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ABSTRACT

Application of Computational Fluid Dynamics on Smart Wing Design

by

Parthasarathy Chinnasamy

Dr. Yitung Chen, Examination Committee Chair 
Associate Professor, Department of Mechanical Engineering 

University of Nevada, Las Vegas

The instantaneous shape of the wing has a profound effect on the fluid dynamic 

forces it can generate. Visualization of the results obtained from the CED code gives a 

better understanding of the happenings around a bending airfoil. The proposed 

Computational Fluid Dynamics (CFD) model provides detailed design information for 

the lift and drag forces, velocity and static pressure changes around an airfoil during take 

off, flying, and landing. Commercial CFD package—FLUENT is used to evaluate the 

smart material airfoil aerodynamics performance. The results are then compared with the 

parametric conventional wings—the wings with flaps. Using smart materials the wings 

can be designed to vary their stiffness with time. A flexible wing is useful to increase lift 

and reduce drag. A parametric bending profile of a smart flap is designed considering 

different types of beams. Cantilever beam with uniformly varying load with roller 

support at the free end is considered here. The bending profile of the above said beam is 

similar to the bending profile we are about to investigate. Flexible airfoil is designed 

using the bending equations. The design is then meshed using GAMBIT and exported to

111
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FLUENT. Boundary conditions are defined and CFD modeling is done. One other 

method is also used for designing the bending flaps. It was named as tangent arc method. 

The effect of changing pivot point is analyzed since it has considerable impact on 

aerodynamic performance of smart airfoils. Finally, the assumption made for 

conventional wings is validated with wind tunnel test data.

IV
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NOMENCLATURE
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e internal energy (J)
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p static pressure (N/m^)
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X viscous stress tensor
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CHAPTER 1 

INTRODUCTION

Airplanes—Modem world badly needs this creation of Wright brothers. There has 

been lot of changes in the design and operation of the aircraft, since their invention. And 

they are getting better and better with the idea and vision of the scientists all over the 

world. At the advent of smart materials, adaptive wings—the wings which can change its 

shape and size—is going to be a reality. These bending wings seem to have many 

advantages over conventional airfoils. Since the smart wings are in their developing stage 

study of fluid dynamics around them will be of very much importance once the design is 

complete. This attempt is an initiative in the path of identifying the best bending profiles 

that the wings can morph during take off, cmise and landing. In this study a parametric 

design is created for the adaptive wing and its performance characteristics are analyzed. 

The focus has been on two-dimensional design of a smart airfoil and Computational Fluid 

Dynamics (CFD) modeling of them. This model can further be expanded to three- 

dimensional bending airfoils and flapping flights.
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1.1 History of Wings

George Cayley (1773-1857) was the father of aerodynamics. His 1804 glider model 

incorporated most design elements of a modem airplane. Alphonse Penaud (1850-80) 

built a rabber band powered "piano-phore" model; its 131-foot flight was the first of an 

inherently stable aircraft. Otto Lilienthal (1848-96) was the first true glider pilot. 

Inspired, the Wrights took up his quest to get on "intimate terms with the wind”. Octave 

Chanute (1832-1910) gathered and disseminated aeronautical knowledge. He encouraged 

the Wrights, who used his biplane glider design. The dream project of Wilbur and Orville 

Wright didn’t emerge without failures. The design of their glider needed major changes 

to be a success. These explorers didn’t agree with the existing scientific data and went on 

to find their own [4]. They built a square wind tunnel powered by a two bladed fan 

connected to a gasoline engine. They tested almost all the shapes an airfoil could possibly 

take. Curved plates, rounded leading edges, rectangular and curved platforms, and 

various monoplane and multiplane configurations were among those designs. The 

aerodynamic data was taken logically and carefully. They succeeded flying their glider 

with this new airfoil design data. Since then, there has been lots of advancement in the 

design of airfoils. Smart airfoils—a shape changing wing is the task of current generation 

aero dynamists. This study is aimed at obtaining airfoil data for a parametric smart airfoil, 

which might be used in future applications.
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1.2 Smart Wings

A smart wing is one which uses smart materials for the shape control of its surface. 

This model would improve aircraft efficiency and performance, since it doesn’t have 

hinges and is aerodynamically perfect. Smart materials have unique properties. These 

wings use non-hydraulic based actuators which can be piezoelectric devices or shape 

memory alloys [2]. Hydraulic actuators are heavy and on the contrary smart wings are 

way too light. Since this study deals with the investigation of shape effects, smart 

material property functions are not considered here.

1.3 Types of Smart Materials 

There are different types of smart materials available. Some of them are discussed 

here. Piezoelectric or electrostrictive material will deform when subjected to an electric 

charge or a variation in voltage. Electrostrictive materials produce displacements in same 

direction where as Piezoelectric materials can deform in both the direction under 

compression and elongation [2]. Magnetostrictive materials undergo induced mechanical 

strain when subjected to a magnetic field. Terfenol-D [3] is a very good example for these 

kinds of materials. Shape Memory Alloys will undergo phase transformations which will 

produce shape changes when subjected to a thermal field. With low temperature, it 

deforms to its ‘martensitic’ condition and regains its original shape in its ‘austenite’ 

condition when heated. Nitinol TiNi [3] is an example of shape memory alloys.
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1.4 Applications of Smart Materials

Piezoelectric materials are most widely used as sensors in different environments. 

They are often used to measure fluid compositions, fluid density, fluid viscosity, or the 

force of an impact. Shape memory alloys are used in several applications, like in surgical 

tools and muscle wires. One important application of them in the field of aeronautics is 

flexible wings. Shape memory alloys exhibit two unique properties, pseudo elasticity— 

which is a rubber like behavior of material, and the shape memory effect. Our major 

focus falls on those materials used for the construction of flaps. Alternatives to the 

hydraulic systems are being explored by the aerospace industry. Among the most 

promising alternatives are piezoelectric fibers, electrostrictive ceramics, and shape 

memory alloys.

1.5 Fundamentals of Aerodynamics

1.5.1 The Four Forces 

Lift, drag, thrust, weight are known as the four forces. The component of 

aerodynamic force perpendicular to the relative wind is known as lift force. The 

downward force due to the weight of the aircraft is called weight force. Lift force has to 

be more than the weight in order to achieve flying. The forward force produced by the 

engine is thrust force. It acts along the axis of the engine. The aerodynamic force parallel 

to the relative wind is called drag force. Thrust force should be more than the drag force 

in order to cause a forward motion of the air plane.
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1.5.2 Coefficients of Lift and Drag 

Lift coefficient [4] is given by the equation,

L

and drag coefficient is give by,

D

where,

L is the lift force (N),

D is the drag force (N),

q* is the dynamic pressure (N/m^),

and S is the reference area (m^)

The pressure of a fluid resulting fi"om its motion is defined as dynamic pressure. It is 

given by the following equation [4],

(1.3)

Poo and Voo are density and velocity respectively in the free stream far ahead of the

body.

1.5.3 Mach Number

The ratio between the velocity of the fluid and the velocity of the sound is known as 

Mach number. Airplanes have different speeds at different instances. Though the speed is
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described in knots conventionally, researchers in the field of fluid dynamics prefer to use 

it in terms of Mach number and/or Reynolds number.
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CHAPTER 2

DESCRIPTION OF THE PROBLEM GEOMETRY 

Two different models are considered here for the design of smart airfoils. First 

method used for the determination of the bending profile of the airfoil is bending beam 

method. And, the second one is tangent arc method. In both the cases the computational 

fluid dynamics model is similar, except that it has a little variation in the profile of the 

bending flap. For the former model, the Mach number is taken as 0.8 and for the later 

case, two different speeds (Ma=0.80 and 0.22) are used. The model is shown in Figure

2.1 below.

Free stream 
Velocity

Airfoil

Computational domain

Figure 2.1 Schematic diagram of the flow field
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It should be noted that in each design method there are different take off and landing 

positions considered. 5° and 15° flap deflection angles are considered (for take off), since 

they are the most commonly used take off positions [5], Usually for landing 40° flap 

deflection angle is considered. Since the study doesn’t include slats in the analysis, actual 

conventional landing conditions are not considered here. Instead a parametric 

conventional model is considered. The details of the model are discussed in the following 

chapters.

The velocity of the fluid far away from the control volume is generally known as free 

stream velocity, a is known to be the angle of attack—the angle between the moving 

object and the relative wind. One of the major tasks of this project is to analyze the effect 

of lift and drag values for different angles of attack and for different flap deflection 

angles. Flap deflection angle is defined as the angle between the chord line of an airfoil 

and the deflected flap. Usually, flights take off in the range of 260 km/hr -  290 km/hr 

[5].The Mach number is calculated as shown below.

, Speed of the object (m/s) .
Mach number = ------------------------------------- , , ,---------------- (2.1)

Speed of sound (m/s) at standard sea level temperature

Hence,

Ma = 72.22 / 340

This gives. Ma = 0.212

But in our study the first speed is taken as Ma=0.22. Similarly for the second range of 

speed 290 km/hr the Mach number Ma= 0.24 can be obtained. These two speeds are used 

in the CFD simulations for the parametric conventional and smart airfoils and the effects 

were analyzed.
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CHAPTER 3

DESIGNING BENDING AIRFOIL 

The flexible airfoil was designed in two different ways during this study. Only the 

possible shape changes in trailing edge are considered. Details regarding the use of smart 

materials in the leading edge can be found in reference [2]. Following are the two 

methods used to design the smart flaps.

i) Bending beam method

ii) Tangent arc method

3.1 Bending Beam Method

3.1.1 Bending Equation Formation 

NACA 1412 airfoil is chosen for the analysis. A parametric bending profile is 

formulated as stated below. Different types of beams were analyzed [22] to find the 

bending equation of an adaptive wing. Equations of fixed beam with pointed load, fixed 

beams with uniformly varying load, fixed beams with uniform load, cantilever beam with 

point load on the free end, cantilever beam with roller support in the free end, cantilever 

beam with uniformly varying load with roller support in the free end, were considered. 

The bending profile of the cantilever beam with uniformly varying load with roller 

support at the free end (Figure 3.1) may resemble the bending profile of an adaptive 

wing. The profile of the beam is given below.
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Wq( - x ^ + 2 L V - Z " x )

i2om (11)

Figure 3.1 Cantilever beam with uniformly varying load with roller support at the free end 

where,

Wo= Weight/unit length (N/m)

E= Young’s modulus 

I = Area moment of inertia (m4)

L= length of the beam (m)

The above bending equation can be taken to manipulate the coordinates of the 

bending airfoil by making minor modifications. Since the parametric equation alone is 

desired, which would give a similar profile, all the other loads and constant values given 

in the above equation are neglected.

10
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The modified equations are found to be,

V landing =-(-x^-1.2x^+ x)/2

Y takeoff = (-x^-1.2x^+ x)/2

(3.2)

(3 3)

x(m)

Figure 3.2 Determination of the bending profile coefficients

The coeffieients of equations (3.2) & (3.3) are determined by iterative process. Each 

profile is visualized using MATLAB, and the value of the eoefficient is either increased 

or decreased until the desired profile is obtained. These equations are used only to begin 

the investigation and could be modified to obtain the optimum design in the future. The 

point at which these two curves intersect is to be found, to locate the pivot point. When 

the equation is solved, the x eoordinate can be found to be x - 0 .75. The next step of the 

problem is to find the coefficients of the equation for different bending positions. The

11

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



coefficients are found to be 0.5, 0.4, 0.333, 0.2857, 0.25, 0.1666, 0.125, 0.0909, 0.0625, 

and 0.04. The MATLAB plots of the finite bending eurve using the above coefficients are 

shown in Figure.3.3.

F igure 3.3 F inite bending profiles

3.1.2 Airfoil with Bending Profile 

With the equations and coefficients in hand the finite bending profile is found. This 

profile is merged with the NACA 1412 (see Figure 3.4) to see if that gives a reasonable 

bending shape. After this, it can be seen that there are several other problems to be sorted 

out. Choosing important curves (or positions) that would contribute to this study, setting 

constant arc length for all the curves, are some among them. It has been discussed 

elaborately in the following sections.

12
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01

x(m)

F igure 3.4 Bending profile with N AC A 1412

3.1.3 Identification of Important Profiles 

Now that there are several equations to analyze the finite bending of airfoil, it is 

essential to choose the crucial ones. The curves shown in Figure 3.5 are chosen for the 

analysis. It can be seen that the curves have different arc lengths. But, it is necessary that 

the curves have constant arc length. The coordinates of the point on each curve where the 

arc length is constant are determined in the following section.

13
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0 & lU  IW [W OW 0 7  o a  0 31

K (m)

Figure 3.5 Selected important profiles

3.1.4. Determination of the Coordinate at which the Arc Length is Constant 

Since the hending equation obtained is a 5̂  ̂order polynomial equation, coordinate at 

which the are length is constant is determined by numerical method. The arc length is 

known to be the distance between pivot point and the end point (at y=0) of the airfoil, 

which is =0.25. This value needs be constant for all the curves. The point at which this 

length is equal to the arc length is found using Pythagorean Theorem. The y coordinates 

at X =1 is divided in to 26 equal parts Therefore, dy = Ye /26, and since we know the arc 

length=0.25, dx =0.001. By Pythagorean Theorem, N=no of division where arc length 

becomes equal to 0.25. Once the N value is determined the unknowns can he easily 

calculated. The N value is obtained from a MATLAB program.
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3.1.5 MATLAB Algorithm 

A MATLAB program is written to find the coordinates where the arc length is 

constant. N is the number of differences needed so that when multiplied by dy we get the 

constant arc length for a particular curve. N value is found using equation (3.4) and (3.5). 

The coordinates of the point (Xe, Ye) at constant arc length is then determined.

Hence,

+dy^  =0.25 (3.4)

A  =0.25 / /  ̂ d x   ̂ + dy^ (3 5)

= d y x N (3.5.a)

a

0  Ù2 U j  &* 0 4  OS O f  &B M I

X (m)

Figure 3.6 Curves with constant arc length 
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= 0.75 + ûfy X A (3.5.b)

The results are displayed in fig. 3.6 for all the four curves

3.1.6. Formulation of the Upper and Lower Curve Equations 

The next task would be to find the equation for the upper and lower curves. We know 

the family of equations with point P (0.75, 0) as origin. From interpolation the upper and 

lower coordinates are found to be y=0.038, y =- 0.024. These values are obtained from 

the equations of NACA four digit airfoil.

The upper curve equation would be

Y=0.038+ (equation (3.2) xcoefficient) (3.6)

'-"■I-"'"”*

&

4,1

9 oa a: w as a? aa w i

X (m)

Figure 3.7 Completed model of a bending airfoil
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The lower curve equation would be,

Y =-0.024+(equation (3.2) xcoefficient) (3.7)

Equation (3.3) can be used in place of equation (3.2) in equations (3.6) and (3.7), while it 

is necessary to formulate the downward bending curves. The coefficients can be 

calculated using the results of the constant arc length MATLAB program. Similarly, the 

coefficients are obtained for all the four curves. Finally the coordinates of the bending 

curve are plotted using MATLAB. From Figure 3.7, the different positions of the bending 

airfoil can be seen.

3.1.7 Creation of Data Files 

A data file for each bending position has to be created. Since the design involves 

six different equations, the coordinates are arranged in anti-clockwise direction. This is 

done by using Microsoft Excel worksheets. Finally the data files are created and saved in 

separate folders for future use.

3.2 Tangent Arc Method

3.2.1 Introduction

Bending beam method [17] is not the only way one could design the bending 

profile of a smart airfoil. Bending profiles might also involve complex equations. 

Tangent arc method of designing bending airfoils is described below. An arc drawn 

tangent to the upper, lower surface of the airfoil at the pivot point to the end point of the 

airfoil gives a smooth profile. Figure 3.8 shows SOLID WORKS sketch of tangent arc 

method. There are two arcs involved in any one position. For different flap deflection 

angle, the tangent arc has different radius and also the center of the arc keeps changing.

17

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Accurate methods can be devised to track those points in future study. Current study 

limits itself to the design and analysis of the smart wing using tangent arc method.

(a)

(b) (c)

Figure 3.8 Tangent arc method, (a) Intersecting circles, (b) Take off flap profile, (c) 

Landing Flap Profile
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3.2.2 Designing the Bending Profile

The airfoil coordinates are plotted in the SOLIDWORKS work space. NACA 1412 

and BAC XXX airfoils are selected for the analysis. The pivot point is selected as 0.8m 

from the leading edge initially. Later on—during the investigation on the effect of 

changing pivot point, different pivot points are used. The design is created for the 

selected four positions of the airfoil. Two positions during landing and two positions 

during take off. The end points are known for different flap deflection angle and hence 

the end points are plotted. Using the options available in the SOLIDWORKS user 

interface, tangent arcs are drawn for both the upper and bottom part of the flap (see figure 

3.9).

Figure 3.9 NACA 1412 new design for take off position
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3.2.3 Data Collection

The data relevant to each design is noted down and stored in a separate file. Later on 

these data files can be imported to create mesh files in GAMBIT. Important data includes 

the arc radius for each curve and the positions of them relative to the x and y axis. The set 

of data file is completed. Now the mesh files of the model can be created and the fluid 

dynamics around the smart airfoil can be analyzed.

20

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4

MESHING AND DEFINING BOUNDARY CONDITIONS 

With all the data extracted from MATLAB code and SOLID WORKS modeling, data 

files are created. This topic addresses how the meshing is done and boundary conditions 

are assigned using GAMBIT.

4.1 Mesh Generation Using Gambit 

Data files created in the previous section are imported to the GAMBIT-working 

directory. The vertex data are read using the command “import vertex data filename, txt”. 

The two-dimensional airfoil is created using Non-Uniform Rational B-Spline (NURBS) 

command. The dimensions of the computational domain are shown in Figure 4.1. The 

computational domain is created using straight lines and arcs with afore mentioned 

dimensions. In Bending Beam Method, the data file contains coordinates of the entire 

airfoil i.e., including flaps. But in Tangent Arc Method the data file has coordinates till 

the pivot point. The radius and center points of the upper and lower arc of the bending 

flaps are noted down from the SOLIDWORKS model. Those values are used here in 

GAMBIT to design the flap. Node points are created on each edge of the computational 

domain and the airfoil using “Mesh Edge” command button. Faces are generated from the 

available edges.
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RlOm

Airfoil

Computational domain

15m

Figure 4.1 Computational domain geometry

Figure 4.2 Meshed model of a parametrie smart airfoil (landing)
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Then using “Mesh Faces” command button the faces are meshed. Map method is 

selected for meshing. Finally the mesh is generated. The mesh file is shown in Figure 4.2.

4.2. Boundary Conditions 

In order for the mesh to be properly transferred to FLUENT, the edges must be 

assigned boundary conditions, such as wall, inlet, outlet, etc. Actual numerical values will 

be specified from within FLUENT itself. In operations field, “zones command button- 

specific boundary types command button”, can be found. The airfoil is assigned “wall” 

type boundary condition. The flow field far away from the airfoil is assigned “pressure far 

field” boundary condition. “Interior” boundary condition is assigned to the interior edges 

that were used to construct the far-field. Now the file is saved and written out in the format 

used by FLUENT.

23

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5

NUMERICAL METHOD 

The flow over a two-dimensional airfoil is solved using numerical method. This 

section deals with the numerical method adopted for the study of our problem. The 

Spalart-Allmaras turbulence model is used here. Coupled solver is selected and 

linearization is done using implicit method.

5.1 Governing Equations for Flow over Smart Wings 

There are two common methods for formulating the fluid dynamics model of an 

airfoil. The method, which uses Navier-Stokes equation and a method called Doublet 

lattice method. The Navier-Stokes equation can be used for the flexible wing problem 

[2]. The governing equation of fluid dynamics in 2-D Cartesian coordinates can he 

represented as

■ 4 h
dt dx dy

dJ„
+ ■ 

dx dy
(5.1)

where Q

V ]  ̂pu
pu

, F  =
pu^ + p

,G =
puv

pv pu /7V" +jP
^peu + pu j
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V

Since there is no analytical solution to the equation 5.1 It can be solved using finite 

differences or finite volume method. In finite volume method the equation is converted 

into integral equation by using Gauss Divergence theorem. FLUENT uses finite volume 

method to solve fluid dynamics problems.

5.2 Fluid Dynamics Models 

Turbulence modeling has been a challenging problem for scientists. Accurate 

turbulence models are very difficult to formulate [2]. Examples of simpler turbulence 

models include K-s model and Spallart-Allmaras model. The later is used in our study. 

Reynolds five-equation model is an example for advanced turbulence models.

5.2.1 Spalart-Allmaras Model 

The Spalart-Allmaras model was designed specifically for aerospace applications 

involving wall-bounded flows and has been shown to give good results for boundary 

layers subjected to adverse pressure gradients. The Spalart-Allmaras model is a relatively 

simple one-equation model that solves a modeled transport equation for the kinematic 

eddy (turbulent) viscosity. This embodies a relatively new class of one-equation models 

in which it is not necessary to calculate a length scale related to the local shear layer 

thickness.
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5.3 The Coupled Solver 

Two different solvers are available in FLUENT—the segregated solver and the 

coupled solver. The coupled solver solves the governing equations of continuity, 

momentum, and energy and species transport simultaneously. Governing equations for 

additional scalars will be solved sequentially (i.e., segregated from one another and from 

the coupled set). Because the governing equations are non-linear (and coupled), several 

iterations of the solution loop must be performed before a converged solution is obtained. 

Each iteration consists of the steps outlined below:

1. Fluid properties are updated, based on the current solution. (If the calculation 

has just begun, the properties will be updated based on the initialized solution.)

2. The continuity, momentum, and (where appropriate) energy and species 

equations are solved simultaneously.

3. Where appropriate, equations for sealars such as turbulence and radiation are 

solved using the previously updated values of the other variables.

4. When inter-phase coupling is to be included, the source terms in the 

appropriate continuous phase equations may he updated with a discrete phase 

trajectory calculation.

5. A check for convergence of the equation set is made.

These steps are continued until the convergence criteria are met.

5.4 Linearization

In both the segregated and coupled solution methods the discrete, non-linear 

governing equations are linearized to produce a system of equations for the dependent
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variables in every eomputational cell. The resultant linear system is then solved to yield 

an updated flow-field solution. The manner in which the governing equations are 

linearized may take an “implicit" or “explicit" form with respect to the dependent 

variable (or set of variables) of interest.

5.4.1. Implicit Method 

For a given variable, the unknown value in each cell is computed using a relation that 

includes both existing and unknown values from neighboring cells. Therefore each 

unknown will appear in more than one equation in the system, and these equations must 

be solved simultaneously to give the unknown quantities.

5.4.2. Explicit Method 

For a given variable, the unknown value in each cell is computed using a relation that 

includes only the existing values. Therefore each unknown will appear in only one 

equation in the system and the equations for the unknown value in each cell can be solved 

one at a time to give the unknown quantities.
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CHAPTER 6

RESULTS AND DISCUSSION 

In this section the results are tabulated for all the cases investigated in the project. The 

primary focus was projected on finding lift and drag characteristics of parametric smart 

wing design and parametric conventional airfoil. Flow conditions around the airfoil are 

specified with the various options available from the FLUENT user interface. Coupled 

implicit method is used to determine the unknown velocity, pressure, and temperature 

profiles. Spalart-Allamaras turbulence model is used to solve the problem. Plots of 

pressure and velocity are shown for selected cases.

6.1 NACA 1412 with Bending Beam Method 

The meshed files are imported to FLUENT user interface. The mesh files are checked 

for flaws. Then using the “display” menu option the grid is displayed. This step is 

essential one, since one can identify the undefined entities in the mesh file. The boundary 

conditions are defined. A Mach number of 0.8 was used for the analysis.
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Figure 6.1 Meshed model of a parametric conventional airfoil at 6= -15°

Figure 6.2 Meshed model of a parametric smart airfoil at 8= -15°
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The lift and drag monitors are turned on. Co-efficient of lift and drag values are 

tabulated and the results were analyzed.

Table 6.1 Comparison of lift and drag values at Ma=0.8, 5= 23°

Conventional 
takeoff 1

Smart take off 1 % Increase

Coefficient of lift 1.27 1.36 7.08

Coefficient of Drag 0.1987 0.2200 10.71

Figure 6.3 Velocity (m/s) contours at landing position for a parametric 
flexible airfoil
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The results are displayed for 23 degree angle of attack and 0.8 Mach number. Lift and 

drag monitors are turned on to find the Cd and Ci. The velocity contours are shown in 

Figures 6.3, 6.4 and pressure contours are shown in Figures 6.5, 6.6

Figure 6.4 Velocity (m/s) contours at landing position for a parametric conventional airfoil
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Figure 6.5 Pressure(Pa) contours at 6—15° for a parametric flexible airfoil
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Figure 6.6 Pressure(Pa) contours at 6—15° for a parametric conventional airfoil

32

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 6.2 Comparison of lift and drag values at Ma=0.8,5= 50°

Conventional
airfoil

Smart airfoil % Increase

Coefficient of lift 1.455 1.5037 3.35

Coefficient of Drag 0.285 0.2991 4.49

Table 6.3 Comparison of lift and drag values at Ma-0.8, -50°

Conventional 
landing 1

Smart landing 1 % Increase

Coefficient of lift -0.7565 -0.8924 17.96

Coefficient of 
Drag

0.1131 0.1371 21.22

The lift and drag data obtained from the monitors give a reasonable improvement in 

negative lift and increase in drag which is good for landing . The parametric smart airfoil 

gives 17 % more negative lift and 21% more drag than that of the parametric 

conventional one. But for take off conditions the lift increased and the same time drag 

was also increased. The reason might be because of the fact that the hending heam design 

had some bumps in the flap which was formed by the bending profile. Early separation of 

the flow and the circulation causes increase in drag value. Hence the design was 

modified. The circular arc method is adopted after this analysis. The results are analyzed 

in the next section.

6.2 NACA 1412 with Circular Arc Method
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Similar to the previous case the mesh files are imported to FLUENT. The same 

boundary conditions were applied . The coefficient of lift and drag values were tabulated 

as follows. Since good results for the smart landing positions in the previous case have 

been found, our objective here after would be to analyze the take off conditions of a smart 

wing. Table 6.4 and Table 6.5 show the values of increase in lift and drag values for take 

off position 1 and take off position 2, respectively. Take off position 1 has 5 degrees of 

flap deflection and take off position 2 has 15 degrees.

Table 6.4 Comparison of Lift and Drag Values at Ma=0.8, 5= 5°

a (deg) Clcohv CLsm art %increase C oconv C osm art %increase

0° 0.88 1.05 19 0.098 0.121 22

5° 1.25 1.41 12.8 0.202 .2350 16.36

10° 1.42 1.52 7 0.32 0.348 8.75
15° 1.34 1.4 4.48 0.41 0.44 3
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Figure 6.7 Pressure (Pa) contours at a=0, 5= 5° for a parametric conventional airfoil
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Figure 6.8 Pressure (Pa) contours at a=0, 5= 5° for a parametric smart airfoil
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Figure 6.9 Velocity (m/s) contours at a=0, 5= 5° for a parametric conventional airfoil
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Figure 6.10 Velocity (m/s) contours at a=0, 0= 5° for a parametric smart airfoil

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 6.5 Comparison of Lift and Drag Values at Ma=0.8, 5= 15°

a (deg) CLconv CLsmart %increase Coconv CDsmart %increase

0° 1.355 1.19 12.2 0.2218 0.1845 20.21

5° 1.69 1.57 7.64 0.35 0.31 12.9

10° 1.65 1.625 2.5 0.44 0.42 4.8

15° 1.5 1.475 1.7 0.54 0.52 2

Though there is very good improvement in lift values comparing to the bending beam 

method there is considerable amount of increase in drag values. Generally the flights 

takeoff at M=0.22(see Chapter 2). Now with the new speed the simulations are done 

again. Two cases were analyzed here. 5 degree flap deflection angle and 15 degree flap 

deflection angle. Pivot point used while designing the airfoil is 0.75 m from the leading 

edge. The results are tabulated below.

Table 6.6 Comparison of Lift and Drag Values at Ma=0.22, 5= 5°

a (deg) Clcohv CLsmart %increase Coconv Cosmart %increase

0° 0.4364 0.4133 -5 0.0037 0.0045 21.62

5° 0.8560 0.8642 0.9 0.0207 0.0140 -32.36

10° 0.8175 0.7850 -3.9 0.1100 0.1115 1.363

For 5 degree flap deflection angle and 0 degree angle of attack, there is a reduction in 

lift and increase in drag. At 5 deg angle of attack, not only there is increase in lift but at 

the same time the drag is reduced, which is most desirable. At 10 deg angle of attack
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again the lift falls down. For flap deflection angle of 15 degrees the values are tabulated 

below.

Table 6.7 Comparison of Lift and Drag Values at Ma=0.22, 8= 15°

a(deg) C lcouv CLsmart %increase Coconv Cosmart %increase

0° 0.9378 1.304 39.1 0.021 0.0242 15.23
5° 1.181 L398 18.371 0.0558 0.0656 17.5
10° 1.0275 1.45 41.12 0.191 0.224 3.3
15° 1.044 1.155 10.63 0.324 0.364 12.34

1.4

1.2

CLconv

CLsmart
0.8

CDconv

CDs mart0.6

0 .4

0.2

15°10°

Figure 6.11 Plot between Angle of attack and coefficients of lift, drag at 5= 15°, Ma= 0.22
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For 15 deg flap angle until it reaches angle of attack 15 deg the results are reasonable 

good but above 15 deg angle of attack the lift starts going down. The most desirable 

position at 15 deg flap angle is 10 -deg- angle of attack where the increase in lift is 

41.12% where the increase in drag is only 3.3%.

6.3 Benchmarking Problem 

NACA 66215-216 airfoil is used to benchmark our problem. All the analysis involved 

in this project, assumed a conventional airfoil to have a flap which has a straight-lined 

profile connected to the trailing edge. The reason for choosing this as a benchmarking 

problem is because it discusses about the lift characteristics for a plain flap (which is of 

sealed type and is similar to our parametric conventional airfoil) for various deflection 

angles. Figure 6.11 represents the experimental lift characteristic data[l] for NACA 

66215-216 airfoil, plotted against the angle of attack, for different flap deflection angles, 

ranging from 5 degrees to -15 degrees with 5 degree increments. Since we have already 

discussed how the mesh files are created, this session will just give an overview and 

proceed to the results. Figure 6.12 shows the mesh file for 0 degree flap deflection angle.
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Figure 6.12 Lift characteristics of NACA 66215-216 airfoil with sealed flap
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Figure 6.13 Meshed model of NACA 66215-216 airfoil

Reynolds numbers for this experiment is found to be, Re = 6x10^

The Mach number is found as explained below,

a ,  = (&i)

Therefore

(6.2)
P

From air properties table, 

p= 1.796674x10"^ kg/m .s

p= 1.177 kg/m^

By substituting the values in the equation 6.2, we get Voo= 91.2 m/s
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Since Ma PC
a 06 3)

where, a= 340 m/s at standard sea level temperature( 288K)

Substituting the value in equation 6.3, the Mach number is found to be Ma = 0.268 

With all the boundary conditions in hand the mesh file is exported to FLUENT and 

solved. Figure 6.13 shows the pressure contours at zero degree angle of attack and Table 

6.8 shows the values coefficients of lift for different angles of attack. Also the percentage 

difference between the experimental data and simulation data is tabulated.

,02e+OE
02e+OS
02e+OS

Figure 6.14 Pressure (Pa) contours (5= 0°, a=0°)
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Table 6.8 Comparison between Cl[1] and CLsimuiation (8=0° )

a(deg) Cl[1] CLsimuiation % difference

0° 0.2 0.155 20

4° 0.49 0.45 84^

10 1.1 0.8 27.27

16 1.3 1.19 &46

Even though there is a huge variation of the simulation results with the experimental 

data for 8=0, reasonable results are obtained for flap deflection angle 8=5° and 8= 10°. 

The mesh file for 8= 5° and the tabulation of the lift characteristic data are given below. 

Pressure contours for different angle of attacks are shown in Figures 6.15 and 6.16

-

Figure 6.15 Meshed model for 8=5°
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Table 6.9 Comparison between Cl[1] and CLsimuiation (6=5° )

a (deg) C l [ 1] CLsimuiation % difference

0° 0.4 0382 4.5
4° 0.68 &62 832
10 0.95 0.7 26

16 1.5 1.2 20

1.03e+O5; 
I.OSe+OS 
1.03e+05 
1.03e+OS 
1,02e+05 
1.02e+05 
1 02O+O5 
1,02e+O5 
1.01e+05 
101e+05 
1.01e+05 
1.01e+05 
1.00e+C5 
1.00e+05 
99Ae+04 
9.97e+04 
9,94e+0'l 
9.92e+0<l 
0.89e+O4 
S.87e+04 
9,848+04

Figure 6.16 Pressure (Pa) contours at a=4°, 6=5"
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Figure 6.17 Pressure (Pa) contours at a=10°, 5=5°

Similarly for 15 degree flap deflection angle, the mesh file is shown in Figure 6.17 

and the results are tabulated in Table 6.10.

Figure 6.18 Meshed model for 6=15°
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Table 6 .1 0  Comparison between C l[ 1], CLsimuiation(ô=15'’)

a (deg) Cl [i] CLsimuiation % difference

0° 0.83 0.824 0.722

4° 0.99 0.93 6.06

10 1.55 1.2 22.5

16 1.7 1.5 11.76

The pressure contours for different angle of attack a is given below.
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9.92e+04 
9 688+04 
9858+04 
9,816+04

Figure 6.19 Pressure (Pa) contours at a= 0°, 8=15°

It can be seen from the pressure contours that the low pressure area above the airfoil 

keeps increasing when the angle of attack is increased, thereby increasing the lift force.
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Figure 6.20 Pressure (Pa) contours at a  = 4°, 5=15°
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Figure 6.21 Pressure (Pa) contours at a  = 10°, 5=15°

47

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.05e+05 
1.04e+05 
1.04e+05 
1.03&+05 
1,03e+05 
1.026+05 
1,026+05 
1.016+05 
1.016+05 
I.OOs+05 
8.956+04 
9.886+04 
9.84e+04 
9.796+04 
9.746+04 
9.G86+04 
9,036+04 
9.586+04 
9.536+04 
9.486+04

Figure 6.22 Pressure (Pa) contours at a  =16°, 6=15°

6.4 Validation

It has been assumed that the trailing edge of the parametric conventional airfoil has 

flaps with straight lined edges and is connected with the airfoil. The simulation results 

were discussed in the previous section. There is a considerable variation between the 

experimental values and the values obtained from the simulations. The computational 

fluid dynamic result doesn’t always agree exactly with the practical values that we get in 

the experiments. Calculations also show that the standard turbulence model used in most 

commercial CFD codes is not appropriate at angles of attack with flow separation [10]. 

From reference [10] we can find the following table which talks about the percentage 

deviation of computational fluid dynamic results from the experimental values. For
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example from Table 6.11 the CFD lift coefficient can be found to be 10% less than that of 

the experimental one.

Table 6.11 Comparisons between calculated and experimental aerodynamic 

coefficients, fully turbulent conditions [19]

o
d %

Ci

c a lc : (sqp
XlO*

%
e » o f

c a lc e q i
ê n o r

x lO *

%
« r o r

ca lc ex p
e r ro r

XlO*

%
« n o r

0 0 .1 4 6 9 -1 4 5 10 OUMM 0 .0 0 7 0 3 8 54 -0 .0 4 0 0 -0 .0 4 4 3 4 3 -1 0

1 4 2 0 .2 4 9 4 -2 2 2 -8 0 0 1 1 0 0 .0 0 7 2 3 8 S3 -0 .0 4 2 6 -0 .0 4 9 1 6 5 -13

5 U 3 0 .7 6 0 9 -4 8 6 -6 0 4 M 4 0 .0 0 7 0 5 4 77 -0 .0 5 1 3 -0 .0 6 0 9 9 6 16

In our case (from Tables 6.9 and 6.10) we have only 4.5% (for 6=5°) and 0.722% (for 

6=15°) deviation from the experimental data. Same can be seen for the all other cases. 

Hence the assumption made for the conventional airfoil is validated.

6.5. Effect of Changing Pivot Points 

For this analysis BAC XXX airfoil is taken into consideration and the results are 

analyzed. The pivot points are changed and airfoils were designed for each case 

separately. The following three pivot points were selected. 0.75 C, 0.8 C and 0.85 C. The 

letter “C” denotes the ehord of an airfoil. For each pivot point the mesh files were 

designed for three different flap deflection angles(6=5°,15° for take off conditions and - 

10° for landing condition). The mesh files are created as explained in Chapter 3. The 

results are tabulated below.
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Table 6.12 Lift and drag characteristics at 0.85C, 6=5^

a(deg) Clcohv CLsmart %increase Coconv Cosmart %increase

0° 0.4077 0.4829 18.45 0.002 0.0024 20

5° 0.7816 CL8382 7.24 0.0263 0.0296 12.54

10° 0.8623 0.8762 1.612 0.0761 0.0776 1.97
15° 0.8025 0.8232 2.57 0.1568 0.1621 3 J8

Table 6.13 Lift and drag characteristics at 0.85C, 6=15°

a (deg) C lcohv CLsmart %increase C dcotiv Cüsmart %increase

0° 0T888 1.0117 22 0.0107 0.0154 4343

5° 1.0790 1.1944 10.69 0.0486 0TK88 20.99

10° 1.0046 1.0745 6.96 0.1063 0.1216 14.39

15° 0.9565 1.0256 7.224 0.2111 0.2344 11.04

Table 6.14 Lift and drag characteristics at 0.85C, 6= -10°

a(deg) C lcOIIV CLsmart %increase Coconv Cüsmart %increase

0° -0.2644 -0.3555 34 0.0088 0.0113 28

5° 0.1897 0.0931 -50 0.0236 0.0564 138

10° 0.5432 0.4763 -12.3 0.0382 0.0322 -15.7

15° 0.5372 0.5079 -5.45 0.0880 0.0830 -5.68
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Table 6.15 Lift and drag characteristics at 0.75C, 5=5°

a(deg) Clcohv CLsmart %increase Coconv Cüsmart %increase

0° 0.4494 0.6191 37.76 0.00006 0.0001 66.7

5° 0.8195 0.9442 15.21 0.0245 0.0320 30.61

10° 0.9181 0.9556 4.08 0.0810 0.0853 5.3

15° 0.8294 0.8741 539 0.1596 0.1711 7.20

Table 6.16 Lift and drag characteristics at 0.75C, 6=15^

a(deg) C lcoiiv CLsmart %increase Cüconv Cüsmart %increase

0° 0.9664 1.2264 2640 0.0137 0.0224 63.50

5° 1.172 1.3344 1335 0.0585 0.0751 2837

10° 1.0846 1.3144 21.187 0.1248 0.1910 54.03

15° 1.0162 1.1114 936 0.2372 0.2705 14.03

Table 6.17 Lift and drag characteristics at 0.75C, 5=-10°

a(deg) C lcoiiv CLsmart %increase Cüconv Cüsmart %increase

0° -0.4196 -0.5409 284 0.0118 0.0158 33

5° -0.0353 -0.0947 168 -0.0028 -0.0047 67

10° 0.4294 03299 -23 0.0242 0.0173 -28

15° 0.5708 0.5092 -10.8 0.0858 0.0761 -11.3
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Table 6.18 Lift and drag characteristics at 0.80C, 6=5°

a (deg) Clcohv CLsmart %increase C üconv C üsm art %increase

0° 0.5952 0.8866 48.95 0.0168 0.0202 20

5° 0.8782 1.0919 2433 0.0577 0.0668 19.23

10° 0.8270 1.0088 21.98 0.1088 0.1275 17.18

15° 03280 0.9626 1636 03388 0.1089 52.4

Table 6.19 Lift and drag characteristics at 0.80C, 5=15°

a (deg) C üconv C üsm art %increase C ü conv C üsm art %increase

0° 0.8952 1.1083 23 0.0151 0.0149 -1.34

5° 1.1258 1.274 13.16 0.0600 0.0651 8.5

10° 1.0244 1.1389 11.17 0.1144 0.1322 15.55

15° 0.9830 1.0724 9.1 0.2208 0.2492 12.86

Table 6.20 Lift and drag eharacteristics at 0.80C, 5= -10°

a (deg) C üconv Cüsm art %increase C üconv C üsm art %increase

0° -0.3377 -0.4457 31.98 0.0105 0.0138 31.42

5° 0.1044 -0.0092 108 0.0016 -0.0008 150

10° 0.4755 0.3949 -16.9 0.0344 0.0282 -18.02

15° 0.5857 0.5384 -8.1 0.0960 0.0877 -&6
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From the results it can be seen that the 0.8 pivot point smart wing gives better 

performance than the other two. It can be seen drag is increased almost twice the amount 

of lift for 0.75 and 0.85 cases. Though these results may not be generalized for all the 

airfoils it holds good for BAC XXX airfoils. The bench marking problem discussed in the 

previous section was three-dimensional one. This study was only focused on two- 

dimensional performance characteristics. Naturally the results might vary in a real world 

situation. The future work can be focused on three-dimensional smart wings.
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CHAPTER 7

CONCLUSION AND SUGGESTIONS 

The computational fluid dynamics models of the flexible airfoils were analyzed in 

this study and optimum values of lift and drag coefficients were obtained for various 

angles of attack and flap deflection angles. Software tools like MATLAB, 

SOLIDWORKS were used to obtain data files of the bending airfoil. GAMBIT was used 

to obtain the computational mesh and FLUENT was used to solve the problem. Bending 

beam method and tangent arc method were the two methods used to design the smart 

airfoil in this study. The most desirable position of NACA 1412 smart airfoil at 15 deg 

flap angle was when a=10°, where the increase in lift is 41.12% but the increase in drag 

is only 3.3% comparing to the parametric conventional airfoil (Ma=0.22). At 5=5°, Ma= 

0.22 and a=5° (for NACA 1412) the lift increases while the drag reduces comparing to 

the conventional airfoil, which is most desired. The values of lift and drag coefficients 

obtained from the CFD simulations were then compared with the experimental data to 

validate the assumption made for the conventional airfoil. NACA 66215-216 airfoil is 

used to validate the assumption made for the conventional airfoil. Ma= 0.268. The 

simulation results had reasonable variation with the experimental results. One of the main 

reasons for the variation is the model under investigation is a two-dimensional model, 

where as the experimental model is three-dimensional one.
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The flexible wing can also be designed in several other ways based on the bending 

profile that is selected. Each method has a unique design, where one gets optimum 

aerodynamic characteristics.

In future with the aid of advanced technologies in controls engineering, the best 

profiles obtained in each method can be collected and selected instantaneously based on 

our needs. The smart material would then take the shape of the profile which has just 

been assigned. This work can further be extended to the study of computational fluid 

dynamics on a three-dimensional smart wing design.
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