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ABSTRACT

An Investigation of the Kaplan-Meier Upper Confidence Limit for the 
Population Mean from Environmental Samples with Nondetects

by

Violeta Graciela Hennessey

Dr. Ashok K. Singh, Examination Committee Chair 
Professor, Department o f Mathematical Sciences 

University o f Nevada, Las Vegas

The Kaplan-Meier (K-M) estimator is a non-parametric estimator o f the survival 

function, used in lifetesting and medical follow-up studies where some o f the 

observations are incomplete (right-censored data). In environmental applications, the user 

is faced with the problem o f contaminant concentration falling below the limit of 

detection (DL) o f the instrument (left-censored data). The K-M estimator has recently 

been proposed in environmental literature for computing the Upper Confidence Limit 

(UCL) of the mean in the presence o f nondetects in environmental data sets. The 

properties o f this UCL, however, have not been investigated. In this thesis, I propose to 

use Monte Carlo simulation to study the performance o f the K-M method for computing 

the UCL o f the mean.

Ill
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CHAPTER 1 

INTRODUCTION

Standard statistical analysis o f data starts with the assumption of normality, but 

environmental data sets are typically positively skewed [2], The situation gets even more 

complicated when the contaminant concentration data has nondetects. This happens when 

the concentration o f a contaminant is below the detection limit (DL) o f the analytical 

instrument [7]. The problem o f nondetects in an environmental sample occurs quite 

frequently. An environmental data set that contains nondetects is referred to as censored 

data. When the environmental data set contains measurements that fall below the DL, the 

data set is referred to as left-censored [7]. So how does a scientist deal with these 

measurements that are below the DL?

It is traditional for environmental scientists to use the substitution method. The 

substitution method replaces the value observed below the DL with a value o f zero, or a 

value of one-half the detection limit (DL/2), or by DL itself in order to create uncensored 

data for ease o f statistical analysis [7]. Replacement by 0 results in a biased low mean 

and a biased high standard deviation. Replacement by DL results in a biased high mean 

and a biased low standard deviation. In some applications, the United States 

Environmental Protection Agency (EPA) does not even require that the values below the 

DL be reported [7], but this may lead to biased estimates and may not be protective of the 

environment. These methods can also create unnecessary expenditures for the Potentially

1
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Responsible Party (PRP) when, for example, a site is declared unclean when it is actually 

clean.

The problem of nondetects occurs in life-testing and medical follow-up studies as 

well, but the nondetects occur in a different manner. It is common for the data to be right- 

censored, containing observations that fall above a given value. What is being observed is 

usually a measurement o f time, a nonnegative value [1]. Methods for right-censored data 

that do not ignore or substitute false values into the data set have been developed and 

deployed successfully in this field. One o f the methods developed for right-censored data 

is the Kaplan Meier (K-M) estimator o f the survival function, which can also be used to 

estimate the population mean [8]. This will be discussed in depth in Chapter 2 and its 

performance on left-censored data is the main objective of this thesis.

It has been proposed by Dennis Helsel to use the K-M method on censored 

environmental data (left-censored) for estimation o f summary statistics for any size data 

set as long as the percentage o f nondetects is less than 50% [3].

The purpose o f this thesis is to investigate the performance of the K-M method for 

computing the Upper Confidence Limit (UCL) for the population mean from 

environmental samples with nondetects. This will be accomplished by using a Monte 

Carlo simulation experiment that incorporates the bootstrap method. The simulation 

experiment was implemented using SAS software on a Windows platform and a SAS 

source code designed specifically for this thesis experiment. The simulation 

experimented is discussed in detail in Chapter 3. The results are presented in Chapter 4, 

in which Minitab was used to generate the graphs. After analyzing and interpreting the 

results, conclusions were made and are presented in Chapter 5.
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1.1 Terminology

The following terminology will be used throughout this thesis:

1. Bootstrap Method: is a method that incorporates sampling with replacement from a 

given sample for estimating specific statistics.

2. Censored Data: a data set that contains observations whose measurements are less than 

or greater than a given constant.

3. Detection Limit: the lowest value that a measurement can be in order to be detected 

with a reasonable degree o f accuracy.

4. Left-Censored Data: a data set that contains a percentage o f observations whose 

measurements are less than DL.

5. Nondetects: measurements that do not meet the criteria of being detected; observations 

that fall below DL.

6. Nonparametric Method: methods that do not require an assumption about the 

parametric form of the distribution o f the data.

7. Right-Censored Data: a data set that contains a percentage o f observations whose 

measurements are greater than a given constant.

8. Skewness: a measure of the asymmetry o f a probability distribution.

9. Upper Confidence Limit: a value U, such that P(p < U) = 1 - a , where 100(1 - a)%  is 

the confidence level.
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CHAPTER 2 

THE KAPLAN-MEIER METHOD

2.1 Lifetesting

In lifetesting and medical follow-up studies, data is often incomplete (censored). What 

is being observed is the time that an event occurs, the event being death or failure [4].

For many reasons, studies are for a fixed period o f time, where the start and end time is 

often set in advance. Right censoring occurs when a patient is lost to follow-up, when a 

patient is still alive at the end o f a study, and when a patient dies o f other causes [1]. All 

that is known is that the event o f interest is greater than the observed time. In these cases 

the subject is considered a censored observation.

To understand this better, a scenario is presented. A researcher in a hospital observes 

the time o f death in days o f 10 patients who have been diagnosed with a terminal disease. 

One o f the patients leaves the hospital at day 7 and contact is lost. The event o f interest is 

death and since the death o f the patient is only known to be greater than 7 days, day 7 is 

recorded and is labeled right-censored. At the end of the 30 day study, the day o f death o f 

7 patients were recorded and 2 patients are still alive. How does the researcher record the 

day of death for the 2 patients that are still alive at the end o f the study? What is common 

is to record day 30 for both and label them as right-censored [1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1 Example o f a Recorded Lifetesting Data Set
P atient id T im e  o f  death  

(t)

C ensor
(1 -  u n cen sored , 0  =  cen sored )

01 11 1
02 4 1
03 22 1
04 30 0
05 13 1
06 21 1
07 30 0
08 25 1
09 7 0

010 13 1

2.2 Survival Analysis

The statistical analysis of lifetime data is called survival analysis [8]. The lifetime data 

involves a nonnegative random variable T, often representing the lifetimes o f that which 

is being observed from a known start time [1]. Any random variable that contains 

observations that lie in the interval [0 , oo) can be considered a survival random variable 

[8]. In this thesis we will assume that T is continuous. Given that T has a probability 

density function (p.d.f.) f(t), the cumulative distribution function (c.d.f.) F(t), is defined

as

F(t) = Pr(T < t) = I  f (u )du  .

The survival function S(t) gives the probability o f an individual surviving beyond time 

t, where S(0) = 1 and S(oo) = 0. S(t) is a monotone nonincreasing continuous function 

given by,

S(t) = Pr(T > t) = 1 -  F(t) = j  f(u)du

The mean or expected value o f T is computed by calculating the area underneath the 

survival curve [1].
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= j5(r)c/r

2.3 Kaplan-Meier (K-M) Estimator

Censored data cannot be analyzed by using standard statistical methods. Survival 

analysis contains techniques that were developed for right-censored data. The most 

popular technique is the K-M estimator, also known as the product-limit estimator, was 

developed in 1958 by E.L. Kaplan and Paul Meier [4]. Given the survival random 

variable T, whose observations are nonnegative and that may contain right-censored 

observations, K-M is a nonparametric estimator o f the survival function S(t) [1].

In environmental data sets, the contaminant concentration is a nonnegative random 

variable (X) that may contain left-censored observations. Table 2.2 is an actual 

environmental data set that contains nondetects (left-censored observations). This data set 

actually contains two DLs of DL = 0.31 and DL = 0.10. A censor variable is created that 

has a value o f 1 if the observation is detectable (uncensored) and 0 if  the observation falls 

below the DL (censored).

"able 2.3(a) Actual Leh -Censored Environmental Data Set
i X Censor

(1 = uncensored, 0 = censored)
1 1.30 1
2 1.10 1
3 &80 1
4 0.70 1
5 0.70 1
6 0.40 1
7 <0.31
8 0.26 1
9 0.20 1
10 <0.10 0
11 <0.10 0
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In order to use the K-M method to estimate S(x), the probability o f a measurement 

being greater than x, X must be transformed to a right-censored data set (Y). This is 

accomplished by taking the maximum observation value (M = 1.30), and adding a 

reasonable chosen value (e = 0.30) to it. Given that L = M + e, take each observation (x,) 

and subtract it from L (yi = L - x j  [3]. The following table shows the results o f this 

observation.

Table 2.3(b) Left-Censored Data Set Transformed to Right Censored
i Y

(yi= 1 .6-Xi)
Censor

(1 = uncensored, 0 = censored)
1 0.30
2 0.50 1
3 0.80
4 0.90
5 0.90 1
6 1.20 1
7 1.29
8 1.34
9 1.40 1
10 1.50 0
11 1.50 0

2.3.1 K-M Implementation 

The data set presented in Table 2.3(b) will be used to show the implementation of the 

K-M method [4]. The sample size o f the data set is N = 11. The N observations (y,) will

be put into ascending order so that 0 < y /  < y i ' < y^'. The measurement scale is

divided into chosen intervals, (0, Uj), (ui, U2), ... The chosen intervals are given in 

Tahle 2.3.1. Let n,, ôj. A,,, and S(y) be defined as,

n, = the number o f observation at the beginning o f the interval.

5i = the number uncensored observations that have occurred within the interval.

Ai = the number o f censored observations that have occurred within the interval.

7
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s (y) = the estimated probability of a measurement being greater than y = u,.

Given the information above, the implementation o f the K-M method to estimate S(y) 

is shown in Table 2.4. The estimated survival eurve is construeted with the eomputation 

o f S(y). Figure 2.3.2 shows the estimated survival eurve of variable Y.

Table 2.3.1 C-M Implementation Table
i Ui Hi

(Ui+i=ni - ôj - Xi)
8i Xi Hi'

(ui' =  Ui - 5i)
Pi

( P i= n i7  nO 1=1
1 0.30 11 1 0 10 10/11 0.91
2 0.50 10 1 0 9 9/10 &819
3 0.80 9 1 0 8 8/9 0.7272
4 0.90 8 2 0 6 6/8 0.5454
5 1.20 6 1 1 5 5/6 0.4545
6 1.34 4 1 0 3 3/4 0.341
7 1.40 3 1 0 2 2/3 0.227
8 1.50* * * * * * *

&(y)
. 5 0 -

0.3 0.6 y 0.9 1.2 1.5

Figure 2.3.1 Estimated Survival Curve of Variable Y
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The mean o f Y is eomputed by calculating the area under the survival curve. Because 

the largest observation is censored, the mean can only be estimated up to Ui = 1.40 [4].

Py = (1.00)(0.30) + (0.91)(0.50 -  0.30) + (0.819)(0.80 -0.50) + (0.7272)(0.90 -  0.80)

+ (0.5454)(1.20 -  0.90) + (0.4545)(1.34 -  1.20) + (0.341)(1.40 -  1.34)

= 1.04813

The mean o f X, which is o f interest, is computed by taking the mean of Y (py), and 

subtracting it from L = 1.60 derived in section 2.2.

Px — L - Py = 1.60 — 1.04813 = 0.55187

2.3.2 Computer Implementation

2.3.2.1 Minitab Implementation

K-M Estimates and Survival Plot can be computed by first inserting the observations 

o f Y in one column and their censored values in another column. Select the following 

menus from the toolbar:

Stat Reliability/Survival -> Distribution Analysis (Right Censoring) 

Nonparametric Distribution Analysis-Right Censoring 

The K-M is the default Estimation Method, but the column containing the censored 

values must be indicated along with the value that defines the observation as right- 

censored (0). Figures 2.3.2.1 (a) and 2.3.2.1 (b) show the output after performing the 

above tasks.
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a e  t * 10 Tj

C l
Y

1 0.50
? OèC
3  : 0 30
* 0 SO

0.90
6 1.20
7 , 1 M
$ 1 34

9 1 40
10 1 SO

1.60

jibQAff^AWTÿf P$Mf#;W@M A tw W f - Ç m # f  ;, - -

w*lp

C en o o rin g  O p tiaaa

/> ' U « «  c « fi» o M » g  « « la m o « ;

Ccfiforlag w lu e :  io"

F H m e censor nt: |
'■' Foliuic censor ot: f

Help

Figure 2.3.2.1(a) Using Mini tab for K-M Estimates

Distribution Analysis: Y

Nonparametric Estimates

Characteristics of Variable Y

Standard 95.0% Normal Cl
Mean(MTTF) Error Lower Upper

1.04773 0.121396 0. 809795 1. 28566

Kaplan-Meier Estimates

Number Number Survival Standard 95 . 0% Normal Cl
Time at Risk Failed Prob. Error Lower Upper
0.30 11 1 0.909091 0.086678 0 . 739204 1.00000
0 . 50 10 1 0.818182 0.116291 0.590255 1.00000
0.80 9 1 0.727273 0.134282 0.464086 0.99046
0. 90 8 2 0.545455 0.150131 0.251202 0.83971
1. 20 6 1 0 . 454545 0.150131 0.160293 0.74880
1. 34 4 1 0.340909 0.149544 0.047809 0.63401
1.40 3 1 0.227273 0.136191 0.000000 0.49420

Figure 2.3.2.1(b) Mini tab Output

10
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Nonparametric Survival Plot for Y
fâpIan-Meler Method 

Censoring Column in Censor

100

90-

70-I 60-
&

50-

40-

30-

0.0 0.2 0.6 0.8 1.0 1,60.4 1.2 1.4

T able of Statistics
1.04773

Median 1.2
IQ R

Figure 2.3.2.1(c) Minitab Survival Curve 

2.3.2.2 SAS Implementaion

The LIFETEST procedure, given below, allows the use o f the K-M method for right- 

censored data. The following statements in a SAS code perform the K-M method and 

output the survival estimates and the survival curve. The TIME statement is required and 

is used to define the variable Y and the value that indicates the observation is right- 

censored (0) [6]. Figures 2.3.2.2(a) and 2.3.2.2(b) show the SAS output after running the 

SAS code.

PROC LIFETEST DATA = < sas  da ta  s e t >  METHOD = KM PLOT = ( s ) ;

TIME y * c e n s o r ( 0 ) ;

11
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The LIFETEST Procedure 
Product-Limit Survival Estimates

Standard Number Number
y Survival Failure Error Failed Left

0.00000 1.0000 0 0 0 11
0.30000 0.9091 0.0909 0.0867 1 10
0.50000 0.8182 0.1818 0.1163 2 9
0.80000 0.7273 0.2727 0.1343 3 8
0.90000 4 7
0.90000 0.5455 0.4545 0 .150Î 5 6
1.20000 0.4545 0.5455 0 .1501 6 5
1.29000* 6 4
1.34000 0.3409 0.6591 0.1495 7 3
1.40000 0.2273 0.7727 0.1362 8 2
1.50000* 8 1
1.50000* 8 0

NOTE: The marked
1

survival times are censored observations. 
Mean Standard Error 

.04773 0.12140

NOTE: The mean survival time and its standard error were underestimated
because the largest observation was censored and the estimation 

was restricted to the largest event time.

Figure 2.3.2.2(a) SAS Output

Figure 2.3.2.2(b) SAS Survival Curve

12
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CHAPTER 3

MONTE CARLO SIMULATION EXPERIMENT

3.1 Monte Carlo Method

A Monte Carlo simulation experiment was developed to investigate the performance 

o f the K-M method for computing a UCL of the population mean. The Monte Carlo 

method assures that if  the input o f a simulation is a random variable generated from a 

probability distribution and the simulation is repeated a large number o f times, 

characteristics o f the population will occur [5].

The steps in Monte Carlo Simulation experiment used in this thesis are described 

below:

1. Generate a pseudo-random sample o f a specified sample size (N), from a specified 

probability distribution fix; 0), where 6 represents the input vector o f parameters. 

Select a value o f DL, such that a specified percentage o f nondetects (D) o f the 

observations are less than DL. This will result in the sample {xi, X2, ..., xn} with 

D, which will be referred to as the input sample.

2. Generate a bootstrap sample {x,*, xg*, ..., xn*} from the input sample.

3. Compute the K-M estimate o f the survival function and also the area under the 

survival function S(t), which is an estimate o f the population mean p.

4. Repeat steps 2-3 a large number of times (B). This generates B estimates o f the 

population mean ). Sort the B estimates o f the population mean in

13
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ascending order and extract the 95* percentile. This is the 95% UCL.

5. Repeat steps 1-4 a large number of times (K). This generates K 95% UCLs. Compute 

the percentage o f UCLs that are greater than the true mean. This generates the 

Estimated Coverage (%).

The above simulation experiment, programmed in SAS, was taking approximately two 

hours for one set o f conditions. For this reason, we used B = 100 and K = 100.

3.2 Simulation Experiment

For the problem at hand we must know the true population parameters so that the 

performance o f the K-M method can be investigated. For this reason, we simulate data 

from known distributions such as the ones seen in Figures 3.2.1(a), 3.2.1(b), and 3.2.1(c). 

We will generate a pseudo-random sample from one o f these distributions of sample size 

N, ranging from 10 to 50 with percentage o f D ranging from 10 to 50.

Normal Distribution with Parameters Mean = 100 Sigma = 10

Figure 3.2(a) Histogram of a Sample Normal Distribution with 
Skewness (r| ) = 0 and Parameters p = 100 o  = 10

14
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Lognormal Distribution with Parameters Mean = 2 and Different Sigma Values 

0 0
sigma = .5 sigma = 1.5

0.08-0.100-

0.06-0.075-

0.050- 0.04-

0,025- 0 .02 -

0.000.000
0 40 80 120 160 200 240 2800 4 8 12 16 20 24X

0.03-

0 . 02 -

0 . 01 -

0 . 00 -

sigma = 2.5

eL
0 400 800 1200 1600 2000

Figure 3.2(b) Histogram of a Sample Lognormal Distribution with 
Parameters pu = 2 and Different a  Values

Gamma Distribution with Parameters Beta = 1 and Different A^iha Values

alpha = 2
0.60-

0.45-

0.30-

0.15-

0.00
0.0 1.5 3.0 4.5 6.0 7.5

a ip ha = .25

iî3'

— I— I  I  I  I— f — T  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

10 . 0 -

7.5- 

5.0-

2.5- 

0.0

aipha = .05

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 3.2(c) Histograms of Sample Gamma Distribution with 
Parameters P = 1 and Different a  Values
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In order to explain the steps of our simulation experiment for this thesis, we will use a 

data set generated from the Gamma distribution with skewness (rj) = 1.41, parameters 

a  = 2 and P = 1, sample size (N) =10,  and nondetects (D) = 20%.

3.2.1 Monte Carlo Simulation Step 1 

A data set generated from a Gamma distribution with parameters a  = 2 and p = 1 of 

N = 10, and sorted into ascending order by the variable x is shown below.

Obs X

1 0 . 7 5 0 2 6

2 0 . 9 7 9 0 6

3 2 . 1 6 3 7 9

4 2 . 2 5 1 7 8

5 2 . 6 7 7 9 3

6 2 . 7 9 3 5 3

7 3 . 1 5 1 3 5

8 4 . 0 3 3 2 6

Ô 4 . 6 7 0 5 3

10 4 . 9 6 0 3 5

Figure 3.2.1(a) Computer-Generated Data Set

A left-eensored environmental data set with D = 20% is o f interest so the first two 

observations above are labeled as censored (DL = 1). The last eight observations are the 

uneensored observations. Figure 3.2.1(b) is the SAS computer-generated data set with the 

censor variable, whose value is 0 if  the observation is left-censored and 1 if the 

observation is uncensored.

16
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Obs X censor

1 <1 Q

2 <1 0

3 2 . 1 6 3 7 9 1

4 2 . 2 5 1 7 8 1

2 . 6 7 7 9 3 1

6 2 . 7 9 3 5 3 1

7 3 . 1 5 1 3 5 1

« 4 . 0 3 3 2 6 1

Q 4 . 6 7 0 5 3 1

10 4 . 9 6 0 3 5 1

Figure 3.2.1(b) Computer-Generated Data Set with Censor Variable

3.2.2 Monte Carlo Simulation Step 2 

From the computer-generated data set shown in Figure 3.2.1(b), a boot sample o f the 

same size is created by taking the nondetect observations and placing them as the 

nondetects for the boot sample. The uncensored observations o f the boot sample are 

created by performing sampling with replacement from the uncensored observations of 

the computer-generated data set. This is accomplished by using a pseudo-random 

generator from a Uniform distribution, allowing the probability o f an observation being 

chosen to be 1/8. It can be seen in Figure 3.2.2 that the nondetects o f the boot sample are 

the same as those from the computer-generated data set.

Obs X censor

1 <1 0

2 <1 0

3 2 . 1 6 3 7 9 1

4 2 .1 6 3 7 9 1

5 2 . 1 6 3 7 9 1

6 2 . 6 7 7 9 3 1

7

8

2 ,7 9 3 5 3

4 .0 3 3 2 6

1

1

9 4 . 9 6 0 3 5 1

10 4 . 9 6 0 3 5 1

Figure 3.2.2 Boot Sample 1 Data Set
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3.2.3 Monte Carlo Simulation Step 3 

Before performing the K-M method on the left-censored boot sample, it will need to 

be transformed into a right-censored data set (Y). Using the technique discussed in 

Section 2.3, we see that the maximum observation is M = 4.96035. By letting 8 = 7.04, L 

= M + 8 = 12. The right-censored data set is created by subtracting each observation in 

the left-censored boot sample from L =12.

Obs y censor

1 7.0397 1
2 7.0397 1
3 7.9667 1
4 9.2065 1
5 9.3221 1
6 9.8362 1
7 9.8362 1
8 9.8362 1
9 >11 0

10 >11 0
Figure 3.2.3(a) Right-Censored Transformed Boot Sample

The K-M is performed on the right-censored data set (Y) as discussed in Section 2.3 to 

estimate the mean. The output o f the SAS implemented K-M on the right-censored data 

set (Y) is seen in Figure 3.2.3(b) where the mean is computed to be 8.9756.

18
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Product-LIm i t BurvIva 1 Est 1mates
Surv1va1
Standard 'lumber Number

X Surv1v«1 Fa i1ure -a i led Left
0.0000 1.0000 0 0 0 10
7.0397 1 9
7.0397 0.800Ô 0.200Ô 0.1265 2 8
7.9667 0.7000 0.1449 3 7
9.2065 0.6000 0.4000 0.1549 4 6
9.3221 0.5000 0.5000 0.1581 5 5
9.8362 6 4
9.8362 7 3
9.8362 0.8000 0.1265 8 2
11.0209* 8 1
11.2497* 8 0

'  ■NOTE: The marked survival times are censurec observât ions.

Summary 8tat 1st les for Tine Variole x
Quart 11b Est imates

95% Conf i dence interval
Percent [Lower Upper )

75 9.8362 9.3221
50 9.5791 7,9667 918362
25 7.9667 7.0397 9.8362

Mean Standard Error
8.9756 0.3763

NOTE: The mean survival lime and its standard error were underest imated because the largest
observation was censored and the estimation was restrictec to the largest event time.

Figure 3.2.3(b) Output o f the SAS Implemented K-M on the 
Right-Censored Data Set (Y)

The mean o f the boot sample is computed by taking the mean o f Y and subtracting it 

from L.

P x ~ L  - Py = 12 — 8.9756 = 3.0244

3.2.4 Monte Carlo Simulation Step 4

Repeat Sections 3.2.2 through 3.2.3 100 times. This generates 100 estimates o f the 

population mean. After sorting the 100 means in ascending order, the 95* percentile is 

the 95% UCL of the mean in the presence o f nondetects in environmental data set 

generated in Section 3.2.1.

3.2.5 Monte Carlo Simulation Step 5

Repeat Sections 3.2.1 through 3.2.4 100 times. This generates 100 95% UCLs. Each 

95% UCL is tested to see if  it is greater than the true mean, which in this case the true 

mean is,

p = ap  = 2 .
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The Estimated Coverage is the percentage of the 100 95% UCLs that are greater than

p. Figure 3.2.5 is a flowchart o f the Monte Carlo Simulation Experiment.

This is r e p e a t e d  fo r d iffe re n t  
c o m b in a tio n s  o f (N, D), w h e re  
N - { 1 0 .2 0 ,3 0 ,4 0 ,5 0 }  a n d  
D -  < 1 0 ,2 0 .3 0 ,4 0 .5 0 } ,  fo r  e a c h  
sp ec if ied  D is tr ib u tio n  p ro b ab ility  
d is tr ib u tio n  d i s c u s s e d  in S e c tio n  3 .2

N -  10 
nondotecs(u,Vo) - 20

P erfo rm  B o o ts tr a p  S am pling

B o o ts tr a p  S a m p le  (X)

T ran sfo rm  t o  R ig h t-C e n so re d

Sample (Y)

Im p le m e n t K-M o n  S a m p le  (Y) 
a n d  E ;ftrac t m u of Y

M erge  m u in to  a  d a ta  s e t

C o m p u te  m e a n  o f B o o t S a m p le s

100 e s t im a te d  m e a n s  of 
t h e  p o p u la t io n  m e a n

i < 100
.S o rt a n d  E x tra c t  9 5  th  p e rc e n tile

9 5 %  UCL of M ean

M erge  UCL in to  a  d a t a  s e t

E s t im a te  C o v e ra g e  (®/o)
1 0 0  9 5 %  UCLs

Do I - 1 to 100 
UCL > alpha x bet ■^7 , c o u n t  -  c o u n t  ++

E s t im a te d  C o v e r a g e  (% )

Figure 3.2.5 Flow Chart o f Monte Carlo Simulation Experiment

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

RESULTS

For each distribution in combination with the different sample sizes, and different D% 

nondetects, the following will be presented: a table of the summary statistics of the 

bootstrap UCLs for the mean; a table o f the Estimated Coverage (%) as a function of 

Nondetects (%); a graph of the Estimated Coverage (%) vs. D (%) grouped by Sample 

Size. For each case, the distribution’s skewness (r]) will be observed to see its effect on 

the accuracy o f the K-M method for computing the UCL for the population mean from 

environmental samples with nondetects.

4.1 Normal Distribution with 7} = 0, p = 100, and cr = 10

In this section, input samples are generated from a Normal distribution with 

parameters p = 100 and a  = 10, and the K-M method combined with bootstrap as 

explained in detail in Chapter 3 is used. The results are summarized in Tables 4.1(a) and 

4.1(b). It can be seen from Table 4.1(a) that the mean UCL exceeds the true mean of 100 

by no more than 9%. It is seen from Table 4.1(b) that when the underlying distribution is 

normal with rj = 0, the K-M method generally gives coverage greater than or equal to the 

specified confidence (95%). Figure 4.1 is a graph o f the estimated coverage probabilities 

shown in Table 4.1(b).
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Table 4.1(a) Summary Statistics of Bootstrap UCLs of the Mean from a Generated
N ormal Distribution with ri =  0, p  =  100 , and a =  10

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 105.78 0.313 3.13 98.19 114.98
10 20 103.52 0.207 2.07 9642 109.82
10 30 103.08 0.187 1.87 98.79 108.76
10 40 102.27 0.164 1.64 98.10 105.93
10 50 102.25 0.150 1.50 97.58 105.93
20 10 105.50 0.354 3.54 98.31 114.91
20 20 103.97 0.239 239 97.40 109.72
20 30 103.58 0.198 1.98 97.92 108.96
20 40 103.33 0.181 1.81 99.86 107.39
20 50 102.82 0.126 1.26 100.02 106.72
30 10 105.61 0.334 3.34 9836 113.12
30 20 104.23 0.208 2.08 97.78 109.37
30 30 104.08 0.190 1.90 98.27 108.44
30 40 103.38 0.160 1.60 98.74 107.83
30 50 103.71 0.155 1.55 100.50 107.50
40 10 107.33 0.294 244 100.63 113.93
40 20 104.94 0.250 2.50 98.57 111.58
40 30 104.89 0.204 2.04 99.20 109.78
40 40 104.83 0.176 1.76 100.73 109.56
40 50 103.86 0.169 1.69 99.96 108.62
50 10 108.26 0.410 4.10 96.56 120.16
50 20 107.01 0.265 100.21 114.90
50 30 106.20 0.224 2.24 101.25 111.72
50 40 105.75 0.173 1.73 102.13 111.06
50 50 105.40 0.156 1.56 101.80 109.94

Generated Normal Distribution Mean =100 Sigma = 10

100 -

99-

&  98-

Ig M-
Ô

96"
30

1
95-

I
94-

93-

Nondetects (%)

Sample

Figure 4.1 Scatterplot of Estimated Coverage (%) vs Nondetects (% 
for Different Sample Size
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Table 4.1(b) Estimated Coverage as a Function of Nondetects (%) for
G enerated  N orm al D istri rution  w ith  r/ =  0

S am p le  S iz e N o n d etec ts  (% ) E stim ated  C overage (% )
10 10 99 1
10 20 96
10 30 95
10 40 93
10 50 94
20 10 94
20 20 96
20 30 96
20 40 96
20 50 100
30 10 96
30 20 99
30 30 97
30 40 98
30 50 100
40 10 100
40 20 100
40 30 98
40 40 100
40 50 98
50 10 98
50 20 98
50 30 100
50 40 100
50 50 100

4.2 Lognormal Distribution

4.2.1 LN(2, 2.5) with rj = 11,824 and p = 168.174 

In this section, input samples are generated from a Lognormal distribution with 

parameters pu = 2 and a  = 2.5. The results are summarized in Tables 4.2.1(a) and 

4.2.1(b). It can be seen from Table 4.2.1(b) that when the underlying distribution is 

Lognormal with parameters pu = 2 and a  = 2.5, the K-M method gives coverage a lot 

smaller than the specified confidence (95%). This is due to the fact that the Lognormal 

distribution with parameters pu = 2 and a  = 2.5 is heavily skewed rj = 11,824. Figure

4.2.1 is a graph of the estimated coverage probabilities shown in Table 4.2.1(b)
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Table 4.2.1(a) Summary Statistics o f Bootstrap UCLs of the Mean from a Generated
LN(2, 2.5) with rj =  11,824 and p -  168.174

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 478 179 1792 3.44 16400
10 20 397 140 1397 9.19 13705
10 30 273.3 57.1 571.2 4.57 3294.1
10 40 337.6 99.5 995.4 7.22 8409,8
10 50 638 419 4190 7.86 42018
20 10 293.3 42.7 426.6 14,1 2463.0
20 20 426.5 90.0 899.5 13.7 6049.1
20 30 412 111 1106 21.5 8271
20 40 308.9 65.6 655.6 5.23 5897.5
20 50 305.2 43.0 430.3 9.15 2416.0
30 10 305.6 41.1 410.7 32.8 2691.3
30 20 357.0 78.2 782.2 22.8 7157.7
30 30 312.7 72.2 721.6 12.4 6191.7
30 40 323.2 53.2 531.7 19.3 3702.1
30 50 292.1 44.9 448.6 14.4 3553.4
40 10 400.1 92.4 924.4 41.7 6790.3
40 20 326.8 51.8 518.4 27.1 4196.4
40 30 467 209 2086 27.5 20692
40 40 379.8 77.6 775.9 13.9 6490.9
40 50 385.3 54.8 548.4 38.9 3204.0
50 10 297.1 35.9 358.6 30.0 2623.9
50 20 250.8 27.8 278.0 26.1 1590.6
50 30 305.5 40.2 402.1 27.9 2770.5
50 40 320.0 48.1 481,0 23.3 3132.2
50 50 266.0 36.0 360.1 26.4 2718.0

Generated Lognormal Distribution mu— 2 s%ma = 2.5

Nondetects (%)

604
Sample

Size
55- 40

50- 30&2 50o
è  45 - (J 20

I
40-

I
35-

30-

3020 4010 50

Figure 4.2.1 Scatterplot of Estimated Coverage (%) vs Nondetects (%
for Different Sample Size
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Table 4.2.1(b) Estimated Coverage as a Function of Nondetects (%) for
Generatec Lognormal Distribution with rj= l \ ,824

Sample Size Nondetects (%) Estimated Coverage (%)
10 10 31
10 20 37
10 30 30
10 40 37
10 50 37
20 10 43
20 20 50
20 30 42
20 40 38
20 50 43
30 10 51
30 20 47
30 30 37
30 40 50
30 50 49
40 10 42
40 20 51
40 30 44
40 40 50
40 50 54
50 10 58
50 20 47
50 30 49
50 40 48
50 50 46

4.2.2 LN(2, 1.5) with 1/ = 33.468 and p = 22.7599 

In this section, input samples are generated from a Lognormal distribution with 

parameters pu = 2 and o  = 1.5, and the K-M method combined with the bootstrap method 

is used. It is seen from Table 4.2.2(b) that when the underlying distribution is Lognormal 

with parameters pu = 2 and a  = 1.5, the K-M method gives coverage that improves when 

compared to the previous case in Section 4.2.1 but is still smaller than the specified 

confidence (95%). This is due to the fact that the Lognormal distribution with parameters 

pu = 2 and o  = 1.5 is skewed rj = 33.468 but less skewed than the case in Section 4.2.1. 

Figure 4.2.2 is a graph o f the estimated coverage probabilities shown in Table 4.2.2(b).
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Table 4.2.2(a) Summary Statistics o f Bootstrap UCLs of the Mean from a Generated
LN(2, 1.5) with r? = 33.368 and u = 22.7599

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 48.00 7.52 75.17 7.30 683.28
10 20 38.68 3.18 31.79 7.52 162.24
10 30 44.17 8.28 82.82 6.06 782.05
10 40 44.17 8.28 82.82 6.06 782.05
10 50 56.17 5.91 59.11 5.49 371.74
20 10 40.43 2.73 27.31 12.00 153.15
20 20 38.28 2.36 23.56 8.27 121.16
20 30 43.48 3.49 34.86 11.62 193.66
20 40 38.15 2.10 20.99 6.75 116.30
20 50 40.21 2.47 24.65 8.55 168.73
30 10 34.97 2.07 20.65 12.59 168.03
30 20 42.52 3.26 32.63 14.96 211.00
30 30 35.64 2.10 21.04 12.45 159.94
30 40 36.15 1.88 18.83 12.20 104.07
30 50 34.32 1.90 19.01 11.04 122.33
40 10 37.68 2.26 22.56 11.15 142.89
40 20 34.34 1.40 14.03 13.28 89.08
40 30 34.26 1.52 15.21 14.15 83.75
40 40 37.43 2.23 22.32 11.24 147.36
40 50 40.80 3.09 30.87 12.42 236.77
50 10 33.03 2.13 21.27 12.00 181.07
50 20 33.97 1.53 15.27 12.41 83.53
50 30 33.15 1.52 15.16 17.55 112.95
50 40 39.98 3.97 39.71 14.69 404.99
50 50 35.11 2.02 20.20 12.18 192.33

Generated Lognormal Distribution mu = 2 sigma = 1.5

Sample
Size

85- 50

I)

80- 20&
e 75-
I

70-

30

1 ' s. 20/

60-

4010 20 30 50
Nondetects (%)

Figure 4.2.2 Scatterplot o f Estimated Coverage (%) vs Nondetects (%
for Different Sample Size
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Table 4.2.2(b) Estimated Coverage as a Function of Nondetects (%) for
Generated Lognormal Distri rution with ri = 33.368

Sample Size Nondetects (%) Estimated Coverage (%)
10 10 63
10 20 68
10 30 58
10 40 68
10 50 74
20 10 73
20 20 74
20 30 68
20 40 78
20 50 78
30 10 71
30 20 77
30 30 76
30 40 78
30 50 75
40 10 72
40 20 82
40 30 73
40 40 78
40 50 82
50 10 73
50 20 81
50 30 79
50 40 86
50 50 84

4.2.3 LN( 2, 0.5) with 7/ = 1.75 and p = 8.3729 

Input samples are generated from a Lognormal distribution with parameters pu = 2 

and a  = 0.5, and the K-M method combined with the bootstrap method is used. The 

results are summarized in Tables 4.2.3(a) and 4.2.3(b). It can be seen from Table 4.2.3(b) 

that when the underlying distribution is Lognormal with parameters pu = 2 and a  = 0.5, 

the K-M method gives coverage that improves when compared to the previous cases in 

Sections 4.2.1 and 4.2.2. The coverage comes very close to the specified confidence 

(95%). This is due to the fact that the Lognormal distribution with pu = 2 and a  = 0.5 is 

somewhat symmetric but still contains a small positive skewness o f rj =1.75. Figure 4.2.3 

is a graph o f the estimated coverage probabilities shown in Table 4.2.3(b).
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Table 4.2.3(a) Summary Statistics o f Bootstrap UCLs o f the Mean from a Generated
LN(2, 0.5) with r] = 1.75 and p = 8.3729

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 10.051 0.187 1.873 5.459 16.817
10 20 10.508 0.200 1.995 6.987 19.372
10 30 10.627 0.210 2.097 6.680 16.531
10 40 11.396 0.253 2.526 6.686 20.173
10 50 11.988 0.245 2.449 7.806 19.068
20 10 10.011 0.126 1.260 7.615 14.745
20 20 10.317 0.147 1.472 7.105 14.633
20 30 10.267 0.136 1.358 7.554 14.006
20 40 10.375 0.138 1.377 6.924 14.638
20 50 11.046 0.158 1.583 6.852 16.178
30 10 9.745 0.106 1.062 7.188 12.360
30 20 9.602 0.101 1.009 7.137 12.091
30 30 9.785 0.104 1.036 7.861 12.878
30 40 9.936 0.103 1.026 7.509 13.269
30 50 10.354 0.115 1.153 7.587 14.386
40 10 9.6291 0.080 0.8004 7.585 11.683
40 20 9.4913 0.0791 0.7913 7.7725 11.975
40 30 9.811 0.101 1.006 7.253 12.966
40 40 10.147 0.103 1.034 7.858 13.157
40 50 10.426 0.0964 0.964 8.613 13.435
50 10 9.3529 0.0820 0.8203 7.8980 11.429
50 20 9.5451 0.0792 0.7919 7.9804 11.737
50 30 9.7071 0.0847 0.8475 7.5751 12.373
50 40 9.8876 0.0931 0.9311 8.1642 13.156
50 50 10.206 0.0726 0.726 8.555 12.569

Generated Lognormal Distribution mu = 2 s%ma = 0.5

90.à Sample
Size

100-

10

95-

I 20/

;
a  -
1

85-

80-

10 30 40 5020
Nondetects (%)

Figure 4.2.3 Scatterplot of Estimated Coverage (%) vs Nondetects (%)
for Different Sample Size
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Table 4.2.3(b) Estimated Coverage as a Function o f Nondetects (%) for

Sample Size Nondetects (%) Estimated Coverage (%)
10 10 80
10 20 88
10 30 90
10 40 91
10 50 97
20 10 89
20 20 93
20 30 94
20 40 92
20 50 99
30 10 92
30 20 92
30 30 92
30 40 96
30 50 96
40 10 92
40 20 96
40 30 93
40 40 94
40 50 100
50 10 89
50 20 93
50 30 96
50 40 96
50 50 100

4.3 Gamma Distribution

4.3.1 GAM(.05, 1) with r/ = 8.944 and p = .05 

In this section, input samples are generated data set from a Gamma distribution with 

parameters a  = 0.05 and P = 1, and the K-M method combined with the bootstrap method 

is used. The results are summarized in Tables 4.3.1(a) and 4.3.1(b). It is seen from Table 

4.3.1(b) that when the underlying distribution is Gamma with parameters a  = 0.05 and 

P = 1, the K-M method gives coverage a lot smaller than the specified confidence (95%). 

This is due to the fact that the Gamma distribution with parameters a  = 0.05 and p = 1 is 

quite skewed with t] = 8.944. Figure 4.3.1 is a graph of the estimated coverage 

probabilities shown in Table 4.3.1(b).
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Table 4.3.1(a) Summary Statistics o f Bootstrap UCLs of the Mean from a Generated

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 0.1344 0.0357 0.2082 0.000 1.0530
10 20 0.0941 0.0203 0.1183 0.000 0.4790
10 30 0.1043 0.0220 0.1284 0.000 0.4750
10 40 0.1298 0.0292 0.1701 0.000 0.6900
10 50 0.0953 0.0201 0.1170 0.000 0.4840
20 10 0.0885 0.0168 0.0978 0.000 0.4810
20 20 0.1210 0.0185 0.1076 0.008 0.4650
20 30 0.0870 0.0130 0.0759 0.000 0.2740
20 40 0.0862 0.0147 0.0857 0.007 0.3300
20 50 0.0895 0.0154 0.0901 0.001 0.3730
30 10 0.1016 0.0139 0.0810 0.006 0.3690
30 20 0.0921 0.0137 0.0800 0.002 0.3570
30 30 0.1234 0.0152 0.0886 0.009 0.3380
30 40 0.0974 0.0132 0.0767 0.004 0.3490
30 50 0.0947 0.0133 0.0776 0.007 0.3270
40 10 0.08576 0.00832 0.04849 0.010 0.2050
40 20 0.1036 0.0111 0.0649 0.003 0.2640
40 30 0.0848 0.0102 0.0595 0.013 0.2230
40 40 0.1063 0.0123 0.0715 0.012 0.3040
40 50 0.1149 0.0161 0.0938 0.006 0.4530
50 10 0.07935 0.00693 0.04039 0.018 0.2280
50 20 0.09079 0.00931 0.05427 0.010 0.2190
50 30 0.0888 0.0108 0.0627 0.010 0.2380
50 40 0.09091 0.00991 0.05778 0.002 0.2600
50 50 0.1062 0.0107 0.0626 0.019 0.2840

Generated Gamma Distribution aÿha = .05 beta = 1

85 i
Sample

Size80-
50

75-
40

I
2070-

j

I 65-

60-

55-

50-t
10 5020 30 40

Nondetects (%)

Figure 4.3.1 Scatterplot of Estimated Coverage (%) vs Nondetects (%)
for Different Sample Size
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Table 4.3.1(b) Estimated Coverage as a Function o f Nondetects (%) for 
Generated Gamma Distribution with ri = 8.944

S am p le  S iz e N o n d etec ts  (% ) E stim ated  C o v era g e  (% )
10 10 52
10 20 52
10 30 52
10 40 53
10 50 56
20 10 65
20 20 65
20 30 66
20 40 57
20 50 69
30 10 78
30 20 69
30 30 72
30 40 62
30 50 60
40 10 75
40 20 81
40 30 68
40 40 67
40 50 72
50 10 74
50 20 74
50 30 67
50 40 76
50 50 76

4.3.2 GAM( 0.25, 1) with rj = 4 and p = 0.25 

In this section, input samples are generated from a Gamma distribution with 

parameters a  = 0.25 and P = 1, and the K-M method combined with bootstrap is used.

The results are summarized in Tables 4.3.2(a) and 4.3.2(b). It can be seen from Table 

4.3.2(b) that when the underlying distribution is Gamma with parameters a  = 0.25 and 

P = 1, the K-M method gives coverage that improves when compared to the previous case 

in Section 4.3.1 but is still smaller than the specified confidence (95%). This is due to the 

fact that the Gamma distribution with parameters a  = 0.25 and p = 1 is skewed rj = 4, but 

less skewed than the case in Section 4.3.1. Figure 4.3.2 is a graph o f the estimated 

coverage probabilities shown in Table 4.3.2(b).
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Table 4.3.2(a) Summary Statistics o f Bootstrap UCLs of the Mean from a Generated

Sample Size Nondetects (%) Mean SE Mean StDev Min Max
10 10 0.3835 0.0263 0.2633 0.0400 1.427
10 20 0.4541 0.0328 0.3277 0.0250 1.737
10 30 0.4338 0.0258 0.2580 0.0780 1.455
10 40 0.4479 0.0280 0.2800 0.0140 1.324
10 50 0.5471 0.0351 0.3510 0.0760 1.850
20 10 0.4271 0.0207 0.2066 0.0580 1.024
20 20 0.4033 0.0175 0.1751 0.0980 0.931
20 30 0.4629 0.0226 0.2260 0.0290 1.398
20 40 0.4158 0.0209 0.2093 0.1040 1.152
20 50 0.4556 0.0257 0.2573 0.1090 1.789
30 10 0.3825 0.0140 0.1395 0.1420 0.715
30 20 0.3874 0.0131 0.1307 0.1550 0.701
30 30 0.3923 0.0171 0.1711 0.1280 1.002
30 40 0.4013 0.0163 0.1631 0.1310 0.847
30 50 0.4117 0.0150 0.1503 0.1700 0.883
40 10 0.3640 0.0122 0.1222 0.1050 0.641
40 20 0.3797 0.0128 0.1276 0.1270 0.718
40 30 0.3536 0.0116 0.1156 0.1380 0.798
40 40 0.3766 0.0121 0.1214 0.1510 0.752
40 50 0.3860 0.0123 0.1230 0.1560 0.823
50 10 0.34558 0.00939 0.09393 0.17500 0.676
50 20 0.35490 0.00918 0.09178 0.1810 0.586
50 30 0.3659 0.0119 0.1186 0.1640 0.796
50 40 0.36018 0.00864 0.08642 0.18500 0.677
50 50 0.3791 0.0115 0.1149 0.1720 0.735

Generated Gamma Distribution alpha = .25 Beta = I

95-1

90-

50

85-
3 0 ,&

I
1

'.'b.
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w
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65-

Nondetects (%)
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Figure 4.3.2 Scatterplot of Estimated Coverage (%) vs Nondetects (%
for Different Sample Size
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Table 4.3.2(b) Estimated Coverage as a Function of Nondetects
for Generated Gamma Distribution with r/ = 4

Sample Size Nondetects (%) Estimated Coverage (%)
10 10 65
10 20 72
10 30 75
10 40 74
10 50 83
20 10 81
20 20 81
20 30 84
20 40 77
20 50 82
30 10 84
30 20 86
30 30 81
30 40 83
30 50 90
40 10 82
40 20 84
40 30 82
40 40 85
40 50 92
50 10 85
50 20 93
50 30 83
50 40 92
50 50 86

4.3.3 GAM(2, 1) with r] = 1.414 and p = 2 

Input samples are generated from a Gamma distribution with parameters a  = 2 and 

P = 1, and the K-M method combined with the bootstrap method is used. The results are 

summarized in Tables 4.3.3(a) and 4.3.3(b). It is seen from Table 4.3.3(b) that when the 

underlying distribution is Gamma with parameters a  = 2 and p = 1, the K-M method 

gives coverage that improves when compared to the previous cases in Sections 4.3.1 and 

4.3.2. The coverage comes very close to the specified confidence (95%). This is due to 

the fact that the Gamma distribution with parameters a  = 2 and p = 1 is more symmetric 

than the other gamma cases, but still has a positive skewness o f r; = 1.414. Figure 4.2.3 is 

a graph o f the estimated coverage probabilities shown in Table 4.3.3(b).
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Table 4.3.3(a) Summary Statistics o f Bootstrap UCLs of the Mean from a Generated

Sample Size Nondetects (%) Mean SE  Mean StDev Min Max
10 10 2.6856 0.0652 0.6516 1.1590 4.2880
10 20 2.5794 0.0617 0.6173 1.3370 4.2120
10 30 2.8561 0.0696 0.6960 1.3600 4.6540
10 40 2.8071 0.0697 0.6971 1.3170 4.9470
10 50 3.1074 0.0826 0.8259 1.4750 5.8610
20 10 2.4515 0.0411 0.4112 1.5550 3.6570
20 20 2.5122 0.0426 0.4263 1.6270 3.5640
20 30 2.6237 0.0444 0.4436 1.5520 3.8110
20 40 2.6433 0.0460 0.4597 1.6930 4.0400
20 50 2.8359 0.0480 0.4798 1.7440 4.6540
30 10 2.4456 0.0363 0.3628 1.6560 3.4330
30 20 2.4386 0.0296 0.2959 1.7520 3.6140
30 30 2.4761 0.0302 0.3017 1.7910 3.3650
30 40 2.5767 0.0351 0.3512 1.7750 3.3990
30 50 2.6457 0.0321 0.3212 1.7630 3.3690
40 10 2.3470 0.0280 0.2798 1.5480 2.9910
40 20 2.3410 0.0267 0.2670 1.7810 3.0070
40 30 2.4252 0.0295 0.2953 1.8490 3.3320
40 40 2.5647 0.0297 0.2966 1.9460 3.3280
40 50 2.7015 0.0295 0.2952 1.9680 3.5650
50 10 2.3358 0.0242 0.2416 1.7040 3.0200
50 20 2.3554 0.0253 0.2526 1.7570 3.0840
50 30 2.3855 0.0231 0.2306 1.7790 2.9830
50 40 2.4879 0.0247 0.2466 1.8810 3.2130
50 50 2.6579 0.0296 0.2957 1.8990 3.4440

Generated Gamma Distribution alpha = 2 Beta = 1

100 i I Sample
Size

95- 10

2
iu
I 90-

u
85-

10 20 30 40 50
Nondetects (%)

Figure 4.3.3 Scatterplot of Estimated Coverage (%) vs Nondetects (%)
for Different Sample Size
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Table 4.3.3(b) Estimated Coverage as a Function o f Nondetects (%)

Sample Size Nondetects (%) Estimated Coverage (%)
10 10 86
10 20 83
10 30 87
10 40 90
10 50 94
20 10 91
20 20 91
20 30 91
20 40 96
20 50 97
30 10 89
30 20 96
30 30 96
30 40 96
30 50 98
40 10 90
40 20 91
40 30 90
40 40 99
40 50 99
50 10 95
50 20 93
50 30 94
50 40 99
50 50 99

4.4 A Look At How Skewness Affects Estimated Coverage

After looking at the results from the simulation experiment, 1 began to see a strong 

relation between the coverage and the skewness o f the input sample’s probability 

distribution. When the input sample is generated from a probability distribution that is 

symmetric, the coverage is more or less at the specifed 95%. By generating a sample 

input from a proability distribution that has a positive skewness, the coverage begins to 

decrease. The higher the skewness the poorer the coverage. Table 4.4 shows the 

Estimated Coverage for the different probability distributions with there respective 

skewness that the input samples were generated from. The order is in increasing 

skewness from left to right.
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CHAPTER 5 

CONCLUSION

There are a number o f methods implemented for interpreting and analyzing 

environmental data that fall below the DL (nondetects). The following two are the most 

common methods: ignoring the observations that fall below the DL and the substitution 

method.

It has been proposed in many environmental articles as well as the recently published 

book, Nondetects and Data Analvsis: Statistics for Censored Environmental Data by 

Dennis R. Helsel, to use the K-M method for estimating summary statisties on 

environmental samples. The book recommends the use o f the K-M for any sized left- 

censored environmental data sets as long as the percentage of nondetects is less than 

50%.

The simulation experiments eondueted in this thesis show that the K-M method works 

well as long as the population distribution is symmetric. After simulating an input sample 

from a normal distribution, three different skewed lognormal distributions, and three 

different skewed gamma distributions with sample sizes ranging from N = 10 to N =50 

and nondetects ranging from D = 10% to D = 50% the simulation experiment shows the 

following:

1. The K-M method combined with bootstrap, ean be used to get a confidence interval

for the mean of a population.
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2. The coverage o f this confidence is at least as large as the specified coverage when 

the data distribution is symmetric (skewness = 0).

3. The coverage begins to decrease as skewness increases.

4. The coverage is much lower than the specified confidence (95%) when skewness is 

high.

Therefore, in order to use the K-M method on left-censored environmental data, not 

only does the data set need to be transformed to a right-censored data set, but it must 

come from a population whose probability distribution is somewhat symmetric.

This experiment was unable to be evaluated analytically. The problem with estimating 

the mean o f a data set that is heavily skewed with a high percentage o f accuracy can be 

seen from the graph below. Below is a graph o f a lognormal distribution with t| = 11,824 

and p = 168. The mean is found on the right-hand tail o f the distribution making it near 

impossible to accurately estimate it analytically. Considering that many o f the 

environmental data sets are heavily skewed, estimating the mean is still a problem for 

environmental scientists.

LN(2,2.5) with Skewness = 11,824 and Mean s  168.174
0.30-

0.25

0.20-

0.15-

0 .10-

0.05

0.00-

100

Figure 5 Estimated Distribution o f LN(2, 2.5)
with T/ = 11,824 and p = 168.174
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APPENDIX I

SAS SOURCE CODE 

A copy o f the SAS code used to obtain the results in Chapter 4 are presented below. Due 

to limited resources, the program was edited and run for each distribution discussed in 

Chapter 3.

/ * * * * * * * G e n e r a t e d  Gamma D i s t r i b u t i o n  w /  b e t a  = 1 a l p h a  = 2 * * * * * * * /

%LET b e t a  = 1;
%LET a l p h a  = 2 ;

/ * * * * B o o t t e s t  M a c r o * * * * /

%macro b o o t t e s t ( s i z e = , p e r c e n t _ O f _ D e t e c t s = ) ;

d a t a  g e t _ v a l u e ;
num = k s i z e *  ^ p e r c e n t  O f D e t e c t s  ; 
numb = .0 1 * n u m ;
CALL SYMPUT( ' n u m b e r ' , n u m b ) ; 

r u n ;

/ * * * 1 0 0  B o o t  S a m p l e s  L o o p * * * /

%D0 i  = 1 %tO 100;

/ * * * * S a m p l i n g  w /  R e p l a c e m e n t  From G e n e r a t e d  D a t a  S e t * * * * /  

d a t a  b o o t ;
s e t  c o m p u t e r _ g e n e r a t e d  (FIRSTOBS = 1 OBS = & n u m b e r ) ; 
c e n s o r  = 0 ; 

r u n ;

d a t a  b o o t a ;
%do j  = 1 %to ( & s iz e - S c n u m b e r ) ;

k  = i n t ( r a n u n i ( 0 ) * ( & s i z e - & n u m b e r ) ) + & n u m b er+ l;  
s e t  c o m p u t e r e g e n e r a t e d  p o i n t  = k ;  
i f  _ e r r o r _  t h e n  a b o r t  ; 
o u t p u t  ;

%end;
s t o p ;

ru n ;
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d a t a  b o o t a ;
s e t  b o o t a  (KEEP = x ) ; 
c e n s o r  = 1 ;
p r o c  s o r t  d a t a  = b o o t a ; 
b y  x ;

p r o c  a p p e n d  b a s e = b o o t  d a t a = b o o t a ;  
r u n ;

/ * * * T r a n s f o r m  D a t a  t o  R i g h t - C e n s o r e d * * * /

d a t a  b o o t  ; 
s e t  b o o t  ;
X  =  1 6 0  -  X ;  

p r o c  s o r t  d a t a  = b o o t ;  
b y  x ;  

r u n ;

/ *  * * Run K a p l a n  M e i e r *  * * /

PROC LIFETEST d a t a  = b o o t  m e t h o d  = km; 
t i m e  x * c e n s o r ( 0 ) ;  
o d s  o u t p u t  M e a n s = m e a n s & i; 

r u n ;

%end; / *  * * END OF i  = 1 0 0  B o o t  S a m p l e s * * * /

%do j = 2 %to 1 0 0  ;
p r o c  a p p e n d  b a s e  = m e a n s l  d a t a  = m e a n s & j ; 

%end; 
r u n ;

%mend b o o t t e s t ;  /* * * E N D  OF B o o t t e s t  M a c r o * * * /

/ * * * C r e a t i n g  t h e  U C L s * * * /

%macro t e s t ( s i z e = ,  p e r c e n t _ O f _ D e t e c t s = ) ;

/ * * * 1 0 0  UCLS L o o p * * * /

%D0 t  = 1 %to 100;

d a t a  c o m p u t e r _ g e n e r a t e d ;  
d o  z = 1 t o  S c s iz e ;
X  = S cb eta * ra n g a m  ( 0 ,  & a lp h a )  ;
o u t p u t  ;
e n d ;
p r o c  s o r t  d a t a  = c o m p u t e r _ g e n e r a t e d ;  
b y  x ;  

r u n ;

d a t a  c o m p u t e r _ g e n e r a t e d ;
s e t  c o m p u t e r _ g e n e r a t e d  (KEEP = x ) ; 

r u n  ;

/ * * * C a l l  t h e  B o o t t e s t  M a c r o * * * /
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i b o o t t e s t  ( s i z e = & s a m p l e ,  p e r c e n t _ O f _ D e t e c t s = & ; d e t e c t s )

d a t a  m e a n s l ;  
s e t  m e a n s l ;
Mean = 1 6 0  - M ean;  
p r o c  s o r t  d a t a  = m e a n s l ;  
b y  M ean;

d a t a  m e a n s l  (RENAME = (Mean = U p p e r C L ) ) ;  
s e t  m e a n s l ;

/* * * 9 5 %  UCL o f  ICO B o o t  S a m p l e s * * * /

d a t a  UCL&t;
s e t  m e a n s l  (FIRSTOBS = 95 O B S = 9 5 ) ; 

r u n ;

dm ' o u t  ; c l e a r  ; l o g ; c l e a r  ; r e s u l t s  ; c l e a r ' ;

%end; /* * * E N D  OF 1 0 0  U C L s * * * /

%do q  = 2 %to 1 0 0 ;
p r o c  a p p e n d  b a s e  = UCLl d a t a  = UCL&q;

%end;

r u n ;

%mend t e s t ;  / * * * E n d  o f  T e s t  M a c r o * * * /

%macro results;

/* * * T E S T  DIFFERENT SAMPLE S I Z E * * * /

%D0 s a m p l e  = 10 %to 50 %BY 10;

/* * * T E S T  DIFFERENT PERCENT OF NONDETECTS * * * /

%D0 d e t e c t s  = 10 %to 50 %BY 10;

/***C A L L  TEST MACRO***/

%test( s i z e = & s a m p l e , p e r c e n t _ O f _ D e t e c t s = & d e t e c t s )

d a t a  UCLl;
s e t  UCLl (KEEP = U p p e r C L ) ;
PROC MEANS DATA = U C L l;
v a r  U pperC L ;
p r o c  p r i n t  d a t a  = U C L l;
t i t l e  "& s a m p le " '_ U C L _ ' "& d e t e c t s ";

r u n ;

d a t a  gammaZ. U C L s & s a m p l e & d e t e c t s ; 
s e t  UCLl;  
c o u n t  = 0 ;
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I F  U p p e r CL > ( & a lp h a * & b e t a )  THEN c o u n t  = 1; 
t o t a l  + c o u n t  ;
p r o c  p r i n t  d a t a  = g a m m a 2 .U C L s & s a m p le & d e t e c t s ;  
t i t l e  "Stsample" '_UCL_' " & d e t e c t s " ;

d a t a  gam m a2 . G o o d _ B a d _ & s a m p l e & d e t e c t s ;
s e t  gamma2 .U C L s & s a m p le S c d e t e c t s  (FIRSTOBS = 100 DBS = 100);  
I F  t o t a l  >= 95 THEN R e s u l t  = ' G o o d ' ;
ELSE R e s u l t  = 'B A D ';
p r o c  p r i n t  d a t a  = gam m a2 . G o o d _ B a d _ & s a m p l e & d e t e c t s  n o o b s ;  
v a r  R e s u l t  t o t a l ;
t i t l e  "Scsample" ' _ U C L _ R e s u l t s  ' " & d e t e c t s " ;  

r u n ;

%end; /* * * E N D  OF NONDETECT LO O P***/

%end; /* * * E N D  OF SAMPLE SIZE LO OP***/

%mend r e s u l t s ;  /***E N D  RESULTS MACRO***/

^results /***C A L L  RESULTS MACRO***/ 

r u n ;

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[1] Cleves, Mario A., Gould, William W., and Gutierrez, Roberto G. An Introduction to
Survival Analyst Using Stat. College Station, Texas. Stata Corporation. 2004

[2] Famham, Irene M., Singh, Ashok K., Stetzenback, Klaus J., and Johannesson, Kevin
“Treatment o f Nondetects in Multivariate Analysis of Groundwater Geochemistry 
Data.” Chemometrics and Intelligent Laboratory Systems. Vol. 60, p. 265-281, 
Jan. 2002

[3] Helsel, Dennis R. Nondetects and Data Analysis: Statistics for Censored
Environmental Data. New Jersey. John Wiley & Sons. 2005

[4] Kaplan, E. L., and Meier, P. “Nonparametric Estimation From Incomplete
Observations.” Journal o f the American Statistical Association. Vol. 53, 
p. 457-481, 1958

[5] Rubinstein, Reuven Y. Simulation and the Monte Carlo Method. New York. John
Wiley & Sons. 1981

[6] SAS Institute Inc. 2004. Base SAS® 9.1 Procedures Guide. Cary, NC: SAS Institute
Inc.

[7] Singh, Anita, Nocerino, John. “Robust Estimation of Mean and Variance Using
Environmental Data Sets with Below Detection Limit Observations.” 
Chemometrics and Intelligent Laboratory Systems. Vol. 60, p. 69-86, Jan. 2002

[8] Smith, Peter J. Analysis o f Failure and Survival Data. Boca Raton, Florida. Chapman
& Hall/CRC. 2002

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

Graduate College 
University o f Nevada, Las Vegas

Violeta Graciela Hennessey

Local Address:
1329 Del Mar
Las Vegas, Nevada 89119

Home Address:
14702 Marklena Lane 
Cypress, Texas 77429

Degree:
Bachelor o f Science, Computer Science, 2003 
Texas State University

Thesis Title: An Investigation of the Kaplan-Meier Upper Confidence Limit for the 
Population Mean From Environmental Samples with Nondetects

Thesis Examination Committee:
Chairperson, Dr. Ashok K. Singh, Ph.D.
Committee Member, Dr. Rohan Dalpatadu, Ph.D.
Committee Member, Dr. Hokwon Cho, Ph.D.
Graduate Faculty Representative, Dr. Laxmi Gewali, Ph.D.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	An investigation of the Kaplan-Meier Upper Confidence Limit for the population mean from environmental samples with nondetects
	Repository Citation

	tmp.1534456447.pdf.DisJA

