated by Precambrian lithologies. The breccias and 
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debris flows are exclusively composed of volcanic clasts (basalt-andesite) and 

matrix. The Java flows are porphyritic, commonly vesicular, with 25-50% 

phenocrysts. Phenocrysts include plagioclase (15-35%), clinopyroxene (10-

25%), orthopyroxene (<3%), and iddingsite after olivine (5-10%). 

The basal flow of andesite of Powerline Road conformably overlies tuff 

2 of Culdesac Wash. In Culdesac Wash, andesite of Powerline Road is found 

as small eroded remnants of a vesicular flow. Andesite of Powerline Road 

thickens to the north where it becomes brecciated and difficult to distinguish 

individual flows. Exposures in the northern part of the field area are poor 

and typically only occur as talus covered slopes. The poor exposure of 

andesite of Power line Road makes it difficult to assess if dips fan internally 

within the unit. Gently dipping coarse grained, cross-bedded gravels are 

locally intercalated with the volcanic beds. Near Culdesac Wash a small ("' 1 

m wide) dike cuts tuff 2 of Culdesac Wash and feeds the basal flow of andesite 

of Powerline Road. This dike was the only vent/dike identified in the study 

area. The maximum estimated thickness of the andesite of Powerline Road is 

200-300 m. The thickness is estimated from topographic relief because it 

otherwise lacks clear bedding to estimate dip and flow thicknesses. 

Tertiary gravel unit 3 (Ig3). 

Overlying andesite of Powerline Road is a poorly sorted, 

unconsolidated gravel and boulder deposit, with no internal bedding, named 

here gravel unit 3 (map unit Tg3, Plate I and Fig. 2-1). Clasts consist of both 

Precambrian and Cretaceous (?) crystalline rocks and Tertiary volcanic rocks 



(andesite and basalt). Clasts are well rounded to angular and up to 1 m in 

diameter. Gravel unit 3 is the stratigraphically highest unit in the southern 

DSV (Fig. 2-2) and lies unconformably over tilted and faulted beds of gravel 

conglomerate unit 1, tuff 2 of Culdesac Wash, and andesite of Powerline 

Road. The thickness of gravel unit 3 estimated from topographic relief is 75 

m. 

DSV Chronology 
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The chronology of the Dolan Springs volcanic field can not yet be 

rigorously constrained by radiometric dates, however sufficient data is 

presently available to establish a preliminary chronology of events. The only 

radiometric age in the DSV is a biotite 40Ar/39Ar date of 16.09 ± 0.15 Ma on tuff 

2 of Culdesac Wash (sample.Tct2-4.1; Morikawa, 1993) which lies in the 

middle of the southern DSV stratigraphic column (Fig 2-1). No angular 

unconformities are present within the Culdesac rhyolite complex so the age 

of tuff 2 is inferred to approximate the age of the entire complex. 

The basal DSV unit, gravel conglomerate unit 1, cannot be dated 

directly but is inferred to be of Tertiary age based on the presence of probable 

Cretaceous clasts and the Miocene age of overlying beds. The oldest volcanic 

unit is andesite of Rodeo Grounds. Less than 12 km east of the northernmost 

DSV outcrop of andesite of Rodeo Grounds is an outcrop of andesite at Table 

Mountain (Plate I; sec. 19, T.27N., R.18W.) that was dated at approximately 

17.98 Ma (•OAr/39Ar with no analytical uncertainty available; Cans and Faulds, 

unpublished data). The 17.98 Ma andesite at Table Mountain is the basal 

volcanic unit in that area and lies on coarse conglomerates that in turn lie on 
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Precambrian basement. The 17.98 Ma age will be adopted for andesite of 

Rodeo Grounds based the similar stratigraphic position, similar mineralogies, 

and close proximity to the DSV. Overlying the 16.09 ± 0.15 Ma tuff 2 of 

Culdesac Wash is the andesite of Powerline Road (Fig 2-1). Because the 

Powerline Road unit overlies tuff 2 of Culdesac Wash it is younger than 16.09 

Ma. 

In the northern DSV (Fig. 2-2) tuff of Table Mountain lies within 

gravel conglomerate unit 2 which is capped by basalt of Table Mountain (Fig 

2·1). Tuff of Table Mountain is younger than 17.98 Ma (the age assumed for 

the underlying andesite of Rodeo Grounds). Basalt of Table Mountain is the 

highest stratigraphic unit in the northern DSV stratigraphic section (Fig. 2-1). 

This coupled with the fact that it is the least tilted ( <10°) of any DSV volcanic 

unit suggests that the basalt of Table Mountain is the youngest volcanic unit 

within the DSV. Basalt of Table Mountain has been previously reported as 

8.5 Ma (Calderone, 1991) and 10.5 (Bradshaw et al., 1993). The 8.5 Ma age 

appears as a personal communication in Calderone (1991) and because the 

method was undisclosed this age will not be considered. The 10.5 Ma age 

reported by Bradshaw et al. (1993) is based on stratigraphic relationships that 

were not discussed. Thus, no reliable age is available for the basalt of Table 

Mountain. 

As discussed later in Chapter 6, basalt of Table Mountain geochemically 

correlates with tholeiitic basalts of Senator Mountain (Cascadden, 1991) and 

Malpais Flattop (Feuerbach et al., 1993). These two CREC tholeiites are located 

less than 40 km from Table Mountain (Fig. 1-1). All three of them occur as 50-

100 m thick lava capped mesas overlying coarse Tertiary gravels. The age of 
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the capping basalt flows of Malpais Flattop is well-constrained between 11.88 ± 

0.15 Ma and 11.37 ± 0.14 Ma (40Arf39Ar, Gans and Faulds, unpublished data). 

Senator Mountain has not been radiometrically dated, but Cascadden (1991) 

indicated that it is similar to a 10.91± 0.6 Ma (K/ Ar) basalt reported by 

Theodore et al. (1982) that lies in the central White Hills. Based on this data, 

basalt of Table Mountain is assigned an age of -11 Ma. 
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Figure 2-1. Schematic stratigraphic columns for the southern and northern Dolan Springs 
volcanic field showing inferred stratigraphic correlations and inferred ages. Note angular 
unconformity above the andesite of Rodeo Grounds. 



Tertiary volcanic and sedimentary rocks 
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Figure 2-2. Schematic map of the Dolan Springs volcanic modified from Plate I. 
Dashed line indicates the division between the northern and southern sections 
of the study area mentioned in the text 

26 



CHAPTER3 

Structural Geology of the Dolan 

Springs Volcanic Field 

Tilted Strata and Angular Unconformities 

The Dolan Springs volcanic field (DSV) was affected by large-scale 

Miocene crustal extension similar to most of the Colorado River extensional 

corridor (CREC). Geologic mapping confirmed that the majority of the DSV 

lies on the eastern side of the structural accommodation zone defined by 

Faulds et a!. (1990). This section draws upon data primarily taken from the 

geologic map at a scale of 1:24,000 (Plate I) and the associated cross-sections 

(Plate II). Tertiary strata in the DSV have bedding and flow foliations that are 

dominantly tilted to the east between 9-45°. The only exception are west tilted 

beds in the extreme western ridge of the DSV (unmapped) at sec. 11, 12, and 

13, T.26N., R.19W. (Plate I). Older units tend to dip more steeply than 

younger units. 

Two lines of evidence indicate that a prominent angular unconformity 

exists at the top of the andesite of Rodeo Grounds (Fig. 2-1, Plate I). First, 

andesite of Rodeo Grounds generally has steeper dips (22-60°) than the 

overlying units (9-40°). Second, an angular unconformity is exposed between 

the andesite of Rodeo Grounds and the andesite of Alta Spring and tuff 2 of 

Culdesac Wash in a canyon exposure at sec. 16, T.26N., R.19W. (Plate 1). The 

entire Culdesac rhyolite complex is assumed to be conformable, because no 
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angular unconformities or erosional surfaces were observed between contacts. 

In the cross-bedded conglomerates that comprise the upper third of 

gravel conglomerate unit 2, dips progressively decrease up section. The 

fanning dips are compatible with a growth fault basin interpretation, 

therefore, this unit is inferred to have been deposited contemporaneously 

with extensional faulting. The youngest volcanic unit, basalt of Table 

Mountain, was deposited during the waning stage of extension as evidenced 

by its shallow dip (<9°) and small degree of fault displacement (10-20 m). 

Faults 

All observed faults in the DSV are high angle normal faults that appear 

to be planar with depth. Fault orientations and stratigraphic separations 

suggest that the composite direction of maximum extension at the D5V is 

approximately east-west. Faults in the DSV are usually at a high angle to 

bedding although exceptions do exist. Faults in the D5V generally strike 

north, northeast, or northwest. Based on cross-cutting relationships, three 

generations of faults were identified in both the southern (51-53) and 

northern (Nl-N3) DSV (Fig. 2-2). 

The faults in the southern DSV (Fig. 2-2) are described first. The cross 

cutting relationships of the earliest faulting events are difficult to put in age 

context with each other because they are isolated from other faults. All of 

these earliest faults will be grouped under episode 51. All of the Sl faults cut 

units from the basal gravel conglomerate unit 1 up to andesite of Power line 

Road (Fig. 2-1). 51 faults strike northwest and either (1) dip moderately to 
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steeply southwest (20-50°) with down to the west stratigraphic separation, or 

(2) dip moderately northeast with down to the northeast stratigraphic 

separation. A single fault apparently of this same generation strikes northeast 

and dips steeply northwest. 

All the Sl faults are in turn cut by a series of north-south striking faults 

belonging to episode S2. The S2 faults dip steeply west and have down to the 

west stratigraphic separation. One exception is an S2 fault that dips 

moderately (30-45°) east and cuts bedding at a low-angle. Both the Sl and the 

S2 faults are covered by gravel unit 3. 

The youngest fault in the southern DSV is assigned to episode 53. It is 

a single near vertical northeast striking fault that cuts gravel unit 3, the 

andesites of Powerline Road and Alta Spring, and tuff 2 of Culdesac Wash. 

In the northern DSV (Fig. 2-2) the stratigraphy and faulting 

relationships are different from those in the south. The oldest faults in the 

northern DSV, referred to as Nl, strike north-south, dip moderately west, and 

have apparent down to the west displacement. The current exposure level 

shows Nl faults cutting only the two lowest units of the northern 

stratigraphic section (Fig. 2-1), gravel conglomerate unit 1 and andesite of 

Rodeo Grounds. 

The Nl faults are cut by episode N2 faults that strike east-west and dip 

steeply north to near vertical. At the current level of exposure, the N2 faults 

cut the two lowest stratigraphic units as well as gravel conglomerate unit 2 

and tuff of Table Mountain. 
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The third generation of faults in the northern DSV, N3, cuts the 

youngest stratigraphic unit in the DSV, basalt of Table Mountain. The N3 

faults strike north-northwest and dip steeply west, one exception strikes east

west and dips steeply north. 



CHAPTER4 

Eruptive, Depositional and Tectonic History of 

the Dolan Springs Volcanic Field 

The following model for the development of the eruptive, 

depositional, and tectonic history of the Dolan Springs volcanic field (DSV) is 

divided into pre-extension, synextension, and post-peak extension phases. 

Evidence for a possible caldera related to the Culdesac rhyolite complex is 

discussed in the synextensional section. 

Pre-extension History 

During the pre-extension stage of the DSV, gravel conglomerate unit 1 

and andesite of Rodeo Grounds were deposited. Volcanic sediments do not 

make any substantial contribution to gravel conglomerate unit 1 (see Chapter 

2), therefore, volcanism in the DSV had not yet begun at this time. Gravel 

conglomerate unit 1 includes megabreccia blocks of Precambrian basement 

rocks that are interpreted as landslides deposits, based on their size and 

angular nature. 

Three modern locations of Precambrian highlands may have supplied 

the sediments and megabreccia blocks to the DSV. These are the central Black 

Mountains <15 km west of DSV, the Cerbat Mountains 10 km southeast of 

DSV, and Garnet Mountain 45 km northwest of DSV (Fig. 1-1). Another 

potential source for the Precambrian clasts and megabreccia blocks is the Gold 
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Basin District (Fig. 1-1) located less that 10 km north of the Table Mountain 

Plateau. The Gold Basin District is at present a low lying area of Precambrian 

basement exposed in the footwall of a low-angle detachment fault (Meyers, 

1984). The detachment fault is exposed completely within the Precambrian 

basement rock but carries Tertiary strata in the hanging wall. The Northern 

White Hills volcanic field (NWH) contains similar megabreccia deposits that 

contain Precambrian clasts (Casscaden, 1991) and lies just north of the Gold 

Basin District. The Gold Basin District is the closest modern location of 

Precambrian basement to both the DSV and NWH. The Gold Basin District 

stands out in the White Hills as an isolated exposure of Precambrian 

basement surrounded by thick Tertiary volcanic and sedimentary cover. The 

pre-extension paleotopography may have been dramatically different from 

modern topography and the Gold Basin District might have had sufficient 

topographic relief to contribute debris to the northern and southern White 

Hills. 

Further detailed work on the lithologies present in the megabreccias 

and the current exposures of Precambrian lithologies may constrain the 

location of the source of the megabreccia blocks. However, it should be noted 

that the source of the Precambrian clasts may now be buried beneath volcanic 

material or detritus and cannot be found. 

The andesite of Rodeo Grounds eruptions began approximately 17.98 

Ma (see Chapter 2 for explanation on age). The andesite is at its maximum 

thickness in the southern DSV (Fig. 2-2) which suggests a vent(s) near this 

location. Lava flows, debris flows, and ash-flow tuffs accumulated in thick 

discontinuous sheets. These eruptions were voluminous, producing a 
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package of intermediate composition volcanic rocks >1 km thick. No angular 

unconformities or contemporaneous faults were observed within andesite of 

Rodeo Grounds, therefore extensional faulting and block tilting appear to 

have begun after the cessation of these eruptions. 

Synextension History 

Extensional faulting and block tilting began in the DSV before the 

deposition of gravel conglomerate unit 2 and tuff 1 of Culdesac Wash (Fig. 2· 

1). Both units overlie tilted flows of Rodeo Grounds. The faults that caused 

tilting of the andesite of Rodeo Grounds and the resulting unconformity were 

not identified in the field area. Even the oldest episodes of faults (SI and Nl) 

cut units younger than the angular unconformity. 

The eruption of the Culdesac rhyolite complex, the andesite of Alta 

Springs and the basal flow of andesite of Powerline Road occurred before 

additional tilting, because no angular unconformities exists between these 

units. Andesite of Alta Spring, which like the Culdesac complex units, is 

confined to the southwestern part of the field area, probably erupted from a 

vent in the southern part of the DSV. 

In the southern DSV (Fig. 2·2), faulting episodes 51 and 52 cut all the 

stratigraphy from gravel conglomerate unit 1 to the andesite of Powerline 

Road (Fig. 2-1). In the southern DSV (Fig. 2-2), gravel conglomerate unit 2 

was deposited concurrently with extension and volcanism as evidenced by 

the decreasing dips up section of the conglomerate. The fanning dips are 

consistent with a growth fault basin interpretation for the depositional 



34 
environment. West dipping faults, between the DSV and the Grand Wash 

Cliffs (Fig. 1-1), may have been responsible for opening the basin and 

changing the depositional slope. An alternative hypothesis is that the 

fanning dips simply represent the progressive filling of a basin. Tuff of Table 

Mountain was erupted during the deposition of gravel conglomerate unit 2. 

Faulting episodes N1 and N2 cut stratigraphy from gravel conglomerate 1 to 

gravel conglomerate 2 (Fig. 2-1) and occurred prior to the eruption of basalt of 

Table Mountain. 

The pre- and synextension volcanic rocks seem to be concentrated to 

the south and west whereas the sedimentary deposits are thickest in the 

northern DSV (Fig. 2-2). The maximum thickness of both gravel 

conglomerate units 1 and 2 occurs near Table Mountain Plateau. That 

suggests the existence of a long lived paleo-basin at that location. The 

southern and western DSV where the pre- and synextension volcanic rocks 

are concentrated may have been topographically higher and acted as a barrier 

to deposition of sedimentary rocks. Though it is speculative at best, the 

southwestern DSV may represent the flanks of an eroded and dissected 

stratovolcano with thick sequences of andesitic lavas and debris flows with 

lesser amounts of felsic lavas. 

Notably absent from the DSV are two regional ash-flow tuffs, the Peach 

Springs tuff and the tuff of Bridge Spring. Peach Springs tuff (18.5 Ma) is older 

than andesite of Rodeo Grounds and may be lower in the section, but the 

15.21 Ma (Faulds et al., 1995) tuff of Bridge Spring should be present. Tuff of 

Bridge Spring crops out in both the Northern White Hills less than 40 km to 

the north and in the central Black Mountains less than 15 km west. One 
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possible explanation for the lack of tuff of Bridge Spring is that topographic 

barriers existed preventing its deposition. These barriers may have been the 

same highlands that supplied the megabreccias to the DSV basin. 

Alternatively there may not have been enough material in the tuff of Bridge 

Spring eruption to cover the southern White Hills. 

A Possible Synextension Caldera Near DSV 

Several lines of evidence suggest that the Culdesac rhyolite complex 

represents a portion of a felsic eruptive center, perhaps a caldera margin. 

Caldera margins are characterized by the presence of pyroclastic surges, 

rhyolite flows and domes, and megabreccias (Fisher and Schmincke, 1984). 

Though no rhyolite domes occur at the DSV, rhyolite flows are abundant at 

the Culdesac Wash. These flows indicate a nearby vent because rhyolite is too 

viscous to travel far. Second, surge deposits, also present at Culdesac Wash, 

form near vents by collapse of plinian eruption clouds (Fisher and 

Schmincke, 1984). Finally, megabreccia blocks are contained in tuff 2 of 

Culdesac Wash near the Alta Spring locale. The breccia blocks are of andesite 

similar to andesite of Rodeo Grounds, which may have been eroded from a 

vent during an eruption. The area around Alta Spring is not a caldera 

margin, but large blocks such as these could not have traveled far in an ash

flow. These features suggest that the various units of the Culdesac rhyolite 

complex and specifically the Culdesac Wash locale, are associated with a 

caldera margin that is inferred to lie beneath Detrital Wash, south or west of 

the field area. 
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Post-peak extension History 

The youngest volcanic unit at the DSV is basalt of Table Mountain. 

The exposure of the basalt of Table Mountain is elongated east-west and 

appears to have flowed in the same basin that contained gravel conglomerate 

units 1 and 2. Table Mountain was cut by three faults (episode N3) towards 

the end of extension. 

The youngest sedimentary unit in the DSV is gravel unit 3 which was 

deposited on highly tilted volcanic rocks and covers faults of episodes Sl and 

52. Gravel unit 3 is cut by a single northeast striking fault (fault episode 53). 

No points of reference place gravel unit 3 in chronologie context with basalt 

of Table Mountain. Remnants of gravel unit 3 with boulder sized clasts of 

Precambrian basement appear on hill tops and in high saddles in many places 

in the DSV. The existence of these stranded gravels implies that parts or all of 

the DSV were previously buried in alluvium and then later exhumed. 



CHAPTERS 

Geochemistry of the Dolan Springs 

Volcanic Rocks 

Introduction 

For the purpose of discussing the geochemistry, the Dolan Springs 

volcanic field (DSV) units are divided into two groups. The first group 

comprises the older, pre- to synextensionallavas and tuffs (17.98 to >11 Ma): 

the andesites of Rodeo Grounds, Alta Spring, and Powerline Road, the 

Culdesac rhyolite complex, and tuff of Table Mountain. The second much 

smaller group of rocks represents lavas erupted during the waning phase of 

extension (the "'11 Ma basalt of Table Mountain). Major, trace element, and 

isotopic analyses as well as rock norms are found in Appendix A. Analytical 

methods and analytical uncertainties are reported in Appendix B. Plate III is a 

sample location map. 

Classification and Normative Mineralogy 

Rocks of the Dolan Springs volcanic field are predominantly 

subalkaline. However four of the pre- and synextensional basalts are alkaline 

{Fig. 5-la). Collectively the pre- and synextensional rocks are calc-alkaline 

(Fig. 5-lb & c). Basalt of Table Mountain is subalkaline (Fig. 5-la) and is 

tholeiitic (Fig. 5-lb & c). Most of the DSV rocks underwent some degree of 
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secondary alteration as evidenced by the carbonate coatings in fractures and 

vesicles and the conversion of olivine to iddingsite. A plot of Na20 versus 

K20 (Fig 5-2) was used to evaluate the degree of alteration. Boxes on the plot 

represent the fields of "normal" (unaltered) igneous rocks from Carmichael et 

a!. (1974) and Wilson (1989). All of the DSV rocks, except a few of the felsic 

rocks, are within one of these two "normal" fields. Therefore, metasomatism 

does not appear to have appreciable affected the DSV rocks. 

The normative classification Color Index versus Anorthite % diagram 

(Fig. 5-lc) of Irvine and Baragar (1971) minimizes the affect of the alkali 

mobility and was used to assign rock names. The older pre- to synextensional 

mafic units, including the andesites of Rodeo Grounds, Alta Spring, and 

Powerline Road, range in composition from dacite to basalt, but are 

dominated by andesite and will be referred to collectively as andesites. The 

felsic rocks of the Culdesac rhyolite complex and tuff of Table Mountain 

(Ttmt) range from rhyolite to dacite and for simplicity will be referred to as 

rhyolite. Seven analyses from the Culdesac rhyolite complex included in this 

data set (Appendix A, Table A-2) are used with the permission of Morikawa 

(1993; & unpublished data). 

All of the pre- to synextensional mafic rocks are hypersthene (3.6-12%) 

and quartz normative except for the least evolved (lowest Si02 ) sample of 

each group, which are hypersthene and olivine normative. All samples of 

the basalt of Table Mountain are basalts (Fig 5-1 d) and except for a single 

sample (Ttmb-16), all of the basalt of Table Mountain samples are olivine 

normative and generally are the most strongly hypersthene normative (7.4-

18.5 wt.%). 
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Major Elements 

Harker variation diagrams (Fig. 5-3) show three groups: (1) the older 

mafic to intermediate rocks (andesite of Rodeo Grounds, andesite of Alta 

Spring, and andesite of Power line Road), (2) the younger basalt of Table 

Mountain, and (3) the felsic rocks of the Culdesac rhyolite complex and the 

tuff of Table Mountain. All the mafic to intermediate rocks range in Si02 

from 49-60 wt.%. A pronounced compositional gap from 60-70 wt.% Si02 

occurs between the intermediate and felsic samples, with the exception of one 

Rodeo Grounds sample (Tra-33) at 66 wt.% Si02• The DSV felsic rocks range 

from 68-78 wt.%Si02• The range in Ah03 (13-18 wt%) is large for all the older 

intermediate and mafic rocks, but basalt of Table Mountain has the narrowest 

range (14.8-15.8%; Fig. 5-3a). Basalt of Table Mountain samples have the 

highest MgO, FeO•, Ti02, and CaO, while having the lowest Si02 , K20, and 

P20 5. In addition, samples of basalt of Table Mountain contrast with the 

earlier rocks by having negative slopes for Al20 3 and Na20 and positive 

slopes on MgO and TiOz. The andesites of Powerline Road and Alta Spring 

are more similar chemically than the earlier andesite of Rodeo Grounds. 

The felsic rocks (Culdesac rhyolite complex and tuff of Table Mountain) 

range in Si02 from 68-78 wt.%. Culdesac Wash rhyolite lava generally has 

lower Si02 values than the tuffaceous samples: tuff 2 of Culdesac Wash and 

tuff of Table Mountain. Most tuff samples were sampled by extraction of 

pumice fragments, and thus more closely represent the composition of the 

magma at the time of eruption, than the lavas (see Appendix A for 

description of individual samples). The lavas and vitrophyres have lower 



Si02 and high TiOz. The felsic rocks show a steep negative slope on Na20 

that contrasts with the mafic rocks. The felsic rocks have lower 

concentrations of MgO, FeO*, Ti02 , CaO, and P20 5 than the mafic rocks. 

Similar to the mafic rocks, Al20 3 shows the most scatter in Si02 • 

Trace Elements 
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Trace element compositions display the same three groups as the 

major elements. For the mafic to intermediate rocks the sample with the 

lowest wt.% Si02 (range 49-53%) was chosen from each DSV unit to represent 

the most primitive member of that group. On chondrite normalized rare

earth element (REE) plots (Fig. 5-4a) the older rocks (andesites of Rodeo 

Grounds, Alta Spring, and Powerline Road) have similar, steep enriched 

patterns for the heavy rare-earth elements (HREE). Basalt of Table Mountain 

has the flattest profile and lowest REE concentrations (except Yb) of any unit. 

Figure 5-4b is a chondrite normalized REE plot of three felsic samples, a dacite 

lava from Culdesac Wash (Tcr-93-10), a pumice fragment from tuff 2 of 

Culdesac Wash (Tct2-37), and a whole rock analysis of tuff of Table Mountain 

(Ttmt-18). The Culdesac dacite lava has higher overall REE concentrations 

and does not have the Eu anomaly displayed by the tuffs. The whole rock 

sample of tuff of Table Mountain has higher REE concentrations and a sharp 

negative Eu anomaly. 

Differences among the mafic units are seen clearly on a primordial

mantle normalized spider diagram (Fig. 5-5). The diagram is plotted with 

elements in order of increasing compatibility from the left using normalizing 
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values from Sun and McDonough (1989). The early pre- to synextensional 

rocks (andesites of Rodeo Grounds, Alta Spring, and Powerline Road) show 

similar patterns, characterized by large ion lithophile elements (LILE, i.e., Rb, 

Ba, & K) and the light rare-earth elements (LREE, i.e., La & Ce) enriched 

relative to the high field strength elements (HFSE, i.e., Ta, Nb, Zr, Ti, & Y) 

and HREE (i.e., Yb & Lu). The older mafic rocks reach their maxima at either 

Th (andesite of Rodeo Grounds) or Ba (andesite of Powerline Road and 

andesite of Alta Spring), and display a prominent trough at Nb-Ta and less 

prominent ones at P and Ti. There are sharp down steps in concentration for 

elements more compatible than Sr and then again at Ti. 

The Table Mountain sample has a distinctly different pattern 

characterized by a smoother convex up mantle-normalized profile (Fig 5-S). 

These rocks have lower overall trace element abundances compared to the 

earlier mafic rocks. Basalt of Table Mountain reaches its maxima at Ba, but 

lacks the Nb, P, or Ti troughs and the steps down at Sr and Ti. 

Isotopic Geochemistry 

All of the DSV rocks are isotopically enriched meaning that they are 

enriched in LILEs and LREE (i.e., Rb and Nd) and thus have higher Rb/Sr 

ratios and lower Sm/Nd than bulk earth (Faure, 1986). All of the DSV 

samples have lower than bulk-earth CNd and higher than bulk-earth 

87Sr f86Sr(i) (Fig. 5-6). Basalt of Table Mountain has values closest to bulk

earth while the Culdesac rhyolite complex diverges the most. One pumice 

sample (Tct2-41) has a 87Srf86Sr(i) of 0.719 which is shown with an arrow 



designating its position off the plot. The 87Sr j86Sr(i) of the DSV rocks 

increases with increasing Si02 , while the ENd uniformly decreases (5-7a&b). 

The similarity of the older mafic and intermediate rocks is again apparent 

while basalt of Table Mountain samples are distinctly different. Isotopic 

variation in the DSV suite is summarized in Table 5-l. 
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MgO 

Figure 5-1 a-d. Classification of Dolan Springs volcanic field rocks by geochemistry and 
normative mineralogy (I !Vine and Baragar, 1971 ). An% = 100 An/(An+Ab+(5/3Ne)), Color 
Index= ol + opx + cpx + mt + il + hm in wt.%, 01' = 01 + 3/4 OPX, Ne' = Ne + 315Ab, Q' = Q + 
2/5Ab + 1/40PX. 
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Table 5-1: Isotopic variation for the Dolan Springs volcanic field. 

Culdesac 
Ttmb Tpa Tasa Complex Ttmt Tra 

number analyzed 2 4 2 5 1 5 
min. 0.7053 0.7085 0.7086 0.7082 0.7086 

87/86 Sr(i) max. 0.7057 0.7088 0.7088 0.7193 0.7105 
avg. 0.7055 0.7086 0.7087 0.7114 0.7096 0.7097 
min. -4.26 -7.65 -7.28 -10.09 -9.20 

epsilon Nd max. -3.61 -7.91 -8.20 -9.42 -7.52 
avg. -3.94 -7.57 -7.74 -9.83 -9.30 -8.26 
min. 17.39 18.26 18.30 17.95 18.56 

206/204Pb max. 17.60 18.48 18.30 18.03 18.60 
avg. 17.50 18.35 18.30 18.02 18.03 18.58 
min. 15.46 15.58 15.59 15.53 15.58 

207/204Pb max. 15.51 15.59 15.59 15.58 15.61 
avg. 15.48 15.58 15.59 15.56 15.54 15.60 
min. 37.45 38.69 38.79 38.79 39.19 

208/204Pb max. 37.69 38.85 38.79 38.95 39.26 
avg. 37.57 38.75 38.79 38.85 38.96 39.23 
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CHAPTER6 

Magmatic History of the DSV and the 
Nature of the CREC Mantle 

Introduction 

Previous work suggests that primitive basaltic magmatism during the 

Miocene in the CREC can be broadly divided into two genetically distinct 

groups (Bradshaw, 1991; Fitton eta!., 1991; Kempton et a!., 1991; Bradshaw et 

a!., 1993; Feuerbach et al., 1993). The first group is mainly calc-alkaline 

intermediate rocks that were erupted between the onset of volcanism until 6 

Ma. This first group broadly overlaps with extension in the CREC and 

represents approximately 95% of the volume of all CREC volcanism 

(Bradshaw et al., 1993). The pre-6 Ma mafic volcanism has been linked by 

numerous workers to a source in the lithospheric mantle (Glazner and 

Bartley, 1984; Smith et al., 1990; Bradshaw, 1991; Fitton et al., 1991; Kempton et 

al., 1991; Ormerod et al., 1991; Bradshaw et al., 1993; Feuerbach et al., 1993). 

These rocks have a wide range of enriched isotopic ratios (synextensional 

lavas on Fig. 6-1). 

The majority of the pre-6 Ma rocks are enriched in LILE and LREE 

compared to HFSE and HREE producing the series of peaks and dips and the 

prominent Nb-Ta trough characteristic of Basin and Range synextensional 

magmatism (sample M0-2 in Fig 6-2). Such trace element signatures are 
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typical of subduction related settings (e.g., Yogodzinski et al., 1994), but in 

areas of continental extension they are unique to the lithosphere beneath the 

Basin and Range (cf. Fig. 10, p. 13,708, Western rift East Africa, in Fitton et al., 

1991; Table 4, p. 241, Siberian Baikal rift, in Ionov et a!., 1992). This 

'subduction-type' signature is thought to be produced by ancient subduction 

related processes which chemically modify the overlying subcontinental 

lithospheric mantle (discussed later). 

The second CREC group includes mafic alkali basalts of Miocene

Pliocene age (6-4 Ma). The post-6 Ma CREC basalts have asthenospheric 

isotopic signatures (Fig. 6-1; eNd"' -1 to + 7; 87Sr j86Sr(i) ::: 0.703-0.705) with trace 

element patterns (i.e., low LILE/HFSE ratios, no Nb-Ta trough) similar to that 

of ocean island basalts (Offi). The change from lithospheric to asthenospheric 

magmatism is attributed to adiabatic melting of rising asthenosphere 

(Bradshaw, 1991; Fitton eta!., 1991; Kempton et al., 1991; Daley and DePaolo, 

1992; Bradshaw et a!., 1993; Feuerbach eta!., 1993). The abrupt transition to 

asthenospheric lavas is clear on a plot of age versus tNd (Fig. 6-3) where a 

sharp change is seen at approximately 6 Ma. No pre-6 Ma asthenospheric 

derived lavas are present at the DSV, but they are abundant near Lake Mead 

(e.g., Fortification Hill, Lava Cascade, Grand Wash Trough), 50 km to north of 

DSV. The distinction between lithosphere and asthenosphere in this study is 

made solely on the basis of geochemistry and does not rely on geophysical 

properties. 

This chapter discusses the genesis and source of the mafic volcanic 

rocks of the Dolan Springs volcanic field (DSV) and places them in a regional 

context. Most of the DSV rocks are broadly similar to the regional 



geochemical trends mentioned above, yet the youngest DSV basalts are 

tholeiitic and quite unique. The trace element character of the mantle is 

addressed and a hypothesis about stratification of trace element abundance 

will be presented. Additionally, a potential correlation between the Mt. 

Perkins pluton and the DSV is briefly explored. Finally, two models are 

presented, one for Basin and Range trace element enrichment and a second 

for magma genesis in the CREC. 

Introduction to DSV Magmatic History 
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Volcanism at the DSV began approximately at 17.98 Ma and lasted until 

about 11 Ma. Therefore, DSV rocks fall completely within the earlier CREC 

group mentioned above. The DSV volcanic rocks will be discussed in two 

groups, those erupted prior to and during extension, and those erupted after 

major extension ended. For simplicity the first group will be referred to as 

synextensional and the second as postextensional. 

As a whole the DSV synextensional volcanic record (-17.98 Ma to 

-16.09 Ma) is dominated by calc-alkaline intermediate compositions (i.e., 

andesite and basaltic-andesite, Fig. 5-1). However, the most primitive DSV 

synextension basalts (Fig. 5-la) are alkalic and may be a closer representation 

of the parental magma from which the intermediate rocks evolved. None of 

the mafic rocks in the DSV probably represent unevolved mantle melts, but 

they are still the best source of information on the character of the mantle 

source. 

The DSV synextensional rocks display isotopic variation with respect to 
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Si02 (Fig. 5-7) which suggests open system evolutionary processes. Other 

CREC calc-alkalic rocks with similar evidence for open system evolution 

have been effectively modeled by other workers with combinations of 

fractional crystallization and magma mixing (Feuerbach eta!., 1986; Larsen 

and Smith, 1990; Smith et a!., 1990; Cascadden, 1991; Falkner, 1993; Metcalf, et 

a!. 1993; Metcalf, et a!. 1995). The mafic end-members in these suites are 

mantle derived alkali basalts. Felsic end-members in such systems are 

thought to represent crustal melts. Rocks of the Culdesac rhyolite complex 

have trace element and isotopic compositions similar to the felsic end 

members used to model the petrogenesis of the Mt. Perkins (Metcalf et al., 

1995), Wilson Ridge (Larsen and Smith, 1990, Feuerbach et al., 1993) and Aztec 

Wash plutons (Falkner, 1993; Falkner eta!., 1995). Growing evidence suggests 

there is little variability in the CREC crustal source and that individual suites 

are most clearly discriminated by the mafic end-members that are driving the 

evolutionary processes (R.V. Metcalf, personal communication, 1995). The 

genesis of the most primitive rocks of the DSV and CREC is the primary 

interest here, so only the most mafic samples(< 55 wt.% Si02) from any data 

set will be considered here. 

The postextensional volcanic history of the DSV is uncommon for the 

CREC. Low volume tholeiitic basalts were erupted at approximately 11 Ma 

(age discussed in Chapter 2). No felsic or intermediate volcanism 

accompanied this tholeiitic pulse. The discussion of the DSV tholeiites is 

expanded to include other tholeiites identified elsewhere in the Colorado 

River extensional corridor (CREC). 
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Discussion of the Origin of Mafic Magmas 

Synextensional Magmatism 

The geochemical signature of synextensional basalts at the DSV is 

similar to basalts from other synextensional CREC volcanic fields. Figure 6-2 

compares three DSV synextensional basalts with two synextensional basalts 

from Lake Havasu City, Arizona (Fig. 1-1), south of DSV (Bradshaw et at., 

1993). The Lake Havasu City samples are representative of the regional CREC 

data set examined by Bradshaw et al. (1993). 

Bradshaw et a!. (1993) modeled the genesis of a large database of 

synextensional basalts from across the CREC (similar to DSV) with non

modal batch-melting of averaged lithospheric mantle compositions (from 

both Colorado Plateau mantle xenoliths and a modeled lithospheric source). 

Batch melts (1-25%) of a fertile garnet-bearing (2.5-4%) lherzolite explain most 

of the primitive basalts (i.e., M0-2 Fig. 6-2). 

A subset of the Bradshaw eta!. (1993) data contains basalts (referred to 

as group 2a) from Lake Havasu City, Arizona, erupted during the final stages 

of synextensional magmatism at that latitude (14-14.7 Ma). Lake Havasu City 

lies at the axis of the CREC in one of the most highly extended areas 

(Bradshaw et at., 1993). These rocks have a trace element pattern similar to 

the early synextensional rocks for elements more incompatible than the 

LREE's, but with lower overall abundances (Fig. 6-2). The young Lake Havasu 

City rocks, however, have a flatter profile for elements more compatible than 

La and higher abundances for elements more compatible than Ti (i.e., Y, Yb, 

Lu) than the older synextensional basalts (Fig 6-2). In addition larger degrees 
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of melting in the source can be invoked to create these more depleted 

signatures but that does not explain the higher Y and HREE (Yb & Lu) values. 

Larger degrees of melting are not intuitively consistent with the decreasing 

volume of volcanic material produced as extension waned. 

An alternative method of producing the lower trace element 

abundances of the late extensional Lake Havasu City basalts is by melting a 

more depleted source. Bradshaw et al. (1993) modeled formation of the late 

extension Lake Havasu City basalts with 2-6% melting of a garnet absent, 

spinel bearing source. A spinel rather than garnet bearing source accounts for 

the higher Yb contents in the younger basalts. Ytterbium is incompatible in 

most mantle minerals (including spinel), with the exception of garnet which 

preferentially retains Yb ( D~·' > D~"'.t ). Partial melting of a spinel-bearing 

source will release larger amounts of Yb than a garnet-bearing source. 

Xenoliths found within lavas are commonly garnet bearing peridotites, but 

depleted spinel lherzolite xenoliths have been found in the southern Arizona 

transition zone (Frey and Printz, 1978). Bradshaw eta!. (1993) used the 

composition of a spinel bearing xenolith from the San Carlos volcanic field, 

Arizona (Frey and Printz, 1978) for their modeling of the late extension Lake 

Havasu City basalts. The San Carlos xenoliths have both a different modal 

mineralogy and different bulk composition from the garnet xenolith 

compositions used for modeling the earlier synextensional basalts. Bradshaw 

et a!. (1993) suggest that the late synextensional basalts melted from a 

shallower source than the earlier synextensional basalts, because spinel is 

stable in the mantle at shallower pressures than garnet. Therefore, Bradshaw 

et al. (1993) concluded that the depth of melting decreased as extension 
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progressed based on the mineral stabilities of the changing sources modeled 

for the synextensional basalts. 

Bradshaw et a!. (1993) showed that rocks from all over the CREC share 

the same trace element traits as sample M0-2 (Fig. 6-2). The three DSV 

samples also share this trace element pattern further suggesting that 

synextensional volcanism across the CREC shared a source in the lithospheric 

mantle and similar history of melt generation. 

Isotopes (Sm-Nd and Rb-Sr) lend support to the lithospheric mantle 

source hypothesis for CREC synextensional rocks. The mafic DSV 

synextensional rocks are isotopically enriched (Table 5-1, Fig. 5-5, Avg. ENd = 

-7.62, 87Srj86Sr(i) = 0.709 for Si02 <55 wt.%). Two mechanisms may create 

isotopically enriched mantle reservoirs. The first mechanisms creates 

intermediate isotopic ratios via mixing of less enriched primary magmas with 

highly enriched crustal material. The second mechanisms , which is 

preferred here, assumes that primary magmas inherit their isotopic ratios 

from their source. The first path was explored by Daley and DePaolo (1992) 

and Bradshaw eta!. (1993) and their modeling suggests that mixing of 55-65% 

felsic crust (ENd = -18.0) is necessary to shift depleted isotopic values 

(asthenosphere ENd "' +6.0) to the observed values. Crustal contamination of 

this degree would elevate Si02 wt.% much higher than observed in the DSV 

(e.g., sample Tasa-83 has ENd =-8.2 & Si02 = 53.5 wt. %). 

Cryptic contamination by a mafic crustal source can produce changes in 

isotopic composition while leaving the major element composition 

unaffected. This model has been used to explain the systematic shift of three 
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ENd units seen in successive flows at the Amboy crater field in the Mohave 

region (Glazner and Farmer, 1991; Glazner eta!., 1991). This model seems 

thermodynamically unreasonable, however, because it requires the mixing of 

a 50% melt of Jurassic gabbro to change the isotopic signature of an 

asthenospheric basalt without affecting the major elements. The shift needed 

to account for CREC basalts would be much greater from ENd = +6 (typical of 

asthenosphere) to tNd = -10 (most enriched synextensional basalts). 

In addition, it seems unlikely that contamination could produce large 

amounts of mafic magmas with such similar trace element signatures (Fig. 6-

2) for a period of 10 my (20-10 Ma). It requires a crustal reservoir with rather 

uniform trace element composition. Therefore, the preferred hypothesis is 

that the enriched isotopic character of the synextensional basalts is inherited 

from their source region and any crustal contamination is minor. To create 

enriched isotopic reservoirs, the mantle source must be isolated from the 

convecting mantle for an extended period of time (>1 by). The age of 

lithosphere mantle beneath the CREC and the timing of the trace element 

enrichment is discussed in a Ia ter section. 

Postextensional Magmatism 

The postextensional volcanism in the DSV is limited to the tholeiitic 

basalts of Table Mountain, which are volumetrically minor compared to the 

synextensional rocks, but mark a significant departure in chemical character 

from the earlier volcanism. On a primitive mantle normalized diagram (Fig 

6-4a) the basalt of Table Mountain has a smoother convex up trace element 
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signature compared to a typical synextensional basalt and is similar to ocean 

island basalts (OIB). OIB magmas (e.g., Hawaii) originate in the convecting 

asthenosphere below the asthenospheric mid-ocean ridge basalt (MORB) 

source. Post-6 Ma basaltic rocks in the CREC also displays OIB like trace 

elements with isotopic ratios (ENd= -1 to +7; 87Sr j86Sr(i) = 0.703-0.705) typical 

of asthenospheric derived magmas (Bradshaw, 1991; Fitton et al., 1991; 

Kempton et al., 1991; Bradshaw et a!., 1993). Table Mountain, however, has 

an enriched isotopic signature suggestive of a source in, or contamination 

from, the lithosphere (87Sr j86Sr(i) = 0.705-0.707; ENd = -3.5 to -4.5). 

In the CREC primitive basalts are almost ubiquitously alkalic; tholeiitic 

magmatism is rare. The only previously described occurrences of tholeiites in 

the CREC are at Malpais Flattop (Daley and DePaolo, 1992; Feuerbach et al., 

1993) and upper basalt flows of Hamblin-Cleopatra volcano (Daley and 

DePaolo, 1992). Two additional previously unrecognized CREC tholeiitic 

basalts were identified from the literature: the basalt of Senator Mountain in 

the northern White Hills (Cascadden, 1991), and the basalt of Callville Mesa 

(Feuerbach et a!., 1991; E.L Smith, unpublished data). 

Though not rigorously constrained, the CREC tholeiites appear to have 

erupted between approximately 12 Ma and 9 Ma. The age of the capping basalt 

flow at Malpais Flattop was reported as 6.0 ± 1.0 Ma by Faulds (1993b) using 

the K/ Ar whole rock analysis of Anderson et a!. (1972) corrected with 

constants from Dalrymple (1979). Faulds and Gans (unpublished data) again 

dated capping flows of Malpais Flattop using whole rock 40Arf39Ar and 

obtained ages of 11.88 ± 0.15 Ma and 11.37 ± 0.14 Ma. The 11 Ma ages are 

preferred here because of the consistency and the minimized effects of sample 
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heterogeneities in 40Arf39Ar process. The upper flows of Hamblin-Cleopatra 

are reported to be ll.5 Ma (K/ Ar; Thompson, 1985). The Callville Mesa flows 

erupted between 10.46 ± 0.23 Ma and 8.49 ± 0.20 Ma (K/ Ar; Feuerbach et a!., 

1991). The basalt flows of Table Mountain and Senator Mountain have not 

been radiometrically dated but are also estimated to be approximately ll Ma 

(see Chapter 2: Chronology) 

The CREC tholeiites strongly contrast with the DSV calc-alkaline rocks 

(Figure 6-5). The tholeiites of Table Mountain, Senator mountain, and 

Malpais Flattop have Si02 ranging from 47-51 wt.% (Fig. 6-5), while the 

Hamblin and Callville suites have a higher range of Si02 (51-59 wt.%). 

Callville Mesa rocks are contaminated by felsic xenoliths. The contamination 

may account for deviation from the more primitive tholeiite compositions 

(Fig. 6-5). The Hamblin-Cleopatra rocks (Si02 53-57 wt.%) also underwent 

some degree of contamination and/or fractionation (Fig. 6-5). Only the most 

primitive sample from any suite was used for comparison and analysis (all 

<53 wt.% Si02). All of the CREC tholeiites are strongly hypersthene 

normative (7.4-18.5 wt.%) and lack normative quartz. Similar to basalt of 

Table Mountain the other CREC tholeiites have an OIB like trace element 

signature (Fig. 6-4b ). Notably the normalized patterns are smoother (Fig 6-

4a&b), lack a Nb-Ta trough (minor trough on some samples may be 

transitional), and on average the tholeiites have lower overall trace element 

abundances than the synextensional rocks (Fig. 6-2). The OIB like trace 

element signature of the tholeiites is more similar to the post-6 Ma 

asthenospheric basalts than the earlier lithospherically derived 

synextensional basalts. In contrast, the CREC tholeiites (87Sr j86Sr(i) = 0.705-
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earlier synextensional rocks (Fig. 6-1). The enriched isotopic ratios of the 

tholeiites precludes a source in the asthenosphere. 
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Age constraints suggest that the CREC tholeiites occur at a time 

transitional between the clearly lithospherkally derived synextensional rocks 

and the dearly asthenosphe!ically derived post-6 Ma rocks. Geochemical 

modeling was undertaken to explain the lithospheric isotopic ratios and the 

OIB trace element signatures of the CREC tholeiites. Models are summarized 

in Table 6-1. Mixing of asthenospherically derived (M0-6; Bradshaw, 1993) 

and lithospherically derived magmas (various synextensional samples from 

DSV, Bradshaw et a!., 1993, and Feuerbach eta!., 1993) was dismissed on the 

grounds that to change asthenospheric isotopic ratios to the range exhibited by 

the tholeiites requires so large an addition (55-65%) of lithospheric magma as 

to impart the typical lithospheric trace element characteristics like the high Ba 

and Nb-Ta trough. 

Batch melting calculations were performed using the median 

composition of 375 spinel peridotite xenoliths (McDonough, 1990), and 

individual xenolith compositions of garnet amphibolite, granulite, eclogite, 

and paragneiss from the Colorado Plateau (Wendlandt eta!., 1993). All 

models proved to inaccurately model the trace elements, produce an overly 

felsic composition, and/or have completely unsuitable isotopic compositions. 

A cryptic crustal contamination approach was attempted with an amphibolite 

from Saddle Island, Lake Mead which has trace elements broadly similar to 

OIB (E.I. Smith, unpublished data; Duebendorfer eta!., 1990). A depleted 

mantle melt was used as the parent in order to allow the smallest amount of 
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the assimilant to impart the OIB like signature to the melt. To approximate 

the tholeiitic trace element signature, 40% whole rock assimilation of the 

amphibolite was required, which does not seem reasonable in terms of a heat 

budget. A partial melt of the amphibolite mixed with a mantle melt was also 

tried, but failed to produce acceptable concentrations of Nb, Ta, or Sr as did 

whole rock assimilation. The only model that accurately produced the trace 

element pattern of the basalt of Table Mountain or any of the tholeiites was a 

mixture (80:20) of a 10% partial melt of spinel peridotite (median of 375 world 

wide samples; McDonough, 1990) with an average of the andesite of Alta 

Spring (the latest synextensional rock). This mixture could also produce the 

observed isotopic variation of the tholeiites, because both sources are 

lithospheric. This model seems too contrived because it requires the mixture 

of two distinct types of lithospheric melts, one typical of the Basin and Range 

(with a Nb-Ta trough, etc.) and one typical of world wide lithospheric mantle 

(no Nb-Ta trough). 

The unique character of the tholeiitic rocks may be related to melting of 

a shallow, previously untapped portion of the lithospheric mantle. 

Experimental melting of a spinel lherzolite (Takahashi and Kushiro, 1983) 

under dry conditions established that alkali basalts are derived by melting at 

15-25 kb, while olivine tholeiites are created from larger degrees of partial 

melting at the same pressures or smaller degrees of melting at lower 

pressures (8-15 kb). The higher pressure tholeiites differ from the lower 

pressure tholeiites in having lower normative hypersthene contents. Twenty 

five tholeiites melted between 5-15 kb have an average normative 

hypersthene content of 13.8% and six tholeiites melted between 20-25 kb have 
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an average hypersthene content of 3.3%. The average normative hypersthene 

for the Table Mountain tholeiites is 13.6 versus an average of 8.9 for the DSV 

synextensional rocks s56 wt.% Si02 (Appendix A, Table A-3). Higher 

normative hypersthene combined with the low volume of tholeiitic basalt 

(e.g., basalt of Table Mountain "' 10 mi2 x 300ft= 8.4 x 1010 ft3) suggest that 

they were produced by low degrees of partial melting at shallow depths (35-50 

km assuming the crust is 30 km thick and p = 2.8 g/ cm3 and the lithosphere is 

70 km thick p = 3.3 g/cm3; Daley and DePaolo, 1992). 

As discussed previously, primitive basalts erupted prior to the 

tholeiitic episode are entirely alkalic and are produced at depths of 50-70 km 

(Takahashi and Kushiro, 1983). The implication for the CREC is that the 

depth of melting became shallower during extension and entered the range of 

tholeiite production by "'12 Ma. This observation agrees with the previous 

interpretation by Bradshaw et a!. (1993) that the depth of melting decreased in 

the lithosphere as a transition was made from a higher pressure garnet source 

to a lower pressure spinel source. 

The source for the tholeiites is interpreted here to be in the uppermost 

part of the lithospheric mantle (35-50 km) with a depleted trace element 

signature that lacks the features usually associated with Basin and Range 

lithosphere (i.e., high Ba, Nb-Ta trough, etc.). No obvious crustal 

contamination was observed in petrographic analysis of basalt of Table 

Mountain. Although there are probably few rocks in the CREC that represent 

unevolved mantle melts, the trace element patterns of the tholeiites probably 

reflect the composition of the mantle source. The origin and evolution of 

this unique lithospheric source is still debatable. 
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The importance of the tholeiites as a unique CREC volcanic episode 

generated from a distinctly different lithospheric source was previously 

unrecognized. Basalt of Table Mountain was misinterpreted earlier as an 

asthenospheric basalt on the basis of its OIB like trace element signature 

(Bradshaw et al., 1993). Therefore, it is important to avoid the discrimination 

of asthenospheric and lithospheric sources based purely on trace element 

compositions (e.g., Bradshaw, 1991; Fitton eta!., 1991; Bradshaw eta!., 1993). 
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1 992; Bradshaw et al., 1993; Feuerbach et al., 1991: Feuerbach et al., 1993; E. I. Smith, 
unpublished data). 

Tholeiitic basalts (Cascadden, 1991; Daley and DePaolo. 1992; Bradshaw et al., 1993; 
Feuerbach et al., 1993; E. I. Smith, unpublished data, P.B. Gans and J.E. Faulds, 
unpublished data, and Ttmb from the DSV). 

Calville Mesa, may represent crustally contaminated tholeiite (E. I. Smith, unpublished data). 
(Feuerbach et al., 1993). 

Post extensional asthenospheric alkali basalts (Daley and Depaolo, 1992; Bradshaw et al.. 1993; 
Feuerbach et al., 1991; Feuerbach et al., 1993; E.l. Smith, unpublished data). 

Figure 6-1. Isotopic plot for CREC rocks. Arrow points to the basalt of Table Mountain 
tholeiites. MPM is the mafic end-member in the Mt. Perkins plutonic suite and MPF is the 
range of felsic end-members in that suite. Data from Daley and DePaolo (1992), 
Bradshaw et al. (1993), Feuerbach et al. (1993), Metcalf et al. (1993), Metcalf et al. (1995), 
E. I. Smith, unpublished data, and current study. All samples <60 wt.% Si02 most <55%. 
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Figure 6-3. Epsilon Nd vs. age for CREC rocks. Notice the change to asthenospheric 
values at approximately 6 Ma. Data from Daley and DePaolo (1992}, Bradshaw et al. 
(1 993}, Feuerbach et al. (1993}, E. I. Smith, unpublished data, and current study. All 
samples <60 wt. % Si02 most <55 %. 

67 



1000,-:r----------------------,::-

.!l 

" 2 
" > 
·~ 
E 
·c 
0. 

::.1 
v e 

100 

10 

a . 

~~~Th~hK~~&P~~~~~TIThY~~ 

basan of Table Mountain (Ttmb-25) 

OIB (Sun and McDonough, 1989) 

1 000,.,...:==::.....!!sl!yn~e~xt~e~n~si~o!!na~IEb~as~a~ltj(TJ;a~s~a~-8~21l _________ ...,... 

.!l 
§ 100 
E 

b . 

~Rb~Th~hK~~&P~Sm~~~TIThY~~ 

Malpais Flattop (60-04; Feuerbach eta!., 1993) 
Hamblin-Cleopatra ( KT82-183; Feuerbach eta!., 1993) 

Callville Mesa (24-53; E. I. Smith, unpublished data} 
-o-- Senator Mountain (114; Cascadden, 1991} 

• Table Mountain (Ttmb-25) 

Figure 6·4. Primitive mantle normalized diagrams. a. Ttmb compared to 018 and a DSV 
synextensional basalt. b. Four other CREC basalts of approximately the same age as 
Ttmb that also have 018 like patterns. Elements in order of increasing compatibility with 
normalizing values from Sun and McDonough (1989}. When Nb orTa were unavailable 
the ratio Ta = Nb/17 was used. 

68 



4.ooo Tholeiitic 

0 ::woo 
0) 

::E • 0 
Q) • LL 2.000 •oo <lo¢ 

Oo <> (lo<) 

~ 
¢ 

1.000 (lo¢ ¢ 

Calc-Alkaline 
0.000 

46 49 52 55 58 61 64 

Si02 
• basalt of Table Mountain 

._ Callville Mesa (E. I. Smith, unpublished data; Feuerbach et al., 1993) 

0 Hamblin-Cleopatra (Daley and Depaolo, 1992; Feuerbach et al., 1993) 

0 Malpais Flattop (Daley and Depaolo, 1992; Feuerbach et al., 1993) 

• Senator Mountain (Cascadden, 1991) 

¢ DSV Synextensional calc-alkalic rocks 

Figure 6-5. Plot discriminating tholeiites from calc-alkalic rocks (Irvine and Baragar, 1971 ). 
All of the tholeiites were erupted from12-9 Ma in the CREC. 

69 



70 

Table 6-1: Summary of models for the CREC tholeiites. 
Model Sources Erahl~m 

Mixing of lithospheric and Asthenosphere (M0-6) from Si02 values too high. 
asthenospheric magmas Bradshaw et a!. (1993) Ba, Nb, and Ta do not match 

Lithospheric samples from basalt of Table Mountain 
all DSV units (Ttmb). 
Bradshaw et a!. (1993) 
Feuerbach et al. (1993) 

Batch melting Median composition of 365 Failed to match trace element 
spinel peridotite xenoliths compositions of Ttmb. 

from McDonough (1990) 
Batch melting Xenolith compositions: Failed to match trace element 

garnet amphibolite compositions of Ttmb. 
granulite 
eclogite 
paragneiss 

from Wendlandt et al.(1993) 
40% whole rock assimilation Saddle Island amphibolite Broadly similar trace 

by depleted mantle melt from E.I. Smith, unpublished element values, but deemed 
data and Duebendorfer et thermodynamically 
al.(1990) unreasonable. 

Mantle compositions from 
Hofmann (1988) 
McDonough (1990) 
Bradshaw eta!. (1993) 
Yogodzinski eta!. (1994) 

Mixing of a batch melt of Compositions same as above Failed to match trace element 
amphibolite and mantle compositions of Ttmb, 
batch melts especially Nb-Ta trough 

and Sr. 
Mixing 10% batch melt of Lithospheric compositions Appropriate trace element 

lithospheric mantle with from median composition of and isotopic values, but 
average of andesite of Alta 365 spinel peridotite deemed unreasonable. 
Spring in proportions 80:20 xenoliths, McDonough Discussed in text. 

(1990) 
Andesite of Alta Spring from 

this study. 
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The Mt. Perkins Pluton - A Source for DSV? 

The Mt. Perkins pluton is a 15.96±0.04 Ma (Faulds, 1993a) granitoid 

intrusion in the central Black Mountains approximately 15 km west of the 

DSV (Fig. 1-1). The intermediate rocks of the pluton were derived through a 

complex history of mixing of asthenospheric basaltic magma (87Sr/86Sr(i) = 

0.7056; CNd = + 1.2) with a crustal felsic melt (87Sr f86Sr(i) = 0.7086 to 0.7127; eNd 

= -7.82 to -12.5; Metcalf et al., 1995). The pluton lies in the west tilted Mt. 

Perkins structural block (MPB) that exposes both the pluton and overlying 

volcanic cover, the Golden Door volcanic rocks (Faulds et al., 1995). Faulds et 

al. (1995) interpret the MPB as an exposed cross-section of a volcanic-plutonic 

complex. Faulds et al. (1995) used geochemistry to compare the Mt. Perkins 
' 

pluton to the Golden Door volcanic section. Incompatible trace elements and 

isotopes in both suites were found to be similar, making a correlation 

geochemically permissive. Faulds et al. (1995) support the geochemical 

correlation with field relationships, including synplutonic dikes traced from 

the pluton to the volcanic flows. 

Morikawa (1993) proposed that the Mt. Perkins pluton might be the 

source of the DSV volcanic rocks based on similar isotopic ratios and 

radiometric ages. Morikawa (1993) analyzed a pumice from tuff 2 of Culdesac 

Wash and reported isotopic ratios (87Srf86Sr(i) = 0.7082; eNd = -10.0) similar to 

felsic samples of the Mt. Perkins pluton (Fig. 6-1). The 40Ar/"'Ar biotite age of 

16.09±0.15 (Morikawa, 1993) indicated that the two suites were similar in age. 

Lacking any modern physical linkages to the pluton, geochemistry was 

used to further explore the relationship between the pluton and the DSV. 
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Isotopic analysis of the DSV mafic rocks (Appendix A, Table A-1) indicate that 

none of them have the appropriate isotopic values for asthenospheric melts, 

thereby eliminating thew f.-om «:nycorrt>lation with the Mt. Perkins rrrafic 

end-member (Fig. 6-1). It should be noted that asthenospheric basalts prior to 

6 Ma, such as that at Mt. Perkins, are extremely rare. Incompatible trace 

elements and isotopes of the DSV felsic rocks were compared to the Mt. 

Perkins pluton felsic rocks, hut the relationships were more ambiguous. 

Figure 6-6 is an incompatible element diagram used by Faulds et al. (1995) to 

support the geochemical correlation of the Golden Door volcanic section and 

the Mt. Perkins pluton. Figure 6-6 is representative of comparisons 

performed here for the felsic members of these three suites. Felsic rocks from 

the DSV plot within the fields of both the Mt. Perkins pluton and the Golden 

Door volcanic section (Fig. 6-6). A.correlation between the Mt. Perkins pluton 

and the DSV is permissive based on the geochemical data, but it is neither 

unique nor compelling without physical links of dikes or conduits. 
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Figure 6-6. Incompatible element diagram for rocks of the DSV and Mt. Perkins pluton 
(Metcalf et al., 1993; Metcalf et al., 1995) plotted within the field of the Golden Door 
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Trace Element Enrichment and the Nature of the 

Lithospheric Mantle 

Timing of Trace Element Enrichment and Model Ages 
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Many previous studies point out that the Basin and Range lithospheric 

mantle (and the CREC in particular) must have undergone an episode of trace 

element enrichment, based on the enriched abundances of trace elements in 

the lithospherically derived basalts (Bradshaw, 1991; Bradshaw et al., 1993; 

Kempton et al., 1991; Fitton et al., 1991; Ormerod et al., 1991). A previous 

section demonstrated that the mafic synextensional DSV lavas have trace 

element signatures similar to the other CRE<£: volcanic rocks (Fig. 6-2). If the 

subcontinental lithosphere beneath the southwestern United States has seen 

a metasomatic enrichment event, when did it occur? Intuitively the 

enrichment event must have been ancient, given the significant time needed 

to mature the isotopic ratios found in the synextensional basalts. Tertiary 

subduction of the Farallon plate off the western margin of the United States is 

too young to account for the isotopic signatures of the synextensional basalts. 

Bradshaw et al. (1993) argued that 207Pbj204Pb and 206Pbj204pb data from CREC 

synextensional basalts forms a secondary isochron of 1.57 Ga that may 

represent the age of trace element enrichment. Bradshaw eta!. (1993) 

reported that the 1.57 Ga age is consistent with the age of a lithospheric 

heating event in the western United States (Dudas et a!., 1987). The 1.57 Ga 

age for the enrichment is somewhat different than the 1.8 Ga Pb/Pb isochron 

age from synextensional basalts proposed by Kempton et al. (1991) for the 

entire southwestern United States. The range of the DSV Pb data was not 
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sufficient to independently assess a secondary isochron age. 

Another way to address the timing of enrichment is by placing a 

minimum age on the lithosphere with Sm/Nd depleted mantle model ages, 

ToM (DePaolo, 1981; Bennet and DePaolo, 1987). When applied to basalts the 

TOM ideally represents the age when the source of the basalt (i.e., the 

lithosphere) became separated from mantle that had seen a previous melt 

extraction. The validity of any model age rests on the assumption that 

evolution of the Sm-Nd system in the source rock is a simple single-stage 

closed-system process (McDonough, 1990). Any subsequent melt extraction or 

enrichment events will decouple the 147Smf144Nd from the radiogenic 

143Ndf144Nd and impart a new slope to the Nd decay curve. A melt 
I 

enrichment event will have the effect of making the decay curve shallower 

and the 143Ndj144Nd will increase more slowly, because any melt will have a 

smaller Sm/Nd ratio than the rock it is intruding (Nd is more incompatible 

that Sm and will preferentially enter the melt). Therefore, a source that has 

been melt enriched will produce melts with an artificially low ToM· If 

subsequent enrichment episodes occurred in the mantle below the CREC, 

then the model age reflects only the minimum age when the source of the 

basalts separated from the depleted mantle. Any young (i.e., Tertiary or later) 

enrichment events would have not had a significant effect on the ToM 

because they are too recent to be resolved in the radiogenic decay. 

Table 6-2 displays stratigraphically, averaged ToM model ages for the 

DSV mafic and intermediate units (personal communication, D. Walker). 

The lithospheric source of the· DSV rocks· is at a minimum 1.1 Ga if no-·· 

ancient enrichment events have occurred. Since some form of an 



enrichment event is well established it has probably forced the ToM to 

younger values, therefore the age of the lithosphere and the enrichment 

event are probably greatet· than 1.1 Ga. An age of trace element enrichment 

greater than 1.1 Ga age is compatible with the Proterozoic ages proposed by 

Bradshaw et al. (1993) and Kempton et al. (1991). 

Table 6 2 A - : verage d 1 d epJete mante moe l d 1 ages OM or (T ) f DSV. 

DSVunitsin #in Average Depleted 

statigraphic order Average Mantle Age (Mal 

basalt of Table Mountain 2 1053 

andesite of Powerline Road 4 1054 

andesite of Alta Spring 2 '1031 

andesite Rodeo Grounds 5 1049 
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Variable melt enrichment and depletion can also account for the 

isotopic heterogeneity of the synextensional magma source. DSV mafic lavas 

have 87Srj86Sr(i) = 0.708 to 0.710 and tNd = -7.0 to -9.2 while synextensional 

samples from the CREC have an even larger range (Fig. 6-1 and 6-3). 

Prolonged periods of enrichment for example would impart various Sm/Nd 

ratios to the invaded mantle thereby creating pockets of metasomatised 

mantle with different 143Ndf144Nd ratios. An inconsistency with this 

hypothesis, not resolved here, is that the least trace element enriched basalts, 

the tholeiites, have the same range of iso~opic variability as the earlier 

enriched rocks (Fig. 6-1 and 6-3). 
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Stratification of Trace Element Abundances in the Mantle 

As stated earlier, the decreasing depth of melting can be tracked up 

through the lithosphere during and after extension until -8 Ma based on two 

arguments: (1) sources modeled for synextension melt generation change 

from garnet to spinel-bearing and (2) postextension tholeiitic basalts are likely 

generated at shallower depths than alkali basalts. 

On a diagram of total REE (sum of La, Ce, Sm, Eu, Tb, Yb, Lu) versus 

age (Fig. 6-7) the general trend is toward decreasing total abundances with age 

from the period 22-8 Ma. The REE are used to represent trace elements in the 
' 

source because as a group they demonstrate very similar behavior during 

melting and they were available in most of the data sets examined. The 

decrease in REE abundances can be argued to be the result of increasing 

degrees of partial melting, but this is inconsistent with the decreasing volume 

of volcanic products as extension progressed (Bradshaw et al., 1993). The 

hypothesis preferred here is that the lower lithospheric mantle is more 

enriched in trace elements and the effects of this enrichment decreases 

upward toward the crust. 

At approximately 6 Ma the change to asthenospherically derived basalts 

occurred in the CREC, though none of these are found at the DSV. Feuerbach 

et al. (1993) reported that in the Lake Mead area from 6 to 4 Ma basaltic 

volcanism shifted towards increasingly primitive asthenospheric 

compositions with higher positive CNd values and an increasing high U /Pb 

(HIMU) component. Feuerbach et al. (1993) suggested that this shift is due to 
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the depth of melting increasing between 6 to 4 Ma. 

Incompatible trace element abundances are thought to increase with 

depth from the top of the asthenosphere down, because of the depleting effect 

of prior melt extraction. Therefore, if the depth of melting was increasing, the 

6 to 4 Ma basalts should also show a trend of increasing trace element 

abundances. This is confirmed by the diagram of total REE versus age (Fig. 6-

7) which shows a distinct trend toward increasing REE during this time 

period. In summary, the mantle may have a bimodal distribution of trace 

elements with the most enriched compositions in the lower lithosphere. 

Abundances decrease upward in the lithospheric mantle toward the crust, 

and increase downward in the asthenospheric mantle toward undepleted 
I 

regions. 
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unpublished data). 
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unpublished data, and Ttmb from the DSV). 
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Calville Mesa, may represent crustally contaminated tholeiite (E.I. Smith, unpublished data). 
(Feuerbach et al., t 993). 

0 Post extensional asthenospheric alkali basalts (Daley and Depaolo, 1 992; Bradshaw et al., 
1993; Feuerbach et al., 1991; Feuerbach et al., 1993; E.l. Smith, unpublished data). 

Figure 6-7. Total REE content (La, Ce, Sm, Eu, Tb, Yb, Lu) vs. age for basalts of the 
CAEC. Arrows indicate the decrease in total REEs from 22-8 Ma and then an increase 
after 6 Ma. See text for discussion related to depth of melting. All samples <60 wt. % 
Si02 most <55 %. Vertical linear trends are due to limited age data. 



Model for the Tectonic and Magmatic Evolution of 

the DSV and CREC 

Model for Mantle Enrichment 
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Though many workers agree thaL the lithospheric mantle below the 

Basin and Range underwent trace element enrichment (Dudas et al., 1987; 

Bradshaw, 1991; Fitton et al., 1991; Kempton et al., 1991; Ormerod et al., 1991; 

Bradshaw et al., 1993; Wendlandt et al., 1993), little information is known 

about the process of this enrichment. Fitton et al. (1991) and Kempton et al. 

(1991) have suggested that fluids expelled by' a subducting oceanic plate 

imparted the subduction-type signature (high Th-Ba, Nb-Ta trough) to the 

Basin and Range lithospheric mantle. The idea of subducting slab interaction 

with the overlying mantle is developed further below. 

A plausible mechanism for trace element enrichment can be borrowed 

from Yogodzinski et al. (1994) who modeled the genesis of the modem Piip 

volcano in the western Aleutians. Piip lavas display the characteristic 

subduction signature (Fig. 15, p.l85, in Yogodzinski et al., 1994) shared by the 

CREC synextensional basalts (Fig. 6-2). Piip volcano occurs in an ocean-ocean 

subduction setting, but the conceptual model for trace element enrichment of 

overlying mantle is still applicable. In this model a trace element enriched 

slab melt is added to a highly depleted MORB source (N-MORB normalized 

REB's << 0.1) in the proportions 4%melt/96% MORB source. Rutile is 

stabilized in the downgoing slab which preferentially retains Ti, and 
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therefore, Nb and Ta as well. The effect of even this small amount of 

enriched melt with a Nb-Ta trough overwhelms the MORB source and 

results in a trace element signature that mimics the slab melt. Yogodzinski et 

al. (1994) then in turn effectively model the subduction-type trace element 

signature of the Piip lavas with a 15% batch melt of this slab/MORB source. 

Over the long life of a subduction zone, a melt enrichment process 

such as this could have potentially imparted the trace element subduction 

signature to the lithospheric mantle beneath the CREC. If a slab driven 

process imparted the subduction-type trace element signature to the CREC 

lithosphere, it may also account for the decreasing trace element abundance 

with decreasing depth. The mantle nearer the downgoing slab may have 
I 

been affected to a larger degree. A low degree partial melt from a subducting 

slab would be silicic with a relatively low temperature and would crystallize 

as it ascended. Therefore the trace element enriched melt would not likely 

penetrate the entire pre-extension lithospheric thickness (probably 100 km 

inferred from unextended Colorado Plateau, (Smith et al., 1989) and the melts 

should have a decreasing trace element enrichment effect on the lithosphere 

with decreasing depth. Inherent in this model is the assumption that the 

mantle prior to enrichment had such depleted trace element abundances that 

the invading slab melt was able to overwhelm its signature. The CREC 

tholeiitic basalts interpreted to be the shallowest lithospheric melting event 

do not display the subduction-type trace element, signature and were 

presumably not affected by the slab melts. The tholeiites' trace element 

signature is similar to OIB, but it is not known whether this represents the 

pre-enriched mantle composition or whether this source has undergone a 



unique enrichment history. At present no information exists about the 

composition of the native Proterozoic lithospheric mantle. 

Three Phase Model for CREC Magma Genesis 
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Using the geochemical observations made in the previous sections, a 

model has been developed relating Miocene magmatism to crustal extension 

in the CREC. The model presented here borrows heavily from previous work 

(Daley and DePaolo, 1992; Bradshaw et al., 1993; Feuerbach et al., 1993; Faulds 

et al., 1995). 

Figure 6-8 schematically depicts a thr~e phase model showing a 

progression of changing magma sources and depths as extension proceeds. 

The horizontal lines in the diagram, Sp1 and Sp2, represent the solidii of 

garnet and spinel peridotite at their respective pressures (p1 & p2). The 

arched dashed lines, G11 and G1z, are schematic geotherms meant to represent 

the temperatures at which the mantle at a given depth will melt as extension 

progresses and the depth of melting decreases. Melting will occur when the 

"melting geotherm" intersects the appropriate solidus. The implication in 

this model is that the hot rising asthenosphere is forcing the "melting 

geotherms" to shallower depths by advectively heating the overlying 

lithospheric mantle. The temperature of the geotherm at time 2 (late 

extension) is not as high as at time 2 (early extension) because the depth is 

shallower. 

No temperatures are attached to the solidii or geotherms because of the 

poor constraints on the effects of volatiles in CREC magma genesis. For an 
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examination of mantle melting with temperature and pressure constraints 

under dry conditions see McKenzie and Bickle (1988) and Arndt and 

Christensen (1992), and under wet conditions see Gallagher and 

Hawkesworth (1992) and Bradshaw et al. (1993). 

Phase I - Pre-extension Onset of Magmatism to 12 Ma 

The first phase of the model encompasses the onset of CREC Miocene 

magmatism at approximately 22 Ma up to the end of major extension at 12 

Ma. During this period alkalic basaltic magmas were generated in the 

lithospheric mantle between depths of 50-70 km (Takahashi and Kushiro, 
I 

1983). Basalts formed early' in Phase I are generated from an enriched garnet 

bearing source (Sp1 and Gn) which changes to a depleted spinel source (Sp2 

and G12) as the depth of melting decreases. Trace element content of basalts 

decreased during Phase I (Fig. 6-7) and, therefore, the bulk trace element 

abundance of the lithosphere is inferred to decrease upward. The mantle 

derived alkali basalts ponded in the crust or at its base where open system 

assimilation-fractional crystallization type processes formed the intermediate 

compositions that dominate the magmatism of this period (Larsen and 

Smith, 1990; Smith et a!., 1990; Falkner, 1993; Falkner et al., 1995; Metcalf et al., 

1993; Metcalf et al., 1995). Heat exchanged between basaltic reservoirs and the 

crust was probably responsible for crustal melting and CREC felsic volcanism. 
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Phase II - Postextension 12-9 Ma 

The second phase of this model includes the brief pulse of tholeiitic 

volcanism in the CREC (Fig. 6-Sb). Melting reached its shallowest depth 35-50 

km, and exploited a previously untapped source capable of producing OIB like 

trace element patterns (Fig. 6-4a). The tholeiites appear to be the end point in 

a progressive decreasing depth of melting. The tholeiites have the same 

enriched isotopic sighature found in the earlier synextensional basalts (Figs. 

6-1 and 6-3), therefore the source continued to remain within the lithosphere 

during Phase II. Given the constraints on the depth of tholeiite production, 

the melting of the lithosphere can not simply be an adiabatic process. If 

melting were triggered by decompression melting of lithosphere rising in 
I 

response to extension, then the tholeiites should display the earlier 

synextensional trace element signature (i.e., Nb-Ta trough, etc.). Therefore, 

an advective heating process that triggers melting at shallow levels is 

preferred here. The probable heat source driving this process is in the 

asthenosphere. The model is valid whether the asthenosphere is rising 

actively as a plume or passively due to extension. 

Phase ill - Postextension 9-4 Ma 

The final phase marks the transition in the CREC to asthenospheric 

magmatism at about 6 Ma (Fig. 6-Sc). The asthenospheric melts are alkaline, 

thus the depth of melting is deeper (50-70 km) than the Phase II tholeiitic 

basalts. No concurrent tholeiitic volcanism has been identified for this 

period, therefore, the geotherms relaxed so that melting was no longer 
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possible at depths of 35-50 km. TI1e melting in the asthenosphere was 

accomplished through an adiabatic process bringing it into the range of alkali 

basalt production (50-70 km). The depth of melting decreased from 6 to 4 Ma 

as evidenced by the increasing HIMU component (Feuerbach eta!., 1993), 

+ENd (Fig. 6-3), and REE content (Fig; 6-7). 
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Summary 

1) Volcanism at the DSV began at approximately 17.98 Ma and ended at 

approximately 11 Ma. Therefore, it falls completely within the pre-6 Ma 

volcanic group of the CREC. 
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2) Early pre- and synextensional volcanism in the CREC and at the DSV is 

dominated by intermediate compositions that evolved from alkali basalts. 

The most primitive rocks of the DSV share a close chemical affinity to other 

CREC volcanic rocks of this period (20-12 Ma). The source of the early CREC 

synextensional rocks (inferred for DSV as well) was a garnet peridotite in the 

lithospheric mantle. As extension proceeded, the depth of melting decreased 
' 

and in some of the most highly extended areas a depleted spinel bearing 

source was tapped late in extension (d., Bradshaw et al., 1993). 

3) The synextensional basalts are isotopically enriched and heterogeneous. 

The preferred hypothesis is that the isotopic signature is inherited from the 

source, therefore, the source of the pre-6 Ma basalts is inferred to be within 

the lithospheric mantle. 

4) A postextension episode of tholeiitic volcanism in the CREC occurred 

from approximately 12-9 Ma. It includes the DSV basalt of Table Mountain. 

The CREC tholeiites do not have the trace element features usually associated 

with Basin and Range synextensional basalts (i.e., high LILE/HFSE ratios), but 

rather have signatures similar to that seen in OIB (low LILE/HFSE ratios). 

The tholeiites have the same isotopic variation as the earlier synextensional 

basalts, therefore, they are also inferred to have a source within the 



lithospheric mantle. The depth of tholeiite production (35-50 km) is 

shallower than that of alkali basalt (50-70 km), which is consistent with the 

decreasing depth of melting inferred from the synextensional basalts. · 

5) The decreasing depth of melting in the lithosphere is coincident with 

decreasing total REE concentrations in basalts from 22 to 12 Ma. Therefore, 

trace element abundances are believed to be stratified in the lithospheric 

mantle decreasing upwards. 
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6) A Proterozoic subduction related process is probably responsible for the 

enriched arc-like trace element signature of the CREC synextensional basalts. 

Enriched slab melts penetrating the overlying mantle wedge may have 

overprinted the native Basin and Range litl\ospheric geochemical signature. 

7) Advective heating of the lithosphere by rising asthenosphere may have 

initiated synextensional magmatism. As extension progressed from 22 to 12 

Ma the depth of melting decreased culminating in the CREC tholeiitic episode 

which tapped the shallowest level in the lithosphere. 

8) At 6 Ma the asthenosphere reached a depth that initiated the production of 

alkali basalts. The depth of melting decreased from 6 to 4 Ma (Feuerbach et 

al., 1993). 



Appendix A 

Geochemical Analyses and Rock Norms 

The major and trace element analyses of DSV rocks performed for this 

study are presented in Table: Ac.L The method of analysis is in parentheses 

next to the element in the table: X-ray Fluorescence (XRF), Instrumental 

Neutron Activation Analysis (INAA), isotope dilution (ID). LOI stands for 

loss on ignition. The major and trace element analyses on several units of 

the Culdesac rhyolite complex performed by Morikawa (1994 and 
I 

unpublished data) are included in Table A-2 with permission of the author. 

CIPW normative mineralogies for the analyses of this study and from 

Morikawa (1994 and unpublished data) are presented in Tables A-3 and A-4 

respectively. A map of sample locations is on Plate III. All analytical 

procedures are presented in Appendix B. 
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T bl A 1 M. a e - aJor an dt 1 t 1 race e emen anatyses o f th DSV ks e roc 
sample# Tra-3 Tra-4 Tra-57 Tra-31 Tra-43 Tra-6 Tra-2t 
type lava lava lava lava lava lava lava 
Si02 50.79 58.39 59.35 54.96 59.41 59.46 60.19 
Al203 17.40 18.15 14.62 14.43 15.95 16.24 16.31 
Fez03 10.56 6.28 5.51 6.79 5.47 6.99 4.97 
CaO 9.87 4.94 5.78 7.78 5.42 5.72 4.59 
MgO 4.17 1.47 4.80 5.40 3.19 2.42 2.89 
NazO 3.20 3.83 2.89 2.56 3.40 3.41 4.22 
K20 2.13 4.73 4.60 2.95 4.39 3.76 4.3t 
Ti02 1.37 0.92 1.12 1.12 0.99 0.79 0.9( 
MnO 0.14 0.09 0.08 0.10 0.08 0.08 O.OE 
PzOs 0.70 0.79 0.59 0.57 0.60 0.55 0.59 
WI 1.3~ 

Total 100.33 99.59 99.34 96.66 98.90 99.42 100.4E 

Pb(ID) 33.20 
Rb(XRF) 49 132 120 55 77 91 123 
Ba(XRF) 1180 1623 1143 1047 1255 1148 1159 
Th(INAA) 28.53 14.44 '10.31 21.75 14.38 25.~ 

Nb(XRF) 13 34 19 16 19 17 2~ 

La(INAA) 138.8 110.7 74.8 li2.9 99.2 119.2 
Ce(INAA) 248.4 197.7 144.7 213.9 183.2 230.€ 
Sr(XRF) 1262 1861 1285 1455 1769 1638 1611 
Nd(ID) 63.71 97.71 64.38 
Sm(INAA) 14.42 11.67 10.87 14.04 11.23 13.80 
Zr(XRF) 280 606 363 319 362 386 408 
Hf(INAA) 11.46 9.92 7.65 8.77 7.86 10.55 
Eu(INAA) 3.15 2.73 2.45 3.13 2.47 3.0~ 
Y(XRF) 26 26 21 26 24 24 2.2 
Yb(INAA) 0.62 1.73 0.92 1.58 0.65 1.08 
Lu(INAA) 0.10 0.25 0.18 0.16 0.13 0.15 
Sc(INAA) 6.8 11.8 14.6 10.3 10.2 8.3 
Tb(INAA) 0.84 0.68 0.85 0.92 0.72 0.83 
Cr(INAA) 57 173 204 42 140 64 
Ni(INAA) 70 139 122 68 89 49 
87Sr j86Sr(i) 0.70882 .71016 .70857 
143Ndj144Nd 0.512242 0.512154 0.512236 
147Smf144Nd 0.10 0.09 0.10 

ENd -7.52 -9.20 -7.63 

ToM 1093 1078 1045 
206pb j204Pb 18.57 
207Pb j204Pb 15.61 
208Pbj204pb 39.19 
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Table A-1: Major and trace element analyses of the DSV rocks, continued 
sample# Tra-52 Tra 54 Tra-55 Tra-38 Tra-66 Tra-60 Tra-7~ 
type lava lava lava lava lava lava lava 
SiOz 56.34 59.64 60.19 58.35 56.45 59.65 53.36 
Ah03 15.61 16.17 16.29 15.15 18.11 16.70 15.89 
Fez03 5.75 4.97 5.06 5.11 5.54 4.54 6.58 
CaO 5.36 4.47 4.51 6.19 4.25 4.10 6.41 
MgO 4.06 2.46 2.58 2.90 1.68 1.92 4.61 
NazO 3.66 3.89 4.12 3.35 4.31 4.56 3.43 
KzO 4.48 4.39 4.42 4.21 5.20 4.72 4.66 
TiOz 0.96 0.86· 0.90 0.91 0.96 0.93 1.13 
MnO 0.08 0.07. O.OT 0.09 0.10 0.08 0.09 
PzOs 0.61 0.59 0.57 0.57 0.65 0.60 0.6) 
LOI 
Total 96.91 97.51 98.71 96.83 97.25 97.80 96.82 

Pb(ID) 43.26 
Rb(XRF) 154 129 123 ll5 139 173 1lC 
Ba(XRF) 1297 1310 1191 1323 1164 1064 196? 
Th(INAA) 53.90 22.90 25.97 '22.47 42.71 68.36 28.8( 
Nb(XRF) 34 24 25 18 43 60 28 
La(INAA) 156.8 123.2 126.2 107.9 212.3 178.7 175.9 
Ce(INAA) 304.1 220.5 234.6 209.8 379.6 346.6 345.€ 
Sr(XRF) 1617 1812 1650 1628 2353 1222 2822 
Nd(ID) 111.85 
Sm(INAA) 17.85 14.12 14.26 13.43 16.98 16.39 22.79 
Zr(XRF) 512 428 416 341 558 598 459 
Hf(INAA) 14.78 9.52 10.54 8.60 14.70 19.80 10.85 
Eu(INAA) 3.93 2.95 3.23 3.10 4.01 3.48 5.21 
Y(XRF) 25 20 23 22 22 22 2~ 

Yb(INAA) 1.68 1.27 1.38 1.73 1.56 1.66 1.61 
Lu(INAA) 0.26 0.21 0.19 0.16 0.23 0.25 0.2€ 
Sc(INAA) 11.6 8.2 8.2 10.0 6.4 6.9 11.4 
Tb(INAA) 1.16 0.92 0.97 0.99 1.17 1.10 1.34 
Cr(INAA) 123 59 62 39 16 43 104 
Ni(INAA) 136 52 86 50 59 44 1o:< 
87Sr j86Sr(i) 0.71055 
143Ndf144Nd 0.512196 
147Smf144Nd 0.08 
eNd -8.38 
ToM 1003 
206pb j204Pb 18.60 
207Pbj204Pb 15.60 
zospb j204Pb 39.24 
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T bl A 1 M. a e - : aJor an d 1 f h DSV ks trace e ement ana yses o t e roc , continued. 
sample# Tra-33 Tasa-82 Tasa-83 Tasa-74 Ttmt-18 Tcr-93-10 Tcr-8( 
type lava lava lava lava tuff vitro. vitro 
SiOz 66.05 55.34 53.55 55.70 71.49 69.57 72.2( 
Ah03 16.07 15.18 13.10 15.01 13.91 15.22 13.5( 
Fe203 3.58 6.49 6.21 6.81 1.80 3.19 l.lC 
CaO 2.79 6.72 7.04 6.93 1.96 1.55 0.69 
MgO 1.29 5.27 6.08 5.38 0.60 0.44 0.11 
NazO 3.78 3.15 2.94 3.69 3.81 3.29 3.35 
KzO 5.13 3.24 5.06 3.78 6.21 4.47 5.38 
TiOz 0.60 1.21 1.44 1.26 0.37 0.38 0.23 
MnO 0.06 0.10 0.10 0.10 0.05 0.06 0.05 
P20s 0.38 0.57 0.62 0.59 0.10 0.10 O.Oc 
LOI 2.69 
Total 99.73 97.27 96.14 99.25 100.30 100.96 96.67 

Pb(ID) 37.67 17.53 29.76 25.82 
Rb(XRF) 220 64 103 99 226 136 158 
Ba(XRF) 931 958 1649 1100 0 709 192 
Th(INAA) 67.88 13.77 16.40 '15.25 41.49 19.17 
Nb(XRF) 32 8 31 21 48 19 21 
La(INAA) 133.1 81.6. 136.1 89.3 95.8 76.7 
Ce(INAA) 242.9 157.3 273.8 182.5 182.1 135.7 
Sr(XRF) 1013 403 1853 1517 77 230 83 
Nd(ID) 82.96 65.72 109.33 73.85 42.51 
Sm(INAA) 11.91 11.30 17.10 12.54 13.55 6.71 
Zr(XRF) 141 137 480 349 265 210 169 
Hf(INAA) 12.70 8.04 13.75 8.25 11.19 6.86 
Eu(INAA) 2.28 2.81 3.91 3.02 1.21 1.29 
Y(XRF) 16 26 23 23 36 23 29 
Yb(INAA) 1.57 1.49 1.52 1.65 3.15 1.77 
Lu(INAA) 0.27 0.24 0.26 0.26 0.37 0.27 
Sc(INAA) 5.1 15.6 13.8 16.5 2.6 3.7 
Tb(INAA) 0.83 0.99 1.31 0.96 1.38 0.66 
Cr(INAA) 24 182 349 205 13 25 
Ni(INAA) 31 161 317 125 <20.35 23 
87Sr f86Sr(i) 0.71031 0.70855 0.70883 0.70956 0.71006 
143Ndf144Nd 0.512184 0.512254 0.512206 0.512152 0.512109 
147Smf144Nd 0.09 0.10 0.09 0.11 0.09 
eNd -8.59 -7.28 -8.20 -9.30 -10.09 
ToM 1027 1039 1022 1269 1143 
206Pbj204Pb 18.56 18.30 18.03 17.95 
207Pb j204Pb 15.60 15.5'.1 15.54 15.53 
208Pbj204Pb 39.26 38.79 38.96 38.80 
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Table A-1: Ma·or and trace element analyses of the DSV rocks, continued. 
sample# Tct2-37 Tct2-41 Tpa-78 Tpa-931 Tpa-46 Tpa-69 Tpa-4 
type pumice pumice lava lava lava lava lav 
SiOz 72.88 75.79 51.06 55.40 56.21 56.37 56. 
Al203 11.52 12.15 14.28 16.21 15.05 15.44 15.1 
Fe203 0.70 0.73 8.74 7.60 7.01 6.40 6.7 
CaO 1.84 0.59 9.71 7.47 7.41 6.68 6.75 
MgO 0.41 0.19 8.08 3.52 5.16 5.34 5.3 
Na20 2.44 2.47 2.87 2.86 3.35 3.68 3.3 
K20 5.12 5.60 2.53 3.35 3.25 3.41 3. 
Ti02 0.11 0.11 1.17 1.19 1.19 1.19 1. 
MnO 0.04 0.05 0.13 0.11 0.10 0.11 0.1 
P20s 0.17 0.06 0.62 0.65 0.58 0.59 0.5 
WI 4.99 0.86 
Total 100.22 97.74 99.19 98.36 100.17 99.21 99.35 

Pb(ID) 28.67 
Rb(XRF) 192 204 50 88 59 76 
Ba(XRF) 0 0 1130 1280 1165 1026 100 
Th(INAA) 22.27 9.34 11.06 11.85 13.6 
Nb(XRF) 27 29 11 19 17 19 1 
La(INAA) 34.8 91.3 81.5 83.5 79. 
Ce(INAA) 53.6 184.5 158.8 168.3 157. 
Sr(XRF) 50 20 1632 1307 1452 1353 131 
Nd(ID) 11.27 85.57 72.7 
Sm(INAA) 1.41 15.16 11.48 11.02 11.1 
Zr(XRF) 73 76 286 364 328 322 329 
Hf(INAA) 3.70 6.12 8.10 8.60 8.15 
Eu(INAA) 0.12 3.79 2.80 2.66 2.59 
Y(XRF) 16 14 30 24 26 25 2 
Yb(INAA) 1.79 1.80 1.30 1.48 1.3 
Lu(INAA) 0.26 0.29 0.16 0.24 0.2 
Sc(INAA) 1.3 24.4 15.2 15.4 15. 
Tb(INAA) <0.08 1.02 0.88 0.67 0.8 
Cr(INAA) 3 233 190 179 190 
Ni(INAA) <15.36 171 133 114 13 
87Sr j86Sr(i) 0.71929 0.70849 0.7086 
143Ndjl44Nd 0.512143 0.512273 0.51223 
147Smjl44Nd 0.08 0.10 0.09 

tNd -9.42 -7.01 -7.7 
ToM 1040 1036 98 
206Pb j204pb 18.Ql 18.29 
207pb j204Pb 15.56 15.5 
zospb j204Pb 38.79 38.7 
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T bl A 1 M. a e - aJor an d t l f h DSV ks trace e emen ana yses o t e roc d , continue . 
sample# Tpa-11 Tpa-68 Tpa-51 Tpa-50 Ttmb-7 Ttmb-8 Ttmb-25 
type lava lava lava lava Java lava lava 
SiOz 56.23 55.68 58.39 57.73 49.04 49.19 50.70 
Alz03 15.21 14.82 14.87 14.74 15.72 15.79 14.94 
Fez03 6.62 6.52 5.33 6.03 13.14 13.47 11.56 
CaO 6.92 6.82 6.48 6.49 9.67 9.74 9.51 
MgO 5.38 5.19 4.59 5.59 6.48 6.23 6.9E 
NazO 3.19 2.99 3.29 3.14 2.99 2.99 2.9( 
KzO 3.40 3.29 4.24 3.76 1.18 1.10 1.15 
TiOz 1.21 1.20 1.04 1.01 1.52 1.56 1.6( 
MnO 0.10 0.01 0.08 0.10 0.17 0.17 0.1/ 
PzOs 0.60 0.53 0.57 0.55 0.36 0.36 0.3E 
LOI 
Total 98.86 97.05 98.88 99.14 100.27 100.60 99.91 

Pb(ID) 22.64 21.80 5.44 
Rb(XRF) 82. 85 82 83 16. 15 1? 
Ba(XRF) 944 1096 1323 1427 490 778 309 
Th(INAA) 13.11 13.85 14.84 I 13.05 2.48 2.41 
Nb(XRF) 20 18 17 14 21 21 21 
La(INAA) 81.7 81.5 92.1 82.0 23.9 24.9 
Ce(INAA) 152.1 160.5 181.9 153.3 45.8 47.? 
Sr(XRF) 1297 1283 1589 1717 469 494 451 
Nd(ID) 73.35 68.32 23.64 
Sm(INAA) 11.05 11.27 12.65 11.55 4.86 5.15 
Zr(XRF) 321 319 370 350 161 169 160 
Hf(INAA) 7.50 7.85 9.41 7.85 3.61 3.72 
Eu(INAA) 2.45 2.97 2.94 2.53 1.40 1.55 
Y(XRF) 26 24 25 24 20 22 29 
Yb(INAA) 1.40 1.56 1.28 1.62 1.83 1.7.: 
Lu(INAA) 0.19 0.25 0.17 0.17 0.23 0.3( 
Sc(INAA) 15.0 15.8 11.3 14.0 24.9 25.1 
Tb(INAA) 0.74 0.91 0.78 0.88 0.66 0.6( 
Cr(INAA) 170 181 171 154 289 261 
Ni(INAA) 101 177 175 82 84 7( 
87Sr j86Sr(i) 0.70882 0.70862 0.7056/ 
143Ndj144Nd 0.512241 0.512227 0.5124H 
147Smfl44Nd 0.11 0.10 0.12 

fNd -7.65 -7.91 -4.2€ 

ToM 1129 1064 1071: 
206Pb j204Pb 18.26 18.48 1'7.60 
207Pb j204Pb 15.58 15.59 15.51 
208Pb j204Pb 38.69 38.85 37.69 



Table A-1: 
sample# 
type 

Major and trace element anal <~ses of the DSV rocks, continued. 

Si02 
Ah03 
Fe203 
CaO 
MgO 
Na20 
K20 
Ti02 
MnO 
PzOs 
WI 
Total 

Pb(ID) 
Rb(XRF) 
Ba(XRF) 
Th(INAA) 
Nb(XRF) 
La(INAA) 
Ce(INAA) 
Sr(XRF) 
Nd(ID) 
Sm(INAA) 
Zr(XRF) 
Hf(INAA) 
Eu(INAA) 
Y(XRF) 
Yb(INAA) 
Lu(INAA) 
Sc(INAA) 
Tb(INAA) 
Cr(INAA) 
Ni(INAA) 
87Sr j86Sr(i) 
143Ndf144N d 
147Smf144Nd 

ENd 
ToM 
206Pbj204Pb 
207pbj204pb 
208pbj204Pb 

Ttmb-14 Ttmb-15 Ttmb-fi: 
lava lava lava 

50.45 49.54 49.75 
15.32 15.52 14.75 
11.14 10.85 10.98 
9.09 9.44 9.32 
7.19 6.12 6.33 
2.96 3.04 3.00 
1.34 1.39 1.34 
1.65 1.66 1.72 
0.16 0.16 0.16 
0.45 0.47 0.49 

99.75 98.19 97.84 

4.94 
20 24 19 

944 195 271 
2.67 

24 24 2e 
27.0 
54.1 
486 467 511 

24.35 
5.38 
171 168 18C 

4.13 
1.63 

32 33 34 
2.07 
0.25 
25.7 
0.59 
261 
106 

0.70527 
0.512449 

0.13 
-3.61 
1029 
17.39 
15.46 
37.45 

95 
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Table A-2: Analyses from Morikawa (1993 and unpublished data). 
sample# Tct2-1.1 Tct2-5.1 Tcr-6.5 Tct2-6.6 Tct2-7.1 Tct2-7.2 Tct2-7.3 Tct2-4.1 
type pumice pumice lava pumice pumice 
SiOz 70.63 72.20 70.19 68.39 72.91 71.45 72.91 74.33 
A!z03 11.72 11.83 13.13 13.08 12.50 12.61 12.60 12.15 
Fez03 0.81 1.10 1.63 1.09 1.18 1.60 1.56 0.93 
CaO 1.46 1.17 0.68 0.66 1.05 2.13 2.50 0.56 
MgO 0.34 0.17 0.00 0.01 0.51 0.75 0.46 0.00 
NazO 2.20 1.57 1.58 1.57 2.79 3.15 2.85 1.57 
KzO 5.04 5.03 5.54 5.55 5.24 4.49 5.20 4.90 
TiOz 0.14 0.12 0.20 0.20 0.18 0.23 0.23 0.10 
MnO 0.04 0.04 0.05 0.04 0.04 0.05 0.06 0.05 
PzOs 0.00 0.01 0.00 0.01 0.06 0.08 0.12 0.02 
WI 
Total 92.37 93.25 92.99 90.60 96.46 96.54 98.49 94.60 

Pb(ID) 
Rb(XRF) 149 156 160 143 143 124 108 
Ba(XRF) 236 169 582 678 240 356 331 11 
Th(INAA) 16.00 23.00 17.00 21.00 16.00 14.00 13.23 23.00 
Nb(XRF) 17 22 23 '23 19 19 17 31 
La(INAA) 
Ce(INAA) 
Sr(XRF) 103 79 70 80 125 196 165 12 
Nd(ID) 
Sm(INAA) 
Zr(XRF) 88 87 164 174 101 122 114 76 
Hf(INAA) 
Eu(INAA) 
Y(XRF) 22 22 25 24 22 21 21 24 
Yb(INAA) 
Lu(INAA) 
Sc(INAA) 
Tb(INAA) 
Cr(XRF) 26 41 47 
Ni(XRF) 10 15 17 
87Sr 1 86Sr (il 0.71007 0.70954 0.70820 
143Ndj144Nd 
147SmJ144Nd 

eNd -9.56 -10.09 -10.00 
ToM 
206Pbj204Pb 18.10 18.01 18.03 
207Pbj204pb 15.58 15.56 15.58 
208Pbj204pb 38.95 38.89 38.83 
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Table A-3: Normative mineralogy of the DSV rocks. 
Sample# Tra-3 Tra-4 Tra-57 Tra-31 Tra-43 Tra-6 Tra-27 
quartz 0.00 5.89 8.53 7.40 8.63 9.67 6.89 
orthoclase 12.73 28.23 27.43 18.16 26.32 22.60 25.90 
albite 29.08 34.74 26.20 23.96 30.98 31.15 38.10 
anorthite 27.15 18.55 13.46 19.98 15.52 18.22 12.76 
corundum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
diopside 14.22 0.79 9.28 13.09 6.23 5.60 5.01 
hypersthene 6.52 6.28 9.51 11.68 7.00 8.04 6.30 
olivine 3.85 0.00 0.00 0.00 0.00 0.00 0.00 
magnitite 3.04 2.56 2.77 2.85 2.64 2.44 2.52 
ilmenite 1.93 1.29 1.58 1.63 1.40 1.12 1.26 
hematite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
titanite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
apatite 1.48 1.67 1.25 1.24 1.27 1.17 1.24 
rutile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
%anorthite 48.29 34.82 33.95 45.48 33.38 36.90 25.09 
color index 29.56 10.93 23.13 29~26 17.27 17.20 15.10 

Sample# Tra-52 Tra-54 Tra-55 Tra-38 Tra-66 Tra-60 Tra-72 
quartz 3.13 8.68 7.65 8.73 1.33 5.84 0.00 
orthoclase 27.22 26.61 26.42 25.79 31.48 28.37 28.35 
albite 33.80 35.83 37.43 31.19 39.65 41.65 31.71 
anorthite 13.31 14.05 13.06 14.38 15.08 11.35 14.62 
corundum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
diopside 7.96 3.80 4.65 10.88 1.74 4.28 10.89 
hypersthene 9.25 6.00 5.78 3.85 5.31 3.33 4.25 
olivine 0.00 0.00 0.00 0.00 0.00 0.00 4.28 
magnitite 2.65 2.53 2.54 2.61 2.64 2.58 2.83 
ilmenite 1.38 1.23 1.27 1.31 1.37 1.32 1.62 
hematite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
titanite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
apatite 1.31 1.27 1.21 1.24 1.39 1.28 1.44 

rutile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
%anorthite 28.25 28.17 25.86 31.56 27.55 21.42 31.56 
color index 21.23 13.55 14.24 18.66 11.06 11.51 23.88 
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Table A-3: Normative mineralogy of the DSV rocks, continued. 
Sample# Tra-33 Tasa-82 Tasa-83 Tasa-74 Ttmt-18 Tcr-9310 Tcr-80 
quartz 16.40 5.28 0.00 1.07 20.53 28.25 29.62 
orthoclase 30.50 19.70 31.00 22.44 36.70 27.23 33.17 
albite 34.15 29.11 27.38 33.29 34.22 30.46 31.39 
anorthite 11.43 18.24 7.89 13.29 2.51 7.26 3.16 
corundum 0.15 0.00 0.00 0.00 0.00 2.69 1.20 
diopside 0.00 9.80 19.31 13.90 3.31 0.00 0.00 
hypersthene 3.58 11.98 5.95 10.10 0.00 1.34 0.32 
olivine 0.00 0.00 1.86 0.00 0.00 0.00 0.00 
magnitite 1.99 2.92 3.19 2.90 0.00 2.03 0.00 
ilmenite 0.84 1.74 2.08 1.76 0.08 0.55 0.08 
hematite 0.14 0.00 0.00 0.00 1.25 0.00 0.80 
titanite 0.00 0.00 0.00 0.00 0.66 o.oo 0.00 
apatite 0.80 1.23 1.34 1.24 0.21 0.22 0.13 
rutile 0.00 0.00 0.00 0.00 0.00 0.00 0.13 
%anorthite 25.08 38.51 22.37 28.54 6.84 19.24 9.16 
color index 6.56 26.43 32.39 2S.67 4.65 3.91 1.20 

Sample# Tct2-37 Tct2-41 Tpa-78 Tpa-931 Tpa-46 Tpa-69 Tpa-48 
quartz 35.21 37.24 0.00 6.76 4.20 3.07 4.46 
orthoclase 32.31 34.45 15.05 20.38 19.38 20.24 20.40 
albite 23.40 23.09 25.95 26.45 30.36 33.20 30.56 
anorthite 5.73 2.64 18.74 22.15 16.59 15.62 16.18 
corundum 0.00 1.25 0.00 0.00 0.00 0.00 0.00 
diopside 2.08 0.00 20.55 9.32 13.36 11.05 11.04 
hypersthene 0.17 0.55 3.58 8.94 10.37 11.11 11.59 
olivine 0.00 0.00 10.36 0.00 0.00 0.00 0.00 
magnitite 0.00 0.00 2.81 2.90 2.84 2.83 2.86 
ilmenite 0.07 0.08 1.64 1.71 1.67 1.67 1.71 
hematite 0.52 0.53 0.00 0.00 0.00 0.00 0.00 
titanite 0.14 0.00 o.oo 0.00 0.00 0.00 0.00 
apatite 0.38 0.13 1.31 1.40 1.22 1.24 1.20 
rutile 0.00 0.04 0.00 0.00 0.00 0.00 0.00 
%anorthite 19.66 10.26 41.94 45.58 35.33 31.99 34.62 
color index 2.84 1.16 38.95 22.86 28.24 26.64 27.20 
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Table A-3: Normative mineralogy of the DSV rocks, continued. 
Sample# Tpa-11 Tpa-68 Tpa-51 Tpa-50 Ttmb-7 Ttmb-8 Ttmb-25 
quartz 4.95 6.41 6.31 5.87 0.00 0.00 o.oc 
orthoclase 20.35 20.09 25.32 22.39 7.08 6.59 7.14 
albite 29.01 27.75 29.86 28.42 27.25 27.22 26.43 
anorthite 17.37 17.89 13.43 15.14 26.38 26.79 24.60 
corundum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
diopside 10.75 10.81 12.24 10.95 15.95 15.86 16.62 
hypersthene 11.73 11.25 7.49 12.00 7.43 8.91 18.51 
olivine 0.00 0.00 0.00 0.00 9.79 8.41 0.35 
magnitite 2.87 2.92 2.68 2.64 3.20 3.24 3.29 
ilmenite 1.71 1.73 1.46 1.42 2.15 2.20 2.2t 
hematite 0.00 0.00 0.00 0.00 0.00 0.00 0.0( 
titanite 0.00 0.00 0.00 0.00 0.00 0.00 0.0( 
apatite 1.27 1.15 1.20 1.16 0.76 0.76 0.81 
rutile 0.00 0.00 0.00 0.00 0.00 0.00 0.0( 
%anorthite 37.45 39.19 31.03 34.76 49.19 49.60 48.21 
color index 27.06 26.71 23.88 27.02 38.52 38.63 41.03 

Sample# Ttmb-14 Ttmb-15 Ttmb-16 
quartz 0.00 0.00 0.04 
orthoclase 8.02 8.47 8.20 
albite 26.93 28.15 27.91 
anorthite 24.89 25.38 23.66 
corundum 0.00 0.00 0.00 
diopside 14.27 15.82 16.76 
hypersthene 17.17 12.99 16.39 
olivine 2.09 2.39 0.00 
magnitite 3.34 3.41 3.49 
ilmenite 2.33 2.39 2.48 
hematite 0.00 0.00 0.00 
titanite 0.00 0.00 0.00 
apatite 0.95 1.01 1.06 
rutile 0.00 0.00 0.00 
%anorthite 48.03 47.41 45.87 
color index 39.20 36.99 39.12 
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Table A-4: Normative mineralogy of Morikawa data (1993 and 
un ublished data). 

Sample# Tct2-l.l Tct2-5.1 Tcr-65 Tct2-6.6 Tct2-7.1 Tct2-72 Tct2-73 Tct24.1 
q.tartz 35.73 41.85 39.17 38.25 3289 30.22 
orthoclase 32.'79 32.75 36.0'! 37.CB 3254 27il() 

albite 21.76 15.48 15.65 15.83 2633 29.64 
anorthite 7.~ 6.42 3.71 3.70 5.()5 7.35 
cnrundum 0.00 201 3.98 4.0i 054 0.00 
diop;ide 0.00 0.00 0.00 0.00 0.00 2.04 
hypersthene 0.96 051 0.00 o.m 1.48 1.15 
olivine 0.00 0.00 0.00 0.00 0.00 0.00 
magnitite 0.00 0.00 0.00 0.00 0.00 0.00 
ilmenite O.ffi 0.00 0.14 0.00 om 0.00 
hemati.te 0.62 OM 1.23 0.86 0.86 1.17 
titanite om 0.00 0.00 0.00 0.00 0.38 
apatite 0.00 0.00 0.00 0.00 0.13 0.18 
rutile om om om 0.12 0.10 0.00 
%anorthite 26.86 29.ll 19.18 18.91' 16.13 19.86 
cnlorindex 1.64 1.43 137 0.97 241 4.44 



Appendix B 

Analytical Techniques 

Thirty-eight samples were processed for major and trace element 

chemistry. Table B-1 summarizes the number of samples from each 

stratigraphic unit and the analytical techniques applied. The freshest samples 

possible where collected and broken into small chip sized fragments (1-5 em) 

in the field and then stored in ziplock bags. Visible alteration was avoided as 

much as was practical but some noticeably altered samples had to be collected 
I 

to provide adequate coverage of all stratigraphic units across the entire field 

area. Weathering rhines and filled vesicles were discarded in the field. 

Rock chips were crushed in a Bico Chipmunk rock crusher down to < 5 

mm. Crushed samples were examined and secondary minerals were 

removed. The samples were then powdered to < 325 mesh in a Bico Shatter 

Box. The Chipmunk and the Shatter Box both have tungsten-carbide 

crushing surfaces. 

Major and Selected Trace Elements analysis with 

X-ray Fluorescence 

Thirty-eight samples were analyzed for major and certain trace 

elements (Zr, Rb, Sr, Nb, Y, Ba) with X-ray Fluorescence spectrometry (XRF). 

All XRF analyses were performed on a Rigaku 3030 spectrometer at the 

101 
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University of Nevada, Las Vegas. Table B-2 presents the accuracy for the XRF 

major elements with replicate analyses of BIR-1 a USGS standard. Table B-3 

presents the accuracy for the trace elements analyzed with XRF with replicate 

analyses of DR-N, also USGS standard. Fused glass disks were used for the 

major element analysis and pressed pellets for the trace elements. The fused 

glass discs were created by melting 9.00 g lithium tetra-borate (LhB407), 0.16 g 

ammonium nitrate (Nli4N03), and 1.00 g of powdered sample at 1100°C in 

Au-Pt crucibles. After 30 minutes of heating the melt was cooled slowly in an 

Au-Pt mold. The pressed pellets were created using 3.00 g of sample mixed 

with 0.60 g of methyl cellulose. The mixture was pressed to a methyl-cellulose 

backing in an Ashcroft hydraulic pellet press for 90 seconds at 3,000 psi. All 

ingredients were weighed to 0.0002 g. The pellets and discs were stored in a 

desiccator. 

Loss on Ignition (LOI) was conducted on two of the mafic units (Table 

B-1) and on two of the felsic units (a tuff and rhyolite from the Culdesac 

complex). Approximated 3 g of sample was added to a previously dried and 

weighed ceramic crucible. The samples were then heated to lOOOC for two 

hours and gradually cooled in the oven and then desiccator until they could 

be weighed again. 

Rare-earth and trace element analysis (INAA) 

Thirty-one samples (Table B-1) were analyzed for rare-earth and trace 

elements using Instrumental Neutron Activation Analysis (INAA). Samples 

weighing approximately 0.2000 g were loaded in 8 em lengths of Suprasil silica 
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tubing that were then weighed and melted closed. Tubes were first cleaned in 

a heated solution of 50% (by volume) HN03 and then checked for leaks in the 

same solution after being sealed. The analyses were perfumed at the Phoenix 

Memorial Laboratory, Ann Arbor, Michigan. Precision and accuracy data for 

the INAA elements are found in Table B-4 (Yogodzinski, in review). 

Isotopic Analysis (TIMS) 

Fifteen samples were analyzed for Nd, Sr, and Pb isotopic ratios by 

Thermal Ionization Mass Spectrometry (TIMS). Approximately 5 g of sample 

was sent to the lab in a glass screw-top vial. The analyses were performed on 

a VG Sector 54 mass spectrometer at the University of Kansas, Lawrence. A 

thorough description of the procedure can be found in Feuerbach et al. (1993). 
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Table B-1: Analytica . proce d ures. 

Summarv of Analytical Procedures 

Unit XRF LOI INAA Isotopes 

basalt of Table Mtn 6 3 2 

andesite of Powerline Rd 10 1 9 4 

rhyolite of Culdesac Wash 4 2 2 2 

andesite of Alta Spring 4 4 2 

tuff of Table Mtn 1 1 1 

andesite of Rodeo Grotmd5 . · '13' 1 12 5 

Total 38 4 31 16 

f Table B-2: Accuracy or major e ements. 
Published values Average of 21 Percent 

element for BIR-1 analyses error 

SiOz 47.77 I 47.08 1% 

Alz03 15.65 15.09 4% 
TiOz 0.96 0.95 1% 
Fez03 1126 11.13 1% 
CaO 13.24 13.05 1% 
KzO 0.03 0.03 3% 
MnO 0.17 0.17 0% 
PzOs 0.05 0.05 18% 
NazO 1.75 1.65 6% 
MgO 9.68 9.61 1% 
Total 100.55 98.82 2% 

Table B-3· Accuracy of the XRF trace elements. 
element # of analyses DR-N Published Average %error 

Zr 11 125 143 14% 

Sr 11 400 410 2% 
Nb 14 8 9 7% 
y 10 28 30 7% 

Rb 10 73 75 2% 

Ba 10 385 334 13% 
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