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ABSTRACT

Dynamic Property Characterization of Ionic Polymer Metal Composite (IPMC)

by

Prashanth Reddy Duvvuru Kamakshi

Dr. Woosoon Yim, Examination Committee Chair 
Professor of Mechanical Engineering 

University of Nevada, Las Vegas

In this thesis dynamic properties of Ionic Polymer Metal Composite (IPMC) is 

studied. The ionic polymer (IPMC) is made out of a high polymer gel film whose surface 

is plated with platinum. This ionic polymer finds its application in future as artificial 

muscle. Analytical modeling method for both single and segmented ionic polymer which 

can exhibit varying curvature along the polymer was introduced. This segmented ionic 

polymer can generate more flexible propulsion compared with a single strip ionic 

polymer where only forward propulsion can be generated by a simple oscillatory 

bending motion. It is well known in biomimetic system research that a simple bending 

motion has lower efficiency than a snake -like wavy motion in propulsion. In this 

segmented ionic polymer each segment can be bent individually. This segmented ionic 

polymer design consists of a number of independent electrode sections along the length 

of the ionic polymer to realize the undulatory motion by selectively activating each 

segment. The magnitude of curvature can be controlled by adjusting the voltage level 

applied across each segment.

Ill
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In this thesis we focus on the development of an analytical model to predict the 

deflection of this single and segmented ionic polymers and the model is validated with 

experimental results. Due to the complexity of the polymer , it is necessary to find the 

dynamic parameters from the experimental data. After proper tuning of dynamic model, 

this can be used for various control applications including the underwater robotic 

propulsor device design and others. The dynamic model developed in this work 

reasonable complies with experimental data and can be further developed for future 

control algorithm design.

I V
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CHAPTER 1

INTRODUCTION

1.1 Introduction and history of modeling

Ionic polymer metal composite (IPMC) are a class of active material that exhibits 

electromechanical coupling. For convenience Ionic Polymer Metal Composite(IPMC) is 

referred as ionic polymer. Ionic polymer materials generally consist of a Perfluorinate 

membrane that has been plated on both sides with a conductive metal. Application of an 

electric field across the thickness of the material produces mechanical deformation. 

Conversely, mechanical deformation of the material produces a measurable electrical 

signal. Thus, ionic polymers can be used as both sensors and actuators for applications in 

motion measurement and control. The advantage of these materials compared to other 

types of actuators is that they are materials that operate in a hydrated environment. This 

has motivated the development of biomimetic actuators that exploit their unique 

properties.

1.2 Description

Ion-exchange polymer-metal composites (IPMC) are active actuators that show large 

deformation in the presence of low applied voltage and exhibit low impedance. They 

operate best in a humid environment and can be made as self-contained encapsulated 

actuators to operate in dry environments as well. They provide an attractive means of

1
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actuation as artificial muscles for biomechanics and biomimetics applications. The ionic 

polymer muscle used in our investigation is composed of a per fluorinated ion exchange 

membrane (lEM), which is chemically composed with a noble metal such as gold or 

platinum. In our case it was Platinum. A typical chemical structure of one of the ionic 

polymers used in our research is shown in Figure 1.1

— (CF,— CF)

CFC F , C F   O

C F,

Figure 1.1 Chemical structure typical ionic polymer

Where n is such that 5<n<ll and m ~ 1, and is the counter ion (H^, Li^ or Na"̂ ). 

One of the interesting properties of this material is its ability to absorb large amounts of 

polar solvents, i.e. water. Platinum, Pt, metal ions, which are dispersed through out the 

hydrophilic regions of the polymer, are subsequently reduced to the corresponding metal 

atoms. This results in the formation of a dendritic type electrode. The discussion of the 

early history of these materials and their use as biomimetic transducers is referred in [1].

1.3 Characterization

Most ionic polymer actuators experiments have been performed on samples based 

on DuPont's Nafion 117, a readily available commercial polymer. The overwhelming 

majority of experiments have been performed on actuators in a cantilevered bender

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



configuration. A sample of the above ionic polymer is shown Figure 1.2. Typical 

dimensions are 5mm wide and 10mm or more in length but it can be made in any size. 

They function best in the fully hydrated state and their performance as actuators 

decreases rapidly as they dry out. Thus ionic polymers are 'soft' and 'wet' actuators.

Figure 1.2 Sample of ionic polymer

Reported values of their modulus vary from approximately O.lGPa [13] to over 0.6GPa 

[5]. Note that this modulus includes the stiffening effect of the electrode, which is 

significant. Since the electrode thickness and structure depend on the details of the 

plating process, which has not been standardized in our case it was O.SGpa.

Although the experimental data presented by various researchers correspond to ionic 

polymers with different dimensions, electrode materials, neutralizing ions, etc, it is still 

possible to generalize the attributes of ionic polymer transducers from the collection of 

experimental results.
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1.4 Literature review

Previous modeling efforts for ionic polymer materials can generally be separated into 

empirical models or models based on first principles.

Models based on first principle forms a basis for understanding the general and 

fundamental features. The critical parameters are defined operationally in terms of 

measurable fundamental parameters, so the mechanistic basis of the mode can be 

evaluated by testing both assumptions and prediction. To the extent that available data 

permit such evaluations, they generally support the model for many classes of system.

Models of electromechanical impedance were developed for the purpose of 

relating applied voltage to current [2]. Early work on these materials utilized a linear 

model of actuation to estimate the relationship between applied field and mechanical 

deformation [3]. Both of these models utilized curve fits of experimental data to model 

electromechanical coupling. Two port electromechanical model [4] that accounted for 

both sensing and actuation with in the material. This model was also based on curve fits 

of experimental data. Models based on first principles have also been developed [5-9]. 

These models are based on the interaction of electrostatic and hydraulic forces within the 

polymer membrane [8-9] place more emphasis on the electrostatic interaction while the 

models by [6], [7], [8] are based on the relationship between solvent flux and pressure 

gradients of the models.

Our work complements the recent paper by [6], [11] and [12] in which the charge- 

deformation relationship was explored in depth for current excitation of polymer benders. 

Finite element approach is used to describe the dynamics of the segmented IPMC, which 

considered as composed of finite elements satisfying Euler-Bemoulli’s beam theory.
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1.5 Modeling

According to Newbury [4] most of the models proposed for ionic polymers can be 

placed in one of the three categories.

1. Physical model

2. Black box model

3. Gray box model

1.5.1 Physical model

The first complete physical models that were both solved and compared to experimental 

results were not published until, presented what they termed a 'white-box' [6,7] model for 

ionic polymer actuators. They proposed that the application of a step voltage (electric field) 

causes the mobile cations to quickly migrate across the thickness of the actuator from the 

anode (positive electrode) to the cathode (negative electrode), dragging water molecules 

along with them. The resulting change in water concentration, a decrease at the anode and an 

increase at the cathode, causes contraction and expansion of the respective portions of the 

base polymer and induces a curvature in the ionic actuator.

Central to the micromechanics model [5,9] is the idea that the side chains of the 

polymer form clusters, which are saturated by water when the polymer is hydrated. Under 

the application of an electric field, the cations are redistributed, migrating towards the 

cathode. A locally imbalanced net charge density results and the associated electrostatic 

forces produce stresses that act on the polymer backbone, resulting in an electrically 

induced curvature of the polymer.

The micro molecular model [5,9] of electromechanical coupling based on osmotic 

pressure and electrostatic forces within the polymer substrate . Comparison between
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experiment and theory was provided for tip displacement with sinusoidal input voltage. 

While these novel smart method composites have many potential applications, the 

mechanisms which control their macroscopic behavior have not been fully understood. 

The constitute parameters in the proposed model are estimated based on the 

microstructure of the composite, using micromechanics, or they are determined from the 

experiments. Central to the theory is the recognition that the internal stresses produced 

by the presence of electrically unbalanced negative ions that permanently fixed to the 

backbone ionic polymer. Although the osmotic effects are also relevant, they have less 

impact in defining the initial actuation and subsequent relaxation of the Nafion based 

ionic polymer. The formulation presented in this paper gave detailed structure to each 

competing factor and suggested a path for further parametric and experimental studies.

Difficulty with physical modeling of ionic polymer transducers is that the chemical 

and physical mechanisms responsible for the electromechanical transduction have not 

been accurately identified. Also, the material parameters that appear in many of the 

proposed equations are not well known and do not lend themselves to direct 

measurement. Another issue with the physical models is that the governing equations are 

quite complex. These models will most likely prove useful in identifying and 

understanding the mechanisms responsible for transduction; however, much simpler 

models are needed for engineering design.

1.5.2 Black box model

According to Newbury [4] the first black box model of ionic polymer actuation was 

presented by [2]. They used experimental tip displacement data with voltage step inputs
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in conjunction with a least squares algorithm to determine values for the constants. 

Another linear model of actuation to estimate the relationship between applied filed and 

mechanical deformation was proposed [6]. In this study, the electrical characteristics of 

the actuator were represented by the surface resistances of the gel membrane permeated 

with water, and series connection of resistance and capacitance. Another black box model 

for cantilevered ionic polymer benders was put forth by [15]. They used the first-order 

differential equation

/ / / / / / / /

Figure 1.3. Actuator configuration for the Xiao and Bhattacharya (2001)

While the black box models are relatively easy to understand and use, their scope is limited 

as they cannot accommodate any changes in actuator dimensions.

1.5.3 Gray box model

The most widely accepted gray box actuator model was presented by [6]. They 

represented the ionic polymer using three 'stages' that were connected in series as shown 

in Figure 1.4, an electrical stage, a stress-generation stage, and a mechanical stage.
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Figure 1.4 RC configuration of ionic polymer

The input of the electrical stage was the applied voltage and the output was current. 

This current was used as an input to the stress-generation stage. The second-order terms 

were used to provide dynamics in the relationship between the current and the induced 

stress. No proper verification of the model's scalability was presented [11].
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1.6 Problem definition

Our goal is to introduce an analytical method for both single and segmented ionic 

polymer which can exhibit varying curvature along the polymer. This objective can be 

accomplished through a combination and verification of modeling and experimental 

work. The purpose of considering segmented ionic polymer is, simple bending motion 

has lower efficiency than a snake like wavy motion in propulsion which have been found 

by biological analysis of the swimming mechanism of fish or other creatures. To realize 

more complex motions, such as multi- DOF motion, segmented ionic polymer of which 

could be bent individually is needed. The magnitude of the curvature can be controlled by 

adjusting the voltage level applied across each segment.

With the fundamental material parameters determined this analytical model can help 

scientific and engineering communities understanding of the macroscopic behavior of 

ionic polymer actuators.

Most of the experimental work done until now used Laser deflection monitoring 

system to monitor the deflection of the ionic polymer which cannot be efficient for large 

deflection. So we developed the Vision system using BASLER A602f camera as an 

Image capturing device and developed an image processing technique for processing 

image data for monitoring large deflection of ionic polymer with better efficiency.
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1.7 Overview

The following is a brief summary for the organization of the thesis. Chapter 2 

describes dynamic modeling for the ionic polymer based on RC model and finite element 

method. The experimental setup used in Chapter 2 be discussed in Chapter 3 including 

vision system used to measure the dynamic deformation of the ionic polymer. Chapter 4 

presents the computer simulation results and experiments presented for validations our 

modeling methods. Chapter 5 includes the conclusions of this research work and 

suggestions for future work.

10
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CHAPTER 2

DYNAMIC MODELING 

Ionic polymer metallic composite (IPMC) is one of the electro active polymers (EAP) 

that have shown potentials for many applications in robotics and other small scale 

system. This ionic polymer is electro active polymer (EAP) material that bends when 

subjected to voltage across its thickness. Ionic polymer has several attractive EAP 

characteristics that include:

- Low drive voltage -4.0 to 4.0 V

- Soft material (E= 1.158 GPa)

- Possible to miniaturization (<Imm)

- Can be activated in water or in wet conditions.

2.1 Hypotheses on motion principles

The following hypothesis on the motion mechanisms are introduced in this paper:

- Voltage applied on the polymer yields an electric field through the membrane.

- Nafion ions migrate from the anode to the cathode by electrostatic force.

- Hydration causes travel of water molecules with the Nafion ions.

The following forces were applied on the ionic polymer membrane by the travel of 

the nafion ions and the water molecules, which results in the bending of ionic polymer. 

Swell and contraction caused by the water content change.

II
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- Momentum conservation effect concerning the ionic migration and water travel.

Conformation change of the polymer structure according to ionic migration.

2.2 Analytical model

Analytical model was developed based on the clumped RC model [11] of the ionic 

polymer and beam bending theory accounting for small deflections. This dynamic model 

focuses on the macro models for the electric inputs and electromechanical actuation of 

ionic polymer. The macro model that relates the electric input and mechanical output are 

required for the material characterization i.e. to define and extract the parameters in order 

to support potential application establishing a mathematical base for actuator design.

Finite element method is used to describe the dynamics of the both single and 

multiple segmented ionic polymers, where each element satisfies Euler Bernoulli’s beam 

theory. The schematic diagram of segmented ionic polymer is shown in Figure. 2.1

CNJ
c c
0) 0)
E E
p O)
o
i/i

i
E

I ± hp
= hp 
^  hp

Bbi bp

lonomeric polymer
V, \  Metallic electrode

V n -1

Figure 2.1 Ionic polymer with N segments

12
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The energy approach is used to formulate the equation of motion where the bending 

moment applied in each element is assumed to be proportional to the bending curvature 

determined from the clamped RC model. The modeling steps are described in following 

section.

It has to be noted that from previous experiments performed [II] , the clumped RC 

modeling hold good only for Nafion based ionic polymer strip and quite large difference 

between the model and the experimental results is observed for Flemion based ionic 

polymer.

2.3 RC model of ionic polymer

The clumped RC model relates the input voltage applied to the ionic polymer strip to 

the charge. The ionic polymer has two parallel electrodes and electrolyte between them. 

Double-layer capacitors are formed on the interfaces of two electrodes and the 

electrolyte. The electrolyte between the electrodes may introduce as internal resistance. 

This series circuit of C-R-C circuit can be simplified to R-C circuit as shown in Figure 

2.2

0
R,<

IPMC

Figure 2.2 R-C circuit of ionic polymer

13
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For a voltage input to the segment i, V„ the electric charge, Q, and the current, /„ in the 

circuit become

/?[C5 + 1 

/, _ C(i?i +R^)s + l 

V- + / ? 2

Where 5  is a Laplace complex variable.

(21 )

(2.2)

2.4 Relaxation model

Studies indicate that the response of the ionic polymer strongly depends on its 

backbone polymer and ionic content [1, 2], especially the counter ion. Basically, they can 

be divided to two categories based on the cation size.

(a) Small cation such as Li^, Na"̂  and

(b) Large cation such as alkyl ammonium ions.

The ionic polymer with small cation has quick response to the applied voltage and 

slow back relaxation. The ionic polymer with large cation responds slowly to applied 

voltage but with no relaxation. It is believed that the small cations move easier over the 

polymer backbone. The fast movement of the cations towards the cathode together with 

associated water molecules results in an initial quick bending toward to the anode. This 

response is followed with a relaxation that may be caused by water leakage resulting 

from a high pressure layer near the cathode toward to the anode through channels in the 

polymer backbone. The process stops when water equilibrium is established. On the 

contrary, large cations migrate significantly slower and present slow reaction to the 

electric field. Thus, there no relaxation for the ionic polymer with large cations.

14
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Since the ionic polymer with small cations under a step input voltage show a slow 

relaxation towards the cathode after a quick bending towards anode. This phenomenon 

was considered and modeled using a simple lead network of

^  = K — , p > z  (2.3)
Qi s + p

where w, is a bending moment applied to the ionic polymer segment i and K, z, and p  are 

three parameters that can be fit using the experimental data. Here, K  is the gain and z and 

p  are zero and pole of the network. K  is related with the bending effect of the charge 

freshly moving to the electrode and 1/p is a relaxation time constant and the magnitude of 

z reflects the bending effects of the charge in the equilibrium state. Considering the fact 

that the bending effect due to freshly moving charge is larger than the one in the 

equilibrium state, the magnitude of z is smaller than p.

The RC model and relaxation model of the IPMC can be combined to the following 

linear model that relates the input voltage Vi and the bending moment m, of segment i as

+ (-------1- p)s  + - ^
R,C R,C

2.5 Finite element modeling of segment ionic polymer

The finite element method is used to describe the dynamics of the single and 

segmented ionic polymer strip method is which is as composed of finite elements
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satisfying Euler-Bemoulli’s beam theory. The displacement of any point on the arm is 

described in terms of nodal displacements [12]. The position and velocity vectors of a 

point on the beam is,

P - { x  w Y

p - [ o

(2 5) 

(2 6)

where x and w are nodal displacements. The ionic polymer is divided into n elements 

and each has a local coordinate jc, along the neutral axis of the ionic polymer (in the 

global coordinates) and has a length of L,. There are (n+1) nodes, with the nodes of 

element (/) being nodes (i) and (/+1). This is shown in Figure 2.3

n+1

i+l

X
1

Figure 2.3 shows a schematic of the ionic polymer.

The displacement of any point in element i, shown in Figure.2.4, is described using 

the nodal displacement and slope of nodes i and i+ I  as follows:
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w ,.

w.i+ l

i+ l

(2 7)

where w, and  are the nodal displacement and slope of node i respectively and N ’s 

are called the shape Junctions which are shown below,

N,
L,

1 ^ 2  -  —j  -  2xJ l J  + %
A

Â 3 =  —  [ ~ 2 x J  + 3 x J L i )

A

Â4 = — (r,.̂ L,. - xJ lJ )

iA ')

(2 8)

i+1

Figure 2.4 i-th segment illustrating nodal displacement

Velocity of any point in element i is 

P  = Nq^

The kinetic energy of the element is

L,

2
1

KE, = -  \p,P^Pdx,

(2.9)

(2.10)
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where, p. is the combined density of the electrode and the electrolyte between the

electrodes per unit length of element i. Substituting the Eq (2.9) to Eq (2.10)

1
K E ,= - \p ,q ]N ^ N q ,d x ,  (2.11)

By defining 4 x 4  mass matrix m ,, Eq (2.11)is expressed as

1
(2.12)

‘-r

where m. -  ^p-N^N dx̂ C213)

The mass matrix m, become

m. -

13 ,

A A '

^V a a '210

2 1 0 " '" ' 105^'^'
9 , 13 , 2

" Ï Ï 5

ïô s^ '^ '’

(2.14)

The potential energy of an element i assuming uniform beam geometry is

PE, = -  j —  
2 J£ 7 ,

 ̂ Y .EI, — -  + u, dx,
9%

(2 15)

where El, is the product of Young’s modulus of elasticity by the cross-sectional area 

moment of inertia for the equivalent beam of an element i.

From the Eq (2.15) the stiffness matrix k, of the element i is defined as

I y

d^N
dx, C2 16)

Using Eq (2.8) The complete stiffness matrix is
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12EI, 6E1, -1 2 E / , 6EI,

b-
6EI,

A '
4EI,

A '
- 6 E I ,

A '
2E1,

A '
-1 2E I ,

k,
-  6EI,

A '
12EI,

A
- 6 £ /

A '
6EI,

A '
2E1,

A '
- 6 E I ,

A '
4EI,

A ' A A ' A

(2 17)

Using Lagrangian dynamics, the equations of motion for an element i are.

d ( r r3(PA)l
dt I  34, J I 39, J I 39, J

=  0 (218)

The terms with m, are moved to the right hand side of the equation. They correspond 

to the force matrix of a distributed moment that is replaced by two concentrated moments 

at the two nodes. The equation can be expressed in a matrix form as,

m,q, + k, q, = B,u, i = h - n  

where m, and A are shown in Eq. (2.12) and Eq. (2.17) respectively and B, = [0 -1 0  1]

2.6 State space model development

To develop the combined state space model for an entire ionic polymer length of n 

segments Eq. (2.4) and (2.20) should be expanded. First, the RC relaxation model of each 

segment in Eq.(2.4) can be written as

( j  + z) u
A, 5 + An

(2.20)
R

s  +  (------- 4- p ) s  +
R,C R,C

s + a . j 5  + fl-Q

u u ^  u ^  where b,, = —  ,b,^= —  z ,a , ,  =
/V, K, RC,

+ P j iO R,C

Eq (2.20) can be transformed back to time domain as
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ü ,  +  a „ ù ,  + o ,qU, = b i,V , +  6,0%, / = 1 ■ ■ • n (2.21)

To combine the RC and relaxation model with the equations of motion (2.20), we 

introduce two new variables zu and ziz for element i,

Za = Z,2 (2.22)

Â2 = ”Ai 2̂ “ AoAi + %

Then, m, of Eqs.(2.21) can be expressed in terms of these new variable zn and Zii as

= AoAi + AiA-2’ ( ^ 1 -  » (2.23)

Eq. (2.22) and (2.23) can be expanded for the entire ionic polymer of n segments as

0
■a,10

rtxn
0 0

0 0 
0 0 - a

= A Z + B V
nO

- a ,

0
0

n x n  

0 0
0

0 - a

z  +
o„

(2.24)

where Z = {zi, Zj, z^ Z22 - 2 ,2 } '̂= and V = {V,V2 ---V„f e  91" is an input voltage 

vector. Also Eq (2.22) can be expanded for an entire ionic polymer strip of n segments 

as.

u, Ao 0 0 bn 0 o'
: 0 0 0 0

S . 0 0 Ao 0 0 b . .

Z  = B..Z (225)

The dynamic model for the segment i shown in (2.19) need to be expanded for an 

entire ionic polymer of n segments. Matrix equations (2.19) for each segment can be 

assembled after expansion as

(2.26)
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where ^  ^  • --yv̂ +i (p„n V  ^ 91^" and a bending moment vector

M = { « 1  « 2  ■ ■ ■ w « E  91". It should be noted that {Wj (j),] is eliminated from qe since the

first node has zero boundary conditions. Now the state space model of the entire ionic 

polymer strip can be formulated using (2.19)-(2.21).

By defining a state vector% = [q^ q  ̂ Z Y  G 91^", (2.19)-(2.21) can be written as,

y
4 / ® 2 / ix 2 n ^ 2 / ix 2 n (^2,1X2,1 ' o '

x  =  <9, 0 x + 0

Z 0 0 4  . A .

(228)
" J L«.J

= Ax +  BV

Eq (2.26) can be used for designed a control law for the segmented ionic polymer strip 

for various applications in end-effectors and underwater propulser design.
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CHAPTERS

EXPERIMENT SETUP

This section describes the methods and hardware used to generate the inputs applied 

to the ionic polymer and to measure dynamic response of the ionic polymer. These inputs 

and measurements will be referred in later sections in this chapter. The Figure 3.1 

shows basic Illustration of the Experimental Setup.

s t e p  u p /d o w n  transform er

Input Voltage
dSPACE 1104

Out Put Current/ 
VoltageAmplifier

D eflection

m onitoring

Platinum
electrodes

Camera
MME

Control D esk 2 .5  
Image
Capture/Processing

I

Computer

Figure 3.1 Schematic diagram illustrating basic experimental setup
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As shown in the Figure 3.1, the ionic polymer was clamped between a pair of platinum 

electrodes. When the ionic polymer is in the air the deionized water (l-Butyle-3- 

methylimidazolium-hexafluorophosphate) was brushed on the ionic at approximately one 

minute intervals-frequently enough to keep the surface of the polymer wet. When the 

polymer is not in use, it is stored in sodium hydroxide solution to avoid hydration. As the 

experiment was performed both in air and water an aquarium with a holding frame was 

used to hold the polymer. Actual Experiment setup is shown in Figure 3.2 and the 

holding device with single segment polymer is shown in Figure 3.3

C onditioner

mera

Transformer

Amolifter

Figure 3.2 Actual experiment setup
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l u i i i  \c tii;U < fr-

D ata Pninf

Figure 3.3 IPMC setup with polymer holding Device

3.1 Experiment description

Experimental setup mainly consisted of the following

- dSPACE 1104 system (Real time controller prototyping system)

- Three programmable bi-polar power amplifiers for model (HA-151 by 

Hokuto Denko)

- Three step up and down transformers model (VC-IOOJ by Power bright) for 

giving power input amplifier.

- Camera (A602f by BASLER)

10 gram load cell with TMO-1 Signal conditioning circuit for force 

measurement.

- Open top aquarium

- Actuator holder

- Platinum electrodes
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Following software’s were used for Data Acquisition 

DSPACE Control Desk Version 2.5

Simulink , Image acquisition and Image processing Tool box in Matlab 6p5

3.2 Control signal for ionic polymer

Voltage inputs for the time domain experiments were generated using D/A converters 

output channels of the dSPACE 1104. Voltage output from the dSPACE was amplified 

and conditioned using programmable Bi-polar power amplifiers. The output voltage and 

current from the amplifier was measured by accessing DAC (Digital to Analog) channel 

of dSPACE system.

3.3 Blocking force measurement of ionic polymer

The 10 gram load cell manufactured by Transducer Techniques was used to measure 

the blocking force of the tip of the ionic polymer. The load cell precision, repeatability, 

and linearity were 0.05mN. The force measurement was also relatively noisy, with 

typical noise level of 0.02mNrms. The force between the ionic polymer and the load cell 

sensing element was transferred through a nylon screw that was screwed into the tapped 

hole provided in the load cell sensing element. The Figure 3.4 illustrates the load cell 

setup with ionic polymer. The output of the load cell is voltage connected to DAC 

channel of the dSPACE system for monitoring the blocking force generated by the ionic 

polymer.
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LOAD CELL

Figure 3.4 Load Cell Setup

3.4 Deflection measurement of the ionic polymer

Deflection monitoring of the ionic polymer were made using BASLER A602f digital 

video camera. The camera is capable of frame rates up to 100 fps (frames per second). A 

frame rate of 3 fps was used for the experiment reported in this work. Ten equally spaced 

small ‘dots’ of metallic silver color on the polymer edge acted as targets for the Image 

Processing toolbox .For post processing of the acquired images, the Image Processing 

tool box was used to create a time history of the target position. The resolution achieved 

in a particular experiment depends on many factors, such as lighting, target size and 

shape, and lens quality. Thus the Image Acquisition Tool box and Image Processing tool 

box of Matlab provided means by which to measure large ionic polymer deflection.

Appendix A provides the specifications of the ionic polymer and instruments used 

in this experiment.
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3.5 Interfacing image acquisition and dSPACE 1104

The dSPACE controller and the Matlab toolbox based vision system are two different 

systems and we need to synchronize two system for various the various data acquisition 

and control applications. This synchronization can be achieved by a program that triggers 

both dSPACE and vision acquisition system. For this purpose we use a feature in 

dSPACE called MLIB/ MTRACE.

Programming MATLAB-dSPACE Interface libraries gave us an access to dSPACE 

real-time processor hardware from the MATLAB workspace. MLIB/MTRACE functions 

can be called from the MATLAB Command Window or from MATLAB M files. Thus 

the powerful numerical tools like Image Acquisition running under MATLAB can be 

used in combination with MLIB/MTRACE for:

- Analyzing real-time data

- Test automation 

Optimizing control algorithms

MLIB/MTRACE provides basic functions for reading and writing data to dSPACE 

processor boards and other functions for generating interrupts, setting the processor state, 

and getting processor status information. MLIB/MTRACE functions are used to modify 

parameters online and to send sequences of test data to real-time applications. 

MLIB/MTRACE ideally complements the software environment, which consists of 

MATLAB, Simulink, Real-Time Workshop, and the dSPACE tools RTI and Control 

Desk. Figure 3.5 shows the illustration of how dSPACE from MATLAB M files via 

MLIB/MTRACE
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MATLAB M-Files

MLIB/MTRACE

modify
variables

i
read
results

1

real-Üme data

device driver

V

real-time processor

Figure 3.5 Interfacing of MATLAB with Real time Processor of dSPACE

The m-file used to trigger both Image acquisition and dSPACE is provided in 

Appendix-B
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3.6 Image processing

After the target images are acquired, those images need to be processed to calculate the 

position of each target points marked on the polymer. This was a technique where we 

carried out set of numeric operations to process the images acquired and to perform 

required operation. We could extend the capabilities of the Image Processing Toolbox 

by writing our own M-files, which performed following tasks shown in Figure 3.6

Reading Image

Image analysis & 
Enhancing

Binary conversion

Data Approximation

Data Scaling

Figure 3.6 Tasks of image processing 

Each task in Figure 3.6 is summarized in this section.
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3.6.1 Image reading

Image reading is a process of reading an image from any supported graphics image 

file format, in any of the supported bit depths. Most image file formats use 8 bits to store 

pixel values. When these are read into memory, MATLAB stores them as a class uintS 

(unsigned positive integer). For the file formats that support 16-bit data, PNG and TIFF, 

MATLAB stores the images as class uintl6. Figure 3.7 shows the sample image that has 

been read by MATLAB.

.  »

Figure 3.7 Sample image

3.6.2 Image enhancing & analysis

Image Enhancing and analysis techniques return information about the structure of 

an image. After analyzing the image we increase the intensity of the image by using 

default functions that enhances the contrast of images by transforming the values in an 

intensity image so that the histogram of the out space image approximately matches a
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specified histogram (uniform distribution by default).Figure 3.8 shows a sample of image 

enhancement.

Original Image E nhanced  Image

Enhancing 

/

Figure 3.8 Image enhancing

3.6.3 Binary conversion

Followed by the image enhancement by adjusting intensity of the images, the next 

task is to convert the enhanced images to the binary format. The binary images are the 

images that contain only O’s and I ’s. Pixels with the value 0 are displayed as black; 

pixels with the value I are displayed as white. For the toolbox to interpret the image as 

binary, it must be of class logical Image. Figure 3.9 shows the sample of binary image.
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Black and white Image

Figure 3.9 Binary image

3.6.4 Data approximation

In the transformed binary images the white regions which show the position of target 

points would be our area of interest. Before approximation we label every ‘dot’ or white 

spot to access individual dots later by labeled number. To approximate the data region 

(dot) as single point we calculated the centroid of the white region and considered that 

centroidal point as the actual position of data.

3.6.5 Data scaling

Reference scale of the image data was the pixel number which is needed to be scaled 

in meters. This scaling was done using the reference images with known dimension and 

each image was scaled using that scaling. In the proposed setup, 100 pixel length is 

equivalent to 12 mm of actual object. Taking the above scaling into consideration, the 

deflection analysis of ionic polymer was done.
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The m-file used to Process the Image in the above discussed steps is provided in 

Appendix B

3.7 Pre chemical processing of ionic polymer

Ionic polymer’s gets hydrated quickly in the air and so in order to keep the surface of 

the polymer wet, deionized water (l-Butyle-3-methylimidazolium-hexafluorophosphate) 

is to be brushed on the actuator at approximately one minute intervals-frequently at the 

time of experiment. The ionic polymer response can change after some couple of routine 

experiments and this is due to some organic and metallic impurities.

In order to ensure repeatability in response of the ionic polymer there was the need to 

remove the organic and metallic impurities which can affect the ionic polymer. To do this 

there is a sequence of pretreatment process that can remove the organic and metallic 

impurities.

The pretreatment process was explained in following steps

- First, the ionic polymer has to be cleaned in Distilled water.

- Then immerse the polymer in DI water to swell the membrane for 2 hours

- Boil the membrane in 3% Hydrogen Peroxide (H202) solution at 80° C for 

30 minutes. This removes the organic impurities.

After boiling, the polymer has to be cleaned by rinsing the membrane in DI 

water.

- Boil the membrane in 1 molar Sulfuric acid (H2S04) at 80° C for 40 

minutes. This dissolves all the metallic impurities.
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After boiling, the polymer has to be cleaned by rinsing the membrane in DI 

water again.

Then the polymer has to be left in Sodium Hydroxide solution for 24 hours. 

Then polymer is ready to use. Water used in the experiment should always 

be DI water to ensure the proper response of the actuator.

3.8 Integration of vision system with dSPACE

Keeping in view of applying the control law to the system. Next task was to develop 

vision feed back system. This task has following steps 

Standardize scaling procedure 

- Developing Matlab function for Acquisition and Processing

Synchronize with the existing dSPACE and Image Acquisition System

3.8.1 Standardize scaling procedure

Image processing previously discussed was procedure carried out after the data/video 

was acquired. Scaling the data points from pixel number to SI units are done considering 

the reference picture. This method of plotting the data points was found to have more 

approximation and not viable.

There were many image sensing and scaling techniques that were available which 

when implemented ensures the accurate scaling of the given image. Due to the 

complexity involved in understanding and again synchronizing with other systems these 

could not be implemented.
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Hence we came up with scaling system where we fix the distance, angle of vision, 

focus between ionic polymer and camera as shown in the Figure 3.10. This ensures the 

specific area of vision at that fixed distance. Using graph paper as field of view an image 

was collected and calibrated the pixel value. In our case it was image captured is of 

resolution 680x480 pixels.

Fixed height

70 mm (X-axis)

y  

/
Figure 3.10 Camera positioning

This when scaled to millimeter it would be 70x52.5 mm. Thus each pixel value is 

equal to .10925 mm. Having fixed the scaling constant, any image captured with the 

fixed distance, angle of vision, focus can be multiplied with scaling constant to get the 

data point located in SI system.
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Y-axis in the pixel increases from top to bottom as shown in the Figure 3.11. In order 

to account this simple math operation has been done. After multiplying the y axis pixel 

value with the scaling constant the resultant is subtracted from the length of the Y-axis 

(52.5). Thus value in y-axis increases from origin.

f 450

Figure 3.11 Arrow direction indicating the y-axis increases from top to bottom

3.8.2 Developing function for acquisition and processing

The next task was to develop the function. This function when called should carry out 

following options

1. Capture image

2. Process the image to black and white image

3. Find out the point of interest

4. Scale the date point to SI system

5. Give the output as tip point located in SI system.
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Capturing and filtering image with reference to highest intensity is same as that was 

explained in Image Processing Section 3.6. In order to locate the tip point we consider the 

point with highest x-axis value. So after labeling the points in the image, the data point 

with highest x-coordinate value will be considered as our point of interest. Thus tip of the 

ionic polymer is recognized by the camera and the output of the function would be tip of 

the ionic polymer located in co-ordinate axis in millimeters. The above is shown in the 

following Figure 3.12

Figure 3.12 Finding the tip displacement by considering the data point with highest ‘x ’

value
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3.8.3 Synchronize with the existing dSPACE and image acquisition system

To summarize above we program the above tasks under one function and call that 

function for every given voltage at that instant to monitor the response of the ionic 

polymer for given voltage. Thus synchronizing the dSPACE and image acquisition 

system to study open loop response of the system.
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CHAPTER 4 

RESULTS AND DISCUSSION

4.1 Experimental results

This section explains the types of experiments conducted and their results. As 

explained in Chapter 3, the experimental setup holds good for different types of data 

acquisition. The primary task was to monitor deflection of ionic polymer for input step 

voltage using a video camera and validate the responses obtained from the computer 

simulated result. Figure 4.1 shows the ionic polymer holder that is designed using Solid 

Works and manufactured using Dimension SSS 3D rapid prototyping machine.

Figure 4.1 Ionic polymer holder
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The ionic polymer used in this experiment has to undergo pre-chemical treatment (Sec 

3.7) discussed in Chapter 3. This would ensure the better repeatability in response of the 

ionic polymer. Two platinum electrode of dimension 2mmx lOmmxO.lmm (length x 

breadth x height) is used to hold the ionic polymer of 50mmx lOmmx .29mm (length x 

breadth x height). The ionic polymer used in our experiments is provided by the Active 

Material Research laboratory, University of Nevada Reno. This ionic polymer is made of 

Nafion 117 based polymer with lE  cation. Ionic polymer is clamped between the 

platinum electrodes as shown in Figure 3.3. This electrode receives the input voltage 

from the amplifier (HA 151). The amplifier receives the programmed real time voltage 

signal from the real time controller (dSPACE DS 1104 controller board). The acceptable 

range of the voltage that can be supplied to the ionic polymer is -4 to 4 Volts. The output 

current and voltage can be monitored from the amplifier output.

In an effort to understand the deflection response of the ionic polymer for various 

input voltages, the ionic polymer is subject to various step voltages. These experiments 

were conducted in air and to prevent the polymer from dehydrating during experiment, 

deionized water was brushed on them at one minute interval on their surface. The step 

input of 2.5V, 3V, 3.5V and 4 Volts are given to ionic polymer deflection and the current 

plots are plotted respectively.

4.1.1 Deflection response for 2.5 Volt step input

The amplifier used in this experiment has 2 analog output channels, voltage 

(potential output) and current. This amplifier is also called Potentiostat /  Galvonostat that 

can used as either voltage or current controlled amplifier.
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plots illustrating the current,in/out volt response of IPMC

O)

0 2 6 10 12 14 16 18 20 224 8

Time In seconds

0.02

Û. 0.01

43.02,

Time in seconds

Figure 4.2 Current response of the ionic polymer for 2.5 V step input

The output of the amplifier is also is connected to the ADC channel of real time 

interfacing (dSPACE DS 1104) system for monitoring purpose. The Figure 4.2 shows 

current response of the ionic polymer for 2.5 Volts input. Thus all input signals were 

measured and recorded using the dSPACE. The deflection data has been captured using a 

BASLER camera and processed to analyze the response of the ionic polymer for the 

given voltage input. Figure 4.3 shows the deflection response of ionic polymer. The dots 

in Figure 4.3 along the length of the ionic polymer are data points marked on the ionic 

polymer as targets of the vision system. The tip displacement curve in the Figure 4.3 

indicates that there are net displacements of around 13 mm vertically and 2 mm 

horizontally.
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Experimental deflection of the IPMC
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Figure 4.3 Experiment deflection of the ionic polymer for 2.5 volts step input.
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Figure 4.4 Tip displacement curves of the ionic polymer for 2.5 volts
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4.1.2 Deflection response of ionic polymer for 3 Volt Step Input

Similar experiment was conducted with 3 volts as an input. Figure 4.5, Figure 4.6 and

Figure 4.7 indicate current response, deflection response and tip displacement

respectively.

p lo ts  Illustrating th e  current, In/out volt r e s p o n s e  o f IPMC

10 12 14

Time in seco n d s

c  0.01

8  10 12 14

Time in seco n d s

Figure 4.5 Current response of the ionic polymer for 3 V step input
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Experimental deifection of the IPMC
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Figure 4.6 Experiment deflection of the ionic polymer for 3 Volts step input.
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Figure 4.7 Tip displacement curves of the ionic polymer for 2.5 volts
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4.1.3 Additional observations

In the process of analyzing ionic polymer the step input with magnitudes 2.0V, 3.0V, 

3.5V and 4V were applied to ionic polymer to observe the current and deflection 

responses for different input voltages.

plot illustrating the current consum ption for various voltage
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Figure 4.8 Current with 2V,3V, 3.5V and 4V step inputs
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Figure 4.9 Experimental free deflection with 2V, 3V, 3.5V, 4V
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These experiments were run for around 20 seconds and the current response was 

plotted in Figure 4.8. As expected from the clumped RC model in Chapter 2, we obtain 

the steady state current values proportional to the input voltages after the initial 

overshoot. It can be also observed that in Figure 4.9 the deflection in Y axis is 

approximately proportional to the input voltage. In Figure 4.9, it should be noted that tip 

displacement of ionic polymer with different step inputs do not have same starting point 

because of intermediate brushing of ionic polymer with deionized liquid to keep the 

surface of the polymer wet. This brushing disturbs the starting position of the polymer 

Figure 4.8 shows that current curve attains stability after certain time, this indicates 

that after certain time current and force generating bending motion of the ionic polymer is 

balanced. The fact that the ionic polymer did not continue to bend while constant current 

was applied supports the above results. As predicted from the clumped RC model in 

Chapter 2 the current in ionic polymer generates volumetric strain of expansion and 

contraction.

4.1.4 Blocking force response

The other task was to observe the blocking force. This was measured using lOgm 

load cell as explained in section 3.3 and Figure 3.4 shows the experimental setup. In 

order to ensure the contact between the load cell’s nylon screw and the tip of the polymer 

the load cell was placed in such a way that the tip of the polymer was slightly preloaded. 

These preload constant is accounted and subtracted from the force measurement during 

post processing.
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Based on ion size, the ionic polymer can be classified in two kinds. One is the ionic 

polymer with small cation and the other is the ionic polymer with large cations. As 

explained in chapter 2, the ionic polymers with large cation don’t exhibit any relaxation 

as they move slowly towards the cathode resulting in slow bending and less force for 

applied voltage. The main purpose of ionic polymer with large cationic polymer like alky 

ammonium is to avoid hydration.

Ionic polymer with small cation moves faster and easier on the polymer surface. As 

they move fast towards cathode they carry water molecule results in an initial quick 

bending towards the anode. Thus leads to slow relaxation as water leaks from high 

pressure area towards low pressure area.

Figure 4.10 shows the plot of the blocking force of ionic polymer with different 

length i.e. 50 x 10 (Length x Breadth) and other with 25 x 10. Polymers considered in 

this experiment were polymers with large cations and step input of 3.5V. It is observed 

that ionic polymer with shorter length (25 x 10) generates more blocking force than the 

polymer with longer ionic polymer (50 x 10). Explanation to this would be the ionic 

polymer with shorter length is more stiff and the moment generated upon voltage input is 

distributed in shorter length.
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Figure 4.10 Blocking force for two different size of polymer with large cation

In Figure 4.10 it is observed that force plot of the polymer with shorter length (25 

X10) increases continuously unlike the other polymer (50 x  10) the reason behind this 

would be the high power density formed due to short length of polymer

Apart from considering ionic polymer with large cation or small cation of the 

polymer, the length of the ionic polymer is important parameter to observe relaxation of 

the ionic polymer. If the ionic polymer’s length to width ratio is larger like 5:1 in our case 

there is no relaxation it can be observed from Figure 4.10

But if the length of the ionic polymer with small cations is short then a slow 

relaxation is observed. An experiment is conducted to justify above statement. The ionic 

polymer with small cations (iF") of 25 x 10 (L xb) is given the step input of Ivolt. Figure 

4.11 shows the force response of the ionic polymer to step input of Ivolt. The response 

time of the bending force is much faster that the case of large ion shown in Figure 4.11.
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Figure 4.11 Blocking force polymer with small ion

The force recorded in this case is 0.48 gfs. The reported force is referred to the 

peak value of the force response plot. Similar experiments were conducted with pulse 

input of amplitudes 4V, 3.5V, 3V and 2.5 V. The pulse period used in these experiments 

is 20 Secs. The peak force recorded in these experiments is tabulated below.

Table 4-1 Voltage Vs force

Voltage (Volts) Current (Amps) Force (gf)

4 0.025 0.075

3.5 0.020 0.05

3 0.016 0.038

2.5 0.007 0.015
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4.1.5 Experiments conducted with segmented ionic polymer

A segmented ionic polymer consists of a number of independently electroded sectors 

along the length of the polymer. Each segment of the ionic polymer can be made by 

carving the surface of the ionic polymer. This type of actuator gives the scope of 

controlling each segment independently, achieving snake like wavy motion.

The task was to design the experimental setup. The patterned segment on strip of 

ionic polymer is shown in Figure. 4.11

Figure 4.12 Segmented ionic polymer
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Electric insulation of each segment was done to verify each segment has independent 

electrodes. To apply input voltage directly to each segment we used three connectors and 

thin wire (0.1 mm) touching each segment directly. The connectors used are ‘C ’ shaped 

clamps that hold the electrodes and segment ionic polymer together as shown in Figure 

4.13. This experiment was conducted in water.

Thin wire
C-shape
Clamps

Figure 4.13 Experiment setup of Segmented ionic polymer

Input waves patterns are designed and converted to voltage signals by DA converter 

(dSPACE 1104). In this experiment, the input current is regulated using the Galvonostat 

(HA 151) instead of voltage for more direct control of bending in each segment. The 

control signals to the amplifier are sinusoidal waves as shown in Figure 4.14 (a).

It should be noted that the three sinusoidal signal shown in Figure 4.1.4 (a) has 

different phase to generate phase the undulatory motion compared with single segment 

oscillatory bending motion. An effort has been made to monitor the deflection of the 

segmented IPMC but the reflection in the water and thin wire connectors were some 

concerns that did not allow the vision system function properly. Addressing the above
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issues would make the future experiment setup serves as better for motion acquisition of 

the segmented ionic polymer in the water.
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Figure 4,14 Input voltage and output response segmented ionic polymer 

(a) Programmed signal (b) Out put voltage signal (c) Output current
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4.2 Computer simulated results of segmented ionic polymer

A computer program has been developed to simulate the dynamics of the single and 

segmented ionic polymer developed in chapter 2. The state space model Equation 2.28 

was simulated using Matlab. For the feasibility study of using the segmented ionic 

polymer strip for underwater propulsion application, the similar ionic polymer strip 

parameters used in [11] is used. The following table shows the simulation and material 

parameters used in computational study.

Table 4-2

Ri 160 £2

R2 800 £2

C lOOOE-5 F

Z 0.24

P 0.1

10 s

ri(=RiC} 0.23 s

a (length of polymer) 0.05 m

b (width of ionic polymer) 0.01 m

Eb (modulus for Nafion) 5E7 Pa

Ep (modulus for electrode(Pt)) 144E9 Pa

hb (thickness of Nafion) 0.00028 m

hp (thickness of electrode) 0.000002 m

Pb (density of Nafion) 2600 kg/m^

Pp (density of electrode(Pt)) 21500 kg/m^

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Simulation was performed for the step input voltage of V= {2 1-2}  for the three 

segment ionic polymer . Figure 5.14 and Figure 5.15 shows the input step voltage applied 

to each segment and simulated nodal displacement. It should be noted that Eq (2.28) is 

developed based on the small deflection assumption, which means that each point on the 

ionic polymer doesn’t have any motion in axial direction.

(a) x10 (b)

&01
l (>

I'
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15

wi
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f i o
0
S
I  5
Û

V3 1 0 
z
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x10
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S -0.01

-0.5 -0.015

-0 .02.
10

Time (Sec) Time (Sec)

Figure 4.15 Simulated plots for 2V, IV and -2V (n=3)

(a) Input step voltage plot, (b) Nodal displacement plots, (c) Bending moment plots for 
each segment, and (d) Input current plot segment 2
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Figure 4.16 Simulated plots for 2V, IV and -2V (n=3)

4.3 Experimental validation of the simulation results.

To validate the computer simulation results based on Eq (2.28), the tip motion of the 

ionic polymer is observed and compared with the simulation results. In this experiment
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the single segment ionic polymer (50x 10x.29mm) is used and step input of 2.5V and 

3V are applied. Figure 4.17 and 4.18 show the time domain tip and current responses of 

the ionic polymer.

.Experimental Vs Sim ulated results for tip deflection of Ionic polymer
16

(210

6

2,
5 15

Time (Secs)
20 25

Figure 4.17 Experimental Vs Simulated tip Deflection for step input 2.5V

Experimental and S im ulated  current p lotsof IPMC
0.025

Û. 0.015

Experiment

0.005

Time (S ecs)

Figure 4.18 Experimental Vs Simulated current response
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Figure 4.19 shows the shape response of the ionic polymer 2.5 V step input. 

Figure 5.19, Figure 5.20 and Figure 5.21 show the tip, current and shape responses of the 

3 V step input respectively. All the output had same shape, amplitude and agreed well.

SimuWtd deSettiOB fw p en »  IPMC t e  Sep « W Experimental deflection of th e  IPMC
■0,119 Sei

X(mm)

Figure 4.19 Simulated and Experimental Shape of ionic polymer for 2.5V step input

Experimental V s Sim ulated tip deflection plots of Ionic polym er

I
E>•

Experiment

Time (Secs)

Figure 4.20 Experimental Vs Simulated tip deflection for step input 3V
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Experiment Vs Simulated current plots of IPMC
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Figure 4.21 Experimental Vs Simulated current response for 3 V
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Figure 4.22 Simulated and Experimental shape of ionic polymer for 3Y step input
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CHAPTERS 

CONCLUSION AND FUTUREWORK

5.1 Conclusion

Ionic polymer is group of ionic EAR (Electro Active Polymer) with performances and 

materials characteristics that are strongly dependent on the material constituents, 

fabrication process and history. The performances may vary as result of ion exchange 

with the water in which the material is immersed. Therefore the documented 

performances that are mentioned in this thesis may be meaningful only to the particular 

samples and particular test conditions.

Accurate information about dynamic properties of the ionic polymer is important to 

designers who would consider the construction of mechanisms or devices using these 

ionic polymers. In this thesis, finite element based analytical model is proposed for single 

and segmented configuration. This analytical model can be applied for both single and 

segmented IPMC which can exhibit varying curvature along the polymer. The model is 

flexible enough to conveniently accommodate the relaxation behavior of ionic polymer.

Modeling of the ionic polymer involves RC circuit based electrical model and beam 

model based mechanical model. The actual parameters of the models can be found from 

experiments conducted [11]. It is expected that eventually microscopic description of the 

polymer may help to identify these parameters in more convincing way.
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Observed deformation of the ionic polymer is digitized using a video camera and 

image processing algorithm. An intensity filtration and image morphing algorithm are 

used to acquire the deformed shape of the ionic polymer sample at sequential time 

interval. This increases the efficiency of deflection monitoring system when compared to 

the usage of Laser Vibrometer at the expense of slower rate of acquisition. Also the 

proposed vision system is capable of giving the tip position value for every given voltage, 

giving a scope for implementing the closed loop system in the future.

5.2 Recommended future work

The work done in this report is basically to understand the characteristics the ionic 

polymer and develop the experimental setup for performing various data acquisition and 

control operation. The response for various step voltages give the basic idea of dynamic 

properties of the ionic polymer. The proposed analytical model holds good for voltages 

with both high and low frequencies. However, there are several areas that need to be 

investigated further.

5.2.1 Large deflection model

Simulated model of the ionic polymer proposed in this thesis is validated for small 

deflection of the ionic polymer. In real case, the ionic polymer deflection can be large 

and necessary model that can handle large deflection is needed along with proper model 

of viscoelasticity of the polymer
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5.2.2 Segmented ionic polymer

An experimental setup is developed to understand the working the segmented ionic 

polymer motion for different voltage. A thin wire and C type clamps are used to connect 

the electrodes to polymer. However, there is the need to develop suitable technique of 

connecting of electric wires to each segment without obstructing the motion of the 

polymer. This is illustrated in Figure 4.13. Further tuning of the model parameters is 

necessary to validate the response of the segmented ionic polymer

5.2.3 Hydrodynamic modeling

This ionic polymer finds application in an aquatic atmosphere which implies that 

hydrodynamic forces should be considered in the analytical model.

5.2.4 Control

Based on the state space model developed in this thesis, the closed loop control 

algorithm can be derived for controlling the motion of the polymer. This can be 

accomplished by synchronizing the vision system along with the control signal.
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APPENDIX A -  EXPERIMENTAL APPARATUS

A. 1 Bi - Polar Voltage amplifier

- w m

HA-15

HA-151 Hakuto Denko

Power Requirements

- ACIOOV ± 1 0 % ,5 0 -6 0 H z , lOOVA

Electrical Specifications

- Maximum Output voltage ±15V

- Maximum Output current ± 1A

- Response Time 50 Micro Seconds 

Physical

- Dimensions 220(W)xl00(H)x360(D)mm

- Weight 7.7 kilogram

A.2 Ionic Polymer Metallic Composite Actuator

Ionic polymer

Specifications

- Thickness = 0.3mm

- dsi = -1.750*10e-7 m/V

- Vmax = 4V

- Vmin = -4V

- Polymer Type= Perfluoiinate

sulfonate

- Young’s Modulus = 1.158Gpa

- Poisson’s ratio = 0.487
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A.3 Step UP/Down Transformer

S p e c i f i c a t i o n

t E l e c t r i c a l  S p e c i f i c a t i o n s

-  I n p u t  v o l t a g e  1 1 0 / 2 0 0 / 2 2 0 / 2 4 0  V o l t

-  O u t p u t  v o l t a g e  1 1 0 / 2 2 0 - 2 4 0  V o l t

P h y s i c a l

"  "  w
-  D i m e n s i o n s  3 . 7  x  5 . 2  x  3 . 5  i n c h e s

-  W e i g h t  3 . 5 2  L b s

A.4 Load Cell

Tension 
I or
Comprrasbn

This Sensor shown with;
Look up pins 
fo r handling & setup

Load Stem (Aosessory)

t  .......

Tension
for

Compression

Force sensor.

Temperature range 60 to 160 

degree.

Excitation voltage 10 volts

Non repeatability 0.05 of rated out

put.

A.5 Camera

BASLER A602f

Specifications

- C-Mount, 656x491 square pixels, 

100 fps, external trigger.

1/2 inch monochrome CMOS. 

Area of interest scanning with 

higher frame rates at lower 

resolutions.
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A.6 dSPACE D S-1104 Controller board

Swag!

I
dSPACE DSP controller board

A.7 Signal Conditioner

TMO 02 signal conditioner

Specifications

- 8ADCs, 8 DACs

- ± 10 V input and output range

- 2 incremental encoder interfaces

- RS-232 interface.

- RS-423 interface.

R# - Type Low pass,6 db, octave.

S t - Frequency is 16 Hz standard.

# S - Weight about 21bs

Dimensions 3 x 3.75 x 6.25
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A.8 Rapid Prototyping Machine

Dimension SST 3-D rapid prototyping 

machine

Specifications

- Fin Profile: NACA 0026

- Chord of 7 inches

- Span of 4.2 inches
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APPENDIX B -  MATLAB® CODE

B .l image_cap_movie_generator.in

%***Prograiti to generate movie file in avi format of the captured images*** 
%*** following are the steps involved* * *
%*** Using 'GETFRAME' function making matlab movie file***
%*** converting the matlab movie file in to avi format***

fprintf (1, '\n' );
fprintf ( 1, 'MAKE_AVI_MOVIE\n' );
fprintf (1, ' Create an AVI animation ofimages,\n' );
fprintf ( 1, ' generating one frame at a time.\n' )
numframes = nFrames;

for i=l:numframes 
colormap(gray);
real=photo(1: 4 8 0 ,1: 6 4 0,1:1,i); imagesc(real);
M(i)=getframe;

end
num_frames_per_second = 3 ;
dur = numframes / num_frames_per_second;
M0VIE2AVI(M, 'actual_mov', 'compression', 'None', 'fps',3, 'quality',75)

fprintf (1, '\n' );
fprintf ( 1, 'This movie will contain %d frames.\n', numframes );
fprintf ( 1, 'The number of frames per second will be %d\n',

num_frames_per_second );
fprintf (1, 'so the movie should take %d seconds to play.\n', dur 

fprintf (1, '\n' );
fprintf ( 1, 'MAKE_AVI_MOVIE\n' );
fprintf ( 1, 'Normal end of execution.\n' );
fprintf ( 1, 'The movie file of actual_mov has been created.\n' );

B.2 vol cur.m

%***** july 10th 2005*****
% Program for plotting the current,input voltage,output voltage response of the 
IPMC for given voltage
% load the .map files in the folder 'Constant_voltage experiment 
% Run the program 
clear all 
clc
load nexp_4volt_lamp;
TITLE('plot illustrating the current,in/out volt response of IPMC'); 

subplot(3,1,1)
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plot(nexp_4volt_lamp.X.Data,nexp_4volt_lamp.Y(1).Data, 'r ');
TITLE('plots illustrating the current,in/out volt response of IPMC '
xlabel('Time in seconds');
ylabel(' input Voltage(volts)');
axis([0 16 -0.05 6]);
grid on
hold on
subplot(3,1,2)
plot(nexp_4volt_lamp.X.Data,nexp_4volt_lamp.Y(2).Data, 'b') ;
xlabel('Time in seconds');
ylabel(' output Voltage(volts)');
axis([0 16 -0.05 6]);
hold on
grid on
subplot(3,1,3)
plot(nexp_4volt_lamp.X.Data,nexp_4volt_lamp.Y(3).Data,'g ');
xlabel('Time in seconds');
ylabel(' current(Amps)');
axis([0 16 -0.05 .35]) ;
grid on

) ;

B.3 tip_deflection.m

%%this plot
%centriod
i=l

3=1

generates lebeles the data points in every image and calculates

for
i=l;

maximum_intensity= imhmax(photo(1: 480,1: 640,1:1,]) 
BW = imextendedmax(maximum_intensity,65,8);
[labeled,numObjects] = bwlabel(BW,8); 
dotdata = regionprops(labeled,'basic');

, 2 )

dot_l(:, 
dot_2(:, 
dot_3(:, 
dot_4(:, 
dot_5(:, 
dot_6(:, 
dot_7(:, 
dot_8(:, 
dot_9(:, 
dot_10(: 
dot_ll(: 
dot_12(: 
dot_13(: 
dot_14(: 

end 
for i=l

x_l(j,1)=dot_l(!,!,] 
y_l(j , 1)=dot_l(1,2,] 
x_2(],l)=dot_2(l,l,i 
y_2(j,1)=dot_2(1,2,j 
x_3(j,1)=dot_3(1,1,] 
y_3(],1)=dot_3(1,2,j 
x_4(] , 1)=dot_4(1,1,] 
y_4(j,1)=dot_4(1,2,] 
x_5(j , 1)=dot_5(1,1,] 
y_5{j,1)=dot_5(1,2,] 
x_6(j , 1)=dot_6(1,1,j 
y_6(j,1)=dot_6(1,2,]

,])=dotdata(i).Centroid;
, i ) =dotdata ( i+1.) . Centroid;
,j)=dotdata(i+2).Centroid;
,])=dotdata(i+3).Centroid;
,j)=dotdata(i+4).Centroid;
,j)=dotdata(i+5).Centroid;
,])=dotdata(i+6).Centroid;
,j)=dotdata(i+7).Centroid;
,])=dotdata(i+8).Centroid;
:,])=dotdata(i+9).Centroid;
:,])=dotdata(i+10).Centroid 
:,])=dotdata(i+11).Centroid 
: , ]■ ) =dotdata ( i+12 ) . Centroid 
:,])=dotdata(i+13).Centroid
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x _ 1 2 ( j  
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x _ 1 3 ( j  
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end

B.4 Act 4volt.m

%****july 19th****
%****program to plot the Deflection
clear all
clc
load 4_volts_deflection;

of IPMC****

xl=[x_4(l) x_5(l) X 
x_13(l)];

_6(1) x_7(1) x_8(l) x_9(l) x_10(l) x_ll(l) x_12(l)
yl=[y_4(l) y_5(l) y. 
y_13(l)] ; 
plot(xl,yl,'b.-') 
hold on

_6(1) y_7(1) y_8(l) y_9(l) y_10(l) y_ll(l) y_12(l)

x2=[x_4(10) x_5(10) 
x_12(10) x_13(10)]

x_6(10) x_7(10) x_8(10) x_9(10) x_10(10) x_ll(10)
y2=[y_4(10) y_5(10) 
y_12(10) y_13(10)] 
plot(x2,y2,'g.-') 
hold on

y_6(10) y_7(10) y_8(10) y_9(10) y_10(10) y_ll(10)

x3=[x_4(20) x_5(20) 
x_12(20) x_13(20)]

x_6(20) x_7(20) x_8(20) x_9(20) x_10(20) x_ll(20)
y3=[y_4(20) y_5(20) 
y_12(20) y_13(20)] 
plot(x3,y3,'r .-') 
hold on

y_6(20) y_7(20) y_8(20) y _ 9 ( 2 0 ) y_10(20) y_ll(20)

x4=[x_4(30) x_5(30) 
x_12(30) ];

x_6(30) x_7(30) x_8(30) x_9(30) x_10(30) x_ll(30)

y4=[y_4(30) y_5(30) 
y_12(30) ] ; 
plot(x4,y4,'y.-') 
hold on

y_6(30) y_7(30) y_8(30) y _ 9 ( 3 0 ) y_10(30) y_ii(30)

x5=[x_4(40) x_5(40) 
x_12(40) ];

x_6(40) x_7(40) x_8(40) x_9(40) x_10(40) x_ll(40)
y5=[y_4(40) y_5(40) 
y_12(40) ] ; 
plot(x5,y5,'c .-') 
hold on

y_6(40) y_7(40) y _ 8 ( 4 0 ) y_9(40) y_10(40) y_ii(40)

x6=[x_4(45) x_5(45) x_6(45) x_7(45) x_8(45) x_9(45) x_10(45) x_ll(45) ];
y6=[y_4(45) y_5(45) 
plot (x6 ,y6 , '](.-')

y_6(45) y_7(45) y_8(45) y_9(45) y_10(45) y_ll(45) ] ;
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axis([160 650 160 650]); 
grid on
TITLE('plot illustrating the Deflection of the IPMC'); 
xlabel('milli meter '); 
ylabel('milli meter'); 
nd('2.5517
Sec' , '2 .969 ' , '3 .385 ' , '4.2188 ' , '5.0524', '5.886', '6.719'
■10.054','12.555' , '16.722', '19.223', ' 2  3 .391', 'Location 
axis ij;
% set(gca,'YTiclc',[40 60 80 100 120 140 160 180 200 220 240 ]);
% set(gca,'YTickLabel','0|2.6|5.2|7.8|10.4|13|15.6|18.2|20.8|23.4|26' 
% set(gca,'Xtick',[100 200 300 400 500 600]);
% set(gca,'XTickLabel','0|13|26|39|52165');

, ' 7 . 5 5 3 '  , ' 8 . 3 8 7 ' ,  ' 9 . 2 2 0 '  
','NorthEastoutside');

B.5 IPMC_tip_deflection.m

v%*****july 27th 2005
%* * ***program excutes the plot of tip deflection of ipmc
% clear all
% clc
% load actual_tip_deflection

figure(1)
plot3(x_tip,y_tip,tip_time,'r ');
axis([400 480 0 250 0 25 ]);
grid on
TITLE('plot illustrating the tip Deflection of the IPMC Vs time ' ) ;
xlabel('x-axis in milli meter ');
ylabel('y-axis in milli meter');
zlabel('time');
set(gca,'YTick',[20 70 120 170 220 ]);
set(gca,'YTickLabel','0|6.5|13|19.5|26');
set(gca,'Xtick',[400 430 450 470]);
set(gca,'XTickLabel','39|42.8|45.5|48.1');
figure(2)
subplot(2,2,1:2)
plot(x_tip,y_tip,'k.-');
axis([420 480 0 250]) ;
grid on
axis ij;
TITLE('X-axis Vs Y-axis ');
xlabel('x-axis in milli meter ');
ylabel('y axis in milli meter');
set(gca,'Xtick',[430 450 470]);
set(gca,'XTickLabel','42.8|45.5|48.1');
set(gca,'YTick',[20 40 60 80 100 120 140 160 180 200 220 ] ) ;
set(gca,'YTickLabel','0|2.6|5.2|7.8|10.4|13|15.6|18.2|20 .8123.4 26');
hold on
subplot(2,2,3)
plot(time,x_tip,'b.-')
grid on
TITLE('X-axis Vs time ');
xlabel('time (Seconds) ');
ylabel(' X-axis in milli meter');
set(gca,'Ytick',[430 450 470]);
set(gca,'YTickLabel','42.8|45.5|48.1');
hold on
subplot(2,2,4)
plot(time,y_tip,'b.-')
set(gca,'YTick',[20 70 120 170 220 ]);
set(gca,'YTickLabel','0|6.5|13|19.5|26');
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grid on
TITLE('Y-axis Vs time '); 
xlabel('time (Seconds) ');
ylabel(' Y-axis in milli meter'

B.6 main.m

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% simulation program for IPMC for single and multiple segments 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global An Bn Cn Dn

a_l
% length of IPMC 

b_0 b_l; % u/V 
%number of elements used for simulation

global a; 
global a_0 
global n; 
global Li; 
global Eli; 
global rhoi; 
global t_plt 
%

n=3; %Define number of elements
t_plt=[0.1 0.3 0.5 0.7 1.5 2.5 5.5 8.5 9.5 ]; %For beam plot by plt_beam 
% For choosing nodal displ selection for sink in sim_l simulink prog 
for i=l:n

out_selector(i)=2*i-l;
end
i_selector=[1];%for plot of current I in sim_l 
% define system parameters 
% RC circuit and relaxation model 
Rl=160;
R2=700;
C=1000e-7;
K l= 4  .87e-4/C; %m/volt 
K2=l.07e-3/C; %m/volt 
tau2=10; 
taul=Rl*C;
% IPMC
a=0.05;%Total length of IPMC (m)
Li=a/n;% element length
bb=0.01;%Width of the IPMC (m)
bp=0.01;%Width of platinum electrode (m)
hb=0 .0002818 ;%Height of the Nafion polymer (m)
hp=0.000002; %Thickness of Platinum coating (m)
Eb=5*10^7; %Modulus of Elasticity for Nafion (Pa)
Ep=144*10''9; %Modulus of Elasticity of the piezoelectric film (Pa)

%Assume that mass is uniformly distributed 
rhob=2600; %density of Nafion (kg/m^3) 
rhop=21500; %density of electrode (kg/m''3)
%Preliminary calculations
Li=a/n; %length of each element (m)
rhoi=rhob*bb*hb+2*rhop*bp*hp; %linear mass density of each element 
%Area moment of inertia calculations. Use an equivalent beam 
Ab=hb*bb; %area of the beam section
bpe=(Ep*bp)/Eb;%equivalent width of a similar section made of beam material 
Ape=bpe*hp; %equivalent area of a similar section

made of beam material
na=0; %neural axis location (symmetry)
Ii=( (bb*hb^3)/12)+2*((bpe*hp^3)/12)+2*(Ape*((0.5*hp+0.5*hb)-na)"2) ;
EIi=Eb*Ii;
% calculate M_b/V model parameters 
b_l=0;
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b_0=Kl*C/(taul*tau2)
a_l=(taul+tau2)/ (taul*tau2) ;
a_0=l/(taul*tau2);
%strain coefficient of IPMC 
% size for mass matrix before reduction 
var_num=2*(n+1);
%define the rank of each matrix 
sum_Mexi=zeros (var_num, var_num) ; 
sum_Kexi=zeros (var_num, var_num) ; 
sum_Fexi=zeros(var_num,n) ;
%Expand element matrix for total beam 
for i=l:n

sum_Mexi=sum_Mexi+mexi(i) ; 
end;
%the total mass matrix 
M=sum_Mexi;
%generate the stiffness matrices 
for i=l:n

sum_Kexi=sum_Kexi+kexi(i) ; 
end;
% total stiffness matrix 
K=sum_Kexi;
%generate force matrix 
for i=l:n

sum_Fexi=sum_Fexi+fexi(i);
end
F=sum_Fexi;
%reduced the dynamical model based on the displacement boundary condition 
reduced_M=M(3 :var_num, 3 :var_num) ; 
reduced_K=K(3 :var_num,3 :var_num); 
reduced_F=F(3:var_num,:);
% inverse of mass matrix 
iM=inv(reduced_M);
^ * * * * * * * * * * * * * * * * * * * *

% state space model:
^  * * * * * * * * * * * * * * * * * * *

% make vectors for a_0 a_l b_0 b_l 
for i=l:n

a_On(i)=a_0; 
a_ln(i)=a_l 
b_On(i)=b_0 
b_ln(i)=b_l;

end
Be=reduced_F;
Bv=[zeros(n,n); eye(n)];
Bu=[diag(b_On) diag(b_ln)];
Az=[zeros(n,n) eye(n);-diag(a_On) -diag(a_ln)];
An=[zeros(2*n),eye(2*n) zeros(2*n); ...

-iM*reduced_K,zeros(2*n),iM*Be*Bu; ... 
zeros(2*n), zeros(2*n), Az];

Bn=[zeros(2*n,n); zeros(2*n,n);Bv];
Cn=[eye(2*n) zeros(2*n,2*n) zeros(2*n,2*n);...

zeros(2*n,2*n) zeros(2*n,2*n) eye(2*n)];
Dn=[zeros(4*n,n)];

B.7 fexi.m

function Fexi=fexi(i)
%This matrix generates mass matrix of an element i and expands it.

global n;
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global ui;
global Li;
global Eli;
global rhoi
global c;
global u;
global ui;
global iM;
global C;
global K;
global D;

%Define matrix size 
var_num=2*(n+1);
% Initialize the matrices 

Fvi=[0 ;-1; 0 ; 1] ; 
Fexi=zeros(var_num,n);

Fexi(2*i-l: 2*i+2,i)=Fvi;

B.8 mexi.m

function Mexi=mexi(i)
%This matrix generates mass matrix of an element i and expands it.
global n;
global ui;
global Li;
global Eli;
global rhoi;
global c;
global u;
global ui; 
global iM; 
global C; 
global K; 
global D;
%Define matrix size 
var_num=2*(n+1);
% Initialize the matrices 

Mvi=zeros(4,4);
Mexi=zeros(var_num,var_num);
rho=rhoi;
X_i=Li*(i-l) ;

%C(Mvi,optimized); 
tl = rho*Li; t2 = Li*Li; t3 = rho*t2; t5 = rho*t2*Li; 
if(i~=n)
Mvi(1,1) = 13.0/35.0*tl;
Mvi(1,2) = 11.0/210.0*t3;
Mvi(1,3) = 9.0/70.0*tl;
Mvi(1,4) = -13.0/420.0*t3;
Mvi(2,1) = 11.0/210.0*t3;
Mvi(2,2) = t5/105;
Mvi(2,3) = 13.0/420.0*t3;
Mvi(2,4) = -t5/140;
Mvi(3,1) = 9.0/70.0*tl;
Mvi(3,2) = 13.0/420.0*t3;
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Mvi(3,3) = 13.0/35.0*tl;
Mvi(3,4) = -11.0/210.0*t3;
Mvi(4,1) -13.0/420.0*t3;
Mvi(4,2) - -t5/140;
Mvi(4,3) = -11.0/210.0*t3;
Mvi(4,4) = t5/105;

else
Mvi(1,1) = 13.0/35.0*tl;
Mvi(1,2) = 11.0/210.0*t3;
Mvi(l,3) = 9.0/70.0*tl;
Mvi(1,4) = -13.0/420.0*t3;
Mvi(2,1) = 11.0/210.0*t3;
Mvi(2,2) = t5/105;
Mvi(2,3) = 13.0/420.0*t3;
Mvi(2,4) = -t5/140;
Mvi(3,1) = 9.0/70.0*tl;
Mvi(3,2) = 13.0/420.0*t3;
Mvi(3,3) = 13.0/35.0*tl;
Mvi(3,4) = -11.0/210.0*t3;
Mvi(4,1) = -13.0/420.0*t3;
Mvi(4,2) = -t5/140;
Mvi(4,3) = -11.0/210.0*t3;
Mvi(4,4) = t5/105;

end;
% Expand mass matrix in terms of the global coordinates

Mexi(2 * i-1 :2*i+2,2*i-l:2*i+2)=Mvi;

B.9 kexi.m

function Kexi =kexi(i)
%This matrix generates stiffness matrix of an element i and expands it.
global n; 
global ui; 
global Li; 
global Eli; 
global rhoi; 
global c; 
global u;
global ui; 
global iM; 
global C; 
global K; 
global D;
%Define matrix size 
var_num=2*(n+1);
EIvi=EIi;
% Initialize the matrices 
Kvi=zeros(4,4);
Kexi=zeros(var_num,var_num);

X_i=Li*(i-l);
%C(Kvi,optimized); 

tl = Li*Li; 
t4 = EIvi/tl/Li; 
t6 = Elvi/tl;
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t8 = EIvi/Li;
Kvi(1,1) = 12.0*t4; Kvi(1,2) = 6.0*t6;
Kvi(1,3) = -12.0*t4; Kvi(1,4) = 6.0*t6;
Kvi(2,1) = 6.0*t6; Kvi(2,2) = 4.0*t8;
Kvi(2,3) = -6.0*t6; Kvi(2,4) = 2.0*t8;
Kvi(3,1) = -12.0*t4; Kvi(3,2) = -6.0*t6;
Kvi(3,3) = 12.0*t4; Kvi(3,4) = -6.0*t6;
Kvi(4,1) = 6.0*t6; Kvi(4,2) = 2.0*t8;
Kvi(4,3) = -6.0*t6; Kvi(4,4) = 4.0*t8;

%Expand stiffness matrix in terms of the global coordinates
Kexi(2*i-l:2*i+2,2*i- l;2*i+2)=Kvi;

B.IO plt_beam.m

%This generates the deflection shapes of the segmented IPMC
global t_plt
% number of plots
dum=size(t_plt);
ip=dum(1,2);
iw=size(w_phi);
n_data=iw(1,1);
%plot for each ip
for j=l:ip

for ii=l:n_data
del=t(ii)-t_plt(j ) ;
if(abs(del)<le-8)

t(ii)
out=w_phi(ii, : ) ;

%assign nodal coordinate for each element i
node(1,1)=0;
node(1,2)=0 ;
node(1,3)=out(1);
node(1,4)=out(2);
if n >= 2

for i=2:n
node(i,1) =out(2*(i-l)-l);
node(i,2) =out(2*(i-1)) ;
node(i,3) =out(2*(i-l)+l);
node(i,4) =out(2*(i-l)+2);

end
end

% get the shape of the IPMC
delx=Li/50;
)c=l ;
sumx=0;
for i=l:n

node_vector=node(i, : ) ;
node_x=0;
for jj=l:50

w_all (],]{) =get_w (node_vector, node_x) ;
node_x=node_x+delx;
sumx=sumx+delx;
x_all(k)=sumx;
k=k+l;

end
end

end

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



end
end
for i=l:ip

subplot(3,3, i)
plot(x_all,w_all ( i, : ) ) ;
xlabel('x_i (m) ','FontSize',13)
ylabel('y_i (m) ','FontSize',13)

end

B . l l  plt.-misc

% plots the input and electric output 
subplot(2,2,1)
plot (t,V(:,1),t,V(:,2),t,V(:,3)) 
subplot(2,2,2)
plot(t,w(:,l),t,w(:,2),t,w(:,3)) 
subplot(2,2,3)
plot(t,u(:,l),t,u(:,2),t,u(:,3)) 
subplot(2,2,4) 
plot(t,I) 
y=(C*x'+D*u')';

B.12 sim l.m

♦  w j h i  

T o  W o r k s p a c e s

C lock
T o  W o r k s p a c e

v e r tic a l tip  d efle c tio n

U U (E )
T o  W o r k s p a c e s

S e le c to r
T o  W o r k s p a c e l

X* = A x+ Bu 
y  =  C x + D u

B u * u
S ta t e - S p a c e

m o m e n t
M atrix
G ain

T o  W o r k s p a c e s

R r R 2 * C .s + R 2

c u r re n tS e le c to r l
T ra n s fe r  F en

T o  W o r k s p a c e 4
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