
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2013

An Online Algorithm for the 2-Server Problem On The Line with An Online Algorithm for the 2-Server Problem On The Line with

Improved Competitiveness Improved Competitiveness

Lucas Adam Bang
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Digital Communications and Networking Commons, and the OS and Networks Commons

Repository Citation Repository Citation
Bang, Lucas Adam, "An Online Algorithm for the 2-Server Problem On The Line with Improved
Competitiveness" (2013). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1801.
http://dx.doi.org/10.34917/4478195

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/4478195
mailto:digitalscholarship@unlv.edu

AN ONLINE ALGORITHM FOR THE 2–SERVER PROBLEM

ON THE LINE WITH IMPROVED COMPETITIVENESS

by

Lucas Bang

Bachelor of Science (B.Sc.) Mathematics

University of Nevada, Las Vegas

2010

Bachelor of Science (B.A.) Computer Science

University of Nevada, Las Vegas

2010

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science Degree in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2013

c© Lucas Bang, 2013

All Rights Reserved

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Lucas Bang

entitled

An Online Algorithm for the 2-Server Problem on the Line with Improved
Competitiveness

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Lawrence Larmore, Ph.D., Committee Chair

Wolfgang Bein, Ph.D., Committee Member

Jan Pedersen, Ph.D., Committee Member

Ebrahim Salehi, Ph.D., Graduate College Representative

Thomas Piechota, Ph.D., Interim Vice President for Research &
Dean of the Graduate College

May 2013

ii

Abstract

In this thesis we present a randomized online algorithm for the 2-server problem on the line, named

R–LINE (for Randomized Line). This algorithm achieves the lowest competitive ratio of any known

randomized algorithm for the 2-server problem on the line. The competitiveness of R–LINE is less

than 1.901. This result provides a significant improvement over the previous known competitiveness

of 155
78 ≈ 1.987, by Bartal, Chrobak, and Larmore, which was the first randomized algorithm for the 2-

server problem one the line with competitiveness less than 2. Taking inspiration from this algorithm,

we improve this result by utilizing ideas from T-theory, game theory, and linear programming.

iii

Acknowledgements

I would first like to thank the members of my committee for their time and effort in reviewing this

thesis and their important contributions to my education. Matt Pedersen has taught me a great

deal about the art of writing computer programs. I am also grateful for Wolfgang Bein’s guidance

and many useful recommendations during the writing process. In addition, Ebrahim Salehi’s courses

helped provide me with a firm mathematical foundation for computer science theory. I would like to

sincerely thank my advisor and committee chair, Lawrence Larmore, for his mentorship. Professor

Larmore’s infectious enthusiasm for theoretical computer science and mathematics has been an

source of constant inspiration and motivation over the course of my education.

There are several other people who have played an important role in the completion of my

graduate degree. Ajoy Datta in particular taught me what it really means to work tenaciously

toward a goal. And finally, the support and encouragement of my close friends, Gabriel Allred,

Michael Lwin, Amy Nakatani, and Amanda Rida have been an invaluable asset.

Lucas Bang

University of Nevada, Las Vegas

May 2013

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures vii

Chapter 1 Introduction 1

1.1 Optimization and Online Algorithms . 1

1.2 Competitive Analysis . 3

1.3 Adversary Models in Competitive Analysis . 4

1.4 Results From Game Theory . 4

1.5 The k-Server Problem . 6

1.5.1 Detailed Definitions . 6

1.5.2 Adversary Servers . 6

1.5.3 Related Problems and Applications . 8

1.5.4 Previous Results . 9

1.6 The Contribution of This Master’s Thesis Research. 9

Chapter 2 Important Aspects of the Server Problem 11

2.1 The Greedy Algorithm Is Not Competitive . 11

2.2 The Potential Function Method For Proving Competitiveness 12

2.3 The RANDOM–SLACK Algorithm . 13

2.3.1 Competitiveness of RANDOM–SLACK . 14

2.4 The (kn, n)-Server Problem . 20

v

Chapter 3 The Algorithm R–LINE 25

3.1 Preliminaries . 25

3.2 The Potential . 26

3.3 Algorithm Description . 27

3.4 Proof of Competitiveness . 34

3.5 Simplifying the Inequalities . 36

3.6 A Differential Difference Equation . 37

3.7 Approximating the Differential Equation Numerically 38

3.8 Future work . 43

Appendix A Differential Equation Approximation Code Listing 44

Bibliography 46

Vita 48

List of Figures

1.1 Sample execution of a 4-server algorithm. 7

2.1 The greedy algorithm is not competitive. 11

2.2 A single move by RANDOM–SLACK . 14

2.3 Minimal matchings. 14

2.4 An adversary move in analysis of the RANDOM–SLACK algorithm. 16

2.5 An example of Case 1 from the proof of Theorem 2.3.1. 17

2.6 An example of Case 2 from the proof of Theorem 2.3.1. 19

2.7 A sample execution of a (4, 2)-server algorithm. 21

2.8 An example for the proof of Theorem 2.4.1 for the (8, 4)-server problem. 22

3.1 Isolation indices on the line for the (6, 3)-server problem. 27

3.2 An example of a satisfying configuration (an S-configuration) for the (6, 3) case. . . . 28

3.3 An example of a deterministic move (a D-configuration) for the (6, 3) case. 29

3.4 A second example of a deterministic move (a D-configuration) for the (6, 3) case. . . 30

3.5 An example of a randomized move (an R-configuration) for the (6, 3) case. 31

3.6 Possible executions of R–LINE. 32

3.7 A state transition diagram for R–LINE. 32

3.8 Differential equation approximations. 40

3.9 Competitiveness vs. discretization size. 41

vii

Chapter 1

Introduction

This first chapter provides an introduction to the important concepts of online computation including

optimization problems, online algorithms, competitive analysis, potential functions, and adversary

models. We also give an introduction to the k-server problem along with some related applications

and a simple example to aid the reader in forming a basic understanding of the problem.

1.1 Optimization and Online Algorithms

The design and analysis of algorithms is often concerned with optimization. Typically one hopes to

produce an algorithm that minimizes some measure of algorithm performance. For instance, the goal

of an algorithm designer is usually to minimize the amount of time required to solve a given problem.

Under different circumstances we are more interested in minimizing the amount of memory used by

the algorithm. In addition, there are problems that require the algorithm to output a solution that

minimizes some cost function over feasible solutions – job scheduling and network routing are two

such classes of problems. The theory of online algorithms focuses on providing methods for solving

optimization problems when the input is provided one piece at a time.

As we will soon see, we can measure the performance of an online algorithm by comparing it

to a hypothetical optimal algorithm. Before we discuss online algorithms it is useful to have a

basic understanding of the notation and vocabulary of optimization problems. (Please note that

while some problems are phrased as maximization problems, they can often be transformed into

equivalent minimization problems. Therefore in these definitions and in the remainder of this work

we will restrict our attention to minimization problems.) We make use of the following definitions

and notation conventions [BEY98].

Definition 1 An optimization problem, denoted P, for cost minimization begins with a set I

1

of possible inputs. For every input I ∈ I there is a set of feasible outputs F (I). For every output

O ∈ F (I) we associate a positive real number C(I,O) which defines the cost of the output O on

input I.

Definition 2 An algorithm ALG for optimization problem P is such that for any input I, ALG

computes a feasible solution ALG[I] ∈ F (I).

Definition 3 The cost of the output of ALG on input I is denoted ALG(I) and is given by

ALG(I) = C(I, ALG[I]).

Definition 4 An optimal algorithm, which we refer to as OPT , for an optimization problem P

is such that for all inputs I,

OPT (I) = min
O∈F (I)

C(I,O).

Traditional algorithm analysis takes place within an offline setting where all of the information

necessary to compute a feasible solution is available when an algorithm begins to execute. The typical

computer science student is familiar with a variety of optimization problems that are posed in the

offline setting: the traveling salesman problem, minimum graph cut, and integer linear programming

to name just a few.

In contrast, an online algorithm for an optimization problem must process input and produce

outputs one piece at a time. The study of online algorithms is useful because many commonly

encountered problems are inherently online – financial investing and route planning are two such

problems. The difficulty in producing an online algorithm is that such an algorithm is required to

make immediate decisions that might effect its overall performance, without knowledge of any future

information.

One famous online problem is that of cache page eviction, where we must develop a protocol

for moving pages between fast cache memory and slower main memory without knowledge of which

pages might be needed in the near future. There is no cost when a memory page that is already

stored in the cache is requested. On the other hand, a requested page that is not in the cache must

be fetched from main memory. In addition, if the cache is full, we must evict a page to make room for

the new page, also taking some large amount of time. We would like an algorithm for this problem

that minimizes the number of page faults. One can imagine that analyzing the performance of such

a paging protocol might be difficult, as it depends on the order of the page requests. Fortunately,

the field of competitive analysis provides useful tools for dealing with this type of uncertainty. The

following two sections describe this idea in general.

2

1.2 Competitive Analysis

As described in the previous section, we would like a formal way to analyze the performance of an

online algorithm. Given an optimization problem, we will measure the performance of an online

algorithm by comparing its cost with that of an optimal algorithm. At this point, one might wonder

how we can reason about the cost an optimal algorithm for an online problem, for if we knew the

optimal algorithm we could simply use it. For now we will hypothesize an optimal offline algorithm

OPT, as in Definition 4, for a given online problem and explain how to model OPT as an adversary

in the following section.

The performance of an online algorithm can be measure by its competitive ratio. Let I =

I1, I2, I3 . . . , In be a sequence of inputs to an online algorithm ALG and let OPT be an optimal

offline algorithm that accepts I as input.

Definition 5 We say that ALG is c-competitive if for any input sequence I there is a constant b

such that

ALG(I) ≤ c ·OPT (I) + b.

If ALG is c-competitive we sometimes say that ALG has a competitive ratio of c. Intuitively,

this means that the cost to the online algorithm ALG is no more than a constant factor of c

times larger than the cost to a hypothetical optimal offline algorithm up to an additive constant,

independent of the input sequence.

A common tactic in the design and analysis of algorithms is to make use of randomization in

order to improve performance. A well known example of this principle is the randomized choice of

the pivot element in the quicksort algorithm. In the deterministic quicksort algorithm, it is possible

to generate an input set that causes quicksort to make Ω(n2) comparisons. Using randomization,

quicksort makes O(n log n) comparisons on average. We could imagine a malicious adversary whose

goal is to cause the quicksort algorithm to behave poorly. Randomized choices prevent such an

adversary from constructing an input set that guarantees a worst case running time.

We can extend the use of randomization to the analysis of online algorithms. For a random

variable X, let E[X] denote the expected value of X.

Definition 6 We say that randomized online algorithm ALG is c-competitive if for any input

sequence I there is a constant b such that

E[ALG(I)] ≤ c ·OPT (I) + b.

3

In both the randomized and deterministic settings we wish to design an algorithm that minimizes

the competitive ratio c. This provides us with a guarantee on the performance of our online algorithm

in comparison with an optimal algorithm.

1.3 Adversary Models in Competitive Analysis

There are a few subtly different ways to theorize about an optimal algorithm, OPT. One might think

of this optimal algorithm as one which is able to perfectly predict future inputs. One might also

think of the optimal algorithm as one that is allowed to look at the entire input before computing

its outputs – an offline optimal algorithm. In this work we will use the idea of an adversary to talk

concretely about the optimal algorithm.

As is common in computer science and the analysis of optimization problems, we will imagine

that our input is generated by a malicious adversary who knows the details of the online algorithm.

The adversary attempts to generate inputs that cause our algorithm to perform poorly. For example,

one possible algorithm for the paging problem is to evict the least recently used (LRU) page. An

adversary for this problem might then choose to request every page that was evicted during the

previous step, knowing that such a sequence of requests causes the LRU algorithm to spend time

fetching pages from slow memory at every step.

In general, we will suppose that the adversary creates the input sequence in such a way that

maximizes the competitive ratio. The adversary is therefore attempting to make the cost to the

online algorithm high while simultaneously making the cost to a hypothetical optimal algorithm

low. In this way we are competing with the adversary, hence the phrase “competitive ratio”. We

often think of this interaction as a game between the online algorithm and the adversary in which

the players alternate making moves; the adversary generates an input Ii and the online algorithm

must generate a corresponding output Oi before Ii+1 is revealed. In fact, this outlook allows us to

use ideas from two-person zero-sum game theory when analyzing the behavior of online algorithms.

1.4 Results From Game Theory

Here we present a few useful concepts from two-person zero-sum game theory that will help us in

proving the competitiveness of our algorithm R–Line in Chapter 3. We make use of a standard game

theory definitions and results taken from [Bar08].

Definition 7 A two-person zero-sum game is represented by a matrix A, where rows represent

the strategies of the “row player” and columns represent the strategies of the “column player”. The

payoff when the row player uses strategy i and the column player uses strategy j is given by the entry

4

ai,j. The row player seeks to maximize the payoff while the column player seeks to minimize the

payoff.

Definition 8 A saddle point of a zero-sum game is defined to be an entry ai,j of the payoff matrix

that is both a maximum of its row and a minimum of its column.

Theorem 1.4.1 If a game has a saddle point ai,j, then the value the game is the value of the saddle

point, and it is optimum for the row player to always play the ith row, and for the column player to

always play the jth column.

Often we can rule out a strategy in a game by using the concept of dominance. Intuitively, a

row (column) is dominated when there exists a row (column) that is always a better choice. We can

then simplify the game by ruling out dominated strategies.

Definition 9 We say that a row strategy i is strictly dominated if there exists a row strategy

i′ such that ai,j < ai′,j for all column strategies j. Similarly, a column strategy j is strictly

dominated if there exists a column strategy j′ such that ai,j < ai,j′ for all row strategies i.

Theorem 1.4.2 If A =

 a11 a12

a21 a22

 is the payoff matrix for a two-person zero-sum game G, and

there is no saddle point. Then

v(G) =
detA

a11 − a12 − a21 + a22

Furthermore, the optimum strategy for the row player is:

Play row 1 with probability a22−a21
a11−a12−a21+a22

Play row 2 with probability a11−a12
a11−a12−a21+a22

While the optimum strategy for the column player is:

Play column 1 with probability a22−a12
a11−a12−a21+a22

Play column 2 with probability a11−a21
a11−a12−a21+a22

Later we will see that we can use this theorem to select a strategy to compete against our

adversary for the server problem, which we can now describe in detail.

5

1.5 The k-Server Problem

The server problem was first proposed by Manasse, McGeoch and Sleator [MMS90] and the problem

has been widely studied since then. We first provide formal definitions and follow with a simple

example. We then briefly discuss related problems and previous results regarding the competitiveness

of the server problem.

1.5.1 Detailed Definitions

In order to define the k-server problem, we will remind the reader of the definition of a metric space.

Definition 10 A metric space M is a pair (S, d) where S is a set of points and d : S × S → R is

a distance function that satisfies the following four conditions for every x, y, z ∈ S.

1. If x 6= y, then d(x, y) > 0.

2. d(x, x) = 0.

3. d(x, y) = d(y, x)

4. d(x, y) + d(y, z) ≥ d(x, z)

We now formally define the k-server problem using the traditional notation and language [BEY98].

Let k > 1 be an an integer and let M = (S, d) be a metric space where |S| > k and d the metric

over S. An algorithm for the k-server problem controls the motion of k server, s1, s2, . . . , sk, that

are able to move about in S. The algorithm receives a sequence of requests σ = r1, r2, . . . , rn where

each ri ∈ S. We say that a request r is served when at least one server s is located at r. The

algorithm must satisfy each request in a sequential online fashion by moving its servers. For any

request sequence σ and k-server algorithm ALG, the cost of service ALG(σ) is defined to be the

total distance moved by all servers, as measured by the metric d.

Definition 11 The k-server problem is to provide an online algorithm for the movement of

servers that makes the competitive ratio as small as possible.

For an example of the 4-server problem, see Figure 1.1.

1.5.2 Adversary Servers

We will conduct our analysis of server problems by supposing that we are in competition with an

adversary. Therefore we shall introduce the following notation. Our online algorithm coordinates

the motion of k servers which we number s1, s2, . . . , sk. We then suppose that the adversary is in

control of k adversary servers, which we denote by a1, a2, . . . , ak.

6

s

s
s

s

(a)

s

s
s

s

r1

(b)

s

s
s

s

r1

d1

(c)

s

s

s

s

r1

(d)

s

s

s

s
r2

d2

(e)

s

s

s

s

r3

d3

(f)

s

s

s

s

r4

d4

(g)

s

s

s

s

(h)

s

s

s

s

d1

d2 d3

d4

(i)

Figure 1.1: Sample execution of a 4-server algorithm. (a) There are 4 servers in initial positions.
(b) The first request r1 is made. (c) The indicated server will movie a distance of d1 to serve the
request. (d) The first request is served. (e) A server moves a distance of d2 to serve the second
request r2. (f) A server moves a distance of d3 to serve the third request r3. (g) A server moves a
distance of d4 to serve the fourth request r4. (h) The request sequence ends. (i) For the sequence
σ = r1, r2, r3, r4 the cost to the algorithm is given by ALG(σ) = d1 + d2 + d3 + d4.

7

1.5.3 Related Problems and Applications

The k-server problem is related to several other important optimization problems. Here we will

discuss three particular applications of the k-server problem.

Paging

As mentioned previously, the paging problem is a famous online optimization problem. Recall that

in the paging problem we are faced with the problem of developing a protocol for evicting pages

from fast cache memory whenever a page fault occurs. We can model this problem as an instance of

the k-server problem where the size ofM is the number of memory pages and the distance between

any pair of distinct points is equal to 1. The k servers represent the k memory locations in the

cache. This means that we consider a request to be served with a cost of 0 when the requested page

is already in the cache, but the cost is 1 when a page fault occurs, in which case we evict a page

from the cache and move the requested page from slow memory to the cache.

The k-Headed Disk Access Problem

Imagine a hard disk with k read/write heads. In order to access data on the disk, one head must

move along the radius of the disk to the requested storage location. By coordinating the motion of

multiple heads we improve overall access time compared to the time required by a single head. The

performance of an algorithm for this problem can be measured as the total distance moved by the

k heads. In this case, the metric space is the line segment representing the radius of the disk.

Emergency Vehicle Response

As a very direct application of the k-server problem, let us consider the example of police patrol

vehicles that must respond to crimes in the city of Manhattan, New York. However, because crimes

occur at unpredictable locations at unpredictable times, deciding which patrol car to dispatch is an

inherently online problem. Richard C. Larson investigated this problem in 1972 before the theory

of online algorithms had been formalized [Lar72]. In the language of the server problem, the police

cars are our servers, the crimes are the request points, the movement cost is the driving distance to

the crime, and the metric space is Manhattan Island (which lends its name to the Manhattan metric

space).

In his analysis, Larson begins with a simple case in which there are only two patrol cars. He

also simplifies his analysis by assuming that the crimes are committed uniformly at random within

the patrol sector of the two cars. While Larson’s treatment is interesting, we shall take a different,

8

more pessimistic approach. We assume that the crimes are committed by a coordinated team of two

criminals who are dedicated to causing our dispatching algorithm to behave poorly. In the terms of

online analysis, this outlook represents our assumption that we are in competition with a malevolent

adversary. The criminals represent the adversary servers, and the optimal cost is the total distance

moved by the two criminals. Thought of this way, Larson’s problem can be modeled as a 2-server

problem in the L1 metric space over the real plane R2, commonly referred to at the Manhattan

metric space. Recall that in the L1 space, the distance between two points x and y is given by

d(x, y) =
∑n
i=1 |xi − yi|.

1.5.4 Previous Results

The server problem was first proposed by Manasse, McGeoch and Sleator [MMS90] and the problem

has been widely studied since then. They also introduced the now well-known k-server conjecture,

which states that, for each k, there exists an online algorithm for k servers which is k-competitive for

any metric space. The conjecture was immediately proved true by the same researchers for k = 2,

but for larger k, the conjecture remains open, although it has been proved for a number of special

classes of metric spaces, such as trees [CL91], spaces with at most k + 2 points [KP94], and the

Manhattan plane for k = 3 [BCL02].

In the randomized case, little is known. Bartal et al. [BBM01] have an asymptotic lower bound,

namely that the competitiveness of any randomized online algorithm for an arbitrary metric space

is Ω(log k/ log2 log k). It is conjectured that there is an O(log k) competitive algorithm for general

metric spaces. A recent breakthrough is the algorithm by Bartal et al. [BBMN11], which gives a

poly-logarithmic competitive algorithm for finite metric spaces.

Surprisingly, no randomized competitive algorithm for the 2-server problem for general spaces is

known to have competitiveness less than 2, although that barrier has been broken for a number of

classes of spaces. The competitiveness is known to be 3
2 for uniform spaces, and Bein et al. [BIK08]

have shown that there is a randomized algorithm with competitive ratio of at most 1.5897 for all

3-point spaces. Bein et al. [BIK+11] have recently given a “better than 2” competitive algorithm

for crosspolytope spaces using knowledge states [BLNR11]. A lower bound of 1 + e−1/2 ≈ 1.606 has

been shown [CLLR97].

1.6 The Contribution of This Master’s Thesis Research.

Define the (m,n)-server problem, for m > n, to be the variation where there are m mobile servers

in the metric space, and each request must be served by at least n of them. We give a detailed

9

description of this idea in Section 2.4. For the 2-server problem on the line, Bartal et al. give a

randomized online algorithm for the 2-server problem on the line, with competitive ratio 155
78 ≈ 1.987

[BCL98]; their method is to define a deterministic online algorithm for the (6, 3)-server problem with

that competitiveness, from which three deterministic online algorithms are defined. The randomized

algorithm is simply to pick one of those three at random, each with probability 1
3 , and then use the

chosen algorithm for the entire request sequence.

In this thesis, we generalize this concept and give a randomized online algorithm for the (2n, n)-

server problem on the line, for every n ≥ 3. This then can be thought of as n randomized 2-server

algorithms. By Theorems 2.4.1 and 2.4.3, we obtain a randomized algorithm for the 2-server problem

on the line. As n increases, the competitiveness of our algorithm decreases, and the limiting value

is less than 1.901. This represents a significant improvement over the previous result of 155
78 ≈ 1.987

[BCL98]. The competitiveness of this algorithm is proved using tools from T-theory, game theory,

linear programming, and numeric solutions to differential equations.

10

Chapter 2

Important Aspects of the Server

Problem

In this chapter we discuss some aspects of the server problem that will be relevant in later discussions.

We start by demonstrating that a simple greedy algorithm is not competitive. Next, we discuss the

RANDOM–SLACK algorithm and prove that it is 2-competitive. The RANDOM–SLACK algorithm

is useful in understanding the operation of a randomized server algorithm. Lastly, we describe the

(kn, n)-server problem, a generalization of the k-server problem and we prove three useful theorems.

2.1 The Greedy Algorithm Is Not Competitive

When presented with the server problem for the first time, one typically considers the greedy al-

gorithm as a possible solution: serve the current request by moving the server that is closest to

the request point. We can easily demonstrate that this algorithm is not competitive. Consider

the 2-server problem for a three point metric space on three points p, q, and r (Figure 2.1) where

d(p, r) = d(p, q) + d(q, r) and d(p, q) < d(q, r).

p q r

Figure 2.1: The greedy algorithm is not competitive. In the 3-point metric space shown, the greedy
algorithm does not have a bounded competitive ratio.

Now suppose the adversary creates a request sequence σ = r, p, q, p, q, p, q . . ., continuing to

alternate between requesting p and q after a first request of r. A greedy algorithm ALG will first

11

position one of its two servers at r. Then all future requests will be served by the same server moving

back and forth between p and q. Suppose that the adversary generates a total of n requests. Then

ALG(σ) ≥ d(q, r) + (n− 1) · d(p, q). On the other hand, an optimal algorithm OPT will satisfy this

request sequence by moving the server from r to p or q after the first request is served. Then it

is easy to see that OPT (σ) ≤ d(p, q) + 2 · d(q, r). As n can be made arbitrarily large, ALG(I) is

unbounded. Hence, there are no constants c and b such that ALG(I) ≤ c ·OPT (I) + b, and so the

greedy algorithm is not competitive.

2.2 The Potential Function Method For Proving Competitiveness

In order to prove the competitiveness of an online algorithm, we often employ the use of a potential

function. The potential function method works for a variety of online problems, and we will make

heavy use of it when analyzing server problems in this work. The potential function depends on the

states of the online algorithm and the optimal algorithm.

Definition 12 Given an optimization problem P let SALG and SOPT be the sets of possible states

of an online algorithm ALG and an optimal offline algorithm OPT for P, respectively. A potential

function φ is a mapping from all possible algorithm states to the real numbers:

φ : SALG × SOPT → R

In general, the state of an algorithm depends on the type of problem at hand and we do not give

a general definition here. Intuitively, the state of an optimization algorithm is a representation of

its knowledge of past requests, past decisions, and currently available information. In the case of

server problems, the state of an algorithm is simply the known location of each server.

Now, recall that the algorithms operate on a sequence of inputs I = I1, I2, . . . , In. We will define

φi to be the value of the potential function immediately following the processing of Ii. Further,

we let φ0 be the initial value of the potential, before any inputs have been processed. Note that

φ0 is therefore a constant depends only on the initial state of the algorithms. We also define the

incremental costs ∆ALG(Ii) and ∆OPT (Ii) at the ith step of computation. We can now prove a

simple but powerful theorem that provides a method for proving the competitiveness of an online

algorithm.

Theorem 2.2.1 If the following conditions hold at every step for any input sequence then ALG is

c-competitive.

1. ∆φi + ∆ALG(Ii) ≤ c ·∆OPT (Ii)

12

2. There is a constant b such that for all i φi ≥ b.

Proof: We may take the summation over all inputs to achieve the desired result. To see this,

suppose that the first condition holds:

∆φi + ∆ALG(Ii) ≤ c ·∆OPT (Ii).

Let us add the inequalities over the entire input sequence:

n∑
i=1

∆φi +

n∑
i=1

∆ALG(Ii) ≤
n∑
i=1

c ·∆OPT (Ii).

Successive terms of the change in potential cancel, except for the initial and final values of the

potential. The incremental cost to the algorithms adds up to the total cost of each algorithm. After

rearranging:

ALG(I) ≤ c ·OPT (I) + φ0 − φn.

By the second condition, φn ≥ b. Thus

ALG(I) ≤ c ·OPT (I) + φ0 − b.

Since φ0 is a constant that does not depend on I, this shows that ALG is c-competitive by Definition

6.

We will later use this method to analyze individual steps of server algorithms. As we are often

concerned with only a single step of execution, we may drop the subscripted indices of Properties 1

and 2 in future discussions when no confusion arises.

2.3 The RANDOM–SLACK Algorithm

Here we present an algorithm, RANDOM–SLACK, for the 2-server problem in an arbitrary metric

space. This algorithm is useful in the development and understanding of randomized algorithms for

the 2-server problem. The algorithm is quite simple to state . Let the two algorithm servers be s1

and s2 and the current request be denoted r.

Algorithm RANDOM–SLACK: Move server si to r with probability

pi =
εj

d(si,sj)
, where εi = 1

2 [d(si, sj) + d(si, r)− d(sj , r)].

A single step of execution is demonstrated in Figure 2.2.

13

r

s

s1

2a

b

c

(a)

r

s

s1

2a

b

c

(b)

r

s

s1

2a

b

c

(c)

Figure 2.2: A single move by RANDOM–SLACK. (a) Before serving the current request r, the two
servers s1 and s2 are in the positions shown. The distances are d(s1, r) = a, d(s2, r) = b, and

d(s1, s2) = c. (b) Server s1 moves to r with probability p1 =
1
2 (c+b−a)

c . (c) Alternatively, server s2

moves to r with probability p2 =
1
2 (c+a−b)

c .

s 1

s 2

a 2

a 1

(a)

s 1

s 2

a 2

a 1

(b)

Figure 2.3: Minimal matchings. Consider matchings for the 2-server problem in the real plane. We
see by visual inspection that the matching in (a) {s1, a1}, {s2, a2} is not minimal while the matching
in (b) {s1, a2}, {s2, a1} is minimal.

2.3.1 Competitiveness of RANDOM–SLACK

It turns out that RANDOM–SLACK is 2-competitive for any metric space. Here we will prove this

fact for the simpler case where the metric space is the real line R. In order to do so, we will define

a potential function φ that depends on the positions of the servers and the minimum matching

distance.

Definition 13 The minimum matching of algorithm servers s1, s2, . . . , sk and adversary servers

a1, a2, . . . , ak is a permutation π such that the quantity M =
∑k
i=1 d(si, aπ(i)) is minimal. We call

the value of M the minimum matching distance.

The idea of the minimum matching is described in Figure 2.3. It is straightforward to observe

that in the case of the real line, the minimum matching is obtained by numbering the servers from

left to right as s1, s2, . . . , sk and a1, a2, . . . , ak, matching each si with ai. Using the minimum

14

matching distance M , we may now define a potential function that will allow us to prove that

RANDOM–SLACK is 2-competitive on the line [CDRS90].

Definition 14 For the k-server problem, we define the Coppersmith–Doyle–Raghavan–Snir

(CDRS) potential ,

φ =

k−1∑
i=1

k∑
j=i+1

d(si, sj) + k ·M.

Armed with this potential function we may now prove the following theorem.

Theorem 2.3.1 The algorithm RANDOM–SLACK is 2-competitive on the line.

Proof: Without loss of generality, we may always label the servers in such a way that s1 ≤ s2 and

a1 ≤ a2. Furthermore, we may separate the steps of the computation into stages. Every step of the

computation shall have the following form:

1. The adversary generates a request r and immediately serves that request with one of its servers.

2. The algorithm moves one of its servers to the request point.

Analysis of the adversary’s move. We refer to the adversary’s server algorithm as ADV and

first show that for every adversary move, ∆φ ≤ 2 · ADV(r). Due to the symmetry of the line, we

may assume that the adversary serves request r with server a1. This analysis is accompanied by

Figure 2.4. The cost of the adversary move is given by

ADV(r) = d(a1, r).

Using the definition of the CDRS potential, we can compute φ, the value of the potential before the

move, and φ′, the value of the potential after the move.

φ = d(s1, s2) + 2d(s1, a1) + 2d(s2, a2).

φ′ = d(s1, s2) + 2d(s1, r) + 2d(s2, a2).

Subtracting to calculate the change in potential and using the triangle inequality we have

∆φ = 2(d(s1, r)− d(s1, a1)) ≤ 2d(a1, r) = 2 ·ADV (r).

Analysis of RANDOM–SLACK move. We will refer the service cost of RANDOM–SLACK

on request r as RS(r) and show that for every move by RANDOMSLACK, ∆φ + RS(r) ≤ 0. By

definition of the CDRS potential, before our servers move

φ = d(s1, s2) + 2d(s1, a1) + 2d(s2, a2).

15

s1 a2 s2a1

(a)

s1 a2 s2a1r

(b)

s1 a2 s2a1
r

(c)

Figure 2.4: An adversary move in analysis of the RANDOM–SLACK algorithm. An example ad-
versary move in the proof of Theorem 2.3.1. (a) A possible configuration of servers at the beginning
of a round. (b) A request is made at r and the adversary serves with a1 at cost ADV(r) = d(a1, r).
(c) The adversary move is done.

16

s1 a2 s2a1
r

(a)

s1 a2 s2a1
r

(b)

Figure 2.5: An example of Case 1 from the proof of Theorem 2.3.1. (a) A possible configuration of
servers before RANDOM–SLACK moves. (b) Server s1 moves to the request point since p1 = 1 and
p2 = 0 using the definition of RANDOM–SLACK. The cost for this move is given by RS(r) = d(s1, r).

By symmetry of the line, there are only two cases to consider for moves made by RANDOM–SLACK.

Case 1 The servers in in a configuration where a1 ≤ s1 ≤ s2. Refer to Figure 2.5. In this case

we move s1 deterministically, since p1 = 1 and p2 = 0 using the probabilities in the definition of

RANDOM-SLACK. We know that a1 = r by definition of the adversary move, and so we have

RS(r) = d(s1, a1).

We can compute the value of the potential after s1 moves to r = a1 as

φ′ = d(a1, s2) + 2d(s2, a2).

Thus, ∆φ = −d(s1, a1). We then have that

∆φ+ RS(r) ≤ 0.

Case 2 The servers are in a configuration where s1 ≤ a1 ≤ s2. Refer to Figure 2.6. In this case, by

the definition of RANDOM–SLACK, we move s1 to a1 with probability

p1 =
d(s2, a1)

d(s1, s2)

17

with the cost of the move given by

RS1(r) = d(s1, a1).

The value of the potential after s1 moves is

φ′1 = d(s1, a1) + 2d(s2, a2).

Hence,

∆φ1 = −3d(s1, a1).

On the other hand, we move s2 with probability

p2 =
d(s1, a1)

d(s1, s2)

and the associated cost of the move is

RS2(r) = d(s2, a1).

The value of the potential after s2 moves is

φ′2 = d(s1, a1) + 2d(s1, a1) + 2d(a1, a2).

Computing the change in potential for this case and applying the triangle inequality,

∆φ2 = −d(a1, s2) + 2(d(a1, a2)− d(s2, a2)) ≤ −d(a1, s2) + 2d(s2, a2) = d(s2, a1).

We can now compute the expected sum of the change in potential and incremental cost.

E[∆φ] = p1 ·∆φ1 + p2 ·∆φ2 = −2
d(s1, a1)d(s2, a1)

d(s1, s2)
.

E[RS(r)] = p1 · RS1(r) + p2 · RS2(r) = 2
d(s1, a1)d(s2, a1)

d(s1, s2)
.

Adding these two inequalities gives us the desired result:

E[∆φ] + E[∆RS(r)] = 0.

In both Case 1 and Case 2, adding the inequalities derived from both the adversary move and the

server move,

E[∆φ] + E[∆RS(r)] ≤ 2 ·ADV(r),

and so algorithm RANDOMSLACK is 2-competitive by Theorem 2.2.1.

18

s1 a2 s2a1
r

(a)

s1 a2 s2a1
r

?

(b)

s1 a2 s2a1
r

(c)

s1 a2 s2a1
r

(d)

Figure 2.6: An example of Case 2 from the proof of Theorem 2.3.1. (a) A possible configuration of
servers before RANDOM–SLACK moves. (b) Either one of the servers might move. (c) Server s1
moves with probability p1 and cost RS1(r) = d(s1, r). (d) Server s2 moves with probability p2 and
cost RS1(r) = d(s2, r).

19

2.4 The (kn, n)-Server Problem

We now define a generalization of the k-server problem. Recall the emergency vehicle response

example of Section 1.5.3 and suppose that each crime requires two vehicles to respond; every car

requires a “back up” car. Thus, whenever there is a request we must send two vehicles to scene

of the crime. For the general server problem, suppose that there are m servers and each request

requires n < m servers to be moved to a request point. We then define the (m,n)-server problem

to be the same as a server problem where at each step n servers are moved to the requested point.

Then the k-server problem is an instance of the (k, n) server problem, where n = 1. In this thesis,

we will make use of the variation where m is an integer multiple of n, say m = kn, and so we are

working with the (kn, n)-server problem. Refer to Figure 2.7 for a detailed example.

In this discussion we will assume that the servers are initially situated in k groups of n servers in

the same location. This is a reasonable assumption, for if the servers are not in such a configuration

we can move them until they are grouped as described. Their movement into this configuration

will incur some cost, but this cost does not depend on the request sequence and will not affect the

competitiveness of an algorithm for the (kn, n) server problem. We will now prove three important

theorems that will be useful in Chapter 3. These theorems are given in [BCL98] and we give the

details of each proof.

Theorem 2.4.1 Given any strategy for the (2n, n)-server problem, we can derive a randomized

strategy for the 2-server problem.

Proof: Suppose A is any algorithm for the (2n, n)-server problem and that the servers are numbered

s1, . . . s2n. Define the “partner” of a server si by the function

partner(si) =

 si+n : i ≤ n

si−n : i > n

That is, s1 is partnered with sn+1, s2 is partnered with sn+2, and so on.

We now describe an algorithm A′ that mimics the behavior of A. In addition A′ behaves in such

a way that for any request at step r, A′ moves either si or partner(si) to serve r, but not both. To

see how this works, we recall that initially there are 2 groups of n servers located at the same point.

Furthermore, directly after any previous request, say r′, there must be n servers located at r′ for

the request to have been satisfied. So, suppose that at some step of the request sequence, s1, . . . sn

have served r′, and let the next request be r.

Now A will move some number of servers from among sn+1, . . . , s2n to serve r. Let the number

of moved servers be z. Let T be the set of servers from sn+1, . . . , s2n that move to r. Then A′ also

moves the same servers to r. Now, A must move n− z servers from r′ to r. Then we have A′ move

20

s

s s

s
r1

(a)

s

s s

s
r1

d1

e1

(b)

s

s

s s
r1

(c)

s

s

s sr2

d2

e2

(d)

ss
s sr2

(e)

ss

s
sd3

e3

r 3

(f)

ss

ss

d3
e2

r3

(g)

d1

e1
d2

e2 d3
e3

(h)

Figure 2.7: A sample execution of a (4, 2)-server algorithm. (a) There are 4 servers in initial positions
with the first request r1. (b) The first request r1 served by two servers moving distances of d1 and
e1. (c) Request r1 is satisfied. (d) The first request r2 served by two servers moving distances of d2
and e2. (e) Request r2 is satisfied. (f) The first request r3 served by two servers moving distances of
d3 and e3. (f) Request r3 is satisfied. (h) The request sequence ends. For the sequence σ = r1, r2, r3
the cost to the algorithm is given by ALG(σ) = d1 + e1 + d2 + e2 + d3 + e3.

21

s1
s3

s2
s4

r'

s5
s7 s6

s8r

Algorithm A

(a)

s1
s3

s2
s4

r'

s5
s7 s6

s8r

Algorithm A'

(b)

s1
s3

s2
s4

r'

s5

s7

s6

s8r

Algorithm A

(c)

s1
s3

s2
s4

r'

s5

s7

s6

s8r

Algorithm A'

(d)

s1

s3s2

s4
r'

s5

s7

s6

s8r

Algorithm A

(e)

s1

s3

s2

s4
r'

s5

s7

s6

s8r

Algorithm A'

(f)

Figure 2.8: An example for the proof of Theorem 2.4.1 for the (8, 4)-server problem.. We indicate the
server movements of algorithm A and the derived algorithm A′ which mimics A. Here we illustrate
the (8, 4)-server case. We indicate that a group of servers are located together at the same point by
enclosing them in an oval. For instance, s1, s2, s3, and s4 are located together at the previous request
r′. According to the definition of partner(si), the paired partners are {s1, s5}, {s2, s6}, {s3, s7}, and
{s4, s8}.(a) A possible configuration of A at the beginning of a round. (b) A′ has the same initial
configuration. (c) A moves s7 and s8 to r. (d) A′ also moves s7 and s8 to r. (e) A moves s2 and s3
to finish the request. (f) According to the derivation of A′, we cannot move s3 or s4 which are the
partners of s7 and s8. Thus, we move s1 and s2 to finish the request.

22

the servers {s1, s2, . . . , sn}/partner(T) from r′ to r. In this way, A′ mimics A with equal cost. After

any request round we may relabel the servers and use the same derivation again to mimic A in the

following round.

Since A maintains the separation of partner servers at every step, A′ can be thought of as a

collection of n independent 2-server algorithms, say A′ = {A1, A2, . . . , An} where Ai determines the

movement of si and si+n. We may then define a randomized 2-server strategy A′′ that uses Ai with

probability pi = 1
n .

Theorem 2.4.2 Any optimal offline strategy for the (2n, n) server problem keeps the servers in two

blocks of n each, assuming that the servers are together in two blocks in the initial configuration.

Proof: Suppose that A is an optimal offline strategy for the (2n, n)-server problem. Consider

the derived strategy A′ = {A0, A1, . . . , An−1} as described in the previous proof. For any request

sequence σ,

A′(σ) =

n−1∑
i=0

Ai(σ).

Now consider the average cost of the algorithms A0, A1, . . . , An−1. We have

1

n

n−1∑
i=0

Ai(σ) =
1

n
A′(σ) =

1

n
A(σ).

Then there exists some j such that Aj(σ) ≤ 1
nA(σ), and so A′(σ) ≥ n · Aj(σ). Now let A′′ be an

algorithm for the (2n, n)-server problem that uses n copies of Aj moving 2n servers in two groups

of size n. Then

A′′(σ) = n ·Aj(σ) ≤ A(σ).

However, A is optimal by assumption, so A′′(σ) ≥ A(σ) as well. Hence, A′′(σ) = A(σ). Consequently,

A′′ is an optimal algorithm and moves the servers in two blocks of size n each.

Theorem 2.4.3 Given a C-competitive online strategy for the (2n, n)-server problem in a metric

space X, the derived randomized online strategy for the 2-server problem is C-competitive.

Proof: Let A be an online c-competitive algorithm for the (2n, n)-server problem, and let OPT2n,n

be an optimal algorithm for the (2n, n)-server problem. Then for any request sequence σ,

A(σ) ≤ c ·OPT2n,n(σ).

Let A′ be the derived online randomized strategy as described in the proof of Theorem 2.4.1. Then

E[A′(σ)] =
1

n

n−1∑
i=0

Ai(σ) =
1

n
A(σ).

23

Since OPT2n,n moves servers in two blocks of size n by the previous theorem, OPT2n,n is equivalent

to n copies of an optimal 2-server algorithm operating in tandem. Let that optimal 2-server algorithm

be OPT2,1. Then

OPT2,1(σ) =
1

n
OPT2n,n(σ).

We have that
1

n
A(σ) ≤ 1

n
· c ·OPT2n,n(σ),

which gives us

E[A′′(σ)] ≤ c ·OPT2,1(σ).

Consequently, A′′ is c-competitive.

These three theorems are useful in the following way. In Chapter 3, Theorem 2.4.1 will allow us

to develop a c-competitive algorithm for the (2n, n)-server problem which immediately gives us the

derived randomized algorithm for the 2-server problem. Then by Theorem 2.4.3, the derived 2-server

problem is also c-competitive. Lastly, Theorem 2.4.2 allows us to simplify the analysis of adversary

moves by reducing it to the case where the adversary is using an optimal 2-server algorithm.

24

Chapter 3

The Algorithm R–LINE

This chapter provides the details of the main result of this thesis: a competitive algorithm for the

2-server problem on the line. Given here is an outline of the steps involved in this result.

1. Define a randomized algorithm for the (2n, n)-server problem.

2. Provide a set of inequalities S, involving C, such that if S is satisfied, then R–LINE is

C–competitive.

3. Use a series of substitutions to transform S into a differential equation, D.

4. Approximate the solution to D that minimizes C for a given value of n.

5. The resulting minimum computed value of C is 1.90079728 when n = 10000.

6. R–LINE is then defined as a randomized algorithm, derived from the (2n, n)-server algorithm,

and so is 1.90079728–competitive.

3.1 Preliminaries

Our algorithm, R–LINE, is defined to be a randomized algorithm for the (2n, n)-server problem, for

n ≥ 3. By Theorem 2.4.2, without loss of generality we can assume that the adversary is using an

optimal 2-server algorithm, but serves with cost equal to n times the distance moved. We will use

the notation si both to refer to the ith server and its location, when no confusion arises. We assume

that s1 ≤ s2 ≤ ... ≤ s2n−1 ≤ s2n. We also refer to the adversary’s servers as a1 and a2, and assume

that a1 ≤ a2. The algorithm thus knows the location of one of the adversary’s servers, which we call

the visible server, and which, by a slight abuse of notation, we also call r. We denote the adversary’s

other server by a, and refer to it as the hidden server, since the algorithm does not know where it is.

25

We define a configuration of servers (R–LINE’s as well as the adversary’s) to be satisfying if at

least n of R–LINE’s servers are at r. We refer to a satisfying configuration as an S-configuration,

and we assume that the initial configuration is an S-configuration.

Every round begins by the adversary choosing a new request point r and moving one of its

two servers to r. R–LINE then moves as many of its servers as necessary to r, and the resulting

configuration is once again an S-configuration. No R–LINE server will pass another R–LINE server

that does not serve. In general, R–LINE deterministically moves zero or more servers to r, and then

uses randomization to decide which additional servers to move. R–LINE is lazy , meaning that it

never moves any server that does not serve the request.

3.2 The Potential

The algorithm R–LINE is given based on a suitable potential, which is used in Section 3.4 to prove

competitiveness. For each fixed n ≥ 3, we define a competitiveness C for R–LINE as well as a

potential φ on configurations. This potential will satisfy the following property:

Property 3.2.1 If φ is the potential at the configuration before a round and φ′ the potential after

the round, and if R–LINE(r) and ADV(r) are the costs incurred by R–LINE and the adversary on

request r, respectively, then

E[R–LINE(r) + φ′ − φ] ≤ C ·ADV(r)

where E denotes expected value.

Isolation indices. For 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, if 1 ≤ i + j ≤ 2n + 1, we define αi,j , the

(i, j)th isolation index of a configuration, to be the length of the longest interval that has exactly i

algorithm servers to the left and exactly j adversary servers to the left. If there is no such interval,

then the value of the isolation index is 0. More formally,

αi,j = max

 min {si+1, aj+1} −max {si, aj}

0

where we let s0 = a0 = −∞ and s2n+1 = a3 =∞ by default. We refer the reader to Figure 3.1 for

further understanding. 1

Isolation index coefficients. For each 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2, we define a constant ηi,j ,

the (i, j)th isolation index coefficient. The isolation index coefficients satisfy a symmetry property,

1A more general definition of isolation indices is given in [BD92].

26

ss
ss

as
s
a

α α α1,0 3,1 3,2

Figure 3.1: Isolation indices on the line for the (6, 3)-server problem. here we illustrate the nonzero
isolation indices for a particular configuration of the (6, 3) case. Here, α1,0 is the length of the
interval that has 1 algorithm server and 0 adversary servers to its left. Isolation index α3,1 is the
length of the interval that has 3 algorithm servers and 1 adversary server to its left. In a similar
fashion α3,2 is the length of the interval that has 3 algorithm server and 2 adversary servers to its
left. All other finite isolation indices are 0. For this configuration the potential can be computed as
φ = η1,0 · α1,0 + η3,1 · α3,1 + η3,2 · α3,2.

namely ηi,j = η2n−i,2−j ; furthermore, η0,0 = η2n,n = 0. We formally define the potential of a

configuration to be

φ =
∑
{ηi,j · αi,j : (0 ≤ i ≤ 2n) ∧ (0 ≤ j ≤ 2) ∧ (1 ≤ i+ j ≤ 2n+ 1)}.

Intuitively, ηi,j is a weight on the isolation index αi,j for any configuration. For each given n, the

competitiveness C and the isolation index coefficients {αi,j} must satisfy a system of inequalities

given in Section 3.4.

We will first define R–LINE in terms of those constants. We then go on to show that R–LINE

is C-competitive if the system of inequalities is satisfied. In the final sections of this chapter we

describe how to find a solution to these inequalities.

3.3 Algorithm Description

We now define R–LINE. Between rounds, the configuration of servers is always an S-configuration.

When the adversary makes a request at a point r, R–LINE responds by making a sequence of moves,

each consisting of the movement of one or more servers to r. Thus, during a round, R–LINE makes

at most n moves. Not all configurations can arise during execution of R–LINE; in fact, we define

two classes of configurations, D-configurations and R-configurations, such that every intermediate

configuration of R–LINE belongs to one of those two classes. If the current configuration is a D-

configuration, then R–LINE’s next move is to move one or more servers deterministically to r, while

if the current configuration is an R-configuration, then R–LINE’s next move is to choose, using

randomization, a set of servers to move to r. In this case there are always two choices – to move

one or more servers from the previous request point to r, completing the round, or to move just one

27

r

s
s
s

s ss 51 2

3

4

6

Figure 3.2: An example of a satisfying configuration (an S-configuration) for the (6, 3) case. Servers
s2, s3, and s4 are located at the current request r, and so the request is satisfied.

server from the other side, possibly not completing the round.

We now define the classes of configurations. Note that, before the current round began, there

must have been n algorithm servers at the previous request point, which we call r′. Without loss of

generality, r′ 6= r.

1. S-Configuration: there are n algorithm servers at r. See Figure 3.2

2. D-Configuration: the following two conditions hold.

(a) There are more than n algorithm servers either strictly to the left or strictly to the right

of r; that is, r > sn+1 or r < sn.

(b) If there are fewer than n algorithm servers at r′, then there is no algorithm server strictly

between r′ and r, and furthermore, there are at least n algorithm servers at the points r′

and r combined.

The D-configuration can be explained in the following way. In a D-configuration suppose

without loss of generality that there are m algorithm servers to the left of r for some m > n.

We can argue that we must move the servers sn+1, . . . sm to r. Suppose otherwise that a server

from among sn+1, . . . sm does not move to r. Then, since servers do not pass one another, there

are only n − 1 servers available to serve the request. Thus, the request cannot be satisfied.

Refer to Figures 3.3 and 3.4 to understand this reasoning for the (6, 3)-server problem.

3. R-Configuration:

(a) There are exactly n algorithm servers on the same side of r as r′, that is, either r′ = sn < r

or r < r′ = sn+1.

(b) There is no algorithm server strictly between r′ and r, and furthermore, there are at least

n algorithm servers at the points r′ and r combined.

See Figure 3.5 for an example.

28

r'

s
s
s

s ss

r

1

2

3

4 5 6

(a)

r'

s
s
s

s ss

r

1

2

3

4 5 6

(b)

r'

s
s
s

s ss

r

1

2

3

4 5 6

(c)

Figure 3.3: An example of a deterministic move (a D-configuration) for the (6, 3) case. (a) At the
beginning of the round, there are three servers s1, s2, s3 located at the previous request point r′ and
one more server s4 to the left of the current request r. Two servers s5 and s6 are located to the
right of the current request. (b) We know that s4 must move to r. If s4 did not move then only s5
and s6 are able to serve r, as s1, s2, and s3 are not allowed to pass s4. (c) Server s4 has moved to r
and we are now in an R-configuration.

29

r'

s
s

s s ss

r

1 2 3

4

5 6

(a)

r'

s
s

s s ss

r

1 2 3

4

5 6

(b)

r'

s
s

s s ss

r

1 2 3

4

5 6

(c)

Figure 3.4: A second example of a deterministic move (a D-configuration) for the (6, 3) case. (a) At
the beginning of the round, there are two servers s3 and s4 located at the previous request point r′

while s1 and s2 are further to the left. Two servers s5 and s6 are located to the right of the current
request r. (b) Here we know that s3 or s4 must move to r. If neither of them move then only s5
and s6 are able to serve r, as s1 and s2 are not allowed to pass s4 and s3. (c) Server s4 has moved
to r and we are now in an R-configuration.

30

r'

s
s

s ss

r

51

2

4 6

s3

(a)

r'

s
s

s ss

r

51

2

4 6

s3

(b)

r'

s
s

s s
s

r

5

1

2

4 6

s3

(c)

r'

s
s

s ss

r

51

2

4 6

s3

(d)

r'

s
s
s ss

r

51

2

4 6

s3

(e)

Figure 3.5: An example of a randomized move (an R-configuration) for the (6, 3) case. (a) There
are three servers s1, s2, s3 located at the previous request point r′ and one server s4 at the current
request r. Two servers s5 and s6 are located to the right of the current request. (b) One possibility
is that s5 will move to the current request point. (c) Server s5 has moved to r and we are still in
an R-configuration. (d) Another possibility is that we serve r using s2 and s3. (e) Servers s2 and s3
have moved to r and we are in an S-configuration.

31

rs
s
s

s s s

Move 1 server
from the left.

(a)

Move 1 server
from the right.

Complete the request
from the left.

rs
s s

s
(e) s

rs
s(f) s

s
s

rs
s
s

s s
(b) s2 1

Move 1 server
from the right.

Complete the request
from the left.

rs s s
(c) s

s
s

rs
s
s

s
(d) s1 1

s

s

1

s

Figure 3.6: Possible executions of R–LINE. (a) A D-configuration, where n = 3. The request is r,
there are three servers located at r′ < r. The next move is deterministic. (b) An R-configuration.
One server has moved to r from the left. The next move is randomized; either move two servers
from the left or one from the right. (c) An S-configuration, after two servers moved from the left.
The round is over. (d) An R-configuration, after one server moved from the right. The next move
is randomized; either move one server from the left or one from the right. (e) An S-configuration,
after one server moved from the right. The round is over. (f) An S-configuration, after one server
moved from the left. The round is over.

S
request

D

R

S

≤ n

Figure 3.7: A state transition diagram for R–LINE. We begin a round in an S-configuration. When
we receive a request, we might end up in either a D-configuration or an R-configuration. From a
D-configuration we might possibly go to an S-configuration or an R-configuration. Whenever the
algorithm is in an R-configuration there can be no more than n randomized moves. We end the
round when we have reached an S-configuration and R-LINE is ready fro the next request.

32

We now give an explicit definition of R–LINE. By symmetry, we can assume, without loss of

generality, that r′ < r. The reader might also consult Figure 3.6 where we illustrate R–LINE

through a single round, in a case where n = 3. The general flow of a single round is illustrated in

Figure 3.7.

1. If the current configuration is a D-configuration, then there are m algorithm servers to the left

of r for some m > n. Move the servers sn+1, . . . sm to r. If the resulting configuration is an S-

configuration, the round is over. Otherwise, the resulting configuration is an R-configuration,

and we proceed to the next step.

2. If the current configuration is an R-configuration, then r′ = sn < r ≤ sn+1 < s2n. Let p be

the number of algorithm servers at r. Then sn+p+1 > r. R–LINE executes one of two moves;

each move is executed with a probability that is determined by solving a 2-person zero-sum

game. We compute those probabilities below. The two choices of move are:

(a) Move sn+p+1 to r.

(b) Move the servers sp+1 . . . sn to r.

If the resulting configuration is an S-configuration, the round is over. Otherwise, the resulting

configuration is an R-configuration, and repeat this step. The reader may refer to Figure 3.5.

For the randomized step, one of the two choices is selected by using the optimum strategy for a

2-person zero sum game, where R–LINE is the column player, and Adv is the row player; the choice

of the row player is where to place the hidden server. As we show later, we can assume, without loss

of generality, that the hidden server is located at either sn or sn+p+1. Thus, each player has exactly

two strategies. Each entry of the payoff matrix is equal to ∆φ+ cost = φ′ − φ+ cost , where φ and

φ′ are the potentials before and after the move; and cost is the cost of the move, which is equal to

the number of servers moved times the distance moved, either (sn+p+1 − r) or (n− p)(r − sn).

The payoff matrix is as follows:

G =

Move sn+p+1 Move sp+1 . . . sn

a = sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

a = sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)

The entries of the game matrix G depend only on the values of the isolation index coefficients,

the locations of the algorithm servers, and the current request. This matrix and the isolation index

coefficients will play an important role in proving the competitiveness of R–LINE.

33

3.4 Proof of Competitiveness

We now present a system of inequalities, which we denote S, which suffice for R–LINE to be C-

competitive. We will prove, in Theorem 3.4.1, that S implies C-competitiveness of R–LINE.

∀ 0 ≤ i ≤ 2n : |ηi,1 − ηi,0| ≤ n · C (3.1)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi,j + 1 ≤ ηi−1,j (3.2)

∀ 1 ≤ i ≤ n and ∀ 1 ≤ j ≤ 2 : ηi−1,j−1 ≤ ηi,j−1 + 1 (3.3)

∀ 1 ≤ i ≤ n : (ηi−1,1 − ηi,1 + 1)(ηn−i,1 − ηn,1 + i) ≤ (ηi−1,0 − ηi,0 + 1)(ηn−i,0 − ηn,0 + i) (3.4)

Theorem 3.4.1 For any assignment of values to C and ηi,j for 0 ≤ i ≤ 2n and 0 ≤ j ≤ 2 that

satisfies the system S, R–LINE is C-competitive.

We prove Theorem 3.4.1 with a sequence of lemmas. We will prove that if the system of inequali-

ties S is satisfied, then the following properties hold. We write ∆φ = φ′−φ, where φ is the potential

before the move and φ′ is the potential after the move.

1. For any move by the adversary, ∆φ ≤ C · costAdv. (Recall that the adversary pays n times

the distance moved.)

2. For any deterministic move by R–LINE, ∆φ+ cost ≤ 0.

3. We may assume the adversary’s hidden server is at one of at most two possible locations during

a given round, namely at the closest algorithm server to either the left or the right of r.

4. For any randomized move by R–LINE, E(∆φ+ cost) ≤ 0.

We say that a move is simple if the move consists of moving a single server (either an algorithm

or an adversary server) across an interval, and there is no other server (of either type) located strictly

between the end points of that interval. We also refer to a simple move as a step; in general, every

movement of servers is a concatenation of steps.

Lemma 3.4.2 If S holds, then Property 1 holds.

Proof: By the symmetry of the ηi,j , inequality (3.1) implies that |ηi,j − ηi,j−1| ≤ n · C for

j = 1, 2. Without loss of generality the move is simple, since every move which is not simple is

the concatenation of simple moves. Without loss of generality, the adversary server aj moves to the

right, from x to y, where x < y. Since the move is simple, si ≤ x and y ≤ si+1 for some 0 ≤ i ≤ 2n,.

(Recall the default values s0 = −∞ and s2n+1 = ∞.) Thus, αi,j decreases by y − x and αi,j−1

34

increases by y−x. The cost to the adversary of this move is n(y−x). By definition of the potential,

∆φ = (ηi,j − ηi,j−1)(y − x) ≤ n · C · (y − x) ≤ C · costAdv.

Lemma 3.4.3 If S holds, then Property 2 holds.

Proof: For convenience, we assume that r < r′ = sn+1. There are exactly m algorithm servers to

the right of r, for some m > n. Servers s2n−m+1 . . . sn move to r. The move is the concatenation of

steps, and it suffices to show that ∆φ ≥ costR–LINE for each of those steps.

Fix one step. During the step, si moves from x to y, where y < x, for some 2n−m+ 1 ≤ i ≤ n.

The algorithm cost of the step is x−y. Pick the maximum j such that aj ≤ y. Since r ≤ y, j is either

1 or 2. The move causes αi,j to increase by x − y and αi−1,j to decrease by the same amount. By

inequality (3.1), and the definition of the potential: ∆φ+ costR–LINE = (x−y)(ηi,j − ηi−1,j + 1) ≤ 0.

Lemma 3.4.4 If 1 ≤ i ≤ 2n and j = 1, 2, then ηi,j + ηi−1,j−1 ≤ ηi,j−1 + ηi−1,j

Proof: Suppose i ≤ n. Then 1 + ηi,j ≤ ηi−1,j by (3.2), while −1 + ηi−1,j−1 ≤ ηi,j−1 by (3.3).

Adding the two inequalities, we obtain the result.

If i > n, then η2n−i+1,3−j + η2n−i,2−j ≤ η2n−i+1,2−j + η2n−i,3−j by the previous case. By

symmetry, we are done.

Lemma 3.4.5 If S holds, then Property 3 holds.

Proof: Since a could be any point on the line, the payoff matrix of the game has infinitely many

rows. We need to prove that just two of those rows, namely a = sn and a = sn+p+1, dominate the

others.

By batching the row strategies, we illustrate the ∞× 2 payoff matrix below.

Move sn+p+1 Move sp+1 . . . sn

I a ≤ sn (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) (ηp,1 − ηn,1 + n− p)(r − sn)

(ηp,1 − ηn,1 + n− p)(r − a)

II sn ≤ a ≤ r (ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − r) +

(ηp,0 − ηn,0 + n− p)(a− sn)

(ηn+p+1,2 − ηn+p,2 + 1)(sn+p+1 − a)

III r ≤ a ≤ sn+p+1 + (ηp,0 − ηn,0 + n− p)(r − sn)

(ηn+p+1,1 − ηn+p,1 + 1)(a− r)

IV a ≥ sn+p+1 (ηn+p+1,1 − ηn+p,1 + 1)(sn+p+1 − r) (ηp,0 − ηn,0 + n− p)(r − sn)

The row strategy a = sn trivially dominates all row strategies in Batch I. It also dominates all

row strategies in Batch II, because

35

ηp,1 − ηn,1 =

n∑
i=p+1

(ηi−1,1 − ηi,1)

≥
n∑

i=p+1

(ηi−1,0 − ηi,0) by Lemma 3.4.4

= ηp,0 − ηn,0

The row strategy a = sn+p+1 trivially dominates all row stages in Batch IV. It also dominates all

row strategies in Batch III, because ηn+p+1,1 − ηn+p,1 ≥ ηn+p+1,2 − ηn+p,2, which we can similarly

prove using Lemma 3.4.4.

Lemma 3.4.6 If S holds, then Property 4 holds.

Proof: Consider the 2 × 2 payoff matrix G of Section 3.3. By S, the upper left and lower right

entries of G are negative, while the upper right and lower left entries are positive. By Theorem

1.4.2, the value of our game is

det(G)

(ηn+p+1,2 + ηn+p+1 − ηn+p,2 − ηn+p+1,1) · (sn+p+1 − r) + (ηp,0 + ηn,1 − ηn,0 − ηp,1) · (r − sn)

The numerator is non-negative by inequality 3.4. The denominator is negative, which we can

prove by combining inequalities of S labeled (2) and (3). Thus, E(∆φ + costR–LINE) = v(G) ≤ 0 as

claimed.

Theorem 3.4.1 follows immediately from Lemmas 3.4.2, 3.4.3, 3.4.5, and 3.4.6.

3.5 Simplifying the Inequalities

We wish to find a solution to the system S that minimizes the competitiveness, C. We shall make a

series of substitutions in order to transform S into a new system of inequalities that is more readily

solved using the method described here. First, recall the inequalities labeled (4) in S.

(ηi,1 − ηi−1,1 − 1)(ηn,1 − ηn−i,1 − i) ≤ (ηi,0 − ηi−1,0 − 1)(ηn,0 − ηn−i,0 − i).

Notice that we may bound the left hand side. Using the inequalities (2) we have that

(ηi,1 − ηi−1,1 − 1) ≤ −2 and (ηn,1 − ηn−i,1 − i) ≤ −2i.

Thus the left hand side of the equation is bounded by 4i:

36

4i ≤ (ηi,1 − ηi−1,1 − 1)(ηn,1 − ηn−i,1 − i).

Now, for 0 ≤ i ≤ n, use the bound of 4i for the left hand side of the equation, let δi = 3i− ηi,0, let

εi = δi − δn, and let δn = 2δ. Making the substitutions we get:

(2i+ εn−i)(2− εi + εi−1) ≥ 4i.

We make the assumption that the first n inequalities are exact and that the nth inequality may not

be. In the eventual solution of the system, we will see that this is in fact the case. We then seek a

solution to the following system:

(2i+ εn−i)(2− εi + εi−1) = 4i, ∀i : 0 < i < n (3.5)

(2n+ ε0)(2− εn + εn−1) ≤ 4n (3.6)

By making the following substitutions, a solution to the above described system that maximizes δ

also provides a solution to S that minimizes C.

ηi,0 = 3i− δi ∀i : 0 ≤ i ≤ n

ηi,0 = 2n+ i− δn ∀i : n < i ≤ 2n

ηi,1 = 2n− i− δ ∀i : 0 ≤ i ≤ n

ηi,1 = i− δ ∀i : n < i ≤ 2n

ηi,2 = η2n−i,0 ∀i : 0 ≤ i ≤ 2n

3.6 A Differential Difference Equation

We may convert the above recurrence relation of inequalities 3.5 and 3.6 into a differential equation

in the following way. For any fixed 0 ≤ t ≤ 1, let

g(t) = lim
n→∞

εn,[t·n]/n

where [x] denotes the nearest integer to x. In the limiting case as n → ∞, the recurrence relation

then becomes

(2t+ g(1− t)) · (2− g′(t)) = 4t

for 0 ≤ t ≤ 1. We can substitute variables to make the equation look more symmetric. If we let

t(x) = x+1
2 and f(x) = g(t(x)), we have

(x+ 1 + f(−x)) · (1− f ′(x)) = x+ 1 (3.7)

37

for −1 ≤ x ≤ 1.

Notice that the differential equation contains the terms f(−x) and f ′(x). A differential equation

that relates f ′(x) to f(−x) has come to be known as a differential equation with reflected argument.

Particular versions of this problem have been studied, but no general analytic method of solution has

been found [Rob72]. Solving this equation analytically would theoretically provide an exact value

for the competitiveness of R–LINE, but all attempts to produce such a solution have unfortunately

been unsuccessful. Therefore, we have settled for an approximation, using a modified first-order

numeric method.

3.7 Approximating the Differential Equation Numerically

In order to approximate the solution to the differential equation, we use a modified Euler shooting

method. Suppose that we want to approximate the solution of the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0.

The approximation proceeds in steps. We choose a value h for the size of every step and set

tn = t0 + n · h. A single step of the Euler method from tn to tn + h is given by

yn+1 = yn + h · f(tn, yn),

where yn is the approximated value of y at time tn. The error in this approximation is O(h2). By

making h small we can typically achieve small error.

Approximating the solution to our differential is complicated by the reflected argument. We can

then modify the standard Euler method slightly to take the reflection into account. Now, suppose

that we seek to approximate a solution for

y′(t) = f(t, y(−t)), y(t0) = y0.

Our method proceeds similarly to the Euler method, by alternating approximations in both direc-

tions. At every step we approximate the solution for two time values equidistant from t0: tn = t0+n·h

and t−n = t0 − n · h. We then compute the following two updates.

yn+1 = yn + h · f(t−n, y−n),

y−n−1 = y−n + h · f(tn, yn),

By straightforward observation we see that the error in this method is still O(h2).

38

We can now approximate the differential equation in 3.7 using this method, for any initial value

f(0), by discretizing the interval (−1, 1) into n pieces. Given such an approximation we can back–

substitute to find the corresponding values of εi from the recurrence relation defined in 3.5 and 3.6,

from which we can determine the value of C. We then use the following algorithm to find an initial

value f(0) and the corresponding approximation to f(x) that minimizes C.

Algorithm: Search for minimum C

1. Choose a range of initial values R.

2. For every value of f(0) in R:

(a) Approximate f(x) using the modified Euler method.

(b) Compute the corresponding value of C = 2− δn
2n using the substitutions of Section 3.5.

3. Choose the solution that minimizes C.

4. Use the substitutions of Section 3.5 to confirm that f(x) corresponds to values of ηi,j that

satisfy S.

This algorithm was implemented in the GNU Octave language which is an open source software

package specifically designed for solving numeric problems. The code for this algorithm is given

in Appendix A. Using a discretization of 10000 intervals, we achieve a competitive ratio of C =

1.90079728. A plot of the approximations of f(x) and f ′(x) are given in Figure 3.8. A plot of the

competitiveness of R–LINE verses the discretization size for the approximation is given in Figure

3.9. In addition, the specific values of δi and ηi.j are given for the case where n = 30 in Table 3.1.

For n = 30 we compute C = 1.9153104.

39

(a)

(b)

Figure 3.8: Differential equation approximations. (a) The approximation of f(x) and (b) the ap-
proximation of f ′(x) for n = 10000 which minimizes C. The corresponding value of C is 1.90079728.

40

Figure 3.9: Competitiveness vs. discretization size. The competitiveness C as determined by the
approximated solution of the differential equation D is plotted each value of n. It can be see that
as n increases, the competitiveness of our algorithm decreases.

41

i δi ηi,0 ηn+i,0 ηi,1

0 0.0000 0.0000 84.917 57.459
1 1.5826 1.4174 85.917 56.459
2 2.8970 3.1030 86.917 55.459
3 4.0217 4.9783 87.917 54.459
4 5.0035 6.9965 88.917 53.459
5 5.8723 9.1277 89.917 52.459
6 6.6488 11.351 90.917 51.459
7 7.3475 13.653 91.917 50.459
8 7.9793 16.021 92.917 49.459
9 8.5523 18.448 93.917 48.459
10 9.0729 20.927 94.917 47.459
11 9.5461 23.454 95.917 46.459
12 9.9757 26.024 96.917 45.459
13 10.365 28.635 97.917 44.459
14 10.716 31.284 98.917 43.459
15 11.050 33.950 99.917 42.459
16 11.366 36.634 100.92 41.459
17 11.649 39.351 101.92 40.459
18 11.901 42.099 102.92 39.459
19 12.121 44.879 103.92 38.459
20 12.311 47.689 104.92 37.459
21 12.471 50.529 105.92 36.459
22 12.600 53.400 106.92 35.459
23 12.698 56.302 107.92 34.459
24 12.764 59.236 108.92 33.459
25 12.796 62.204 109.92 32.459
26 12.793 65.207 110.92 31.459
27 12.751 68.249 111.92 30.459
28 12.667 71.333 112.92 29.459
29 12.534 74.466 113.92 28.459
30 5.0830 84.917 114.92 27.459

Table 3.1: A list of all coefficients ηi,j that are used to define an algorithm for the (60, 30)-server
problem. In this case C = 1.9153104.

42

3.8 Future work

There are several possible avenues for carrying this research further. Here we have developed an

algorithm for the (2n, n)-server problem on the line and by Theorems 2.4.1, 2.4.3, and 2.4.2 we have

a competitive randomized algorithm for the 2-server problem on the line. These theorems may be

extended in a straightforward way with analogous results for the (kn, n)-server problem on the line.

Therefore, if we are able to find a competitive algorithm for the (kn, n)-server problem for some

k > 2 we might possibly improve current results for the k-server problem on the line.

Yet another possibility is to generalize our approach for the (2n, n)-server problem for other

metric spaces. In fact, preliminary investigation indicates that the system of inequalities S is also

sufficient to show that our algorithm will work for continuous tree metric spaces. This is possible

using the same potential function and a more general notion of isolation indices. In addition, some

effort has been made to extend R–LINE to other metric spaces including the circle and the Manhattan

plane. This line of research has been so far unsuccessful using the same potential function extended

to the Manhattan plane in the most obvious way. However, it is conceivable that an appropriately

defined potential function would allow for improved results in this area.

Of course, there is also the open problem of the k-server conjecture–that there is a k-competitive

algorithm for the server problem in any metric space. Even showing that the 2-server problem is

2-competitive in an arbitrary metric space would be a significant breakthrough in the theory of

online algorithms.

There is also a possible direction of future research that is interesting outside the k-server prob-

lem. In Section 3.6 we derived a differential equation with a reflected argument. This type of

differential equation has been studied, but only results on uniqueness and existence of solution have

been found. Our attempts to solve our differential equation analytically were unsuccessful. An

analytic solution to this differential equation would provide the exact competitiveness of R–LINE,

but would also be an interesting result in the field of differential equations.

43

Appendix A

Differential Equation

Approximation Code Listing

clc;
clear a l l;
close a l l;
k = 1;

5 %N = [3, 5,10, 15, 20, 30, 50, 100]%, 200, 400, 800, 1200, 2000]
%N = [3:2:59,65:6:100];
N = 9999;
for n = N

10 plot(1,1);
t i t l e(num2str(n));
drawnow;
d = 2/n;
t = [-1:d:1];

15

minC = inf;

for i = 0.10:0.02:0.30

20 f = zeros(1,length(t));

fprime = f;

25 slope = -1/(1+i) + 1;

f(tequals(t,d/2)) = i + slope*d/2;
f(tequals(t,-d/2)) = i - slope*d/2;

30

fprime(tequals(t,d/2)) = f(tequals(t,-d/2))/(d/2 + 1 + f(tequals(t,-d/2)));
fprime(tequals(t,-d/2)) = f(tequals(t,d/2))/(-d/2 + 1 + f(tequals(t,d/2)));

for tk = d/2:d:1-d
35 %[t, tk+d, -tk-d]

44

f(tequals(t,tk+d)) = fprime(tequals(t,tk))*d+f(tequals(t,tk));
f(tequals(t,-tk-d)) = -fprime(tequals(t,-tk))*d+f(tequals(t,-tk));

fprime(tequals(t,tk+d)) = f(tequals(t,-tk-d)) / ...
40 (tk+d + 1 + f(tequals(t,-tk-d)));

fprime(tequals(t,-tk-d)) = f(tequals(t,tk+d)) / ...
(-tk-d + 1 + f(tequals(t,tk+d)));

end

45 eps_from_f = (n+1)*f;
delta_n = eps_from_f(1)

possibleC = 2 - delta_n/(2*(n+1));

50 i f(possibleC < minC)
minC = possibleC;
fmin = f;
fprimemin = fprime;
mini = i;

55 end

hold on;

end
60

C(k) = minC;
k += 1;

end
65

% use substitutions to compute all isolation index coefficients
delta = n*(2-C);
e0 = -2*delta;
en = 0;

70 eps = [e0 n*fmin en];
deltas = eps + 2*delta;
deltas = deltas(2:end);
deltas(1) = 0;
is = 0:n+1;

75 etas = 3*is - deltas;
etasnpi = etas(end) + is;
etaai = etasnpi(end)/2 - is;

% create a chart of thee values
80 CHART = [is’ deltas’ etas’ etasnpi’ etaai’];

alletai = [etas etasnpi(2:end)])

%Determine if system S is satisfied
85 Ssatisfied = prod(1.0*(etaai - etas <= (n+2)*C)) & ...

prod(1.0*(etaai(2:end) + 1 <= etaai(1:end-1))) & ...
prod(1.0*(alletai(1:end-1) + 1 <= alletai(2:end)));

Listing A.1: Octave code to approximate reflective differential equation.

45

Bibliography

[Bar08] E. N. Barron. Game Theory: An Introduction. John Wiley & Sons, New Jersey, 2008.

[BBM01] Yair Bartal, Béla Bollobás, and Manor Mendel. A Ramsey-type theorem for metric

spaces and its applications for metrical task systems and related problems. In Proc. 42st

Symp. Foundations of Computer Science (FOCS), pages 396–405. IEEE, 2001.

[BBMN11] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-

competitive algorithm for the k-server problem. In Proc. 52nd Symp. Foundations of

Computer Science (FOCS). 10 pages. IEEE Computer Society, 2011.

[BCL98] Yair Bartal, Marek Chrobak, and Lawrence L. Larmore. A randomized algorithm for

two servers on the line. In Proc. 6th European Symp. on Algorithms (ESA), Lecture

Notes in Comput. Sci., pages 247–258. Springer, 1998.

[BCL02] Wolfgang Bein, Marek Chrobak, and Lawrence L. Larmore. The 3-server problem in the

plane. Theoret. Comput. Sci., 287:387–391, 2002.

[BD92] Hans-Jürgen Bandelt and Andreas Dress. A canonical decomposition theory for metrics

on a finite set. Adv. Math., 92:47–105, 1992.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, 1998.

[BIK08] Wolfgang Bein, Kazuo Iwama, and Jun Kawahara. Randomized competitive analysis for

two-server problems. Algorithms, 1:30 – 42, 2008.

[BIK+11] Wolfgang Bein, Kazuo Iwama, Jun Kawahara, Lawrence L. Larmore, and James A.

Oravec. A randomized algorithm for two servers in cross polytope spaces. Theoretical

Computer Science, 412(2):563–572, 2011.

[BLNR11] Wolfgang Bein, Lawrence Larmore, John Noga, and Rüdiger Reischuk. Knowledge state

algorithms. Algorithmica, 60(3):653–678, 2011.

[CDRS90] Don Coppersmith, Peter G. Doyle, Prabhakar Raghavan, and Marc Snir. Random walks

on weighted graphs and applications to online algorithms. In Proc. 22nd Symp. Theory

of Computing (STOC), pages 369–378. ACM, 1990.

[CL91] Marek Chrobak and Lawrence L. Larmore. An optimal online algorithm for k servers

on trees. SIAM J. Comput., 20:144–148, 1991.

[CLLR97] Marek Chrobak, Lawrence L. Larmore, Carsten Lund, and Nick Reingold. A better lower

bound on the competitive ratio of the randomized 2-server problem. Inform. Process.

Lett., 63:79–83, 1997.

46

[KP94] Elias Koutsoupias and Christos Papadimitriou. Beyond competitive analysis. In Proc.

35th Symp. Foundations of Computer Science (FOCS), pages 394–400. IEEE, 1994.

[Lar72] Richard C. Larson. Urban Police Patrol Analysis. Kingsport Press, 1972.

[MMS90] Mark Manasse, Lyle A. McGeoch, and Daniel Sleator. Competitive algorithms for server

problems. J. Algorithms, 11:208–230, 1990.

[Rob72] Muril L. Robertson. The equation y’(x) = f(t, y(g(t))). Pacific Journal of Mathematics,

42:483–491, 1972.

47

Vita

Graduate College

University of Nevada, Las Vegas

Lucas A. Bang

Degrees:

Bachelor of Arts in Computer Science 2010

University of Nevada Las Vegas

Bachelor of Science in Mathematics 2010

University of Nevada Las Vegas

Thesis Title: An Online Algorithm for the 2-Server Problem on the Line with Improved Competi-

tiveness

Thesis Examination Committee:

Chairperson, Professor Lawrence Larmore

Committee Member, Professor Wolfgang Bein

Committee Member, Professor Matt Pedersen

Graduate Faculty Representative, Professor Ebrahim Salehi

48

	An Online Algorithm for the 2-Server Problem On The Line with Improved Competitiveness
	Repository Citation

	tmp.1377122764.pdf.FOQ0o

