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ABSTRACT

On Computing Bayesian Credible Sets for the Coefficient of Variation of a
Normal Population

by

Skanda Pokkunuri

Dr. A.K. Singh, Examination Committee Chair 
Professor o f Statistics 

University o f Nevada, Las Vegas

The use o f Coefficient of Variation (CV) is quite common in many disciplines, yet 

its estimation has not received much attention from statisticians. In this paper, we 

consider the problem of confidence interval estimation of CV for a normal population 

using the Bayesian approach. The method of Gibbs Sampler is used for numerical 

integration in order to compute the Bayes credible sets for CV for two different joint 

prior distributions -  the natural conjugate prior, and the non-informative prior. Several 

simulated examples are included to demonstrate the proposed procedure.

Key Words: Natural conjugate prior, non-informative prior, Gibbs sampler, 
numerical integration.
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CHAPTERl

E4TRODUCTION

1.1 Definition

Population standard deviation ( a )  is a measure o f dispersion or uncertainty in 

variable. Coefficient o f variation is a relative measure o f dispersion defined as the ratio 

a /p  (provided population mean p is different from zero); CV clearly has no unit of 

measurement. CV sometimes is expressed as a percentage. Even though the use of CV 

is quite common in many disciplines such as climatology (Singh et a l, 1987;

Ananthakrishnan and Soman, 1989), business (De et a l, 1996; Hillier and So, 1991), 

immunology (Reed et a l, 2002), and engineering (Kwang, 1995; Zeevi, 1999), CV does 

not seem to get the attention o f statisticians. Standard statistics text books may include 

the definition o f CV, but do not mention how a confidence interval can be computed for 

population CV from available sample data. There is some literature available on 

conducting tests o f hypotheses involving the CV (Doombos and Dijkstra, 1983; Rao 

and Bhatt, 1989 and 1995; Rao and Vidya, 1992; Singh, 1993; Sharma and Krishnan, 

1994; Ahmed, 1995; Rani, 1996; Gupta and Ma, 1996). The coefficient o f variation is 

also often used to compare numerical distributions measured on different scales. For 

example, in a diet study, when the intent is to compare the variability in the ratio of 

total/HDL cholesterol with the variability in vessel diameter change, a comparison of
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standard deviation makes no sense because cholesterol and vessel diameter are 

measured in different scales. A sensible comparison can be made using the coefficient 

o f variation since the coefficient o f variation measures the relative spread o f data and 

therefore adjusts the scale. For inferences about the coefficient o f variation for a single 

sample from a normal population, an exact method for confidence intervals based on the 

non-central t distribution is available, but it is computationally cumbersome. For 

multiple sample cases, there exist several statistical tests for testing the equality o f 

eoefficients o f variation. Fung and Tsang (1998) reviewed several parametric and non- 

parametric tests for the equality o f coefficients o f variations. Ahmed (1995) considered 

the problem of estimating the coefficients o f variation when it is a priori suspected that 

two coefficients o f variations are the same. However there is lack o f literature on the 

inference procedures concerning the common population coefficient o f variation based 

on several independent samples. Under many circumstances, we need to estimate the 

confidence intervals or perform hypothesis testing about the common population 

coefficient o f variation from several examples.

1.2 Bayesian Approach 

In this paper, the problem of computing a confidence interval for CV is considered 

using the Bayesian approach. In the Bayesian inference, the parameter o f a distribution 

is a random variable; the Bayesian estimation o f the unknown (random) parameter is 

typically more complicated than the classical estimation problem. The computation and 

interpretation o f the confidence interval o f an unknown parameter, however, is simpler 

in the Bayesian approach. The computation o f the classical confidence interval typically
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begins with the search for a pivotal quantity involving the unknown parameter of 

interest. The computation of the Bayesian confidence interval, on the other hand, is 

quite straightforward.

The underlying population in this thesis is assumed to follow a normal distribution. 

The mean and variance of the normal distribution are considered to be random. The 

Bayesian credible sets for two different prior distributions have been derived. The joint 

posterior distribution of CV given the sample information turns out to be numerically 

intractable, and we resort to the method o f Gibbs Sampler (Mary Ann Gregurich and 

Lyle D.Broemeling, 1997) for numerical integration in order to compute the Bayesian 

credible sets. The R programming language (http://www.r-project.org/) is used for 

writing a code for the Gibbs sampler. Several examples have been provided in the paper 

to illustrate the proposed method.
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CHAPTER 2

PROBLEM DESCRIPTION AND DERIVATION OF BAYESIAN CREDIBLE SETS

2.1 Notations and Preliminaries

Let {x,,X2 ,...,x„} be an independent random sample of size n from a normally 

distributed population with mean p and standard deviation a .

In the Bayesian framework, the parameters (p,cr) are assumed random with a joint 

prior probability distribution g (p,a). In this paper, we will consider two different forms 

o f the joint prior distribution (Berger, 1985): a natural conjugate prior, and a non- 

informative prior.

2.2 The Case o f the Natural Conjugate Prior 

Natural Conjugate Prior: For a given class o f densities, a conjugate family can 

frequently be determined by examining the likelihood functions lx{9) = f { x \ 9 ) ,  and 

choosing, as a conjugate family, the class o f distributions with the same functional form 

as these likelihood functions. The resulting priors are frequently called natural 

conjugates.

Suppose that x=(xi,,.Xn) is a sample from a N (6, ) distribution, where both 0 and

are unknown. The prior density o f 0 and o^ is given by
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n(0, a^)= H] (0| )* rÏ2 (o^ ), where Hi (0| ) is a N(p , r  ) and Hz (a^ ) is an inverse

gamma(a,P) density.

The joint posterior density o f 0 and o^ given x is 

g * (^ ,c r^ |x )=  n , ( ^  I  c r \x ) )*  0 2 (0 '  ̂ |x ) . Where O, (6> | cr^ x) is a normal density N

» »2\ - 1  * j  ■ *2 1 • U  +  n T X  * II(p ,a  ), with mean p and variance a  where // =  -----— , cr =( j A— + n and
n r +1 V Î"

n 2(cr^ I  Jr) is an inverted gamma density with parameters (a+n/2 ) and P ’ where

P =[p-' + 'A +n(x:/yy/2(l + »T)]-\
(=1

2.3 The Case o f the Non-informative Prior 

Non-informative Prior: If prior information about the parameter is not available and 

we want a prior with minimal influence or no influence at all, such a prior is called 

noninformative prior.

Consider a random variable X from a normal distribution with a probability density 

function f(x) specified as:

1
,  - 0 0  <  X  <  0 0

As prior for p and cr, we will use the non-informative prior (Berger, 1985): 

I
= 2 cr

Combining this prior with the likelihood function yields the posterior pdf for (p and cr )
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g *  ilu,CT\x) a f i x  I /j, cr)gifi, cr)

The joint posterior density of (p and cr ) is given by: 

1
g* i /a , c j \ x )a exp-

;=1

/  I \("+2)/2

<y y
exp-

2 cr̂ ;=l

- \ 2

^  X ; - x  + n { / u - x f

where x is the sample mean o f x ,.

The above joint posterior is easily seen to be a product of

g * ( 0 ,  a ^ | X i , X 2 ,  . . . , X n )  =  g * i ( 0  I  C J ^ X i , X 2 ,  . . . , X n )  *  g * 2 ( c ^ |  X , , X 2 ,  . . . , X n )

where

g * l ( 0  I a ^ X i , X 2 ,  . . . , X n )  =  jV ( x , — )
n

and

* / 2| \ — 1 2  
g  2( cT I X i , X 2 ,  . . . , X n )  =  / G ( —

2  ( » - l X

2.4 Gibbs Sampler for Computing the Bayesian Credible Set 

In situations where the integration o f the joint density is extremely difficult, Gibbs 

sampler has proven to be a good alternative. The Gibbs sampler generates a sample 

from the joint density by sampling instead from the conditional densities which are 

often known. According to Casella and George (1992), by generating a large enough 

sample, characteristics of the marginal density and even the density itself can be 

obtained.
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2.5 Bootstrapping

The bootstrap is a resampling method for statistical inference which is commonly 

used to compute confidence intervals, but it can also be used for estimating bias and 

precision o f an estimator or conduct hypothesis tests. Bootstrap methods have been used 

in environmental applications(Singh et a l, 1997), toxicology (Bailer and Oris, 1994), 

pollution modelling (Archer and Giovannoni, 1994; Cooley, 1997), chemometrics 

(Wehrens and Van der Linden, 1997), ecological studies (Dixon, 2001), and fisheries 

(Smith, 1997). For details o f the various bootstrap methods, see Efron and Tibshirani 

(1993) or Davison and Hinkley (1997).

Let {xi, X2, ..., Xn} be an independent random sample from a population with 

parameter 6  for which a confidence interval needs to be computed. Let

6  = r(x , ,Xj,...,x„) be an estimator o f 0. The bootstrap method is described below (see

Singh eta/., 1997):

1) Generate a simple random sample {x*i, x*2, .. ., x*n} with replacement from the 

original sample {x,, X2, ..., x„}, and compute ^  = T (x* ,,x*2 , . . . , x \ )  for the bootstrap 

sample / ,/ = 1, 2, ..., K.

2) Compute = —— , (Tg = i
K  I

Ê 0 , - e , Ÿ
;=1

K - \

3) The 100(l-a)%  percentile bootstrap confidence interval is obtained by sorting the 

è; = r (x *  ,x * 2,...,x*„) values in increasing order, and then computing:
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L ^ [ - x K )
2
1 —  cc 

[ /  = [— X.K]
2

where
[a] = largest integer in the real number a.

4) The 100(l-a)%  standard bootstrap confidence interval is given by the formula:

L = 9 - z
'■f 

f /  = g + z
'-f
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CHAPTER 3

ALGORITHM DESCRIPTION 

In this chapter, we give algorithmic descriptions o f the proposed procedure for 

computing the Bayes credible set via the Gibbs sampler.

3.1 The Case of Natural Conjugate Prior:

1. Input the prior parameter values a, P, p, x

2. Generate one value Oo from inverse gamma density with (a, P) as parameters.IG (a,

P ) .

3. Generate one value 0o from the conditional pdf o f 0 given a  = co, which is 

N (p,xo^o ).

4. Generate X], X2 . .. x„ from the conditional pdf N (Go, oq).

5. Compute CVq = cjq/ Gq, which is the CV to be estimated.

6 . We next generate K samples (0,, ) from the joint posterior distribution

g*(9,cr^ I  X|, X2, ..., Xn) = g*l(0 I  X|, X2, ..., Xn) g*2(o^l Xl, X2, ..., X„) 

where g*,(0 | x,,X 2, ..., x„) = N(p*,a*^), with

. a  + m x  . 11u = - --------- , cr =cr -  + «
MT + 1 Vr

and
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g*2(c^| Xl, X2, . . Xn) = Inverted Gamma pdf with parameters (a  , P*) 

with

2  ^  ^  2  2 (I + mr)

and for each generated sample, we compute CV. = —  for each i = 1,2, ..., K.

7. The K values o f CV  are sorted in increasing order:

^^ (1) -  ^^ (2) -  ••• -  ^^(K) ■

8 . We used K = 1000 in this paper, in which case the percentile bootstrap confidence 

interval (Bayesian credible set) for 95% confidence was calculated as:

Lp =  CV(25), Up  =  CV( 975)

9. We also compute the standard bootstrap confidence interval as follows:

Tg = C  —1.96x5^,^

U ^ = C  +  \ . 9 6 xS(.y 

where

C =  sample mean of C T ,,C U ,...,C f^

Sç.y = sample standard deviation of

3.2 The Case of Non-informative Prior 

INPUT: Sample size n, population mean 0, population standard deviation a

1. Generate xi, X2 . .. x„ from the conditional pdf N (0,a), and compute sample mean x 

and sample standard deviation s.

2. We next generate K samples (0j, ) from the joint posterior distribution 

g (0, a  I X | ,  X 2 ,  . . . , X n ) = g  l(0 I a  ,  Xi,X2, . . . , X n )  *  g  2 ( 0  1 X ] ,  X 2 ,  . . . , X „ )

10
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where

g*](0 I cr^Xi,X2, . . . , X n )  = N { x , — )
n

and

g 2 ( 0  I X l,  X2  X n) =   ^ )
2  (« -1)5

. 2

by first generating cr/ ~ 1G ( - —- , ---- -— 7 ) and then generating 0 . ~ N ( x , — ) .

and for each sample, we compute CV  ̂= —  for each i = 1 ,2 , . . . ,  K.

3. The K values o f C V  are sorted in increasing order:

^ ^ (1) — ^^(2) — ••• — •

4. We used K = 1000 in this paper, in which case the percentile bootstrap confidence 

interval (Bayesian credible set) for 95% confidence was calculated as:

Lp  =  C V (2 5 ) , Up =  C V (9 7 5 )

11
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CHAPTER 4

SIMULATIONS

4.1 Examples

The R programming language (http://www.r-project.org/) was used for writing a 

code for the Gibbs sampler. The codes are included in Appendices A and B. We now 

present the results obtained for a few simulated examples. For each example, we have 

used the following values for the parameters o f the natural conjugate prior: a  = 10, (3 = 

2, p = 5, 

t = 1.2 .

EXAMPLE I : In this example, sample size n was taken to be 20. The value of 

generated from IG(10, 2) prior distribution was 0.2081527, and the value of Oo 

generated from conditional distribution N(p, tctq̂ ) was 4.534036, resulting in a CVq = 

0.1006250.

The sample o f size n = 20 generated from N(0o, ao^ ) is:

3.938558 4.783378 4.109437 3.954994 4.334185 4.089939 4.516363 4.264087 

4.622989 5.042685 4.374686 4.435917 4.936095 4.927059 4.711183 4.371529 

4.960497 4.595111 3.842991 4.781038

The sample mean and sample sd o f the above sample are .479636 and 0.3687259, 

respectively.

12
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The 95% Bayes credible set from the percentile bootstrap method turned out to be: 

L95 = 0.05632081 

U95 = 0.08760798

The 95% Bayes credible set from the standard bootstrap method turned out to be: 

L95 = 0.05384001 

U95 = 0.0856592

Histogram o f CV values for this example (n = 20) is shown in Figure 1.

13
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Histogram of CV 20

Figure 1 : Histogram o f 1000 CV values generated for n = 20 for data of

example 1 .

14
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EXAMPLE 2: In this example, sample size n was taken to be 40. The value o f ao^ 

generated from IG(10, 2) prior distribution was 0.1761724, and the value o f 0o 

generated from conditional distribution N(p, X0 ô ) was5.123818, resulting in a CVq 

0.08191722.

The sample of size n = 40 generated from N(Oo, ) is:

5.195091 4.901161 5.904814 4.703082 5.277199 4.421394 5.015085 5.133922 

4.989313 4.533240 5.196308 5.167518 5.397499 5.779703 4.642173 4.772840 

4.491819 4.932537 5.676259 5.641911 5.607806 4.674985 5.119727 4.851226 

5.697781 4.907040 5.638857 5.318878 5.114785 4.511287 5.261230 4.403297 

4.360544 4.895447 4.939569 4.886122 4.556046 4.634467 5.253661 4.596254 

The sample mean and sample sd o f the above sample are 5.025047 and 0.4209097, 

respectively.

The 95% Bayes credible set from the percentile bootstrap method turned out to be: 

L95 =0.05902769 

U95 = 0.08735178

The 95% Bayes credible set from the standard bootstrap method turned out to be: 

L95 = 0.06070841 

U95 = 0.08948844

Histogram o f CV values for this example (n = 40) is shown in Figure 2.

15

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Histogram of CV_40
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Figure 2: Histogram o f 1000 CV values generated for n = 40 for data of

example 2 .
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EXAMPLE 3: In this example, sample size n was taken to be 60. The value of ao^ 

generated from IG(10, 2) prior distribution was 0.1725316, and the value o f Go 

generated from conditional distribution N(p, tuq^) was5.444339 , resulting in a CVo 

0.07629379.

The sample o f size n = 60 generated from N(0q, ) is:

5.334515 4.919074 4.587078 4.847087 4.832990 5.980627 5.251696 5.010982 

5.335300 4.790179 4.590599 5.117517 6.349936 5.370224 5.791562 5.273810 

5.787132 4.950041 5.952299 5.040438 5.603921 4.712257 4.974523 5.243142 

5.097183 5.422368 5.177294 5.446500 6.009141 5.455782 5.930678 4.776485 

5.924238 6.489499 5.262082 4.501793 5.624766 5.124291 5.644083 5.612753 

6.022135 5.635454 6.080871 5.923877 4.908210 6.085459 6.206678 6.099297 

4.651845 5.428960 5.508126 5.010765 5.804394 5.057767 5.759914 4.966113 

5.666293 5.385872 5.225384 5.065815

The sample mean and sample sd o f the above sample are 5.393985 and 0.4870752 , 

respectively.

The 95% Bayes credible set from the percentile bootstrap method turned out to be: 

L95 = 0.06808912 

U95 = 0.09515453

The 95% Bayes credible set from the standard bootstrap method turned out to be: 

L95 = 0.0692972 

U95 = 0.09601882

Histogram of CV values for this example (n = 60) is shown in Figure 3.

17
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Histogram of CV__60
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Figure 3 : Histogram o f 1000 CV values generated for n = 60 for data of

example 3.
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EXAMPLE 4: In this example, sample size n was taken to be 80. The value o f ao^ 

generated from 1G(10, 2) prior distribution was 0.2108031, and the value of Go 

generated from conditional distribution N(p, xao^) was 3.929149, resulting in a CVq  ̂

0.1168530.

The sample o f size n = 80 generated from N(0q, ctq̂  ) is:

3.999052 4.408115 3.298024 3.968417 3.076839 3.958106 3.700058 4.678890 

3.505135 3.555600 4.065826 3.189667 4.448869 5.022847 4.114886 4.329122 

4.548362 3.520170 2.998336 4.432888 4.088477 4.846503 3.399125 3.575701 

3.431566 4.575279 4.324783 4.736411 3.836589 3.989737 4.054211 4.294270 

4.582821 3.402545 3.640554 4.497816 3.406731 3.004748 4.034646 4.306560 

4.356074 3.463942 3.980844 3.768406 4.433256 4.008923 3.822448 4.029907 

4.123775 3.848241 5.121104 3.149490 4.440706 3.797326 4.599612 4.291882 

3.951572 3.729198 4.703178 3.613449 2.976407 4.345485 4.440940 3.947941 

3.663664 4.045704 3.900019 4.147354 3.856574 4.175532 4.135150 3.697708 

3.511834 3.973835 4.675573 4.775284 4.088820 4.729956 3.509026 3.506224 

The sample mean and sample sd of the above sample are 4.002308 and 0.4975223, 

respectively.

The 95% Bayes credible set from the percentile bootstrap method turned out to be: 

L95 = 0.09938383 

U95 = 0.1328529

The 95% Bayes credible set from the standard bootstrap method turned out to be: 

L95 = 0.1016182 

U95 = 0.1339338
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Figure 4: Histogram o f 1000 CV values generated for n = 80 for data of

example 4.
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EXAMPLE 5; In this example, sample size n was taken to be 100. The value of 

generated from 1G(10, 2) prior distribution wasO.2168264 , and the value of Go 

generated from conditional distribution N(p, xoo^) was 4.702729, resulting in a CVq 

0.09901618.

The sample o f size n =100 generated from N(Gq, ) is:

3.956778 4.442984 4.211406 4.418205 4.544092 4.457706 4.034471 3.855637

4.637847 5.447485 4.007945 4.518593 3.988190 4.425846 5.035207 3.814567

5.230892 4.412919 4.389110 4.561933 3.976510 4.375612 4.165671 5.025080

5.232845 4.342760 5.439756 4.385766 4.846016 4.066312 4.812685 4.035827

4.592830 4.942523 4.501829 5.021291 4.291405 5.004731 4.955971 5.050640

4.761112 3.959176 6.215485 4.898647 4.993158 4.699749 4.332323 4.394696

4.542854 4.398722 4.110449 4.728602 4.824840 3.946871 5.177165 4.367280

4.502533 4.376623 4.017201 5.286946 4.171814 5.428869 5.091261 4.571737

4.219236 5.529405 4.674859 3.677564 4.949650 4.879857 4.533523 4.922928

4.774677 4.996976 4.161086 4.343213 4.371833 4.515768 5.057718 3.958922

4.719948 4.576818 4.260100 4.613944 4.858702 4.672026 4.781582 4.539652

5.121245 4.490817 5.276982 5.787626 3.6384895.125076 3.788655 5.076870

3.855569 4.567685 4.378434 5.191193
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The sample mean and sample sd of the above sample are 4.601446 andO.4841811, 

respectively.

The 95% Bayes credible set from the percentile bootstrap method turned out to be: 

L95 = 0.08594355 

1395 = 0.1111672

The 95% Bayes credible set from the standard bootstrap method turned out to be: 

L95 = 0.08639479 

1395 = 0.1114016

Histogram o f CV values for this example (n = 100) is shown in Figure 5.
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Figure 5: Flistogram of 1000 CV values generated for n = 100 for data o f

example 5.
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Examples o f non-informative prior

EXAMPLE 1 : In this example, sample size n was taken to be 30. The value o f gq = 5  

and

the value of 0o is 50, resulting in a C V q = 0 .1 .

The sample mean and sample sd o f the above sample are 49.7206 land 4.357471 and 

respectively.

From the sorted values obtained it can be seen that CVO is captured between

L= 0.05850385

U=0.13388827.

Where L and U are the lower and upper values of the computed CV.

Histogram o f CV values for this example (n=30) is shown in Figure 6 .
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EXAMPLE 2: In this example, sample size n was taken to be 50. The value of gq = 5  

and

the value o f 0o is 25  ̂resulting in a CVq = 0 .2 .

The sample mean and sample sd of the above sample are 24.38152 and 5.242306 

respectively.

From the sorted values obtained it can be seen that CVO is captured between

L= 0.1563942

U=0.3081829.

Where L and U are the lower and upper values o f the computed CV.

Histogram o f CV values for this example (n=50) is shown in Figure 7.
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example 7.
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EXAMPLE 3: In this example, sample size n was taken to be 70. The value of gq = 5  

and the value o f Oq is 12.5 , resulting in a C V q = 0.4.

The sample mean and sample sd o f the above sample are 12.80022 and 4.55282 

respectively.

From the sorted values obtained it can be seen that CVO is captured between 

L= 0.2695582 

U= 0.5235603.

Where L and U are the lower and upper values of the computed CV.

Histogram o f CV values for this example (n=70) is shown in Figure 8 .
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Figure 8 : Histogram of 1000 CV values generated for n = 70 for data of

example 8 .
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EXAMPLE 4: In this example, sample size n was taken to be 90. The value of ao = 10  

and the value of Oo is 10  , resulting in a C V q =1 .

The sample mean and sample sd o f the above sample are 9.433877 and 9.910639 

respectively.

From the sorted values obtained it can be seen that CVO is captured between 

L= 0.7692960.

U= 1.8238918.

where L and U are the lower and upper values o f the computed CV.

Histogram o f CV values for this example (n=90) is shown in Figure 9.
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Figure 9: Histogram of 1000 CV values generated for n = 90 for data of

example 9.
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4.2 Conclusions

In this paper, we have shown how to compute Bayes credible sets using the Gibbs 

sampler for the coefficient o f variation (CV) when the underlying conditional 

distribution is normal. From the simulated examples presented in this paper, we can see 

that the Bayes credible set captures the true CV value. The approach proposed used can 

also be used, with slight modifications, for the log-normal distribution, which is very 

commonly used in environmental applications.
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APPENDIX A 

CODE FOR NATURAL CONJUGATE PRIOR 

Joint prior pdf is natural conjugate g(theta, sigma sqr) 

g(theta, sigma sqr) = gl(theta|sigma_sqr) X g2(sigma_sqr) 

g 1 (thetajsigma sqr) = N(mu, tauXsigma sqr), (mu, tau) are known 

g2(sigma_sqr) = IG(alpha, beta)

Joint posterior pdf is:

g*(theta, sigma_sqr|xl, ...,xn) = gl*(theta|sigma_sqr, x l,  ...,xn )Xg2*(sigma_sqr| x l, 

...,xn)

Joint prior pdf is natural conjugate g(theta, sigma sqr) 

g(theta, sigma sqr) = g I (thetajsigma sqr) X g2(sigma_sqr) 

g I (theta| sigma sqr) = N(mu, tauXsigma sqr), (mu, tau) are known 

g2(sigma_sqr) = IG(alpha, beta)

Joint posterior pdf is:

g*(theta, sigma_sqr|xl, ...,xn) = gl*(theta|sigma_sqr, x l,  ...,xn )Xg2*(sigma_sqr| x l, 

...,xn)

g 1 *(theta|sigma sqr, x l,  ...,xn ) = N(mu*, sigma sqr*) 

mu* = (mu + n X tau X xbar)/(nXtau + 1) 

sigma sqr* = sigma sqr X (1/tau + n) 

and g2*(sigma_sqr| x l, ...,xn) = IG(alpha*, beta*)
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alpha* = alpha + n/2 ,

1/beta* = 1/beta + (n-l)*s_sqr/2 + n(xbar-mu)X(xbar-mu)/[2(l+nXtau)]

Input prior parameters

alpha< - 1 0

beta< -2

mu<-5

tau<-1 .2

Generate sigmaO sqr ~ g2(sigma_sqr)

vinv<-rgamma(I, alpha, beta)

sigmaO_sqr< -1  /vinv

print(sigmaOsqr)

psd = prior conditional sd

psd<-sqrt(tau* sigmaOsqr)

Generate thetaO ~ gl (thetajsigma sqr) = N(mu, tauXsigma sqr),

thetaO<-morm(I, mu, psd)

print(thetaO)

G VO<-sqrt(sigmaO_sqr)/thetaO

print('CVO')

print(CVO)

generate x l, ..., xn ~N(thetaO, sigmaO) conditional pdf
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n <- 2 0

xl<-morm(20, thetaO, sqrt(sigmaO_sqr)) 

print(xl)

mean 1 <-mean(x 1 ) 

print(meanl) 

stdl<-sd(xl) 

print(stdl)

CV 1 <-array(0, c(0,1000))

srtcvl <- array(0 , c(0 ,1 0 0 0 ))

m ul = (mu + n * tau * meanl)/(n*tau + 1)

print(mul)

alpha 1 <- alpha + n/2

betal_inv<-( 1/beta) + (n-l)*std l*stdl/2  + n*(meanl - mu)*(mean 1 -

mu)/(2 *(l+n*tau))

betal <- betal inv

in R, gamma scale parameter is inverse o f scale parameter in Berger's book

print(alphal)

print(betal)

generate K samples from g*(theta, sigma sqrjsample), posterior pdf 

k < - 1000 

for (i in 1 :k)

{ V <- rgamma( 1, alpha 1, beta 1 ) 

print(v)
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sigma l_sqr<- 1/v 

sigma 1 <- sqrt(sigmal sqr) 

post sd <- sigma l_sqr/(l/tau + n) 

thetal<- m orm (l, m ul, sqrt(post sd)) 

cvl[i] <- sigma 1/thêta 1

}

print(cvl)

srtcvl <- sort(cvl)

print(srtcvl)

L95<-srtcvl[25]

U95<-srtcvl[975]

print("95% Credible Limits for CV")

print(L95)

print(U95)

cvmean<-mean(cvl )

cvmean 1 <-mean(srtcv 1 )

print(cvmeanl)

cvstd<-sd(srtcvl)

print(cvmean)

print(cvstd)

print(L95)

print(U95)

cvmean<-mean(cv I )
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sdcv<-sd(cvl)

print(cvmean)

print(sdcv)

L95a<-cvmean-1.96*cvstd

U95a<-cvmean+l ,96*cvstd

print('approx 95% Credible Limits for C V )

print(L95a)

print(U95a)
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APPENDIX B 

CODE FOR NON-INFORMATIVE PRIOR 

cv<-array(0 , c(0 , I 0 0 0 )) 

srtcv<-array(0 , c(0 , I 0 0 0 )) 

n<-70 # sample size 

x<-morm(n, 12.5, 5) 

cvO<-5/I2.5 

xbar<-mean(x) 

s<-sd(x) 

print(xbar) 

print(s) 

n l< -(n -l) /2  

print(nl) 

beta<-nl*s*s

#: NOTE: in R, if  X~gamma(alpha, beta), then E(X)=alpha/beta

print(beta)

for (i in 1 :1 0 0 0 )

{

# generate sigma2~IG( (n-l)/2, 2/[(n-l) s square] ) 

xgamma<-rgamma(l,nl, beta)
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sigma2 < - 1 /xgamma 

sigma<-sqrt(sigma2 )

#now that sigma2 has been generated from IG( (n-l)/2, 2/[(n-l)s_square] ),

# generate theta (population mean) ~ N(xbar, sigma2/n) 

sd_theta<-sqrt(sigma2 /n)

theta<-rnorm(l, xbar, sd theta) 

cv[i]<-sigma/theta

# print(sigma)

# print(theta)

# print(cv[i])

}

srtcv<-sort(cv)

print(srtcv)
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