
UNLV Retrospective Theses & Dissertations

1-1-2005

Distributed self-(star) minimum connected sensor cover Distributed self-(star) minimum connected sensor cover

algorithms algorithms

Rajesh Patel
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Patel, Rajesh, "Distributed self-(star) minimum connected sensor cover algorithms" (2005). UNLV
Retrospective Theses & Dissertations. 1899.
http://dx.doi.org/10.25669/uf9e-iscj

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F1899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/uf9e-iscj
mailto:digitalscholarship@unlv.edu

DISTRIBUTED SELF-* MINIMUM CONNECTED

SENSOR COVER ALGORITHMS

by

Rajesh Patel

Bachelor of Science
University of Southern California

1991

Bachelor of Science
University of Nevada, Las Vegas

1999

A thesis submitted in partial fulfillment
of the requirements for the

M aster of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1435630

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1435630

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IJNTV Thesis Approval
The Graduate College
University of N evada, Las Vegas

OCTOBER lOTH . 2Q05

The Thesis prepared by

RAJESH PATEL

Entitled

DISTRIBUTED SELF-*MINIMUM CONNECTED SENSOR COVER ALGORITHMS

is approved in partial fulfillm ent of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Examination Committee Co-Chair Examination Committee Chair

- L V vv

Exoxhination Committee Member

CM, a,
Dean o f the Graduate College

ination Committee Member

i/A
Gradujte Faculty Representative

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Distributed Self-* Minimum Connected
Sensor Cover Algorithms

by

Rajesh Patel

Dr. Ajoy K. Datta, Examination Committee Chair
School of Computer Science

University of Nevada, Las Vegas

Dr. Maria Cradinariu, Examination Committee Co-Chair
IRISA, Campus de Beaulieu, France

Wireless ad-hoc sensor networks are composed of a large number of tiny sensors

with embedded microprocessors, that have very Umited resources and yet must coor

dinate amongst themselves to form a connected network. Every sensor has a certain

sensing radius, Rs, within which it is capable of “covering” a particular region by

detecting or gathering certain data. Every sensor also has a communication radius,

Rc, within which it is capable of sending or receiving data.

Civen a query over a sensor network, the minimum connected sensor cover prob

lem is to select a minimum, or nearly minimum, set of sensors, called a minimum

connected sensor cover, such that the selected sensors cover the query region, and

form a connected network amongst themselves. In this thesis, we use present three

fully distributed, strictly localized, scalable, self-* solutions to the minimum connected

sensor cover problem.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ... iü

LIST OF F IC U R E S .. vi

ACKNOWLEDCEMENTS .. vii

CHAPTER 1 INTRODUCTION ... 1
C o n tribu tions.. 3
Outline of the T h e s is ... 4

CHAPTER 2 WIRELESS N E T W O R K S .. 5
Mobile Wireless N e tw o rk s ... 5

Infrastructured/Cellular Wireless N etw orks... 6
Infrastructureless/Wireless Ad Hoc N etw orks.. 6

Wireless Sensor Networks ... 8
Overview... 8
Sensor Network Architecture and A pplications.. 9
Power A w aren ess ... 11
Data D issem ination.. 11
Time synchronization... 13

CHAPTER 3 SELF-* S Y S T E M S ... 15
Overview ... 15
Ubiquitous/Pervasive Computing 17
Self-stabilizing System s................................ 17

CHAPTER 4 MINIMUM CONNECTED SENSOR COVER PROBLEM . 19
M otivation.. 19
Related W o r k .. 20
Preliminaries .. 23

M o d e l ... 23
Self-stabilizing P rogram .. 26
Problem Specification... 27

CHAPTER 5 FIRST M C S C ALCORITHM .. 28
Description of First M C S C Algorithm and Data Structures U s e d 28
Predicates Used in First M C S C A lg o r ith m ... 29
Normal Execution of First M C S C A lg o r ith m .. 30
Faults and Recovery of First M C S C A lg o rith m .. 32
First Minimum Connected Sensor Cover Algorithm 34

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Correctness of First M .C SG A lgorithm .. 36
Proof of C losure.. 36
Proof of Convergence.. 44
Proof of S e lf-* ... 46

Self-configuring ... 46
Self-healing... 46
S e lf-* ... 48

CHAPTER 6 SECOND A L C O R IT H M ... 49
Description of Second M C S C Algorithm and Data Structures Used 49
Predicates Used in Second M C S C A lg o r ith m ... 49
Normal Execution of Second M C S C A lg o rith m .. 50
Faults and Recovery of Second M C S C A lgorithm ... 51
Second Minimum Connected Sensor Cover A lg o rith m 54
Correctness of Second M C S C A lgorithm ... 56

Proof of C losure.. 56
Proof of Convergence.. 60
Proof of S e lf-* ... 62

Self-configuring................................ 62
Self-healing... 63
S e lf-* ... 66

CHAPTER 7 THIRD A L C O R IT H M ... 66
Description of Third M C S C Algorithm and D ata Structures Used 66
Predicates Used in Third M C S C A lgo rithm .. 66
Normal Execution of Third M C S C A lgorithm ... 68
Faults and Recovery of Third M C S C A lg o r ith m ... 69
Third Minimum Connected Sensor Cover A lgorithm 71
Correctness of Third M C S C A lg o r ith m ... 73

Proof of C losure.. 73
Proof of Convergence.. 78
Proof of S elf-* ... 80

Self-configuring.. 80
Self-healing... 81
S e lf-* ... 83

CHAPTER 8 SIMULATION AND R E S U L T S ... 84
Discussion of R e s u lts ... 84

CHAPTER 9 CONCLUSION AND FUTURE RESEARCH............................. 103

BIBLIOCRAPHY ..106

V I T A .. I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1 Case 1 (Two uncovered gap regions between 4 chosen sensors) . 39
Figure 2 Case 1 {AB > R e) .. 39
Figure 3 Case 2 (An “optimal” MIS in which Sensor A and Sensor B are

not neighbors).. 40
Figure 4 Case 3 (A “suboptimal” MIS in which Sensor A and Sensor B

are not neighbors) .. 42
Figure 5 Graphs of Experimental R e s u l t s ... 94
Figure 6 Screenshot of Simulation of Algorithm 1 When the Radius of

Communication is 8 .. 95
Figure 7 Screenshot of Simulation of Algorithm 2 When the Radius of

Communication is 8 .. 96
Figure 8 Screenshot of Simulation of Algorithm 3 When the Radius of

Communication is 8 .. 97
Figure 9 Screenshot of Simulation of Self-Containment of Algorithm 1

W ith 2 Neighboring F a u l t s ... 98
Figure 10 Screenshot of Simulation of Self-Containment of Algorithm 2

W ith 2 Neighboring F a u l t s ... 99
Figure 11 Screenshot of Simulation of Self-Containment of Algorithm 3

W ith 2 Neighboring F a u l t s .. 100
Figure 12 Screenshot of Algorithm I ’s Self-Containment Simulation W ith

2 Non-Neighboring Faults .. 101
Figure 13 Screenshot of Algorithm 2’s Self-Containment Simulation With

2 Non-Neighboring Faults .. 102

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to offer a special thanks to my thesis advisor, Dr. Ajoy K. Datta,

for chairing my committee and advising me throughout my thesis work. His pa

tience, support, enthusiasm, and most importantly, his confidence in my abilities,

have helped me greatly throughout my graduate study. I would also like to offer a

special thanks to the co-chair of my examination committee, Dr. Maria Cradinariu at

IRISA/Universite Rennes 1, France, for her guidance and numerous contributions to

this research. The support and advise offered by her for this thesis research was very

valuable and important. I am also very grateful to Dr. John Minor, Dr. Yoohwan

Kim, and Dr. Venkatesan Muthukumar for their participation in my committee.

This thesis is dedicated to my parents and family. Their support, love, and faith

in my abilities were very important for completing this thesis research.

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Recent advances in microprocessor, memory, and wireless communication technol

ogy have enabled the production of tiny networked sensors which wiU revolutionalize

information gathering and processing in both urban environments and inhospitable

terrain. These wireless ad hoc sensor networks [21] have many applications and

consist of a large number of tiny sensing devices with very Umited resources that

must coordinate amongst themselves to gather, process, and communicate informa

tion about their environments. A research team at the University of CaUfornia at

Berkeley is attempting to create a networked sensor that is the size of a few cubic mil

limeters [42]. Once produced, hundreds of thousands of these sensors, which can be

collectively referred to as “smart-dust” , may be randomly deployed from an aircraft,

over a certain region of interest, such as a battlefield. These DARPA smart-dust

prototypes use off-the-shelf components. DARPA also supplied the funding to pro

duce an open-source embedded platform for such wireless sensors, called the Network

Embedded Systems Technology Program (NEST) [4].

Because these networked sensors are often densely deployed and have limited

battery power, in a sensor network there may be some failing sensors or sensors

that have merely exhausted their energy supply. However, it may be impossible or

infeasible to recharge sensors once they have been deployed, especially if they have

been deployed in an inhospitable or physically unreachable terrain. Therefore, since

the fundamental constraint on a networked sensor is its energy consumption, only

some of the sensors within a particular sensing region, or query region, should be in

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an active state.

In addition to this, the topology of a sensor network may change very frequently,

due to malfunctions or changes in the position or available energy of sensors. There

fore, deploying a pre-conhgured network of a large number of sensors is impractical.

Taking these constraints into consideration, a sensor network must be self-configuring

and self-maintaining or self-heahng. The term self-* has been used to describe prop

erties such as self-organizing, self-configuring, self-healing, etc. In this thesis, we

will present a self-stabilizing solution to the important problem of minimizing en

ergy consumption within a sensor network. We will then show that this solution is

a self-* solution. In a self-stabihzing system, every computation, upon starting from

an arbitrary state, eventually reaches a state where the computation satisfies the

problem specification in a finite number of steps.

A sensor network can be modeled as a graph G(V, E), where every sensor in

the network may be represented by a vertex in the graph. Since every sensor has

a certain radius within which it can sense data with a particular confidence level,

also called the sensor’s sensing radius, every vertex is also associated with a disk

centered at this vertex, which is called the sensor’s sensing disk. A group of sensors

is said to cover a certain region when the union of the sensing disks of these sensors

completely cover this region. Also, since every sensor has a certain range within

which it is capable of sending or receiving data, called the sensor’s communication

radius, every vertex is also associated with a transmission disk that is centered at

this vertex. Two sensors are neighbors and are said to be connected if and only if

each sensor is located within each other’s transmission disk.

Within a sensor network, a query may be sent to sense certain events or data over

a particular query region. Given such a query over a sensor network, the minimum

connected sensor cover problem is to select a minimum, or nearly minimum, set of

sensors called a minimum connected sensor cover, such that the selected sensors cover

the query region, and form a connected network amongst themselves. In its general

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form, this problem is known to be NP-hard [26, 36].

By definition, a dominating set is a set of vertices such tha t every vertex in the

graph is either in the dominating set, or adjacent to a vertex in the dominating

set. A connected dominating set, CDS, is a dominating set which is also a connected

subgraph. This implies that every node in graph G(V,E) fies within the transmission

disk of some node in the CDS. Therefore, if the communication radius of a sensor

is equal to its sensing radius, and the nodes of the graph are the sensors, then for a

densely populated graph, the union of the sensing radii of all nodes in a connected

dominating set whose sensing radii intersect with some portion of the query region,

will be sufficient to cover the entire query region. In addition to this, a minimum

connected dominating set is a connected dominating set of minimal cardinality. Thus

if the sensing radius of a sensor is equal to its communication radius, then the

minimum connected sensor cover problem can be solved by selecting a minimum, or

nearly minimum, set of sensors whose sensing ranges intersect with the query region,

and that form a minimum connected dominating set. In doing so, the sensors in this

set also cover the query region, can (directly or indirectly) communicate with each

other, and can minimize the usage of energy.

1.1 Contributions

The topic of this thesis research is the design of an energy-efficient protocol for

covering a query region in wireless sensor networks. To this end, two main areas

will be discussed, the design of wireless networks and the design of self-* systems.

The first contribution of this research is the study of various aspects of wireless

sensor networks. We examine current solutions to many important problems in

this area, such as data dissemination, data aggregation, media access methods, and

power awareness. The second contribution is a discussion if self-* systems. Ubiq

uitous / pervasive computing, IBM’s autonomic computing, self-repairing computers,

and self-stabilizing systems will be discussed. We will also examine the link between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wireless sensor networks and self-* systems.

The third and most im portant contribution of this research is to design a self-

* power-efficient solution to the connected sensor cover problem. This will be a

localized, distributed solution to the connected sensor cover problem. In this context,

a locahzed solution means th a t sensor nodes communicate only with their neighbors.

Localized solutions in large networks are desirable due to their high rehability and

scalability. We used the self-stabilization paradigm to implement the self-* properties

of our solution. Our solution can handle different types of faults including node and

link (wireless communication) failures, power level changes, and memory corruption.

1.2 Outline of the Thesis

We start with a discussion of the design of wireless networks in Chapter 2. This

includes the basic idea of mobile wireless networks such as mobile ad-hoc networks

and cellular networks. We then discuss wireless sensor networks. In Chapter 3, we

discuss self-* systems. We include a description of many types of fault-tolerant sys

tems in the context of the self-* framework. In Chapter 4 we state the motivation of

this research, describe some results in related areas, describe the model and program

used in our contribution, and introduce the connected sensor cover problem. The

main contribution of this thesis is presented in Chapters 5, 6, and 7, where we present

three self-stabilizing solutions to the problem, including proofs of their correctness.

The first algorithm is presented in Chapter 5, the second M .C SC algorithm

is presented in Chapter 6, and the third M C S C algorithm is presented in Chapter

7. A discussion of the complexity of the algorithms, simulation results, and other

properties are included in Chapter 8. Finally, we conclude and present some ideas

for future research in Chapter 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

WIRELESS NETWORKS
In this chapter, we will present various concepts and issues related to wireless

sensor networks. However, we will first give a brief overview of wireless networks,

mobile wireless networks, and ad-hoc wireless networks as background information.

A wireless network is a network of telephones or computing devices that use ra

dio transmission as their carrier or physical layer. Examples of wireless networks are

wireless LAN (local area networks), wireless PAN (personal area networks), UMTS

(universal mobile telephone service), and D-AMPS (digital AMPS). All wireless net

works use the transmission of radio signals to send or receive data from one device

in the network to another.

2.1 Mobile Wireless Networks
The recent growth in popularity of mobile computing has led to many technological

advances in this field and has resulted in the rapid development of small, inexpensive,

and powerful computing devices such as mobile phones. Personal Digital Assistants

(PDA’s), various handheld devices, and laptop computers. The ease of mobility

of these units makes it both critical and challenging to maintain communication

amongst the various types of such mobile devices. However, the recent advances in

wireless communication technology have enabled wireless mobile units to communi

cate with each other in various ways. The aim of such wireless communication is to

enable users to communicate and use computing devices without being tethered to an

information source. There are two main classifications of mobile wireless networks,

infrastructured (cellular) and infrastructureless (ad hoc) wireless networks [7].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 Infrastructured/Cellular Wireless Networks

An infrastructured wireless network is a wireless network in which access points are

distributed along a wired backbone, and mobile devices connect to each other by

communicating directly with these access points. These access points do not move

and are present just to act as routers and forward packets for other nodes, thus al

lowing the mobile nodes to save power. Also, the access points are usually connected

to the fixed network infrastructure or to the Internet. Mobile nodes that are within

the coverage area of an access point are able to send and receive signals to that

access point, and can thus communicate directly with that access point. However,

as a mobile node moves out of the coverage area of one access point and into that

of another, it must cease communication with the old access point and begin com

munication with the new access point. This process is called a handoff, and should

be completely undetectable to the user [43]. A few examples of infrastructured wire

less networks are Wireless Local Area Network (WLAN), cellular networks. Wireless

Local Loop (WLL), and Global System for Mobile Communications (GSM).

Infrastructured wireless networks are typically used in locations where access

points can be easily installed and connected to an existing network, such as office

buildings and college campuses.

2.1.2 Infrastructureless/Ad Hoc Wireless Networks

There may be many instances in which mobile users may need to communicate

with each other, and yet a fixed wired infrastructure may not be available. One

example may be disaster recovery, in which the entire communication infrastructure

may be destroyed, and restarting communication quickly is crucial. An infrastructure

can be re-established in hours by using a mobile ad-hoc network, instead of weeks,

as is required by a wired infrastructure. Such an interconnection between mobile

computers does not require any pre-planned infrastructure, such as a base station,

and is called an ad-hoc network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An ad-hoc network is a network comprised solely of mobile wireless nodes. There

is no wired backbone, and nodes communicate directly with one another and can

also serve as relays for data packet forwarding. Such a network is often called a

Mobile Ad-Hoc Network (MANET) [23, 3] and represents truly pervasive/ubiquitous

computing, because in many situations, information exchange among mobile units

cannot rely on any fixed network infrastructure but on the rapid configuration of

wireless connections on the fly [45].

Features of MANET include:

1. Dynamic network topology. Nodes are mobile; therefore, network topology

may change rapidly and unpredictably, and the connectivity among the nodes

may vary with time.

2. Multi-hop routing. Routing algorithms can be single-hop and multi-hop. When

dehvering data packets from a source to a destination that is out of the direct

wireless range of the source, packets may be forwarded via one or more inter

mediate nodes.

3. Fluctuating link capacity. The channel over which the nodes communicate is

subject to fading, noise, and interference, and has less bandwidth than a wired

network.

MANETS can be used in many types of apphcations, and can range from large-

scale, mobile, highly dynamic networks to small, static, power-constrained networks.

A few examples of such applications can be personal area network (PAN), commercial

sector, military battlefleld, and local level.

There are, however, several challenges th a t must be examined carefully before a

widespread commercial deployment can be expected, including routing, security and

rehabihty, quality of service, internetworking, and power consumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Wireless Sensor Networks

An overview of sensor nodes and sensor networks, as well as some key issues and

concepts related to sensor networks, will be offered in this section. Rather than

writing a detailed summary of related work, we will briefly describe some key issues

with some references to these issues that are present in the literature.

2.2.1 Overview

Recent technological advancements have made it possible to deploy small, cheap,

low-power, distributed sensing devices, which are capable of wireless communication

and limited processing. These devices are called sensor nodes, and are very different

from traditional desktop and server systems [30]. A collection of sensor nodes which

co-ordinate amongst themselves to perform a larger sensing task is known as a sensor

network. These sensor networks are composed of a large number of sensors and can

measure a given aspect of their physical environment in great detail. The nodes are

usually static; however, some or all nodes could be mobile.

Sensor nodes have the following constraints [54]:

1. Communication: The wireless connection between sensor nodes provides a lim

ited quality of service due to latency with high variance, Umited bandwidth,

and frequently dropped packets.

2. Computation: Sensor nodes have limited computing power and memory.

3. Power consumption: Sensor nodes have a limited energy supply. Also, since

sensor nodes may be deployed in inhospitable or inaccessible terrain, replacing

or recharging sensors may be infeasible.

4. Uncertainty in sensor readings: Signals detected at physical sensors have an

inherent uncertainty. They may contain environmental noise or may be biased

due to sensor location.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Density: Sensor nodes are densely deployed and can range in density from a

few sensor nodes to a few hundred sensor nodes in a region.

In addition to this, due to sensor node failure or movement of nodes, the topology

of a sensor network may change frequently. A sensor network, therefore, should be

self-healing, as weU as self-organizing.

Networked sensors are both generators of da ta and routers. A sensor node can

aggregrate such data. Source sensors detect critical events and are usually located

where environmental events, that are of interest, occur. S ink nodes are coimected

to other networks, such as the Internet, and provide remote access to data from the

sensor network. These sinks are monitoring terminals and may be mobile PDA’s,

laptops, or static access points.

2.2.2 Sensor Network Architecture and Applications

Each sensor node in a sensor network is equipped with a variety of sensors, including

acoustic, seismic, still/motion videocamera, infrared, etc. Networked sensors can be

organized in a cluster so that a locally occurring event can be detected by most, if

not all, of the nodes in the cluster. Each cluster node can have enough processing

power to process the data it collects, and broadcast any interpretation of this data

to other nodes in the cluster. One node can act as a clusterhead, and it may also

contain a longer range radio tha t uses a protocol such as IEEE 802.1 Bluetooth [5].

Many sensor network applications that change dynamically, such as battlefield

and commercial inventory and distribution systems, must be controlled using adap

tive methods that use real-time information gathered from integrated low-powered

sensors and mobile devices deployed throughout the application. Despite dynamic

changes in the topology of th sensor network, critical real-time information still

must be disseminated dynamically from mobile sensor nodes through the network

infrastructure to components th a t dynamically control the re-structuring and re

optimization of network operation based upon newly available information. In [37],

three fundamental mechanisms upon which other networking and system services

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may be spontaneously specified are service lookup, sensor node composition, and

dynamic adaptation. A distributed implementation of these lookup servers, com

position servers, and adaptation servers can be spontaneously defined in the sensor

network. Different protocols for a certain service may be specified for different ap

plications, and these protocols may interoperate through these three fundamental

mechanisms provided in the sensor network architecture.

There are also three mobility-aware key system layers in the architecture of self

organizing sensor networks:

1. Application systems layer. This is the sensor information processing layer and

collaborative signal processing layer.

2. Configurable distributed systems layer. This layer provides distributed services

to the application systems.

3. Sensor networking and physical devices layer. This layer routes messages

through the network and consists of the sensor nodes and other devices that

generate the raw data.

The Smart Dust project at Berkeley [33, 42] exemplifies another system architec

ture in sensor networks. Its goal is to design a networked sensor tha t is limited in size

and power resources. This sensor device, also known as smart dust, requires sensing,

communication, and computing hardware, as well as a power supply, to occupy the

space of a few cubic millimeters. The processor used is an ATMEL [2] 4MHz, 8bit

micro-controller with 8 Kbytes of program memory and 512 bytes of data memory.

It includes a radio with a single channel RF transceiver operating at 916 MHz and

capable of transm itting at 10 Kbps using on-off-keying encoding [30, 51]. In [29],

researchers introduced a tiny microthreaded OS, called Tiny OS, that provides the

system software support to operate and manage this class of tiny smart devices.

Regardless of the architecture of a sensor network, there are many applications

for such devices, such as healthcare, home, commercial, and military apphcations.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other applications include environmental monitoring (e.g., habitat, traffic), indus

trial applications and diagnostics (e.g., managing inventory, product quality), and

infrastructure maintenance (e.g., power grids, water distribution). One interesting

application of sensor networks, given in [39], was the deployment of a sensor net

work on Great Duck Island in Maine, for habitat monitoring. The sensor networks

deployed on this island was accessible via the Internet, used solar energy to power

the sensors, and had a sensor longevity of 9 months. The sensor network was used

to monitor the changes in the nesting patterns of Leach’s Storm Petrel.

2.2.3 Power Awareness

Since the amount of available energy for a sensor node is limited, minimizing

energy consumption in a sensor network is a critical challenge. In [12], the authors

identify three main types of optimizations for reducing energy consumption in a sen

sor network. The first is to cover the monitoring area with the smallest subset of

sensor nodes. Nodes not belonging to this set sleep and do not participate in the

monitoring. Constructing a dominating node set that “monitor” other sensors within

their coverage range is one example of this type of optimization. Also, the network

can reselect covering nodes periodically to spread energy consumption dynamically

over all nodes. The second optimization is to use energy-efficient broadcast pro

tocols. Several protocols for minimizing retransmissions of messages sent from one

sensor node to another have been proposed, including adjustable-transmission-range

protocols. The third optimization is data aggregation. Aggregating measurements of

sensor nodes in order to report only important information, such as average values,

can also reduce energy consumption.

2.2.4 D ata Dissemination

Since the energy consumption in a sensor network is dominated by the cost of

transmitting and receiving messages, protocols for data dissemination are important.

Data gathered from studies of popular prototypes of sensor network devices, such

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as MICA2 [6], also verify the importance of reducing communication costs in sensor

networks.

Various characteristics of algorithms used for the self-configuring and data dis

semination of sensor networks reduce communication costs. One characteristic is

that these algorithms must be data-centric (or the applications focus on the data

generated by the sensors). Another characteristic is tha t the algorithms should be

localized, meaning that the nodes conununicate only with sensors that are close to

their neighborhood. The nodes can achieve a global objective by using only local

computations. Finally, networks can be application specific. This means th a t inter

mediate nodes can perform application-specific data aggregation and caching, or the

informed forwarding of data requests.

One data-centric data dissemination paradigm is directed diffusion. In directed

diffusion, data that is generated by sensor nodes is named by attribute-value pairs

[32]. A sensing task is disseminated throughout the sensor network as an interest for

named data. This dissemination creates gradients within the network that “draws”

events (or data matching this interest). The events then start flowing towards the

originators of the interests along multiple paths. One, or a small number of these

paths, is reinforced by the sensor network. The intermediate nodes can cache or

transform data, and can direct interests based on previously cached data.

In [27], a family of adaptive dissemination protocols, called SPIN (Sensor Pro

tocols for Information via Negotiation), for wireless sensor networks was proposed.

M eta-data negotiation and resource-adaptation is used by SPIN to overcome defi

ciencies in approaches such as flooding and gossiping. By assuming that all sensors

can be sink nodes, SPIN focuses on the efficient dissemination of individual sensor

data to all sensors in a network. In this manner, the fault tolerance of the system

is increased. Also, an important piece of information can be disseminated to all the

nodes. In SPIN, nodes negotiate with each other before transm itting data in order

to avoid sending unnecessary data. Data is described by using meta-data in the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

negotiation process, since exchanging meta-data is not as expensive as exchanging

sensor data. Also, nodes poll their resources and energy before transm itting data,

which allows sensors that lack energy to reduce certain activities. These character

istics of SPIN overcome problems like implosion (nodes consistently sending to their

neighbors, regardless of whether or not they have already received data from another

source), overlap (some nodes covering overlapping geographic areas), and resource

blindness (nodes not modifying their activities based upon available energy), that

are associated with simple flooding.

2.2.5 Time synchronization

A critical task in sensor networks (for various purposes such as sensor data fusion,

coordinated actuation, and power-efficient duty cycling) is time synchronization. Mo

bile sensor devices equipped with clocks and short range radios can be deployed in

the environment to measure various phenomenon. The devices can record the time

during which they detect and no longer detect these phenomenon, and can communi

cate this information to other sensors as they pass by. The temporal ordering of these

events (originating from different sensors) are used to determine the direction of the

phenomenon, and difference in time between events originating from different devices

are used to estimate the speed of the phenomenon. Also, time synchronization can

be used to estimate the proximity of sensors by calculating the time when certain

environmental phenomenon (e.g., sound or hght) are sensed by different nodes. Sen

sor networks may also be used in many applications where accurate timekeeping is

necessary. An example is the Network Time Protocol (NTP) [40] th a t is used to

maintain Internet clocks.

Time synchronization can also be used to ensure collision-free communication in

sensor networks. Collision-free communication is important because colhded mes

sages cannot be use, and collisions waste energy. In [28], the authors present a

distributed TDMA slot assignment algorithm that is suitable for dynamic networks.

The algorithm is self-stabilizing and uses Time Division Media Access methods to

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schedule transmission in time slots to avoid collisions.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

SELF-* SYSTEMS

In this chapter, we will first start with an overview of self-* systems (Section 3.1).

We will then describe many terms th a t are currently being used in the general area

of fault-tolerant computing.

3.1 Overview

Software systems must be able to adjust to different inputs, adapt to all possible

environmental changes, and handle different faults. The many concepts encapsulated

in self-* have been introduced to detect, adjust, and recover from the above situa

tions. We will informally describe these concepts with examples from the literature.

We will also give an overview of the concept of self-stabilization in Section 3.3.

A distributed system [46] is defined as an interconnected collection of autonomous

computers, processes, or processors (or nodes). In addition to this, the existence of

the collection of these nodes must be transparent to the system users. The processors

may also need to communicate with each other in order to coordinate their actions

and achieve a reasonable level of cooperation. Many software systems being used for

business-critical or other important applications are distributed systems. The term

self-* may be applied to certain distributed systems.

A self-* system should be self-configuring, self-reorganizing, self-contained, self-

healing, and self-managing. According to [20], “self-* distributed systems establish

and maintain system-wide properties, e.g. properties such as being deadlock-free.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fault tolerant, or load-balanced” . The authors describe self-* properties of dis

tributed systems at the system-wide level using a method termed DRL (Distributed

Reinforcement Learning).

A self-configuring system must be able to configure and reconfigure itself under

varying conditions (faults). Also, a system is considered to be self-configuring if,

starting from an arbitrary state and arbitrary input, the system will eventually satisfy

the problem specification or start behaving properly. The term self-organizing was

formally defined in [26]. In this paper, the authors apply this concept to a peer-to-

peer system and define a locally self-organizing system in the context of a “p-stable”

configuration.

A system is said to be self-contained if the number and location of nodes, affected

by a faulty node, are minimally contained within the neighborhood of the faulty

sensor. The term self-healing can refer to a system that can automatically recover

form different pertubations and dynamic changes. Finally, a self-* system should be

self-managing, meaning th a t all tasks in all phases in the life cycle of the system are

automatic.

IBM’s approach to solving the system management problem is called autonomic

computing [1]. On October 15, 2001, Paul Horn, Senior Vice President of IBM

Research, suggested tha t the solution was to “build computer systems that regu

late themselves much in the same way our autonomic nervous system regulates and

protects our bodies” .

Another approach to building highly reliable systems is called recovery-oriented

computing [22, 41]. Systems implementing this type of computing are called self-

repairing computers. This concept can be applied to designing highly-dependable

Internet services. A few important characteristics of recovery-oriented computing

that have been identified are “system-wide support for undo” , “isolation and redun

dancy” , “integrated diagnosis support” , “onhne verification of recovery mechanisms” ,

“design for high modularity, measurability, and restartability” , and “dependabil-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ity/availability benchmarking” [41].

3.2 Ubiquitous/PerA^ive Computing

The late Mark Weiser introduced the term ubiquitous computing to describe an

era in which many computers, that are “nearly invisible” , are prevalent in large

numbers in many areas of the physical environment. These computers are relatively

inexpensive and are used so often by the user, th a t they are effectively invisible. Two

key concepts of this era are invisible computing and calm technology [50]. These com

puters would be available and prevalent throughout the environment and would be

used without the user actually having conscious recognition of their presence. In

effect, the computers are “invisible” to the user. The motivation behind calm tech

nology is to send information in a calm manner, meaning that a user’s consciousness

must be able to switch between peripheral (or sensory) processing and the center of

processing, when using a computing or electronic device. New hardware represent

ing the ubiquitous computing design include mobile devices, sensors, and even smart

appliances.

3.3 Self-Stabilizing Systems

The concept of self-stabilization was introduced to computer science in 1973 by

Dijkstra [17, 16]. A self-stabilizing system is one that can recover automatically

following the occurrence of (transient) faults. A formal definition is as follows: A

self-stabilizing system, starting from any arbitrary state, converges to a state that

satisfies its problem specification in a finite number of steps. It can also be defined as

follows: A self-stabilizing system, regardless of its initial state, reaches a state from

which it starts behaving according to its specification in finite time. Two key concepts

associated with self-stabihzation are closure and convergence [9, 10]. Closure refers

to a property in which, during all system executions, the system remains within

some set of legal or desirable states unless a fault occurs. Convergence refers to a

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

property th a t requires the system to reach a legal state from any arbitrary (possibly

illegal) state in finite steps. A self-stabihzing system must satisfy both the closure

and convergence properties.

Many network protocols are self-stabihzing. They include protocols used in sen

sor networks, high-speed networks, session control, coimection management, and

routing. There are also many self-stabilizing distributed solutions for graph theory

problems. Examples are maximal matching, finding different types of spanning trees,

search structures, and graph coloring. In addition to this, there are self-stabilizing

versions of many classical distributed algorithms, including mutual exclusion, token

circulation, leader election, distributed reset, and propagation of information with

feedback.

There are many aspects of a model tha t can be used for a self-stabihzing al

gorithm. This includes interprocess communication (shared registers and message

passing), fairness (weakly fair, strongly fair, and unfair), granularity of an atomic

step (composite versus read/write atomicity), and types of daemons (central and

distributed). Many optimal solutions for the time complexity and space complexity

of stabihzing algorithms have also been proposed.

There are two methods tha t have been commonly used for the proof of a self-

stabihzing algorithm: the convergence stair [25] and variant function [34] methods.

There are also many general methods of designing self-stabihzing programs, a few

of which we will mention without description. They include silent stabilization [19],

local stabilizer [8], diffusing computation [10], local checking and local correction

[11, 47], counter flushing [48], self-containment [24], and snap-stabilization [14].

The protocols for setting up and organizing communication and routing infras

tructures in wireless sensor networks are often based upon self-stabilizing algorithms.

Self-stabilization is important for this purpose because of the dynamic nature of sen

sor network topology. Node and link failures, as well as the joining of new nodes in

the sensor network, necessitate the use of a self-stabilizing algorithm.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

MINIMUM CONNECTED SENSOR

COVER PROBLEM

After extensively researching wireless sensor networks and self-* systems, we de

signed three local, distributed, self-* protocols in order to solve the minimum con

nected sensor cover problem. We state the motivation of this research in the next

section. We state how other problems mentioned in earlier chapters are related to

the problem solved in this chapter. We describe some results in related areas in Sec

tion 4.2. In section 4.3, we first state the model used in writing the algorithm. We

present the program that is used (including its notation) and give a formal definition

of self-stabihzation in that section. Finally, we give both an informal explanation

and formal statement of the problem to be solved in that section.

The main results of this thesis research are reported in the next four chapters. In

Chapters 5, 6, and 7, three minimum connected sensor cover algorithms (Algorithm

1 A iC S C , Algorithm 2 M.CSC^ and Algorithm 3 M .CSC) are presented. In each

of these three chapters, we include a detailed informal description, formal algorithm,

and proof of the algorithm in th a t section. Simulation results and other properties

of all three algorithms are given in Chapter 8.

4.1 Motivation

Sensor networks are composed of a large number of tiny sensing devices with

very limited resources th a t must coordinate amongst themselves to achieve a larger

sensing task. As mentioned in Chapters 1 and 2, these networked sensors are often

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

energy constrained, since a sensor’s battery or energy source is small and replacing

or recharging a sensor’s energy supply is often infeasible. Therefore it is critical to

design a robust sensor network which will allow uninterrupted operation for extended

periods of time, and that is also efficient in its consumption of energy. Also, consid

ering the size and dynamic nature of sensor networks, it is important that a sensor

network be designed as a self-* system (Chapter 2).

In sensor networks, queries may be sent from devices external to the network.

The query needs to be broadcast to the sensor nodes within a particular region

or to a particular sensor node. This would initiate the minimum connected sensor

cover algorithm. Also, after the minimum connected sensor cover is computed, the

data generated as a result of the query has to be reported back to the device which

originated this query.

4.2 Related Work

The minimum connected sensor cover problem that is addressed in this thesis was

introduced in [26]. Even though two self-organizing solutions were presented in that

paper, none of the solutions were localized. Both algorithms use a greedy approach

to select the best possible set of sensors in the cover set.

In [49], the terms coverage and connectivity and the relationship between them

were analyzed in a unified framework. A Coverage Configuration Protocol (CCP)

that can dynamically configure networks to provide different degrees of coverage

was presented in this paper. CCP was integrated with a connectivity maintenance

protocol (SPAN [13]) to provide guarantees of both coverage and connectivity. The

integrated coverage and connectivity problem solved in this paper is as follows: Given

a coverage (or query) A and a sensor coverage degree K specified by the application,

we must maximize the number of sleeping nodes such that :

1. A is at least Ag-covered (i.e., every location inside A is covered by at least K s

nodes), and

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. All active nodes are connected.

The important result of their work was that:

1. Sensing coverage implies network connectivity when R c > 2Rs (where R c and

Rs are the communication and sensing ranges, respectively) and

2. If R c > 2i?s, then A^g-coverage of a convex region implies Ag-connectivity of

the communication graph.

Wu and Li [53, 52] proposed a marking process which can determine a CDS by

marking each host in a routing scheme if it has two unconnected neighbors. Two

dominant pruning rules were proposed in [53] and extended in [52] to reduce the

size of the CDS derived from this marking process. Rule 1 unmarks a host u if its

neighbor set is covered by another marked host v and its UID is less than tha t of

host V] tha t is, if all of its neighbors are neighbors of another marked host having a

greater UID than its own. Rule 2 unmarks a host if its neighborhood is covered by

two other directly connected marked hosts, and if its UID is less than both of these

hosts. However, these pruning rules do not account for host u itself, which should

also be covered by a marked node before it is unmarked. In all three algorithms

presented in this paper, to ensure connectivity, a Node i must also be covered by a

chosen node, having a greater UID than its own and for which it is not the “least

UID” neighbor, before it is unmarked. Also, in both Rule 1 and Rule 2, Node u

has to have the least UID of all nodes th a t are covering its neighbor set, before it is

unmarked. This is a weaker redundancy predicate than the ones presented in this

paper, since in Algorithms 2 and 3, all sensors that are neighbors of Sensor i must be

neighbors of a chosen sensor, but Sensor i does not have to have the smallest UID

of all of the nodes that are covering its neighbor set. It merely has to have a smaller

UID than a chosen node tha t is covering itself. Also, in Algorithm 1, nodes th a t are

neighbors of a chosen Sensor i are not considered in the redundancy predicate.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dai and Wu [15] proposed a generic dominant pruning rule (called Rule k), which

can unmark gateways covered by k other gateways, where k can be any number.

Again, in this rule. Node u must have the least UID of all nodes th a t are covering its

neighbor set, before it is unmarked. Because this rule is weaker than our redundancy

predicates. Algorithms 1 and 2 produce fewer nodes in the final cover set at all query

regions tested in our simulations, and Algorithm 3 produces fewer nodes in the final

cover set when the query region size is less than 90 square graph units.

Carle and Simplot-Ryl [12] presented a dominating-set protocol in which the

nodes that cover an “inactive” node’s neighborhood have to be coimected if this in

active node is to remain inactive. Our algorithms’ redundancy predicates are stronger

since they do not require that all chosen nodes tha t cover a marked node be connected

before the chosen node is unmarked. Instead, our algorithms ensure connectivity by

not unmarking the sensor with the greatest or the least UID within any particular

chosen sensor’s transmission disk.

The algorithm presented by Kuhn, Moscibroda, and Wattenhofer [35] relies upon

sending messages on three separate channels. In this algorithm, a newly awakened

node waits for messages on all three channels from existing dominators in its neigh

borhood. A node that has not received any message from a dominator during this

waiting phase then tries to compete to become a dominator itself. This node then

sends a message on the first channel with a sending probability p, which is doubled

in every round. After becoming a dominator, a node then sends on the second and

third channels. However, the chance of collisions on a transmission channel can cause

a node to not receive a message in the waiting phase and can lead to a larger number

of dominators.

Liu et al. [38] recently proposed an iterative localized algorithm for connected

dominating sets, offering an improvement over [15] in terms of the size of connected

dominating sets, but at the expense of additional messages between neighboring

nodes. In their algorithm, each node exchanges messages with its neighbors (there

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are exactly 5 messages exchanged) in order to decide whether it should be domi

nant, using information received from its neighbors. However, the synchronization

needed to compute a dominating set make it more difficult to apply in a distributed

environment. Also, beacon messages are needed for the first step to occur.

Ingelrest, Ryl, and Stojmenovic [31] proposed an algorithm which considers a

node to be covered if there exists in its 2 -hop neighborhood, a connected set of nodes

with higher priorities which cover Node u and its 1-hop neighbors. However, this is

also a weaker redundancy predicate than the ones presented in this paper, since in

Algorithms 2 and 3, all sensors th a t are neighbors of Sensor i must be neighbors of

a chosen sensor, but Sensor i does not have to have the smallest UID of all of the

nodes that are covering its neighbor set. It merely has to have a smaller UID than

a chosen node that is covering itself. Also, in Algorithm 1, nodes that are neighbors

of a chosen Sensor i are not considered in the redundancy predicate.

4.3 Preliminaries

4.3.1 Model

Sensor N etw o rk . In this research, we consider sensor networks [26, 49] consisting

of a large number of sensors (also referred to, in this paper, as sensor nodes or, simply

as nodes) which are randomly distributed in a geographical region. We model the

sensor network as a directed communication graph G{V, E), where each node in V

represents a sensor, and each edge (i , j) € E, called communication edge, indicates

that j is a neighbor of i.

For a sensor i, there is a region, called a sensing region, which signifies the area in

which sensor i can sense a given physical phenomenon at a desired confidence level.

The sensing regions are of any convex shape. For the sake of simplicity, especially,

for showing examples, the sensing regions are assumed to be circular. The sensing

range of a sensor i indicates the maximum distance between sensor i and any point

p in the sensing region of sensor i. A point p is covered (or monitored) by a sensor

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node i if the Euclidean distance between p and i is less than the sensing range of

sensor i.

The communication region of sensor i (also called the transmission region) defines

the area in which sensor i can communicate directly (i.e., in single hop) with other

sensor nodes. The maximum distance between node i and any other node j , where

j is in the communication region of i, is called the communication range of sensor i.

Node i can communicate with node j (i.e., i can send a message to j) if the Euclidean

distance between them is less than the conamunication range of i. Then i is called

a neighbor of j , and this relation is represented by a directed edge (i,j) . The set of

neighbors of i is represented by iVj. Two nodes i and j can communicate directly

with each other only if i G Nj A j G TV,, i.e., they are neighbors of each other. If i

and j are neighbors of each other, then there are two edges between them: { i ,j) and

Ch*)-

A directed path (sequence) of sensors i = ii, *2 , ■ ■ • > *m = J, where is a neighbor

of for 1 < a; < m — 1 , is called a communication path from i to j . The length of

the shortest (communication) path (which is the number of sensors on the shortest

path) from i to j is called the communication distance from sensor i to sensor j .

P ro g ram . In this paper, we consider the local shared memory model of commu

nication as used by Dijkstra [16]. The program of every processor consists of a set

of shared variables (henceforth, referred to as variables) and a finite set of actions.

Every processor (or sensor) can only write to its own variables, but can read its own

variables and the variables owned by the neighboring nodes.

Each action is of the following form: < label >:: < guard > — < statement >.

The guard of an action in the program of p is a boolean expression involving the

variables of p and its neighbors. The statement of an action of p updates one or

more variables of p. An action can be executed only if its guard evaluates to true.

We assume a model of composite atomicity, i.e., actions are atomically executed.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or the evaluation of a guard and the execution of its corresponding statement, if

executed, are done in one atomic step.

The state of a node is defined by the values of its variables. The state of a system

is the product of the states of all nodes. We will refer to the state of a node and

system as a (local) state and (global) configuration, respectively.

Let a distributed protocol P be a collection of binary transition relations denoted

by H->, on C, the set of all possible configurations of the system. A computation of

a protocol P is a maximal sequence of configurations e = 7 0 , 7 1 , ...,7 i, 7 i+i, such

that for i > 0 , 7 i 7 _̂,_i (a single computation step) if 7 ,+i exists, or 7 » is a terminal

configuration. The Maximality means that the sequence is either infinite, or it is finite

and no action of P is enabled in the final configuration. All computations considered

in this paper are assumed to be maximal. The set of all possible computations of

P in system S is denoted as £. A node p is said to be enabled in 7 (7 G C) if

there exists an action A such tha t the guard of A is true in 7 . We consider that

any node p executed a disable action in the computation step 7 * 7 ^̂ .! if p was

enabled in 7 ̂ and not enabled in 7 i+i, but did not execute any action between these

two configurations. (The disable action represents the following situation: At least

one neighbor of p changed its state between 7 » and 'ji+i, and this change effectively

made the guard of all actions of p false.) Similarly, an action A is said to be enabled

(in 7) at p if the guard of A is true at p (in 7).

We assume a weakly fair and distributed daemon. Weak fairness means that if

a node p is continuously enabled, then p will be eventually chosen by the daemon

to execute an action. A distributed daemon implies that during a computation step,

if one or more nodes are enabled, then the daemon chooses at least one (possibly

more) of these enabled nodes to execute an action.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Self-stabilizing Program

F au lt M odel. This research deals with the following types of faults:

(i) The state or configuration of the system may be arbitrarily corrupted. However,

the program (or code) of the algorithm cannot be corrupted.

(ii) Nodes may crash. That is, faults can fail-stop nodes.

(iii) Nodes may recover or join the network.

The topology (both actual and logical topologies) of the sensor network may change

due to these faults. Faults may occur in any finite number, in any order, at any

frequency, and at any time.

C losure: 72. is closed in A if every computation of A starting from a configuration

satisfying 72 preserves 72.

C onvergence: 72 convergences to <S in ^ if the following three conditions hold:

1 . 72 is closed in A.

2 . <S is closed in A.

3. Every computation starting from a configuration satisfying 72 contains a con

figuration that satisfies S.

Self-stab iliza tion [18]. Let Cj, be a non-empty legitimacy predicate of an algo

rithm A with respect to a specification predicate Spec such that every configuration

satisfying satisfies Spec. Algorithm A is self-stabilizing with respect to Spec iff

the following two conditions hold:

(i) Every computation of A starting from a configuration satisfying Ca preserves Cj,

(closure).

(ii) Every computation of A starting from an arbitrary configuration contains a con

figuration that satisfies (convergence).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Problem Specification

S pecification 0 .0 . 1 (C o n n ec ted Sensor C overage P ro b le m). Given a sensor

network and a query Q over the network, the œnnected sensor coverage problem is to

find the smallest connected sensor cover (we will call it M C S C q) . Additionally, we

require the algorithm (solving the above problem) to be self-organizing, self-healing,

and self-stabilizing.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

FIRST M C S C ALGORITHM

5.1 Description of First M C S C Algorithm

and Data Structures Used

In this algorithm, the following strategy is taken to compute the minimum con

nected sensor cover M C S C q :

1 . Algorithm 1 finds an M C D S (Minimum Connected Dominating Set) for all

nodes whose sensing range intersect with the query region. The M C D S that is

calculated does not include another M C D S, but is not minimal in the number

of nodes in the set. However, the sensing range of all the nodes in the M C D S

will cover the query region. The M C S C that is formed from all sensors in

this M C D S is minimum such th a t another connected sensor cover set is not

included in this set.

The following assumptions are made for this algorithm:

Assumption 0.0.1.

(i) The communication radius equals the sensing radius for the sensors.

(ii) The sensing radii, and hence the communication radii, of all sensors are equal.

(iii) There always exist a sufficient number of sensors in the network with sufficient

density to cover the query region if all of them are deployed.

(iv) There exist a lot of redundant sensors which are either boundary or interior sen

sors with respect to the query region.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithm uses three shared variables, Si, UIDi, and StatuSi. Si represents

the sensing region of Sensor i. UIDi is the unique identifier (UID) of Sensor i, which

is a positive integer. Finally, StatuSi represents the status of a sensor. The status of

a sensor may be unchosen, undecided, or chosen.

5.2 Predicates Used in First M C S C Algorithm

The predicate QryRgnIntrsctn{i) evaluates to true if the sensing disk of Sensor

i intersects with som e portion of the query region. N oIn trsctn {i,j) evaluates to

true if Sensor i has a status of unchosen, there are no chosen sensors within the

transmission disk of Sensor i, and if the sensing disks of Sensor i and any chosen

Sensor j do not intersect. NgbrOfChsn{i) evaluates to true if Sensor î is a neighbor

of a chosen sensor. HasChsnNgbr(x) evaluates to true if Sensor x has a chosen

neighbor. The predicate, IsLeastUIDNgbr{i, x), evaluates to true if Sensor i is

a neighbor of Sensor x, and is also the neighbor of Sensor x having the least UID.

LessNotLeastNgbrO fC hsn{i) evaluates to true if Sensor i is a neighbor of a chosen

sensor whose UID is greater than its own, but Sensor i is not the neighbor of this

sensor that has the smallest UID. The predicate NotOrLeastU ID N gbrO fChsn{i)

evaluates to true if Sensor i is not the neighbor of a chosen sensor unless it is the

neighbor of a chosen sensor having the least UID.

M ISN ode(i) evaluates to true if the status of Sensor * is unchosen, and the

sensing disk of Sensor i intersects with some portion of the query region, but does

not intersect with the sensing disk of a chosen sensor. BridgeNode{i) evaluates to

true if the status of Sensor % is unchosen, the sensing disk of Sensor i intersects

with some portion of the query region. Sensor i is not the neighbor of a chosen

sensor unless it is the neighbor of a chosen sensor having the least UID, or if part of

the transmission disk of Sensor i is not covered by a chosen sensor. The predicate

FillNode{i) evaluates to true if the status of Sensor i is undecided, and there are

no undecided sensors within the transmission disk of Sensor i whose UID is greater

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than tha t of Sensor i, or Sensor i is the neighbor of an undecided sensor having the

least UID.

Redundanti(i) evaluates to true if the status of Sensor i is undecided, there is an

undecided sensor within the transmission disk of Sensor i whose UID is greater than

that of Sensor i, and Sensor i is not the neighbor of this undecided sensor having

the least UID. Finally, Redundant2 (i) evaluates to true if the status of Sensor i is

chosen. Sensor i has a smaller UID than another chosen Sensor j that is within

its transmission disk, but Sensor i does not have the smallest UID out of all the

neighbors of Sensor j .

5.3 Normal Execution of First M C S C Algorithm

The steps of the algorithm are as follows:

1 . The algorithm attem pts to form an initial pattern of coverage of the query

region that is composed of the union of the sensing radii of sensors whose

status is chosen. These sensing regions also form a disjoint set, in the sense

th a t no two sensing disks within this set intersect. To this end, it changes the

status of all unchosen sensors whose sensing regions intersect with the query

region, and whose sensing regions do not intersect with the sensing region of a

chosen sensor, to chosen. Thus, an initial pattern of non-overlapping sensing

disks, whose sensors are marked as chosen, is formed to cover the query region.

2 . The uncovered regions between the sensing radii of all chosen sensors is then

covered as follows:

(a) If the status of Sensor i is unchosen, the sensing disk of Sensor i inter

sects with some portion of the query region, and Sensor i is not the neighbor

of a chosen sensor unless it is the neighbor of a chosen sensor having the least

UID, or if part of the transmission disk of Sensor i is not covered by a chosen

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sensor, then the unchosen sensor’s status is changed to undecided. The reason

ing used is that all sensors that lie within the uncovered “gap” regions between

the sensing radii of all chosen sensors that were marked by M ISNode{i), will

have part of their sensing disks not covered by the sensing disks of all sensors

chosen by M ISNode{i). In addition to this, all sensors tha t have the least

UID, within a particular chosen node’s neighborhood, are needed to ensure

connectivity, and also have their status changed to undecided.

(b) To ensure that only the most suitable of these sensors, located within

each uncovered region, are marked as undecided, if any sensor’s status is

undecided, and it has another undecided sensor within its transmission (and

hence its sensing) disk, whose UID is greater than that of i t ’s own, or if this

sensor is the neighbor of an undecided sensor and does not have the least UID of

all neighbors of this undecided sensor, then i t ’s status is changed to unchosen.

(c) All sensors with an undecided status, that do not have another undecided

sensor with a UID greater than their own, within their transmission (and hence

sensing) disks, and that are not the neighbors of an undecided sensor and that

also have the least UID of aU neighbors of this undecided sensor, have their

status changed to chosen.

3. Redundant^ii) is used to eliminate any redundant chosen sensor that has a

smaller UID than another chosen Sensor j th a t is within its transmission disk,

but that does not have the smallest UID out of all the neighbors of Sensor j .

4. Finally, action A \ ensures th a t any redundant sensor or any sensor whose

sensing disk does not intersect with the query region, has its status changed to

unchosen.

5. All chosen sensors are in the final MCDS.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Faults and Recovery of First M C S C Algorithm

In this section, we focus on the fault handling features of the proposed algorithm

(Algorithm 1 M CSC). There are three variables used in the solution: Si, UIDi, and

StatuSi for a Sensor i. So, we need to show that our solution can cope with all possible

corruptions associated with these three variables. In the following, we will make an

attem pt to hst all or most of the important types of faults, and show how they are

dealt with in Algorithm 1 M CSC. (1) Wrong initialization o f the S ta tu S i

variable. As discussed in the previous subsection, all sensors, if properly initialized,

start as unchosen, (a) Sensor i is initialized to u n d e c id e d . Assume that Sensor

i is initialized to undecided. If i is not a redundant node, then i remains undecided,

and subsequently changes to chosen, (see Actions A 2 and A 3). That is, no correction

is necessary. If i is redundant, then it will satisfy the predicate Redundanti{i) and

will change to unchosen, (b) Sensor i is initialized to ch o sen . If the sensing

disk of Sensor i does not intersect with the query region, then, by executing A \,

Sensor i will change to unchosen. So, no correction is necessary. If Sensor i is

redundant, then then it will satisfy the predicate Redundant2 {i), and will change to

unchosen. If it is nonredundant then Sensor i is necessary, either to ensure coverage

or connectivity, and should not be unmarked. (2) Wrong initialization o f the

U I D i variable, (a) Sensor i is initialized to a UID that is used to identify another

Sensor. If Sensor i is redundant, then any other Sensor within the transmission disk

of Sensor i, that has a larger UID than Sensor i, will cause Sensor i to evaluate

Redundant{i) as true and to become unmarked. If it is nonredundant, then Sensor

i is needed in the final cover set, and should not be unmarked. (3) Weakening or

Failure of sensors, both in terms of communication and sensing ability.

The weakening or failure of sensors will affect the sensing and communication range

of the sensors. In other words, the constant set R s or R c will change. Change of

Rs or R c may change the values of Redundant{i), M ISNode(i), BridgeNode(i), or

FillNode{i). All these changes will be reflected in the change of values of the guards

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the corresponding actions. So, eventually, the status of the affected nodes will

change due to the execution of these actions. However, these changes will not affect

the execution of these actions by the neighbors of the affected nodes. Therefore, any

changes in the StatuSi variable of the affected nodes will be handled as mentioned

earlier.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 Connected Sensor Cover Algorithm (Algorithm 1 M C S C) for

______________ Sensor i._______ ___
Constants:

R q " Query region;

Rc'-- Radius of communication of a sensor in the network;

Ni'.: Set of sensors within the communication range of Sensor i;

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

StatuSi S {unchosen, undecided, chosen}:: Status of Sensor i;

Predicates:
QryRgnIntrsctn{i) = n JRq 0;

= sensing disk of Sensor i intersects with some portion of query region;
N oIntrsctn(i,j) = Statusi = unchosen A (Vy € N : Statusj chosen) A (Vj : Statusj =

chosen A Vx € iVi A Vy € Nj : PoSx ^ (5» n Sj) A PoSy ^ (5j n 5j));
= status of Sensor i is unchosen, there are no chosen sensors within the

transmission disk of Sensor i, and sensing disks of Sensor i and Sensor j do
not intersect;

NgbrOfChsn{i) = (3j : i € Nj A Statusj — chosen)-,
= Sensor z is a neighbor of a chosen sensor;

IsLeastUIDNgbr(i,x) = i € Nx A (\/j € Nx : j ^ i A UIDi < UIDj);
= Sensor i is a neighbor of Sensor x, and is also the neighbor of Sensor

X having the least UID;
LessNotLeastNghrOfChsn{i) = (3j : i e N j A Status j = chosen A UIDi < UIDj A

-<IsLeastU I DNgbr{i, j))-,
= Sensor i is a neighbor of a chosen sensor whose UID is greater

than its own, but Sensor i is not the neighbor of this sensor
that has the smallest UID;

M ISNode(i) = QryRgnIntrsctn{i) A NoIntrsctn(i, j)-,
= status of Sensor * is unchosen, and the sensing disk of Sensor i intersects with

some portion of the query region, but does not intersect with the sensing disk
of a chosen sensor;

NotOrLeastUIDNgbrOfChsn(i) = Vj : z € Nj : (Statusj chosen V LeastUIDNgbr{i,j));
~ Sensor i is not the neighbor of a chosen sensor unless it

is the neighbor of a chosen sensor having the least UID;
BridgeNode(i) = Statusi = unchosen A QryRgnIntrsctn(i)A

{NotOrLeastUIDNgbrOfChsn(i) V (3j € N : -<NgbrOfChsn(j)));
= status of Sensor i is unchosen, sensing disk of Sensor i intersects with some

portion of the query region. Sensor i is not the neighbor of a chosen sensor
unless it is the neighbor of a chosen sensor having the least UID, or part
of the transmission disk of Sensor i is not covered by a chosen sensor;

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 Connected Sensor Cover Algorithm (Algorithm 1 M .CSC) for

Sensor i (Continued)

FUlNode{i) = StatuSi = undecided A (Vj E N, : StatuSj undeddedy UIDi > UIDjW

LeastU IDNgbr(i, j));

= status of Sensor i is undecided, and there are no undecided sensors within the

transmission disk of Sensor i whose UID is greater than that of Sensor i, or Sensor

i is the neighbor of an undecided sensor having the least UID;

Redundanti(i) z StatuSi — undecided A (3j € Ni : Status j = undecided A

UIDi < UIDj A -^LeastUIDNgbr{i,j));

= status of Sensor i is undecided, there is an undecided sensor within the

transmission disk of Sensor i whose UID is greater than that of Sensor i, and

Sensor i is not the neighbor of this undecided sensor having the least UID;

Redundant2 (i) = StatuSi = chosen A LessNotLeastNgbrOfChsn{i)-,

~ status of Sensor i is chosen. Sensor i has a smaller UID than another chosen

Sensor j that is within its transmission disk, but Sensor i does not have

the smallest UID out of all the neighbors of Sensor j .

Redundant(i) = Redundant\{i) V Redundant2 {i)',

Actions:

v4] :: ->QryRgnIntrsctn{i) V Redundant{i)

— > Statusi — unchosen\

A 2 :: BridgeNode{i)

— > StatuSi = undecided',

A3 :: M ISNode(i) V FillNode{i)

S ta tu S i — c h o se n ;

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Correctness of First M C S C Algorithm

D efin ition 0.0.1. The system is considered to be in a legitimate state (i.e., satisfies

the legitimacy predicate C m c s c) if the following conditions are true with respect to

a query region:

i) All non-redundant sensors are marked chosen.

ii) All redundant sensors are marked unchosen.

5.6.1 Proof of Closure
L em m a 0.0.1 (C overage). In any legitimate configuration, the connected set cover

M C S C q computed by Algorithm 1 M C S C completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the sen

sors in the final M C S C chosen by Algorithm 1 do not completely cover the query

region.

=> Since the sensing disks of the sensors chosen by BridgeNode{i) and FillNode{i)

cover the uncovered regions between the sensing disks of sensors chosen by M ISNode{i)

th a t form the initial Maximal Independent Set of Coverage, there exists a region

between the sensing disks of the sensors chosen by M ISNode(i) that is not cov

ered by the sensing disk(s) of one or more sensors that should be chosen by the

BridgeNode{i) and FillNode{i) predicate.

=>■ Within the query region, there is no unchosen sensor that is not the neighbor

of a chosen sensor unless it is the neighbor of a chosen sensor having the least UID,

or that has part of its transmission disk not covered by a chosen sensor.

=> Within the query region, all unchosen sensors are neighbors (that may not

have the least UID) of a chosen sensor and also have aU parts of their transmission

disk covered by chosen sensors.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> Since all sensors are initially unchosen, the query region is completely covered

by the sensing disks of chosen sensors.

Hence we arrive at a contradiction.

Alternatively, there is a sensor that is not the neighbor of a chosen sensor unless

it is the neighbor of a chosen sensor having the least UID, or th a t has part of

its transmission disk not covered by a chosen sensor, but this sensor was marked

undecided and then marked unchosen by the Redundant{i) predicate or was not

marked chosen by the FillNode{i) predicate.

Case 1:

The sensors in the Maximal Independent Set chosen by the M ISN ode(i) predi

cate formed an initial pattern of coverage in which there are two uncovered regions

between the sensing disks of four of these sensors. Figure 6 .1 is an illustration of this

case.

=» Since the graph is densely populated, we can find two sensors in both of these

uncovered regions, let’s name them Sensor A and Sensor B, such that Sensor A has a

lesser UID than Sensor B, but Sensor A does not have the least UID of all neighbors

of Sensor B, and both Sensor A and Sensor B have no other undecided sensors within

their transmission disks

=*- Since both nodes are not the neighbors of chosen sensors, both nodes must

have been marked undecided and either node or both nodes were marked unchosen

by Redundanti{i) or were not marked chosen by FillNode{i).

=> Since Sensor A and Sensor B are both undecided. Sensor A has a lesser UID

than Sensor B, and Sensor A is not the least UID neighbor of Sensor B, Sensor A

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Sensor B must be neighbors.

Sensor A and Sensor B are located within each other’s communication disk.

=> The distance between Sensor A and Sensor B is less than or equal to the radius

of communication.

=> If we let Ac = 1, in Figure 6 .2 , A B < 1 .

=> Since C E = C F = F F = 2 , then A C F F is an equilateral triangle.

=> If we bisect Z F C F , A G C F is a 30-60-90 triangle.

=» cos 30° = ^

^ ^ =*- 2CC = 2y/Z CC = \/3 => CD — 2\/3

Similarly, A C A H is a 30-60-90 triangle

cos 30° =lO r
r+ IA

2 r+ IA

=»- COS 30° — r+ IA

2 r+ IA

-\/3r -v/S IA = 2r

\/3 IA = 2 — \/3

=.71= ^

CA = 1 ■+■ — 1)

Since B D = CA

=)> ÂB = CD - 2CÂ = 2V3 - 2 (^) = 2 V ^ - ^

=> A B > 1 .

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence we arrive at a contradiction.

Figure 1. Case 1 (Two uncovered gap regions between 4 chosen sensors).

Figure 2 . Case 1 {AB > Rc).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 2:

The sensors in the Maximal Independent Set chosen by the MISNode(i) predicate

formed an initial pattern of coverage in which there is one uncovered region between

the sensing disks of four of these sensors. An optimal MIS satisfying this case is

shown in Figure 6.3.

=*- If we let Node A be the sensor in the uncovered region between the four sensors

and Node B be a sensor in an uncovered region outside of the four sensors, then by

similar reasoning as Case 1, the distance between Node A and Node B is less than

or equal to Rc-

=> If we let R c — 1, in Figure 3 A B < 1

=> Since A B = CD, A B — 2Rc = 2

=> A B > 1

Hence we arrive at a contradiction.

Figure 3. Case 2 (An “optimal” MIS in which Sensor A and Sensor B are not
neighbors).

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 3:

A suboptimal MIS in which there is one uncovered region between the four nodes

is shown in Figure 6.4.

Since the graph is densely populated, there will be more than one unchosen node

in each uncovered region.

=>- There may be many undecided sensors th a t are not neighbors of chosen sen

sors, unless they are the “least UID” neighbors of chosen sensors, or that have part

of their transmission disks not covered by chosen sensors.

=> Predicate FillNode{i) and ^ 3 will mark these nodes as chosen and Redundanti (i)

will not unmark these nodes.

=*- Since the sensing disk of each of these sensors spans a distance of 2Rc, and yet

each sensor will remain chosen if it is located at a distance of greater than one R c

from another chosen node, each of these uncoverd regions will eventually be covered

by chosen nodes and will remain covered by these chosen nodes.

Hence we arrive at a contradiction. □

L em m a 0.0.2 (C o n n ec tiv ity). In any legitimate configuration, the connected set

cover M C S C q computed by Algorithm 1 M C S C forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the

sensors in the final M C S C chosen by Algorithm 1 do not form a connected subgraph.

There exists a sensor in the final M C S C , lets name it Sensor A, that is marked

chosen and is not adjacent to another chosen sensor.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4. Case 3 (A “suboptimal” MIS in which Sensor A and Sensor B are not
neighbors).

=> Sensor A is marked chosen and is not within the transmission disk of another

chosen sensor.

Sensor A is marked chosen and does not have a chosen neighbor.

=> BridgeNode{i) and FillNode{i) did not mark an unchosen sensor that is

also the “least UID” neighbor of Sensor A, let’s name it Sensor B, as chosen, or

Redundant\{i) unmarked this sensor.

Case 1:

There is no unchosen node within the transmission disk of Sensor A th a t is the

“least UID” neighbor of Node A.

Since all sensors are initially unchosen, and, if changed to undecided, can only

change to chosen by executing Az or unchosen by executing A i, and since Sensor A

has no chosen neighbors, all neighbors of Sensor A will be unchosen.

=*- One of these unchosen neighbors of Sensor A will also have the least UID of

all the neighbors of Sensor A.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence we arrive at a contradiction.

Case 2:

Redundant\{i) unmarked Sensor B.

Since Sensor B is unchosen and is also the sensor having the least UID of all

the neighbors of Sensor A, after changing to undecided by executing A 2 , Sensor B

will also evaluate -^LeastUIDNgbr{i, j) as false.

=> Sensor B will also evaluate Redundanti{i) as false.

Sensor B will not be unmarked by Redundanti{i).

Hence we arrive at a contradiction. □

Theorem 0 .0 . 1 { C m c s c satisfies specification). Any system configuration satis

fying the legitimacy predicate C m c s c fper Definition 0.0.1) satisfies the specification

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.1

and 0 .0 .2 , respectively. The definition of C m c s c implies that in a legitimate config

uration, there exist no redundant chosen sensor, meaning that all redundant sensors

have been identified and are marked unchosen. Therefore, the connected cover set

AACSCq computed at this point is the smallest possible by Algorithm 1 AACSC. □

Property 0 .0 .1 . The system defined by the legitimacy predicate C m c s c w silent.

Proof. In any configuration satisfying C m c s c , ail actions of Algorithm 1 M C S C are

disabled. □

Lemma 0.0.3 (Closure). The legitimacy predicate C m c s c w closed.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Property 0 .0 .1 asserts the closure of C m c s c - O

5.6.2 Proof of Convergence

The goal of this section is to prove that starting from any arbitrary configuration

of the system of sensors, Algorithm 1 AACSC guarantees th a t in finite steps, the

system wiU reach a configuration that satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose th a t starting from any

arbitrary configuration of the system of sensors. Algorithm 1 AACSC does not guar

antee that in finite steps, the system will reach a configuration that satisfies the

legitimacy predicate C m c s c -

There exists a configuration in which, after any finite number of steps, the

system will never reach a configuration that satisfies the legitimacy predicate C m c s c -

=f> There exists a configuration in which, after any finite number of steps, the

system will never reach a configuration in which all nonredundant sensors are marked

chosen and all redundant sensors are marked unchosen.

Case 1:

There exists a configuration in which a (nonredundant) sensor that may evaluate

M ISNode{i) or FillNode{i) as true, does not do so and does not execute Az.

=> A sensor whose sensing disk intersects with the query region and whose sensing

disk does not intersect with a chosen sensor, or an undecided Sensor A th a t is not

the neighbor of any other undecided Sensor B whose UID is greater than th a t of

Sensor A, or that is the “least UID” neighbor of Sensor B, is not marked chosen.

Since any query region sensor th a t is initially unchosen, is nonredundant, and

whose sensing disk does not intersect with a chosen sensor will evaluate M ISNodeif)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as true, this node will evaluate the guard of A 3 as true.

=*- This (nonredundant) node will execute A 3 and will change to chosen.

Hence we arrive at a contradiction.

Alternatively, since a query region sensor, let’s name it Sensor B, th a t is initially

unchosen and tha t is the “least” UID neighbor of a chosen (or undecided) sensor,

and tha t has no other undecided neighbors, will evaluate BridgeNode{i) as true.

=> Sensor B will execute A 2 and change to undecided.

Or if Sensor B is initially undecided, it wiU then evaluate FillNode{i) as true

and will evaluate the guard of A 3 as true.

=> This (nonredundant) sensor will execute A3 and will change to chosen.

Hence we arrive at a contradiction.

Case 2: The nonredundant query region sensor is initially marked chosen, but

executes Redundant{i) and is unmarked.

Since any nonredundant sensor is one that may be located in an uncovered

region and one whose sensing disk is needed to cover the query region, if this sensor

is chosen and yet is not the neighbor of another chosen sensor having a greater

UID than its own, then the sensor will evaluate Redundantzii) as false and will not

become unmarked.

Hence we arrive at a contradiction.

Case 3:

If a redundant sensor is marked as chosen, Redundanti(i) or Redundant^ii) will

not unmark this sensor.

=> Since any redundant sensor is one which is not needed to ensure coverage

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nor connectivity and which is undecided and is the “lesser” , but not “least UID” ,

neighbor of an undecided sensor, or tha t is chosen and is the “lesser” , but not “least

UID” , neighbor of another chosen sensor, such a sensor will evaluate Redundanti (i)

or Redundant2 {i) as true and will subsequently execute A \.

=> Any such redundant sensor will become unmarked by rule A \.

Hence we arrive at a contradiction. □

5.6.3 Proof of Self-*

5.6.3.1 Self-configuring

From the proofs of closure and convergence, it was shown that starting from any

initial configuration. Algorithm 1 A4CSC forms a network topology in which all

members of the minimum connected sensor cover are connected, and are thus able

to communicate with each other, either directly or indirectly. It was also shown that

starting from any arbitrary state, the given query region will eventually be completely

covered. By executing the rules of Algorithm 1 M .CSC, network sensors wül self-

configure to estabhsh a topology that enables communication and sensing coverage

under stringent energy constraints. Hence Algorithm 1 M .CSC is self-configuring.

5.6.3.2. Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm 1 M .CSC is

not self-healing.

If a nonredundant node fails, a redundant node joins the network, or if there

is an arbitrary corruption of the state variables of nodes, including the Statusi vari

able, then part of the query region may become uncovered, or may be covered by a

redundant node.

Case 1:

If a nonredundant node fails, then part of the query region becomes uncovered.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=*- Since the graph is densely populated, there is a portion of the graph in which

an unchosen sensor tha t is in this uncovered region, and that is the “least UID”

neighbor of all undecided nodes within its transmission disk, does not execute Ag

and A 3 to become chosen.

But since an unchosen node in this uncovered region (that is the “least UID”

neighbor of all undecided nodes within its transmission disk) will evaluate BridgeNode{i)

as true, and FillNode{i) as true, this node will execute A 2 and A 3 to become chosen.

Hence we arrive at a contradiction.

Case 2 :

If a part of the query region is covered by a redundant node, then since any node

that is chosen or undecided and tha t is not the “least UID” neighbor of another

undecided or chosen node, but th a t has a “lesser” UID than this node, will not

evaluate BridgeNode{i) nor FillNode{i) as true, this node will not execute A 2 and

change to undecided, nor will it execute A 3 and change to chosen.

=> This redundant node wiU not cover part of the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of the state variables of nodes, including the

StatuSi variable, then part of the query region may become uncovered, or may be

covered by a redundant node.

=>- If the StatuSi variable for a node is initially undecided or chosen, then part

of the query region may become uncovered, or may be covered by a redundant node.

Since FillNode{i) evaluates to true if a node is undecided, and is not the neighbor

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of any undecided sensor having a greater UID than its own, or if it is the “least UID”

neighbor of any undecided sensor, irregardless of whether it was initially undecided,

and since a chosen node wiU cover part of the query region, such an arbitrary cor

ruption will still allow a node to execute A 3 and cover the query region.

Hence we arrive at a contradiction.

Alternatively, since Redundant\{i) will unmark a sensor even if it is initally

undecided and is the neighbor of another undecided sensor having a greater UID

than its own, but is not the “least UID” neighbor of this sensor, then part of the

query region will not be covered by a redundant node.

Hence we arrive at a contradiction.

Alternatively, since Redundant2 {i) will unmark a chosen sensor, irregardless of

whether it was initially chosen, tha t is the “lesser UID” neighbor of another chosen

sensor, but tha t does not have the least UID out of all the neighbors of this sensor,

then part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □

5.6.3.3 Self-*

Using the concept of self-stabilization, the self-configuring and self-healing features

of our solution have been implemented. Since the paradigm of self-stabihzation

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of

the self-* feature.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

SECOND M C S C ALGORITHM

6 .1 Description of Second M .CSC Algorithm

and D ata Structures Used

The description of the second M C S C algorithm is very similar to the first M C S C

algorithm and can be referred to in Section 5.1. In addition to this, the assumptions

and data structures used for the second M C S C algorithm are the same as those for

the first M C S C algorithm and can be also be referred to in Section 5.1.

6.2 Predicates Used in Second M C S C Algorithm

The predicate Q ryRgnIntrsctn{i) evaluates to true if the sensing disk of Sensor i

intersects with som e portion of the query region. NgbrOfChsn{i) evaluates to true

if Sensor i is a neighbor of any sensor whose status is chosen. E N gbrO fC hsn{i,j)

evaluates to true if Sensor z is a neighbor of any sensor, excluding Sensor j , whose

status is chosen. Predicate IsLeastU ID N ghr{i,x) evaluates to true if Sensor i

is a neighbor of Sensor x, and is also the neighbor of Sensor x having the least

UID. LessNotLeastNgbrOfChsn{i) evaluates to true if Sensor z is a neighbor of a

chosen sensor whose UID is greater than its own, but Sensor z is not the neighbor of

this sensor that has the smallest UID. The predicate G rtrO rLeastN gbrO fChsn{i)

evaluates to true if Sensor z is not the neighbor of a chosen sensor whose UID is

greater than its own or for which Sensor z is not the “least UID” neighbor.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SensorCover{i), evaluates to true if the status of Sensor i is unchosen, the

sensing disk of Sensor i intersects with some portion of query region, and Sensor i is

not the neighbor of a chosen sensor whose UID is greater than its own or for which

Sensor i is not the “least UID” neighbor. Predicate M CSCN ode{i) evaluates to true

if Sensor z is an undecided sensor and is not the neighbor of a chosen sensor whose

UID is greater than its own or for which Sensor z is not the “least UID” neighbor,

or there is a sensor within the transmission disk of Sensor z th a t is not the neighbor

of a chosen sensor.

Redundanti(i) evaluates to true if Sensor z is an undecided sensor and is the

“lesser” neighbor of a chosen sensor, but is not the neighbor of this sensor that

has the smallest UID, and all sensors within the transmission disk of Sensor z are

neighbors of a chosen sensor. Finally, Redundant2 (i) evaluates to true if the status

of Sensor z is chosen. Sensor z has a smaller UID than another chosen Sensor j that

is within its transmission disk, but Sensor z does not have the smallest UID out of

all the neighbors of Sensor j , and all sensors within the transmission disk of Sensor

z are neighbors of a chosen sensor tha t is not Sensor z.

6.3 Normal Execution of Second M C S C Algorithm

In this algorithm, every sensor sends its closed neighbor set (including the value of

StatuSi of the sensors in this set), to all of its neighbors. The steps of the algorithm

are as follows;

1 . The algorithm marks all unchosen sensors whose sensing regions intersect with

some portion of the query region {R q), and tha t are not the neighbors of chosen

sensors whose UID’s are greater than their own, or for which these sensors are

not the “least UID” neighbors, as undecided.

2. M CSCN ode{i) checks if Sensor z is undecided, and if a neighbor of Sensor

z (i.e., a sensor within Sensor z’s transmission disk) is not “dominated” by a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chosen sensor (i.e., is not within the transmission disk of a chosen sensor), or

if Sensor i is not the neighbor of a chosen sensor whose UID is greater than

its own or for which Sensor i is not the “least UID” neighbor. In this case,

the sensing disk of Sensor i is needed in the final cover set, and hence Sensor i

changes its status to chosen.

3. Redundant\{i) is used to unmark any undecided sensor that is the “lesser”

neighbor of a chosen sensor, but is not the neighbor of this sensor that has the

smallest UID, and whose entire transmission disk is covered by chosen sensors.

In this case, the status of the undecided sensor is changed to unchosen.

4. Redundant2 {i) removes redundant sensors from the final cover set as follows. If

all of the neighbors of Sensor i are within the transmission disk of some chosen

sensor, and Sensor i is the “lesser” neighbor of a chosen sensor, but is not the

node with the smallest UID out of all the neighbors of this chosen sensor, then

Sensor i and all of its neighbors are “dominated” by a chosen sensor. In this

case. Sensor i should not be in the final MCDS, and thus changes its status to

unchosen.

5. Finally, action A \ ensures that any redundant sensor or any sensor whose

sensing disk does not intersect with the query region, has its status changed to

unchosen.

6 . All chosen sensors are in the final MCDS.

6.4 Faults and Recovery of Second M C S C
Algorithm

In this section, we focus on the fault handling features of the proposed algorithm

(Algorithm MCSC). There are three variables used in the solution: Si, UIDi, and

StatuSi for a Sensor i. So, we need to show that our solution can cope with all possible

corruptions associated with these three variables. In the following, we will make an

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attem pt to list all or most of the important types of faults, and show how they

are dealt with in Algorithm M CSC. (1) Wrong initialization of the S ta tu s i

variable. As discussed in the previous subsection, all sensors, if properly initialized,

start as unchosen, (a) Sensor i is initialized to u n d e c id e d . Assume that Sensor

i is initialized to undecided. If i is not a redundant node, then i remains undecided,

and subsequently changes to chosen, (see Actions Aa and A 3). That is, no correction

is necessary. If i is redundant, then it will satisfy the predicate Redundanti{i) and

will change to unchosen, (b) Sensor i is initialized to c h o s e n . If the sensing

disk of Sensor i does not intersect with the query region, then, by executing Ai,

Sensor i will change to unchosen. So, no correction is necessary. If Sensor i is

redundant, then then it will satisfy the predicate Redundant2 (i), and will change to

unchosen. If it is nonredundant then Sensor i is necessary, either to ensure coverage

or connectivity, and should not be unmarked. (2) Wrong initialization of the

U I D i variable, (a) Sensor i is initialized to a UID that is used to identify another

Sensor. If Sensor i is redundant, then any other Sensor within the transmission

disk of Sensor i, tha t has a larger UID than Sensor i and for which Sensor i is not

the “least UID” neighbor, will cause Sensor i to evaluate Redundant{i) as true and

to become unmarked, if all of Sensor i's neighbors are covered by chosen nodes.

If it is nonredundant, then Sensor i is needed in the final cover set, and should

not be unmarked. (3) Weakening or Failure of sensors, both in terms of

communication and sensing ability. The weakening or failure of sensors will

affect the sensing and communication range of the sensors. In other words, the

constant set R s or R c will change. Change of R s or R c may change the values

of Redundant{i), SensorCover{i), and M CSCNode{i). All these changes will be

reflected in the change of values of the guards of the corresponding actions. So,

eventually, the status of the affected nodes will change due to the execution of these

actions. However, these changes will not affect the execution of these actions by the

neighbors of the affected nodes. Therefore, any changes in the StatuSi variable of

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the affected nodes will be handled as mentioned earher.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2 Connected Sensor Cover Algorithm (Algorithm 2 M C S C) for

_________________Sensor i.__
Constants:

R qv . Query region;

Ni'.: Set of sensors within the communication range of Sensor %\

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

S ta tu S i € { u n c h o s e n , u n d e c id e d , c h o s e n } : : Status of Sensor i;

Predicates:
QryRgnIntrsctn{i) = n R q ^ 0;

s sensing disk of Sensor i intersects with some portion of query region;
NgbrOfChsn{i) = (3y : i € TVj A Statusj = chosen);

= Sensor i is a neighbor of a chosen sensor;
E N gbrO fC hsn{i,j) ■ {3k : i € Nk A Statusk = chosen A k ^ j);

= Sensor i is a neighbor of a chosen sensor that is not Sensor j;
IsLeastU ID N ghr{i,x) = i € Nx A (Vj € Nx : j A UIDi < UIDj);

= Sensor i is a neighbor of Sensor x, and is also the neighbor of
Sensor x having the least UID;

LessN OtLeastNgbrOfChsn{i) = {3j : i e Nj : Statusj = chosen A UIDi < UIDjA
->IsLeastU IDNgbr{i, j));

s Sensor i is a neighbor of a chosen sensor whose UID is greater
than its own, but Sensor i is not the neighbor of this sensor
that has the smallest UID;

GrtrOrLeastNgbrOfChsn{i) = (Vj : i € Nj : StatuSj chosen V UIDi > UIDj\/
IsLeastU IDNgbr{i, j));

= Sensor i is not the neighbor of a chosen sensor whose UID is
greater than its own or for which Sensor i is not the “least UID”
neighbor;

SensorCover{i) = Statusi = unchosen A QryRgnIntrsctn{i) A GrtrOrLeastNgbrOfChsn{i);
= status of Sensor i is unchosen, sensing disk of Sensor i intersects with some

portion of query region, and Sensor i is not the neighbor of a chosen sensor
whose UID is greater than its own or for which Sensor i is
not the “least UID” neighbor;

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2 Connected Sensor Cover Algorithm (Algorithm 2 M C S C) for

Sensor i (Continued)

M CSCNode{i) = Statusi = undecided A {GrtrOrLeastNgbrOfChsn{i) V (3j G N, :

-<NgbrOfChsn{j)));

= Sensor ê is an undecided sensor and is not the neighbor of a chosen sensor

whose UID is greater than its own or for which Sensor i is not the “least UID”

neighbor, or there is a sensor within the transmission disk of Sensor i that is

not the neighbor of a chosen sensor;

Redundanti{i) ~ StatuSi — undecided A LessNotLeastNgbrOfChsn{i) A (Vj G Ni :

NgbrOfChsn{j));

= Sensor i is an undecided sensor and is the “lesser” neighbor of a chosen

sensor, but is not the neighbor of this sensor that has the smallest UID, and

all sensors within the transmission disk of Sensor i are neighbors of a chosen

sensor;

Redundant2 {i) = Statusi — chosen A LessN otLeastNgbrOfChsn{i) A (Vj G Ni :

ENgbrOfChsn{j, %));

= status of Sensor i is chosen. Sensor i has a smaller UID than another chosen

Sensor j that is within its transmission disk, but Sensor i does not have the

smallest UID out of all the neighbors of Sensor j , and all sensors within the

transmission disk of Sensor i are neighbors of a chosen sensor that is not

Sensor i.

Redundant{i) = Redundant\{i) V Redundant2 {i);

Actions:

A i :: ~<QryRgnIntrsctn{i) V Redundant{i)

— > S ta tu S i = u n c h o s e n ;

A i :: SensorCover{i)

— > S ta tu S i — u n d e c id e d ;

As :: M CSCNode{i)

— > S ta tu S i = c h o se n ;

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 .6 Correctness of Second M C S C Algorithm

D efin ition 0.0.2. The system is considered to be in a legitimate state (i.e., satisfies

the legitimacy predicate C m c s c) */ l̂ he following conditions are true with respect to

a query region:

i) All non-redundant sensors are marked chosen,

a) All redundant sensors are marked unchosen.

6.6.1 Proof of Closure

L em m a 0.0.4 (C overage). In any legitimate configuration, the connected set cover

M C S C q computed by Algorithm 2 M C S C completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the

sensors in the final M C S C chosen by Algorithm 2 do not completely cover the

query region.

=> There is some portion of the query region that is not covered by a chosen

node.

Since Ag states that a sensor will change to undecided if it is unchosen, its sensing

disk intersects with some portion of the query region, and if it is not the neighbor of

a chosen sensor whose UID is greater than its own or for which it is not the “least

UID” neighbor, and since the graph is densely populated and all sensors are initially

unchosen, there will always exist a set of undecided nodes, whose sensing disks

intersect with the query region, and that will be located at a distance greater than the

communication radius, but may also be located less than twice the communication

radius from another chosen node and from another undecided node.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since an undecided node’s sensing disk spans a distance of 2Rc, the union of

the sensing disks of all chosen nodes and all such undecided nodes located at a

distance greater than R c but less than 2 R c from any chosen or undecided node, will

completely cover the query region.

Since any undecided node will either change to chosen by M C SC N ode{i) or

unchosen by Redundanti{i), and since all such undecided nodes are located at a

distance greater than R c from any chosen node, each such undecided node will

evaluate G rtrO r Least N gbrO fC hsn{i) as true and LessN otLeastN gbrO fC hsn{i)

as false and will change to chosen by Rule A 3 .

The union of the sensing disks of all nodes tha t were initially chosen and all

sucAx undecided nodes that changed to chosen by executing A 3 , completely cover the

query region.

Since Redundant2 {i) will only evaluate to true if a node evaluates

L essN otLeastN gbrO fChsn{i) as true, and all of its neighbors are covered by a

chosen node, the Redundant2 {i) predicate will only unmark any of these chosen

nodes if its entire transmission disk is completely covered by some other chosen

node.

The sensing disks of all chosen sensors in the final M C S C completely cover the

query region.

Hence we arrive at a contradiction. □

L em m a 0 .0 .5 (C o n n ec tiv ity). In any legitimate configuration, the connected set

cover M C S C q computed by Algorithm 2 M C S C forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sensors in the final M C S C chosen by Algorithm 2 do not form a connected subgraph.

=> There exists a sensor in the final M C S C , lets name it Sensor A, that is marked

chosen and is not adjacent to another chosen sensor.

Sensor A is marked chosen and is not within the tranmission disk of another

chosen sensor.

=>- Sensor A is marked chosen and does not have a chosen neighbor.

C asel :

SensorCover{i) and M C SC N ode{i) did not mark an unchosen sensor that is

also a neighbor with a greater UID or the “least UID” neighbor of Sensor A, let’s

name it Sensor B, as chosen, or Redundant^ii) unmarked this sensor.

Since all sensors can have a status of unchosen, undecided, or chosen, and Sensor

A has no chosen neighbors, all of Sensor A’s neighbors must be either unchosen or

undecided.

=> Since Sensor A has no chosen neighbors, and since all undecided neighbors of

Sensor A that evaluate M CSCN ode{i) as true will change to chosen, all undecided

neighbors of Sensor A must have evaluated M CSCN ode{i) as false.

All undecided neighbors of Sensor A must have evaluated

G rtrO rLeastN gbrO fC hsn{i) as false, and all neighbors of these undecided sensors

must have evaluated

N gbrO fC hsn{j) as true.

=> Since L essN otLeastNgbrO fC hsn{i) is the negative of

G rtrO rLeastN gbrO fC hsn{i), and all neighbors of these undecided sensors eval

uated N gbrO fG hsn{j) as true, all undecided neighbors of Sensor A must have

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changed to unchosen after evaluating Redundant\{i) as true and executing A \.

=> AU neighbors of Sensor A are unchosen.

=> The “least UID” neighbor of Sensor A must be unchosen.

Hence we arrive at a contradiction.

Case 2 :

Sensors A and B are chosen neighbors, but Sensor A or Sensor B was unmarked

by Redundantiii).

As shown in Case 1, since the “least UID” neighbor of Sensor A must be an

unchosen sensor, let’s name it Sensor B, and since Sensor B will change to chosen af

ter executing A 2 and A 3 , then Sensor B cannot evaluate L essN otLeastN ghrO fChsn{i)

as true.

=> Sensor B cannot evaluate Redundant2 {i) as true.

=> Sensor B cannot be unmarked by Redundant2{i).

Hence we arrive at a contradiction.

Alternatively, since Sensor A has a greater UID than Sensor B, Sensor A cannot

evaluate L essN otLeastNgbrO fC hsn{i) as true.

Sensor A cannot be unmarked by Redundant2 {i).

Hence we arrive at a contradiction. □

T h eo rem 0 .0 , 2 { C m c s c satisfies specifica tion). Any system configuration satis

fying the legitimacy predicate C m c s c (p^f Definition 0 .0 .2) satisfies the specification

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.3

and 0.0.5, respectively. The definition of C m c s c implies th a t in a legitimate config-

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uration, there exist no redundant chosen sensor, meaning th a t all redundant sensors

have been identified and are marked unchosen. Therefore, the connected cover set

M C S C q computed at this point is the smallest possible by Algorithm 2 M C S C . □

P ro p e r ty 0 .0 .2 . The system defined by the legitimacy predicate C m c s c w silent.

Proof. In any configuration satisfying C m c s c , all actions of Algorithm 2 M C S C are

disabled. □

L em m a 0 .0 . 6 (C losu re). The legitimacy predicate C m c s c is closed.

Proof. Property 0 .0 .2 asserts the closure of C m c s c - O

6.6.2 Proof of Convergence

The goal of this section is to prove that starting from any arbitrary configuration

of the system of sensors. Algorithm 2 M C S C guarantees that in finite steps, the

system will reach a configuration that satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose that starting from any

arbitrary configuration of the system of sensors. Algorithm 2 M C S C does not guar

antee that in finite steps, the system will reach a configuration that satisfies the

legitimacy predicate C m c s c -

=> There exists a configuration in which, after any finite number of steps, the

system will never reach a configuration that satisfies the legitimacy predicate C m c s c -

=> There exists a configuration in which, after any finite number of steps, the

system will never reach a configuration in which all nonredundant sensors are marked

chosen and all redundant sensors are marked unchosen.

Case 1:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> There exists a configuration in which a (nonredundant) sensor whose status is

unchosen, whose sensing disk intersects with some portion of the query region, and

that may evaluate G rtrO rLeastN gbrO fC hsn{i) and M GSGNode{i) as true, does

not do so and does not execute A 3 .

A query region sensor which is unchosen, not the neighbor of a chosen whose

UID is greater than its own or for which it is not the “least UID” neighbor, and

that has part of its t r ansmission disk not covered by another chosen sensor, is not

marked chosen.

=*- Since any query region sensor that is initially unchosen, and is nonredun

dant because it is not the “lesser” neighbor of a chosen sensor nor the “least UID”

neighbor of this chosen sensor, and which has a sensor within its transmission disk

that is not the neighbor of a, chosen sensor, will evaluate Q ryRgnIntrsctn{i) and

G rtrO rLeastN gbrO fC hsn{i) and M CSG Node{i) as true, this node will evaluate

the guard of A 2 and A 3 as true.

=» This (nonredundant) sensor will execute A 2 , followed by A 3 , and will change

to chosen.

Hence we arrive at a contradiction.

Case 2:

The nonredundant query region sensor is initially marked chosen, but executes

Redundant{i) and is unmarked.

Since this sensor executed Redundant{i), it is the neighbor of a chosen sensor

having a greater UID than itself, but is not the “least UID” neighbor of this chosen

sensor, and all sensors within its transmission disk are neighbors of a chosen sensor.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> T his sensor’s entire transmission (and sensing) disk is covered by the sensing

disks of other chosen sensors.

This sensor is redundant.

Hence we arrive at a contradiction.

Case 3:

If a redundant sensor is marked as chosen or undecided, Redundanti{i) or

Redundant2 {i) will not unmark this sensor.

Since a redundant sensor is one whose entire sensing disk is covered by the

sensing disks of other chosen sensors, and whose removal will not leave part of the

query region uncovered, such a redundant sensor having a smaller UID than its

chosen neighbor, but that is not the “least UID ” neighbor of this chosen sensor, will

evaluate L essN otLeastNgbrO fChsn{i) as true, and will have all of its neighbors

evaluate N gbrO fC hsn{j) and E N gbrO fC hsn{j,i) as true.

=> Such a (redundant) sensor will evaluate Redundanti{i) and Redundant2 {i) bs

true.

=> Such a (redundant) sensor will execute A i and will be unmarked.

Hence we arrive at a contradiction.

6.6.3 Proof of Self-* □

6.6.3.1 Self-configuring

Prom the proofs of closure and convergence, it was shown that starting from

any initial configuration. Algorithm 2 M C S C forms a network topology in which all

members of the minimum connected sensor cover are connected, and are thus able

to communicate with each other, either directly or indirectly. It was also shown that

starting from any arbitrary state, the given query region will eventually be completely

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

covered. By executing the rules of Algorithm 2 M C S C , network sensors will self-

configure to establish a topology that enables communication and sensing coverage

under stringent energy constraints. Hence Algorithm 2 M C S C is self-configuring.

6.6.3 2 Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm 2 M C S C is

not self-healing.

=> If a nonredundant node fails, a redundant node joins the network, or if there

is an arbitrary corruption of the state variables of nodes, including the StatuSi vari

able, then part of the query region may become uncovered, or may be covered by a

redundant node.

Case 1:

If non-redundant node fails, then part of the query region becomes uncovered.

=> Since the graph is densely populated, there is a portion of the graph in which

an unchosen sensor that is in this uncovered region, does not execute Ag and A 3 to

become chosen. But since this unchosen sensor is not covered by a chosen sensor,

and since all unchosen sensors will not be the neighbors of any chosen sensor, and

since this node will also have part of its transmission disk not covered by a chosen

sensor, it will evaluate the guard of A 2 as true and M C SC N odeii) as true.

=> This node will execute A 2 , followed by A 3 , and will become chosen.

Hence we arrive at a contradiction.

Case 2:

If part of the query region is covered by a redundant node, then since any node

that is the “lesser” , but not “least UID” , neighbor of a chosen node, and whose entire

transmission disk is covered by chosen nodes, is redundant and will not evaluate

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G rtrO rLeastN gbrOfC hsn{i) as true, this node will not execute A 2 and change to

undecided, nor will it execute A 3 .

=*- This node cannot change to chosen to cover the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of one of the state variables of nodes, including

the StatuSi variable, then part of the query region may become uncovered, or may

be covered by a redundant node.

=> If the StatuSi variable for a node is initially undecided or chosen, then part

of the query region may become uncovered, or may be covered by a redundant node.

Since M CSCNode{i) evaluates to true if an undecided sensor is not the neighbor

of a chosen sensor having a greater UID than its own or for which it is not the “least

UID” neighbor, and if it has part of its transmission disk uncovered, regardless of

whether it was initially undecided, and since a chosen node will cover part of the

query region, such an arbitrary corruption will still allow a node to execute A 3 and

cover the query region.

Hence we arrive at a contradiction.

Alternatively, since Redundanti{i) will unmark a sensor even if it is initially

undecided and is the “lesser” neighbor of a chosen sensor, but is not the neighbor

of this sensor that has the smallest UID, and it has all parts of its transmission disk

covered by a chosen sensor, then part of the query region will not be covered by a

redundant node.

Hence we arrive at a contradiction.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alternatively, since Redundant^ii) will unmark a chosen sensor that is a “lesser” ,

but not “least UID” , neighbor of another chosen sensor, and whose transmission disk

is completely covered by other chosen sensors, regardless of whether it was initially

chosen, part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □

6.6.3.3 Self-*

Using the concept of self-stabilization, the self-configuring and self-healing fea

tures of our solution have been implemented. Since the paradigm of self-stabilization

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of

the self-* feature.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

THIRD M C S C ALGORITHM

7.1 Description of Third M C S C Algorithm

and D ata Structures Used

The description of, and assumptions for, the third M C S C algorithm is very

similar to the first M C S C algorithm and can be referred to in Section 5.1. In

addition to this, the data structures used for the third M C S C algorithm are similar

to those used for the first M C S C algorithm (Section 5.1), except that the status of

a sensor may be unchosen, undecided, removed, or chosen.

7.2 Predicates Used in Third M C S C Algorithm

The predicate C ycle{x,y) determines if there exists a cycle such that Sensors x, i,

and y are vertices in the cycle, and all other vertices in this cycle are chosen sensors.

Its steps are as follows:

1 . A vertex i sends a FindC ycle{i,x) message and a FindCycle{i,y) message

to X and y, respectively. As a FindC ycle{i,x) or F indC yde(i,y) message

travels, the path is recorded and piggybacked onto the FindCycle{i,x) or

FindCycle{i, y) message. Each node traversed in this path is recorded.

2. Sensor x and Sensor y then send these search messages to all neighbors having

a status of chosen.

3. If a node receives a FindCycle{i, x) or a FindCycle(i, y) message, it then, in

turn, forwards this message to all of its chosen neighbors (floods the network).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. If any node receives b o th FindC yde{i, x) and FindC yde{i, y) messages, then

there is a cycle, and node i can then be removed.

(a) This node then sends a FoundC yde(x, y) message to vertex i along the

shorter path that is recorded in either F in d C yd e(i,x) or F indC yde{i,y).

5. The Cyde{x, y) predicate returns true if the FoundCyde{x, y) message has

been received by vertex i, within 2D rounds, in which D is the diameter of the

network and round refers to a computation e € S m. which every continuously

enabled processor has taken one atomic step (as defined in Section ??) .

Predicate Adjaœ nt{x, y) evaluates to true if x and y are neighbors. The predi

cate,

IsLeastU ID N gbr{i,x), evaluates to true if Sensor z is a neighbor of Sensor x, and

is also the neighbor of Sensor x having the least UID. HasChsnNgbr{x) evalu

ates to true if Sensor x has a neighbor th a t has a status of chosen. Predicate

E N g b rO fC h sn {i,j) evaluates to true if Sensor z is a neighbor of a chosen sensor

that is not Sensor j .

The predicate NonAdjacentNghrs{i) evaluates to true if Sensor z has two neigh

bors tha t are not adjacent (are not neighbors of each other). Q ryR gnIn trsdn{i)

evaluates to true if the sensing disk of Sensor z intersects with som e portion of the

query region. NonRemovable{i) evaluates to true if Sensor z has two neighbors for

which the Cycle{x,y) predicate does not evaluate to true.

The predicate. LesserN gbrO fC hsn{i), evaluates to true if Sensor z is a neighbor

of a chosen sensor whose UID is greater than its own. L essN otLeastNgbrO fC hsn{i)

evaluates to true if Sensor z is a neighbor of a chosen sensor whose UID is greater

than its own, but Sensor z is not the neighbor of this sensor th a t has the smallest

UID. Finally, Connector{i) evaluates to true if Sensor z is an unchosen sensor and

there exists a neighbor of Sensor z that is chosen or removed and that does not have

any chosen neighbors, and Sensor z is the neighbor of this chosen or removed sensor

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that has the smallest UID.

The predicate Redundant{i) unmarks Sensor i if it is a chosen sensor and is the

neighbor of a chosen sensor having a greater UID than its own, but is not the neighbor

of this sensor having the smallest UID, and all sensors within the transmission disk

of Sensor i are neighbors of a chosen sensor that is not Sensor i.

7.3 Normal Execution of Third M .C SC
Algorithm

We win explain the normal execution of the protocol; i.e., assuming th a t the

system starts from a good initial configuration (all sensors are initially unchosen)

and that no faults occur during the execution of the protocol. The steps of the

algorithm are as follows:

1. The algorithm marks all sensors whose sensing region intersects with some

portion of the query region {Rq), tha t have two nonadjacent neighbors, and

tha t are not the neighbors of chosen sensors having greater UID’s than their

own, as undecided.

2. The algorithm then attem pts to place an undecided Sensor i in the final AdC<SC,

by checking if it is nonremovable. A vertex is nonremovable if its removal results

in a disconnected graph. This is determined as follows:

(a) If any two neighbors (x ,y) of the undecided vertex i do not have a

cycle that has, as a path in this cycle, vertices { .. .,x ,i ,y , ...), then this vertex

cannot be removed. In other words, there must be a cycle between every

pair of neighbors of undecided vertex i, in which all sensors in this cycle are

chosen sensors (except Sensor x and Sensor y), before it is removable. This is

determined by the Cycle{x, y) predicate, which was elaborated upon before.

3. If a vertex is removable (or not nonremovable), and its status is undecided,

then its status becomes removed.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. If a vertex is chosen or removed and if it does not have any chosen neighbors,

then its unchosen neighbor, that is also the neighbor having the smallest UID

of all its neighbors, is marked as chosen.

5. An undecided vertex th a t is nonremovable is marked chosen.

6 . If a chosen Sensor i is the neighbor of another chosen sensor having a greater

UID than its own, but is not the neighbor of this sensor having the smallest

UID, and if aU sensors within Sensor i's transmission disk are neighbors of

some chosen sensor that is not Sensor i, then Sensor i is unmarked.

7. All chosen vertices are in the final M.CSC.

7.4 Faults and Recovery of Third M .CSC
Algorithm

In this section, we focus on the fault handling features of the proposed algorithm

(Algorithm M CSC). There are three variables used in the solution: Si, UIDi, and

StatuSi for a Sensor i. So, we need to show th a t our solution can cope with all

possible corruptions associated with these three variables. In the following, we will

make an attem pt to list aU or most of the important types of faults, and show how

they are dealt with in Algorithm M CSC. (1) W ro n g in itia liza tio n of th e StatuSi

variab le . As discussed in the previous subsection, all sensors, if properly initiahzed,

start as unchosen, (a) Sensor i is initialized to undecided. Assume that Sensor i is

initialized to undecided. If i is not a redundant node, then i remains undecided, and

subsequently changes to chosen, (see Actions A 2 and v4a). That is, no correction

is necessary. If i is redundant, then it will satisfy the predicate Redundant{i) after

executing A 3 , or will execute A 4 , and will either change to unchosen or removed, (b)

Sensor i is initialized to removed. Assume that Sensor i is initialized as a removed

sensor. If the sensing disk of Sensor i does not intersect with the query region, then,

by executing A i, Sensor i will change to unchosen. So, no correction is necessary. If

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sensor i ’s sensing disk does intersect with the query region, then if it does not have

a chosen neighbor, after evaluating Connector{i) as true, its unchosen neighbor,

having the least UID, wiU be marked as chosen by .4 3 . Therefore, since Sensor i ’s

neighbor was marked to ensure connectivity. Sensor i is not redundant, and should

not be unmarked, (c) Sensor i is initialized to chosen. If the sensing disk of Sensor i

does not intersect with the query region, then, by executing A \, Sensor i wiU change

to unchosen. So, no correction is necessary. If Sensor i is redundant, then then

it will satisfy the predicate Redundant{i), and will change to unchosen. If it is

nonredundant then Sensor i is necessary, either to ensure coverage or connectivity,

and should not be unmarked. (2) Wrong initialization o f the UIDi variable.

(a) Sensor i is initialized to a UID that is used to identify another Sensor. If Sensor

i is redundant, then any other Sensor within the transmission disk of Sensor i, that

has a larger UID than Sensor i, will cause Sensor i to evaluate Redundant{i) as true

and to become unmarked. If it is nonredundant, then Sensor i is needed in the final

cover set, and should not be unmarked. (3) Weakening or Failure of sensors,

both in terms of communication and sensing ability. The weakening or failure

of sensors will affect the sensing and communication range of the sensors. In other

words, the constant set R s or R c will change. Change of R s or R c may change

the values of Redundantii) and Connector{i). All these changes will be reflected in

the change of values of the guards of the corresponding actions. So, eventually, the

status of the affected nodes will change due to the execution of these actions. All

changes of the StatuSi variable have already been discussed in earlier cases above.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 3 Connected Sensor Cover Algorithm (Algorithm 3 /A C S C) for

_________________Sensor i.__
Constants:

R q :: Query region;

Ni'.: Set of sensors within the communication range of Sensor i;

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

S ta tu S i € { u n c h o s e n , u n d e c id e d , r e m o v e d , c h o se n } : : Status of Sensor i',

Predicates:
Cycle(x, y) = 3cyde : are vertices in the cycle, and all other vertices in the

cycle are chosen sensors;
= there exists a cycle such that Sensors x, i, and y are vertices in the cycle, and

all other vertices in this cycle are chosen sensors;
Adjacent{x,y) = x e Ny A y £ N̂ ',

s Sensor a; is a neighbor of Sensor y, and Sensor y is a neighbor of Sensor x;
IsLeastUIDNgbr{i,x) = i £ A {'ij € : j ^ i A UIDi < UIDj)\

= Sensor i is a neighbor of Sensor x, and is also the neighbor of Sensor
X having the least UID;

HasChsnNgbr(x) = 3i £ Nx : Statusi — chosen;
= Sensor x has a chosen neighbor;

EN gbrO fC hsn{i,j) = (3k : i £ Nk A Statusk = chosen A fe ^ j);
= Sensor % is a neighbor of a chosen sensor that is not Sensor j;

NonAdjacentNgbrs{i) = 3x £ Ni A 3 y £ Ni : -<Adjacent{x,y);

= Sensor i has two neighbors that are not neighbors of each other;
QryRgnIrvtrsctn{i) = 5 , n iîg ^ 0;

= sensing disk of Sensor i intersects with some portion of query region;
NonRemovable{i) = 3 x £ Ni A 3 y £ Ni : -^Cyde{x,y);

= Sensor i has two neighbors between which there is no cycle that includes
chosen sensors in this cycle.;

LesserNghfrOfChsn{i) = (3j : i £ Nj A Statusj — chosen A UIDi < UIDj);
= Sensor i is a neighbor of a chosen sensor whose UID is greater than

its own;
LessNotLeastNgbrOfChsn{i) = { 3 j : i £ Nj A StatuSj = chosen A UIDi < UIDj A

-^IsLeastU IDNgbr{i, J));
= Sensor i is a neighbor of a chosen sensor whose UID is greater

than its own, but Sensor i is not the neighbor of this sensor
that has the smallest UID;

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 3 Connected Sensor Cover Algorithm (Algorithm 3 M C S C) for

Sensor i (Continued)

Connector{i) = Statusi = unchosen A {3j £ Ni : (Statusj — chosen V Status j = removed) A

->HasChsnNgbr(j) A IsLeastUID Ngbr(i,j));

~ Sensor i is an unchosen sensor and there exists a neighbor of Sensor i that is

chosen or removed and that does not have any chosen neighbors, and Sensor i

is the neighbor of this chosen sensor having the smallest UID;

Redundant(i) = S ta t u S i = chosen A LessNotLeastNgbrOfChsn(i) A (Vj £ N :

E N gbrO fC hsn(j, i));

= Sensor i is a chosen sensor and is the neighbor of a chosen sensor having a

greater UID than its own, but is not the neighbor of this sensor having the

smallest UID, and all sensors within the transmission disk of Sensor i are

neighbors of a chosen sensor that is not Sensor i;

Actions:

A i :: -'QryRgnIntrsctn(i) V Redundant(i)

— » Statusi = unchosen;

A 2 :: QryRgnIntrsctn(i) A NonAdjacentNgbrs(i) A ->LesserNgbrOfChsn(i)

— > S ta tu S i — u n d e c id e d ;

A3 :: (NonRemovable(i) A Statusi = undecided) V Connector(i)

— > Statusi = chosen;

A 4 :: - 'N o n R e m o v a b le (i) A S ta tu S i = u n d e c id e d

— > S ta tu S i — r e m o v e d ;

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 Correctness of Third M C S C Algorithm

D efin ition 0.0.3. The system is considered to be in a legitimate state (i.e., satisfies

the legitimacy predicate C m c s c) */ the following conditions are true with respect to

a query region:

i) All non-redundant sensors are marked chosen.

ii) All redundant sensors are marked unchosen.

7.6.1 Proof of Closure

L em m a 0 .0 .7 (C overage). In any legitimate configuration, the connected set cover

M C S C q computed by Algorithm M C S C completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the

sensors in the final M C S C chosen by Algorithm 3 do not completely cover the

query region.

=> There is a portion of the query region that does not lie within the sensing disk

of a chosen sensor.

=> Since the graph is densely populated and the communication radius is equal

to the sensing radius, there exists a sensor within this uncovered portion of the query

region, let’s call it Node A, tha t does not He within the transmission disk of a chosen

sensor.

Since every sensor will have two nodes located at opposite ends of its sens

ing disk th a t are non-adjacent neighbors, and since Node A is not located within

the transmission disk of a chosen sensor, and since Node A 's sensing disk inter

sects with a portion of the query region. Node A will evaluate Q ryRgnIntrsctn{i),

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NonAdjacentNgbrs{i), and -^LesserNghrOfChsn{i) as true and will change its

status to undecided.

=> Since Node A is not located within the sensing disk of a chosen sensor, Node

A will not be located within the transmission disk of a chosen sensor.

=> Part, if not all, of Node A!s transmission disk will not lie within the transmis

sion disk of a chosen sensor.

Case 1: There exists an x and a y which are neighbors of Node A, for which

-xCycle{x, y) will evaluate to true.

=*- Node A will evaluate NonRemovable(i) to true.

=> Node A will execute A 3 and will change to chosen.

=*- Since Node A is chosen and is also located within its own transmission disk.

Node A does lie within the transmission disk of a chosen sensor.

Hence we arrive at a contradiction.

Case 2: If all neighbors of Node A evaluate Cycle(x, y) to true, but if only Node

A is not a neighbor of a chosen node, then Node A wiU execute A 4 and will change

to removed.

=> Since Node A does not have a chosen neighbor, and since all undecided nodes

must change to either chosen after executing A 3 or removed after executing A 4 , and

since any neighbor of Node A will find that Node A is not covered by a chosen node

and will evaluate ->NonRemovable(i) as false, then all neighbors of Node A must be

unchosen.

=> Any of these neighbors of Node A may evaluate Connector(i) as true, execute

A 3 , and change to chosen.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> Node A does lie within the transmission disk of a chosen sensor.

Hence we arrive at a contradiction.

Case 3: Sensor A does lie within the transmission disk of another chosen sensor,

let’s call it Sensor B , but Sensor A or Sensor B was unmarked by Redundant{i).

=> When Sensor A or Sensor B is unmarked, the portion of the query region

covered by Sensor A or Sensor B will be uncovered.

Since Redundant{i) will evaluate to true only if Sensor i and all of Sensor i's

neighbors are neighbors of a chosen node. Sensor A's entire transmission disk must

be covered by a chosen node before it is unmarked by Redundant{i).

=> If Sensor A or Sensor B is unmarked, the portion of the query region covered

by Sensor A or Sensor B must be covered by other chosen sensor(s).

Hence we arrive at a contradiction. □

L em m a 0.0.8 (C o n n ec tiv ity). In any legitimate configuration, the connected set

cover M C S C q computed by Algorithm M C S C forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the

sensors in the final M C S C chosen by Algorithm 3 do not form a connected subgraph.

There exists a sensor in the final M C S C , lets name it Sensor A, th a t is marked

chosen and is not adjacent to another chosen sensor.

Sensor A is marked chosen and is not within the transmission disk of another

chosen sensor.

=> Sensor A is marked chosen and does not have a chosen neighbor.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> Rule A s did not mark an unchosen neighbor of Sensor A as chosen, or

Redundant(i) unmarked this node.

Case 1 : Since Sensor A does not have a chosen neighbor and Sensor A 's status is

chosen, either there are no unchosen sensors that are neighbors of Sensor A, or the

“least UID” neighbor of Sensor A is not an unchosen sensor.

Since all sensors are initially unchosen, and the sensing disk of Sensor A in

tersects with some portion of the query region, there is no unchosen sensor within the

query region that is a neighbor of Sensor A, and that evaluated -^LesserNgbrOfChsn{i)

as false.

=> All sensors th a t are neighbors of Sensor A ewduated ->LesserNgbrOfChsn{i)

as true.

=» There is no neighbor of Sensor A that has a smaller UID than Sensor A.

Sensor A has the smallest UID of all its neighbors.

=> Only undecided nodes are neighbors of Sensor A, or the least UID neighbor

of Sensor A is an undecided node.

=> If we name such an undecided neighbor of Sensor A as Sensor B, then Sensor

B will either change to chosen by As, or removed by A 4 .

=*- If Sensor B had changed to chosen by As, then Sensor A would have a chosen

neighbor.

=> Sensor B must have changed to removed by rule A 4 after evaluating A 4 as

true.

=> Sensor B evaluated -^NonRemovahle{i) as true.

(V z e Nb A e Nb) : Cyde{x, y)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=k AU parts of Sensor B 's transmission disk are covered by a chosen node.

=> Since Sensor B is a neighbor of Sensor A, Sensor A is covered by, and is a

neighbor of, a chosen node.

=> Sensor A does have a chosen neighbor.

Hence we arrive at a contradiction.

Case 2: Sensor A does have a chosen neighbor, but this chosen neighbor, let’s

name it Sensor B, was unmarked by Redundant{i).

Since Sensor A no longer has a chosen neighbor, and Sensor B 's status is unchosen,

and Sensor B is a neighbor of Sensor A, either Sensor B, or any other unchosen

neighbor of Sensor A can evaluate Connector{i) as true, execute As, and change to

chosen.

Before an unchosen node evaluates Connector{i) as true and executes As, it

must have evaluated IsL eastU ID N gbr{i,j) as true.

=» This node, once it executes A 3 , wiU also evaluate LessN otLeastN gbrO fC hsn{i)

as false.

Sensor B cannot be unmarked by Redundant{i).

Hence we arrive at a contradiction. □

T h eo rem 0.0.3 { C m c s c satisfies spec ifica tion). Any system configuration satis

fying the legitimacy predicate C m c s c (per Definition 0.0.3) satisfies the specification

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.7

and 0 .0 .8 , respectively. The definition of C m c s c implies that in a legitimate config

uration, there exist no redundant chosen sensor, meaning that aU redundant sensors

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been identified and are marked unchosen. Therefore, the connected cover set

M C S C q computed at this point is the smallest possible by Algorithm M C S C . □

P ro p e r ty 0.0 .3 . The system defined by the legitimacy predicate C m c s c is silent.

Proof. In any configuration satisfying C m c s c , ah actions of Algorithm M C S C are

disabled. □

L em m a 0 .0 .9 (C lo su re). The legitimacy predicate C m c s c i s closed.

Proof. Property 0.0.3 asserts the closure of C m c s c - O

7.6.2 Proof of Convergence

The goal of this section is to prove that starting from any arbitrary configura

tion of the system of sensors. Algorithm M C S C guarantees th a t in finite steps, the

system will reach a configuration tha t satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose that starting fi'om any ar

bitrary configuration of the system of sensors. Algorithm M C S C does not guarantee

that in finite steps, the system will reach a configuration tha t satisfies the legitimacy

predicate C m c s c -

=> There exists a configuration in which, after any finite number of steps, the

system wifi never reach a configuration tha t satisfies the legitimacy predicate C m c s c -

There exists a configuration in which, after any finite number of steps, the

system will never reach a configuration in which all nonredundant sensors axe marked

chosen and all redundant sensors are marked unchosen.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 1: There exists a configuration in which a (nonredundant) query region

sensor that is not the “lesser” neighbor of a chosen sensor, that has two non

adjacent neighbors, that has two neighbors between which there is no cycle that

includes chosen sensors in this cycle, and that may evaluate NonAdjacentNgbrs{i),

->LesserNgbrOfChsn{i), and NonRemovable{i) as true, does not do so and does

not execute A 3 .

=> A sensor having two nonadjacent neighbors which is not the neighbor of a

chosen sensor having a greater UID than its own, and that has two neighbors between

which there is no cycle including chosen sensors in this cycle, is not marked chosen.

Since any query region sensor tha t is initially unchosen, and is nonredundant

because it is not the “lesser” neighbor of a chosen sensor, has two nonadjacent neigh

bors, and that has two neighbors between which there is no cycle including chosen

sensors in this cycle, will evaluate NonAdjacentNgbrs{i), -<LesserNgbrOfChsn{i),

and NonRemovable{i) as true, this node will evaluate the guard of Ag, and then A 3

as true.

=> This (nonredundant) sensor will execute A 2 , followed by A 3 , and will change

to chosen.

Hence we arrive at a contradiction.

Case 2: The nonredundant query region sensor is initially marked chosen, but

executes Redundant{i) and is unmarked.

Since this sensor executed Redundant{i), it is the neighbor of a chosen sensor

having a greater UID than itself, and all sensors within its transmission disk are

neighbors of a chosen sensor.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> This sensor’s entire transmission (and sensing) disk is covered by the sensing

disks of other chosen sensors.

=> This sensor is redundant.

Hence we arrive at a contradiction.

Case 3: If a redundant sensor is marked as chosen, Redundantii) will not unmark

this sensor.

Since any redundant sensor is one whose entire sensing disk is covered by the

sensing disks of other chosen sensors, and whose removal will not leave part of the

query region uncovered, such a sensor will evaluate LesserN gbrO fC hsn{i) as true,

and will have all of its neighbors evaluate E N gbrO fC hsn{j,i) as true.

=> Such a (redundant) sensor wiU evaluate Redundant{i) as true.

=> Such a (redundant) sensor will execute A i and will be unmarked.

Hence we arrive at a contradiction. □

7.6.3 Proof of Self-*
7.6.3.1 Self-configuring

From the proofs of closure and convergence, it was shown that starting from any

initial configuration. Algorithm M C S C forms a network topology in which all mem

bers of the minimum connected sensor cover are connected, and are thus able to

communicate with each other, either directly or indirectly. It was also shown that

starting from any arbitrary state, the given query region will eventually be com

pletely covered. By executing the rules of Algorithm M C S C , network sensors will

self-configure to establish a topology that enables communication and sensing cover

age under stringent energy constraints. Hence Algorithm M C S C is self-configuring.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6.3.2 Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm M C S C is not

self-healing.

=> If a nonredundant node fails, a redundant node joins the network, or if there

is an arbitrary corruption of the StatuSj variable of nodes, then part of the query

region may become uncovered, or may be covered by a redundant node.

Case 1 : If a nonredundant node fails, then part of the query region becomes

uncovered.

Since the graph is densely populated, there is a portion of the graph in which

an unchosen sensor tha t is in this uncovered region, does not execute Ag and A 3 to

become chosen.

=k However, since this unchosen sensor has two nonadjacent neighbors, is not the

“lesser” neighbor of a chosen sensor, and has two neighbors between which there is

no cycle that includes chosen sensors in this cycle, it will evaluate the guard of A 2

as true and NonRemovable{i) as true.

This node will execute Ag, followed by A 3 , and wiU become chosen.

Hence we arrive at a contradiction.

Case 2: A part of the query region is covered by a redundant node.

Since any node that is the “lesser” neighbor of a chosen node, and whose en

tire transmission disk is covered by chosen nodes, is redundant and will not evalu

ate ->LesserNgbrOfChsn(i) as true, this node wiU not execute Ag and change to

undecided, nor wiU it execute A 3 .

=> This node cannot change to chosen to cover the query region.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence we arrive at a contradiction.

Case 3: If there is an arbitrary corruption of the StatuSi variable of nodes, then

part of the query region may become uncovered, or may be covered by a redundant

node.

=> If the StatuSi variable for a node is initially undecided, chosen, or rem oved,

then part of the query region may become uncovered, or may be covered by a redun

dant node.

Since LesserN gbrO fC hsn{i) evaluates to false if a node, regardless of its initial

status, is not the “lesser” neighbor of a chosen node, and NonRemovable(i) will

evaluate to true if an undecided node has two neighbors for which ->Cycle{x,y)

evaluates to true, and since a chosen node will cover part of the query region, such

an arbitrary corruption will still allow a node to execute Ag and A 3 and cover the

query region.

Hence we arrive at a contradiction.

Alternatively, since R edundant{i) will unmark a sensor if it is chosen, is the

“lesser” neighbor, but not the neighbor having the smallest UID, of a chosen node,

and if aU parts of its transmission disk are covered by chosen nodes, if the StatuSi

variable of a redundant node is initially chosen, is initially undecided, or changes

from rem oved to undecided, and then this node changes to chosen by executing A 3 ,

it will become unmarked.

Part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6.3.3 Self-*

Using the concept of self-stabihzation, the self-configuring and self-healing fea

tures of our solution have been implemented. Since the paradigm of self-stabilization

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of

the self-* feature.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

SIMULATION AND RESULTS

8.1 Discussion of Results

Algorithms 1 , 2 , and 3 compute a minimum connected sensor cover for the query

region. Moreover, all three algorithms are fault-tolerant in terms of the self-* feature.

In our simulations, for the first set of experiments, we assumed that nodes are

chosen and randomly deployed on a grid of size 500 x 500 (300,000 nodes). Similar

to [26, 44, 55] we consider the sensing region associated with a sensor modeled as

a circular region around itself. We considered a homogeneous network of 300,000

nodes (i.e. all sensors had the same sensing region — circular of radius 6). We then

used varying sizes for a query region, and measured the number of sensors in the

final minimum connected cover set, the number of query region sensors (dominated)

per MCSC sensor, and the stabilization time for Algorithms 1, 2, 3, and Rule k [15].

The query region used in each simulation varied from 60 x 60 graph units to 120

X 120 graph units, in intervals of 10 graph units. The results of this simulation are

summarized in Table 1 and Figures 5(a) - (c) in the next section.

The simulations summarized in Table 2 , Table 3, and Figures 5(d)-(i) were per

formed with a query region of size 90 x 90 graph units. The total number of sensors

deployed, and the size of the radius of communication of the sensors were varied in

Tables 2 and 3, respectively.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C D
■ D

O
Q .
C

g
Q .

■D
CD

C/)
C/) Table 1 . Number of MCSC Sensors, Query Region Sensors per MCSC

Sensor, and Stabilization Times for Algorithms 1, 2, 3, and
Rule k at Various Query Region Sizes.

8

(O '

3.
3"
CD

CD■D
O
Q .
C
a
o3
"O
o

CD
Q .

■D
CD

C /)
C /)

g

Size of
(n

Query Region
X n units)

60 70 80 90 1 0 0 1 1 0 1 2 0

Alg. 1 Num ber of MCSC Sensors 155 203 246 286 342 387 475
Alg. 1 Qry Rgn Sensors / MCSC Sensor 45.6 43.6 46.5 48.9 47.2 50.1 47.1
Alg. 1 Stabilization Time (min.) 38.1 73.0 135.2 192.4 259.5 376.9 498.7
Alg. 2 N um ber of MCSC Sensors 166 207 257 309 375 432 502
Alg. 2 Qry Rgn Sensors / MCSC Sensor 40.5 42.6 42.5 44.4 43.2 44.4 44.4
Alg. 2 Stabilization Time (min.) 1 0 .2 14.7 19.7 27.9 36.2 47.1 62.5
Alg. 3 N um ber of MCSC Sensors 187 238 287 364 519 661 708
Alg. 3 Qry Rgn Sensors / MCSC Sensor 37.8 38.2 39.0 37.4 31.5 29.3 31.7
Alg. 3 Stabilization Time (min.) 10.7 17.5 27.2 42.3 64.3 108.3 176.0
Rule k N um ber of MCSC Sensors 191 244 297 343 410 513 595
Rule k Qry Rgn Sensors / MCSC Sensor 37.5 37.0 37.9 39.8 40.0 38.2 38.3
Rule k Stabilization Time (min.) 4.6 6 .0 8.3 11.4 16.0 22.4 29.6

As shown in Table 1, at all query region sizes, Algorithm 1 produced the least

nodes in the final cover set. Algorithm 2 produced a greater number of nodes in

the final cover set than Algorithm 1 but fewer nodes in the final cover set than

Algorithm 3 and Rule k. Algorithm 3 produced a greater number of nodes in the

final cover set than Algorithm 1 and Algorithm 2 at all query region sizes tested.

However, it produced a final cover set that was smaller than Rule fc’s at query

region sizes that were less than 90 x 90 square graph units and larger than Rule

fc’s at query region sizes greater than this. Rule k produced the greatest number

of nodes in the final cover set at query region sizes that were less than 90 x 90

square graph units, but produced fewer nodes in the final cover set than Algorithm

3 at query region sizes that were greater than 90 x 90 square graph units. This

was due to the fact that Algorithm 1 has the strongest redundancy predicate, since

it only requires that a Sensor i be the neighbor of a chosen sensor and also have a

smaller UID than this chosen sensor but not the least UID out of all the neighbors

of this chosen sensor, before it is unmarked. Algorithms 2 and 3 have a redundancy

predicate that is weaker than that of Algorithm 1 but stronger than that of Rule

fc, since it requires that a Sensor i be the neighbor of a chosen sensor, and also

have a smaller UID than this chosen sensor but not the least UID out of aU the

neighbors of this chosen sensor, and that all sensors within the transmission disk of

Sensor i are also neighbors of a chosen sensor, before Sensor i is unmarked. Also,

since Algorithm 3 uses the Connector{i) predicate to ensure connectivity and uses

the LessN otLeastN gbrO fC hsn{i) predicate as part of its redundancy predicate, in

any particular covered area of the query region, only the node with the greatest and

the least UID will be marked as chosen. In addition to this. Rule k has the weakest

redundancy predicate, since it requires that all sensors within the transmission disk

of Sensor i be covered by marked sensors and that Sensor i also has the least UID

out of all the nodes that cover its transmission disk, before it is unmarked. Also,

as shown in Figure 5(b), each sensor in the final cover set chosen by Algorithms 1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and 2 “dominated” a greater number of nodes than Rule k. Thus Algorithms 1 and

2 “dominated” a greater number of nodes than Rule k. Algorithm 3 “dominated”

a greater number of nodes than Rule k at query region sizes less than 90 tim es 90

square graph units, but fewer number of nodes than Rule k a t query region sizes

greater than this. Thus Algorithms 1 and 2 did outperform Rule k in the sense that

they allowed more nodes to be in an “inactive” state at all the query region sizes

tested in our simulation, and Algorithm 3 outperformed Rule k a t query region sizes

less than 90 x 90 square units. However, as shown in Figure 5(c), Algorithm 1 had

the highest stabilization time of all the algorithms. This increased stabihzation time

is attributed to the fact th a t Algorithm 1 has the strongest redundancy predicate,

and therefore will incur the greatest time cost when unmarking redundant chosen

nodes and again producing a sensor cover consisting of nonredundant nodes after

restabilization. Furthermore, the stabilization time of Algorithm 3 is greater than

Algorithm 2 and Rule k. This is due to the fact that Algorithm 3 has a redundancy

predicate that is not weaker than tha t of both algorithms, and yet sends FindCycle(i,

x) and FindCycle(i, y) messages that must travel throughout the network.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C D
■ D

O
Q.
C

8
Q.

■D
CD

C/)
C/) Table 2. Number of MCSC Sensors, Query Region Sensors per MCSC

Sensor, and Stabilization Timæ for Algorithms 1 , 2, 3, and
Rule k at Various Sensor Densities.

8

(O'

3.
3"
CD

CD■D
O
Q .
C
a
o3
"O
o

CD
Q .

■D
CD

C /)
C /)

N um ber of Sensors
(x 1 0 0 ,0 0 0)

1.5 2 . 0 2.5 3.0 3.5
Alg. 1 N um ber of M CSC Sensors 294 273 283 286 296
Alg. 1 Qry Rgn Sensors / M CSC Sensor 2 2 .8 33.8 40.1 48.9 53.4
Alg. 1 Stabilization Tim e (min.) 13.3 43.8 103.8 192.4 285.3
Alg. 2 N um ber of M CSC Sensors 316 313 318 309 317
Alg. 2 Qry Rgn Sensors / M CSC Sensor 2 2 .1 28.9 35.9 44.4 49.7
Alg. 2 Stabilization Tim e (min.) 9.9 14.6 2 0 .8 27.9 35.7
Alg. 3 N um ber of M CSC Sensors 341 347 349 364 470
Alg. 3 Qry Rgn Sensors / M CSC Sensor 2 0 .1 26.6 32.9 37.4 34.2
Alg. 3 Stabilization Tim e (min.) 8 .0 16.5 26.6 42.3 64.4
Rule k N um ber of M CSC Sensors 332 344 342 343 360
Rule k Qry Rgn Sensors / M CSC Sensor 2 0 .8 26.4 34.1 39.8 44.7
Rule k Stabilization Tim e (min.) 2 .2 4.1 7.6 11.4 18.2

Furthermore, Table 2 shows that the size of the final cover sets produced by

Algorithms 1 and 2 is smaller than tha t produced by Algorithm 3 and Rule k.

Therefore, both Algorithms 1 and 2 outperformed Rule k in terms of the size of the

final cover set at all sensor densities tested in our simulation. The final cover sets

produced by Algorithm 3 and Rule k were very similar in terms of size, when the

total number of sensors in the simulation was less than 300,000 nodes. Therefore,

both algorithms produced nearly the same number of nodes in the final cover set,

when the to tal number of nodes deployed was less than 300,000 nodes.

The number of M C S C sensors for both Algorithms 1 and 2 did not monotonically

increase when the node density was increased, while that of Rule k did increase

sharply when the node density was greater than 300,000 nodes per 500 x 500 graph

units. This may be attributed to the fact that at higher node densities, there may

have been a greater number of nodes tha t covered any particular marked sensor’s

transmission disk, and thus a less likelihood that a marked sensor had the least UID

of all the sensors tha t covered its transmission disk. Therefore, fewer nodes would

have been unmarked at higher node densities by Rule k.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C D
■ D

O
Q.
C

8
Q.

■D
CD

C/)
C/) Table 3. Number of MCSC Sensors, Query Region Sensors per MCSC

Sensor, and Stabilization Times for Algorithms 1, 2, 3, and
Rule k at Varying Sizes of Rc

8

(O'

3.
3"
CD

CD■D
O
Q .
C
a
o3
"O
o

CD
Q .

■D
CD

C /)
C /)

Size of Radius

§

6 7 8 9 1 0

Alg. 1 N um ber of MCSC Sensors 286 223 177 143 113
Alg. 1 Q ry Rgn Sensors / MCSC Sensor 48.9 61.3 77.0 97.3 120.9
Alg. 1 Stabilization Time (min.) 192.4 245.1 317.8 442.0 505.2
Alg. 2 N um ber of MCSC Sensors 309 245 183 151 1 2 0

Alg. 2 Q ry Rgn Sensors / MCSC Sensor 44.4 54.9 74.1 89.4 114.4
Alg. 2 Stabilization Time (min.) 27.9 28.4 31.7 34.3 40.8
Alg. 3 N um ber of M CSC Sensors 364 352 275 237 22 1

Alg. 3 Qry Rgn Sensors / MCSC Sensor 37.4 39.2 49.2 58.0 61.9
Alg. 3 Stabilization Time (min.) 42.3 51.5 56.0 73.3 81.1
Rule k N um ber of M CSC Sensors 343 278 2 2 2 177 145
Rule k Qry Rgn Sensors / MCSC Sensor 39.8 49.4 61.8 77.2 95.8
Rule k Stabilization Time (min.) 11.4 15.4 18.8 22.9 29.5

Table 3 and Figure 5(g) show that Algorithms 1, 2, 3, and Rule k produced

smaller final cover sets as the radius of communication of the sensors was increased.

However, Algorithms 1 and 2 produced smaller cover sets than Rule A; at all sizes of

the radius of communication that were tested. Also, as shown in Figure 5(h), each

sensor in the final cover set chosen by Algorithms 1 and 2 “dominated” a greater

number of nodes than Rule k, at all sizes of the radius of communication that were

tested. This indicates that Algorithms 1 and 2 outperformed Rule k, in terms of

the size of the final cover set and the number of query region sensors covered by

each node in the final cover set, at all sizes of the radius of communication that

were tested. Also, both Algorithms 3 and Rule k produced a cover set that was very

similar in size, when the size of the radius of communication of the sensors was 6

and the size of the query region was 90 x 90 graph units.

As the size of the radius of communication was increased, each sensor chosen by

Algorithms 1 , 2, and 3 also “dominated” a greater number of query region sensors.

This seems intuitive since the size of the radius of communication is equal to the size

of the radius of the sensing disk of sensors in Algorithms 1, 2, and 3. Therefore, as the

radius of communication was increased in size, there were a greater number of nodes

within the transmission disk, and thus within the sensing disk, of chosen sensors in

the simulation. Thus, in Algorithms 1 , 2 , and 3, there was a smaller probability of

nodes being chosen by A 2 and A 3 . Also, since there was an increased hkelihood that

a node was the neighbor of another chosen sensor that had a greater UID than its

own but was not the “least UID” neighbor of this chosen sensor, a greater number

of chosen sensors may have been unmarked by the redundancy predicates of both

algorithms.

The stabilization times of both Algorithm 2 and Rule k were very similar at all

sizes of the radius of communication that were tested. Also, despite the fact that Al

gorithm 1 had a higher stabilization time than Algorithm 2, 3, and Rule k, Algorithm

1 still produced fewer nodes in the final cover set. While Rule k does stabilize faster

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than Algorithms 1, 2, and 3, the slower stabilization times seem justified due to the

fact that the latter three algorithms do not compromise connectivity, nor coverage.

The time complexity of Algorithms 1 and 2 is O(A^), where A is the maximum

degree of a node in the network. The time complexity of Algorithm 3 is 0 (D),

in which D is the diameter of the network. The stabilization times of all three

algorithms measured during simulation, however, may increase due to the time cost

associated with unmarking redundant chosen nodes and again producing a sensor

cover consisting of nonredundant nodes after restabilization.

The screenshots in Figures 6, 7, and 8 show the final cover sets that are produced

by Algorithms 1, 2, and 3, respectively, when the radius of communication is 8. In all

screenshots, each sensor is depicted as a black spot, and areas that are occupied by

sensors are shown as black areas. Also, the query region is outlined by a red square,

and the sensing disk of each chosen sensor is depicted as a light blue circle with a

white border. Any uncovered regions within the query region will be shown as black

areas within the red rectangle.

In addition to this. Algorithms 1, 2, and 3 are fault-tolerant in terms of the self-*

feature. This implies that Algorithms 1, 2, and 3 are also self-contained, meaning that

the number and location of nodes affected by a faulty node, are minimally contained

within the neighborhood of the faulty sensor. It also implies that the system self-

heals after restabilization, without any external intervention. This is shown in the

screenshots in Figures 9, 10,11 and in Figures 12 and 13. The screenshots in Figures

9, 10, and 11 are those of Algorithms 1, 2, and 3, respectively, when there are two

faulty nodes that are neighbors of each other. The screenshots in Figures 12 and

13 are those of Algorithms 1 and 2, respectively, when there are two faulty nodes

that are not neighbors of each other. In these screenshots, the sensing disks of faulty

nodes are pink and those of nodes th a t were faulty and changed their status after

restabilization are green. In this simulation, the sensing disks of nodes that were not

faulty and yet changed their status after restabilization should have changed from

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

light blue to yellow. As the simulation shows, in all three algorithms, when a node’s

status is corrupted by an arbitrary fault, the system is self-contained and self-heals

after restabilization, without any external intervention.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I I I I I
60 70 80 90 100 110 120

S iz e o f Q u e r y R e g io n (n x n u n i t s)

(a) Number of MCSC
Sensors for Various
Query Region Sizes

iB,

10- -

- A - : . ' . ____ _

4---1---1-
100 I lO 130

S ize o f Q u ery R eg io n (n x n un its)

(b) Query Region Sen
sors per MCSC
Sensor for Various
Query Region Sizes

60 70 80 90
S lxe o f Q u e ry R eg ion (n x n u n its)

(c) Stabilization Time
(minutes) for Var
ious Query Region
Sizes

500

B400 - -

© 200

100 - -

I j 2.0 15 3.0 3.5

y 50

3.0 3.51.5 2X) 2.5

g 251

5 0 -----

2.51.5 3.0 3.52.0
Number of Sensors (x 100,000) Number of Sensors (x 100,000) Number of Sensors (X 100,000)

(d) Number of MCSC
Sensors for Various
Sensor Densities

(e) Query Region Sen
sors per MCSC Sen
sor for Various Sen
sor Densities

(f) Stabilization Time
(minutes) for Various
Sensor Densities

500-----
C400 - -

’§ 4 0 0 - -

P 3 0 0 - -

200-----

a 100 - -
100

2 0 ------

6 107 8 96 7 8 9 10
Size o f Radius o f Com m unicationSize of Radius of Communication

(g) Number of MCSC Sen
sors for Various Sizes of
Radius of Communica
tion

Keya- ^

(h) Query Region Sensors
per MCSC Sensor for
Various Sizes of Radius
of Communication

A V V 7 'V D H -B—B 0-

Algwita2 Algmta3 Ralek

Figure 5. Graphs of Experimental Results.

(i) Stabilization Time (min
utes) for Various Sizes
of Radius of Communi
cation

0 0 0

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ï l -il

i ^ |]

0

1
I
I
^ %
•c

i ltw o

I
co

îC£5
I

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a
a I

I
g

cs
00

l . i

JI
CO

1
I

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C D
■ D
O
Q .
C

g
Q.

"O
CD

C/)
C/)

8

ci'

3
3"
CD

CD"O
O
Q.
C
aO3
"O
O

CD
Q.

"O
CD

C /)
C /)

CD

buttoni

SimilititR l's Stabilization Time= SSjSmnto*

N u n ib e io fse iB D B m ^K g lo n : Uôlli
I W o r o f m m i n M M C S C : 275
Q neiT R g ioR ttinB lC S C jorne 4 9 . 1 #
& R *on& R oing& k 2211.126

Figure 8. Screenshot of Simulation of Algorithm 3 When the Radius of
Communication is 8

C D
" O

O
Q.
C

8
Q.

"O
CD

C/)
C/)

8

ci'

3
3"
CD

CD"O
O
Q.
C
aO
3
"O
O

CD
Q.

"O
CD

C /)
C /)

CD
00

MIS M lb +
Bfidges

MCSC

Sim uhtiiA r« SidkilizïtiBHTim * 172.12 n ia n te i
Query mgi#» iwde « o m t 13427
MCSC nedr (o v n t 213
Query regien feiuanlM CSC le n ie n 47.44523
Senfen/Senfiiigdlfk: 132.N7
SimulxtioA l ' t B eitdifliiation Tiiiie = 1.97 lu inuks
Q ueiy iegbn rode count: 13427
MCSC node coun t 9 2
Query region oeroorolMCSC seniot: 4741341
SoM on/Senfingdbk: 132.173
Node l l ic to tu e k h re W t = c
Node l^ C ra h ita tu f " u
Node 111 reftabrU zadonflitu > n
Node 2 'i f iotui befcre b u h = u
Node 2b b o lt itatuf = c
Node 2b reAMBzotlonototu# = u

Figure 9. Screenshot of Simulation of Self-Containment of Algorithm 1 W ith 2
Neighboring Faults

C D
" O

O
Q.
C

8
Q.

"O
CD

C/)
C/)

8

ci'

3
3"
CD

CD"O
O
Q.
C
aO
3
"O
O

CD
Q.

"O
CD

C /)
C /)

g

-7>*

Al 1 A2 1 A3 1 ; A4 I
■■ ■■■■■J — HMI^—J MMMm J

Simuliijon l'i SMiliz&Üim I b u * UX1 ninvief
Qwiyiegbnm de count: 13217
MCSC node count: 317
Query regien leruon/MCSC cencon 4L8832I
Senfon'Seniingdifk: 126.155

Simulition Ib Rectaliilizn&ijjiue = 1943 nnute:
Query regbn node count: 11277
MCSC node count 317
Query regbu wmoiifMCSC oeniox: 4L88328
Senion/Seniingdick: 126.866

Node lb itntuibe&R fault "c
Node lb fault itatui = n
Node lb nitAlUzidonflitnf = c
Node 2 b i tatui befare fault= n
Node 2b fault itatu = c
Node 2b eeebWlfaotlonelotue = c

Figure 10. Screenshot of Simulation of Self-Containment of Algorithm 2 W ith 2
Neighboring Faults

C D
" O

O
Q.
C

8
Q.

"O
CD

C/)
C/)

8

ci'

3
3"
CD

CD"O
O
Q.
C
aO
3
"O
O

CD
Q.

"O
CD

C /)
C /)

S

SimuhtbH l 's SahUfasdsn Time - 4442 miiniR
Nombercf sense» In query région: 7068
Nniberofsenson iniinIMCSC; 187
Qiieiy Rgien sensois/MCSC sensor: 37,79679

- 4248 mint
Nnndberofsensors in qveiy region: ?068
NnnAer of sensors in final MCSC: 187
Qwiy region sensors/MCSC sensor: 37.79679
Sensoro/Sensing disk:

Node l's
Node l's
Node l 's
Node 2's sWus keftre &nU» u
Nede2's
Nede 2's restaMluaflon status ■■ n

status beibre
bult status-u
restabiUiation
status beftre &ult
&uh status " n
restabiliiafion.

Figure 11. Screenshot of Simulation of Self-Containment of Algorithm 3 With 2
Neighboring Faults

CD■O
O
Q.
C

8
Q.

■O
CD

C/)
C/)

CD

8

ci'

3
CD

3.
3"
CD

CD■O
O
Q.
C
aO
3
■O
O

CD
Q.

■O
CD

C /)
C /)

O

m j

&| a

16195 nimlMSiiauhtbn Ib Stc ___
Query région noue count:
MCSC node count 295
Query regien «euonMCSC ce
Senfon^ensingdifk: 129.283
Simulation l's ReiteAilkatfenTime •= 2.10 minutes
Query region node count: 13099
MCSC node count: 295
Query region senioniMCSC senior: 4440339
Scnsori'Senoingdisk: 129.014
Node lb status kefitre fault =■€
Node lb fault status = n
Node lb restsMUzatlon status = c
Node 2b status befare faul t c
Node 2b fault status = n
Node 2b restddliaation status = c

Figure 12. Screenshot of Algorithm I ’s Self-Containment Simulation W ith 2
Non-Neighboring Faults

I

â»*-' « 3

I

3dH

CN

I
m

1
II
i f
œ O

I I

1
C O

g

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

The main motivation of our research was to design a totally distributed self-

* query response system in sensor networks. We presented three local, distributed,

scalable, self-* solutions to the minimum connected sensor cover problem and showed

how these solutions are self-organizing and self-healing as well. The algorithms are

also self-* contained, meaning that after a fault occurs in the system, after restabi

lization, only nodes within the locality of the faulty nodes change status. Throughout

the design process, we followed a power-aware approach. Although our goal was to

design a minimal size sensor cover, we used power-awareness as a strong guide in our

design, and accepted a slight degree of suboptimality.

The minimum connected cover set produced by Algorithms 1, 2, and 3 are min

imal in the sense th a t they do not include another cover set. Algorithms 1 and 2

outperformed Rule k in terms of producing a smaller final cover set at all query

region sizes tha t were tested in our simulation. Algorithm 3 outperformed Rule k

in terms of producing a smaller final cover set at query region sizes that were less

than 90 x 90 square graph units. Also, at all sensor densities and all sizes of the

radius of communication tha t were tested, both Algorithms 1 and 2 outperformed

Rule k in terms of producing a smaller final cover set. The final cover sets produced

by Algorithm 3 and Rule k were very similar in terms of size, when the total number

of sensors deployed was less than 300,000 nodes, and the size of the query region

was 90 X 90 square graph units. Despite the fact that the stabilization time of

Algorithm 1 is greater than th a t of Algorithm 2, 3, and Rule k, the final cover set

produced by Algorithm 1 is smaller than that produced by Algorithm 2, 3, and Rule

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k. Also, Algorithm 1, Algorithm 2, and Algorithm 3 are truly fault-tolerant and are

self-contained, meaning that after a fault occurs in the system, after restabilization,

only nodes within the locality of the faulty nodes change status.

This research showed that the concept of self-stabilization subsumes many other

self-* properties. The connected sensor cover problem is a global task since nodes

cannot locally compute the final response to the query. However, we still required

our algorithms to be local in the sense tha t no node in the proposed algorithms

collect global information, and no node behaves as a special node in any stage of the

execution of the algorithms. In our solution, every node can decide if it should be

unchosen, undecided, chosen, or removed (in the case of Algorithm 3), during the

computation of the response to a query, based upon local information. In summary,

we achieved a global objective by using local algorithms.

Sensing coverage characterizes the monitoring quality provided by a sensor net

work in a designated region. Different apphcations may require different degrees of

sensing coverage. In this regard, we can extend our solution in a couple of ways.

Firstly, we may write a parametric solution where the input query will include the

degree of coverage expected. The redundancy predicate will be relaxed to allow the

corresponding higher degree of coverage. Secondly, we can simply assume a particular

degree (> 1) of coverage in our algorithm. Similar to the implementation of a higher

degree of coverage to achieve better robustness, we may also require a higher degree

of connectivity for the same purpose (i.e., to increase the level of fault-tolerance). We

can extend the neighborhood connectivity checking to fc-node {k > 1) disjointness

in the communication graph. Unfortunately, higher degree of coverage/connectivity

would require more communication cost, i.e., consuming more power. We can con

duct a study on the trade off between connected cover size optimality vs. robustness

and energy efficiency.

Also, our work can be extended by finding an algorithm to form a minimum

connected “clusterhead” set, such th a t every node in the graph G(V, E) is either in

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the “clusterhead” set, adjacent to a node in the “clusterhead” set, or adjacent to a

neighbor of a node in the “clusterhead” set. Nodes in this “clusterhead” set will then

be responsible for aggregating, routing, or transmitting data th a t has been collected

from the query region.

Our work may also be extended to include sensors with sensing or transmission

radii th a t are different in size. That is, we may increase or decrease the sensing radii

of sensors used in our research, and study the effect of this change upon the size and

degree of coverage of the final cover set th a t is obtained.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

IBM03 http ://www.reseaxch.ibm.com/autonomic/.

ATM Atmel, inc. at90s4434/ls4434/s8535/ls8535. Prehminary (Complete)
Datasheet.

IETF05 letf working group: Mobile ad-hoc networks (manet).
http: / / www.ietf.org/html.charters/manet-charter.html.

NES03 Nest project at berkeley, http://webs.cs.berkeley.edu/nest-index.html.

AN03 Wireless ad hoc networks, http://w3.antd.nist.gov/wahn_ssn.shtml.

Cro03 Crossbow technology mica2 wireless measurement system datasheet,
2003. h ttp ://www.xbow.com/Products/Wireless_Sensor_Networks.htm.

AGS93 NT Adams, R Gold, BN Schilit, MM Tso, and R Want. An in
frared network for mobile computers. In USENIX Symposium on Mobile and
Location-Independent Computing, pages 41-51, Aug 1993.

AD97 Y Afek and S Dolev. Local stabilizer. In Israel Symposium on Theory
of Computing Systems, pages 74-84, 1997.

Aro92 A Arora. A foundation of fault-tolerant computing. Ph.D. dissertation.
The University of Texas at Austin, Dec 1992.

AG94 A Arora and MG Gouda. Distributed reset.
Computers, 43(9): 1026-1038, 1994.

IEEE Transactions on

APV91 B Awerbuch, B Patt-Shamir, and G Varghese. Self-stabilization by
local checking and correction. In F0CS91 Proceedings of the Thirty first Annual
IEEE Symposium on Foundations of Computer Science, pages 268-277, 1991.

CA04 J Carle and D Simplot-Ryl. Energy-efficient area monitoring for sensor
networks. IEEE Press, pages 40-46, Feb 2004.

CJBOl B Chen, K Jamieson, H Balakrishnan, and R Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks. In MobiCom02 Proceedings o f the Seventh Annual Inemational
Conference on Mobile Computing and Networking, pages 85-96, Jul 2001.

[14] CDP03 A Cournier, AK D atta, F Petit, and V Villain. Enabling snap-
stabilization. In IEEE Twentythird International Conference on Distributed
Computing Systems (ICDCS 2003), pages 12-19, May 2003. Providence,
Rhode Island.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.reseaxch.ibm.com/autonomic/
http://www.ietf.org/html.charters/manet-charter.html
http://webs.cs.berkeley.edu/nest-index.html
http://w3.antd.nist.gov/wahn_ssn.shtml
http://www.xbow.com/Products/Wireless_Sensor_Networks.htm

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

[26

DW03 F Dai and J Wu. Distributed dominant pruning in axl hoc networks.
Proceedings o f IC C ’03, 2003.

Dij74 EW Dijkstra. Self stabilizing systems in spite of distributed control.
Communications of the Association of the Computing Machinery, 17(11):643-
644, Nov 1974.

Dij73 EW Dijkstra. Ewd386 the solution to a cyclic relaxation problem. In Se
lected Writings on Computing: A Personal Perspective, pages 34-35. Springer-
Verlag, 1982. EWD386’s original date is 1973.

DolOO S Dolev. Self-Stabilization. MIT Press, 2000.

DGS96 S Dolev, MG Gouda, and M Schneider. Memory requirements for
silent stabilization. In PODC96 Proceedings o f the Fifteenth Annual ACM
Symposium on Principles o f Distributed Computing, pages 27-34, 1996.

D04 J Dowling, R Cunningham, E Curran, and V Cahill. Component and
system-wide self-* properties in decentrahsed distributed systems. SELF
STAR: International Workshop on Self-* Properties in Complex Information
Systems, Jun 2004.

EGH02 D Estrin, R Govindan, J Heidemann, and S Kumar. Next century
challenges: Scalable coordination in sensor networks. Mobile Computing and
Networking, pages 263-270, 1999.

FP03 Armando Fox and David Patterson. Self-repairing computers. Scientific
American, Jun 2003.

FOO M Frodigh, P Johansson, and P Larsson. Wireless ad hoc networking: the
art of networking without a network. Ericsson Review, (4):248-263, 2000.

GGH96 S Ghosh, A Gupta, T Herman, and SV Pemmaraju. Fault-containing
self-stabilizing algorithms. In PODC96 Proceedings o f the Fifteenth Annual
ACM Symposium on Principles o f Distributed Computing, pages 45-54, May
1996.

GM91 MG Gouda and N Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448-458, 1991.

GDG03 H Gupta, SR Das, and Q Gu. Connected sensor cover: Self-organization
of sensor networks for efficient query execution. In MobiHoc03 Proceedings of
the Fourth ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pages 189-200, 2003.

[27] HKB03 WR Heinzehnan, J Kulik, and H Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In Proc. MÔBICOM,
pages 174-185, 1999.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] HT03 T Herman and S Tixeuil. A distributed tdma slot assignment algorithm
for wireless sensor networks. Technical Report 1370, LRI, Université Paris-Sud
XI, Sep 2003.

[29] COl J Hill, R Szewczyk, and A Woo. Tinyos; Operating system for sensor
networks, http://www.eecs.berkeley.edu/IPRO/Sum m ary/01 abstracts/
szewczyk. l.html.

[30] HSWOO J Hill, R Szewczyk, A Woo, S Hollar, D Culler, and K Pister. System
architecture directions for networked sensors. In Architectural Support for Pro
gramming Languages and Operating Systems, pages 93-104, 2000. ASPLOS-
IX.

[31] ISS05 F Ingelrest, D Simplot-Ryl, and I Stojmenovic. Smaller connected
dominating sets in ad hoc and sensor networks based on coverage by two-hop
neighbors. Technical report. Institut National De Recherche En Informatique
Et En Automatique, Apr 2005.

[32] 100 C Intanagonwiwat, R Govindan, and D Estrin. Directed diffusion: A scal
able and robust communication paradigm for sensor networks. ACM Mobicom
2000, Apr 2000.

[33] KKP99 JM Kahn, RH Katz, and KSJ Pister. Next century challenges: Mobile
networking for smart dust. In International Conference on Mobile Computing
and Networking (MOBICOM), pages 271-278, Nov 1999.

[34] Kes88 JEW Kessels. An exercise in proving self-stabilization with a variant
function. Information Processing Letters, 29:39-42, 1988.

[35] KU04 F Kuhn, T Moscibroda, and R Wattenhofer. Initializing newly deployed
ad hoc and sensor networks. MobiCom ’04, 2004.

[36] KAROO VSA Kumar, S Arya, and H Ramesh. Hardness of set cover with
intersection 1. In ICALPOO Proceedings o f the Twentyseventh International
Colloquium on Automata, Languages and Programming, pages 624-635, 2000.

[37] LOI A Lim. Distributed services for information dissemination in self-organizing
sensor networks. Journal o f Franklin Institute, 338:707-727, 2001.

[38] LI04 H Liu, Y Pan, and J Gao. An improved distributed algorithm for con
nected dominating sets in wireless ad hoc networks. Proceedings o f the ISPA ’Of,
Dec 2004.

[39] M02 A Mainwaring, J Polastre, R Szewczyk, D Culler, and J Anderson. Wire
less sensor networks for habitat monitoring. WSNA ’02, Sep 2002.

[40] Mil94 DL Mills, Z Yang, and TA Marsland. Internet time synchronization:
The network time protocol. Global States and Time in Distributed Systems,
IEEE Computer Society Press, 1994.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.berkeley.edu/IPRO/Summary/01

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50

[51

[52

[53

[54

Pat03 David Patterson. Recovery-oriented computing
http: / / roc.cs.berkeley.edu/.

overview.

Pis03a KSJ Pister. Smart dust, http://robotics.eecs.berkeley.edu/ pister/
SmartDust.

R99 EM Royer and C Toh. A review of current routing protocols for ad hoc
mobile wireless networks. IEEE Personal Communications, Apr 1999.

SSS03 S Shakkottai, R Srikant, and N Shroff. Unreliable sensor grids: Cover
age, connectivity and diameter. In INFOCOM03 Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 2,
pages 1073-1083, Apr 2003.

SunOl J Sun. Mobile ad hoc networking: An essential technology for pervasive
computing. In Proceedings International Conferences on Info- Tech & Info-Net,
pages 316-321, 2001.

TelOO G Tel. Introduction to distributed algorithms. Cambridge University
Press, second edition, 2000.

Var93 G Varghese. Self-stabilization by local checking and correction. Ph.D.
dissertation, MIT, 1993.

Var94 G Varghese. Self-stabilization by counter flushing. In PODC94 Proceed
ings of the Thirteenth Annual AC M Symposium on Principles o f Distributed
Computing, pages 244-253, 1994.

WXZ03 X Wang, G Xing, Y Zhang, C Lu, R Pless, and C Gill. Integrated
coverage and connectivity configuration in wireless sensor networks. In ACM
SenSys03 Proceedings of the First International Conference on Embedded Net
worked Sensor Systems, pages 28-39, Nov 2003.

WB96 M Weiser and JS Brown. The coming age of calm technology. Technical
report. Xerox PARC, Oct 1996.

WCOl A Woo and DE Culler. A transmission control scheme for media access
in sensor networks. In Proc. AC M /IEEE Mobicom, Mobile Computing and
Networking, pages 221-235, 2001.

WU02 J Wu. Extended dominating-set-based routing in ad hoc wireless net
works with unidirectional finks. IEEE Transactions on Parallel and Distributed
Systems, 13(9):866-881, Sep 2002.

WU99 J Wu and H Li. On calculating connected dominating sets for efficient
routing in ad hoc wireless networks. Proceedings of DialM’99, pages 7-14,
1999.

YG03 Y Yao and J Gehrke. Query processing for sensor networks. Proceedings
of the 2003 CIDR Conference, 2003.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://robotics.eecs.berkeley.edu/

[55] ZH03 H Zhang and JC Hou. Maintaining sensing coverage and connectivity in
large sensor networks. Technical Report UIUCDCS-R-2003-2351, University
of Illinois at Urbana Champaign, Jun 2003.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University of Nevada, Las Vegas

Rajesh Patel

Home Address:
2001 Shelbyville Street
Henderson, NV 89052

Degrees:
Bachelor of Science, Biological Sciences
University of Southern California

Bachelor of Science, Nuclear Medicine
University of Nevada, Las Vegas

Special Honors and Awards:
Graduate Assistantship/Teaching Assistantship (School of Computer
Science), Cum Laude, The Chancellor’s List 2004-2005, Howard Hughes
Research Fellowship, UNLV Physics Award, Dean’s Honor List, The National
Dean’s List, Who’s Who Among Students in American Universities and
Colleges

Publications:
Distributed Self-* Minimum Connected Covering of a Query Region in Sensor
Networks, I SPAN 2005

Thesis Title: Distributed Self-* Minimum Connected Sensor Cover Algorithms

Thesis Examination Committee:
Chairperson, Dr. Ajoy K. D atta, Ph. D.
Co-Chairperson, Dr. Maria Cradinariu, Ph. D.
Conunittee Member, Dr. John Minor, Ph. D.
Committee Member, Dr. Yoohwan Kim, Ph. D.
Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph. D.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Distributed self-(star) minimum connected sensor cover algorithms
	Repository Citation

	tmp.1534456447.pdf.cRyY9

