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ABSTRACT

Distributed Self-* Minimum Connected 
Sensor Cover Algorithms

by

Rajesh Patel

Dr. Ajoy K. Datta, Examination Committee Chair 
School of Computer Science 

University of Nevada, Las Vegas

Dr. Maria Cradinariu, Examination Committee Co-Chair 
IRISA, Campus de Beaulieu, France

Wireless ad-hoc sensor networks are composed of a large number of tiny sensors 

with embedded microprocessors, that have very Umited resources and yet must coor

dinate amongst themselves to form a connected network. Every sensor has a certain 

sensing radius, Rs, within which it is capable of “covering” a particular region by 

detecting or gathering certain data. Every sensor also has a communication radius, 

Rc, within which it is capable of sending or receiving data.

Civen a query over a sensor network, the minimum connected sensor cover prob

lem is to select a minimum, or nearly minimum, set of sensors, called a minimum 

connected sensor cover, such that the selected sensors cover the query region, and 

form a connected network amongst themselves. In this thesis, we use present three 

fully distributed, strictly localized, scalable, self-* solutions to the minimum connected 

sensor cover problem.
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CHAPTER 1 

INTRODUCTION

Recent advances in microprocessor, memory, and wireless communication technol

ogy have enabled the production of tiny networked sensors which wiU revolutionalize 

information gathering and processing in both urban environments and inhospitable 

terrain. These wireless ad hoc sensor networks [21] have many applications and 

consist of a large number of tiny sensing devices with very Umited resources that 

must coordinate amongst themselves to  gather, process, and communicate informa

tion about their environments. A research team at the University of CaUfornia at 

Berkeley is attempting to  create a networked sensor that is the size of a few cubic mil

limeters [42]. Once produced, hundreds of thousands of these sensors, which can be 

collectively referred to as “smart-dust” , may be randomly deployed from an aircraft, 

over a certain region of interest, such as a battlefield. These DARPA smart-dust 

prototypes use off-the-shelf components. DARPA also supplied the funding to pro

duce an open-source embedded platform for such wireless sensors, called the Network 

Embedded Systems Technology Program (NEST) [4].

Because these networked sensors are often densely deployed and have limited 

battery power, in a sensor network there may be some failing sensors or sensors 

that have merely exhausted their energy supply. However, it may be impossible or 

infeasible to recharge sensors once they have been deployed, especially if they have 

been deployed in an inhospitable or physically unreachable terrain. Therefore, since 

the fundamental constraint on a networked sensor is its energy consumption, only 

some of the sensors within a particular sensing region, or query region, should be in

1
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an active state.

In addition to this, the topology of a sensor network may change very frequently, 

due to  malfunctions or changes in the position or available energy of sensors. There

fore, deploying a pre-conhgured network of a  large number of sensors is impractical. 

Taking these constraints into consideration, a sensor network must be self-configuring 

and self-maintaining or self-heahng. The term  self-* has been used to describe prop

erties such as self-organizing, self-configuring, self-healing, etc. In this thesis, we 

will present a self-stabilizing solution to  the important problem of minimizing en

ergy consumption within a sensor network. We will then show that this solution is 

a self-* solution. In a self-stabihzing system, every computation, upon starting from 

an arbitrary state, eventually reaches a state where the computation satisfies the 

problem specification in a finite number of steps.

A sensor network can be modeled as a  graph G(V, E), where every sensor in 

the network may be represented by a vertex in the graph. Since every sensor has 

a certain radius within which it can sense data with a particular confidence level, 

also called the sensor’s sensing radius, every vertex is also associated with a disk 

centered at this vertex, which is called the sensor’s sensing disk. A group of sensors 

is said to cover a certain region when the union of the sensing disks of these sensors 

completely cover this region. Also, since every sensor has a certain range within 

which it is capable of sending or receiving data, called the sensor’s communication 

radius, every vertex is also associated with a transmission disk that is centered at 

this vertex. Two sensors are neighbors and are said to be connected if and only if 

each sensor is located within each other’s transmission disk.

Within a sensor network, a query may be sent to sense certain events or data over 

a particular query region. Given such a query over a sensor network, the minimum 

connected sensor cover problem is to select a minimum, or nearly minimum, set of 

sensors called a minimum connected sensor cover, such that the selected sensors cover 

the query region, and form a connected network amongst themselves. In its general
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form, this problem is known to  be NP-hard [26, 36].

By definition, a dominating set is a set of vertices such tha t every vertex in the 

graph is either in the dominating set, or adjacent to a vertex in the dominating 

set. A connected dominating set, CDS, is a dominating set which is also a connected 

subgraph. This implies that every node in graph G(V,E) fies within the transmission 

disk of some node in the CDS. Therefore, if the communication radius of a sensor 

is equal to its sensing radius, and the nodes of the graph are the sensors, then for a 

densely populated graph, the union of the sensing radii of all nodes in a connected 

dominating set whose sensing radii intersect with some portion of the query region, 

will be sufficient to cover the entire query region. In addition to this, a minimum 

connected dominating set is a connected dominating set of minimal cardinality. Thus 

if the sensing radius of a sensor is equal to its communication radius, then the 

minimum connected sensor cover problem can be solved by selecting a minimum, or 

nearly minimum, set of sensors whose sensing ranges intersect with the query region, 

and that form a minimum connected dominating set. In doing so, the sensors in this 

set also cover the query region, can (directly or indirectly) communicate with each 

other, and can minimize the usage of energy.

1.1 Contributions

The topic of this thesis research is the design of an energy-efficient protocol for 

covering a query region in wireless sensor networks. To this end, two main areas 

will be discussed, the design of wireless networks and the design of self-* systems. 

The first contribution of this research is the study of various aspects of wireless 

sensor networks. We examine current solutions to many important problems in 

this area, such as data dissemination, data aggregation, media access methods, and 

power awareness. The second contribution is a discussion if self-* systems. Ubiq

uitous / pervasive computing, IBM’s autonomic computing, self-repairing computers, 

and self-stabilizing systems will be discussed. We will also examine the link between
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wireless sensor networks and self-* systems.

The third and most im portant contribution of this research is to design a  self- 

* power-efficient solution to  the connected sensor cover problem. This will be a 

localized, distributed solution to the connected sensor cover problem. In this context, 

a locahzed solution means th a t sensor nodes communicate only with their neighbors. 

Localized solutions in large networks are desirable due to  their high rehability and 

scalability. We used the self-stabilization paradigm to implement the self-* properties 

of our solution. Our solution can handle different types of faults including node and 

link (wireless communication) failures, power level changes, and memory corruption.

1.2 Outline of the Thesis

We start with a discussion of the design of wireless networks in Chapter 2. This 

includes the basic idea of mobile wireless networks such as mobile ad-hoc networks 

and cellular networks. We then discuss wireless sensor networks. In Chapter 3, we 

discuss self-* systems. We include a description of many types of fault-tolerant sys

tems in the context of the self-* framework. In Chapter 4 we state the motivation of 

this research, describe some results in related areas, describe the model and program 

used in our contribution, and introduce the connected sensor cover problem. The 

main contribution of this thesis is presented in Chapters 5, 6, and 7, where we present 

three self-stabilizing solutions to the problem, including proofs of their correctness. 

The first algorithm is presented in Chapter 5, the second M .C SC  algorithm

is presented in Chapter 6, and the third M C S C  algorithm is presented in Chapter 

7. A discussion of the complexity of the algorithms, simulation results, and other 

properties are included in Chapter 8. Finally, we conclude and present some ideas 

for future research in Chapter 9.
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CHAPTER 2

WIRELESS NETWORKS 
In this chapter, we will present various concepts and issues related to wireless

sensor networks. However, we will first give a brief overview of wireless networks, 

mobile wireless networks, and ad-hoc wireless networks as background information.

A wireless network is a network of telephones or computing devices that use ra

dio transmission as their carrier or physical layer. Examples of wireless networks are 

wireless LAN (local area networks), wireless PAN (personal area networks), UMTS 

(universal mobile telephone service), and D-AMPS (digital AMPS). All wireless net

works use the transmission of radio signals to send or receive data from one device 

in the network to  another.

2.1 Mobile Wireless Networks 
The recent growth in popularity of mobile computing has led to many technological

advances in this field and has resulted in the rapid development of small, inexpensive, 

and powerful computing devices such as mobile phones. Personal Digital Assistants 

(PDA’s), various handheld devices, and laptop computers. The ease of mobility 

of these units makes it both critical and challenging to maintain communication 

amongst the various types of such mobile devices. However, the recent advances in 

wireless communication technology have enabled wireless mobile units to  communi

cate with each other in various ways. The aim of such wireless communication is to 

enable users to  communicate and use computing devices without being tethered to an 

information source. There are two main classifications of mobile wireless networks, 

infrastructured (cellular) and infrastructureless (ad hoc) wireless networks [7].
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2.1.1 Infrastructured/Cellular Wireless Networks 

An infrastructured wireless network is a wireless network in which access points are 

distributed along a wired backbone, and mobile devices connect to  each other by 

communicating directly with these access points. These access points do not move 

and are present just to act as routers and forward packets for other nodes, thus al

lowing the mobile nodes to  save power. Also, the access points are usually connected 

to the fixed network infrastructure or to  the Internet. Mobile nodes that are within 

the coverage area of an access point are able to  send and receive signals to  that 

access point, and can thus communicate directly with that access point. However, 

as a mobile node moves out of the coverage area of one access point and into that 

of another, it must cease communication with the old access point and begin com

munication with the new access point. This process is called a handoff, and should 

be completely undetectable to the user [43]. A few examples of infrastructured wire

less networks are Wireless Local Area Network (WLAN), cellular networks. Wireless 

Local Loop (WLL), and Global System for Mobile Communications (GSM).

Infrastructured wireless networks are typically used in locations where access 

points can be easily installed and connected to an existing network, such as office 

buildings and college campuses.

2.1.2 Infrastructureless/Ad Hoc Wireless Networks

There may be many instances in which mobile users may need to communicate 

with each other, and yet a fixed wired infrastructure may not be available. One 

example may be disaster recovery, in which the entire communication infrastructure 

may be destroyed, and restarting communication quickly is crucial. An infrastructure 

can be re-established in hours by using a mobile ad-hoc network, instead of weeks, 

as is required by a wired infrastructure. Such an interconnection between mobile 

computers does not require any pre-planned infrastructure, such as a base station, 

and is called an ad-hoc network.
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An ad-hoc network is a network comprised solely of mobile wireless nodes. There 

is no wired backbone, and nodes communicate directly with one another and can 

also serve as relays for data packet forwarding. Such a network is often called a 

Mobile Ad-Hoc Network (MANET) [23, 3] and represents truly pervasive/ubiquitous 

computing, because in many situations, information exchange among mobile units 

cannot rely on any fixed network infrastructure but on the rapid configuration of 

wireless connections on the fly [45].

Features of MANET include:

1. Dynamic network topology. Nodes are mobile; therefore, network topology 

may change rapidly and unpredictably, and the connectivity among the nodes 

may vary with time.

2. Multi-hop routing. Routing algorithms can be single-hop and multi-hop. When 

dehvering data packets from a source to a destination that is out of the direct 

wireless range of the source, packets may be forwarded via one or more inter

mediate nodes.

3. Fluctuating link capacity. The channel over which the nodes communicate is 

subject to fading, noise, and interference, and has less bandwidth than a wired 

network.

MANETS can be used in many types of apphcations, and can range from large- 

scale, mobile, highly dynamic networks to  small, static, power-constrained networks. 

A few examples of such applications can be personal area network (PAN), commercial 

sector, military battlefleld, and local level.

There are, however, several challenges th a t must be examined carefully before a 

widespread commercial deployment can be expected, including routing, security and 

rehabihty, quality of service, internetworking, and power consumption.
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2.2 Wireless Sensor Networks 

An overview of sensor nodes and sensor networks, as well as some key issues and 

concepts related to sensor networks, will be offered in this section. Rather than 

writing a detailed summary of related work, we will briefly describe some key issues 

with some references to  these issues that are present in the literature.

2.2.1 Overview

Recent technological advancements have made it possible to  deploy small, cheap, 

low-power, distributed sensing devices, which are capable of wireless communication 

and limited processing. These devices are called sensor nodes, and are very different 

from traditional desktop and server systems [30]. A collection of sensor nodes which 

co-ordinate amongst themselves to perform a larger sensing task is known as a sensor 

network. These sensor networks are composed of a large number of sensors and can 

measure a given aspect of their physical environment in great detail. The nodes are 

usually static; however, some or all nodes could be mobile.

Sensor nodes have the following constraints [54]:

1. Communication: The wireless connection between sensor nodes provides a lim

ited quality of service due to latency with high variance, Umited bandwidth, 

and frequently dropped packets.

2. Computation: Sensor nodes have limited computing power and memory.

3. Power consumption: Sensor nodes have a limited energy supply. Also, since 

sensor nodes may be deployed in inhospitable or inaccessible terrain, replacing 

or recharging sensors may be infeasible.

4. Uncertainty in sensor readings: Signals detected at physical sensors have an 

inherent uncertainty. They may contain environmental noise or may be biased 

due to sensor location.
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5. Density: Sensor nodes are densely deployed and can range in density from a 

few sensor nodes to a few hundred sensor nodes in a region.

In addition to this, due to sensor node failure or movement of nodes, the topology 

of a sensor network may change frequently. A sensor network, therefore, should be 

self-healing, as weU as self-organizing.

Networked sensors are both generators of da ta  and routers. A sensor node can 

aggregrate such data. Source sensors detect critical events and are usually located 

where environmental events, that are of interest, occur. S ink  nodes are coimected 

to other networks, such as the Internet, and provide remote access to data from the 

sensor network. These sinks are monitoring terminals and may be mobile PDA’s, 

laptops, or static access points.

2.2.2 Sensor Network Architecture and Applications 

Each sensor node in a sensor network is equipped with a variety of sensors, including

acoustic, seismic, still/motion videocamera, infrared, etc. Networked sensors can be

organized in a cluster so that a locally occurring event can be detected by most, if

not all, of the nodes in the cluster. Each cluster node can have enough processing

power to process the data it collects, and broadcast any interpretation of this data

to other nodes in the cluster. One node can act as a clusterhead, and it may also

contain a longer range radio tha t uses a protocol such as IEEE 802.1 Bluetooth [5].

Many sensor network applications that change dynamically, such as battlefield 

and commercial inventory and distribution systems, must be controlled using adap

tive methods that use real-time information gathered from integrated low-powered 

sensors and mobile devices deployed throughout the application. Despite dynamic 

changes in the topology of th  sensor network, critical real-time information still 

must be disseminated dynamically from mobile sensor nodes through the network 

infrastructure to components th a t dynamically control the re-structuring and re

optimization of network operation based upon newly available information. In [37], 

three fundamental mechanisms upon which other networking and system services

9
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may be spontaneously specified are service lookup, sensor node composition, and 

dynamic adaptation. A distributed implementation of these lookup servers, com

position servers, and adaptation servers can be spontaneously defined in the sensor 

network. Different protocols for a certain service may be specified for different ap

plications, and these protocols may interoperate through these three fundamental 

mechanisms provided in the sensor network architecture.

There are also three mobility-aware key system layers in the architecture of self

organizing sensor networks:

1. Application systems layer. This is the sensor information processing layer and 

collaborative signal processing layer.

2. Configurable distributed systems layer. This layer provides distributed services 

to  the application systems.

3. Sensor networking and physical devices layer. This layer routes messages 

through the network and consists of the sensor nodes and other devices that 

generate the raw data.

The Smart Dust project at Berkeley [33, 42] exemplifies another system architec

ture in sensor networks. Its goal is to  design a networked sensor tha t is limited in size 

and power resources. This sensor device, also known as smart dust, requires sensing, 

communication, and computing hardware, as well as a power supply, to occupy the 

space of a few cubic millimeters. The processor used is an ATMEL [2] 4MHz, 8bit 

micro-controller with 8 Kbytes of program memory and 512 bytes of data memory. 

It includes a radio with a single channel RF transceiver operating at 916 MHz and 

capable of transm itting at 10 Kbps using on-off-keying encoding [30, 51]. In [29], 

researchers introduced a tiny microthreaded OS, called Tiny OS, that provides the 

system software support to operate and manage this class of tiny smart devices.

Regardless of the architecture of a sensor network, there are many applications 

for such devices, such as healthcare, home, commercial, and military apphcations.

10
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Other applications include environmental monitoring (e.g., habitat, traffic), indus

trial applications and diagnostics (e.g., managing inventory, product quality), and 

infrastructure maintenance (e.g., power grids, water distribution). One interesting 

application of sensor networks, given in [39], was the deployment of a sensor net

work on Great Duck Island in Maine, for habitat monitoring. The sensor networks 

deployed on this island was accessible via the Internet, used solar energy to power 

the sensors, and had a sensor longevity of 9 months. The sensor network was used 

to monitor the changes in the nesting patterns of Leach’s Storm Petrel.

2.2.3 Power Awareness 

Since the amount of available energy for a  sensor node is limited, minimizing 

energy consumption in a sensor network is a critical challenge. In [12], the authors 

identify three main types of optimizations for reducing energy consumption in a sen

sor network. The first is to cover the monitoring area with the smallest subset of 

sensor nodes. Nodes not belonging to  this set sleep and do not participate in the 

monitoring. Constructing a dominating node set that “monitor” other sensors within 

their coverage range is one example of this type of optimization. Also, the network 

can reselect covering nodes periodically to spread energy consumption dynamically 

over all nodes. The second optimization is to use energy-efficient broadcast pro

tocols. Several protocols for minimizing retransmissions of messages sent from one 

sensor node to  another have been proposed, including adjustable-transmission-range 

protocols. The third optimization is data aggregation. Aggregating measurements of 

sensor nodes in order to report only important information, such as average values, 

can also reduce energy consumption.

2.2.4 D ata Dissemination 

Since the energy consumption in a sensor network is dominated by the cost of 

transmitting and receiving messages, protocols for data dissemination are important. 

Data gathered from studies of popular prototypes of sensor network devices, such
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as MICA2 [6], also verify the importance of reducing communication costs in sensor 

networks.

Various characteristics of algorithms used for the self-configuring and data  dis

semination of sensor networks reduce communication costs. One characteristic is 

that these algorithms must be data-centric (or the applications focus on the data 

generated by the sensors). Another characteristic is tha t the algorithms should be 

localized, meaning that the nodes conununicate only with sensors that are close to 

their neighborhood. The nodes can achieve a global objective by using only local 

computations. Finally, networks can be application specific. This means th a t inter

mediate nodes can perform application-specific data aggregation and caching, or the 

informed forwarding of data requests.

One data-centric data dissemination paradigm is directed diffusion. In directed 

diffusion, data that is generated by sensor nodes is named by attribute-value pairs 

[32]. A sensing task is disseminated throughout the sensor network as an interest for 

named data. This dissemination creates gradients within the network that “draws” 

events (or data matching this interest). The events then start flowing towards the 

originators of the interests along multiple paths. One, or a small number of these 

paths, is reinforced by the sensor network. The intermediate nodes can cache or 

transform data, and can direct interests based on previously cached data.

In [27], a family of adaptive dissemination protocols, called SPIN (Sensor Pro

tocols for Information via Negotiation), for wireless sensor networks was proposed. 

M eta-data negotiation and resource-adaptation is used by SPIN to overcome defi

ciencies in approaches such as flooding and gossiping. By assuming that all sensors 

can be sink nodes, SPIN focuses on the efficient dissemination of individual sensor 

data to all sensors in a network. In this manner, the fault tolerance of the system 

is increased. Also, an important piece of information can be disseminated to  all the 

nodes. In SPIN, nodes negotiate with each other before transm itting data in order 

to avoid sending unnecessary data. Data is described by using meta-data in the
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negotiation process, since exchanging meta-data is not as expensive as exchanging 

sensor data. Also, nodes poll their resources and energy before transm itting data, 

which allows sensors that lack energy to reduce certain activities. These character

istics of SPIN overcome problems like implosion (nodes consistently sending to their 

neighbors, regardless of whether or not they have already received data from another 

source), overlap (some nodes covering overlapping geographic areas), and resource 

blindness (nodes not modifying their activities based upon available energy), that 

are associated with simple flooding.

2.2.5 Time synchronization 

A critical task in sensor networks (for various purposes such as sensor data fusion, 

coordinated actuation, and power-efficient duty cycling) is time synchronization. Mo

bile sensor devices equipped with clocks and short range radios can be deployed in 

the environment to  measure various phenomenon. The devices can record the time 

during which they detect and no longer detect these phenomenon, and can communi

cate this information to  other sensors as they pass by. The temporal ordering of these 

events (originating from different sensors) are used to determine the direction of the 

phenomenon, and difference in time between events originating from different devices 

are used to estimate the speed of the phenomenon. Also, time synchronization can 

be used to estimate the proximity of sensors by calculating the time when certain 

environmental phenomenon (e.g., sound or hght) are sensed by different nodes. Sen

sor networks may also be used in many applications where accurate timekeeping is 

necessary. An example is the Network Time Protocol (NTP) [40] th a t is used to 

maintain Internet clocks.

Time synchronization can also be used to ensure collision-free communication in 

sensor networks. Collision-free communication is important because colhded mes

sages cannot be use, and collisions waste energy. In [28], the authors present a 

distributed TDMA slot assignment algorithm that is suitable for dynamic networks. 

The algorithm is self-stabilizing and uses Time Division Media Access methods to
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schedule transmission in time slots to avoid collisions.
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CHAPTER 3 

SELF-* SYSTEMS

In this chapter, we will first start with an overview of self-* systems (Section 3.1). 

We will then describe many terms th a t are currently being used in the general area 

of fault-tolerant computing.

3.1 Overview

Software systems must be able to  adjust to different inputs, adapt to all possible 

environmental changes, and handle different faults. The many concepts encapsulated 

in self-* have been introduced to detect, adjust, and recover from the above situa

tions. We will informally describe these concepts with examples from the literature. 

We will also give an overview of the concept of self-stabilization in Section 3.3.

A distributed system [46] is defined as an interconnected collection of autonomous 

computers, processes, or processors (or nodes). In addition to this, the existence of 

the collection of these nodes must be transparent to the system users. The processors 

may also need to communicate with each other in order to coordinate their actions 

and achieve a reasonable level of cooperation. Many software systems being used for 

business-critical or other important applications are distributed systems. The term 

self-* may be applied to certain distributed systems.

A self-* system should be self-configuring, self-reorganizing, self-contained, self- 

healing, and self-managing. According to [20], “self-* distributed systems establish 

and maintain system-wide properties, e.g. properties such as being deadlock-free.
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fault tolerant, or load-balanced” . The authors describe self-* properties of dis

tributed systems at the system-wide level using a method termed DRL (Distributed 

Reinforcement Learning).

A self-configuring system must be able to configure and reconfigure itself under 

varying conditions (faults). Also, a system is considered to be self-configuring if, 

starting from an arbitrary state and arbitrary input, the system will eventually satisfy 

the problem specification or start behaving properly. The term self-organizing was 

formally defined in [26]. In this paper, the authors apply this concept to a peer-to- 

peer system and define a locally self-organizing system in the context of a “p-stable” 

configuration.

A system is said to be self-contained if the number and location of nodes, affected 

by a faulty node, are minimally contained within the neighborhood of the faulty 

sensor. The term self-healing can refer to a system that can automatically recover 

form different pertubations and dynamic changes. Finally, a self-* system should be 

self-managing, meaning th a t all tasks in all phases in the life cycle of the system are 

automatic.

IBM’s approach to solving the system management problem is called autonomic 

computing [1]. On October 15, 2001, Paul Horn, Senior Vice President of IBM 

Research, suggested tha t the solution was to “build computer systems that regu

late themselves much in the same way our autonomic nervous system regulates and 

protects our bodies” .

Another approach to building highly reliable systems is called recovery-oriented 

computing [22, 41]. Systems implementing this type of computing are called self- 

repairing computers. This concept can be applied to designing highly-dependable 

Internet services. A few important characteristics of recovery-oriented computing 

that have been identified are “system-wide support for undo” , “isolation and redun

dancy” , “integrated diagnosis support” , “onhne verification of recovery mechanisms” , 

“design for high modularity, measurability, and restartability” , and “dependabil-
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ity/availability benchmarking” [41].

3.2 Ubiquitous/PerA^ive Computing 

The late Mark Weiser introduced the term ubiquitous computing to describe an 

era in which many computers, that are “nearly invisible” , are prevalent in large 

numbers in many areas of the physical environment. These computers are relatively 

inexpensive and are used so often by the user, th a t they are effectively invisible. Two 

key concepts of this era are invisible computing and calm technology [50]. These com

puters would be available and prevalent throughout the environment and would be 

used without the user actually having conscious recognition of their presence. In 

effect, the computers are “invisible” to  the user. The motivation behind calm tech

nology is to send information in a calm manner, meaning that a user’s consciousness 

must be able to switch between peripheral (or sensory) processing and the center of 

processing, when using a computing or electronic device. New hardware represent

ing the ubiquitous computing design include mobile devices, sensors, and even smart 

appliances.

3.3 Self-Stabilizing Systems 

The concept of self-stabilization was introduced to computer science in 1973 by 

Dijkstra [17, 16]. A self-stabilizing system is one that can recover automatically 

following the occurrence of (transient) faults. A formal definition is as follows: A 

self-stabilizing system, starting from any arbitrary state, converges to a state that 

satisfies its problem specification in a finite number of steps. It can also be defined as 

follows: A self-stabilizing system, regardless of its initial state, reaches a state from 

which it starts behaving according to its specification in finite time. Two key concepts 

associated with self-stabihzation are closure and convergence [9, 10]. Closure refers 

to a property in which, during all system executions, the system remains within 

some set of legal or desirable states unless a fault occurs. Convergence refers to a
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property th a t requires the system to reach a legal state from any arbitrary (possibly 

illegal) state in finite steps. A self-stabihzing system must satisfy both the closure 

and convergence properties.

Many network protocols are self-stabihzing. They include protocols used in sen

sor networks, high-speed networks, session control, coimection management, and 

routing. There are also many self-stabilizing distributed solutions for graph theory 

problems. Examples are maximal matching, finding different types of spanning trees, 

search structures, and graph coloring. In addition to this, there are self-stabilizing 

versions of many classical distributed algorithms, including mutual exclusion, token 

circulation, leader election, distributed reset, and propagation of information with 

feedback.

There are many aspects of a model tha t can be used for a self-stabihzing al

gorithm. This includes interprocess communication (shared registers and message 

passing), fairness (weakly fair, strongly fair, and unfair), granularity of an atomic 

step (composite versus read/write atomicity), and types of daemons (central and 

distributed). Many optimal solutions for the time complexity and space complexity 

of stabihzing algorithms have also been proposed.

There are two methods tha t have been commonly used for the proof of a self- 

stabihzing algorithm: the convergence stair [25] and variant function [34] methods. 

There are also many general methods of designing self-stabihzing programs, a few 

of which we will mention without description. They include silent stabilization [19], 

local stabilizer [8], diffusing computation [10], local checking and local correction 

[11, 47], counter flushing [48], self-containment [24], and snap-stabilization [14].

The protocols for setting up and organizing communication and routing infras

tructures in wireless sensor networks are often based upon self-stabilizing algorithms. 

Self-stabilization is important for this purpose because of the dynamic nature of sen

sor network topology. Node and link failures, as well as the joining of new nodes in 

the sensor network, necessitate the use of a self-stabilizing algorithm.
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CHAPTER 4

MINIMUM CONNECTED SENSOR 

COVER PROBLEM

After extensively researching wireless sensor networks and self-* systems, we de

signed three local, distributed, self-* protocols in order to solve the minimum con

nected sensor cover problem. We state the motivation of this research in the next 

section. We state how other problems mentioned in earlier chapters are related to 

the problem solved in this chapter. We describe some results in related areas in Sec

tion 4.2. In section 4.3, we first state the model used in writing the algorithm. We 

present the program that is used (including its notation) and give a formal definition 

of self-stabihzation in that section. Finally, we give both an informal explanation 

and formal statement of the problem to be solved in that section.

The main results of this thesis research are reported in the next four chapters. In 

Chapters 5, 6, and 7, three minimum connected sensor cover algorithms (Algorithm 

1 A iC S C , Algorithm 2 M.CSC^ and Algorithm 3 M .CSC) are presented. In each 

of these three chapters, we include a detailed informal description, formal algorithm, 

and proof of the algorithm in th a t section. Simulation results and other properties 

of all three algorithms are given in Chapter 8.

4.1 Motivation

Sensor networks are composed of a large number of tiny sensing devices with 

very limited resources th a t must coordinate amongst themselves to achieve a larger 

sensing task. As mentioned in Chapters 1 and 2, these networked sensors are often
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energy constrained, since a sensor’s battery or energy source is small and replacing 

or recharging a sensor’s energy supply is often infeasible. Therefore it is critical to 

design a robust sensor network which will allow uninterrupted operation for extended 

periods of time, and that is also efficient in its consumption of energy. Also, consid

ering the size and dynamic nature of sensor networks, it is important that a sensor 

network be designed as a self-* system (Chapter 2).

In sensor networks, queries may be sent from devices external to the network. 

The query needs to be broadcast to the sensor nodes within a particular region 

or to a particular sensor node. This would initiate the minimum connected sensor 

cover algorithm. Also, after the minimum connected sensor cover is computed, the 

data generated as a result of the query has to be reported back to the device which 

originated this query.

4.2 Related Work

The minimum connected sensor cover problem that is addressed in this thesis was 

introduced in [26]. Even though two self-organizing solutions were presented in that 

paper, none of the solutions were localized. Both algorithms use a greedy approach 

to  select the best possible set of sensors in the cover set.

In [49], the terms coverage and connectivity and the relationship between them 

were analyzed in a unified framework. A Coverage Configuration Protocol (CCP) 

that can dynamically configure networks to provide different degrees of coverage 

was presented in this paper. CCP was integrated with a connectivity maintenance 

protocol (SPAN [13]) to provide guarantees of both coverage and connectivity. The 

integrated coverage and connectivity problem solved in this paper is as follows: Given 

a coverage (or query) A and a sensor coverage degree K specified by the application, 

we must maximize the number of sleeping nodes such that :

1. A is at least Ag-covered (i.e., every location inside A is covered by at least K s  

nodes), and
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2. All active nodes are connected.

The important result of their work was that:

1. Sensing coverage implies network connectivity when R c > 2Rs (where R c  and 

Rs  are the communication and sensing ranges, respectively) and

2. If R c  >  2i?s, then A^g-coverage of a convex region implies Ag-connectivity of 

the communication graph.

Wu and Li [53, 52] proposed a marking process which can determine a CDS by 

marking each host in a routing scheme if it has two unconnected neighbors. Two 

dominant pruning rules were proposed in [53] and extended in [52] to reduce the 

size of the CDS derived from this marking process. Rule 1 unmarks a host u  if its 

neighbor set is covered by another marked host v and its UID is less than tha t of 

host V] tha t is, if all of its neighbors are neighbors of another marked host having a 

greater UID than its own. Rule 2 unmarks a host if its neighborhood is covered by 

two other directly connected marked hosts, and if its UID is less than both of these 

hosts. However, these pruning rules do not account for host u  itself, which should 

also be covered by a marked node before it is unmarked. In all three algorithms 

presented in this paper, to ensure connectivity, a Node i must also be covered by a 

chosen node, having a greater UID than its own and for which it is not the “least 

UID” neighbor, before it is unmarked. Also, in both Rule 1 and Rule 2, Node u 

has to have the least UID of all nodes th a t are covering its neighbor set, before it is 

unmarked. This is a weaker redundancy predicate than the ones presented in this 

paper, since in Algorithms 2 and 3, all sensors that are neighbors of Sensor i must be 

neighbors of a chosen sensor, but Sensor i does not have to have the smallest UID 

of all of the nodes that are covering its neighbor set. It merely has to have a smaller 

UID than a chosen node tha t is covering itself. Also, in Algorithm 1, nodes th a t are 

neighbors of a chosen Sensor i are not considered in the redundancy predicate.
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Dai and Wu [15] proposed a generic dominant pruning rule (called Rule k), which 

can unmark gateways covered by k other gateways, where k can be any number. 

Again, in this rule. Node u must have the least UID of all nodes th a t are covering its 

neighbor set, before it is unmarked. Because this rule is weaker than our redundancy 

predicates. Algorithms 1 and 2 produce fewer nodes in the final cover set at all query 

regions tested in our simulations, and Algorithm 3 produces fewer nodes in the final 

cover set when the query region size is less than 90 square graph units.

Carle and Simplot-Ryl [12] presented a dominating-set protocol in which the 

nodes that cover an “inactive” node’s neighborhood have to  be coimected if this in

active node is to remain inactive. Our algorithms’ redundancy predicates are stronger 

since they do not require that all chosen nodes tha t cover a marked node be connected 

before the chosen node is unmarked. Instead, our algorithms ensure connectivity by 

not unmarking the sensor with the greatest or the least UID within any particular 

chosen sensor’s transmission disk.

The algorithm presented by Kuhn, Moscibroda, and Wattenhofer [35] relies upon 

sending messages on three separate channels. In this algorithm, a newly awakened 

node waits for messages on all three channels from existing dominators in its neigh

borhood. A node that has not received any message from a dominator during this 

waiting phase then tries to compete to  become a dominator itself. This node then 

sends a message on the first channel with a sending probability p, which is doubled 

in every round. After becoming a dominator, a  node then sends on the second and 

third channels. However, the chance of collisions on a transmission channel can cause 

a node to not receive a message in the waiting phase and can lead to a larger number 

of dominators.

Liu et al. [38] recently proposed an iterative localized algorithm for connected 

dominating sets, offering an improvement over [15] in terms of the size of connected 

dominating sets, but at the expense of additional messages between neighboring 

nodes. In their algorithm, each node exchanges messages with its neighbors (there
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are exactly 5  messages exchanged) in order to decide whether it should be domi

nant, using information received from its neighbors. However, the synchronization 

needed to compute a dominating set make it more difficult to apply in a distributed 

environment. Also, beacon messages are needed for the first step to  occur.

Ingelrest, Ryl, and Stojmenovic [31] proposed an algorithm which considers a 

node to be covered if there exists in its 2 -hop neighborhood, a connected set of nodes 

with higher priorities which cover Node u and its 1-hop neighbors. However, this is 

also a weaker redundancy predicate than the ones presented in this paper, since in 

Algorithms 2  and 3, all sensors th a t are neighbors of Sensor i must be neighbors of 

a chosen sensor, but Sensor i does not have to have the smallest UID of all of the 

nodes that are covering its neighbor set. It merely has to have a  smaller UID than 

a chosen node that is covering itself. Also, in Algorithm 1, nodes that are neighbors 

of a chosen Sensor i are not considered in the redundancy predicate.

4.3 Preliminaries

4.3.1 Model

Sensor N etw o rk . In this research, we consider sensor networks [26, 49] consisting 

of a large number of sensors (also referred to, in this paper, as sensor nodes or, simply 

as nodes) which are randomly distributed in a geographical region. We model the 

sensor network as a directed communication graph G{V, E), where each node in V  

represents a sensor, and each edge ( i , j)  € E, called communication edge, indicates 

that j  is a neighbor of i.

For a sensor i, there is a region, called a sensing region, which signifies the area in 

which sensor i can sense a given physical phenomenon at a desired confidence level. 

The sensing regions are of any convex shape. For the sake of simplicity, especially, 

for showing examples, the sensing regions are assumed to  be circular. The sensing 

range of a sensor i indicates the maximum distance between sensor i and any point 

p  in the sensing region of sensor i. A point p is covered (or monitored) by a sensor
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node i if the Euclidean distance between p and i is less than the sensing range of 

sensor i.

The communication region of sensor i (also called the transmission region) defines 

the area in which sensor i can communicate directly (i.e., in single hop) with other 

sensor nodes. The maximum distance between node i and any other node j ,  where 

j  is in the communication region of i, is called the communication range of sensor i. 

Node i can communicate with node j  (i.e., i can send a message to j )  if the Euclidean 

distance between them is less than the conamunication range of i. Then i is called 

a neighbor of j ,  and this relation is represented by a directed edge ( i,j) . The set of 

neighbors of i is represented by iVj. Two nodes i and j  can communicate directly 

with each other only if i G Nj A j  G TV,, i.e., they are neighbors of each other. If i 

and j  are neighbors of each other, then there are two edges between them: { i ,j)  and

Ch*)-

A directed path (sequence) of sensors i =  ii, *2 , ■ ■ • > *m =  J, where is a neighbor 

of for 1 <  a; <  m — 1 , is called a communication path from i to j .  The length of 

the shortest (communication) path (which is the number of sensors on the shortest 

path) from i to j  is called the communication distance from sensor i to sensor j .

P ro g ram . In this paper, we consider the local shared memory model of commu

nication as used by Dijkstra [16]. The program of every processor consists of a set 

of shared variables (henceforth, referred to as variables) and a finite set of actions. 

Every processor (or sensor) can only write to its own variables, but can read its own 

variables and the variables owned by the neighboring nodes.

Each action is of the following form: <  label >:: < guard > — < statement >. 

The guard of an action in the program of p is a boolean expression involving the 

variables of p  and its neighbors. The statement of an action of p  updates one or 

more variables of p. An action can be executed only if its guard evaluates to true. 

We assume a model of composite atomicity, i.e., actions are atomically executed.
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or the evaluation of a guard and the execution of its corresponding statement, if 

executed, are done in one atomic step.

The state of a node is defined by the values of its variables. The state of a system 

is the product of the states of all nodes. We will refer to the state of a node and 

system as a (local) state and (global) configuration, respectively.

Let a distributed protocol P  be a collection of binary transition relations denoted 

by H->, on C, the set of all possible configurations of the system. A computation of 

a protocol P  is a maximal sequence of configurations e =  7 0 , 7 1 , ...,7 i, 7 i+i, such 

that for i >  0 , 7 i 7 _̂,_i (a single computation step) if 7 ,+i exists, or 7 » is a terminal 

configuration. The Maximality means that the sequence is either infinite, or it is finite 

and no action of P  is enabled in the final configuration. All computations considered 

in this paper are assumed to be maximal. The set of all possible computations of 

P  in system S  is denoted as £. A node p  is said to be enabled in 7  ( 7  G C) if 

there exists an action A  such tha t the guard of A  is true in 7 . We consider that 

any node p executed a disable action in the computation step 7 * 7 ^̂ .! if p  was

enabled in 7  ̂ and not enabled in 7 i+i, but did not execute any action between these 

two configurations. (The disable action represents the following situation: At least 

one neighbor of p  changed its state between 7 » and 'ji+i, and this change effectively 

made the guard of all actions of p false.) Similarly, an action A  is said to be enabled 

(in 7 ) at p  if the guard of A  is true at p (in 7 ).

We assume a weakly fair and distributed daemon. Weak fairness means that if 

a node p is continuously enabled, then p will be eventually chosen by the daemon 

to  execute an action. A distributed daemon implies that during a computation step, 

if one or more nodes are enabled, then the daemon chooses at least one (possibly 

more) of these enabled nodes to execute an action.
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4.3.2 Self-stabilizing Program 

F au lt M odel. This research deals with the following types of faults:

(i) The state or configuration of the system may be arbitrarily corrupted. However, 

the program (or code) of the algorithm cannot be corrupted.

(ii) Nodes may crash. That is, faults can fail-stop nodes.

(iii) Nodes may recover or join the network.

The topology (both actual and logical topologies) of the sensor network may change 

due to these faults. Faults may occur in any finite number, in any order, at any 

frequency, and at any time.

C losure: 72. is closed in A  if every computation of A  starting from a configuration

satisfying 72 preserves 72.

C onvergence: 72 convergences to <S in ^  if the following three conditions hold:

1 . 72 is closed in A.

2 . <S is closed in A.

3. Every computation starting from a configuration satisfying 72 contains a con

figuration that satisfies S.

Self-stab iliza tion  [18]. Let Cj, be a non-empty legitimacy predicate of an algo

rithm A  with respect to a specification predicate Spec such that every configuration 

satisfying satisfies Spec. Algorithm A  is self-stabilizing with respect to Spec iff 

the following two conditions hold:

(i) Every computation of A  starting from a configuration satisfying Ca preserves Cj, 

(closure).

(ii) Every computation of A  starting from an arbitrary configuration contains a con

figuration that satisfies (convergence).
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4.3.3 Problem Specification 

S pecification  0 .0 . 1  (C o n n ec ted  Sensor C overage P ro b le m ). Given a sensor 

network and a query Q over the network, the œnnected sensor coverage problem is to 

find the smallest connected sensor cover (we will call it M C S C q ) .  Additionally, we 

require the algorithm (solving the above problem) to be self-organizing, self-healing, 

and self-stabilizing.
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CHAPTER 5

FIRST M C S C  ALGORITHM

5.1 Description of First M C S C  Algorithm 

and Data Structures Used 

In this algorithm, the following strategy is taken to compute the minimum con

nected sensor cover M C S C q :

1 . Algorithm 1 finds an M C D S  (Minimum Connected Dominating Set) for all 

nodes whose sensing range intersect with the query region. The M C D S  that is 

calculated does not include another M C D S, but is not minimal in the number 

of nodes in the set. However, the sensing range of all the nodes in the M C D S  

will cover the query region. The M C S C  that is formed from all sensors in 

this M C D S  is minimum such th a t another connected sensor cover set is not 

included in this set.

The following assumptions are made for this algorithm:

Assumption 0.0.1.

(i) The communication radius equals the sensing radius for the sensors.

(ii) The sensing radii, and hence the communication radii, of all sensors are equal.

(iii) There always exist a sufficient number of sensors in the network with sufficient 

density to cover the query region if all of them are deployed.

(iv) There exist a lot of redundant sensors which are either boundary or interior sen

sors with respect to the query region.
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The algorithm uses three shared variables, Si, UIDi,  and StatuSi. Si represents 

the sensing region of Sensor i. UIDi  is the unique identifier (UID) of Sensor i, which 

is a positive integer. Finally, StatuSi represents the status of a sensor. The status of 

a sensor may be unchosen, undecided, or chosen.

5.2 Predicates Used in First M C S C  Algorithm 

The predicate QryRgnIntrsctn{i) evaluates to  true if the sensing disk of Sensor 

i intersects with som e portion of the query region. N oIn trsctn {i,j)  evaluates to 

true if Sensor i has a status of unchosen, there are no chosen sensors within the 

transmission disk of Sensor i, and if the sensing disks of Sensor i and any chosen 

Sensor j  do not intersect. NgbrOfChsn{i) evaluates to true if Sensor î is a neighbor 

of a chosen sensor. HasChsnNgbr(x) evaluates to true if Sensor x has a chosen 

neighbor. The predicate, IsLeastUIDNgbr{i, x), evaluates to true if Sensor i is 

a neighbor of Sensor x, and is also the neighbor of Sensor x having the least UID. 

LessNotLeastNgbrO fC hsn{i) evaluates to true if Sensor i is a neighbor of a chosen 

sensor whose UID is greater than its own, but Sensor i is not the neighbor of this 

sensor that has the smallest UID. The predicate NotOrLeastU ID N gbrO fChsn{i) 

evaluates to  true if Sensor i is not the neighbor of a chosen sensor unless it is the 

neighbor of a chosen sensor having the least UID.

M ISN ode(i) evaluates to true if the status of Sensor * is unchosen, and the 

sensing disk of Sensor i intersects with some portion of the query region, but does 

not intersect with the sensing disk of a chosen sensor. BridgeNode{i) evaluates to 

true if the status of Sensor % is unchosen, the sensing disk of Sensor i intersects 

with some portion of the query region. Sensor i is not the neighbor of a chosen 

sensor unless it is the neighbor of a chosen sensor having the least UID, or if part of 

the transmission disk of Sensor i is not covered by a chosen sensor. The predicate 

FillNode{i) evaluates to true if the status of Sensor i is undecided, and there are 

no undecided sensors within the transmission disk of Sensor i whose UID is greater
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than tha t of Sensor i, or Sensor i is the neighbor of an undecided sensor having the 

least UID.

Redundanti(i) evaluates to true if the status of Sensor i is undecided, there is an 

undecided sensor within the transmission disk of Sensor i whose UID is greater than 

that of Sensor i, and Sensor i is not the neighbor of this undecided sensor having 

the least UID. Finally, Redundant2 (i) evaluates to true if the status of Sensor i is 

chosen. Sensor i has a smaller UID than another chosen Sensor j  that is within 

its transmission disk, but Sensor i does not have the smallest UID out of all the 

neighbors of Sensor j .

5.3 Normal Execution of First M C S C  Algorithm

The steps of the algorithm are as follows:

1 . The algorithm attem pts to form an initial pattern of coverage of the query 

region that is composed of the union of the sensing radii of sensors whose 

status is chosen. These sensing regions also form a disjoint set, in the sense 

th a t no two sensing disks within this set intersect. To this end, it changes the 

status of all unchosen sensors whose sensing regions intersect with the query 

region, and whose sensing regions do not intersect with the sensing region of a 

chosen sensor, to chosen. Thus, an initial pattern of non-overlapping sensing 

disks, whose sensors are marked as chosen, is formed to cover the query region.

2 . The uncovered regions between the sensing radii of all chosen sensors is then 

covered as follows:

(a) If the status of Sensor i is unchosen, the sensing disk of Sensor i inter

sects with some portion of the query region, and Sensor i is not the neighbor 

of a chosen sensor unless it is the neighbor of a chosen sensor having the least 

UID, or if part of the transmission disk of Sensor i is not covered by a chosen
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sensor, then the unchosen sensor’s status is changed to  undecided. The reason

ing used is that all sensors that lie within the uncovered “gap” regions between 

the sensing radii of all chosen sensors that were marked by M ISNode{i), will 

have part of their sensing disks not covered by the sensing disks of all sensors 

chosen by M ISNode{i). In addition to this, all sensors tha t have the least 

UID, within a particular chosen node’s neighborhood, are needed to ensure 

connectivity, and also have their status changed to undecided.

(b) To ensure that only the most suitable of these sensors, located within 

each  uncovered region, are marked as undecided, if any sensor’s status is 

undecided, and it has another undecided sensor within its transmission (and 

hence its sensing) disk, whose UID is greater than that of i t ’s own, or if this 

sensor is the neighbor of an undecided sensor and does not have the least UID of 

all neighbors of this undecided sensor, then i t ’s status is changed to unchosen.

(c) All sensors with an undecided status, that do not have another undecided 

sensor with a UID greater than their own, within their transmission (and hence 

sensing) disks, and that are not the neighbors of an undecided sensor and that 

also have the least UID of aU neighbors of this undecided sensor, have their 

status changed to  chosen.

3. Redundant^ii) is used to  eliminate any redundant chosen sensor that has a 

smaller UID than another chosen Sensor j  th a t is within its transmission disk, 

but that does not have the smallest UID out of all the neighbors of Sensor j .

4. Finally, action A \  ensures th a t any redundant sensor or any sensor whose 

sensing disk does not intersect with the query region, has its status changed to 

unchosen.

5. All chosen sensors are in the final MCDS.
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5.4 Faults and Recovery of First M C S C  Algorithm 

In this section, we focus on the fault handling features of the proposed algorithm 

(Algorithm 1 M CSC). There are three variables used in the solution: Si, UIDi, and 

StatuSi for a Sensor i. So, we need to show that our solution can cope with all possible 

corruptions associated with these three variables. In the following, we will make an 

attem pt to hst all or most of the important types of faults, and show how they are 

dealt with in Algorithm 1 M CSC. (1) Wrong initialization o f the S ta tu S i  

variable. As discussed in the previous subsection, all sensors, if properly initialized, 

start as unchosen, (a) Sensor i is initialized to u n d e c id e d  . Assume that Sensor 

i is initialized to undecided. If i is not a redundant node, then i remains undecided, 

and subsequently changes to  chosen, (see Actions A 2 and A 3). That is, no correction 

is necessary. If i is redundant, then it will satisfy the predicate Redundanti{i) and 

will change to unchosen, (b) Sensor i is initialized to ch o sen  . If the sensing 

disk of Sensor i does not intersect with the query region, then, by executing A \, 

Sensor i will change to  unchosen. So, no correction is necessary. If Sensor i is 

redundant, then then it will satisfy the predicate Redundant2 {i), and will change to 

unchosen. If it is nonredundant then Sensor i is necessary, either to ensure coverage 

or connectivity, and should not be unmarked. (2) Wrong initialization o f the  

U I D i  variable, (a) Sensor i is initialized to a UID that is used to identify another 

Sensor. If Sensor i is redundant, then any other Sensor within the transmission disk 

of Sensor i, that has a larger UID than Sensor i, will cause Sensor i to  evaluate 

Redundant{i) as true and to become unmarked. If it is nonredundant, then Sensor 

i is needed in the final cover set, and should not be unmarked. (3) Weakening or 

Failure of sensors, both in terms of communication and sensing ability. 

The weakening or failure of sensors will affect the sensing and communication range 

of the sensors. In other words, the constant set R s  or R c  will change. Change of 

Rs or R c  may change the values of Redundant{i), M ISNode(i), BridgeNode(i), or 

FillNode{i). All these changes will be reflected in the change of values of the guards
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of the corresponding actions. So, eventually, the status of the affected nodes will 

change due to the execution of these actions. However, these changes will not affect 

the execution of these actions by the neighbors of the affected nodes. Therefore, any 

changes in the StatuSi variable of the affected nodes will be handled as mentioned 

earlier.
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Algorithm 1 Connected Sensor Cover Algorithm (Algorithm 1 M C S C )  for

______________ Sensor i._______ _____________________________________________
Constants:

R q "  Query region;

Rc'-- Radius of communication of a sensor in the network;

Ni'.: Set of sensors within the communication range of Sensor i;

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

StatuSi S {unchosen, undecided, chosen}:: Status of Sensor i;

Predicates:
QryRgnIntrsctn{i) =  n JRq 0;

=  sensing disk of Sensor i intersects with some portion of query region; 
N oIntrsctn(i,j) =  Statusi =  unchosen A (Vy € N  : Statusj chosen) A (Vj : Statusj =  

chosen A Vx € iVi A Vy € Nj : PoSx ^ (5» n Sj) A PoSy ^ (5j n 5j));
=  status of Sensor i is unchosen, there are no chosen sensors within the 

transmission disk of Sensor i, and sensing disks of Sensor i and Sensor j  do 
not intersect;

NgbrOfChsn{i) =  (3j : i € Nj A Statusj — chosen)-,
=  Sensor z is a neighbor of a chosen sensor;

IsLeastUIDNgbr(i,x) =  i € Nx A (\/j € Nx : j  ^  i A UIDi <  UIDj);
=  Sensor i is a neighbor of Sensor x, and is also the neighbor of Sensor 

X  having the least UID;
LessNotLeastNghrOfChsn{i) =  (3j : i e  N j A Status j  =  chosen A UIDi < UIDj A

-<IsLeastU I  DNgbr{i, j))-,
=  Sensor i is a neighbor of a chosen sensor whose UID is greater 

than its own, but Sensor i is not the neighbor of this sensor 
that has the smallest UID;

M ISNode(i) =  QryRgnIntrsctn{i) A NoIntrsctn(i, j)-,
=  status of Sensor * is unchosen, and the sensing disk of Sensor i intersects with 

some portion of the query region, but does not intersect with the sensing disk 
of a chosen sensor;

NotOrLeastUIDNgbrOfChsn(i) =  Vj : z €  Nj : (Statusj chosen V LeastUIDNgbr{i,j));
~  Sensor i is not the neighbor of a chosen sensor unless it 

is the neighbor of a chosen sensor having the least UID; 
BridgeNode(i) =  Statusi =  unchosen A QryRgnIntrsctn(i)A

{NotOrLeastUIDNgbrOfChsn(i) V (3j € N  : -<NgbrOfChsn(j)));
=  status of Sensor i is unchosen, sensing disk of Sensor i intersects with some 

portion of the query region. Sensor i is not the neighbor of a chosen sensor 
unless it is the neighbor of a chosen sensor having the least UID, or part 
of the transmission disk of Sensor i is not covered by a chosen sensor;
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Algorithm 1 Connected Sensor Cover Algorithm (Algorithm 1 M .CSC) for 

Sensor i (Continued)

FUlNode{i) =  StatuSi =  undecided A (Vj E N, : StatuSj undeddedy UIDi > UIDjW 

LeastU IDNgbr(i, j));

=  status of Sensor i is undecided, and there are no undecided sensors within the 

transmission disk of Sensor i whose UID is greater than that of Sensor i, or Sensor 

i is the neighbor of an undecided sensor having the least UID;

Redundanti(i) z  StatuSi — undecided A (3j € Ni : Status j  =  undecided A 

UIDi < UIDj A -^LeastUIDNgbr{i,j));

=  status of Sensor i is undecided, there is an undecided sensor within the 

transmission disk of Sensor i whose UID is greater than that of Sensor i, and 

Sensor i is not the neighbor of this undecided sensor having the least UID; 

Redundant2 (i) =  StatuSi =  chosen A LessNotLeastNgbrOfChsn{i)-,

~  status of Sensor i is chosen. Sensor i has a smaller UID than another chosen 

Sensor j  that is within its transmission disk, but Sensor i does not have 

the smallest UID out of all the neighbors of Sensor j .

Redundant(i) =  Redundant\{i) V Redundant2 {i)',

Actions:

v4] :: ->QryRgnIntrsctn{i) V Redundant{i)

— > Statusi — unchosen\

A 2 :: BridgeNode{i)

— > StatuSi =  undecided',

A3 :: M ISNode(i) V FillNode{i)

S ta tu S i  — c h o se n ;
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5.6 Correctness of First M C S C  Algorithm 

D efin ition  0.0.1. The system is considered to be in a legitimate state (i.e., satisfies

the legitimacy predicate C m c s c )  if the following conditions are true with respect to

a query region:

i) All non-redundant sensors are marked chosen.

ii) All redundant sensors are marked unchosen.

5.6.1 Proof of Closure 
L em m a 0.0.1 (C overage). In any legitimate configuration, the connected set cover

M C S C q computed by Algorithm 1 M C S C  completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the sen

sors in the final M C S C  chosen by Algorithm 1 do not completely cover the query 

region.

=> Since the sensing disks of the sensors chosen by BridgeNode{i) and FillNode{i) 

cover the uncovered regions between the sensing disks of sensors chosen by M ISNode{i) 

th a t form the initial Maximal Independent Set of Coverage, there exists a region 

between the sensing disks of the sensors chosen by M ISNode(i) that is not cov

ered by the sensing disk(s) of one or more sensors that should be chosen by the 

BridgeNode{i) and FillNode{i) predicate.

=>■ Within the query region, there is no unchosen sensor that is not the neighbor 

of a chosen sensor unless it is the neighbor of a chosen sensor having the least UID, 

or that has part of its transmission disk not covered by a chosen sensor.

=> Within the query region, all unchosen sensors are neighbors (that may not 

have the least UID) of a chosen sensor and also have aU parts of their transmission 

disk covered by chosen sensors.
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=> Since all sensors are initially unchosen, the query region is completely covered 

by the sensing disks of chosen sensors.

Hence we arrive at a contradiction.

Alternatively, there is a sensor that is not the neighbor of a chosen sensor unless 

it is the neighbor of a chosen sensor having the least UID, or th a t has part of 

its transmission disk not covered by a chosen sensor, but this sensor was marked 

undecided and then marked unchosen by the Redundant{i) predicate or was not 

marked chosen by the FillNode{i) predicate.

Case 1:

The sensors in the Maximal Independent Set chosen by the M ISN ode(i) predi

cate formed an initial pattern of coverage in which there are two uncovered regions 

between the sensing disks of four of these sensors. Figure 6 .1  is an illustration of this 

case.

=» Since the graph is densely populated, we can find two sensors in both of these 

uncovered regions, let’s name them Sensor A and Sensor B, such that Sensor A has a 

lesser UID than Sensor B, but Sensor A does not have the least UID of all neighbors 

of Sensor B, and both Sensor A and Sensor B have no other undecided sensors within 

their transmission disks

=*- Since both nodes are not the neighbors of chosen sensors, both nodes must 

have been marked undecided and either node or both nodes were marked unchosen 

by Redundanti{i) or were not marked chosen by FillNode{i).

=> Since Sensor A and Sensor B are both undecided. Sensor A has a lesser UID 

than Sensor B, and Sensor A is not the least UID neighbor of Sensor B, Sensor A
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and Sensor B must be neighbors.

Sensor A and Sensor B are located within each other’s communication disk. 

=> The distance between Sensor A and Sensor B is less than or equal to  the radius 

of communication.

=> If we let Ac =  1, in Figure 6 .2 , A B  < 1 .

=> Since C E  =  C F  =  F F  =  2 , then A C F F  is an equilateral triangle. 

=> If we bisect Z F C F , A G C F  is a 30-60-90 triangle.

=» cos 30° =  ^

^  ^  =*- 2CC = 2y/Z CC  =  \/3  => CD  — 2\/3

Similarly, A C  A H  is a 30-60-90 triangle

cos 30° =lO   r
r+ IA

2 r+ IA

=»- COS 30° — r+ IA

2 r+ IA

-\/3r -v/S IA  =  2r 

\/3  IA  =  2 — \/3

=.71= ^

CA =  1 ■+■ — 1)

Since B D  = CA

=)> ÂB =  CD - 2CÂ =  2V3 -  2 ( ^ )  =  2 V ^ - ^

=> A B  > 1 .
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Hence we arrive at a contradiction.

Figure 1. Case 1 (Two uncovered gap regions between 4 chosen sensors).

Figure 2 . Case 1 {AB > Rc).
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Case 2:

The sensors in the Maximal Independent Set chosen by the MISNode(i) predicate 

formed an initial pattern of coverage in which there is one uncovered region between 

the sensing disks of four of these sensors. An optimal MIS satisfying this case is 

shown in Figure 6.3.

=*- If we let Node A be the sensor in the uncovered region between the four sensors 

and Node B be a sensor in an uncovered region outside of the four sensors, then by 

similar reasoning as Case 1, the distance between Node A and Node B is less than 

or equal to Rc-

=> If we let R c  — 1, in Figure 3 A B  < 1

=> Since A B  = CD, A B  — 2Rc  =  2

=> A B  > 1

Hence we arrive at a contradiction.

Figure 3. Case 2 (An “optimal” MIS in which Sensor A and Sensor B are not
neighbors).
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Case 3:

A suboptimal MIS in which there is one uncovered region between the four nodes 

is shown in Figure 6.4.

Since the graph is densely populated, there will be more than one unchosen node 

in each uncovered region.

=>- There may be many undecided sensors th a t are not neighbors of chosen sen

sors, unless they are the “least UID” neighbors of chosen sensors, or that have part 

of their transmission disks not covered by chosen sensors.

=> Predicate FillNode{i) and ^ 3  will mark these nodes as chosen and Redundanti (i) 

will not unmark these nodes.

=*- Since the sensing disk of each of these sensors spans a distance of 2Rc, and yet 

each sensor will remain chosen if it is located at a distance of greater than one R c  

from another chosen node, each of these uncoverd regions will eventually be covered 

by chosen nodes and will remain covered by these chosen nodes.

Hence we arrive at a contradiction. □

L em m a 0.0.2 (C o n n ec tiv ity ). In any legitimate configuration, the connected set 

cover M C S C q computed by Algorithm 1 M C S C  forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the 

sensors in the final M C S C  chosen by Algorithm 1 do not form a connected subgraph.

There exists a sensor in the final M C S C ,  lets name it Sensor A, that is marked 

chosen and is not adjacent to another chosen sensor.
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Figure 4. Case 3 (A “suboptimal” MIS in which Sensor A and Sensor B are not
neighbors).

=> Sensor A is marked chosen and is not within the transmission disk of another 

chosen sensor.

Sensor A is marked chosen and does not have a chosen neighbor.

=> BridgeNode{i) and FillNode{i) did not mark an unchosen sensor that is 

also the “least UID” neighbor of Sensor A, let’s name it Sensor B, as chosen, or 

Redundant\{i) unmarked this sensor.

Case 1:

There is no unchosen node within the transmission disk of Sensor A th a t is the 

“least UID” neighbor of Node A.

Since all sensors are initially unchosen, and, if changed to undecided, can only 

change to chosen by executing Az  or unchosen by executing A i,  and since Sensor A 

has no chosen neighbors, all neighbors of Sensor A will be unchosen.

=*- One of these unchosen neighbors of Sensor A will also have the least UID of 

all the neighbors of Sensor A.
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Hence we arrive at a contradiction.

Case 2:

Redundant\{i) unmarked Sensor B.

Since Sensor B is unchosen and is also the sensor having the least UID of all 

the neighbors of Sensor A, after changing to undecided by executing A 2 , Sensor B 

will also evaluate -^LeastUIDNgbr{i, j )  as false.

=> Sensor B will also evaluate Redundanti{i) as false.

Sensor B will not be unmarked by Redundanti{i).

Hence we arrive at a contradiction. □

Theorem 0 .0 . 1  { C m c s c  satisfies specification). Any system configuration satis

fying the legitimacy predicate C m c s c  fper Definition 0.0.1) satisfies the specification 

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.1 

and 0 .0 .2 , respectively. The definition of C m c s c  implies that in a legitimate config

uration, there exist no redundant chosen sensor, meaning that all redundant sensors 

have been identified and are marked unchosen. Therefore, the connected cover set 

AACSCq computed at this point is the smallest possible by Algorithm 1 AACSC. □

Property 0 .0 .1 . The system defined by the legitimacy predicate C m c s c  w silent.

Proof. In any configuration satisfying C m c s c ,  ail actions of Algorithm 1 M C S C  are 

disabled. □

Lemma 0.0.3 (Closure). The legitimacy predicate C m c s c  w closed.
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Proof. Property 0 .0 .1  asserts the closure of C m c s c -  O

5.6.2 Proof of Convergence 

The goal of this section is to prove that starting from any arbitrary configuration 

of the system of sensors, Algorithm 1 AACSC guarantees th a t in finite steps, the 

system wiU reach a configuration that satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose th a t starting from any 

arbitrary configuration of the system of sensors. Algorithm 1 AACSC does not guar

antee that in finite steps, the system will reach a configuration that satisfies the 

legitimacy predicate C m c s c -

There exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration that satisfies the legitimacy predicate C m c s c - 

=f> There exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration in which all nonredundant sensors are marked 

chosen and all redundant sensors are marked unchosen.

Case 1:

There exists a configuration in which a (nonredundant) sensor that may evaluate 

M ISNode{i) or FillNode{i) as true, does not do so and does not execute Az.

=> A sensor whose sensing disk intersects with the query region and whose sensing 

disk does not intersect with a chosen sensor, or an undecided Sensor A th a t is not 

the neighbor of any other undecided Sensor B whose UID is greater than th a t of 

Sensor A, or that is the “least UID” neighbor of Sensor B, is not marked chosen.

Since any query region sensor th a t is initially unchosen, is nonredundant, and 

whose sensing disk does not intersect with a chosen sensor will evaluate M ISNodeif)
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as true, this node will evaluate the guard of A 3 as true.

=*- This (nonredundant) node will execute A 3 and will change to chosen.

Hence we arrive at a contradiction.

Alternatively, since a query region sensor, let’s name it Sensor B, th a t is initially 

unchosen and tha t is the “least” UID neighbor of a chosen (or undecided) sensor, 

and tha t has no other undecided neighbors, will evaluate BridgeNode{i) as true.

=> Sensor B will execute A 2 and change to  undecided.

Or if Sensor B is initially undecided, it wiU then evaluate FillNode{i) as true 

and will evaluate the guard of A 3 as true.

=> This (nonredundant) sensor will execute A3  and will change to chosen.

Hence we arrive at a contradiction.

Case 2: The nonredundant query region sensor is initially marked chosen, but 

executes Redundant{i) and is unmarked.

Since any nonredundant sensor is one that may be located in an uncovered 

region and one whose sensing disk is needed to cover the query region, if this sensor 

is chosen and yet is not the neighbor of another chosen sensor having a greater 

UID than its own, then the sensor will evaluate Redundantzii) as false and will not 

become unmarked.

Hence we arrive at a contradiction.

Case 3:

If a redundant sensor is marked as chosen, Redundanti(i) or Redundant^ii) will 

not unmark this sensor.

=> Since any redundant sensor is one which is not needed to ensure coverage

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nor connectivity and which is undecided and is the “lesser” , but not “least UID” , 

neighbor of an undecided sensor, or tha t is chosen and is the “lesser” , but not “least 

UID” , neighbor of another chosen sensor, such a sensor will evaluate Redundanti (i) 

or Redundant2 {i) as true and will subsequently execute A \.

=> Any such redundant sensor will become unmarked by rule A \.

Hence we arrive at a contradiction. □

5.6.3 Proof of Self-*

5.6.3.1 Self-configuring

From the proofs of closure and convergence, it was shown that starting from any 

initial configuration. Algorithm 1 A4CSC  forms a network topology in which all 

members of the minimum connected sensor cover are connected, and are thus able 

to communicate with each other, either directly or indirectly. It was also shown that 

starting from any arbitrary state, the given query region will eventually be completely 

covered. By executing the rules of Algorithm 1 M .CSC, network sensors wül self- 

configure to estabhsh a topology that enables communication and sensing coverage 

under stringent energy constraints. Hence Algorithm 1 M .CSC  is self-configuring.

5.6.3.2. Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm 1 M .CSC  is 

not self-healing.

If a nonredundant node fails, a redundant node joins the network, or if there 

is an arbitrary corruption of the state variables of nodes, including the Statusi vari

able, then part of the query region may become uncovered, or may be covered by a 

redundant node.

Case 1:

If a nonredundant node fails, then part of the query region becomes uncovered.
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=*- Since the graph is densely populated, there is a portion of the graph in which 

an unchosen sensor tha t is in this uncovered region, and that is the “least UID” 

neighbor of all undecided nodes within its transmission disk, does not execute Ag 

and A 3 to become chosen.

But since an unchosen node in this uncovered region (that is the “least UID” 

neighbor of all undecided nodes within its transmission disk) will evaluate BridgeNode{i) 

as true, and FillNode{i) as true, this node will execute A 2 and A 3 to become chosen.

Hence we arrive at a contradiction.

Case 2 :

If a part of the query region is covered by a redundant node, then since any node 

that is chosen or undecided and tha t is not the “least UID” neighbor of another 

undecided or chosen node, but th a t has a “lesser” UID than this node, will not 

evaluate BridgeNode{i) nor FillNode{i) as true, this node will not execute A 2 and 

change to undecided, nor will it execute A 3 and change to chosen.

=> This redundant node wiU not cover part of the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of the state variables of nodes, including the 

StatuSi variable, then part of the query region may become uncovered, or may be 

covered by a redundant node.

=>- If the StatuSi variable for a node is initially undecided  or chosen, then part 

of the query region may become uncovered, or may be covered by a redundant node.

Since FillNode{i) evaluates to true if a node is undecided, and is not the neighbor
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of any undecided sensor having a greater UID than its own, or if it is the “least UID” 

neighbor of any undecided sensor, irregardless of whether it was initially undecided, 

and since a chosen node wiU cover part of the query region, such an arbitrary cor

ruption will still allow a node to execute A 3 and cover the query region.

Hence we arrive at a contradiction.

Alternatively, since Redundant\{i) will unmark a sensor even if it is initally 

undecided and is the neighbor of another undecided sensor having a greater UID 

than its own, but is not the “least UID” neighbor of this sensor, then part of the 

query region will not be covered by a redundant node.

Hence we arrive at a contradiction.

Alternatively, since Redundant2 {i) will unmark a chosen sensor, irregardless of 

whether it was initially chosen, tha t is the “lesser UID” neighbor of another chosen 

sensor, but tha t does not have the least UID out of all the neighbors of this sensor, 

then part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □

5.6.3.3 Self-*

Using the concept of self-stabilization, the self-configuring and self-healing features 

of our solution have been implemented. Since the paradigm of self-stabihzation 

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of 

the self-* feature.
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CHAPTER 6  

SECOND M C S C  ALGORITHM

6 .1  Description of Second M .CSC  Algorithm 

and D ata Structures Used 

The description of the second M C S C  algorithm is very similar to the first M C S C  

algorithm and can be referred to  in Section 5.1. In addition to this, the assumptions 

and data structures used for the second M C S C  algorithm are the same as those for 

the first M C S C  algorithm and can be also be referred to  in Section 5.1.

6.2 Predicates Used in Second M C S C  Algorithm 

The predicate Q ryRgnIntrsctn{i) evaluates to true if the sensing disk of Sensor i 

intersects with som e portion of the query region. NgbrOfChsn{i) evaluates to true 

if Sensor i is a neighbor of any sensor whose status is chosen. E N gbrO fC hsn{i,j)  

evaluates to true if Sensor z is a neighbor of any sensor, excluding Sensor j ,  whose 

status is chosen. Predicate IsLeastU ID N ghr{i,x) evaluates to true if Sensor i 

is a neighbor of Sensor x, and is also the neighbor of Sensor x having the least 

UID. LessNotLeastNgbrOfChsn{i) evaluates to true if Sensor z is a neighbor of a 

chosen sensor whose UID is greater than its own, but Sensor z is not the neighbor of 

this sensor that has the smallest UID. The predicate G rtrO rLeastN gbrO fChsn{i) 

evaluates to true if Sensor z is not the neighbor of a chosen sensor whose UID is 

greater than its own or for which Sensor z is not the “least UID” neighbor.
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SensorCover{i), evaluates to true if the status of Sensor i is unchosen, the 

sensing disk of Sensor i intersects with some portion of query region, and Sensor i is 

not the neighbor of a chosen sensor whose UID is greater than its own or for which 

Sensor i is not the “least UID” neighbor. Predicate M CSCN ode{i) evaluates to true 

if Sensor z is an undecided sensor and is not the neighbor of a chosen sensor whose 

UID is greater than its own or for which Sensor z is not the “least UID” neighbor, 

or there is a sensor within the transmission disk of Sensor z th a t is not the neighbor 

of a chosen sensor.

Redundanti(i) evaluates to true if Sensor z is an undecided sensor and is the 

“lesser” neighbor of a chosen sensor, but is not the neighbor of this sensor that 

has the smallest UID, and all sensors within the transmission disk of Sensor z are 

neighbors of a chosen sensor. Finally, Redundant2 (i) evaluates to true if the status 

of Sensor z is chosen. Sensor z has a smaller UID than another chosen Sensor j  that 

is within its transmission disk, but Sensor z does not have the smallest UID out of 

all the neighbors of Sensor j ,  and all sensors within the transmission disk of Sensor 

z are neighbors of a  chosen sensor tha t is not Sensor z.

6.3 Normal Execution of Second M C S C  Algorithm

In this algorithm, every sensor sends its closed neighbor set (including the value of 

StatuSi of the sensors in this set), to all of its neighbors. The steps of the algorithm 

are as follows;

1 . The algorithm marks all unchosen  sensors whose sensing regions intersect with 

some portion of the query region {R q), and tha t are not the neighbors of chosen  

sensors whose UID’s are greater than their own, or for which these sensors are 

not the “least UID” neighbors, as undecided.

2. M CSCN ode{i) checks if Sensor z is undecided, and if a neighbor of Sensor 

z (i.e., a sensor within Sensor z’s transmission disk) is not “dominated” by a
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chosen sensor (i.e., is not within the transmission disk of a chosen sensor), or 

if Sensor i is not the neighbor of a chosen sensor whose UID is greater than 

its own or for which Sensor i is not the “least UID” neighbor. In this case, 

the sensing disk of Sensor i is needed in the final cover set, and hence Sensor i 

changes its status to chosen.

3. Redundant\{i) is used to unmark any undecided sensor that is the “lesser” 

neighbor of a  chosen sensor, but is not the neighbor of this sensor that has the 

smallest UID, and whose entire transmission disk is covered by chosen sensors. 

In this case, the status of the undecided sensor is changed to unchosen.

4. Redundant2 {i) removes redundant sensors from the final cover set as follows. If 

all of the neighbors of Sensor i are within the transmission disk of some chosen 

sensor, and Sensor i is the “lesser” neighbor of a chosen sensor, but is not the 

node with the smallest UID out of all the neighbors of this chosen sensor, then 

Sensor i and all of its neighbors are “dominated” by a chosen sensor. In this 

case. Sensor i should not be in the final MCDS, and thus changes its status to 

unchosen.

5. Finally, action A \  ensures that any redundant sensor or any sensor whose 

sensing disk does not intersect with the query region, has its status changed to 

unchosen.

6 . All chosen sensors are in the final MCDS.

6.4 Faults and Recovery of Second M C S C  
Algorithm

In this section, we focus on the fault handling features of the proposed algorithm 

(Algorithm MCSC).  There are three variables used in the solution: Si, UIDi, and 

StatuSi for a Sensor i. So, we need to show that our solution can cope with all possible 

corruptions associated with these three variables. In the following, we will make an
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attem pt to  list all or most of the important types of faults, and show how they 

are dealt with in Algorithm M CSC. (1) Wrong initialization of the S ta tu s i  

variable. As discussed in the previous subsection, all sensors, if properly initialized, 

start as unchosen, (a) Sensor i is initialized to u n d e c id e d  . Assume that Sensor 

i is initialized to undecided. If i is not a redundant node, then i remains undecided, 

and subsequently changes to chosen, (see Actions Aa and A 3 ). That is, no correction 

is necessary. If i is redundant, then it will satisfy the predicate Redundanti{i) and 

will change to unchosen, (b) Sensor i is initialized to c h o s e n  . If the sensing 

disk of Sensor i does not intersect with the query region, then, by executing Ai, 

Sensor i will change to unchosen. So, no correction is necessary. If Sensor i is 

redundant, then then it will satisfy the predicate Redundant2 (i), and will change to 

unchosen. If it is nonredundant then Sensor i is necessary, either to ensure coverage 

or connectivity, and should not be unmarked. (2) Wrong initialization of the  

U I D i  variable, (a) Sensor i is initialized to a UID that is used to identify another 

Sensor. If Sensor i is redundant, then any other Sensor within the transmission 

disk of Sensor i, tha t has a larger UID than Sensor i and for which Sensor i is not 

the “least UID” neighbor, will cause Sensor i to evaluate Redundant{i) as true and 

to become unmarked, if all of Sensor i's neighbors are covered by chosen nodes. 

If it is nonredundant, then Sensor i is needed in the final cover set, and should 

not be unmarked. (3) Weakening or Failure of sensors, both in terms of 

communication and sensing ability. The weakening or failure of sensors will 

affect the sensing and communication range of the sensors. In other words, the 

constant set R s  or R c  will change. Change of R s  or R c  may change the values 

of Redundant{i), SensorCover{i), and M CSCNode{i). All these changes will be 

reflected in the change of values of the guards of the corresponding actions. So, 

eventually, the status of the affected nodes will change due to the execution of these 

actions. However, these changes will not affect the execution of these actions by the 

neighbors of the affected nodes. Therefore, any changes in the StatuSi variable of
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the affected nodes will be handled as mentioned earher.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm 2 Connected Sensor Cover Algorithm (Algorithm 2 M C S C )  for

_________________Sensor i.____________________________________________________________
Constants:

R qv . Query region;

Ni'.: Set of sensors within the communication range of Sensor %\

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

S ta tu S i  € { u n c h o s e n ,  u n d e c id e d , c h o s e n } : :  Status of Sensor i;

Predicates:
QryRgnIntrsctn{i) =  n R q  ^  0;

s  sensing disk of Sensor i intersects with some portion of query region; 
NgbrOfChsn{i) =  (3y : i € TVj A Statusj =  chosen);

=  Sensor i is a neighbor of a chosen sensor;
E N gbrO fC hsn{i,j) ■ {3k : i  € Nk A Statusk =  chosen A k ^  j);

=  Sensor i is a neighbor of a chosen sensor that is not Sensor j;
IsLeastU ID N  ghr{i,x) =  i € Nx A (Vj € Nx : j  A UIDi < UIDj);

=  Sensor i is a neighbor of Sensor x, and is also the neighbor of 
Sensor x  having the least UID;

LessN OtLeastNgbrOfChsn{i) =  {3j : i e  Nj : Statusj =  chosen A UIDi < UIDjA
->IsLeastU IDNgbr{i, j)); 

s  Sensor i is a neighbor of a chosen sensor whose UID is greater 
than its own, but Sensor i is not the neighbor of this sensor 
that has the smallest UID;

GrtrOrLeastNgbrOfChsn{i) =  (Vj : i € Nj : StatuSj chosen V UIDi > UIDj\/
IsLeastU IDNgbr{i, j));

=  Sensor i is not the neighbor of a chosen sensor whose UID is 
greater than its own or for which Sensor i is not the “least UID” 
neighbor;

SensorCover{i) =  Statusi =  unchosen A QryRgnIntrsctn{i) A GrtrOrLeastNgbrOfChsn{i);
=  status of Sensor i is unchosen, sensing disk of Sensor i intersects with some 

portion of query region, and Sensor i is not the neighbor of a chosen sensor 
whose UID is greater than its own or for which Sensor i is 
not the “least UID” neighbor;

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Algorithm 2 Connected Sensor Cover Algorithm (Algorithm 2 M C S C )  for 

Sensor i (Continued)

M CSCNode{i) =  Statusi =  undecided A {GrtrOrLeastNgbrOfChsn{i) V (3j G N, : 

-<NgbrOfChsn{j)));

=  Sensor ê is an undecided sensor and is not the neighbor of a chosen sensor 

whose UID is greater than its own or for which Sensor i is not the “least UID” 

neighbor, or there is a sensor within the transmission disk of Sensor i that is 

not the neighbor of a chosen sensor;

Redundanti{i) ~  StatuSi — undecided A LessNotLeastNgbrOfChsn{i) A (Vj G Ni : 

NgbrOfChsn{j));

=  Sensor i is an undecided sensor and is the “lesser” neighbor of a chosen 

sensor, but is not the neighbor of this sensor that has the smallest UID, and 

all sensors within the transmission disk of Sensor i are neighbors of a chosen 

sensor;

Redundant2 {i) =  Statusi — chosen A LessN otLeastNgbrOfChsn{i) A (Vj G Ni : 

ENgbrOfChsn{j, %));

=  status of Sensor i is chosen. Sensor i has a smaller UID than another chosen 

Sensor j  that is within its transmission disk, but Sensor i does not have the 

smallest UID out of all the neighbors of Sensor j ,  and all sensors within the 

transmission disk of Sensor i are neighbors of a chosen sensor that is not 

Sensor i.

Redundant{i) =  Redundant\{i) V Redundant2 {i);

Actions:

A i :: ~<QryRgnIntrsctn{i) V Redundant{i)

— > S ta tu S i  =  u n c h o s e n ;

A i  :: SensorCover{i)

— > S ta tu S i  — u n d e c id e d ;

As :: M CSCNode{i)

— > S ta tu S i  =  c h o se n ;
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6 .6  Correctness of Second M C S C  Algorithm

D efin ition  0.0.2. The system is considered to be in a legitimate state (i.e., satisfies 

the legitimacy predicate C m c s c )  */ l̂ he following conditions are true with respect to 

a query region:

i) All non-redundant sensors are marked chosen, 

a) All redundant sensors are marked unchosen.

6.6.1 Proof of Closure 

L em m a 0.0.4 (C overage). In  any legitimate configuration, the connected set cover

M C S C q  computed by Algorithm 2 M C S C  completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the 

sensors in the final M C S C  chosen by Algorithm 2 do not completely cover the 

query region.

=> There is some portion of the query region that is not covered by a chosen 

node.

Since Ag states that a sensor will change to  undecided if it is unchosen, its sensing 

disk intersects with some portion of the query region, and if it is not the neighbor of 

a chosen sensor whose UID is greater than its own or for which it is not the “least 

UID” neighbor, and since the graph is densely populated and all sensors are initially 

unchosen, there will always exist a set of undecided nodes, whose sensing disks 

intersect with the query region, and that will be located at a distance greater than the 

communication radius, but may also be located less than twice the communication 

radius from another chosen node and from another undecided node.
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Since an undecided node’s sensing disk spans a distance of 2Rc, the union of 

the sensing disks of all chosen nodes and all such undecided nodes located at a 

distance greater than R c  but less than 2 R c  from any chosen or undecided node, will 

completely cover the query region.

Since any undecided node will either change to chosen by M C SC N ode{i) or 

unchosen by Redundanti{i), and since all such undecided nodes are located at a 

distance greater than R c  from any chosen node, each such undecided node will 

evaluate G rtrO r Least N gbrO fC hsn{i) as true and LessN  otLeastN gbrO fC hsn{i) 

as false and will change to  chosen by Rule A 3 .

The union of the sensing disks of all nodes tha t were initially chosen and all 

sucAx undecided nodes that changed to  chosen by executing A 3 , completely cover the 

query region.

Since Redundant2 {i) will only evaluate to true if a node evaluates 

L essN  otLeastN  gbrO fChsn{i) as true, and all of its neighbors are covered by a 

chosen node, the Redundant2 {i) predicate will only unmark any of these chosen 

nodes if its entire transmission disk is completely covered by some other chosen 

node.

The sensing disks of all chosen sensors in the final M C S C  completely cover the 

query region.

Hence we arrive at a contradiction. □

L em m a 0 .0 .5  (C o n n ec tiv ity ). In  any legitimate configuration, the connected set 

cover M C S C q computed by Algorithm 2 M C S C  forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the
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sensors in the final M C S C  chosen by Algorithm 2 do not form a connected subgraph.

=> There exists a sensor in the final M C S C ,  lets name it Sensor A, that is marked 

chosen and is not adjacent to  another chosen sensor.

Sensor A is marked chosen and is not within the tranmission disk of another 

chosen sensor.

=>- Sensor A is marked chosen and does not have a chosen neighbor.

C asel :

SensorCover{i) and M C SC N ode{i) did not mark an unchosen sensor that is 

also a neighbor with a greater UID or the “least UID” neighbor of Sensor A, let’s 

name it Sensor B, as chosen, or Redundant^ii) unmarked this sensor.

Since all sensors can have a status of unchosen, undecided, or chosen, and Sensor 

A has no chosen neighbors, all of Sensor A’s neighbors must be either unchosen or 

undecided.

=> Since Sensor A has no chosen neighbors, and since all undecided neighbors of 

Sensor A that evaluate M CSCN ode{i) as true will change to chosen, all undecided 

neighbors of Sensor A must have evaluated M CSCN ode{i) as false.

All undecided neighbors of Sensor A must have evaluated 

G rtrO rLeastN gbrO fC hsn{i) as false, and all neighbors of these undecided sensors 

must have evaluated 

N gbrO fC hsn{j)  as true.

=> Since L essN  otLeastNgbrO fC hsn{i)  is the negative of 

G rtrO rLeastN gbrO fC hsn{i), and all neighbors of these undecided sensors eval

uated N gbrO fG hsn{j)  as true, all undecided neighbors of Sensor A must have
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changed to unchosen after evaluating Redundant\{i) as true and executing A \.

=> AU neighbors of Sensor A are unchosen.

=> The “least UID” neighbor of Sensor A must be unchosen.

Hence we arrive at a contradiction.

Case 2 :

Sensors A and B are chosen neighbors, but Sensor A or Sensor B was unmarked 

by Redundantiii).

As shown in Case 1, since the “least UID” neighbor of Sensor A must be an 

unchosen sensor, let’s name it Sensor B, and since Sensor B will change to chosen af

ter executing A 2 and A 3 , then Sensor B cannot evaluate L essN  otLeastN  ghrO fChsn{i) 

as true.

=> Sensor B cannot evaluate Redundant2 {i) as true.

=> Sensor B cannot be unmarked by Redundant2{i).

Hence we arrive at a contradiction.

Alternatively, since Sensor A has a greater UID than Sensor B, Sensor A cannot 

evaluate L essN  otLeastNgbrO fC hsn{i)  as true.

Sensor A cannot be unmarked by Redundant2 {i).

Hence we arrive at a contradiction. □

T h eo rem  0 .0 , 2  { C m c s c  satisfies specifica tion ). Any system configuration satis

fying the legitimacy predicate C m c s c  (p^f Definition 0 .0 .2 )  satisfies the specification 

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.3 

and 0.0.5, respectively. The definition of C m c s c  implies th a t in a legitimate config-
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uration, there exist no redundant chosen sensor, meaning th a t all redundant sensors 

have been identified and are marked unchosen. Therefore, the connected cover set 

M C S C q computed at this point is the smallest possible by Algorithm 2  M C S C .  □

P ro p e r ty  0 .0 .2 . The system defined by the legitimacy predicate C m c s c  w silent.

Proof. In any configuration satisfying C m c s c , all actions of Algorithm 2  M C S C  are 

disabled. □

L em m a 0 .0 . 6  (C losu re). The legitimacy predicate C m c s c  is closed.

Proof. Property 0 .0 .2  asserts the closure of C m c s c - O

6.6.2 Proof of Convergence 

The goal of this section is to prove that starting from any arbitrary configuration 

of the system of sensors. Algorithm 2  M C S C  guarantees that in finite steps, the 

system will reach a configuration that satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose that starting from any 

arbitrary configuration of the system of sensors. Algorithm 2 M C S C  does not guar

antee that in finite steps, the system will reach a configuration that satisfies the 

legitimacy predicate C m c s c -

=> There exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration that satisfies the legitimacy predicate C m c s c - 

=> There exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration in which all nonredundant sensors are marked 

chosen and all redundant sensors are marked unchosen.

Case 1:
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=> There exists a configuration in which a (nonredundant) sensor whose status is 

unchosen, whose sensing disk intersects with some portion of the query region, and 

that may evaluate G rtrO rLeastN gbrO fC hsn{i) and M GSGNode{i) as true, does 

not do so and does not execute A 3 .

A query region sensor which is unchosen, not the neighbor of a chosen whose 

UID is greater than its own or for which it is not the “least UID” neighbor, and 

that has part of its t r ansmission disk not covered by another chosen sensor, is not 

marked chosen.

=*- Since any query region sensor that is initially unchosen, and is nonredun

dant because it is not the “lesser” neighbor of a chosen sensor nor the “least UID” 

neighbor of this chosen sensor, and which has a sensor within its transmission disk 

that is not the neighbor of a, chosen sensor, will evaluate Q ryRgnIntrsctn{i) and 

G rtrO rLeastN gbrO fC hsn{i) and M CSG Node{i) as true, this node will evaluate 

the guard of A 2 and A 3 as true.

=» This (nonredundant) sensor will execute A 2 , followed by A 3 , and will change 

to  chosen.

Hence we arrive at a contradiction.

Case 2:

The nonredundant query region sensor is initially marked chosen, but executes 

Redundant{i) and is unmarked.

Since this sensor executed Redundant{i), it is the neighbor of a chosen sensor 

having a greater UID than itself, but is not the “least UID” neighbor of this chosen 

sensor, and all sensors within its transmission disk are neighbors of a chosen sensor.
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=> T his sensor’s entire transmission (and sensing) disk is covered by the sensing 

disks of other chosen sensors.

This sensor is redundant.

Hence we arrive at a contradiction.

Case 3:

If a  redundant sensor is marked as chosen or undecided, Redundanti{i) or 

Redundant2 {i) will not unmark this sensor.

Since a redundant sensor is one whose entire sensing disk is covered by the 

sensing disks of other chosen sensors, and whose removal will not leave part of the 

query region uncovered, such a redundant sensor having a smaller UID than its 

chosen neighbor, but that is not the “least UID ” neighbor of this chosen sensor, will 

evaluate L essN  otLeastNgbrO fChsn{i) as true, and will have all of its neighbors 

evaluate N gbrO fC hsn{j)  and E N gbrO fC hsn{j,i)  as true.

=> Such a (redundant) sensor will evaluate Redundanti{i) and Redundant2 {i) bs 

true.

=> Such a (redundant) sensor will execute A i  and will be unmarked.

Hence we arrive at a contradiction.

6.6.3 Proof of Self-* □

6.6.3.1  Self-configuring 

Prom the proofs of closure and convergence, it was shown that starting from 

any initial configuration. Algorithm 2  M C S C  forms a network topology in which all 

members of the minimum connected sensor cover are connected, and are thus able 

to communicate with each other, either directly or indirectly. It was also shown that 

starting from any arbitrary state, the given query region will eventually be completely
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covered. By executing the rules of Algorithm 2 M C S C ,  network sensors will self- 

configure to establish a topology that enables communication and sensing coverage 

under stringent energy constraints. Hence Algorithm 2 M C S C  is self-configuring.

6.6.3 2 Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm 2 M C S C  is 

not self-healing.

=> If a nonredundant node fails, a redundant node joins the network, or if there 

is an arbitrary corruption of the state variables of nodes, including the StatuSi vari

able, then part of the query region may become uncovered, or may be covered by a 

redundant node.

Case 1:

If non-redundant node fails, then part of the query region becomes uncovered.

=> Since the graph is densely populated, there is a portion of the graph in which 

an unchosen sensor that is in this uncovered region, does not execute Ag and A 3 to 

become chosen. But since this unchosen sensor is not covered by a chosen sensor, 

and since all unchosen sensors will not be the neighbors of any chosen sensor, and 

since this node will also have part of its transmission disk not covered by a chosen 

sensor, it will evaluate the guard of A 2 as true and M C SC N odeii)  as true.

=> This node will execute A 2 , followed by A 3 , and will become chosen.

Hence we arrive at a contradiction.

Case 2:

If part of the query region is covered by a redundant node, then since any node 

that is the “lesser” , but not “least UID” , neighbor of a chosen node, and whose entire 

transmission disk is covered by chosen nodes, is redundant and will not evaluate
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G rtrO rLeastN gbrOfC hsn{i)  as true, this node will not execute A 2 and change to 

undecided, nor will it execute A 3 .

=*- This node cannot change to chosen to cover the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of one of the state variables of nodes, including 

the StatuSi variable, then part of the query region may become uncovered, or may 

be covered by a redundant node.

=> If the StatuSi variable for a node is initially undecided  or chosen, then part 

of the query region may become uncovered, or may be covered by a redundant node.

Since M CSCNode{i) evaluates to true if an undecided sensor is not the neighbor 

of a chosen sensor having a greater UID than its own or for which it is not the “least 

UID” neighbor, and if it has part of its transmission disk uncovered, regardless of 

whether it was initially undecided, and since a chosen node will cover part of the 

query region, such an arbitrary corruption will still allow a node to execute A 3  and 

cover the query region.

Hence we arrive at a contradiction.

Alternatively, since Redundanti{i) will unmark a sensor even if it is initially 

undecided and is the “lesser” neighbor of a chosen sensor, but is not the neighbor 

of this sensor that has the smallest UID, and it has all parts of its transmission disk 

covered by a chosen sensor, then part of the query region will not be covered by a 

redundant node.

Hence we arrive at a contradiction.
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Alternatively, since Redundant^ii) will unmark a chosen sensor that is a “lesser” , 

but not “least UID” , neighbor of another chosen sensor, and whose transmission disk 

is completely covered by other chosen sensors, regardless of whether it was initially 

chosen, part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □

6.6.3.3 Self-*

Using the concept of self-stabilization, the self-configuring and self-healing fea

tures of our solution have been implemented. Since the paradigm of self-stabilization 

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of 

the self-* feature.
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CHAPTER 7

THIRD M C S C  ALGORITHM

7.1 Description of Third M C S C  Algorithm 

and D ata Structures Used 

The description of, and assumptions for, the third M C S C  algorithm is very 

similar to the first M C S C  algorithm and can be referred to in Section 5.1. In 

addition to this, the data structures used for the third M C S C  algorithm are similar 

to those used for the first M C S C  algorithm (Section 5.1), except that the status of 

a sensor may be unchosen, undecided, removed, or chosen.

7.2 Predicates Used in Third M C S C  Algorithm 

The predicate C ycle{x,y) determines if there exists a cycle such that Sensors x, i, 

and y are vertices in the cycle, and all other vertices in this cycle are chosen sensors. 

Its steps are as follows:

1 . A vertex i sends a FindC ycle{i,x) message and a FindCycle{i,y) message 

to X  and y, respectively. As a  FindC ycle{i,x) or F indC yde(i,y )  message 

travels, the path is recorded and piggybacked onto the FindCycle{i,x) or 

FindCycle{i, y) message. Each node traversed in this path is recorded.

2. Sensor x  and Sensor y  then send these search messages to all neighbors having 

a status of chosen.

3. If a node receives a FindCycle{i, x) or a FindCycle(i, y) message, it then, in 

turn, forwards this message to  all of its chosen neighbors (floods the network).
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4. If any node receives b o th  FindC yde{i, x) and FindC yde{i, y) messages, then 

there is a cycle, and node i can then be removed.

(a) This node then sends a FoundC yde(x, y) message to vertex i along the 

shorter path that is recorded in either F in d C yd e(i,x )  or F indC yde{i,y).

5. The Cyde{x, y) predicate returns true if the FoundCyde{x, y) message has 

been received by vertex i, within 2D  rounds, in which D  is the diameter of the 

network and round refers to a computation e €  S m. which every continuously 

enabled processor has taken one atomic step (as defined in Section ??) .

Predicate Adjaœ nt{x, y) evaluates to true if x  and y  are neighbors. The predi

cate,

IsLeastU ID N gbr{i,x), evaluates to true if Sensor z is a neighbor of Sensor x, and 

is also the neighbor of Sensor x  having the least UID. HasChsnNgbr{x) evalu

ates to true if Sensor x  has a  neighbor th a t has a status of chosen. Predicate 

E N g b rO fC h sn {i,j)  evaluates to  true if Sensor z is a neighbor of a  chosen sensor 

that is not Sensor j .

The predicate NonAdjacentNghrs{i) evaluates to true if Sensor z has two neigh

bors tha t are not adjacent (are not neighbors of each other). Q ryR gnIn trsdn{i)  

evaluates to true if the sensing disk of Sensor z intersects with som e portion of the 

query region. NonRemovable{i) evaluates to true if Sensor z has two neighbors for 

which the Cycle{x,y) predicate does not evaluate to true.

The predicate. LesserN gbrO fC hsn{i), evaluates to true if Sensor z is a neighbor 

of a chosen sensor whose UID is greater than its own. L essN  otLeastNgbrO fC hsn{i)  

evaluates to true if Sensor z is a neighbor of a chosen sensor whose UID is greater 

than its own, but Sensor z is not the neighbor of this sensor th a t has the smallest 

UID. Finally, Connector{i) evaluates to  true if Sensor z is an unchosen sensor and 

there exists a neighbor of Sensor z that is chosen or removed and that does not have 

any chosen neighbors, and Sensor z is the neighbor of this chosen or removed sensor
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that has the smallest UID.

The predicate Redundant{i) unmarks Sensor i if it is a chosen sensor and is the 

neighbor of a chosen sensor having a greater UID than its own, but is not the neighbor 

of this sensor having the smallest UID, and all sensors within the transmission disk 

of Sensor i are neighbors of a  chosen sensor that is not Sensor i.

7.3 Normal Execution of Third M .C SC  
Algorithm

We win explain the normal execution of the protocol; i.e., assuming th a t the 

system starts from a good initial configuration (all sensors are initially unchosen) 

and that no faults occur during the execution of the protocol. The steps of the 

algorithm are as follows:

1. The algorithm marks all sensors whose sensing region intersects with some 

portion of the query region {Rq), tha t have two nonadjacent neighbors, and 

tha t are not the neighbors of chosen sensors having greater UID’s than their 

own, as undecided.

2. The algorithm then attem pts to place an undecided Sensor i in the final AdC<SC, 

by checking if it is nonremovable. A vertex is nonremovable if its removal results 

in a disconnected graph. This is determined as follows:

(a) If any two neighbors (x ,y )  of the undecided vertex i do not have a 

cycle that has, as a path in this cycle, vertices { .. .,x ,i ,y , ...), then this vertex 

cannot be removed. In other words, there must be a cycle between every 

pair of neighbors of undecided vertex i, in which all sensors in this cycle are 

chosen sensors (except Sensor x  and Sensor y), before it is removable. This is 

determined by the Cycle{x, y) predicate, which was elaborated upon before.

3. If a vertex is removable (or not nonremovable), and its status is undecided, 

then its status becomes removed.
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4. If a vertex is chosen or removed and if it does not have any chosen neighbors, 

then its unchosen neighbor, that is also the neighbor having the smallest UID 

of all its neighbors, is marked as chosen.

5. An undecided vertex th a t is nonremovable is marked chosen.

6 . If a chosen Sensor i is the neighbor of another chosen sensor having a greater 

UID than its own, but is not the neighbor of this sensor having the smallest 

UID, and if aU sensors within Sensor i's  transmission disk are neighbors of 

some chosen sensor that is not Sensor i, then Sensor i is unmarked.

7. All chosen vertices are in the final M.CSC.

7.4 Faults and Recovery of Third M .CSC  
Algorithm

In this section, we focus on the fault handling features of the proposed algorithm 

(Algorithm M CSC). There are three variables used in the solution: Si, UIDi, and 

StatuSi for a Sensor i. So, we need to show th a t our solution can cope with all 

possible corruptions associated with these three variables. In the following, we will 

make an attem pt to list aU or most of the important types of faults, and show how 

they are dealt with in Algorithm M CSC. (1) W ro n g  in itia liza tio n  of th e  StatuSi 

variab le . As discussed in the previous subsection, all sensors, if properly initiahzed, 

start as unchosen, (a) Sensor i is initialized to undecided. Assume that Sensor i is 

initialized to undecided. If i is not a redundant node, then i remains undecided, and 

subsequently changes to chosen, (see Actions A 2 and v4a). That is, no correction 

is necessary. If i is redundant, then it will satisfy the predicate Redundant{i) after 

executing A 3 , or will execute A 4 , and will either change to  unchosen or removed, (b) 

Sensor i is initialized to removed. Assume that Sensor i is initialized as a removed 

sensor. If the sensing disk of Sensor i does not intersect with the query region, then, 

by executing A i, Sensor i will change to unchosen. So, no correction is necessary. If
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Sensor i ’s sensing disk does intersect with the query region, then if it does not have 

a chosen neighbor, after evaluating Connector{i) as true, its unchosen neighbor, 

having the least UID, wiU be marked as chosen by .4 3 . Therefore, since Sensor i ’s 

neighbor was marked to ensure connectivity. Sensor i is not redundant, and should 

not be unmarked, (c) Sensor i is initialized to chosen. If the sensing disk of Sensor i 

does not intersect with the query region, then, by executing A \,  Sensor i wiU change 

to unchosen. So, no correction is necessary. If Sensor i is redundant, then then 

it will satisfy the predicate Redundant{i), and will change to unchosen. If it is 

nonredundant then Sensor i is necessary, either to ensure coverage or connectivity, 

and should not be unmarked. (2) Wrong initialization o f the UIDi  variable. 

(a) Sensor i is initialized to a UID that is used to identify another Sensor. If Sensor 

i is redundant, then any other Sensor within the transmission disk of Sensor i, that 

has a larger UID than  Sensor i, will cause Sensor i to  evaluate Redundant{i) as true 

and to become unmarked. If it is nonredundant, then Sensor i is needed in the final 

cover set, and should not be unmarked. (3) Weakening or Failure of sensors, 

both in terms of communication and sensing ability. The weakening or failure 

of sensors will affect the sensing and communication range of the sensors. In other 

words, the constant set R s  or R c  will change. Change of R s  or R c  may change 

the values of Redundantii) and Connector{i). All these changes will be reflected in 

the change of values of the guards of the corresponding actions. So, eventually, the 

status of the affected nodes will change due to the execution of these actions. All 

changes of the StatuSi variable have already been discussed in earlier cases above.
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Algorithm 3 Connected Sensor Cover Algorithm (Algorithm 3 /A C S C )  for

_________________Sensor i.____________________________________________________________
Constants:

R q :: Query region;

Ni'.: Set of sensors within the communication range of Sensor i;

Shared Variables:

Si'.: Sensing region of Sensor i;

UIDi'.: Unique user identification number of Sensor i;

S ta tu S i  € { u n c h o s e n ,  u n d e c id e d , r e m o v e d ,  c h o se n } : :  Status of Sensor i',

Predicates:
Cycle(x, y) =  3cyde : are vertices in the cycle, and all other vertices in the

cycle are chosen sensors;
=  there exists a cycle such that Sensors x, i, and y  are vertices in the cycle, and 

all other vertices in this cycle are chosen sensors;
Adjacent{x,y) =  x e  Ny A y £ N̂ ',

s  Sensor a; is a neighbor of Sensor y, and Sensor y is a neighbor of Sensor x;
IsLeastUIDNgbr{i,x) =  i £ A {'ij € : j  ^  i A UIDi < UIDj)\

=  Sensor i is a neighbor of Sensor x, and is also the neighbor of Sensor
X  having the least UID;

HasChsnNgbr(x) =  3i £ Nx : Statusi — chosen;
=  Sensor x has a chosen neighbor;

EN gbrO fC hsn{i,j) =  (3k : i  £ Nk A Statusk =  chosen A fe ^  j);
=  Sensor % is a neighbor of a chosen sensor that is not Sensor j;

NonAdjacentNgbrs{i) =  3x £ Ni A 3 y  £ Ni : -<Adjacent{x,y);

=  Sensor i has two neighbors that are not neighbors of each other; 
QryRgnIrvtrsctn{i) =  5 , n iîg  ^  0;

=  sensing disk of Sensor i intersects with some portion of query region; 
NonRemovable{i) =  3 x  £ Ni A 3 y  £ Ni : -^Cyde{x,y);

=  Sensor i  has two neighbors between which there is no cycle that includes 
chosen sensors in this cycle.;

LesserNghfrOfChsn{i) =  (3j : i £ Nj A Statusj — chosen A UIDi <  UIDj);
=  Sensor i is a neighbor of a chosen sensor whose UID is greater than 

its own;
LessNotLeastNgbrOfChsn{i) =  { 3 j  : i £ Nj A  StatuSj =  chosen A UIDi < UIDj  A

-^IsLeastU IDNgbr{i, J));
=  Sensor i is a neighbor of a chosen sensor whose UID is greater 

than its own, but Sensor i is not the neighbor of this sensor 
that has the smallest UID;
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Algorithm 3 Connected Sensor Cover Algorithm (Algorithm 3 M C S C )  for 

Sensor i (Continued)

Connector{i) =  Statusi =  unchosen A {3j £ Ni : (Statusj — chosen V Status j =  removed) A 

->HasChsnNgbr(j) A IsLeastUID Ngbr(i,j));

~  Sensor i is an unchosen sensor and there exists a neighbor of Sensor i that is 

chosen or removed and that does not have any chosen neighbors, and Sensor i 

is the neighbor of this chosen sensor having the smallest UID;

Redundant(i) =  S ta t u S i  =  chosen A LessNotLeastNgbrOfChsn(i) A (Vj £ N  :

E N gbrO fC hsn(j, i));

=  Sensor i is a chosen sensor and is the neighbor of a chosen sensor having a 

greater UID than its own, but is not the neighbor of this sensor having the 

smallest UID, and all sensors within the transmission disk of Sensor i are 

neighbors of a chosen sensor that is not Sensor i;

Actions:

A i :: -'QryRgnIntrsctn(i) V Redundant(i)

— » Statusi =  unchosen;

A 2  :: QryRgnIntrsctn(i) A NonAdjacentNgbrs(i) A ->LesserNgbrOfChsn(i)

— > S ta tu S i  — u n d e c id e d ;

A3 :: (NonRemovable(i) A Statusi =  undecided) V Connector(i)

— > Statusi =  chosen;

A 4 :: - 'N o n R e m o v a b le ( i )  A S ta tu S i  =  u n d e c id e d  

— > S ta tu S i  — r e m o v e d ;
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7.6 Correctness of Third M C S C  Algorithm 

D efin ition  0.0.3. The system is considered to be in a legitimate state (i.e., satisfies 

the legitimacy predicate C m c s c )  */ the following conditions are true with respect to 

a query region:

i) All non-redundant sensors are marked chosen.

ii) All redundant sensors are marked unchosen.

7.6.1 Proof of Closure 

L em m a 0 .0 .7  (C overage). In any legitimate configuration, the connected set cover 

M C S C q  computed by Algorithm M C S C  completely covers the query region R q .

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the 

sensors in the final M C S C  chosen by Algorithm 3 do not completely cover the 

query region.

=> There is a portion of the query region that does not lie within the sensing disk 

of a chosen sensor.

=> Since the graph is densely populated and the communication radius is equal 

to the sensing radius, there exists a sensor within this uncovered portion of the query 

region, let’s call it Node A, tha t does not He within the transmission disk of a chosen 

sensor.

Since every sensor will have two nodes located at opposite ends of its sens

ing disk th a t are non-adjacent neighbors, and since Node A  is not located within 

the transmission disk of a chosen sensor, and since Node A 's  sensing disk inter

sects with a portion of the query region. Node A  will evaluate Q ryRgnIntrsctn{i),
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NonAdjacentNgbrs{i), and -^LesserNghrOfChsn{i) as true and will change its 

status to undecided.

=> Since Node A  is not located within the sensing disk of a chosen sensor, Node 

A  will not be located within the transmission disk of a chosen sensor.

=> Part, if not all, of Node A!s transmission disk will not lie within the transmis

sion disk of a chosen sensor.

Case 1: There exists an x  and a y  which are neighbors of Node A, for which 

-xCycle{x, y) will evaluate to true.

=*- Node A  will evaluate NonRemovable(i) to true.

=> Node A  will execute A 3 and will change to chosen.

=*- Since Node A  is chosen and is also located within its own transmission disk. 

Node A  does lie within the transmission disk of a chosen sensor.

Hence we arrive at a contradiction.

Case 2: If all neighbors of Node A  evaluate Cycle(x, y) to true, but if only Node 

A  is not a neighbor of a chosen node, then Node A  wiU execute A 4 and will change 

to removed.

=> Since Node A  does not have a chosen neighbor, and since all undecided nodes 

must change to either chosen after executing A 3 or removed after executing A 4 , and 

since any neighbor of Node A  will find that Node A  is not covered by a chosen node 

and will evaluate ->NonRemovable(i) as false, then all neighbors of Node A  must be 

unchosen.

=> Any of these neighbors of Node A  may evaluate Connector(i) as true, execute 

A 3 , and change to chosen.
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=> Node A does lie within the transmission disk of a chosen sensor.

Hence we arrive at a contradiction.

Case 3: Sensor A  does lie within the transmission disk of another chosen sensor, 

let’s call it Sensor B , but Sensor A  or Sensor B  was unmarked by Redundant{i).

=> When Sensor A  or Sensor B  is unmarked, the portion of the query region 

covered by Sensor A  or Sensor B  will be uncovered.

Since Redundant{i) will evaluate to true only if Sensor i and all of Sensor i's 

neighbors are neighbors of a chosen node. Sensor A's  entire transmission disk must 

be covered by a chosen node before it is unmarked by Redundant{i).

=> If Sensor A  or Sensor B  is unmarked, the portion of the query region covered 

by Sensor A  or Sensor B  must be covered by other chosen sensor(s).

Hence we arrive at a contradiction. □

L em m a 0.0.8 (C o n n ec tiv ity ). In  any legitimate configuration, the connected set 

cover M C S C q computed by Algorithm M C S C  forms a connected graph.

Proof. We prove this lemma by contradiction. Suppose the sensing disks of the 

sensors in the final M C S C  chosen by Algorithm 3 do not form a connected subgraph.

There exists a sensor in the final M C S C , lets name it Sensor A, th a t is marked 

chosen and is not adjacent to another chosen sensor.

Sensor A  is marked chosen and is not within the transmission disk of another 

chosen sensor.

=> Sensor A is marked chosen and does not have a chosen neighbor.
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=> Rule A s  did not mark an unchosen neighbor of Sensor A  as chosen, or 

Redundant(i) unmarked this node.

Case 1 : Since Sensor A  does not have a chosen neighbor and Sensor A 's  status is 

chosen, either there are no unchosen sensors that are neighbors of Sensor A, or the 

“least UID” neighbor of Sensor A  is not an unchosen sensor.

Since all sensors are initially unchosen, and the sensing disk of Sensor A  in

tersects with some portion of the query region, there is no unchosen sensor within the 

query region that is a neighbor of Sensor A, and that evaluated -^LesserNgbrOfChsn{i) 

as false.

=> All sensors th a t are neighbors of Sensor A  ewduated ->LesserNgbrOfChsn{i) 

as true.

=» There is no neighbor of Sensor A  that has a smaller UID than Sensor A.

Sensor A  has the smallest UID of all its neighbors.

=> Only undecided nodes are neighbors of Sensor A, or the least UID neighbor 

of Sensor A  is an undecided node.

=> If we name such an undecided neighbor of Sensor A  as Sensor B, then Sensor 

B  will either change to chosen by As, or removed by A 4 .

=*- If Sensor B  had changed to  chosen by As, then Sensor A  would have a chosen 

neighbor.

=> Sensor B  must have changed to  removed by rule A 4  after evaluating A 4  as 

true.

=> Sensor B  evaluated -^NonRemovahle{i) as true.

(V z  e  Nb A e  Nb ) : Cyde{x,  y)
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=k AU parts of Sensor B 's  transmission disk are covered by a chosen node.

=> Since Sensor B is a neighbor of Sensor A, Sensor A  is covered by, and is a 

neighbor of, a chosen node.

=> Sensor A  does have a chosen neighbor.

Hence we arrive at a contradiction.

Case 2: Sensor A  does have a chosen neighbor, but this chosen neighbor, let’s 

name it Sensor B, was unmarked by Redundant{i).

Since Sensor A  no longer has a chosen neighbor, and Sensor B 's  status is unchosen, 

and Sensor B  is a neighbor of Sensor A, either Sensor B, or any other unchosen 

neighbor of Sensor A  can evaluate Connector{i) as true, execute As, and change to 

chosen.

Before an unchosen node evaluates Connector{i) as true and executes As, it 

must have evaluated IsL eastU ID N gbr{i,j)  as true.

=» This node, once it executes A 3 , wiU also evaluate LessN otLeastN gbrO fC hsn{i) 

as false.

Sensor B cannot be unmarked by Redundant{i).

Hence we arrive at a contradiction. □

T h eo rem  0.0.3 { C m c s c  satisfies spec ifica tion ). Any system configuration satis

fying the legitimacy predicate C m c s c  (per Definition 0.0.3) satisfies the specification 

of the connected sensor cover problem (as given by Specification 0.0.1).

Proof. The coverage and connectivity properties have been proven in Lemmas 0.0.7 

and 0 .0 .8 , respectively. The definition of C m c s c  implies that in a legitimate config

uration, there exist no redundant chosen sensor, meaning that aU redundant sensors
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have been identified and are marked unchosen. Therefore, the connected cover set 

M C S C q computed at this point is the smallest possible by Algorithm M C S C .  □

P ro p e r ty  0.0 .3 . The system defined by the legitimacy predicate C m c s c  is silent.

Proof. In any configuration satisfying C m c s c , ah actions of Algorithm M C S C  are 

disabled. □

L em m a 0 .0 .9  (C lo su re). The legitimacy predicate C m c s c  i s  closed.

Proof. Property 0.0.3 asserts the closure of C m c s c - O

7.6.2 Proof of Convergence 

The goal of this section is to prove that starting from any arbitrary configura

tion of the system of sensors. Algorithm M C S C  guarantees th a t in finite steps, the 

system will reach a configuration tha t satisfies the legitimacy predicate C m c s c -

Proof. We formulate this proof by contradiction. Suppose that starting fi'om any ar

bitrary configuration of the system of sensors. Algorithm M C S C  does not guarantee 

that in finite steps, the system will reach a configuration tha t satisfies the legitimacy 

predicate C m c s c -

=> There exists a configuration in which, after any finite number of steps, the 

system wifi never reach a configuration tha t satisfies the legitimacy predicate C m c s c - 

There exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration in which all nonredundant sensors axe marked 

chosen and all redundant sensors are marked unchosen.
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Case 1: There exists a configuration in which a (nonredundant) query region 

sensor that is not the “lesser” neighbor of a chosen sensor, that has two non

adjacent neighbors, that has two neighbors between which there is no cycle that 

includes chosen sensors in this cycle, and that may evaluate NonAdjacentNgbrs{i), 

->LesserNgbrOfChsn{i), and NonRemovable{i) as true, does not do so and does 

not execute A 3 .

=> A sensor having two nonadjacent neighbors which is not the neighbor of a 

chosen sensor having a greater UID than its own, and that has two neighbors between 

which there is no cycle including chosen sensors in this cycle, is not marked chosen.

Since any query region sensor tha t is initially unchosen, and is nonredundant 

because it is not the “lesser” neighbor of a chosen sensor, has two nonadjacent neigh

bors, and that has two neighbors between which there is no cycle including chosen 

sensors in this cycle, will evaluate NonAdjacentNgbrs{i), -<LesserNgbrOfChsn{i), 

and NonRemovable{i) as true, this node will evaluate the guard of Ag, and then A 3  

as true.

=> This (nonredundant) sensor will execute A 2 ,  followed by A 3 ,  and will change 

to chosen.

Hence we arrive at a contradiction.

Case 2: The nonredundant query region sensor is initially marked chosen, but 

executes Redundant{i) and is unmarked.

Since this sensor executed Redundant{i), it is the neighbor of a chosen sensor 

having a greater UID than itself, and all sensors within its transmission disk are 

neighbors of a chosen sensor.
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=> This sensor’s entire transmission (and sensing) disk is covered by the sensing 

disks of other chosen sensors.

=> This sensor is redundant.

Hence we arrive at a contradiction.

Case 3: If a  redundant sensor is marked as chosen, Redundantii) will not unmark 

this sensor.

Since any redundant sensor is one whose entire sensing disk is covered by the 

sensing disks of other chosen sensors, and whose removal will not leave part of the 

query region uncovered, such a sensor will evaluate LesserN gbrO fC hsn{i) as true, 

and will have all of its neighbors evaluate E N gbrO fC hsn{j,i)  as true.

=> Such a (redundant) sensor wiU evaluate Redundant{i) as true.

=> Such a (redundant) sensor will execute A i  and will be unmarked.

Hence we arrive at a contradiction. □

7.6.3 Proof of Self-*
7.6.3.1 Self-configuring

From the proofs of closure and convergence, it was shown that starting from any 

initial configuration. Algorithm M C S C  forms a network topology in which all mem

bers of the minimum connected sensor cover are connected, and are thus able to 

communicate with each other, either directly or indirectly. It was also shown that 

starting from any arbitrary state, the given query region will eventually be com

pletely covered. By executing the rules of Algorithm M C S C ,  network sensors will 

self-configure to  establish a topology that enables communication and sensing cover

age under stringent energy constraints. Hence Algorithm M C S C  is self-configuring.
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7.6.3.2 Self-healing

Proof. We formulate this proof by contradiction. Suppose Algorithm M C S C  is not 

self-healing.

=> If a nonredundant node fails, a redundant node joins the network, or if there 

is an arbitrary corruption of the StatuSj variable of nodes, then part of the query 

region may become uncovered, or may be covered by a redundant node.

Case 1 : If a nonredundant node fails, then part of the query region becomes 

uncovered.

Since the graph is densely populated, there is a portion of the graph in which 

an unchosen sensor tha t is in this uncovered region, does not execute Ag and A 3 to 

become chosen.

=k However, since this unchosen sensor has two nonadjacent neighbors, is not the 

“lesser” neighbor of a chosen sensor, and has two neighbors between which there is 

no cycle that includes chosen sensors in this cycle, it will evaluate the guard of A 2 

as true and NonRemovable{i) as true.

This node will execute Ag, followed by A 3 ,  and wiU become chosen.

Hence we arrive at a contradiction.

Case 2: A part of the query region is covered by a redundant node.

Since any node that is the “lesser” neighbor of a chosen node, and whose en

tire transmission disk is covered by chosen nodes, is redundant and will not evalu

ate ->LesserNgbrOfChsn(i) as true, this node wiU not execute Ag and change to 

undecided, nor wiU it execute A 3 .

=> This node cannot change to chosen to cover the query region.
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Hence we arrive at a contradiction.

Case 3: If there is an arbitrary corruption of the StatuSi variable of nodes, then 

part of the query region may become uncovered, or may be covered by a redundant 

node.

=> If the StatuSi variable for a node is initially undecided, chosen, or rem oved, 

then part of the query region may become uncovered, or may be covered by a redun

dant node.

Since LesserN gbrO fC hsn{i) evaluates to false if a node, regardless of its initial 

status, is not the “lesser” neighbor of a chosen node, and NonRemovable(i) will 

evaluate to true if an undecided node has two neighbors for which ->Cycle{x,y) 

evaluates to true, and since a chosen node will cover part of the query region, such 

an arbitrary corruption will still allow a node to execute Ag and A 3 and cover the 

query region.

Hence we arrive at a contradiction.

Alternatively, since R edundant{i)  will unmark a sensor if it is chosen, is the 

“lesser” neighbor, but not the neighbor having the smallest UID, of a chosen  node, 

and if aU parts of its transmission disk are covered by chosen  nodes, if the StatuSi 

variable of a redundant node is initially chosen, is initially undecided, or changes 

from rem oved  to  undecided, and then this node changes to chosen  by executing A 3 , 

it will become unmarked.

Part of the query region will not be covered by a redundant node.

Hence we arrive at a contradiction. □
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7.6.3.3 Self-*

Using the concept of self-stabihzation, the self-configuring and self-healing fea

tures of our solution have been implemented. Since the paradigm of self-stabilization 

subsumes all other self-* properties, our solution is truly fault-tolerant in terms of 

the self-* feature.
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CHAPTER 8  

SIMULATION AND RESULTS

8.1 Discussion of Results 

Algorithms 1 , 2 , and 3 compute a minimum connected sensor cover for the query 

region. Moreover, all three algorithms are fault-tolerant in terms of the self-* feature.

In our simulations, for the first set of experiments, we assumed that nodes are 

chosen and randomly deployed on a grid of size 500 x 500 (300,000 nodes). Similar 

to [26, 44, 55] we consider the sensing region associated with a sensor modeled as 

a circular region around itself. We considered a homogeneous network of 300,000 

nodes (i.e. all sensors had the same sensing region — circular of radius 6 ). We then 

used varying sizes for a query region, and measured the number of sensors in the 

final minimum connected cover set, the number of query region sensors (dominated) 

per MCSC sensor, and the stabilization time for Algorithms 1, 2, 3, and Rule k  [15]. 

The query region used in each simulation varied from 60 x 60 graph units to 120 

X 120 graph units, in intervals of 10 graph units. The results of this simulation are 

summarized in Table 1 and Figures 5(a) - (c) in the next section.

The simulations summarized in Table 2 , Table 3, and Figures 5(d)-(i) were per

formed with a query region of size 90 x 90 graph units. The total number of sensors 

deployed, and the size of the radius of communication of the sensors were varied in 

Tables 2 and 3, respectively.
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X n  units)

60 70 80 90 1 0 0 1 1 0 1 2 0

Alg. 1 Num ber of MCSC Sensors 155 203 246 286 342 387 475
Alg. 1 Qry Rgn Sensors /  MCSC Sensor 45.6 43.6 46.5 48.9 47.2 50.1 47.1
Alg. 1 Stabilization Time (min.) 38.1 73.0 135.2 192.4 259.5 376.9 498.7
Alg. 2 N um ber of MCSC Sensors 166 207 257 309 375 432 502
Alg. 2 Qry Rgn Sensors /  MCSC Sensor 40.5 42.6 42.5 44.4 43.2 44.4 44.4
Alg. 2 Stabilization Time (min.) 1 0 .2 14.7 19.7 27.9 36.2 47.1 62.5
Alg. 3 N um ber of MCSC Sensors 187 238 287 364 519 661 708
Alg. 3 Qry Rgn Sensors /  MCSC Sensor 37.8 38.2 39.0 37.4 31.5 29.3 31.7
Alg. 3 Stabilization Time (min.) 10.7 17.5 27.2 42.3 64.3 108.3 176.0
Rule k N um ber of MCSC Sensors 191 244 297 343 410 513 595
Rule k Qry Rgn Sensors /  MCSC Sensor 37.5 37.0 37.9 39.8 40.0 38.2 38.3
Rule k Stabilization Time (min.) 4.6 6 .0 8.3 11.4 16.0 22.4 29.6



As shown in Table 1, at all query region sizes, Algorithm 1 produced the least 

nodes in the final cover set. Algorithm 2 produced a greater number of nodes in 

the final cover set than Algorithm 1 but fewer nodes in the final cover set than 

Algorithm 3 and Rule k. Algorithm 3 produced a greater number of nodes in the 

final cover set than Algorithm 1 and Algorithm 2 at all query region sizes tested. 

However, it produced a final cover set that was smaller than Rule fc’s at query 

region sizes that were less than 90 x 90 square graph units and larger than Rule 

fc’s at query region sizes greater than this. Rule k  produced the greatest number 

of nodes in the final cover set at query region sizes that were less than 90 x 90 

square graph units, but produced fewer nodes in the final cover set than Algorithm 

3 at query region sizes that were greater than 90 x 90 square graph units. This 

was due to the fact that Algorithm 1 has the strongest redundancy predicate, since 

it only requires that a Sensor i be the neighbor of a chosen sensor and also have a 

smaller UID than this chosen sensor but not the least UID out of all the neighbors 

of this chosen sensor, before it is unmarked. Algorithms 2  and 3 have a redundancy 

predicate that is weaker than that of Algorithm 1 but stronger than that of Rule 

fc, since it requires that a Sensor i be the neighbor of a chosen sensor, and also 

have a smaller UID than this chosen sensor but not the least UID out of aU the 

neighbors of this chosen sensor, and that all sensors within the transmission disk of 

Sensor i are also neighbors of a chosen sensor, before Sensor i is unmarked. Also, 

since Algorithm 3 uses the Connector{i) predicate to  ensure connectivity and uses 

the LessN otLeastN gbrO fC hsn{i) predicate as part of its redundancy predicate, in 

any particular covered area of the query region, only the node with the greatest and 

the least UID will be marked as chosen. In addition to this. Rule k  has the weakest 

redundancy predicate, since it requires that all sensors within the transmission disk 

of Sensor i be covered by marked sensors and that Sensor i also has the least UID 

out of all the nodes that cover its transmission disk, before it is unmarked. Also, 

as shown in Figure 5(b), each sensor in the final cover set chosen by Algorithms 1

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and 2 “dominated” a greater number of nodes than Rule k. Thus Algorithms 1 and 

2  “dominated” a greater number of nodes than Rule k. Algorithm 3 “dominated” 

a greater number of nodes than Rule k  at query region sizes less than 90 tim es  90 

square graph units, but fewer number of nodes than Rule k  a t query region sizes 

greater than this. Thus Algorithms 1 and 2 did outperform Rule k  in the sense that 

they allowed more nodes to be in an “inactive” state at all the query region sizes 

tested in our simulation, and Algorithm 3 outperformed Rule k  a t query region sizes 

less than 90 x 90 square units. However, as shown in Figure 5(c), Algorithm 1 had 

the highest stabilization time of all the algorithms. This increased stabihzation time 

is attributed to the fact th a t Algorithm 1 has the strongest redundancy predicate, 

and therefore will incur the greatest time cost when unmarking redundant chosen 

nodes and again producing a sensor cover consisting of nonredundant nodes after 

restabilization. Furthermore, the stabilization time of Algorithm 3 is greater than 

Algorithm 2 and Rule k. This is due to the fact that Algorithm 3 has a redundancy 

predicate that is not weaker than tha t of both algorithms, and yet sends FindCycle(i, 

x) and FindCycle(i, y) messages that must travel throughout the network.
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N um ber of Sensors 
(x 1 0 0 ,0 0 0 )

1.5 2 . 0 2.5 3.0 3.5
Alg. 1 N um ber of M CSC Sensors 294 273 283 286 296
Alg. 1 Qry Rgn Sensors /  M CSC Sensor 2 2 .8 33.8 40.1 48.9 53.4
Alg. 1 Stabilization Tim e (min.) 13.3 43.8 103.8 192.4 285.3
Alg. 2 N um ber of M CSC Sensors 316 313 318 309 317
Alg. 2 Qry Rgn Sensors /  M CSC Sensor 2 2 .1 28.9 35.9 44.4 49.7
Alg. 2 Stabilization Tim e (min.) 9.9 14.6 2 0 .8 27.9 35.7
Alg. 3 N um ber of M CSC Sensors 341 347 349 364 470
Alg. 3 Qry Rgn Sensors /  M CSC Sensor 2 0 .1 26.6 32.9 37.4 34.2
Alg. 3 Stabilization Tim e (min.) 8 .0 16.5 26.6 42.3 64.4
Rule k N um ber of M CSC Sensors 332 344 342 343 360
Rule k Qry Rgn Sensors /  M CSC Sensor 2 0 .8 26.4 34.1 39.8 44.7
Rule k Stabilization Tim e (min.) 2 .2 4.1 7.6 11.4 18.2



Furthermore, Table 2 shows that the size of the final cover sets produced by 

Algorithms 1 and 2 is smaller than tha t produced by Algorithm 3 and Rule k. 

Therefore, both Algorithms 1 and 2 outperformed Rule k  in terms of the size of the 

final cover set at all sensor densities tested in our simulation. The final cover sets 

produced by Algorithm 3 and Rule k were very similar in terms of size, when the 

total number of sensors in the simulation was less than 300,000 nodes. Therefore, 

both algorithms produced nearly the same number of nodes in the final cover set, 

when the to tal number of nodes deployed was less than 300,000 nodes.

The number of M C S C  sensors for both Algorithms 1 and 2 did not monotonically 

increase when the node density was increased, while that of Rule k did increase 

sharply when the node density was greater than 300,000 nodes per 500 x 500 graph 

units. This may be attributed to the fact that at higher node densities, there may 

have been a greater number of nodes tha t covered any particular marked sensor’s 

transmission disk, and thus a less likelihood that a marked sensor had the least UID 

of all the sensors tha t covered its transmission disk. Therefore, fewer nodes would 

have been unmarked at higher node densities by Rule k.
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Alg. 1 N um ber of MCSC Sensors 286 223 177 143 113
Alg. 1 Q ry Rgn Sensors /  MCSC Sensor 48.9 61.3 77.0 97.3 120.9
Alg. 1 Stabilization Time (min.) 192.4 245.1 317.8 442.0 505.2
Alg. 2 N um ber of MCSC Sensors 309 245 183 151 1 2 0

Alg. 2 Q ry Rgn Sensors /  MCSC Sensor 44.4 54.9 74.1 89.4 114.4
Alg. 2 Stabilization Time (min.) 27.9 28.4 31.7 34.3 40.8
Alg. 3 N um ber of M CSC Sensors 364 352 275 237 22 1

Alg. 3 Qry Rgn Sensors /  MCSC Sensor 37.4 39.2 49.2 58.0 61.9
Alg. 3 Stabilization Time (min.) 42.3 51.5 56.0 73.3 81.1
Rule k N um ber of M CSC Sensors 343 278 2 2 2 177 145
Rule k Qry Rgn Sensors /  MCSC Sensor 39.8 49.4 61.8 77.2 95.8
Rule k Stabilization Time (min.) 11.4 15.4 18.8 22.9 29.5



Table 3 and Figure 5(g) show that Algorithms 1, 2, 3, and Rule k  produced 

smaller final cover sets as the radius of communication of the sensors was increased. 

However, Algorithms 1 and 2  produced smaller cover sets than Rule A; at all sizes of 

the radius of communication that were tested. Also, as shown in Figure 5(h), each 

sensor in the final cover set chosen by Algorithms 1 and 2 “dominated” a greater 

number of nodes than Rule k, at all sizes of the radius of communication that were 

tested. This indicates that Algorithms 1 and 2 outperformed Rule k, in terms of 

the size of the final cover set and the number of query region sensors covered by 

each node in the final cover set, at all sizes of the radius of communication that 

were tested. Also, both Algorithms 3 and Rule k  produced a cover set that was very 

similar in size, when the size of the radius of communication of the sensors was 6  

and the size of the query region was 90 x 90 graph units.

As the size of the radius of communication was increased, each sensor chosen by 

Algorithms 1 , 2, and 3 also “dominated” a greater number of query region sensors. 

This seems intuitive since the size of the radius of communication is equal to the size 

of the radius of the sensing disk of sensors in Algorithms 1, 2, and 3. Therefore, as the 

radius of communication was increased in size, there were a greater number of nodes 

within the transmission disk, and thus within the sensing disk, of chosen sensors in 

the simulation. Thus, in Algorithms 1 , 2 , and 3, there was a smaller probability of 

nodes being chosen by A 2 and A 3 . Also, since there was an increased hkelihood that 

a node was the neighbor of another chosen sensor that had a greater UID than its 

own but was not the “least UID” neighbor of this chosen sensor, a greater number 

of chosen sensors may have been unmarked by the redundancy predicates of both 

algorithms.

The stabilization times of both Algorithm 2 and Rule k  were very similar at all 

sizes of the radius of communication that were tested. Also, despite the fact that Al

gorithm 1 had a higher stabilization time than Algorithm 2, 3, and Rule k, Algorithm 

1 still produced fewer nodes in the final cover set. While Rule k does stabilize faster
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than Algorithms 1, 2, and 3, the slower stabilization times seem justified due to  the 

fact that the latter three algorithms do not compromise connectivity, nor coverage.

The time complexity of Algorithms 1 and 2 is O(A^), where A  is the maximum 

degree of a node in the network. The time complexity of Algorithm 3 is 0 (D ), 

in which D  is the diameter of the network. The stabilization times of all three 

algorithms measured during simulation, however, may increase due to the time cost 

associated with unmarking redundant chosen nodes and again producing a sensor 

cover consisting of nonredundant nodes after restabilization.

The screenshots in Figures 6, 7, and 8 show the final cover sets that are produced 

by Algorithms 1, 2, and 3, respectively, when the radius of communication is 8. In all 

screenshots, each sensor is depicted as a black spot, and areas that are occupied by 

sensors are shown as black areas. Also, the query region is outlined by a red square, 

and the sensing disk of each chosen sensor is depicted as a light blue circle with a 

white border. Any uncovered regions within the query region will be shown as black 

areas within the red rectangle.

In addition to this. Algorithms 1, 2, and 3 are fault-tolerant in terms of the self-* 

feature. This implies that Algorithms 1, 2, and 3 are also self-contained, meaning that 

the number and location of nodes affected by a faulty node, are minimally contained 

within the neighborhood of the faulty sensor. It also implies that the system self- 

heals after restabilization, without any external intervention. This is shown in the 

screenshots in Figures 9, 10,11 and in Figures 12 and 13. The screenshots in Figures 

9, 10, and 11 are those of Algorithms 1, 2, and 3, respectively, when there are two 

faulty nodes that are neighbors of each other. The screenshots in Figures 12 and 

13 are those of Algorithms 1 and 2, respectively, when there are two faulty nodes 

that are not neighbors of each other. In these screenshots, the sensing disks of faulty 

nodes are pink and those of nodes th a t were faulty and changed their status after 

restabilization are green. In this simulation, the sensing disks of nodes that were not 

faulty and yet changed their status after restabilization should have changed from
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light blue to  yellow. As the simulation shows, in all three algorithms, when a node’s 

status is corrupted by an arbitrary fault, the system is self-contained and self-heals 

after restabilization, without any external intervention.
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CHAPTER 9

CONCLUSION AND FUTURE RESEARCH 

The main motivation of our research was to design a totally distributed self- 

* query response system in sensor networks. We presented three local, distributed, 

scalable, self-* solutions to  the minimum connected sensor cover problem and showed 

how these solutions are self-organizing and self-healing as well. The algorithms are 

also self-* contained, meaning that after a fault occurs in the system, after restabi

lization, only nodes within the locality of the faulty nodes change status. Throughout 

the design process, we followed a power-aware approach. Although our goal was to 

design a minimal size sensor cover, we used power-awareness as a  strong guide in our 

design, and accepted a slight degree of suboptimality.

The minimum connected cover set produced by Algorithms 1, 2, and 3 are min

imal in the sense th a t they do not include another cover set. Algorithms 1 and 2 

outperformed Rule k  in terms of producing a smaller final cover set at all query 

region sizes tha t were tested in our simulation. Algorithm 3 outperformed Rule k 

in terms of producing a smaller final cover set at query region sizes that were less 

than 90 x 90 square graph units. Also, at all sensor densities and all sizes of the 

radius of communication tha t were tested, both Algorithms 1 and 2 outperformed 

Rule k  in terms of producing a smaller final cover set. The final cover sets produced 

by Algorithm 3 and Rule k  were very similar in terms of size, when the total number 

of sensors deployed was less than 300,000 nodes, and the size of the query region 

was 90 X 90 square graph units. Despite the fact that the stabilization time of 

Algorithm 1 is greater than th a t of Algorithm 2, 3, and Rule k, the final cover set 

produced by Algorithm 1 is smaller than that produced by Algorithm 2, 3, and Rule
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k. Also, Algorithm 1, Algorithm 2, and Algorithm 3 are truly fault-tolerant and are 

self-contained, meaning that after a fault occurs in the system, after restabilization, 

only nodes within the locality of the faulty nodes change status.

This research showed that the concept of self-stabilization subsumes many other 

self-* properties. The connected sensor cover problem is a global task since nodes 

cannot locally compute the final response to the query. However, we still required 

our algorithms to  be local in the sense tha t no node in the proposed algorithms 

collect global information, and no node behaves as a special node in any stage of the 

execution of the algorithms. In our solution, every node can decide if it should be 

unchosen, undecided, chosen, or removed (in the case of Algorithm 3), during the 

computation of the response to a query, based upon local information. In summary, 

we achieved a global objective by using local algorithms.

Sensing coverage characterizes the monitoring quality provided by a sensor net

work in a designated region. Different apphcations may require different degrees of 

sensing coverage. In this regard, we can extend our solution in a couple of ways. 

Firstly, we may write a parametric solution where the input query will include the 

degree of coverage expected. The redundancy predicate will be relaxed to allow the 

corresponding higher degree of coverage. Secondly, we can simply assume a particular 

degree (> 1) of coverage in our algorithm. Similar to  the implementation of a higher 

degree of coverage to achieve better robustness, we may also require a higher degree 

of connectivity for the same purpose (i.e., to increase the level of fault-tolerance). We 

can extend the neighborhood connectivity checking to fc-node {k > 1) disjointness 

in the communication graph. Unfortunately, higher degree of coverage/connectivity 

would require more communication cost, i.e., consuming more power. We can con

duct a study on the trade off between connected cover size optimality vs. robustness 

and energy efficiency.

Also, our work can be extended by finding an algorithm to form a minimum 

connected “clusterhead” set, such th a t every node in the graph G(V, E) is either in
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the “clusterhead” set, adjacent to a node in the “clusterhead” set, or adjacent to  a 

neighbor of a node in the “clusterhead” set. Nodes in this “clusterhead” set will then 

be responsible for aggregating, routing, or transmitting data th a t has been collected 

from the query region.

Our work may also be extended to include sensors with sensing or transmission 

radii th a t are different in size. That is, we may increase or decrease the sensing radii 

of sensors used in our research, and study the effect of this change upon the size and 

degree of coverage of the final cover set th a t is obtained.
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