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ABSTRACT

Conjugacy Numbers for Cyclic 
Groups of Even Order

by

Tanya Jessica Murray

Dr. M ichelle Schultz, Examination Committee Chair 
Assistant Professor o f Mathematics 
University o f Nevada, Las Vegas

Let r  be a fin ite  group, let X  be a subset o f F where =X  and \ çê X. The 

conjugacy graph Con(F; X) has vertex set F and two vertices g , h e Y  are adjacent i f  

and only i f  there exists xe X  w ith g=x/zx“' . Let Q be a group w ith generating set A . 

The conjugacy number co n (Q ;A ) is defined as the minimum integer k>2  fo r which 

there exists a nonabelian group F o f order k\Cl\ and a subset A  o f F such that 

Cay( Q ; A ) is isomorphic to a component o f Con(F; A). We call this F a conjugacy 

group for Q and A. We w ill calculate the conjugacy numbers for Cg, C, and C,o and 

identify possible conjugacy groups. Finally we w ill verify that certain groups o f order 

An cannot be conjugacy groups for .

I ll
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CHAPTER 1 

INTRODUCTION

The most w idely studied graph associated w ith groups is the Cayley graph. When 

solving problems concerning groups, the use o f graphs can clarify a presentation and 

make problems more controllable. Graphs aid in  proving general results about groups 

and particular results about individual groups [3]. Another graph defined to aid in  the 

understanding o f group structure is the conjugacy graph. It is necessary to firs t discuss 

Cayley graphs and then we w ill define conjugacy graphs, which were firs t introduced by 

Bowman and Schultz in  [3].

Cavlev Graphs

Arthur Cayley (1821-1895) was the firs t to represent a group as a network o f 

directed edges, where the vertices correspond to elements and the edges to m ultiplication 

hy group generators and their inverses [11]. Let F be a fin ite  group w ith  a generating 

set A, where A “ ’ = A and Ig  A. The Cayley graph Cay(F; A) has the vertex set F, 

where g, h e F are adjacent i f  and only i f  h=gô for some ô e A. We present the 

follow ing examples to provide further understanding o f a Cayley graph.

Example 1.1 Let F be the group and let A={(12),(123),(132)}. To find Cay(F; A) 

we m ultip ly each element o f Sj, on the right by each element o f A as follows:
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( 1 )( 1 2 )= (1 2 ) (1)(123)=(123) (1)(132)=(132)

( 1 2 )( 1 2 )= ( 1 ) (12X123)=(13) (12)(132)=(23)

(13)(12)=(132) (13)(123)=(23) (13)(132)=(12)

(23)(12)=(123) (23)(123)=(12) (23)(132)=(13)

(123)(12)=(23) (123)(123)=(132) (123)(132)=(1)

(132)(12)=(13) (132X123)=(1) (132)(132)=(123)

The Cayley graph Cay(5", ; A) is shown in Figure l.A , where a=(123) and 6=(12). The 

convention is the follow ing. The direction o f an arrow labeled w ith  a is the 

m ultiplication by a on the right, while against the arrow is m ultiplication by a “ '=(132) 

on the right.

1 a a

Figure l.A  The Cayley graph o f where A= {(12),(123),(132)}

The usefulness o f Cayley graphs in solving problems involving groups can be further 

illustrated using Figure 1 by considering the follow ing example as discussed in  [3]. I f  we
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were asked to find the element aba ̂  b in  where a=(123) and 6=(12) we could consider

the directed walk starting at 1 and quickly find that aba^ b = a ^ . W hile graphs o f groups 

do not te ll anything about groups which cannot be expressed algebraically, there are s till 

advantages to using graphs over the algebraic approach. One advantage is the speed in 

which conclusions can be reached using a graph w ith much less effort than the algebraic 

method. We include another example o f a Cayley graph only this time the Cayley graph 

is sim plified and we om it the directed edges.

Example 1.2 Let T be the group C^= |1,jc,x^jc^|and let A = |x ,x ^ |. To find 

C ay(r; A ) we perform the follow ing calculations sim ilar to example 1.1:

1 -x=x 1 -x^ = x^

X x=x X X  =1

2 3X -x=x 2 3X X =x

x ^ -x = l X^ X  = x ^

The Cayley graph is shown in Figure 1 .B.

Figure l.B  The Cayley graph o f where A = |x ,x^ |
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Example 1.3 Let F be the group ^ 4  andlet A={(12),(13),(14)}. S im ilar to example 

1, to find Cay(F; A ) we m ultip ly each element in  S' 4 on the right by each element in  A. 

The Cayley graph is shown in  Figure 1 .C.

134
142 1342

1324124
132

123
1243 243

1432
1234

Figure l.C  The Cayley graph o f S' 4 where A= {(12),(13),(14)}
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Conjugacy Graphs

Now begins our discussion on the concept o f conjugacy graphs which was 

introduced and studied in  [3]. For a fin ite  group F, le tX he  a subset o f F where X~^ =X  

and I ^  X. The conjugacy graph Con(F; X) has vertex set F and two vertices g, h e T 

are adjacent i f  and only i f  there exists xe X  w ith  g=xhx~^. I f  X  generates F, then the 

components o f Con(F; X) partition the vertices into the conjugacy classes o f F. Recall 

that the conjugacy class for an element g e F and is defined as cl(g)= |xgx:'' : x e f |  and

is denoted cl(g). In general the components partition the vertices, or elements o f F, into 

“ conjugacy classes”  where we are only allowed to do conjugation by elements o f { X ) ,

the subgroup o f F generated by X. We provide the follow ing example to illustrate a 

conjugacy graph.

Example 1.4 Let F be the group and let Jf=|(12),(123),(132)}. To find Con(F; JSQ 

we perform the follow ing table o f calculations, where in  column I each element o f is 

conjugated by (12), in  column II each element o f 6 '̂  is conjugated by (123) and in

column II I each element o f S3  is conjugated by (132).

Column I 

(12)(I)(12)=(1) 

(12) ( 12)(12)=(12) 

(12)(13)(12)=(23) 

(12)(23)(12)=(I3) 

(12) (123)(12)=(132)

Column II

(123)(1)(132H 1)

(123X12)(132)=(13)

(123X13)(132)=(23)

(123)(23)(132)=(12)

(123)(123X132)=(123)

Column III 

(I32)(1X123)=(1) 

(132X12)(123)=(23) 

(132)(13X123)=(12) 

(I32X23)(123)=(13) 

(I32X123)(123)=(I23)
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(12)(132)(12H 123) (123)(132)(132H132) (132)(132)(123H132)

Since X  generates S 3 , we see that the conjugacy classes o f S 3  are {(1)} ,{(12), (13), (23)}

and {(123), (132)} and these sets partition the vertices o f the conjugacy graph into 

components, which can be seen in  Figure 1 .D.

(1)

O

(23)(13)

O ------------------------ O
(123) (132)

Figure l.D  The conjugacy graph o f S 3  whereX= {(12),(123),(132)}

Example 1.5 Let F be the group S4  and let X={(12),(13),(14)}. To find Con(S 4  ; JQ 

we perform calculations sim ilar to Example 1.4, each element o f S4  is conjugated by 

each element o f X. Again X  generates S4 . It is known that two permutations are in  the 

same conjugacy class i f  and only i f  they have the same cycle structure [11]. Therefore 

the conjugacy classes o f S4  are {(1)}, {(12),(13),(14),(23),(24),(34)}, {(12)(34),

(13)(24),(14)(23)}, {(123),(124),(132),(134),(142),(143),(234),(243)} and {(1234),

(1243),(1324),(1342),(1423),(1432)}. See Figure l.E  for Con(S 4  ; X).
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(1)
o

(14) (24)

(34)

(23)(13)

(12)(34)

(12)

(243) (1342) (1423)

(124

(143)

(142'

(234)

(1234)

(1432)

(1243) (1324)

Figure l.E  The conjugacy graph o f where X = {(12),(13),(14)}
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CHAPTER 2

CONJUGACY NUMBERS AND CONJUGACY GROUPS 

We move to the notion o f a conjugacy number, which was firs t introduced and 

studied in  [3]. Let Q be a group w ith  generating set A . The conjugacy number 

co n (Q ;A ) is defined as the minimum integer k>2  for which there exists a nonabelian 

group r  o f order A:|q| and a subset X  o f F such that C a y(Q ;A ) is isomorphic to a

component o f Con(F; X). Such a group F is called a conjugacy group fo r Q and A. 

For a better understanding o f where this conjugacy number comes from  we must provide 

the follow ing information, which is discussed in [3]. Let F be a group and let X  be a 

generating set such that X '’ = X  and let Q be a subgroup o f F. The le ft Schreier coset 

digraph S(T 10 ;X ) is the directed graph whose vertex set is the le ft cosets o f Q and 

there is a directed edge from  gQ to hO. i f  hQ=xgCi for x e X  . Proposition 1 from [3]

states that i f  G is a component o f the directed conjugacy graph Con(T; X ) and g is a

fixed vertex o f G then G is isomorphic to S '^ (X )/C ^^^(g );X j, where C^^^(g) is the

centralizer o f g in  ( X ) . The proof [3] o f Proposition 1 defines T  :

F (G )-> F (5 '|(X )/C ^^^ (g );X j) by 'P (zgz“')=zC^^^(g). To show that T  preserves

directed edges, two adjacent vertices in  G are considered. Let us call these vertices 

z,gz,~' and z^gz^'. Since these vertices are adjacent in  G there exists x e X  such that
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Z jgZ j'^x(z2gZ2̂ )x ‘ which can be written as '^ i 'z ,.

Hence ( z ^ ) g  = g(Z;'% "'z,) and it  follows that z^'x^'z, e C ,^)(g ). Since 

z“ 'x"'z, eC^^^(g) it follows that z,C^^^(g) = %z^C^^^(g). Therefore z,C^^^(g) is adjacent

to in

Let Q be a fin ite group and A be a generating set fo r Q w ith A“ ' = A . Now 

we consider i f  there exists a fin ite  group F w ith  a subset X  such that Cay(Q; A) is 

isomorphic to G where G is a component o f Con(F; X). By Proposition 1 o f [3] we

know that G s S '^ (X )/C ^^^(g );X j. For G to be isomorphic to Cay(Q; A) then the 

order o f G must equal the order o f Q. Since G s5 '^ (X )/C ^^^(g );X j we know that 

|G| = |(X )/C ^ ^ ^ (g ) |. Therefore |Q| = |(X )|/|c^^^(g) . Consider |F| which can be

written as |F |= |c ^ ^ ^ ( g ) | i or |F |= |c ^ ^ ^ (g ) |ji|Q |. Since is

just an integer we can call it  k. Hence |f| = ^|Q | fo r some positive integer k.

Furthermore we can say that k > 2  since the identity o f F is always an independent 

vertex o f Con(F; X). Now we consider an example.

Example 2.1 Let Q be w ith A = |x ,x ^ x ^ |. We w ill verify that con(C 4 ; A)=3 

and a conjugacy group for C4  and A is A^. First we show that con(C 4 ; A)?^2. For 

con( C4  ; A )=2 there must exist a nonabelian group F such that |f |  =2 |Q| = 8  where F 

has a conjugacy class o f order four. There are two nonabelian groups o f order eight.
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10

namely the dihedral group and the quaternion group Q. It w ill be shown later that 

Z> 4  has conjugacy classes o f order one and two. We consider Q w ith  presentation 

= 1 , 5  ̂ = t^,sts = and note that it  is not d ifficu lt to show that its center is 

[ 8 ]. Through straightforward calculations it can be shown that the conjugacy classes o f Q 

are and . Therefore there does not exist a F o f order eight

w ith a conjugacy class o f order four. Hence con( Q ; A );^2 .

Next we show that con(C^; A)=3. By the calculations o f Example 1.2 and

including m ultip lying Q  by on the right we get the Cay( Q  ; A ) as shown in Figure 

2.A.

2 3X X

Figure 2.A  The Cayley graph o f where A = |x ,x ^x ^ |

Let r  bevl^ w ith  2f={(12)(34),(13)(24),(14)(23)}. We conjugate each element o f /I  ̂

by each element o fX  We find that when conjugating by elements o f (X ) the elements 

o f ^  4  are partitioned into the follow ing “ conjugacy classes” : {( 1 ) } ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

{(12)(34),(13X24),(14)(23)}, {(123),(134),(142),(243)}and {(124),(132),(143),(234)}

The conjugacy class containing (123) gives the graph shown in Figure 2.B.

(142)

(123

(134)

Figure 2.B The component o f Con(v4^ ; X) containing cl((123))

Clearly C ay(Q ; A ) is isomorphic to a component o f Con( ; X ) therefore we can find 

co n (Q ;A ). Using |F|=A:|Q| where |T|=12 and |o | we get that Ap=3. Hence 

con( Q  ; A )=3 and a conjugacy group for Q  and A is A  ̂ .
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CHAPTER 3

CONJUGACY NUMBERS FOR CYCLIC GROUPS OF SM ALL EVEN ORDER 

We w ill calculate con (C „;A ) fo r small even n. We must firs t discuss the

follow ing results and observations. The firs t is w ell known and covered in  an elementary 

abstract algebra course. We include its proof fo r aid in understanding the concepts.

Proposition 3.1 Let a, b e G where G is a group. I f  then either cl(a)=cl(b) or 

c l(a )l c l(b )= 0 .

Proof. Assume that aW) and cl(a) 1 c l(b )^ 0 . Then there exists c e cl(a) and c 

e cl(b). Consider c/fa )= |xax” ' : % e G j . Since c e cl(a) there exists g e G such that

gag~^ =c. Since c e cl(b) there exists h € G such that hbh~^ =c. Let y  e c/(a). Then 

there exists t e. G such that t a t =y. Since a = g~  ̂hbh "* g we get y  = t g hbh gU ' = 

(tg'^ h)b(tg~^ h) Therefore y  e c/(6 ) and c/(a )çc/(è ). Let y  e cl(b). Then there exists

t e G such that tbt~^ =y. Since b = h~^gag~^h we get y  = th~^gag~^ ht~  ̂ = 

(th~^ g)a(th~^ g) Therefore y  e c/(a) and c/(b) çc /(a ). Hence

Next we present a useful result for the dihedral groups. For an integer n>3, define 

the dihedral group o f order 2n by the presentation D„ = (̂ x, y :x "  = y^ = 1, xyx = y ^ . Thus

the elements o f D„ are \,x,x^,...,x"^\y,xy,x^y,...,x"~^y.

12
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Proposition 3.2 The conjugacy classes o f Z)„ are { l} ,|x * ,x “* | for Af1,2,...,«-1 and 

when n is odd and the conjugacy classes o f are { l} , |x * ,x '* | for 

and |)(}',x^y,x^y,...,x""'y| when n is even.

Proof. Consider ( x ' y ) x * ( x ' y  ) * for 0 < / < n - l ,  0 < y <1 and 0 < ^ < « - l .  

Observe that

Therefore the conjugacy class containing x* is |x * , x~* |  for all Q > < k < n - \ .

Now consider ( x ' y  )x*y(x 'y^) for 0 < / < n - l ,  0 < / < l  and 0< A;< » - l . Observe 

that

=  0

For ^ 0  we get c /(y )= |x ^ 'y |0 < i< n - l |. For Af=1 we get

c/(xy)=|x^^"'V|0< 7  < n - l |  U |0< 7 < n - l j= |x ^ ^ '' 'y |- l<  7 <M- l j  .

Case 1. Let n be even. We claim that c/(y)I c/(xy)==0. Assume, to the contrary, that 

c/(y)I c l(xy )^  0 .  Let zec l(y )  and ZGcl(xy). For z&cl(y) we get z=x^'y for some i  

such that 0 < i < n - l .  For z e cl{xy) we get z=x for some 7 with -1 < 7 < » - l . Then

x^'y= x^^^'y orx^'"^^ '=1 or x̂ '̂~̂ “̂'= l. This implies that w |[2(f-7 ) -1 ] . This is clearly 

a contradiction since n is even. Therefore cl(y) I cl(xy)= 0 .
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Case 2. Let n be odd. We claim that cl(y)=cl(xy). We show that xyecl(y). Since 

gcd(n,2)=l, there exists an i ,  0 < i < n - \  such that 2 is  1  mod n. Thusx y = x y  andx^'y 

6  cl(y). Since ye  c/(y) then c/(y)=c/(:xy).

Hence the conjugacy classes o f when n is even w ill be

{ 1 } , jA: = 1 , 2 ,...,M- 1 , . . . , x""^yj  and |A y,x^y ,x^y ,...,x ""'y j and when 

n is odd the conjugacy class o f w ill be | l} , |x * ,x “*|A?=l,2 , . . . , « - 1  and

{y , xy, x^y, x^y, x*y, ...,x"'^y, x"“V } • ̂

n
We can say that the conjugacy classes o f where n is even w ill have orders 1, 2 and — 

and the conjugacy classes o f where n is odd w ill have orders 1 , 2  and n.

We now present a useful result fo r the cross product o f an abelian group w ith a 

nonabelian group.

Proposition 3.3 Let G be a nonabelian group and let H  be an abelian group. For (g,A) 

e G x ifw e g e t \cl{g,h)\ = \cl(g)\.

Proof. We show that cl(g,h)=cl(g) x {A }. Since H  is abelian observe that

(x,y)(g,h)(x'\y~^)=(xyx~^,h) for a ll y  e H. First let (x,y) e cl(gh). Then there exists 

(a,b) e G x H  such that (a,b)(g,h)(a,b)~^ =(x,y) but 

(a,b)(g,h)(a,b)~'^ =(a,b)(g,h)(a^\b^^)=(aga~\bhb~'^)=(aga~\h). Since aga~'" e cl(g) 

we see that (x,y) e cl(g) x {A }. Now let (x,y) e cl(g) x { / i} . Then x e cl(g) andy=Ai
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and there exists m  a e G such that aga^^ =x. Now (x,y)=(aga~\h)=(a,l)(g,h)(a,\)~^ 

and so (3c,yl e cl(g,h). Then cl(g,h)= cl(g) x { h ] .  Therefore \cl{g,h)\ = \c l{g )\.'^

Next we provide a useful result that was stated and proved in  [3]. We include the 

proof here for better understanding. We remind the reader that the conjugacy number 

con(Q ; A) is defined as the minimum integer k>2  fo r which there exists a nonabelian 

group F o f order A: I Q| and a subset % o f F such that Cay( Q ; A) is isomorphic to a 

component o f Con(F; X).

Proposition 3.4 Let n>6  be an even integer. Then con(Q  ; A )< 4  for every generating 

set A o f C„.

Proof. We must show that there exists a nonabelian group F o f order An and a subset X  

o f F for which Cay(Q; A) is isomorphic to a component o f Con(F; X). Let F be the 

group Ü2„ and let 1̂  € a | . Let G be the component o f Con( ; X) containing

y. We know from Proposition 3.2 that the vertices o f G are |0 < i<  n - l | . We must 

show that G is isomorphic to Cay( C„ ; A). Define a function T  : F(Cay( C„ ;A)) V(G) 

by Ÿ  (z)= x^'y . Suppose that i is adjacent to j  in Cay(C„; A). Therefore there exists 

k e  A such that j  = (/ + k) mod n . Since j  s  (/ + k) mod n we know 2 j = 2(i + k) mod 2n 

and x^^y = in A n - Consider x^^"^*^y= x*^^ '**y=x*x^'x*y=x*(x^ 'y)x * . Hence

x^^y = x*(x^'y)x"* and it follows that x^'y is adjacent to x^-'y in  G and Cay(C„; 

A) = G.  Note that |f |  = 4w = 4|Q |. Since the conjugacy number is defined as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

minimum integer k fo r which such a group F o f order A:|Q| exists, we can conclude that 

con(C„ ; A )< 4  for an even integer n > 6 .^

We now calculate con(C „;A ) fo r small even n. By Proposition 3.4 we know that 

con( C„ ; A ) < 4 for even n>6. In the follow ing results we consider con( C„ ; A ) fo r « = 6 , 8  

and 10. We begin w ith « = 6 .

Proposition 3.5 The conjugacy number con(Q ;A )=3  i f  and only i f  A = {2,3,4} or 

A = {1,2,4,5} or A = {1,2,3,4,5}.

Proof. Figure 3.A  shows three possible Cayley graphs for Q . I f  con(Cg; A)=2, 

then there is a nonabelian group F w ith |F|=12 and a subset X  o f F such that a 

component o f the conjugacy graph Con(F; X) is isomorphic to the Cayley graph Cay( ;

A). Note that F must contain a conjugacy class containing at least 6  elements. There 

are three nonabelian groups o f order 12, namely A 4 , A  and T, where T  is the 

semidirect product o f C, by C4  [5]. For T we use the presentation 

= 1 , 5  ̂=t^,sts = t^ [10]. Through straightforward calculations, we find that A 4

has conjugacy classes o f orders 1, 3 and 4. By Proposition 3.2 we know that A  has 

conjugacy classes o f orders 1, 2 and 3. We can also show that T has conjugacy classes 

o f orders 1, 2 and 3. Therefore we conclude that ( Q ; A)?«t 2. We now check nonabelian

groups o f order 18 to verify con( Q ; A)=3 for a given A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

Cay(Cg ; A ) w ith  A ={1,5}

0

C ay(Q  ; A ) w ith A ={1,3,5}

C ay(Q  ; A ) w ith A ={2 ,3 ,4}

Figure 3.A  Three possible Cayley graphs for Q

The nonabelian groups o f order 18 are D ,, S3  x C3  and the semidirect product o f C3  x Q  

and Q  [5]. We check these groups for conjugacy classes o f order at least 6 . By
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Proposition 3.2 we know that D, has conjugacy classes o f orders 1, 2 and 9 and the 

conjugacy class o f order 9 contains the elements \^y,xy,x^y,...,x^yj. It can be shown

through tedious calculation that when the elements o f cl(y) are conjugated by any x ‘ it 

produces a 9-cycle which clearly cannot give a Cayley graph on six vertices. In  addition 

it can be shown that when the elements o f cl(y) are conjugated by any x ‘y  the result is 

one independent vertex and four independent edges. Finally it can be shown that i f  the 

elements o f cl(y) are conjugated by any two x 'y  the result is a path on nine vertices and 

it  is again impossible to obtain a Cayley graph on six vertices. Therefore Dg is not a 

conjugacy group for Cg. Next we look at S', x C j. Since Cj is abelian we know by 

Proposition 3.3 that the orders o f the conjugacy classes o f w ill be the orders o f

the conjugacy classes found in . Since has order 6  and the identity is always in  its 

own conjugacy class then cannot have a conjugacy class o f order 6 . Therefore, by 

Proposition 3.3, S^xC^ cannot have a conjugacy class o f order 6 .

Finally we consider the semidirect product o f C^xC^ and C^. We use 

G =(x,y ,z  :x^ = y^ = = l,y z  = zy,yxy = x,zxz = x'̂  as our presentation for the

semidirect product o f C3 XC3  and C  ̂ [ 8 ]. Then G has the elements

l,x,y,y^,z,z^,xy,xy^,xz,xz^,yz,yz^,y^z, y^z^,xyz,xyz^,xy^z,xy^z^. It can be shown 

that the conjugacy classes o f G are { l} ,  [ y, y^^,  {z, , ^yz^,y^z^ and

\^x,xy,xy^,xz,xz^,xyz,xyz^,xy^z,xy^z^^^. Consider the cl(x) which has order 9. Let
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X=\^xz,y,y^'^. I f  cl(x) is conjugated by X  we obtain the fo llow ing graph, shown in 

Figure 3.B

xz

xy^z xyz

xz^

xy^z^xyz^

Figure 3.B Components o f Con(G; X) containing cl(x)

Clearly the component o f Con(G; X) containing cl(x), shown in Figure 3.B, has a 

component which is isomorphic to the Cayley graph C ay(Q  ; A), where A = {2 ,3 ,4 },

shown in Figure 3.A. For A = {1,2,4,5} and for A = {1,2,3,4,5} let X  = ^xz,y,y^,xyz^ 

and let X  = \^xz,y,y^,xyz,xy^z^, respectively, to obtain con(Cg; A)=3. Therefore the 

semidirect product o f Q  x Q  and Q  is the unique conjugacy group o f Q  and we can 

conclude that con(Q  ; A)=3 for A = {2,3 ,4}, A = {1,2,4,5} and A = {1,2,3,4,5}. There

are two remaining generating sets, namely {1,5} and {1,3,5}. It is not d ifficu lt to show 

that there is no subset X  o f G for which a component o f Con(G; X) is isomorphic to 

Cay(Cg ; A), where A= {1,5} or A= { l, 3,5}. U
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Proposition 3.6 The conjugacy number con(C g;A )-3 i f  and only i f  A = {1,2,6,?} or 

A = {1,3,5,7} or A = {2 ,3,5,6} or A = {l,2 ,4 ,6 ,7 } or A = {1,3,4,5,7} or 

A = {1,2,3,5,6,7} or A = {1,2,3,4,5,6,7}.

Proof. Figure 3.C shows three possible Cayley graphs for C ,.

Cay(Cg ; A ) w ith A = {1,7} or A = {3,5}

Cay(Cg ; A ) w ith A = {l,4 ,7 } or A = {3,4,5}

Cay(Cg ; A ) w ith A = {l,3 ,5 ,7 }

Figure 3.C Three possible Cayley graphs for Cg
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I f  con(Cg;A)=2, then there exists a nonabelian group F o f order 16 which 

contains a conjugacy class o f order at least 8  and a subset X  o f F such that a component 

o f the conjugacy graph Con(F; X ) is isomorphic to the Cayley graph Cay(Cg ; A). There 

are nine nonabelian groups o f order 16 [5]. We begin w ith Dg. We know that Dg has 

conjugacy classes o f order 1, 2 and 4. Therefore the conjugacy graph o f Dg does not 

contain a component which is isomorphic to a Cayley graph o f Q .

Next we consider D^ x Q  and g x  Notice that is an abelian group 

therefore D^ xC^ and g x  Cg w ill have conjugacy classes w ith  orders as found in  and 

Q, respectively. We know that has conjugacy classes o f orders 1 and 2. Therefore 

D4  X C j does not contain a conjugacy class o f order 8 . The quaternion group, Q has order 

8  and therefore it cannot contain a conjugacy class o f order 8 .

We now look at the quasihedral group o f order 16 w ith  presentation 

{s,t\s^ = \,s t = ts '̂  ̂ [ 8 ]. It can be shown through straightforward calculations that

the conjugacy classes o f this group are

and . Clearly there are no conjugacy classes o f order 8 .

Now we look at the modular group o f order 16 w ith presentation 

= \,s t = ts  ̂  ̂ [ 8 ]. It can be shown that the conjugacy classes o f this group are

and Therefore

there is no conjugacy class o f order 8 .
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Next we look at three o f the remaining four nonabelian groups o f order 16 w ith 

the presentations ^5 , 5 '' = /'* = 1 , ^ = t*  = \, stst = \,ts^ = and

(a,b,c-,a^ =b^ =c^ = \,cbca^b = \,bab = a,cac = a^ [ 8 ]. It can be shown that these 

groups only have conjugacy classes o f orders 1  and 2 .

Finally we look at the group w ith presentation = 1 , 5 "* = t^,sts = [ 8 ]. The

conjugacy classes o f this group are

j  and . Hence there are no conjugacy classes o f order 8 . We conclude that 

con(C g;A)?i2 .

Next we show that con( Cg ; A )=3 for a given A. To verify that con( Cg ; A )=3, we 

must show that there exists a nonabelian group o f order 24 w ith  a conjugacy class o f 

order at least 8  w ith  a component o f the conjugacy graph Con(T; X) isomorphic to the 

Cayley graph Cay( Cg ; A). There are 12 nonabelian groups o f order 24, we show that

works. The conjugacy classes o f ^ 4  are {(1)}, {(12),(13),(14),(23),(24),(34)}, 

{(12X34),(13X24),(14)(23)}, {(123),(124),(132),(134),(142),(143),(234),(243)}

and{(1234),(1243),(1324),(1342),(1423),(1432)}. We have a conjugacy class o f order 8 . 

We must verify that there does exist an X  which w ill give a component o f Con( ^ 4  ; X)

that is isomorphic to Cay(Q; A). Let X={(12)(34),(14)(23),(1234),(1432)}. The 

component o f the conjugacy graph, Con( ; X), containing the element (123) is shown in 

Figure 3.D.
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Clearly Con(5'^ ;X )  has a component which is isomorphic to the Cayley graph o f 

Cg where A = {l,3 ,5 ,7 } which is shown in Figure 3.C. Therefore con(Cg;A)=3 for 

A={1,3,5,7}. For A = {1,2,6,7} and A = {2,3,5,6} let % = {(24),(12X34),(1234), 

(1432)}. For A = {1,2,4,6 ,7 } and A={2,3,4,5,6 } let Z  = {(24),(12)(34),(13)(24),(1234), 

(1432)}. For A = {1,3,4,5,7} let X  = {(24),(13)(24),(1234),(1432)|. For A = 

{1,2,3,5,6,7} letX {(13),(24),(12)(34),(14X23),(1234),(1432)}. For A =  {1,2,3,4,5,6, 

7} letX={(13),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)}. Therefore we conclude 

that con(Cg ; A)=3 for the given A and a conjugacy group for Cg and for the given A is 

^ 4 . There are four remaining generating sets, namely A={1,7}, A={3,5}, A={ 1,4,7} and

A={3,4,5}. For these generating sets it  is not d ifficu lt to show that there does not exist a 

subset X  o f ^ 4  for which a component o f Con( S' 4 ; X) is isomorphic to Cay(Cg ; A). For

thoroughness we check the remaining 11 nonabelian groups o f order 24 and show that 

none o f these satisfy the required conditions [5].

( I j

(1 2 4 )y  I \ ( 1 4 3 )

(134) (142)

(234) (132)

Figure 3.D The component o f Con( . $ 4  ; X) containing cl((123))
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For the groups x Q  and S^'x.Cj'xC^, we observe that since Q  and x Q  are 

abelian we know by Proposition 3.3 that both groups w ill have the conjugacy classes as 

found in . Since S.̂  has order 6  a conjugacy class o f order 8  is impossible.

Now we look at x Q . Since Q  is abelian we consider the conjugacy classes

o f A^. We know has conjugacy classes o f orders 1, 3 and 4. Therefore .4, x Q  

cannot have a conjugacy class o f order 8 . Sim ilarly we know that T x Q  w ill have 

conjugacy classes o f orders 1, 2 and 3.

Next we consider x Q  and g x Q . Since Q  is abelian we look at and Q

which both have order 8  and therefore cannot contain a conjugacy class o f order 8 . The 

remaining five groups are found by taking the direct product o f any group o f order 8  and 

a group o f order 3 [3]. Since there are no nonabelian groups o f order 3 and any group o f 

order 8  w ill not have a conjugacy class o f order 8  we conclude that these groups w ill not 

give a conjugacy number o f three. Therefore we conclude that con(Cg;A)=3 w ith  the

given A and the unique F which gives con(Cg;A)=3 is the permutation group

Proposition 3.7 The conjugacy number con(C,g ; A)=4 for every generating set A.

Proof. To see that con(Ĉ q',A )^2 , we note that i f  con(C,g ; A)=2 then there exists 

a nonabelian group o f order 2 0  w ith a conjugacy class o f order 1 0  those graph is 

isomorphic to the Cayley graph o f C,g. There are three nonabelian groups to check [5].

We know that has conjugacy classes o f orders 1, 2 and 5. It can be shown that the 

semidirect product o f Q  and Q  has conjugacy classes o f orders 1, 2 and 5. F inally we
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consider the Frobenius o f order 20 w ith  presentation (^s,t '.s'̂  = t^ = \,ts  = [ 8 ]. It can

also be shown that the Frobenius group o f order 20 has conjugacy classes o f orders 1, 4 

and 5. Therefore con( Qg ; A ) 2.

Now we show that con(Cjo ; A)?t3. I f  con(Cjo ; A)=3, then there exists a 

nonabelian group o f order 30 w ith  a conjugacy class o f order 10. There are three 

nonabelian groups o f order 30 [5]. We know that D,; has conjugacy classes o f orders 1, 

2 and 15. Sim ilar to the conjugacy class o f order 9 o f Dg, we know that the conjugacy 

class o f order 15 o f D,; contains the elements . It can be shown

through tedious calculation that when the elements o f cl(y) are conjugated by any x' it  

produces a 15-cycle which clearly cannot give a Cayley graph on ten vertices. In  

addition it  can be shown that when the elements o f cl(y) are conjugated by any x 'y  the 

result is one independent vertex and seven independent edges. F inally it  can be shown 

that i f  the elements o f cl(y) are conjugated by any two x 'y  the result is a path on 15 

vertices and is again impossible to obtain a Cayley graph on ten vertices. Therefore D,; 

is not a conjugacy group for Ĉ Q. Then we check x Q  and D ^x Q . The group 

D gxQ  w ill have conjugacy classes as found in  and x Q  w ill have conjugacy 

classes as found in  D^, neither o f which contains a conjugacy class o f order 1 0 . 

Therefore con( C,q ; A ) 3, and by Proposition 3.4 we can conclude that con( Qq ; A )=4. U
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CHAPTER 4

GROUPS THAT CANNOT BE CONJUGACY GROUPS FOR CYCLIC GROUPS OF

EVEN ORDER

Now we eliminate certain groups o f order 4n as possible conjugacy groups for 

. The follow ing results w ill show that the dihedral group , any group o f order 4n

which is a cross product o f an abelian group w ith a nonabelian group, the symmetric 

group o f order An as w ell as the alternating groups o f order An are not conjugacy groups 

for Cj„.  We begin w ith  the dihedral groups, D^„.

Proposition 4.1 Let F be the dihedral group, , n>  3 w ith  generating setX and let 

Q be the group w ith generating set A. Then Con( ; X) does not contain a 

component which is isomorphic to Cay(C 2 „ ; A).

Proof. Assume, to the contrary, that Con( ; X) does contain a component 

which is isomorphic to Cay(C 2 „ ; A). Then con(C 2 „ ; A)=2 and D 2 „ contains a conjugacy 

class o f order 2n. This is a contradiction since has conjugacy classes o f order 1,2 

and n. Hence Con(D 2 „ ;  X) does not contain a component which is isomorphic to 

Cay(C2,;A).\^

26
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Furthermore we can conclude that is not a conjugacy group for C j„ which w ill

give a conjugacy number o f two. Now we consider groups that are the cross product o f 

an abelian and nonabelian group. We present the follow ing result.

Proposition 4.2 Let « > 3 be an integer. Let F be a group o f order An such that F is 

isomorphic to G xH , where G is a nonabelian group and 77 is a nontrivial abelian group. 

Then F is not a conjugacy group for ,.

Proof. Assume, to the contrary, that F is a conjugacy group for Q ,,. Then the

conjugacy number o f 0%, is two and F contains a conjugacy class o f order at least 2n.

By Proposition 3.3 we know that F w ill have the conjugacy classes o f orders as those

found in  G. Since |G| = - j ^ , the largest |G| can be occurs when |77| =2, and here we get

|G| = =2«. This is a contradiction since i f  |G| = 2 « , it is impossible for G and hence

for F, to contain a conjugacy class o f order at least 2n. Thus F is not a conjugacy group 

for

Next we w ill discuss the symmetric groups o f order An but we must firs t provide 

the follow ing result from  [11]. Let ;r be a permutation o f S^. A  cycle containing A: 

elements is called a k-cycle. The cycle type o f n  is an expression o f the form  

(l" ‘ , 2 " ' }  where is the number o f cycles o f length A: in  n . We know that fo r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

Id
any group G, where g eG  and = ^ h e G :  hgh~  ̂= g | , that |c/(g)| = J—r . Now let

G = S^. Proposition 1.1.1 o f [6 ] says that i f  m = f\+2n2+ ... + mn^ and then

\Zj\ depends only on and \Z^ = Ÿ^n,}.T'^ng_\...m"'"nJ.. The proof is

straightforward. It states that any h & Z „  can either permute the cycles o f length i among 

themselves in  p  ! ways or perform a cyclic rotation on each o f the individual cycles in P

Ig I
ways. Now the equation \cl{n)\ = t”  , can be specialized for the symmetric group to

|c/(;r)| = --------- —^ ------------ [7], [91. The follow ing proposition shows that a conjugacy

number o f two cannot be obtained by considering the symmetric group o f order An as a 

possible conjugacy group for .

Proposition 4.3 The symmetric group, w>3, o f order 4» is not a conjugacy group for

Proof. Assume, to the contrary, that is a conjugacy group for C2 „ . Then 

contains a conjugacy class o f order at least 2n. We know that |5'„| = 4« and

\C^„\ = 2 n . Since m\ = An we get that ^  w ! = 2« or = ^ m \ .  It can be shown that 

the (w -l)-cycles form the conjugacy class o f largest order. We know that

(«.-D -cycks, we get
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the conjugacy class containing the (w -l)-cycles is {m-2)\m. Now, we know m>3 so 

m -l>2

^ ( m - l) > l

“  ( WÎ -  l)(m  -  2) ! w >(m-2) ! m 

^m\>(m-2)\m

This is a contradiction. The largest conjugacy class is too small to give the Cayley graph 

for C2„. Since -;^m\>{m-2)\m, cannot contain a conjugacy class o f order at least

~m\ .  ^
2

Finally we consider the alternating group , o f order An. It w ill be shown that a 

conjugacy number o f two cannot be obtained by considering the alternating group o f 

order An as a possible conjugacy group for For m<3, 4» cannot have order 4« 

and we can easily verify that 4  and 4  do not work. We consider m>5.

Proposition 4.4 Let m>5 be an integer. The alternating group 4  ° f order 4« is not a 

conjugacy group for .
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Proof. We know that | 4 l  = 4 n = i» î! and |C2 „| = 2« = -^« 7 !. For 4  to be a

conjugacy group for C2„ , 4  oiust contain a conjugacy class o f order at least 2n. We 

know that the orders o f the conjugacy classes o f 4  w ill be less than or equal to the 

orders o f the conjugacy classes as found in  4  • Since the conjugacy classe o f largest 

order in  4  is the conjugacy class containing the (m -l)-cycles, we must show that the 

order o f the (w -l)-cycles is less than the order o f C j„. We know that the order o f the 

conjugacy class containing the (w -l)-cycles is (m-2)! w in  4 -  We know w>5 

so w -l>4

(w-2) ! (w -1 )w>(w-2) ! 4 w 

^m\>(m-2)\m.

Hence it is impossible for 4  Ic contain a conjugacy class o f order greater than or equal 

to the order o f C2„ and 4  w ith order 4n is not a conjugacy group fo r C2 „ . W
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CHAPTER 5

CONCLUDING REMARKS AND OPEN QUESTIONS 

The in itia l research on conjugacy graphs and conjugacy numbers was done in  [2]. 

The primary motivation o f [2] was the problem o f determining which Cayley graphs can 

be realized as conjugacy graphs. Our research here began by studying cyclic groups o f 

small even order to find any emerging patterns w ith what we defined as possible 

conjugacy groups. As we tested a ll appropriate possible conjugacy groups for these 

cyclic groups we noticed that we never found a group which gave a conjugacy number o f 

two. This led us to believe that Proposition 3.4 which was in itia lly  proved in  [2] could 

eventually be modified to eliminate two as a possible conjugacy number, leaving three 

and four as the only possible conjugacy number for cyclic groups o f even order. This is 

le ft as an open question since there are s till classifications o f groups to be eliminated. 

Here we have eliminated the dihedral group , any group which is a cross product o f 

an abelian group w ith a nonabelian group, the symmetric group as w ell as the alternating 

groups, a ll o f order An, as possible conjugacy groups for .

Continued research could discover the pattern for which conjugacy groups gives a 

conjugacy number o f three versus a conjugacy number o f four for cyclic groups o f even 

order. Here we only considered conjugacy graphs and conjugacy numbers fo r cyclic 

groups o f even order. There is s till plenty o f information awaiting discovery.

31
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