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ABSTRACT

CPU Scheduling for Power/Energy Management on Heterogeneous Multicore
Processors

by

Rajesh Patel

Dr. Ajoy K. Datta, Examination Committee Chair
School of Computer Science

University of Nevada, Las Vegas

Power and energy have become increasingly important concerns in the design and im-

plementation of today’s multicore/manycore chips. Many methods have been proposed to

reduce a microprocessor’s power usage and associated heat dissipation, including scaling a

core’s operating frequency. However, these techniques do not consider the dynamic per-

formance characteristics of an executing process at runtime, the execution characteristics

of the entire task to which this process belongs, the process’s priority, the process’s cache

miss/cache reference ratio, the number of context switches and CPU migrations generated

by the process, nor the system load. Also, many of the techniques that employ dynamic

frequency scaling can lower a core’s frequency during the execution of a non-CPU intensive

task, thus lowering performance. In addition, many of these methods require specialized

hardware and have not been tested upon real hardware that is widely available, including

the recent AMD or Intel multicore chips.

One problem dealing with power/energy management for heterogeneous multicore pro-

cessors is: Given a set of processes, each having identical default priorities, in a given task

to be executed by a heterogeneous multicore/manycore processor system, schedule each

process in this task to execute upon the CPU(s) in this system such that the global power

budget is minimized, yet the performance gain of all processes is maximized, and the per-

formance loss of all processes is minimized. Doing so, in a scenario where each process has a

different (not necessarily unique) static or dynamic (but not necessarily the default) prior-

ity, without adversely affecting process completion order, as dictated by process priority is
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yet another problem. Finally, utilizing the cache miss/cache reference ratio and the number

of context switches and CPU migrations as scheduling criteria are two other problems. This

dissertation will elaborate upon these four problems, and will describe our four approaches

to solving these problems.
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CHAPTER 1

INTRODUCTION

Recent advances in processor production have led to not only an increase in the number

of cores on a single chip, but also a concomitant increase in power consumption and heat

dissipation associated with these high performance systems. For example, a 2.8 GHz Intel

“Northwood” Pentium 4 chip consumes around 80 W, while a “Prescott” Pentium 4 chip

of the same speed consumes around 100 W [24]. This increased power consumption creates

an associated increase in heat dissipation, which leads to higher costs for air conditioning,

thermal packaging, fans, and electricity. Increased heat and temperature of hardware,

such as the CPU, can also lead to decreased longevity and greater incidence of failure of

these components. Also, the integration and design of a multicore chip is more difficult to

manage, than a lower-density, single-chip design due to thermal constraints [23]. Finally,

power savings and decreased heat production can be crucial in notebook computers, where

battery life is a constraint and cooling of hardware components is difficult, and in server

farms, where even a slight decrease in the power consumption of each server can cause a

significant savings for the entire system.

Scaling a CPU’s frequency can dramatically affect its power consumption. In fact, the

power dissipation at the output pins of a core is directly proportional to its frequency and

is governed by the equation

P =
1

2
CV 2f

where f is the effective bus frequency.

CPU frequency scaling may be used to produce an architecture composed of a het-

erogeneous processor, those with cores operating at different frequencies. Heterogeneous
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architectures may achieve a higher performance per watt than comparable homogeneous

systems [30, 21] due to the ability of each application to run on a core that best suits its ar-

chitectural properties. An architecture composed of a heterogeneous processor may contain

cores specialized for certain tasks. For example, threads conducting CPU intensive work

may execute upon high frequency cores, while threads conducting memory intensive work

may execute upon low frequency cores, which consume significantly less power.

Memory intensive processes may suffer from memory bandwidth saturation [8, 14]. Dur-

ing the execution of such processes, if data cannot be moved from main memory to the cores

fast enough, the cores may sit idle as they wait for the data to arrive. These processes may

obtain limited benefit from increasing processor frequency due to the slow speed of cache

and memory access relative to processor speed. Thus when executing a task containing

both CPU intensive and memory intensive processes, it may be beneficial to move such

memory intensive processes to lower frequency cores, while allowing less memory intensive,

more CPU intensive processes to execute upon higher frequency cores.

The Linux 2.6 real time task scheduler minimizes response times for critical real-time

tasks, while maximizing CPU utilization, by implementing dynamic task prioritization and

task preemption [16]. That is, to prevent tasks from starving other tasks that need to use

the CPU, the Linux 2.6 scheduler can dynamically alter a task’s priority. A task’s priority

is dictated by its nice value, with a lower nice value indicating a higher priority. Also the

Linux 2.6 scheduler allows preemption, meaning a lower priority task won’t execute when

a higher priority task is ready to run. By default, all processes have a nice value of 0, thus

having the same priority. However, tasks may be assigned different priorities, based upon

their nice values. This may affect the completion order of a group of concurrently executing

tasks.

Context switching less CPU intensive processes, that would benefit less from executing

upon higher frequency cores, to lower frequency cores and allowing CPU intensive processes

to execute upon higher frequency cores may minimize performance loss while providing

significant power savings. Doing so in a manner that does not affect process completion

order as dictated by process priority is also beneficial. This research’s goal is to identify
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and quantify these advantages.

1.1 Contributions

Like some recent work using heterogeneous processors [14, 5, 32, 2, 17, 30, 35, 20, 19,

21, 11, 33, 25, 26, 10, 13, 22], this research uses processors that have the same instruction

architecture but have different implementation characteristics, such as operating frequency.

In contrast to these works, however, our paper offers the following contributions.

We present four CPU scheduling algorithms, referred to in this paper as Algorithm

CPU Scheduler , Algorithm Priority CPU Scheduler , Algorithm Cache Miss Priority

CPU Scheduler, and Algorithm Context Switch Priority CPU Scheduler that lower the

global power budget in a heterogeneous multicore (or manycore) system while creating a

minimal performance loss (and in some cases a performance gain) given a task containing

a set of processes to be executed on this system. Also, for the three latter algorithms,

process completion order, as dictated by process priority, is not affected. These algorithms

utilize hardware partitions composed of heterogeneous cpusets. The cpusets contain varying

numbers of cores. The cores are identical, with the exception that cores belonging to

the same cpuset operate at the same frequency, and cores belonging to different cpusets

operate at different frequencies. The algorithms can be executed upon a system using any

multicore/manycore chip supporting CPU frequency scaling, which includes most of the

widely available chips, including the Intel Nehalem and AMD Opteron chips, and uses no

specialized hardware or software.

Algorithms CPU Scheduler , Priority CPU Scheduler , Cache Miss Priority CPU

Scheduler , and Context Switch Priority CPU Scheduler use “application-driven” feed-

back, in which the executing application gives feedback (regarding its performance) to the

operating system, at runtime, and the operating system, in turn, schedules the system’s

CPU hardware resources based upon this feedback. At runtime, an application evaluates

its performance and sends this feedback to the operating system. If the application has

an increased performance, relative to other executing processes in the task, the operating

system context switches the application to a cpuset containing cores operating at a lower

frequency, whereas if an application has decreased performance, relative to other executing

3
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Figure 1: General Overview of Algorithms 1 - 4

processes in the task, the operating system context switches the application to a cpuset con-

taining cores operating at a higher frequency, in hopes of speeding up the execution of the

application and thus lowering the average completion time of all processes in the task. In

addition, the latter three algorithms use process priority (Linux nice values), both static and

dynamic, as a scheduling criterion and do not affect process completion order in a scenario

where each process is assigned a distinct nice value. Also, algorithms Cache Miss Priority

CPU Scheduler and Context Switch Priority CPU Scheduler use the cache miss/cache

reference ratio and the number of context switches and CPU migrations, respectively, as

scheduling criteria with the goal of improving performance. A general overview of our

algorithms is depicted in Figure 1.

Power reduction is achieved by utilizing the heterogeneous cpusets, many of which con-

tain cores operating at a lower frequency than would be achieved if the same cores were

executing the same processes using the “on demand” CPU frequency scaling governor, which

is the default governor in a Linux based system. This results in significant power savings.

1.2 Outline of the Dissertation

We start with a discussion of the design of multicore processors in Chapter 2. This

includes an overview of the concept of multicore processors. We then discuss the events

leading to the development of multicore processors. We also present an overview of the

4



architecture of multicore processors. Finally, we explain the concepts of homogeneous versus

heterogeneous multicore processors. In Chapter 3, we discuss challenges associated with the

implementation of multicore processors. We include a discussion of cache coherence, power

and temperature management, and performance issues arising from the implementation

of multicore processors. In Chapter 4 we state the motivation of this research, describe

some results in related areas, and introduce our four CPU scheduling problems. The main

contribution of this dissertation is presented in Chapters 5, 6, 7, and 8 where we present

our solutions to the four problems, including descriptions of the variables and constants

used in the algorithms, descriptions of the algorithms themselves, and formal presentations

of our algorithms. The first algorithm, Algorithm CPU Scheduler, is presented in Chapter

5, the second, Algorithm Priority CPU Scheduler , is presented in Chapter 6, the third,

Algorithm Cache Miss Priority CPU Scheduler , is presented in Chapter 7, and the

fourth, Algorithm Context Switch Priority CPU Scheduler, is presented in Chapter 8. A

discussion of the complexity of the algorithms, evaluation results, and other properties are

included in Chapter 9. Finally, we conclude and present some ideas for future research in

Chapter 10.
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CHAPTER 2

MULTICORE PROCESSORS

2.1 Overview

A multicore processor is an integrated circuit or single computing component upon which

two or more independent processors (cores) have been attached for enhanced performance,

reduced power consumption, and parallel processing. A multicore processor is comparable to

having two or more separate processors installed on the same computer. However, because

these processors are plugged into the same socket, the connection between them is faster.

The cores are units that read and execute CPU instructions such as add, move data,

and branch. The multiple cores can execute multiple instructions simultaneously, thus

increasing the overall speed of programs that can take advantage of parallel computing.

These cores are typically integrated onto a single integrated circuit die, known as a chip

multiprocessor (CMP), or onto multiple dies in a single chip package [23]. AMD, ARM,

Broadcom, Intel, and VIA are among the companies that have produced or are currently

working on multicore products.

A dual core processor has two cores (e.g. AMD Phenom II X2), a quad core processor

has four cores (Intel i3, i5, i7), a hexa core processor contains six cores (AMD Phenom II

X6), and an octa core processor contains eight cores (AMD Opteron 6134). Chips with tens

or even hundreds of cores are the growing trend in processor development. Such chips are

termed “manycore” chips. In a manycore processor, the number of cores is large enough

such that traditional multi-processor techniques are not efficient, primarily due to issues

with congestion in supplying instructions and data to all of the cores. In this case, network

on chip technology is advantageous.
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The cores in a multicore device can be coupled tightly or loosely by designers. One

example is that cores may or may not share caches, and may utilize message passing or

shared memory for inter-core communication. Common network topologies interconnecting

cores include bus, ring, two-dimensional mesh, and crossbar. Also, as in single-processor

systems, cores in a multicore system may utilize architectures such as superscalar, VLIW,

vector processing, SIMD, or multithreading.

2.2 Development

Because single core processors are quickly reaching the physical limits of feasible com-

plexity and speed, multicore processing is becoming a growing industry trend [29]. While

various methods have been used to improve CPU performance, including instruction level

parallelism (ILP) methods such as superscalar pipelining, many of these methods are in-

efficient for applications that contain code that is hard to predict. These applications can

benefit more from thread level parallelism (TLP) methods. Multiple independent CPUs are

commonly used to increase a system’s overall TLP. Thus one contributing factor that led

to the development of multicore processors is the demand for increased TLP.

The speedup of a program using a multicore processor in parallel computing is quantified

using Amdahl’s law. Amdahl’s law states that the overall speedup of a program is

S =
1

(1 − P ) + P
n

where P is the portion of the program that can be executed in parallel and n is the number

of concurrent processors.

It was possible for decades to improve the performance of a CPU by shrinking the area of

the integrated circuit. Also, for the same circuit area, more transistors could be utilized in

the design, which increased functionality. Clock rates also increased in the late 20th century,

from several megahertz in the 1980’s to several gigahertz in the early 2000’s. However, as the

rate of speeding up processor frequency had slowed and reached a plateau, increased use of

parallel computing in the form of multicore processors has been pursued to improve overall

processing performance. Adding additional processor cores to the same chip should both
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Figure 2: Basic Microprocessor Design

improve performance and dissipate less heat, “without the need to run at ruinous clock rates

[18]”. Thus both increased available space (due to improved manufacturing processes) and

the demand for increased thread level parallelism have led to the development of multicore

CPUs.

Today, multicore processors are used in a wide variety of applications, including general

purpose, embedded, network, digital signal processing (DSP), and graphics.

8



Figure 3: Shared Memory Model (left) and Distributed Memory Model (right)
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(a) Block Diagram of Intel Core 2 Duo (b) Block Diagram of AMD Athlon 64 X2

Figure 4: Block Diagrams of the Core 2 Duo and Athlon 64 X2 multicore processors

2.3 Overview of Architecture

A basic overview of multicore architecture is as follows. The basic design of a micro-

processor is depicted in Figure 2. Level 1 (L1) cache is very fast memory that is used to

store data frequently used by a processor. It is also physically closest to a processor. Level

2 (L2) cache is just off-chip, is larger than L1 cache, and is slower than L1 cache, but is still

much faster than main memory. It is used for the same purpose as L1 cache. Most systems

have approximately 32 Kb of L1 cache and 2 Mb of L2 cache.

Communication between cores, and to main memory, is usually accomplished by using

either a single communication bus or and interconnection network. A bus is used with a

shared memory model and an interconnection network is used with a distributed memory

model. A bus has limited scalability and leads to diminished performance after the number

10



Figure 5: Block Diagram of AMD Opteron 6100 processor

of cores is approximately thirty-two cores. Figure 3 depicts both the shared memory and

distributed memory models.

Two examples of different multicore architectures are the Intel Core 2 Duo chip and the

Advanced Micro Device’s Athlon 64 X2 chip. Both architectures differ greatly. Figure 4

shows the architecture of both chips [27].

The Core 2 Duo uses a shared memory model with private L1 caches and a shared L2

cache, whereas the Athlon utilizes a distributed memory model with discrete L2 caches for

each core. These L2 caches share a system request interface, and in doing so, eliminate the

need for a bus. Figure 5 shows a block diagram of the AMD Opteron 6100 processor, which

also uses per core L2 caches and is the processor used in this research. The Core 2 Duo,

instead, uses a bus interface. It also has explicit thermal and power control units on chip.

2.4 Homogeneous versus Heterogeneous Multicore Processors

Homogeneous multicore systems are systems with identical cores and use one core design

that is repeated consistently. A heterogeneous multicore processor is one which uses a
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combination of different cores, each of which can be optimized for a different role. One area

of heterogeneity can be a core’s operating frequency.

A single-ISA heterogeneous multicore processor, or simply heterogeneous multicore pro-

cessor, can consist of cores exposing the same instruction set architecture, but delivering

different performance. The cores can differ in clock frequency and power consumption.

Asymmetry (or heterogeneity) can be built in by design [20, 21], or may exist due to

explicit clock frequency scaling [31]. The latter is the basis of the heterogeneity in our

heterogeneous multicore multiprocessor system.
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CHAPTER 3

MULTICORE PROCESSOR

IMPLEMENTATION CHALLENGES

There are numerous challenges that arise with the implementation of a multicore pro-

cessor system. Three of these, which will be discussed in this chapter, are cache coherence,

power and heat dissipation, and performance.

3.1 Cache Coherence

Cache coherence can be an issue with multicore processors because of distributed L1 and

L2 caches. The copy of the data in a core’s cache may not always be the most up-to-date

version since each core has its own cache. An example of this may be a dual-core processor

where each core brought a block of memory into its private cache. If one core writes a value

to a specific location, when the second core tries to read that value from its cache, it won’t

have the updated copy unless its cache entry is invalidated and a cache miss occurs. This

cache miss causes the second core’s cache entry to be updated. Without this type of cache

coherence policy, garbage data would be read and invalid results would be produced.

Generally, there are two schemes for cache coherence, a directory-based protocol and a

snooping protocol. The directory-based protocol can be used on an arbitrary network, and

therefore is scalable to many processors or cores. In this scheme, a directory is used that

holds information about which memory locations are being shared in multiple caches and

which are exclusively used by one core’s cache. This directory knows when a block needs to

be invalidated or updated. In contrast, the snooping protocol only works with a bus-based

system, and uses a number of states to decide whether it needs to update cache entries and

if it has control over writing to a block. Also, the snooping protocol is not scalable [12].
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Figure 6: Relationship Between Core Operating Frequency and Power Consumption

Two different schemes of cache coherence are exemplified by Intel’s Core 2 Duo and

AMD’s Athlon 64 X2 multicore chips. Intel’s Core 2 Duo speeds up cache coherence by

querying the second core’s L1 cache and the shared L2 cache simultaneously. An extra

benefit of a shared L2 cache is that a coherence protocol doesn’t need to be set for this

level. AMD’s Athlon 64 X2 monitors cache coherence in both L1 and L2 caches. This

method has more overhead than Intel’s model, despite its attempt to speed this process up

using the HyperTransport connection.

This overhead associated with cache coherence can degrade the performance of a mul-

ticore processor system. Also, if a process is context switched too often, it will also have a

tendency to generate many cache misses since it changes the CPU upon which it executes

frequently and may not find valid data in its new core’s cache. As a result, a performance

loss will also occur, due to the need for cache coherence and the need to fetch valid data from

another core’s cache. Thus a different strategy may need to be implemented if a process

generates many cache misses during an algorithm’s implementation.

3.2 Power and Temperature Management

The design and implementation of today’s multicore/manycore chips must consider

power and heat dissipation as important issues. In theory, if two cores are placed on a
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single chip, without any further modification, the chip would consume twice as much power

[27]. This increased power consumption creates an associated increase in heat dissipa-

tion. As mentioned earlier, thermal constraints also make the integration and design of a

multicore chip difficult. This necessitates a method of power reduction and temperature

management for a multicore chip upon which numerous power consuming cores are found.

One method to account for the large amount of heat produced by a multicore/manycore

chip is to run the multiple cores at a lower frequency to reduce power consumption. Figure

6 shows the linear relationship between a core’s operating frequency and its power consump-

tion. One technique to lower a core’s frequency is dynamic voltage and frequency scaling,

or DVFS. By using this technique, the operating voltage and frequency of a processor can

be decreased. DVFS is used to decrease the voltage and frequency of a processor in order

to conserve power, particularly in laptops or other mobile devices [9]. With this decrease in

power consumption comes a concomitant decrease in heat production. Due to the quadratic

relation between the energy consumption and operating voltage and linear relation between

the energy consumption and operating frequency of a microprocessor, the DVFS technique

has been proven to be a highly effective method of achieving low power consumption for a

CPU while maintaining performance requirements [6].

CPU underclocking is another technique in which a CPU can be set to run at a lower

clock rate than it was specified to operate at to reduce a computer’s power consumption

and heat emission [34]. This technique can provide increased system stability in high heat

environments. An example is a Pentium 4 processor clocked at 2.4 GHz that can be “un-

derclocked” to 1.8 GHz and can then be run with reduced fan speeds. In fact, in laptops

the processor is usually underclocked automatically when the computer is operating on

batteries. Most recent notebook and desktop computers utilizing power-saving schemes,

like AMD’s PowerNow and Cooln’Quiet, underclock themselves automatically under a light

processing load when the system BIOS and operating system support it [3].

Yet another power management technique for multicore chips is to incorporate a power

management unit that has the authority to shut down unused cores or limit the amount of

power to these cores. Also, some processors, like the Intel Core 2 Duo Notebook processor,

can turn off parts of the CPU, which are not used, to save energy [15].
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Two of the techniques mentioned in this section, DVFS and underclocking, scale a CPU’s

frequency. The algorithms presented in this paper also rely upon CPU frequency scaling to

achieve power savings.

3.3 Multicore Performance

Multicore chips can contribute to increased performance of a processor, but this benefit

can only exist if parallelism is exploited. Multicore chips improve an operating system’s

ability to multitask applications. In other words, multiple tasks can run in parallel upon

the cores of a multicore chip, thereby improving overall performance.

A related topic is multithreading, or other parallel processing technique to get the opti-

mum performance from a multicore processor. “With the possible exception of Java, there

are no widely used commercial development languages with [multithreaded] extensions.” [7]

Programmers often have to completely rework and rebuild applications to make them mul-

tithreaded. They have to write applications with subroutines able to be run upon different

cores. This means that data dependencies have to be resolved or accounted for such as race

conditions, communication latencies, or cache coherence. Also, multithreaded applications

must be balanced, meaning one core should not be used much more than another, in order

to take full advantage of multithreading in a multicore system.

However, through the use of parallel programming and multithreading, these challenges

in multicore performance can often be overcome. Also, in an architecture composed of

a heterogeneous multicore processor, each application and thread can execute upon a core

that best suites its architectural properties, thus overcoming another multicore performance

challenge. An architecture composed of a heterogeneous multicore processor may contain

cores specialized for certain tasks. For example, threads conducting CPU intensive work

may execute upon high frequency cores, while threads that are not CPU intensive may

execute upon low frequency cores. In this manner, threads that can benefit the most from

executing upon higher frequency cores, may do so, while non-CPU intensive threads can

execute upon lower frequency cores. Examples of non-CPU intensive threads or applications

are those executing many system calls or interrupts, those that are I/O bound, and memory

intensive processes.
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Finally, the last challenge with multicore performance can be overcoming the perfor-

mance loss associated with context switching overhead. In a multicore/manycore processor,

an application can often be context switched upon the cores of a multicore processor. These

context switches and CPU migrations are associated with a context switching overhead.

This overhead can occur from the actual migration of a process’s state from one core to an-

other, or the delay associated with cache (memory) access and cache coherence. If a process

is context switched too often, it will have a tendency to generate many cache misses, since

it is changing the CPU upon which it executes frequently, and each CPU or core often has

its own L1 or L2 cache.

To overcome this challenge, Algorithms 3 and 4 presented in this paper, consider the

cache miss/cache reference ratio and the number of context switches and CPU migrations

as scheduling criteria. Thus, if a certain threshold for these criteria is reached, indicating

that an executing process is undergoing a performance loss due to an increase of cache

misses, context switches, or CPU migrations, then a different strategy is implemented.

These strategies will be described in the next few chapters.
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CHAPTER 4

POWER/ENERGY CPU SCHEDULING PROBLEM

FOR HETEROGENEOUS MULTICORE PROCESSOR

SYSTEMS

After extensively researching power concerns in the implementation of heterogeneous

multiprocessor systems, we designed four algorithms concerned with lowering the global

power budget in a heterogeneous multicore processor system while creating a minimal per-

formance loss, and, in some cases, a performance gain. We state the motivation of this

research in the next section. We state how other problems mentioned in earlier chapters are

related to the problem solved in this chapter. Finally, we give both an informal explanation

and formal statement of the problems to be solved.

The main results of this dissertation research are reported in the next four chapters. In

Chapters 5, 6, 7, and 8 four CPU scheduling algorithms (Algorithm 1: CPU Scheduler, Al-

gorithm 2: Priority CPU Scheduler, Algorithm 3: Cache Miss Priority CPU Scheduler

, and Algorithm 4: Context Switch Priority CPU Scheduler ), each with a different ap-

proach to lowering the global power budget of a heterogeneous multicore processor system,

are presented. In each of these four chapters, we include a description of the variables and

constants used in our algorithm, a detailed informal description of the algorithm itself, and

a formal presentation of our algorithm. Evaluation results and other properties of all four

algorithms are given in Chapter 9.

4.1 Motivation

A novel approach to allocating CPU resources with the goal of lowering the global power

budget and creating a minimal performance loss (or a performance gain) in a heterogeneous
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multicore processor system is to use “application-driven” feedback, in which an executing

application gives feedback (regarding its performance) to the operating system at runtime,

and the operating system, in turn, dynamically schedules the system’s CPU hardware re-

sources based upon this feedback. There are four approaches presented in this dissertation

that are concerned with meeting this goal.

In the first approach, each process in the system has the same default Linux nice value

of 0, and thus the same default priority. This approach does not use process priority as a

variable. In the second approach, each process in the system has different (not necessarily

unique) priorities. These priorities will be implemented using Linux nice values, and may

or may not be the default nice value of 0. In addition, they may be static or dynamic.

Also, if a process’s priority is static, different trial types will be used in which a process will

be assigned both high and low priorities. This approach uses a process’s nice value as a

variable. In the third approach, in addition to each process having dynamic priorities, the

cache miss/reference ratio of a process at runtime is used as a scheduling factor. Finally,

in the fourth approach, each process has a dynamic priority and the number of context

switches and CPU migrations generated by the process at runtime is used as a scheduling

factor.

Our approaches will utilize hardware partitions composed of heterogeneous cpusets.

The cpusets will contain varying numbers of cores. The cores will be identical, with the

exception that cores belonging to the same cpuset will operate at the same frequency, and

cores belonging to different cpusets will operate at different frequencies.

Power savings will be achieved by utilizing the heterogeneous cpusets, many of which

will contain cores operating at a lower frequency than would be achieved if the same cores

were executing the same processes using the “on demand” CPU frequency scaling governor,

which is the default governor in a Linux based system.

To compensate for the lack of parallelism available in cpusets containing fewer cores,

the cpusets will have different numbers of CPU’s, with the number of CPU’s in a cpuset

being inversely proportional to the frequency of its cores.

Application performance will be improved due to two main factors. Firstly, if an appli-

cation has an increased performance, relative to the other executing processes in a task, the
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operating system will context switch the application to a cpuset containing cores operating

at a lower frequency, whereas if an application has decreased performance, relative to other

executing processes in the task, the operating system will context switch the application to

a cpuset containing cores operating at a higher frequency, in hopes of speeding up the exe-

cution of the application and thus lowering the average completion time of all processes in

the task. Secondly, by context switching processes between cpusets, the algorithm will move

memory intensive processes that may suffer form memory bandwidth saturation to lower

frequency cores, while allowing less memory intensive, more CPU intensive processes to exe-

cute upon higher frequency cores. In addition, to lower context switching overhead without

stifling the CPU migrations necessary to improve performance, the cache miss/reference

ratio and the number of context switches and CPU migrations created by a running process

will be used as scheduling criteria.

The objective of this research is to implement the approaches mentioned earlier to

schedule the system’s CPU resources, and, in the scenario where processes are assigned

static or dynamic priorities that are not default priorities, to do so without creating a large

context switching overhead nor adversely impacting process completion order as dictated

by process priority.

4.2 Related Work

The work by Ghiasi, Keller, and Rawson [14] seems the closest to our own. The authors

used a task-to-frequency scheduler that placed tasks in a multiprocessor system consisting

of heterogeneous processors, each running at fixed but differing frequencies. However, their

scheme risked an initial performance loss, especially in a system with many active tasks.

They used an initialization phase that used insertion sort to place tasks in ready queues.

This leads to a worst case scenario when all tasks are originally allocated to the fastest

frequency. In contrast, our algorithm uses a “throughput estimate” that considers the

number of processes in a core’s ready queue, thus avoiding a situation in which most, if not

all, processes are assigned to the same core.

Also, the authors in [14] used mechanisms for throttling the pipeline, or fetch throttling,
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to mimic the effects of frequency scaling. In contrast, our method uses kernel-directed

frequency scaling to directly frequency scale cores. This is a much more direct, accurate,

and effective means to scale and measure the frequencies of individual cores, and is not an

approximation to frequency scaling. Our work also tests a wider range of core frequencies

than [14]. In addition, we tested a task with eight concurrently executing processes, with

each process having different execution characteristics. The authors in [14] did not perform

a detailed analysis of a loaded system. Also, the effects, on performance, of how processors

are paired were not examined.

In [35], Vajda presented a frequency scaling based scheduling algorithm. The algorithm

allocated each core to only one application, however, and adjusted the frequency of the

scalable cores, instead of using fixed frequency cores. This algorithm requires the operating

system to actively re-calculate power budgets every time an application requests frequency

boosting, which can result in performance loss. Also, unlike our work, the author relied on

a simulator to evaluate his algorithm, rather than direct evaluation of his technique on real

hardware.

Kumar, et al., [20] used a heterogeneity conscious thread-to-core assignment to demon-

strate power savings. However, they also relied upon a simulator to measure their experi-

mental results and to roughly model their cores. Also, there were minor differences in the

instruction set architecture between the processors they modeled, since each processor was

of a different generation. In contrast, our algorithm was executed upon a real multicore

chip with identical cores, only differing in operating frequency. In addition, the authors

assumed a maximum of one thread running at a time on only one core, and did not perform

an analysis of a multithreaded application.

In another study [19], the same authors modeled a different set of cores to investigate

processor power dissipation. However, again they used a simulator to model a diverse set

of cores, rather than using real hardware. They also assumed that unused cores were com-

pletely powered down, rather than left idle, which is typically not the case in a real multicore

system. Also, the authors constrained their problem to a single application switching among

cores, and did not consider multiple threads on a single die.

Fedorova, Vengerov, and Doucette [11] presented a thread scheduler that attempts to
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balance core assignment with the goal of reducing completion time jitter and inconsistent

priority enforcement while targeting optimal performance. However, this scheduler can

generate increased context-switching overhead when attempting to allocate each thread’s

execution time evenly across all system’s cores. Their algorithm is based upon reinforcement

learning that allows each system core to learn a benefit function that approximates the future

instruction rate on that core. This benefit function is then used to make core assignment

decisions. In contrast, the algorithm presented in this paper uses feedback in which an

application gives runtime information concerning both its instructions per cycle (IPC) and

fraction wait time (time spent in ready and wait queues) to the operating system, which

then uses this information to make scheduling decisions.

Almeida, et al., [2] used the difference between the desired and obtained throughput

of a system to scale up or down the frequency of a processor. They repeated the process

until the obtained throughput gradually became closer to the desired throughput. They

used frequency scaling, in contrast to our method, which uses cores of different fixed fre-

quencies. However, the default CPU frequency scaling policy found in most Linux based

systems can also scale CPUs’ frequencies, offering a similar, if not better, advantage than

the method presented in [2]. Also, the algorithm presented by these authors only considers a

system’s throughput, and not an application’s runtime IPC, which can be crucial in making

scheduling decisions.

Isci, et al., [17] presented a global power manager that attempted to meet a specific

global power budget by adjusting the power modes of individual cores. They assigned one

of three power modes to each core, Turbo, Efficient1, and Efficient2. However, in contrast to

our work, the authors used a simulator to evaluate their work, rather than real hardware.

Also, they assumed a per-core DVFS (dynamic voltage and frequency scaling) knob to

be available to their global power manager, unlike our work, which uses identical cores

operating at different but fixed frequencies.

In [1] the authors proposed an algorithm in which all tasks were also assigned static pri-

orities. In their model, tasks were assigned permanently to processors (partitioned schedul-

ing) and were assigned rate-monotonic priorities that were inversely proportional to their

periods. They measured the efficiency of their algorithm in terms of both total energy
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consumption and feasibility. They proved that this problem is NP-Hard in the strong sense

on m ≥ 2 processors, even when feasibility is guaranteed a priori. However, unlike our

algorithm, they used DVS (dynamic voltage scaling) to scale the frequency of their CPUs

and used a simulator to measure their results.

Similar to our work, Schonherr, et al., [28] also proposed an approach that uses differing

process priorities. In their approach, they assigned background (unimportant) processes a

lower priority (nice value) than foreground (important) processes. They used a “separation

in time” technique, in which foreground processes were allowed to complete before processor

frequency was reduced, after which background processes were then allowed to execute.

However, their approach only creates a power savings in some test cases, and not all test

cases, as ours does. Also, they measured how much energy the execution of their load

needed above idle consumption and not total energy consumption. Unlike our approach,

their approach assumed that a priori knowledge, about the behavior and characteristics of

running tasks, was available and was not determined at runtime.

4.3 Problem Specification

The goal of this research can be defined by four problem statements.

Specification 4.3.1 (Problem 1). Given a set S of processes Pi in a given task T to be

executed by a heterogeneous multicore/manycore processor system Mi, with all P ′

is having

identical priorities (the default Linux nice value of 0), schedule each Pi to execute upon the

CPU(s) in Mi such that the global power budget of Mi is minimized, yet the performance

gain of all P ′

is executing upon Mi is maximized, and the performance loss of all P ′

is execut-

ing upon Mi is minimized.

Specification 4.3.2 (Problem 2). Given a set S of processes Pi in a given task T to be

executed by a heterogeneous multicore/manycore processor system Mi, with each Pi having

different static or dynamic (not necessarily unique) priorities, nicei (that may or may not
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be the default Linux nice value of 0), schedule each Pi to execute upon the CPU(s) in Mi

such that the global power budget of Mi is minimized, yet the performance gain of all P ′

is

executing upon Mi is maximized, and the performance loss of all P ′

i s executing upon Mi is

minimized.

Specification 4.3.3 (Problem 3). Given a set S of processes Pi in a given task T to be

executed by a heterogeneous multicore/manycore processor system Mi, with each Pi having

different static or dynamic (not necessarily unique) priorities, nicei (that may or may not

be the default Linux nice value of 0), schedule each Pi to execute upon the CPU(s) in Mi,

while utilizing the cache miss/reference ratio of Pi at runtime as a scheduling factor, such

that the global power budget of Mi is minimized, yet the performance gain of all P ′

i s ex-

ecuting upon Mi is maximized, and the performance loss of all P ′

i s executing upon Mi is

minimized.

Specification 4.3.4 (Problem 4). Given a set S of processes Pi in a given task T to be

executed by a heterogeneous multicore/manycore processor system Mi, with each Pi having

different static or dynamic (not necessarily unique) priorities, nicei (that may or may not

be the default Linux nice value of 0), schedule each Pi to execute upon the CPU(s) in Mi,

while utilizing the number of context switches and CPU migrations created by Pi at runtime

as a scheduling factor, such that the global power budget of Mi is minimized, yet the per-

formance gain of all P ′

is executing upon Mi is maximized, and the performance loss of all

P ′

is executing upon Mi is minimized.
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CHAPTER 5

ALGORITHM 1

Algorithm CPU Scheduler

In this section we present an application-driven feedback mediated CPU scheduling

algorithm, referred to as Algorithm CPU Scheduler . The algorithm does not use process

priority as a variable.

5.1 Variables and Constants Used in Algorithm CPU Scheduler .

Algorithm CPU Scheduler uses the following variables and constants:

Pi :: a single or multithreaded process;

T :: a task comprised of one or more processes (Pi) to be scheduled and executed

by a multicore or manycore chip;

num cpus :: number of CPUs (cores) on multicore or manycore chip;

corei :: a single core (CPU) on a multicore or manycore chip;

cpuseti :: a Linux cpuset, comprised of one or more homogeneous corei
′s, all

operating at the same frequency; however, corei and corej from a

separate cpuseti or cpusetj may operate at different frequencies;

core freqi :: operating frequency of any corei in cpuseti (MHz);

ready queuei :: ready queue of any core in cpuseti;

avg ready queue threadsi :: average number of threads in ready queuei;

throughput estimate ai :: estimate of the throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate ai

= avg ready queue threadsi ∗ (1 / core freqi);

else
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throughput estimate ai = 1 / core freqi;

throughput estimate bi :: estimate of the inverse of throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate bi

= avg ready queue threadsi ∗ core freqi;

else

throughput estimate bi = 1 / core freqi;

num threadsi :: number of threads in process Pi;

IPCi :: instructions per cycle for process Pi;

IPCi =
∑num threadsi

j=0 IPCj / num threadsi,

where j is a thread in Pi;

system timei :: time spent by Pi while executing at the system level (kernel);

user timei :: time spent by Pi while executing at the user level (application);

real timei :: system timei + user timei;

fraction wait timei :: fraction of total execution time spent by process Pi,

waiting in the ready queues and I/O queues;

fraction wait timei

=
∑num threadsi

j=0 ((real timej − (system timej+user timej))/real timej)

/ num threadsi,

where j is a thread in Pi;

performance indexi :: a Boolean value calculated for an executing process Pi

from IPCi and fraction wait timei;

performance indexi = true iff IPCi < 1.7 and fraction wait timei > 0.5;

CPU intensityi :: measure of the CPU intensity of process Pi; average CPU

utilization of all cores upon which Pi is executing

load average :: average system load over a period of time; number of processes

using or waiting for all CPUs (all corei
′s);
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5.2 Description of Algorithm CPU Scheduler .

A description of the algorithm is as follows:

1. Processes are assigned to the ready queues of CPUs in a cpuset using a “throughput

estimate” defined by the following two equations:

If (avg. # of threads in ready queues of a cpuset ≥ 1)

(a) throughput estimate a = avg. # of threads in that cpuset’s ready

queues * ( 1 / frequency of any core in that cpuset )

(b) throughput estimate b = avg. # of threads in that cpuset’s ready

queues * frequency of any core in that cpuset

(In case of a tie, assign process to cpuset with least average number of threads in

ready queues.)

Else

(a) throughput estimate a = 1 / frequency of any core in that cpuset

(b) throughput estimate b = 1 / frequency of any core in that cpuset

Note: In Linux, there is no direct measurement of the number of processes in the

ready queue of a single core (CPU) on a multicore chip. However, if processes are

allocated to certain cpusets, an estimate of the average number of threads in the ready

queue of a particular cpuset’s core can be obtained by calculating ((run queue size

of all ready queues combined / number of CPUs where CPU utilization = 100%) x

average CPU utilization of CPU in that cpuset).

2. All newly-arriving processes are assigned to the cpuset with the least value of

throughput estimate ai. (If possible, all newly-arriving processes are assigned to the

cpusets with CPUs operating at higher frequencies and with fewer processes in their

ready queues).
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3. As a process Pi executes, a “performance index” is calculated from the IPC (instruc-

tions per cycle) and fraction wait time of Pi. This calculation is made asynchronously

with respect to other concurrently executing processes.

4. If IPCi is lower than a threshold (< 1.7), or fraction wait timei is higher than a

threshold (> 0.5), then the performance index for that process,

performance indexi is evaluated as true. (The performance index of a process is

evaluated as true if the process has decreased performance, caused by a decrease in

its instructions per cycle rate, or due to longer periods of time spent by the process

in the ready or wait queues. We chose an IPC threshold of 1.7 based upon process

performance data indicating that these processes had an IPC value greater than 1.7

during initial phases of execution. We chose a fraction wait time threshold of 0.5

because it is the average of 0, which signifies that a process is not spending any time

waiting in the ready and I/O queues, and 1, which signifies that a process is spending

all of its execution time waiting in the ready and I/O queues).

5. At regular time intervals, for an executing process, performance indexi is calculated.

Each interval is equal to approximately one-fifth of the process’s total execution time.

(a) If the process is CPU intensive (the average CPU utilization of all cores

upon which it is executing is > 50%) and if the performance index is true

for that process, throughput estimate ai is recalculated for all cpusets, and

the process is context switched to the cpuset with the lowest value of

throughput estimate ai. (A cpuset with a lower value of

throughput estimate ai will contain CPUs operating at higher frequencies

and fewer processes in the ready queues of its cores. The goal of context

switching a CPU intensive process that has decreased performance to such

a cpuset is to speed up the execution of that process. We chose a CPU

utilization threshold of 50% to categorize a process as CPU intensive because

we found, in our experiments, that the non-CPU intensive benchmarks used

for our test cases all had a CPU utilization less than 50%, and the CPU

intensive benchmarks that we tested all had a CPU utilization greater than
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50%).

(b) To account for performance saturation caused by memory access, if a

process is not CPU intensive and if the load average is > num cpus, then

the process is context switched to the cpuset with the lowest value of

throughput estimate bi. (If the system is heavily loaded and the process is

not CPU intensive, the process is context switched to a cpuset with lower

frequency cores). If the load average is < num cpus and if the performance

index is true, then this process is context switched to the cpuset with the

lowest value of throughput estimate ai. (If the system is not heavily loaded,

and the process has decreased performance, then the process is context-

switched to a cpuset with higher frequency cores).

6. For a non-executing process, if the fraction wait time of that process,

fraction wait timei, is equal to 1, then throughput estimate ai is recalculated for

all cpusets, and the process is assigned to the cpuset with the lowest value of

throughput estimate ai. (If the process is waiting in the ready queues for the cores

of a cpuset for too long, it is context switched to a cpuset with fewer processes in its

ready queues).

7. At regular time intervals, the average number of threads in the ready queues of all

cpusets is computed. If the average number of threads in the ready queues of any

cpuset is less than 1, then a process is assigned to that cpuset. If two or more cpusets

have an average number of threads in their ready queues that is less than 1, a process

is first assigned to the cpuset with CPUs operating at the highest frequency. The

process(s) chosen to migrate to the new cpuset are chosen in order of CPU intensity,

with higher CPU intensive processes having higher priority. (If there is a cpuset

containing a core with an empty ready queue, then a process is assigned to this core).

8. Thread parallelism is accounted for by the number and frequency of CPUs in cpusets

(hardware), with the lack of parallelism available in cpusets with fewer CPUs com-

pensated for by the higher frequencies of its CPUs.
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9. The measure of the algorithm’s effectiveness is:

(a) Average Instructions Per Second / Watts

= (
∑m

i=0 (Instructions Executed by Pi / Execution T ime (seconds)

for Pi) / m) / watts,

where m = number of processes in task T

(b) Average time required for all processes in task T to

complete execution * watts

= (
∑m

i=0 Execution T ime (seconds) for Pi / m) * watts,

where m = number of processes in Task T

(A potentially more efficient algorithm will have a higher value of (a) and a lower

value of (b))
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Algorithm 1 : F eedback − driven CP U Scheduling Algorithm

(CPU Scheduler)

Start with a set S of processes Pi in a given task T :

for all Pi in T (concurrently){

//initially schedule a process

calculate throughput estimate ai for all cpusets;

assign Pi to cpuset with least value of throughput estimate ai;

//if non − executing process is in wait queue too long, context switch process

if(fraction wait timei == 1){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

do{

execute Pi;

calculate CPU intensityi for Pi;

calculate IPCi and fraction wait timei for Pi;

compute performance indexi of Pi using IPCi and fraction wait timei;

measure load average;

if(CPU intensityi > 50% and performance indexi == true){

recalculate throughput estimate ai for all cpusets and contextswitch

Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and load average > num cpus){

calculate throughput estimate bi for all cpusets and context switch Pi

to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and load average < num cpus and

performance indexi == true){

31



recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

calculate CPU intensityi for Pi;

//if a ready queue is empty, then assign a process to it

if(a ready queue is empty and Pi is process with highest value of

CPU intensityi of all executing processes){

contextswitch Pi to cpuset with the empty ready queue;

}

}until Pi terminates;

}
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CHAPTER 6

ALGORITHM 2

Algorithm Priority CPU Scheduler

In this section we present an application-driven feedback mediated CPU scheduling

algorithm that utilizes static or dynamic process priorities, referred to as Algorithm Priority

CPU Scheduler . This algorithm uses a process’s priority (nice value) as a variable. Thus,

unlike Algorithm CPU Scheduler , process priority is used as one of the determining

factors to schedule processes.

6.1 Variables and Constants Used in Algorithm Priority CPU Scheduler .

Algorithm Priority CPU Scheduler uses the following variables and constants:

Pi :: a single or multithreaded process;

T :: a task comprised of one or more processes (Pi) to be scheduled and executed

by a multicore or manycore chip;

num cpus :: number of CPUs (cores) on multicore or manycore chip;

corei :: a single core (CPU) on a multicore or manycore chip;

cpuseti :: a Linux cpuset, comprised of one or more homogeneous corei
′s, all

operating at the same frequency; however, corei and corej from a

separate cpuseti or cpusetj may operate at different frequencies;

core freqi :: operating frequency of any corei in cpuseti (MHz);

ready queuei :: readyqueue of any core in cpuseti;

avg ready queue threadsi :: average number of threads in ready queuei;

throughput estimate ai :: estimate of the throughput of cpuseti;

if(avg ready queue threadsi ≥ 1)

throughput estimate ai
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= avg ready queue threadsi ∗ (1/ core freqi);

else

throughput estimate ai = 1 / core freqi;

throughput estimate bi :: estimate of the inverse of throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate bi

= avg ready queue threadsi * core freqi;

else

throughput estimate bi = 1 / core freqi;

num threadsi :: number of threads in process Pi;

IPCi :: instructions per cycle for process Pi;

IPCi =
∑num threadsi

j=0 IPCj / num threadsi,

where j is a thread in Pi;

system timei :: time spent by Pi while executing at the system level (kernel);

user timei :: time spent by Pi while executing at the user level (application);

real timei :: system timei + user timei;

fraction wait timei :: fraction of total execution time spent by process Pi,

waiting in the ready queues and I/O queues;

fraction wait timei

=
∑num threadsi

j=0 ((real timej − (system timej+user timej))/real timej)

/ num threadsi,

where j is a thread in Pi;

performance indexi :: a Boolean value calculated for an executing process Pi

from IPCi and fraction wait timei;

performance indexi = true iff IPCi < 1.7 and fraction wait timei > 0.5;

CPU intensityi :: measure of the CPU intensity of process Pi; average CPU

utilization of all cores upon which Pi is executing

nicei :: the priority of process Pi; may be a value between −20 and 19;

a lower value indicates a higher priority;
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CPU intensity priority indexi :: an index that takes into account the CPU

intensity and priority of process Pi

CPU intensity priority indexi

= (0.5 ∗ CPU intensityi) + (0.5 ∗ 1
nicei

);

load average :: average system load over a period of time; number of processes

using or waiting for all CPUs (all corei
′s);

6.2 Description of Algorithm Priority CPU Scheduler .

A description of the algorithm is as follows:

1. All processes are assigned a nice value, which signifies the priority of that process.

This nice value may be between -20 and 19, with a lower value indicating a higher

priority.

2. Processes are assigned to the ready queues of CPUs in a cpuset using a “throughput

estimate” defined by the following two equations:

If (avg. # of threads in ready queues of a cpuset ≥ 1)

(a) throughput estimate a = avg. # of threads in that cpuset’s ready

queues * ( 1 / frequency of any core in that cpuset )

(b) throughput estimate b = avg. # of threads in that cpuset’s ready

queues * frequency of any core in that cpuset

(In case of a tie, assign process to cpuset with least average number of threads in

ready queues.)

Else

(a) throughput estimate a = 1 / frequency of any core in that cpuset

(b) throughput estimate b = 1 / frequency of any core in that cpuset
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Note: In Linux, there is no direct measurement of the number of processes in the

ready queue of a single core (CPU) on a multicore chip. However, if processes are

allocated to certain cpusets, an estimate of the average number of threads in the ready

queue of a particular cpuset’s core can be obtained by calculating ((run queue size

of all ready queues combined / number of CPUs where CPU utilization = 100%) x

average CPU utilization of CPU in that cpuset).

3. All newly-arriving processes are assigned to the cpuset with the least value of

throughput estimate ai. (If possible, all newly-arriving processes are assigned to the

cpusets with CPUs operating at higher frequencies and with fewer processes in their

ready queues).

4. As a process Pi executes, a “performance index” is calculated from the IPC (instruc-

tions per cycle) and fraction wait time of Pi. This calculation is made asynchronously

with respect to other concurrently executing processes.

5. If IPCi is lower than a threshold (< 1.7), or fraction wait timei is higher than a

threshold (> 0.5), then the performance index for that process,

performance indexi is evaluated as true. (The performance index of a process is

evaluated as true if the process has decreased performance, caused by a decrease in

its instructions per cycle rate, or due to longer periods of time spent by the process

in the ready or wait queues. We chose an IPC threshold of 1.7 based upon process

performance data indicating that these processes had an IPC value greater than 1.7

during initial phases of execution. We chose a fraction wait time threshold of 0.5

because it is the average of 0, which signifies that a process is not spending any time

waiting in the ready and I/O queues, and 1, which signifies that a process is spending

all of its execution time waiting in the ready and I/O queues).

6. At regular time intervals, for an executing process, performance indexi is calculated.

Each interval is equal to approximately one-fifth of the process’s total execution time.

(a) If the process is CPU intensive (the average CPU utilization of all cores

upon which it is executing is > 50%, its nice value is < 9, and if the perfor-
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mance index is true for that process, throughput estimate ai is recalculated

for all cpusets, and the process is context switched to the cpuset with the

lowest value of throughput estimate ai. (A cpuset with a lower value of

throughput estimate ai will contain CPUs operating at higher frequencies

and fewer processes in the ready queues of its cores. The goal of context

switching a high priority, CPU intensive process that has decreased perfor-

mance to such a cpuset is to speed up the execution of that process. We

chose a CPU utilization threshold of 50% to categorize a process as CPU

intensive because we found, in our experiments, that the non-CPU intensive

benchmarks used for our cases all had a CPU utilization less than 50%, and

the test CPU intensive benchmarks that we tested all had a CPU utilization

greater than 50%.)

(b) To account for performance saturation caused by memory access, if a

process is not CPU intensive, its nice value is > -1, and if the load average is

> num cpus, or if a process is not CPU intensive, its nice value is ≤ -1, and

the load average is > 2 * num cpus, then the process is context switched to

the cpuset with the lowest value of throughput estimate bi. (If the system is

heavily loaded and the process is not CPU intensive, the process is context

switched to a cpuset with lower frequency cores. The higher the priority of

the process, the more heavily loaded the system must be before that process

is context switched.) If the non-CPU intensive process’s nice value is ≤ -11,

the load average is ≤ num cpus, and if the performance index is true, or if

the process’s nice value is > -11, the load average is < 0.15 * num cpus, and

if the performance index is true, then this process is context switched to the

cpuset with the lowest value of throughput estimate ai. (If the system is not

heavily loaded, and the process has decreased performance, then the process

is context-switched to a cpuset with higher frequency cores. The lower the

priority of the process, the lower the load average must be before the process

is context switched.)
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7. For a non-executing process, if the fraction wait time of that process,

fraction wait timei, is ≥ 0.7 and its nice value is < -1, or if fraction wait timei of

that process is > 0.9, then throughput estimate ai is recalculated for all cpusets, and

the process is assigned to the cpuset with the lowest value of throughput estimate ai.

(If the process is waiting in the ready queues for the cores of a cpuset for too long, it

is context switched to a cpuset with fewer processes in its ready queues. The higher

the priority of the process, the less time it must spend waiting in the ready queues

before it is context switched.)

8. For all executing processes, a “CPU intensity priority index” is calculated from the

CPU intensity and nice value of that process.

9. At regular time intervals, the average number of threads in the ready queues of all

cpusets is computed. If the average number of threads in the ready queues of any

cpuset is < 1, then a process is assigned to that cpuset. If two or more cpusets have

an average number of threads in their ready queues that is < 1, a process is first

assigned to the cpuset with CPUs operating at the highest frequency. Process(s) are

chosen to migrate to the new cpuset according to their CPU intensity priority index,

with those having a higher value of this index having higher priority. (If there is a

cpuset containing a core with an empty ready queue, then a process is assigned to

this core. Process(s) are chosen according to both their CPU intensity and process

priority.)

10. Thread parallelism is accounted for by the number and frequency of CPUs in cpusets

(hardware), with the lack of parallelism available in cpusets with fewer CPUs com-

pensated for by the higher frequencies of its CPUs.

11. The measure of the algorithm’s effectiveness is:

(a) Average Instructions Per Second / Watts

= (
∑m

i=0 (Instructions Executed by Pi / Execution T ime (seconds)

for Pi) / m) / watts,

where m = number of processes in task T
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(b) Average time required for all processes in task T to

complete execution * watts

= (
∑m

i=0 Execution T ime (seconds) for Pi / m) * watts,

where m = number of processes in Task T

(A potentially more efficient algorithm will have a higher value of (a) and a lower

value of (b))
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Algorithm 2 : F eedback − driven P riority − based CP U Scheduling

Algorithm (Priority CPU Scheduler)

Start with a set S of processes Pi in a given task T :

for all Pi in T (concurrently){

//initially schedule a process

calculate throughput estimate ai for all cpusets;

assign Pi to cpuset with least value of throughput estimate ai;

//if non − executing process is in wait queue too long, context switch process

if(fraction wait timei ≥ 0.7 and nicei < −1){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

else if(fraction wait timei > 0.9){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

do{

execute Pi;

calculate CPU intensityi for Pi;

calculate IPCi and fraction wait timei for Pi;

compute performance indexi of Pi using IPCi and fraction wait timei;

measure load average;

if(CPU intensityi > 50% and nicei < 9 and performance indexi == true){

recalculate throughput estimate ai for all cpusets and context switch

Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and nicei > −1 and load average > num cpus){

calculate throughput estimate bi for all cpusets and context switch Pi
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to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −1 and load average

> 2 ∗ num cpus){

calculate throughput estimate bi for all cpusets and context

switch Pi to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −11 and load average

≤ num cpus and performance indexi == true){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and nicei > −11 and load average

< 0.15 ∗ num cpus and performance indexi == true){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

compute CPU intensity priority indexi for Pi;

//if a ready queue is empty, then assign a process to it

if(a ready queue is empty and Pi is process with highest value of

CPU intensity priority indexi of all executing processes){

context switch Pi to cpuset with the empty ready queue;

}

}until Pi terminates;

}
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CHAPTER 7

ALGORITHM 3

Algorithm Cache Miss Priority CPU Scheduler

In this section we present an application-driven feedback mediated CPU scheduling

algorithm that considers the ratio between the total number of cache misses and the total

number of cache references generated at runtime. It also utilizes static or dynamic process

priorities, and is referred to as Algorithm Cache Miss Priority CPU Scheduler .

7.1 Variables and Constants Used in Algorithm Cache Miss Priority CPU Scheduler .

Algorithm Cache Miss Priority CPU Scheduler uses the following variables and con-

stants:

Pi :: a single or multithreaded process;

T :: a task comprised of one or more processes (Pi) to be scheduled and executed

by a multicore or manycore chip;

num cpus :: number of CPUs (cores) on multicore or manycore chip;

corei :: a single core (CPU) on a multicore or manycore chip;

cpuseti :: a Linux cpuset, comprised of one or more homogeneous corei
′s, all

operating at the same frequency; however, corei and corej from a

separate cpuseti or cpusetj may operate at different frequencies;

core freqi :: operating frequency of any corei in cpuseti (MHz);

ready queuei :: ready queue of any core in cpuseti;

avg ready queue threadsi :: average number of threads in ready queuei;

throughput estimate ai :: estimate of the throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate ai
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= avg ready queue threadsi ∗ (1 / core freqi);

else

throughput estimate ai = 1 / core freqi;

throughput estimate bi :: estimate of the inverse of throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate bi

= avg ready queue threadsi ∗ core freqi;

else

throughput estimate bi = 1 / core freqi;

num threadsi :: number of threads in process Pi;

IPCi :: instructions per cycle for process Pi;

IPCi =
∑num threadsi

j=0 IPCj / num threadsi,

where j is a thread in Pi;

system timei :: time spent by Pi while executing at the system level (kernel);

user timei :: time spent by Pi while executing at the user level (application);

real timei :: system timei + user timei;

fraction wait timei :: fraction of total execution time spent by process Pi,

waiting in the ready queues and I/O queues;

fraction wait timei

=
∑num threadsi

j=0 ((real timej − (system timej+user timej))/real timej)

/ num threadsi,

where j is a thread in Pi;

performance indexi :: a Boolean value calculated for an executing process Pi

from IPCi and fraction wait timei;

performance indexi = true iff IPCi < 1.7 and fraction wait timei > 0.5;

cache missi :: the number of cache misses generated by process Pi;

cache referencei :: the number of cache references generated by process Pi;

cache miss indexi :: a Boolean value calculated for an executing process Pi that

uses the ratio between cache missi and cache referencei;
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cache miss indexi = true iff cache missi / cache referencei > 0.0014;

CPU intensityi :: measure of the CPU intensity of process Pi; average CPU

utilization of all cores upon which Pi is executing

nicei :: the priority of process Pi; may be a value between −20 and 19;

a lower value indicates a higher priority;

CPU intensity priority indexi :: an index that takes into account the CPU

intensity and priority of process Pi

CPU intensity priority indexi

= (0.5 ∗ CPU intensityi) + (0.5 ∗ 1
nicei

);

load average :: average system load over a period of time; number of processes

using or waiting for all CPUs (all corei
′s);

7.2 Description of Algorithm Cache Miss Priority CPU Scheduler .

A description of the algorithm is as follows:

1. All processes are assigned a nice value, which signifies the priority of that process.

This nice value may be between -20 and 19, with a lower value indicating a higher

priority.

2. Processes are assigned to the ready queues of CPUs in a cpuset using a “throughput

estimate” defined by the following two equations:

If (avg. # of threads in ready queues of a cpuset ≥ 1)

(a) throughput estimate a = avg. # of threads in that cpuset’s ready

queues * ( 1 / frequency of any core in that cpuset )

(b) throughput estimate b = avg. # of threads in that cpuset’s ready

queues * frequency of any core in that cpuset

(In case of a tie, assign process to cpuset with least average number of threads in

ready queues.)

Else
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(a) throughput estimate a = 1 / frequency of any core in that cpuset

(b) throughput estimate b = 1 / frequency of any core in that cpuset

Note: In Linux, there is no direct measurement of the number of processes in the

ready queue of a single core (CPU) on a multicore chip. However, if processes are

allocated to certain cpusets, an estimate of the average number of threads in the ready

queue of a particular cpuset’s core can be obtained by calculating ((run queue size

of all ready queues combined / number of CPUs where CPU utilization = 100%) x

average CPU utilization of CPU in that cpuset).

3. All newly-arriving processes are assigned to the cpuset with the least value of

throughput estimate ai. (If possible, all newly-arriving processes are assigned to the

cpusets with CPUs operating at higher frequencies and with fewer processes in their

ready queues).

4. As a process Pi executes, a “performance index” is calculated from the IPC (instruc-

tions per cycle) and fraction wait time of Pi. This calculation is made asynchronously

with respect to other concurrently executing processes.

5. As a process Pi executes, a “cache miss index” is also calculated from the number of

cache misses and the number of cache references generated by Pi. This calculation is

made asynchronously with respect to other concurrently executing processes.

6. If IPCi is lower than a threshold (< 1.7), or fraction wait timei is higher than a

threshold (> 0.5), then the performance index for that process,

performance indexi is evaluated as true. (The performance index of a process is

evaluated as true if the process has decreased performance, caused by a decrease in

its instructions per cycle rate, or due to longer periods of time spent by the process

in the ready or wait queues. We chose an IPC threshold of 1.7 based upon process

performance data indicating that these processes had an IPC value greater than 1.7

during initial phases of execution. We chose a fraction wait time threshold of 0.5

because it is the average of 0, which signifies that a process is not spending any time
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waiting in the ready and I/O queues, and 1, which signifies that a process is spending

all of its execution time waiting in the ready and I/O queues).

7. If cache missi / cache referencei is higher than a threshold (> 0.0014), then the

cache miss index for that process, cache miss indexi, is evaluated as true. (The

cache miss index of a process is evaluated as true if the process generates a large

number of cache misses with respect to the number of cache references generated. We

chose a cache miss index threshold of 0.0014 because we wanted to use a threshold

that would force our algorithm to alter its scheduling strategy if the ratio between

the number of cache misses and cache references was greater than half of the average

value for the cache miss index of all executing processes in our experimental group.

Based upon experimental data, a value of 0.0014 represents this threshold.)

8. At regular time intervals, for an executing process, performance indexi and

cache miss indexi are calculated. Each interval is equal to approximately one-fifth

of the process’s total execution time.

(a) If the process is CPU intensive (the average CPU utilization of all cores

upon which it is executing is > 50%, its nice value is < 9, the performance

index is true for that process, and if the cache miss index is false for that

process, throughput estimate ai is recalculated for all cpusets, and the pro-

cess is context switched to the cpuset with the lowest value of

throughput estimate ai. (A cpuset with a lower value of

throughput estimate ai will contain CPUs operating at higher frequencies

and fewer processes in the ready queues of its cores. The goal of context

switching a high priority, CPU intensive process that does not generate many

cache misses, and that has decreased performance, to such a cpuset is to speed

up the execution of that process. We chose a CPU utilization threshold of

50% to categorize a process as CPU intensive because we found, in our exper-

iments, that the non-CPU intensive benchmarks used for our cases all had a

CPU utilization less than 50%, and the test CPU intensive benchmarks that

we tested all had a CPU utilization greater than 50%.)
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(b) To account for performance saturation caused by memory access, if a

process is not CPU intensive, its nice value is > -1, and if the load average is

> num cpus, or if a process is not CPU intensive, its nice value is ≤ -1, and

the load average is > 2 * num cpus, then the process is context switched to

the cpuset with the lowest value of throughput estimate bi. (If the system is

heavily loaded and the process is not CPU intensive, the process is context

switched to a cpuset with lower frequency cores. The higher the priority of

the process, the more heavily loaded the system must be before that process

is context switched.) If the non-CPU intensive process’s nice value is ≤ -11,

the load average is ≤ num cpus, the performance index for that process is

true, and if the cache miss index for that process is false, or if the process’s

nice value is > -11, the load average is < 0.15 * num cpus, the performance

index for that process is true, and if the cache miss index for that process

is false, then this process is context switched to the cpuset with the lowest

value of throughput estimate ai. (If the system is not heavily loaded, and a

process does not generate a large number of cache misses and has decreased

performance, then the process is context-switched to a cpuset with higher

frequency cores. The lower the priority of the process, the lower the load

average must be before the process is context switched.)

9. For a non-executing process, if the fraction wait time of that process,

fraction wait timei, is ≥ 0.7 and its nice value is < -1, or if fraction wait timei of

that process is > 0.9, then throughput estimate ai is recalculated for all cpusets, and

the process is assigned to the cpuset with the lowest value of throughput estimate ai.

(If the process is waiting in the ready queues for the cores of a cpuset for too long, it

is context switched to a cpuset with fewer processes in its ready queues. The higher

the priority of the process, the less time it must spend waiting in the ready queues

before it is context switched.)

10. For all executing processes, a “CPU intensity priority index” is calculated from the

CPU intensity and nice value of that process.
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11. At regular time intervals, the average number of threads in the ready queues of all

cpusets is computed. If the average number of threads in the ready queues of any

cpuset is < 1, then a process is assigned to that cpuset. If two or more cpusets have

an average number of threads in their ready queues that is < 1, a process is first

assigned to the cpuset with CPUs operating at the highest frequency. Process(s) are

chosen to migrate to the new cpuset according to their CPU intensity priority index,

with those having a higher value of this index having higher priority. (If there is a

cpuset containing a core with an empty ready queue, then a process is assigned to

this core. Process(s) are chosen according to both their CPU intensity and process

priority.)

12. Thread parallelism is accounted for by the number and frequency of CPUs in cpusets

(hardware), with the lack of parallelism available in cpusets with fewer CPUs com-

pensated for by the higher frequencies of its CPUs.

13. The measure of the algorithm’s effectiveness is:

(a) Average Instructions Per Second / Watts

= (
∑m

i=0 (Instructions Executed by Pi / Execution T ime (seconds)

for Pi) / m) / watts,

where m = number of processes in task T

(b) Average time required for all processes in task T to

complete execution * watts

= (
∑m

i=0 Execution T ime (seconds) for Pi / m) * watts,

where m = number of processes in Task T

(A potentially more efficient algorithm will have a higher value of (a) and a lower

value of (b))
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Algorithm 3 : Cache Miss F eedback − driven P riority − based CP U

Scheduling Algorithm (Cache Miss Priority CPU Scheduler)

Start with a set S of processes Pi in a given task T :

for all Pi in T (concurrently){

//initially schedule a process

calculate throughput estimate ai for all cpusets;

assign Pi to cpuset with least value of throughput estimate ai;

//if non − executing process is in wait queue too long, context switch process

if(fraction wait timei ≥ 0.7 and nicei < −1){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

else if(fraction wait timei > 0.9){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

do{

execute Pi;

calculate CPU intensityi for Pi;

calculate IPCi and fraction wait timei for Pi;

compute performance indexi of Pi using IPCi and fraction wait timei;

compute cache miss indexi of Pi using cache missi and cache referencei;

measure load average;

if(CPU intensityi > 50% and nicei < 9 and performance indexi == true

and cache miss indexi == false){

recalculate throughput estimate ai for all cpusets and context switch

Pi to cpuset with least value of throughput estimate ai;

}
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else if(CPU intensityi < 50% and nicei > −1 and load average > num cpus){

calculate throughput estimate bi for all cpusets and context switch Pi

to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −1 and load average

> 2 ∗ num cpus){

calculate throughput estimate bi for all cpusets and context

switch Pi to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −11 and load average

≤ num cpus and performance indexi == true and

cache miss indexi == false){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and nicei > −11 and load average

< 0.15 ∗ num cpus and performance indexi == true and

cache miss indexi == false){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

compute CPU intensity priority indexi for Pi;

//if a ready queue is empty, then assign a process to it

if(a ready queue is empty and Pi is process with highest value of

CPU intensity priority indexi of all executing processes){

context switch Pi to cpuset with the empty ready queue;

}

}until Pi terminates;

}
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CHAPTER 8

ALGORITHM 4

Algorithm Context Switch Priority CPU Scheduler

In this section we present an application-driven feedback mediated CPU scheduling

algorithm that considers the number of context switches and the number of CPU migrations

generated at runtime. It also utilizes static or dynamic process priorities, and is referred to

as Algorithm Context Switch Priority CPU Scheduler .

8.1 Variables and Constants Used in Algorithm Context Switch Priority CPU Scheduler

.

Algorithm Context Switch Priority CPU Scheduler uses the following variables and con-

stants:

Pi :: a single or multithreaded process;

T :: a task comprised of one or more processes (Pi) to be scheduled and executed

by a multicore or manycore chip;

num cpus :: number of CPUs (cores) on multicore or manycore chip;

corei :: a single core (CPU) on a multicore or manycore chip;

cpuseti :: a Linux cpuset, comprised of one or more homogeneous corei
′s, all

operating at the same frequency; however, corei and corej from a

separate cpuseti or cpusetj may operate at different frequencies;

core freqi :: operating frequency of any corei in cpuseti (MHz);

ready queuei :: ready queue of any core in cpuseti;

avg ready queue threadsi :: average number of threads in ready queuei;

throughput estimate ai :: estimate of the throughput of cpuseti;

if(avg ready queue threadsi ≥ 1)
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throughput estimate ai

= avg ready queue threadsi ∗ (1 / core freqi);

else

throughput estimate ai = 1 / core freqi;

throughput estimate bi :: estimate of the inverse of throughput of cpuseti;

if (avg ready queue threadsi ≥ 1)

throughput estimate bi

= avg ready queue threadsi ∗ core freqi;

else

throughput estimate bi = 1 / core freqi;

num threadsi :: number of threads in process Pi;

IPCi :: instructions per cycle for process Pi;

IPCi =
∑num threadsi

j=0 IPCj / num threadsi,

where j is a thread in Pi;

system timei :: time spent by Pi while executing at the system level (kernel);

user timei :: time spent by Pi while executing at the user level (application);

real timei :: system timei + user timei;

fraction wait timei :: fraction of total execution time spent by process Pi,

waiting in the ready queues and I/O queues;

fraction wait timei

=
∑num threadsi

j=0 ((real timej − (system timej+user timej))/real timej)

/ num threadsi,

where j is a thread in Pi;

performance indexi :: a Boolean value calculated for an executing process Pi

from IPCi and fraction wait timei;

performance indexi = true iff IPCi < 1.7 and fraction wait timei > 0.5;

context switchi :: the number of context switches generated by process Pi;

CPU migrationi :: the number of CPU migrations generated by process Pi;

context switch CPU migration indexi :: a Boolean value calculated for an
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executing process Pi that uses

context switchi and CPU migrationi;

context switch CPU migration indexi = true iff (0.5 ∗ context switchi

real timei
) +

(0.5 ∗ CPU migrationi

real timei

) > 17.0;

CPU intensityi :: measure of the CPU intensity of process Pi; average CPU

utilization of all cores upon which Pi is executing

nicei :: the priority of process Pi; may be a value between -20 and 19;

a lower value indicates a higher priority;

CPU intensity priority indexi :: an index that takes into account the CPU

ntensity and priority of process Pi

CPU intensity priority indexi

= (0.5 ∗ CPU intensityi) + (0.5 ∗ 1
nicei

);

load average :: average system load over a period of time; number of processes

using or waiting for all CPUs (all corei
′s);

8.2 Description of Algorithm Context Switch Priority CPU Scheduler .

A description of the algorithm is as follows:

1. All processes are assigned a nice value, which signifies the priority of that process.

This nice value may be between -20 and 19, with a lower value indicating a higher

priority.

2. Processes are assigned to the ready queues of CPUs in a cpuset using a “throughput

estimate” defined by the following two equations:

If (avg. # of threads in ready queues of a cpuset ≥ 1)

(a) throughput estimate a = avg. # of threads in that cpuset’s ready

queues * ( 1 / frequency of any core in that cpuset )

(b) throughput estimate b = avg. # of threads in that cpuset’s ready

queues * frequency of any core in that cpuset
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(In case of a tie, assign process to cpuset with least average number of threads in

ready queues.)

Else

(a) throughput estimate a = 1 / frequency of any core in that cpuset

(b) throughput estimate b = 1 / frequency of any core in that cpuset

Note: In Linux, there is no direct measurement of the number of processes in the

ready queue of a single core (CPU) on a multicore chip. However, if processes are

allocated to certain cpusets, an estimate of the average number of threads in the ready

queue of a particular cpuset’s core can be obtained by calculating ((run queue size

of all ready queues combined / number of CPUs where CPU utilization = 100%) x

average CPU utilization of CPU in that cpuset).

3. All newly-arriving processes are assigned to the cpuset with the least value of

throughput estimate ai. (If possible, all newly-arriving processes are assigned to the

cpusets with CPUs operating at higher frequencies and with fewer processes in their

ready queues).

4. As a process Pi executes, a “performance index” is calculated from the IPC (instruc-

tions per cycle) and fraction wait time of Pi. This calculation is made asynchronously

with respect to other concurrently executing processes.

5. As a process Pi executes, a “context switch CPU migration index” is also calculated

from the number of context switches per second of execution time (user time + system

time) and the number of CPU migrations per second of execution time (user time +

system time) generated by Pi. This calculation is made asynchronously with respect

to other concurrently executing processes.

6. If IPCi is lower than a threshold (< 1.7), or fraction wait timei is higher than a

threshold (> 0.5), then the performance index for that process,

performance indexi is evaluated as true. (The performance index of a process is
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evaluated as true if the process has decreased performance, caused by a decrease in

its instructions per cycle rate, or due to longer periods of time spent by the process

in the ready or wait queues. We chose an IPC threshold of 1.7 based upon process

performance data indicating that these processes had an IPC value greater than 1.7

during initial phases of execution. We chose a fraction wait time threshold of 0.5

because it is the average of 0, which signifies that a process is not spending any time

waiting in the ready and I/O queues, and 1, which signifies that a process is spending

all of its execution time waiting in the ready and I/O queues).

7. If (0.5 ∗ context switchi

real timei
) + (0.5 ∗ CPU migrationi

real timei
) is higher than a threshold (> 17.0),

then the context switch CPU migration index for that process,

context switch CPU migration indexi, is evaluated as true. (The context switch

CPU migration index of a process is evaluated as true if the process generates a large

number of context switches per second of execution time and CPU migrations per

second of execution time. We chose a context switch CPU migration index threshold

of 17.0 because we wanted to use a threshold that would force our algorithm to alter

its scheduling strategy if the context switch CPU migration index of a process was

greater than half of the average value for the context switch CPU migration index of

all executing processes in our experimental group. Based upon experimental data, a

value of 17.0 represents this threshold.)

8. At regular time intervals, for an executing process, performance indexi and

context switch CPU migration indexi are calculated. Each interval is equal to ap-

proximately one-fifth of the process’s total execution time.

(a) If the process is CPU intensive (the average CPU utilization of all cores

upon which it is executing is > 50%, its nice value is < 9, the performance

index is true for that process, and if the context switch CPU migration

index is false for that process, throughput estimate ai is recalculated for

all cpusets, and the process is context switched to the cpuset with the

lowest value of throughput estimate ai. (A cpuset with a lower value of

throughput estimate ai will contain CPUs operating at higher frequencies
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and fewer processes in the ready queues of its cores. The goal of context

switching a high priority, CPU intensive process that does not undergo many

context switches and CPU migrations, and that has decreased performance,

to such a cpuset is to speed up the execution of that process. We chose a

CPU utilization threshold of 50% to categorize a process as CPU intensive

because we found, in our experiments, that the non-CPU intensive bench-

marks used for our cases all had a CPU utilization less than 50%, and the test

CPU intensive benchmarks that we tested all had a CPU utilization greater

than 50%.)

(b) To account for performance saturation caused by memory access, if a

process is not CPU intensive, its nice value is > -1, and if the load average is

> num cpus, or if a process is not CPU intensive, its nice value is ≤ -1, and

the load average is > 2 * num cpus, then the process is context switched to

the cpuset with the lowest value of throughput estimate bi. (If the system is

heavily loaded and the process is not CPU intensive, the process is context

switched to a cpuset with lower frequency cores. The higher the priority of

the process, the more heavily loaded the system must be before that process

is context switched.) If the non-CPU intensive process’s nice value is ≤ -11,

the load average is ≤ num cpus, the performance index for that process is

true, and if the context switch CPU migration index for that process is false,

or if the process’s nice value is > -11, the load average is < 0.15 * num cpus,

the performance index for that process is true, and if the context switch

CPU migration index for that process is false, then this process is context

switched to the cpuset with the lowest value of throughput estimate ai. (If

the system is not heavily loaded, and a process does not undergo a large

number of context switches and CPU migrations per second of execution

time and has decreased performance, then the process is context-switched to

a cpuset with higher frequency cores. The lower the priority of the process,

the lower the load average must be before the process is context switched.)
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9. For a non-executing process, if the fraction wait time of that process,

fraction wait timei, is ≥ 0.7 and its nice value is < -1, or if fraction wait timei of

that process is > 0.9, then throughput estimate ai is recalculated for all cpusets, and

the process is assigned to the cpuset with the lowest value of throughput estimate ai.

(If the process is waiting in the ready queues for the cores of a cpuset for too long, it

is context switched to a cpuset with fewer processes in its ready queues. The higher

the priority of the process, the less time it must spend waiting in the ready queues

before it is context switched.)

10. For all executing processes, a “CPU intensity priority index” is calculated from the

CPU intensity and nice value of that process.

11. At regular time intervals, the average number of threads in the ready queues of all

cpusets is computed. If the average number of threads in the ready queues of any

cpuset is < 1, then a process is assigned to that cpuset. If two or more cpusets have

an average number of threads in their ready queues that is < 1, a process is first

assigned to the cpuset with CPUs operating at the highest frequency. Process(s) are

chosen to migrate to the new cpuset according to their CPU intensity priority index,

with those having a higher value of this index having higher priority. (If there is a

cpuset containing a core with an empty ready queue, then a process is assigned to

this core. Process(s) are chosen according to both their CPU intensity and process

priority.)

12. Thread parallelism is accounted for by the number and frequency of CPUs in cpusets

(hardware), with the lack of parallelism available in cpusets with fewer CPUs com-

pensated for by the higher frequencies of its CPUs.

13. The measure of the algorithm’s effectiveness is:

(a) Average Instructions Per Second / Watts

= (
∑m

i=0 (Instructions Executed by Pi / Execution T ime (seconds)

for Pi) / m) / watts,

where m = number of processes in task T
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(b) Average time required for all processes in task T to

complete execution * watts

= (
∑m

i=0 Execution T ime (seconds) for Pi / m) * watts,

where m = number of processes in Task T

(A potentially more efficient algorithm will have a higher value of (a) and a lower

value of (b))
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Algorithm 4 : Context Switch F eedback − driven P riority − based

CP U Scheduling Algorithm

(Context Switch Priority CPU Scheduler)

Start with a set S of processes Pi in a given task T :

for all Pi in T (concurrently){

//initially schedule a process

calculate throughput estimate ai for all cpusets;

assign Pi to cpuset with least value of throughput estimate ai;

//if non − executing process is in wait queue too long, context switch process

if(fraction wait timei ≥ 0.7 and nicei < −1){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

else if(fraction wait timei > 0.9){

recalculate throughput estimate ai for all cpusets and assign Pi to cpuset

with least value of throughput estimate ai;

}

do{

execute Pi;

calculate CPU intensityi for Pi;

calculate IPCi and fraction wait timei for Pi;

compute performance indexi of Pi using IPCi and fraction wait timei;

compute context switch CPU migration indexi of Pi using context switchi

and CPU migrationi;

measure load average;

if(CPU intensityi > 50% and nicei < 9 and performance indexi == true

and context switch CPU migration indexi == false){

recalculate throughput estimate ai for all cpusets and context switch
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Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and nicei > −1 and load average > num cpus){

calculate throughput estimate bi for all cpusets and context switch Pi

to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −1 and load average

> 2 ∗ num cpus){

calculate throughput estimate bi for all cpusets and context

switch Pi to cpuset with least value of throughput estimate bi;

}

else if(CPU intensityi < 50% and nicei ≤ −11 and load average

≤ num cpus and performance indexi == true and

context switch CPU migration indexi == false){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

else if(CPU intensityi < 50% and nicei > −11 and load average

< 0.15 ∗ num cpus and performance indexi == true and

context switch CPU migration indexi == false){

recalculate throughput estimate ai for all cpusets and context

switch Pi to cpuset with least value of throughput estimate ai;

}

compute CPU intensity priority indexi for Pi;

//if a ready queue is empty, then assign a process to it

if(a ready queue is empty and Pi is process with highest value of

CPU intensity priority indexi of all executing processes){

context switch Pi to cpuset with the empty ready queue;

}

}until Pi terminates;
}
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CHAPTER 9

EVALUATION AND RESULTS

Algorithms 1, 2, 3, and 4 utilize “application-driven” feedback to dynamically context

switch processes in a given task upon heterogeneous cpusets. Each algorithm considers

different performance metrics and thus uses different variables at runtime to achieve power

savings while maximizing performance gains and minimizing performance losses.

9.1 Methodology

This section discusses the experimental setup and various methodologies used in this

research, including hardware and operating system, CPU frequency scaling, creation of

cpusets, measurement of application performance, context switching of processes, and mea-

surement of power usage.

Hardware and operating system. We ran our experiments on a system equipped with

an 8 core 2.3 GHz AMD Opteron 6134 “MagnyCours” processor [4]. This is a 64 bit

multicore processor that has eight identical cores and supports per core frequency scaling.

The operating system we used was the Fedora Core 14 Linux distribution with a version

2.6.35 kernel.

CPU frequency scaling. To create a heterogeneous architecture, we frequency scaled

each core using the Linux “cpufreq” kernel module. We changed the default Linux CPU

frequency scaling governor, which is the “on demand” governor, to the “userspace” governor.

This allowed us to then adjust the CPU frequencies for the individual cores. The default

Linux “on demand” governor sets the CPU frequency based upon the current usage of the

CPUs, in terms of CPU utilization, and the system load.
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Figure 7: Hardware Partitioning

Creation of cpusets. We partitioned the cores into hardware partitions using “CPUSETS

for Linux”. We partitioned the eight cores into three cpusets, with each core in the same

cpuset operating at the same frequency, but cores from different cpusets operating at dif-

ferent frequencies. The first cpuset contained four cores, each operating at 800 MHz. The

second cpuset contained two cores, each operating at 1.4 GHz. The third cpuset contained

two cores, each operating at 2.3 GHz. We used this strategy to compensate for the lack of

parallelism available in cpusets with fewer CPUs. Figure 7 shows the hardware partitioning

strategy we used.

Priority Assignment. For Algorithm 2 we assigned both static and dynamic priorities

(Linux nice values) in the range of -20 to 19 to each executing benchmark using the set-

priority() system call. For Algorithms 3 and 4 we assigned dynamic priorities within this

same range using the same system call. When assigning static priorities, each process was

assigned a nice value and retained its resulting priority throughout its five execution cycles.

When assigning dynamic priorities, each process retained its first priority for its first three

execution cycles, and was then assigned a different priority for its last two execution cycles.

Measurement of application performance. We used the standard “perf” hardware

performance counters subsystem in Linux to obtain per core and per application perfor-

mance statistics. These statistics were used at runtime to give feedback to the operating

system concerning an application’s execution characteristics and to gather performance

data.
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Context switching of applications. Applications were context switched between cpusets

by the operating system, based upon feedback from that application, by setting the CPU

affinity mask using the “sched setaffinity()” system call.

Measurement of Power Usage. We directly measured the power usage of our system

during execution using the “KillAWatt” meter by Arbor Scientific.

9.2 Discussion of Results

For our research, we wished to investigate the performance gains or losses and power

savings achieved by Algorithms CPU Scheduler, Priority CPU Scheduler, Cache Miss

Priority CPU Scheduler, and Context Switch Priority CPU Scheduler when executing

a typical workload. To this end, we wanted to include a combination of both CPU intensive

and non-CPU intensive applications in our workload. Hence we tested our algorithm using

five different benchmarks, four from the SPEC CPU2006 suite and one non-CPU intensive

benchmark that we wrote. The SPEC CPU2006 benchmarks, representing a variety of

architectural characteristics, were bzip2, gcc, mcf, and sjeng. We also used a non-CPU

intensive benchmark that we wrote in C.

We utilized four of the SPEC CPU2006 benchmarks because we wanted to test three,

five, eight, and twenty-four concurrently executing benchmarks, while including a combi-

nation of both CPU intensive and non-CPU intensive benchmarks. We did this to ensure

all three cpusets and all eight cores in our three cpuset, eight core evaluation platform

had processes executing upon them, and to demonstrate how our algorithm behaves with

a combination of both types of benchmarks. When we measured the CPU intensity of all

the benchmarks in the SPEC CPU2006 suite, we found that all of them were CPU inten-

sive, except for mcf. Thus, for three concurrently executing benchmarks, we chose two

CPU intensive benchmarks, bzip2 and gcc, and one non-CPU intensive benchmark, non-

cpuintensive. We chose a similar combination for the five and eight concurrently executing

benchmark test cases, and since most of the SPEC CPU2006 benchmarks are CPU intensive,

we could only include a subset of them to ensure a combination of both types of benchmarks

in our test cases. Also, when measuring the results for a heavily loaded system, we wanted
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Task Concurrently Executing Benchmarks

1 bzip2, gcc, noncpuintensive
2 bzip2, gcc, mcf, sjeng, noncpuintensive
3 bzip2, gcc, mcf, sjeng, noncpuintensive(1−4)

4 bzip2(1−3), gcc(1−3), mcf(1−3), sjeng(1−3), noncpuintensive(1−12)

Table 1: Benchmarks and Tasks Evaluated

to use the same benchmarks that we used in our test cases containing three, five, and eight

concurrently executing processes, in order to eliminate as many experimental variables as

possible when comparing a heavily loaded system to a lightly loaded system.

We ran four tasks, composed of the following processes. As shown in Table 1, Task 1

was composed of the bzip2, gcc, and noncpuintensive benchmarks. Task 2 was composed of

the bzip2, gcc, mcf, sjeng, and noncpuintensive benchmarks. Task 3 was composed of the

bzip2, gcc, mcf, sjeng, and four separate instances of the noncpuintensive benchmarks. Task

4 was composed of three separate instances of bzip2, three separate instances of gcc, three

separate instances of mcf, three separate instances of sjeng, and twelve separate instances

of noncpuintensive, for a total of twenty-four benchmarks. When a task was executed, the

benchmarks within a task were run concurrently and were restarted once they finished until

each benchmark completed execution five times. Each task was run separately.

We used two experimental groups, a test group in which a task was scheduled using

either Algorithm CPU Scheduler, Algorithm Priority CPU Scheduler, Algorithm Cache

Miss Priority CPU Scheduler, or Algorithm Context Switch Priority CPU Scheduler,

and a control group in which the same task was scheduled using the default Linux scheduler

and “on demand” CPU frequency scaling governor. Hence each task was executed twice.

We chose the “on demand” governor for our control group because it is the default CPU

frequency scaling governor in the Fedora Core 14 package, but more importantly, because we

wanted to compare the effects of using our algorithm versus a governor that would employ

a different approach to advantageously using CPU frequency scaling.

9.2.1 Evaluation of Algorithm CPU Scheduler

In our evaluation of Algorithm 1 (CPU Scheduler ), we assumed that each process in

the system had the same default Linux nice value of 0, and thus the same default priority.

This algorithm did not use process priority as a variable. The results of this evaluation are
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summarized in Tables 2-4 and Figures 8-10 as follows.

We measured the completion times and instructions executed for each benchmark (pro-

cess) in a task, and then calculated the instructions per second (I/S) for each process. For

simplicity’s sake, we only show these results for Tasks 1-3. These results are shown in Table

2 and Figure 8(a)-(c). For all four tasks, we then used the average of these values to calcu-

late the instructions per second for the entire task. We also measured the power usage, in

watts, that the system used while executing a particular task. We then used these values to

calculate two metrics, (I/S)/watts and (average process completion time) · watts for each

task in the test and control groups. Table 3 and Figure 9(a)-(c) depict these results for

Tasks 1-4. Finally, for all four tasks, we calculated the performance gain/loss and power

savings of the test versus control group, as well as the percent improvement of both metrics

obtained by using Algorithm CPU Scheduler versus the default Linux scheduler and CPU

frequency scaling governor. These results are presented in Table 4 and Figure 10(a) and

Figure 10(b).

Instructions/Second (in billions)
Task 1 Task 2 Task 3

test control test control test control

bzip2 2.692 2.612 2.426 2.342 1.709 2.535
gcc 0.794 1.109 1.152 0.909 0.619 1.006
mcf – – 0.188 0.362 0.176 0.264
sjeng – – 1.747 2.331 1.854 2.305
noncpuintensive1 1.067 0.601 0.651 0.620 1.022 1.488
noncpuintensive2 – – – – 0.719 1.485
noncpuintensive3 – – – – 0.604 1.490
noncpuintensive4 – – – – 1.022 1.486

Table 2: Performance of Benchmarks Evaluated for Algorithm 1
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Table 2 and Figure 8 indicate that the higher CPU intensive processes bzip2, sjeng, and,

to a lesser degree, gcc, have a higher instructions per second value than mcf and noncpuin-

tensive, which are less CPU intensive and more memory intensive. We believe this is caused

by two factors. Firstly, memory performance saturation did occur when executing memory

intensive benchmarks, especially mcf. Thus the delay created by waiting for data from

memory caused a decrease in the overall instructions per second rate for those processes.

Secondly, the higher CPU intensive processes were being context switched to cpusets with

higher frequency cores by Algorithm CPU Scheduler. Our algorithm context switches CPU

intensive processes (whose performance index is true) to the higher frequency cpusets and,

in a heavily loaded system, moves less CPU intensive processes to lower frequency cores.

Also, if a higher frequency cpuset has cores with an empty ready queue, our algorithm

gives priority to higher CPU intensive processes to be assigned to that cpuset. These two

characteristics allow Algorithm CPU Scheduler to advantageously schedule processes with

the goal of lowering the execution time and improving the performance of the entire task.

Also, as shown in Figure 8, for Task 1 and Task 2, the test group had a higher instructions

per second value than the control group, for the majority of the benchmarks in that task.

This may also be due to the fact that our algorithm allows processes to execute upon CPU

cores that are better suited to their current execution characteristics, compared to the

default Linux scheduler.

Task 1 Task 2 Task 3 Task 4
test control test control test control test control

Performance

Avg Ins/Sec
(in billions) 1.518 1.441 1.233 1.313 0.966 1.507 0.520 0.744

Performance per Watt

Avg (Ins/Sec)/Watt
(in millions 11.411 10.004 8.560 8.361 6.569 8.237 3.541 4.067

Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 22.691 25.921 26.060 26.590 27.875 21.579 37.398 38.607

Table 3: Performance, Performance per Watt, and Execution Time · Watt for Tasks
1, 2, 3, and 4
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Table 3 and Figure 9(a) show that the test group had a higher performance value than

the control group when executing Task1. This indicates that using our algorithm can

produce a higher instructions per second rate for a task with three concurrently executing

processes than the default Linux scheduler and “on demand” governor.

Also, as shown in Table 3 and Figure 9(b), the metric performance per watt for both Task

1 and Task 2 was higher for the test group than the control group. In addition, as indicated

by Figure 9(c), the metric execution time · watt was lower for Task 1, Task 2, and Task 4

for the test group than the control group. This indicates that for a heavily loaded system

(in this case one with twenty-four concurrently executing processes), our algorithm is better

when taking into account both average process completion time and power consumption.

Also, since a higher value for the first metric and a lower value for the second metric indicate

a potentially more efficient algorithm, when taking into account both power savings and

performance, we believe that for tasks with three or five concurrently executing processes,

our algorithm is better than the default Linux scheduler and “on demand” CPU frequency

scaling governor.

Task 1 Task 2 Task 3 Task 4

Total Power Savings (Watts) 11 13 36 36
Power Savings (%) 7.64 8.28 19.67 19.67

Performance Improvement (%) 5.08 -6.10 -35.94 -30.06
Performance per Watt Improvement (%) 12.33 2.32 -20.26 -12.93
Execution Time · Watt Improvement (%) 12.46 1.99 -22.59 3.13

Table 4: Total Power Savings, Percent Power Savings, and Percent Improvement of
Performance, Performance per Watt, and Execution Time · Watt for Tasks
1, 2, 3, and 4
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As indicated by Table 4 and Figure 10(a), the total power savings for Tasks 1, 2, 3, and 4

obtained by using Algorithm CPU Scheduler is 11 watts, 13 watts, 36 watts, and 36 watts,

respectively. This shows that the power savings obtained by our algorithm is significant

and becomes even more significant as the number of concurrently executing processes is

greater. The percent power savings, relative to the control group, is also significant, as

shown in Table 4 and Figure 10(b). It can be as high as 19.67%. For all four tasks, there

is a significant increase in power savings obtained by our algorithm.

In addition, Table 4 and Figure 10(b) show that there is not only a power savings, but

also a performance improvement, obtained by Algorithm CPU Scheduler when executing

a task with three concurrently executing benchmarks. We believe this is due to the fact

that in a lightly loaded system, there are more cores with empty ready queues. In this

situation, our algorithm will exhibit better performance because it will context switch even

a lower CPU intensive process to the higher CPU frequency cpusets, if it is the only process

executing in the system or if the system is not loaded, whereas an “on demand” governor,

or other dynamic CPU frequency scaling technique, will lower the core’s frequency upon

which that non-CPU intensive process is executing.

While there is a performance loss associated with using Algorithm CPU Scheduler for

Task 2, Task 3, and Task 4, Table 4 and Figure 10(b) show that there is a positive im-

provement in the performance per watt and execution time · watt for Task 2, and a positive

improvement in the execution time · watt for Task 4. Task 1 shows an improvement in per-

formance, performance per watt, and execution time · watt, Task 2 shows an improvement

in both performance per watt and execution time · watt of 2.32% and 1.99%, respectively,

and Task 4 shows a 3.13% improvement in execution time · watt. Since a potentially more

efficient algorithm would be measured in terms of both performance and energy, we believe

the improvement in the performance-energy metrics obtained by our algorithm for Tasks

1, 2, and 4, and the improvement in all metrics obtained by our algorithm for Task 1 is

a positive indication. In fact, Table 4 and Figure 10(b) show that there is a positive im-

provement in all of the metrics tested for Task 1, all but one of the metrics tested for Task

2, and half of the metrics tested for Task 4. Also, although there is a performance loss

obtained by our algorithm when executing Task 3 (tasks with eight concurrently executing
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benchmarks), the power savings obtained in this scenario are quite significant.

Thus our data suggest that in a majority of the cases tested, for a majority, if not all,

of the measured metrics, Algorithm CPU Scheduler is a more efficient algorithm in terms

of power savings and performance than the default Linux scheduler and CPU frequency

scaling governor.

9.2.2 Evaluation of Algorithm Priority CPU Scheduler

In our evaluation of Algorithm 2 (Priority CPU Scheduler ), we assumed that each

process in the system has different (not necessarily unique) priorities. These priorities were

static or dynamic. In other words, a process may have kept the same priority throughout

its execution, or may have changed priorities during its execution cycle. These priorities

were implemented using Linux nice values, and may or may not have been the default nice

value of 0. Also, when surveying the effect of static priorities, we used two test trials, one

in which we assigned the noncpuintensive benchmarks a lower priority, and the other in

which we assigned the noncpuintensive benchmarks higher priorities. The results of this

evaluation are summarized in Tables 5-17 and Figures 11-20 as follows.

For our research, we wished to investigate the performance gains or losses and power

savings achieved by Algorithm Priority CPU Scheduler when executing a typical workload

in which each process has a specific nice value (or priority), which may be static or dynamic.

Thus, unlike Algorithm CPU Scheduler, process priority was used by this second algorithm

as one of the determining factors to schedule processes. The interaction of Linux process

priorities with this CPU scheduling algorithm was controlled in a manner such that process

completion order, as dictated by process priority in a Linux scheduling environment, was

not adversely affected. That is, both with and without using this algorithm, the completion

order of processes having different priorities were the same. Both with and without using

this algorithm, higher priority processes still completed before lower priority processes,

despite their CPU intensity.

We assigned a nice value (priority) to each executing process. The nice values we as-

signed were in the range of -20 to 19, with each process’s priority being inversely proportional

to its nice value. When this priority was statically assigned, a process retained its nice value
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throughout its five execution cycles. When this priority was dynamically assigned, the first

priority (Priority 1) was assigned to the process for its first three execution cycles, and

its second priority (Priority 2) was assigned during its last two execution cycles. When

assessing the effect of static priorities, the noncpuintensive benchmarks were assigned both

high and low priorities. The priorities were unique, with the exception of those assigned to

multiple instances of identical benchmarks.

As shown in Table 5, for Tasks 1-3, when assigned static priorities with the noncpuinten-

sive processes having higher priority, the benchmarks, listed in decreasing order by priority,

were the four instances of the noncpuintensive benchmark, mcf, gcc, bzip2, and sjeng. As

depicted in Table 6, for the same tasks, when assigned static priorities with the noncpuinten-

sive processes having lower priority, the benchmarks, listed in decreasing order by priority,

were mcf, gcc, bzip2, sjeng, and the four instances of the noncpuintensive benchmark. Table

7 shows the first and last priorities of benchmarks in Tasks 1-3 when they were assigned

dynamic priorities. The priorities for all benchmarks in Task 4 were the same as those in

Tasks 1-3, with multiple instances of the same benchmark having the same nice value and

priority.

We noted the completion order of each benchmark (process) in all three tasks, for both

test and control groups. These results are also shown in Tables 5-8 and Figure 11. In

addition to this, as shown in Table 8, due to the large number of concurrently executing

processes, we gauged the completion order of benchmarks in Task 4 by placing these bench-

marks in two groups, and then recording the completion order of these two groups. When

assigning higher static priorities to the noncpuintensive benchmarks and when assigning

dynamic priorities, Group 1 was composed of the noncpuintensive, mcf, and gcc bench-

marks, and Group 2 was composed of the bzip2 and sjeng benchmarks. When assigning

lower static priorities to the noncpuintensive benchmarks, Group 1 was composed of the

bzip2, gcc, and mcf benchmarks, and Group 2 was composed of the noncpuintensive and

sjeng benchmarks.
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Completion Order
Task 1 Task 2 Task 3

Benchmark Nice Priority t c t c t c

noncpuintensive1 -16 1 1 1 1 1 1 1
noncpuintensive2 -16 1 – – – – 2 2
noncpuintensive3 -16 1 – – – – 3 3
noncpuintensive4 -16 1 – – – – 4 4
mcf -10 2 – – 2 2 5 5
gcc -4 3 2 2 3 3 6 6
bzip2 2 4 3 3 4 4 7 7
sjeng 8 5 – – 5 5 8 8

Table 5: Completion Order of Benchmarks Evaluated (static priorities
– noncpuintensive benchmarks higher priority)
(t = test, c = control)

Completion Order
Task 1 Task 2 Task 3

Benchmark Nice Priority t c t c t c

mcf -11 1 – – 1 1 1 1
gcc -9 2 1 1 2 2 2 2
bzip2 -7 3 2 2 3 3 3 3
sjeng -1 4 – – 4 4 4 4
noncpuintensive1 9 5 3 3 5 5 5 5
noncpuintensive2 9 5 – – – – 6 6
noncpuintensive3 9 5 – – – – 7 7
noncpuintensive4 9 5 – – – – 8 8

Table 6: Completion Order of Benchmarks Evaluated (static priorities
– noncpuintensive benchmarks lower priority)
(t = test, c = control)

Completion Order
First First Last Last Task 1 Task 2 Task 3

Benchmark Nice Priority Nice Priority t c t c t c

noncpuintensive1 -16 1 -6 3 1 1 1 1 1 1
noncpuintensive2 -16 1 -6 3 – – – – 2 2
noncpuintensive3 -16 1 -6 3 – – – – 3 3
noncpuintensive4 -16 1 -6 3 – – – – 4 4
mcf -10 2 0 5 – – 2 2 5 5
gcc -4 3 -14 1 2 2 3 3 6 6
bzip2 2 4 -8 2 3 3 4 4 7 7
sjeng 8 5 -2 4 – – 5 5 8 8

Table 7: Completion Order of Benchmarks Evaluated (dynamic priorities)
(t = test, c = control)
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Completion
Order

Task 4
Priority Type Group Constituent Benchmarks t c

Static 1 noncpuintensive(1−12), mcf(1−3), gcc(1−3) 1 1
noncpuintensive high priority 2 bzip2(1−3), sjeng(1−3) 2 2
Static 1 gcc(1−3), bzip2(1−3), mcf(1−3) 1 1
noncpuintensive low priority 2 noncpuintensive(1−12), sjeng(1−3) 2 2

Dynamic
1 noncpuintensive(1−12), mcf(1−3), gcc(1−3) 1 1
2 bzip2(1−3), sjeng(1−3) 2 2

Table 8: Completion Order of Benchmarks Evaluated for Task 4
(t = test, c = control)
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We also measured the completion times and instructions executed for each benchmark

in a task, and then calculated the instructions per second (I/S) for each benchmark. These

results are shown in Tables 9-11 and Figures 12-14(a)-(c). We then used the average of these

values to calculate the instructions per second for the entire task. We also measured the

power usage, in watts, that the system used while executing a particular task. Next we used

these values to calculate two metrics, (I/S)/watts and (average process completion time) ·

watts for each task in the test and control groups. Tables 12-14 and Figures 15-17(a)-(c)

depict these results. Finally, we calculated the performance gain/loss and power savings of

the test versus control group, as well as the percent improvement of both metrics obtained

by using Algorithm Priority CPU Scheduler versus the default Linux scheduler and CPU

frequency scaling governor. These results are presented in Tables 15-17 and Figures 18-20(a)

and (b).

As shown in Tables 5-7 and Figure 11(a)-(c), the completion order of each process in

a task was the same for both the test and control groups for Tasks 1 - 3 for all three test

trials. That is, for the trials where processes had static priorities in which noncpuintensive

benchmarks had higher priority, static priorities in which noncpuintensive benchmarks had

lower priority, and dynamic priorities, for Tasks 1 - 3, all processes completed in the same

order in both the test and control groups. Also, as shown in Table 8 for Task 4, which

was composed of twenty-four concurrently executing processes, for all three priority type

trials, all processes in Group 1 completed execution before all processes in Group 2. This

indicates that the completion order of processes is the same both using Algorithm Priority

CPU Scheduler and without, and that this algorithm does not affect the completion order

of processes that have different priorities. Both with and without our algorithm, higher

priority processes still completed before lower priority processes for all four tasks, with the

completion order of processes being dictated by their priorities. In both test and control

groups, for Tasks 1 - 3, when the noncpuintensive benchmarks were assigned higher pri-

orities and when all processes were assigned dynamic priorities, the completion order of

processes (in increasing order) was noncpuintensive, gcc, and bzip2 for Task 1, noncpuin-

tensive, mcf, gcc, bzip2, and sjeng for Task 2, and all four instances of noncpuintensive,

mcf, gcc, bzip2, and sjeng for Task 3. When the noncpuintensive benchmarks were assigned
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lower priorities, in both test and control groups for Tasks 1 - 3, the completion order of pro-

cesses (in increasing order) was gcc, bzip2, and noncpuintensive for Task 1, mcf, gcc, bzip2,

sjeng, and noncpuintensive for Task 2, and mcf, gcc, bzip2, sjeng, and all four instances

of noncpuintensive for Task 3. As mentioned, for Task 4 with all three priority types, all

Group 1 processes completed execution before all Group 2 processes. This indicates that

Algorithm Priority CPU Scheduler does not adversely affect the Linux priority scheduling

of processes as dictated by their nice values.

Thus our algorithm interacts with a process’s priority in a manner that does not neg-

atively affect its completion order. This is due to the fact that in our algorithm, a higher

priority process will be context switched to a cpuset with faster frequency cores, if it is

CPU intensive and its nice value is less than 9, (and also if it is non-CPU intensive, even if

the load average is almost as high as num cpus). Also, a lower priority process will not be

context switched to higher frequency cores unless it is non-CPU intensive, its nice value is

greater than -11, and the load average is less than 0.15 * num cpus (and also if it is CPU

intensive and its nice value is greater than or equal to 9).
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Instructions/Second (in billions)
Task 1 Task 2 Task 3

test control test control test control

bzip2 2.62 2.63 1.77 2.43 2.32 2.32
gcc 1.06 1.23 1.24 1.10 1.01 0.96
mcf – – 0.33 0.26 0.21 0.33
sjeng – – 1.38 2.34 1.38 2.15
noncpuintensive1 1.01 0.60 0.56 0.68 0.96 0.91
noncpuintensive2 – – – – 0.97 0.88
noncpuintensive3 – – – – 1.13 0.88
noncpuintensive4 – – – – 1.12 0.90

Table 9: Performance of Benchmarks Evaluated (static priorities – noncpuintensive
benchmarks higher priority) for Algorithm 2

Instructions/Second (in billions)
Task 1 Task 2 Task 3

test control test control test control

bzip2 1.61 2.56 2.51 2.43 1.83 2.22
gcc 1.01 1.17 1.21 1.10 0.97 0.96
mcf – – 0.18 0.26 0.24 0.33
sjeng – – 1.75 2.34 1.38 2.27
noncpuintensive1 1.57 0.62 1.14 0.68 0.69 0.69
noncpuintensive2 – – – – 0.69 0.68
noncpuintensive3 – – – – 0.69 0.68
noncpuintensive4 – – – – 0.69 0.69

Table 10: Performance of Benchmarks Evaluated (static priorities – noncpuintensive
benchmarks lower priority) for Algorithm 2

Instructions/Second (in billions)
Task 1 Task 2 Task 3

test control test control test control

bzip2 2.62 2.57 2.00 2.48 2.18 2.31
gcc 1.06 1.23 1.26 1.10 1.04 1.17
mcf – – 0.18 0.16 0.21 0.30
sjeng – – 1.74 2.24 1.35 2.13
noncpuintensive1 1.04 0.60 0.65 0.61 0.40 0.85
noncpuintensive2 – – – – 0.73 0.84
noncpuintensive3 – – – – 0.60 0.85
noncpuintensive4 – – – – 0.60 0.86

Table 11: Performance of Benchmarks Evaluated (dynamic priorities) for
Algorithm 2
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Figure 12: Performance of Benchmarks Evaluated (static priorities – noncpuintensive
benchmarks higher priority) for Algorithm 2
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Figure 13: Performance of Benchmarks Evaluated (static priorities – noncpuintensive
benchmarks lower priority) for Algorithm 2
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Figure 14: Performance of Benchmarks Evaluated (dynamic priorities) for Algorithm 2
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Tables 9-11 and Figures 12-14 indicate that the higher CPU intensive processes bzip2,

sjeng, and, to a lesser degree, gcc, have a higher instructions per second value than mcf and

noncpuintensive, which are less CPU intensive and more memory intensive, for all three

priority type trials. We believe this is caused by two factors. Firstly, memory performance

saturation did occur when executing memory intensive benchmarks, especially mcf. Thus

the delay created by waiting for data from memory caused a decrease in the overall instruc-

tions per second rate for those processes. Secondly, the higher CPU intensive processes were

being context switched to cpusets with higher frequency cores by Algorithm Priority CPU

Scheduler . Our algorithm context switches CPU intensive processes (whose performance

index is true and whose nice value is less than 9) to the higher frequency cpusets and,

in a heavily loaded system, moves less CPU intensive processes to lower frequency cores.

Since all three of these benchmarks had a nice value less than 9, they would have been

context switched to higher frequency cores if their performance index was true. Also, if a

higher frequency cpuset has cores with an empty ready queue, our algorithm gives priority

to higher CPU intensive, higher priority processes to be assigned to that cpuset. These

two characteristics allow Algorithm Priority CPU Scheduler to advantageously schedule

processes with the goal of lowering the execution time and improving the performance of

the entire task.

Also, as shown in Tables 10 and 11 and Figures 13 and 14 (a) and (b), for Task 1 and

Task 2, when the noncpuintensive benchmarks had a lower priority, the noncpuintensive

benchmark within the test group had a higher instructions per second value than the control

group. We believe this performance gain by the noncpuintensive benchmark was obtained

for three reasons. Firstly, if a noncpuintensive process is the only process in the system

or in a lightly loaded system, the load average will be less than 0.15 * num cpus. In

this scenario, our algorithm will context switch this non-CPU intensive process, despite

its lower priority, to higher frequency cores, enabling its faster execution, whereas an “on

demand” governor will lower the CPU frequency of the cores upon which it is executing,

thereby lowering its execution speed. Secondly, in our algorithm, if two or more cpusets

have empty ready queues, and if this non-CPU intensive process is the only process in

the system, it will be context switched to the cpuset with CPU’s operating at the highest
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frequency, thereby speeding up its execution and improving performance. We did not see

this same occurrence in Task 3 because the system was heavily loaded, since there were eight

concurrently executing benchmarks, and the lower priority non-CPU intensive benchmarks

were not context switched to faster frequency cores because the load average was greater

than 0.15 * num cpus. The third reason is that our algorithm allows the load average to be

as high as num cpus before a non-CPU intensive process having a nice value > -1, is context

switched to lower frequency cores. This allows non-CPU intensive processes to execute upon

cores operating at a higher frequency than they would if they were executing upon a system

with an “on demand” frequency scaling governor, thus enabling a performance gain.

As shown in Table 9 and Figure 12, when noncpuintensive processes were assigned

higher priorities, for Task 3, the noncpuintensive benchmarks in the test group exhibited

a higher instructions per second value than their control counterparts. We believe this is

true because our algorithm allows the load average to be as high as num cpus if a non-CPU

intensive process’s priority is less than or equal to -11, before it context switches this process

to higher frequency cores. Since a system with eight cores and eight concurrently executing

benchmarks does have a load average equal to num cpus, our algorithm will context switch

such a process to higher frequency cores.
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Task 1 Task 2 Task 3 Task 4
test control test control test control test control

Performance

Avg Ins/Sec
(in billions) 1.56 1.49 1.06 1.38 1.14 1.17 0.67 1.00

Performance per Watt

Avg (Ins/Sec)/Watt
(in millions) 12.21 10.79 7.54 8.76 7.90 7.24 4.63 5.44

Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 16.17 17.35 24.22 20.85 16.85 16.30 34.04 28.84

Table 12: Performance, Performance per Watt, and Execution Time · Watt
for Tasks 1, 2, 3, and 4 (static priorities – noncpuintensive benchmarks
higher priority)

Task 1 Task 2 Task 3 Task 4
test control test control test control test control

Performance

Avg Ins/Sec
(in billions) 1.40 1.45 1.36 1.36 0.90 1.07 0.47 0.71

Performance per Watt

Avg (Ins/Sec)/Watt
(in millions) 10.66 10.36 9.70 8.41 6.11 5.83 3.22 3.79

Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 38.40 67.72 36.24 53.29 83.66 105.75 103.00 86.65

Table 13: Performance, Performance per Watt, and Execution Time · Watt
for Tasks 1, 2, 3, and 4 (static priorities – noncpuintensive benchmarks
lower priority)

Task 1 Task 2 Task 3 Task 4
test control test control test control test control

Performance

Avg Ins/Sec
(in billions) 1.57 1.47 1.16 1.36 0.89 1.16 0.63 0.67

Performance per Watt

Avg (Ins/Sec)/Watt
(in millions) 12.01 10.26 8.06 8.57 6.08 7.01 4.33 3.66

Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 16.58 18.19 23.67 21.29 19.14 16.38 36.39 38.26

Table 14: Performance, Performance per Watt, and Execution Time · Watt
for Tasks 1, 2, 3, and 4 (dynamic priorities)
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Figure 17: Performance, Performance per Watt, and Execution Time · Watt
for Tasks 1, 2, and 3 (dynamic priorities)
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In addition to this, Figures 15 - 17(a) show that the instructions per second values

for the test groups for Task 1 were higher than the control groups for the trials where

the noncpuintensive benchmarks had higher priority and where benchmarks had dynamic

priorities, and were almost the same for the trial where the noncpuintensive benchmarks

had lower priority. Also, for all other tasks and priority type trials, the test groups’ values

were not much lower than the control groups. In only one test case (Task 4, noncpuintensive

benchmarks with higher priorities) was this value no less than 0.33 of the control group’s

value. This may be due to the fact that our algorithm allows processes to execute upon

CPU cores that are better suited to their current execution characteristics. Therefore, our

algorithm can produce an instructions per second rate that is comparable to that produced

by the default Linux scheduler and “on demand” governor, despite any context switching

overhead.

Also, as shown in Tables 12-14 and Figures 15-17(b), the metric performance per watt

for the majority of the tasks in all three priority type trials was higher for the test group than

the control group. In addition, as indicated by Figures 15-17(c), the metric execution time

· watt was lower for half of the tasks in all three priority type trials for the test group than

the control group. Also, for Tasks 1, 2, and 3 in which benchmarks had static priorities with

noncpuintensive benchmarks having lower priorities, the test group had a lower value for the

metric execution time · watt than the control group. Since a higher value for the first metric

and a lower value for the second metric indicate a potentially more efficient algorithm, when

taking into account both power savings and performance, we believe Algorithm Priority

CPU Scheduler is more efficient than the default Linux scheduler and “on demand” CPU

frequency scaling governor for a majority of the cases tested.
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Task 1 Task 2 Task 3 Task 4

Total Power Savings (Watts) 10 17 17 39
Power Savings (%) 7.25 10.83 10.56 21.31

Performance Improvement (%) 4.76 -23.21 -2.46 -33.04
Performance per Watt Improvement (%) 11.66 -13.89 8.30 -14.90
Execution Time · Watt Improvement (%) 6.77 -13.90 -3.24 -15.28

Table 15: Total Power Savings, Percent Power Savings, and Percent Improvement of
Performance, Performance per Watt, and Execution Time · Watt for
Tasks 1, 2, 3, and 4 (static priorities – noncpuintensive benchmarks
higher priority)

Task 1 Task 2 Task 3 Task 4

Total Power Savings (Watts) 9 22 36 41
Power Savings (%) 6.43 13.58 19.67 21.93

Performance Improvement (%) -3.75 -0.40 -15.75 -33.6
Performance per Watt Improvement (%) 2.78 13.23 4.65 -14.95
Execution Time · Watt Improvement (%) 43.29 32.00 20.89 -15.88

Table 16: Total Power Savings, Percent Power Savings, and Percent Improvement of
Performance, Performance per Watt, and Execution Time · Watt for
Tasks 1, 2, 3, and 4 (static priorities – noncpuintensive benchmarks
lower priority)

Task 1 Task 2 Task 3 Task 4

Total Power Savings (Watts) 12 15 20 37
Power Savings (%) 8.39 9.43 12.05 20.33

Performance Improvement (%) 6.73 -14.8 -23.67 -5.55
Performance per Watt Improvement (%) 14.56 -5.93 -13.21 15.64
Execution Time · Watt Improvement (%) 8.84 -10.06 -14.42 4.89

Table 17: Total Power Savings, Percent Power Savings, and Percent Improvement of
Performance, Performance per Watt, and Execution Time · Watt for
Tasks 1, 2, and 3 (dynamic priorities)
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As indicated by Tables 15-17 and Figures 18-20(a), the total power savings for Tasks

1, 2, 3, and 4 obtained by using Algorithm Priority CPU Scheduler was 10, 17, 17, and

39 watts when processes were assigned static priorities with noncpuintensive benchmarks

having higher priorities, 9, 22, 36, and 41 watts when processes had static priorities with

noncpuintensive benchmarks having lower priorities, and 12, 15, 20, and 37 watts when

processes had dynamic priorities. This shows that the power savings obtained by our

algorithm is significant and becomes even more significant as the number of concurrently

executing processes is greater. The percent power savings, relative to the control group, is

also significant, as shown in Tables 15-17 and Figures 18-20(b). It can be as high as 21.93%,

or 41 watts. For all four tasks, there is a significant increase in power savings obtained by

our algorithm.

As shown by Tables 15-17 and Figures 18-20(b), while there is a performance loss asso-

ciated with using Algorithm Priority CPU Scheduler when considering only instructions

per second, for some cases, there is an improvement in performance for Task 1 when pro-

cesses were assigned static priorities (noncpuintensive benchmarks having higher priority)

and processes were assigned dynamic priorities. Also, Table 16 and Figure 19(b) show that

there is a positive improvement in the performance per watt and execution time · watt

for Tasks 1 - 3 when processes were assigned static priorities (noncpuintensive benchmarks

having lower priority). In fact, there is a very significant improvement in the performance

per watt for Task 2 (13.23%) and the execution time · watt for Tasks 1 - 3 (43.29%, 32%,

and 20.89%), in this priority type trial. Also, there is a positive improvement in the per-

formance per watt and execution time · watt for the majority of the test cases for all four

tasks and all three priority type trials. Since a potentially more efficient algorithm would

be measured in terms of both performance and energy, we believe the improvement in the

performance-energy metrics, obtained by our algorithm, for these scenarios is a positive

indication that outweighs the loss of performance observed when taking into account just

instructions per second. Also, although there is a performance loss (when only considering

instructions per second) obtained by our algorithm, the power savings obtained are quite

significant.
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Thus our data suggest that in all of the cases tested, for a majority of the measured

metrics, Algorithm Priority CPU Scheduler is a more efficient algorithm in terms of

power savings and performance than the default Linux scheduler and CPU frequency scaling

governor. Also, the interaction of our algorithm with nice (priority) values is such that the

completion order of processes, as dictated by their nice values, is not affected for all four

tasks, in both a lightly-loaded and heavily-loaded system (one with twenty-four concurrently

executing benchmarks). This indicates that our algorithm does not adversely impact process

completion order when interacting with process priority. Higher priority processes still

complete before lower priority processes, both with and without our algorithm, in both a

lightly loaded and heavily loaded system. However, in this scenario, Algorithm Priority

CPU Scheduler ensures both significant power savings and, in a majority of the cases, an

increase in the performance-energy metrics.

9.2.3 Evaluation of Algorithm Cache Miss Priority CPU Scheduler

In our evaluation of Algorithm 3 (Cache Miss Priority CPU Scheduler ), we again

assumed that each process in the system has different (not necessarily unique) priorities. To

account for the possibility that a process may change priorities during its execution cycle,

we assigned dynamic priorities to these processes. These priorities were implemented using

Linux nice values, and may or may not have been the default nice value of 0. Also, in our

survey, we measured the number of cache misses, cache references, and cache miss to cache

reference ratio generated by each executing process. We measured these values for a task

containing twenty-four concurrently executing processes (the same benchmarks as Task 4

in section 9.2.2), and then calculated the average number of cache misses, cache references,

and average cache miss to cache reference ratio for the entire task. We then compared

these values to those for the control case and to Algorithm 2, when using Task 4 with the

dynamic priority test trial. The results of this evaluation are summarized in Tables 18-21

and Figures 21-23 as follows.

Unlike Algorithm Priority CPU Scheduler , Algorithm Cache Miss Priority CPU

Scheduler uses the ratio between the number of cache misses to the number of cache

references generated by a process at runtime as one of the determining factors to schedule
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processes. If a process is context switched too often and consequently changes the CPU

upon which it executes often, it will have a tendency to generate a larger number of cache

misses, since it must access a different CPU’s cache after it is context switched. To prevent

this, Algorithm Cache Miss Priority CPU Scheduler does not context switch such a

process to cores operating at a higher frequency if it generates too many cache misses.

Thus, if the number of cache misses is too high, then a different strategy is implemented by

Algorithm Cache Miss Priority CPU Scheduler . This new strategy’s goal is to improve

performance by reducing the overhead associated with cache access, while still maintaining

power savings.

In our test case, we assigned dynamic priorities to our processes, and in order to test

the scenario where Algorithms 1 and 2 exhibited the worst performance (which was Task

4), we used twenty-four concurrently executing processes. Like the dynamic priorities trial

type for the first two algorithms, the first priority (Priority 1) was assigned to a process for

its first three execution cycles, and its second priority (Priority 2) was assigned during its

last two execution cycles. Also, these priorities were unique, with the exception of those

assigned to multiple instances of identical benchmarks. Since these priorities were the same

as those used for Algorithm 2, they are shown in Table 7. Again, like the control group

used for Algorithm 2, our control group consisted of the same processes executing with the

default Linux scheduler and CPU frequency scaling governor.

We calculated the average number of cache misses, cache references, and average cache

miss to cache reference ratio for our task obtained by Algorithm Cache Miss Priority

CPU Scheduler , Algorithm Priority CPU Scheduler , and by the control group. These

results are shown in Table 18 and Figure 21.

We also measured the instructions per second (I/S) for each benchmark and used the

average of these values to calculate the instructions per second for the entire task. In

addition, we measured the power usage, in watts, that the system used while executing

our task. We then used these values to calculate two metrics, (I/S)/watts and (Average

process completion time) · watts for our task in the test and control groups. Table 19 and

Figure 22(a)-(c) depict these results. Also, we calculated the performance gain/loss and

power savings of the test versus control group, as well as the percent improvement of both
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performance metrics obtained by using Algorithm Cache Miss Priority CPU Scheduler

versus the default Linux scheduler and CPU frequency scaling governor. These results are

presented in Table 20 and Figure 22(d). Finally, we calculated the percent reduction of the

average number of cache misses, cache references, and average cache miss to cache reference

ratio obtained by Algorithms 3 and 2 when compared to the default Linux scheduler and

CPU frequency scaling governor (control group) and that obtained by Algorithm Cache

Miss Priority CPU Scheduler when compared to Algorithm Priority CPU Scheduler .

These results are shown in Table 21 and Figure 23.
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Algorithm 3 Algorithm 2 Control

Average Number of Cache Misses (in millions) 139.00 143.83 120.40
Average Number of Cache References (in billions) 49.45 49.58 48.86

Average Cache Miss/Reference Ratio .0028 .0029 .0025

Table 18: Average Number of Cache Misses, Cache References, and Average Cache
Miss/Reference Ratio for Algorithms 3, 2, and Control
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Table 18 and Figure 21 show that the average number of cache misses, average number

of cache references, and average cache miss/reference ratio was lower for Algorithm Cache

Miss Priority CPU Scheduler when compared to that obtained by Algorithm Priority

CPU Scheduler . This indicates that there is a definite reduction in the number of cache

misses and cache miss to cache reference ratio obtained by Algorithm Cache Miss Priority

CPU Scheduler. This reduction is achieved because this algorithm does not context switch

CPU intensive processes to higher frequency cores if their nice values are less than 9, their

performance indices are true, and if their cache miss indices are true, or if non-CPU intensive

processes have nice values less than or equal to -11, if the load average is less than or equal

to num cpus, if their performance indices are true, and if their cache miss indices are true,

and if they have nice values greater than -11, the load average is less than 0.15 * num cpus,

their performance indices are true, and if their cache miss indices are true. Since a process’s

cache miss index represents its cache miss to cache reference ratio, Algorithm Cache Miss

Priority CPU Scheduler will not context switch processes that generate many cache misses,

thus reducing context switching overhead and improving performance.
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Task 4
test control

Performance
Avg Ins/Sec
(in billions) 0.69 0.67

Performance per Watt
Avg (Ins/Sec)/Watt

(in millions) 4.86 3.66
Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 32.45 38.26

Table 19: Performance, Performance per Watt, and Execution Time · Watt for Task 4 (dynamic priorities)

Task 4

Total Power Savings (Watts) 39
Power Savings (%) 21.43

Performance Improvement (%) 4.21
Performance per Watt Improvement (%) 24.74
Execution Time · Watt Improvement (%) 15.18

Table 20: Total Power Savings, Percent Power Savings, and Percent Improvement of Performance, Performance per
Watt, and Execution Time · Watt by Algorithm 3 for Task 4 (dynamic priorities)
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Figure 22: Performance, Performance per Watt, Execution Time · Watt, Percent
Power Savings, and Percent Improvement of Performance, Performance
per Watt, and Execution Time · Watt by Algorithm 3 for Task 4
(dynamic priorities)
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As shown in Table 19 and Figure 22(a)-(c), performance, in terms of average instructions

per second, and performance per watt were both higher for the test group than the control

group by Algorithm Cache Miss Priority CPU Scheduler for Task 4. Also, the metric

execution time · watt was lower for the test group than the control group. Since a higher

value for the first metric and a lower value for the latter imply a more efficient algorithm,

we believe Algorithm Cache Miss Priority CPU Scheduler is a more efficient algorithm

in terms of both power savings and performance than the default Linux CPU frequency

scaling governor.

Also, Table 20 and Figure 22(d) show that there is a significant increase in the percent

power savings and percent improvement of performance, performance per watt, and execu-

tion time · watt for Algorithm Cache Miss Priority CPU Scheduler when compared to

control. Also, there is a very significant total power savings of 39 watts. This indicates that

the strategy employed by Algorithm Cache Miss Priority CPU Scheduler is an effective

means to both increase power savings and improve performance significantly.

102



Percent Reduction Over Control Percent Reduction Over Algorithm 2
by Algorithm 3 by Algorithm 2 by Algorithm 3

Average Number of Cache Misses (%) -13.38 -16.29 3.35
Average Number of Cache References (%) -1.18 -1.45 0.27

Average Cache Miss to Cache Reference Ratio (%) -10.71 -13.79 3.45

Table 21: Percent Reduction of Average Number of Cache Misses, Cache References, and Average Cache
Miss/Reference Ratio over Control by Algorithms 3 and 2 and over Algorithm 2 by Algorithm 3
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Although there is a negative percent reduction of the average number of cache misses,

cache references, and cache miss/reference ratio over control for Algorithm Cache Miss

Priority CPU Scheduler , this occurs for Algorithm Priority CPU Scheduler as well.

However, Algorithm Cache Miss Priority CPU Scheduler exhibits a positive percent

improvement in both performance and power savings when compared to control. This

implies that the context switching strategy employed by Algorithm Cache Miss Priority

CPU Scheduler is an effective means to improving power savings and performance, despite

any overhead, when compared to control. However, when comparing Algorithms 3 and

2, not only is there an improvement over Algorithm Priority CPU Scheduler in terms of

performance and the performance-energy metrics by Algorithm Cache Miss Priority CPU

Scheduler , Table 21 and Figure 23(b) show that there is also a reduction in the average

cache miss to reference ratio. We believe this reduction is the reason why Algorithm Cache

Miss Priority CPU Scheduler is an effective algorithm for creating both a significant

power savings and a performance gain over Algorithms 1 and 2 and over the default Linux

CPU scheduler and frequency scaling governor.

9.2.4 Evaluation of Algorithm Context Switch Priority CPU Scheduler

Like our earlier evaluations, in our evaluation of Algorithm 4 (Context Switch Priority

CPU Scheduler ), we again assumed that each process in the system has different (not

necessarily unique) priorities. Also, we again assigned dynamic priorities to these processes

to account for the possibility that a process may change priorities during its execution

cycle. These priorities were implemented using Linux nice values, and may or may not have

been the default nice value of 0. Also, in our survey, we measured the number of context

switches and CPU migrations generated by each process. We measured these values for a

task containing twenty-four concurrently executing processes (the same benchmarks as Task

4 in section 9.2.2), and then calculated the average number of context switches and CPU

migrations for the entire task. We then compared these values to those for the control case

and to Algorithm 2, when using Task 4 with the dynamic priority test trial. The results of

this evaluation are summarized in Table 22 and Figure 24 as follows.
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Unlike Algorithm Priority CPU Scheduler, Algorithm Context Switch Priority CPU

Scheduler uses the number of context switches per second of execution time and the number

of CPU migrations per second of execution time generated by a process at runtime as one of

the determining factors to schedule processes. If a process is context switched too often and

consequently changes the CPU upon which it executes often, it will cause an increase in this

process’s number of context switches per second and number of CPU migrations per second,

thereby increasing its context switching overhead. This can have a negative impact upon its

performance. To prevent this, Algorithm Context Switch Priority CPU Scheduler does

not context switch such a process to cores operating at a higher frequency. Thus, if the

number of context switches and CPU migrations for an executing process is too high, then a

different strategy is implemented by Algorithm Context Switch Priority CPU Scheduler

. This new strategy’s goal is to improve performance by reducing the overhead associated

with context switching and CPU migration, while still allowing a sufficient number of CPU

migrations of processes to higher frequency cores to maintain power savings.

In our test case, we assigned dynamic priorities to our processes, and in order to test the

scenario where Algorithms 1 and 2 exhibited the worst performance (which was Task 4), we

used twenty-four concurrently executing processes. Like the dynamic priorities trial type for

the first two algorithms, the first priority (Priority 1) was assigned to a process for its first

three execution cycles, and its second priority (Priority 2) was assigned during its last two

execution cycles. Also, these priorities were unique, with the exception of those assigned

to multiple instances of identical benchmarks. Since these priorities were the same as those

used for Algorithms 1 and 2, they are shown in Table 6. Again, like the control groups used

for Algorithms 1 and 2, our control group consisted of the same processes executing with

the default Linux scheduler and CPU frequency scaling governor.

We calculated the average number of context switches and CPU migrations for our task

obtained by Algorithm Context Switch Priority CPU Scheduler , Algorithm Priority

CPU Scheduler , and by the control group. These results are shown in Table 22 and

Figure 24. We also measured the instructions per second (I/S) for each benchmark and

used the average of these values to calculate the instructions per second for the entire task.

In addition, we measured the power usage, in watts, that the system used while executing
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our task. We then used these values to calculate two metrics, (I/S)/watts and (average

process completion time) · watts for our task in the test and control groups. Table 23

and Figure 25(a)-(c) depict these results. Also, we calculated the performance gain/loss

and power savings of the test versus control group, as well as the percent improvement

of both performance metrics obtained by using Algorithm Context Switch Priority CPU

Scheduler versus the default Linux scheduler and CPU frequency scaling governor. These

results are presented in Table 24 and Figure 25(d). Finally, we calculated the percent

reduction of the average number of context switches and CPU migrations obtained by

Algorithms 4 and 2 when compared to the default Linux scheduler and CPU frequency

scaling governor (control group) and that obtained by Algorithm Context Switch Priority

CPU Scheduler when compared to Algorithm Priority CPU Scheduler . These results

are shown in Table 25 and Figure 26.
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Algorithm 4 Algorithm 2 Control

Average Number of Context Switches (in thousands) 11.76 15.85 24.59
Average Number of CPU Migrations (in thousands) 2.29 2.95 3.01

Table 22: Average Number of Context Switches and CPU Migrations for Algorithms 4,
2, and Control
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Table 22 and Figure 24 show that the average number of context switches and CPU

migrations was lower for Algorithm Context Switch Priority CPU Scheduler when com-

pared to that for both Algorithm Priority CPU Scheduler and control. This indicates

that the strategy employed by Algorithm Context Switch Priority CPU Scheduler to

use runtime context switch and CPU migration feedback to control the number of context

switches is effective. This reduction is achieved because this algorithm does not context

switch CPU intensive processes to higher frequency cores if their nice values are less than

9, their performance indices are true, and if their context switch CPU migration indices are

true, or if non-CPU intensive processes have nice values less than or equal to -11, if the load

average is less than or equal to num cpus, if their performance indices are true, and if their

context switch CPU migration indices are true, and if they have nice values greater than

-11, the load average is less than 0.15 * num cpus, their performance indices are true, and if

their context switch CPU migration indices are true. Since a process’s context switch CPU

migration index represents its number of context switches and CPU migrations, Algorithm

Context Switch Priority CPU Scheduler will not context switch processes that generate

many context switches nor CPU migrations, thus reducing context switching overhead and

improving performance. However, the algorithm does allow a sufficient number of context

switching to enable the performance gains achieved when processes execute upon higher

frequency cores. This is due to the threshold values present in the context switch CPU

migration index and due to the fact that this index is not employed by the algorithm to

migrate non-CPU intensive processes to lower frequency cores in a heavily loaded system.
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Task 4
test control

Performance
Avg Ins/Sec
(in billions) 0.79 0.67

Performance per Watt
Avg (Ins/Sec)/Watt

(in millions) 5.46 3.66
Execution Time · Watt

Avg Time (Sec) · Watt
(in thousands) 28.86 38.26

Table 23: Performance, Performance per Watt, and Execution Time · Watt for Task 4 (dynamic priorities)

Task 4

Total Power Savings (Watts) 38
Power Savings (%) 20.88

Performance Improvement (%) 15.34
Performance per Watt Improvement (%) 33.02
Execution Time · Watt Improvement (%) 24.56

Table 24: Total Power Savings, Percent Power Savings, and Percent Improvement of Performance, Performance
per Watt, and Execution Time · Watt by Algorithm 4 for Task 4 (dynamic priorities)
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As shown in Table 23 and Figures 25(a)-(c), performance, in terms of average instruc-

tions per second, and performance per watt were both higher for the test group than the

control group by Algorithm Context Switch Priority CPU Scheduler for Task 4. Also,

the metric execution time · watt was lower for the test group than the control group. These

differences were even more significant than those seen by Algorithm Cache Miss Priority

CPU Scheduler . Since a higher value for the first metrics and a lower value for the lat-

ter imply a more efficient algorithm, we believe Algorithm Context Switch Priority CPU

Scheduler is a more efficient algorithm in terms of both power savings and performance

than the default Linux CPU frequency scaling governor, and even more so than Algorithm

Cache Miss Priority CPU Scheduler .

Also, Table 24 and Figure 25(d) show that there is a very significant increase in the

percent power savings and percent improvement of performance, performance per watt,

and execution time · watt for Algorithm Context Switch Priority CPU Scheduler when

compared to control. In fact, the power savings was as high as 38 watts while a performance

gain of 15.34% was also seen for Task 4. This led to a very significant improvement of the

performance per watt metric (33.02%). This indicates that the strategy employed by Algo-

rithm Context Switch Priority CPU Scheduler to control context switching overhead is

an effective means to increasing power savings while simultaneously improving performance

significantly. This strategy is even more effective than that utilized by Algorithm Cache

Miss Priority CPU Scheduler .
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Percent Reduction Over Control Percent Reduction Over Algorithm 2
by Algorithm 4 by Algorithm 2 by Algorithm 4

Average Number of Context Switches (%) 52.19 35.55 25.82
Average Number of CPU Migrations (%) 24.15 2.02 22.59

Table 25: Percent Reduction of Average Number of Context Switches and CPU Migrations over Control
by Algorithms 4 and 2 and over Algorithm 2 by Algorithm 4
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As shown by Table 25 and Figure 26, there is a greater than 50% reduction in the average

number of context switches by Algorithm 4 over control and a very significant reduction in

the average number of CPU migrations over control by Algorithm Context Switch Priority

CPU Scheduler . This reduction is greater than that seen by Algorithm Priority CPU

Scheduler . Since there is also a very significant improvement in performance seen by Algo-

rithm Context Switch Priority CPU Scheduler, this implies that the reduction of context

switching overhead induced by Algorithm Context Switch Priority CPU Scheduler is high

enough to increase performance but is not so high as to stifle the context switching neces-

sary to migrate processes that can benefit from executing upon higher frequency cores. This

implies that the context switching strategy used by Algorithm Context Switch Priority

CPU Scheduler is a very effective means to improving power savings and performance,

despite any overhead, when compared to control, and is even more effective than that used

by Algorithm Cache Miss Priority CPU Scheduler .

In addition, as Table 25 and Figure 26(b) show, there is also a significant reduction

in the average number of context switches and CPU migrations generated by Algorithm

Context Switch Priority CPU Scheduler when compared to Algorithm Priority CPU

Scheduler , which does not use context switches nor CPU migrations as a scheduling cri-

terion. This difference is even greater than that seen for Algorithm Cache Miss Priority

CPU Scheduler . We believe this reduction allows Algorithm Context Switch Priority

CPU Scheduler to achieve both a significant power savings and a significant performance

gain over the default Linux CPU scheduler and frequency scaling governor, and even more

so than Algorithm Cache Miss Priority CPU Scheduler and Algorithms CPU Scheduler

and Priority CPU Scheduler .
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CHAPTER 10

CONCLUSION AND FUTURE RESEARCH

The main motivation of our research was to design methods to allocate CPU resources

in a heterogeneous multicore processor system with the goal of lowering the global power

budget and creating a minimal performance loss (or a performance gain). To accomplish

this goal, we used “application-driven” feedback, in which an executing application gave

feedback (regarding its performance) to the operating system at runtime, and the operating

system, in turn, dynamically scheduled the system’s CPU hardware resources based upon

this feedback. We presented four CPU scheduling algorithms that create and utilize cpusets

containing varying numbers of cores/processors of varying frequencies, with the goal of

lowering the global power budget in a multicore or multiprocessor system, while creating a

minimal performance loss, and in some cases, a performance gain. Our algorithms not only

match a process to cores better suited to execute this process based upon its performance

characteristics, but also consider the performance characteristics of the task as a whole,

process priority, the cache miss/cache reference ratio of the executing process, the number

of context switches and CPU migrations of the executing process, and the system load. In

doing so, the implementation of our algorithms not only results in significant power savings,

but for a multicore system containing eight cores executing three, five, eight, or twenty-four

concurrently running benchmarks, also results in a significant improvement in performance

per watt, execution time · watt, and in some cases, improvement in performance itself. We

have also shown, in certain cases, a total power savings of up to 41 watts, or 21.93%, and a

performance gain of 15.34%, when using our algorithm compared to using the default Linux

scheduler and “on demand” CPU frequency scaling governor.

In addition to this, we have measured the interaction of our algorithm with process

priority (nice values). We have shown that our algorithm does not negatively affect Linux
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priority scheduling, and that process completion order, as dictated by priority values, is not

affected, but performance-energy improvements and power savings are obtained.

We believe our work is advantageous over a dynamic voltage and frequency scaling

(DVFS) algorithm for the following reasons. Firstly, our algorithms context switch a non-

CPU intensive process to higher frequency cores in a lightly loaded system, thus improving

performance, whereas a DVFS governor will lower the core’s frequency upon which this pro-

cess is executing, thus degrading performance. Also, our algorithms use “application-driven”

feedback to schedule processes upon cores based upon a process’s performance characteris-

tics at runtime. Three of our algorithms also consider a process’s priority, both static and

dynamic, as a scheduling criterion and do not adversely affect process completion order as

dictated by process priority. Two of our algorithms also use the cache miss/cache reference

ratio and the number of context switches and CPU migrations as scheduling criteria, in an

attempt to moderate the number of context switches generated by the process and thus

lower context switching overhead and improve performance. Finally, our algorithms avoid

large initial load imbalances by using a “throughput estimate”, which is a novel method of

initial task assignment.

In our research, we have tested tasks composed of multithreaded processes and those

containing both CPU intensive and non-CPU intensive processes. We have shown that our

CPU scheduling algorithms are superior to the default Linux scheduler and CPU frequency

scaling governor in terms of both performance and energy as well as power savings for tasks

composed of three, five, eight, and twenty-four concurrently executing benchmarks, without

adversely impacting process priority scheduling.

The significance of this research is that in a data center, like the server systems used

for cloud computing, even a modest power savings, and certainly a power savings of 41

watts, for each server can result in a huge power savings for the data center as a whole.

Also, decreased power dissipation can result in decreased heat dissipation. This can further

reduce power usage and increase CPU and hardware component life. Finally, a decrease in

the power consumption of CPUs is important for notebook computers, where prolonging

battery life is crucial and cooling hardware components may be difficult.
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There are many future extensions of this work. An obvious extension is to use a many-

core chip, one with tens, hundreds, or even thousands of cores, in our research. Another

may be to consider the remaining threads in a process as a performance characteristic. Fi-

nally, we may consider different core partitioning strategies, with the goal of spreading heat

dissipation and dispersing thermal hot spots or increasing performance.
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