
UNLV Retrospective Theses & Dissertations

1-1-2006

Heuristics for batching jobs under weighted average completion Heuristics for batching jobs under weighted average completion

time time

Lewis A Raymond
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Raymond, Lewis A, "Heuristics for batching jobs under weighted average completion time" (2006). UNLV
Retrospective Theses & Dissertations. 1972.
http://dx.doi.org/10.25669/adxe-345k

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F1972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/adxe-345k
mailto:digitalscholarship@unlv.edu

HEURISTICS FOR BATCHING JOBS UNDER WEIGHTED

AVERAGE COMPLETION TIME

by

Lewis A. Raymond

Bachelor of Science
University of Nevada, Las Vegas

2003

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
Schooi of Computer Science

Howard R. Hughes Coiiege of Engineering

Graduate Coiiege
University of Nevada, Las Vegas

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1436785

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1436785

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright by Lewis A. Raymond 2006
Ail Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

MAY 3 ,2006

The Thesis prepared by

LEWIS A. RAYMOND

Entitled

HEURISTICS FOR BATCHING JOBS UNDER WEIGHTED AVERAGE COMPLETION

TIME.

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE COMPUTER SCIENCE__________________

Exemination Committee Member

Examination Committee Member

J /v W A ____
Graduate College Faculty Representative

Examination Committee Chair

Dean o f the Graduate Gollege

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Heuristics for Batching Jobs Under Weighted
Average Completion Time

by

Lewis A. Raymond

Dr. Wolfgang Bein, Examination Committee Chair
Associate Professor of Computer Science

University of Nevada, Las Vegas

Batching problems are machine scheduling problems, where a set of jobs

with given processing requirements has to be scheduled on a single machine.

The set of Jobs has to be partitioned into subsets to form a sequence of batches.

A batch combines Jobs to run Jointly, and each Job's completion time is defined to

be the completion time of the entire batch. For a batching problem, it is also

assumed that when each batch is scheduled, it requires a setup time. One seeks

to find a schedule that minimizes the total weighted completion time.

This problem is NP-complete, but the problem can be solved efficiently in

0 {n log (n)) time if the order of the Jobs is given. This is accomplished through a

non-trivial reduction to on-line matrix searching in a totally monotone array. An

implementation of this algorithm is part of the thesis work.

To remove the requirement of a fixed order and thus to solve the original NP-

complete batching problem, the space of permutations is searched using a

genetic algorithm technique. The implementation uses a library of object-oriented

functions, GAlib, to implement genetic algorithms. This highly versatile library

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was written by Mathew Wall of MIT.

The thesis also seeks to find techniques to obtain an upper bound, which can

be used to measure the quality of the solutions found by the heuristic.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTACT iii

LIST OF FIGURES........................ vii

LIST OF TABLES.................. viii

ACKNOWLEDGEMENTS... ix

CHAPTER 1 INTRODUCTION... 1
Background... 2

CHAPTER 2 THE s-BATCH PROBLEM UNDER AVERAGE WEIGHTED
COMPLETION.................. 6

Jobs.................................... 7
Batching.. 7
Weighted Average Completion Tim e... 8
NP-Completeness... 9

CHAPTER 3 THE 2 - APPROXIMATION ALGORITHM............................... 10

The 1 I s-Batch | X Problem... 11

An Upper Bound... 13
An Alternative Bound... 14

CHAPTER 4 EFFICIENT MONOTONE MATRIX SEARCHING.................. 16
The Monge Property... 17
Negative to Positive Crossing Point... 19
On-Line Matrix Indexing.................................... 20
On-Line Protocol... 21
Hire Fire Retire Algorithm (HFR)... 21
HFR Terminology... 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HFR Data Structure... 23
HFR Operators... 24
HFR Testing... 28

CHAPTERS AN 0 (n log (n)) ALGORITHM FOR THE BATCHING
PROBLEM WITH FIXED ORDER................ 30

Dynamic Program... 33
Dynamic Program Testing... 34

CHAPTER 6 A GENETIC ALGORITHM... 36
Genetic Algorithm Terminology.. 36
Genetic Algorithm Operators... 37
A 5 Step Genetic Algorithm... 39
Genetic Algorithm Library for C++... 40
Genetic Algorithm Object... 41
Population Object... 42
Defining A Representation... 42
Defining The Genetic Operators... 43
Defining The Objective Function... 43

CHAPTER 7 GAs-BATCH EXPERIMENT.................................... 45

CHAPTER 8 CONCLUSION 51

APPENDIX.................... 53

BIBLIOGRAPHY... 68

VITA... 70

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

2.1 A Batched Schedule... 9
3.1. Pseudo Batch ... 14

4.1 1̂,1 — ®1,2 ®2.1 — ®2,2 ■ ■ 1®
4.2 T{n) = 2 T { n / 2) + 0 { n) 17
4.3 o,„,, + + c , j_ .. 18

4.4 Positive to Negative Crossing Point... 20
4.5 Matrix Indexing... 20
4.6 The On-Line Protocol... 21
4.7 F ire.. 25
4.8 No F ire 25
4.9 Look Down..26
4.10 Look U p ... 27
4.11 Hire Fire Retire Algorithm Run.. 29

5.1 Graph for ‘ 3̂ » * ^ 4 ... 32
5.2 A Dynamic Program for a 3x3 M atrix... 33
5.3 Dynamic Program Test Results..35
6.1 One and Two Point Crossover... 38
7.1 Experiment 1 .. 47
7.2 Experiment 2 .. 48
7.3 Experiment 3 .. 49
7.4 Experiment 4 .. 50

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

1.1 Polynomial Solvable s-Batch Problems... 4
1.2 NP-hard s-Batch Problems... 5
4.1 Monge Types.. 19
4.2 Lexicographical Coercive Comparisons................................... 27
4.3 Simplified Comparisons... 28

VIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First and foremost I would like to thank Dr. Bein for his paramount guidance

through this compelling project. I would like to remark about his tendency to allow

me this thesis opportunity given the exceptional circumstances. I would also like

to remark about his patient mannerism during our meetings; in short, he made

this project seem possible for me.

I would like to thank Dr. Minor, Dr. Gewali, and Dr. Selvaraj for their

participation as members of my advisory committee. I enjoyed their classes

during my undergraduate, and graduate career at UNLV, and their lectures and

counseling were very beneficial.

I would like to thank Dr. Larmore for his direct and indirect input of solutions to

many problems that arose during the course of this project.

I would like to thank my mentor Lee Misch. She has provided invaluable

advise and support during my entire college experience at UNLV. Lee Misch

always lent an ear to listen to me unload frustrations and victories.

Even though they are not affiliated with this thesis project, I would like to

thank Dr. Taghva and Dr. Nartker, the directors of the Information Science

Research Institute. Thank you for giving me the opportunity to attend graduate

school. I am very grateful for their support during my graduate course work, and

the experience I gained as a research assistant.

Lastly, I would like to thank my family for allowing me to ignore them while I

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feverishly worked on this project. Thanks to my wife Janice for her unconditional

love and support during this endeavor. Thanks to my daughter Tay'Lor for

understanding the monster within as I released my frustrations in her direction in

the form of lunatic rantings. She displayed maturity and responsibility during my

absence.

Thank you all.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Batching problems are machine scheduling problems, where a set of jobs

with given processing requirements has to be scheduled on a single machine.

The set of jobs has to be partitioned into subsets to form a sequence of batches.

An s-batching probiem is specified as the jobs of a batch are processed in series.

On the other hand, if one wishes to use multiple machines, the jobs of each

batch are processed in paraiiei. This is known as the p-batching problem, and its

complexity is currently still open. In this thesis, the s-batching probiem is tackled.

The primary part of this thesis is to describe heuristics and approximations for

the s-batch problem under a weighted average completion time. Since finding

an optimal solution to this problem is NP-compiete, a genetic algorithm is used to

find good solutions in the search space. Experiments are performed in which the

genetic algorithm reports such solutions.

A lower bound is proved and a 2-approximation aigorithms is given. The

results from the genetic algorithm are then compared to these bounds.

Furthermore another approximation aigorithm is given, for which the conjecture is

that it will be a better than two approximation.

Central to the scoring within the genetic aigorithm is the fact that in the case

where the order of the jobs is given, the batching problem can be solved in time

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

œmplexity of 0 {n log(n)) using a efficient searching technique to find row

minima in a totally monotone matrix.

The layout of this thesis paper is as follows. Chapter 2 gives a formal

definition of the s-batch problem. It describes what weighted average completion

time means, and it shows that the s-batching problem is NP-complete. Chapter 3

explains how, given an instance of jobs, an approximation algorithm can compute

a solution that is no worse that twice the optimal solution. This approximation

algorithm is used to compute an upper and a lower bound. Also another

approximation algorithm is given. Chapter 4 illustrates monotone matrix

searching, which is central to the case of s-batching with fixed order. It is shown

that a Monge matrix implies the matrix to be totally monotone. Further monotone

matrix searching under an on-line matrix protocol is given. This protocol is

needed for the application of matrix searching to dynamic programming in

Chapter 5, where is is shown that a shortest path problem, using a directed

acyclic graph, can be reduced to the s-batching problem. Chapter 6 then defines

the genetic algorithm. Implementation issues relating to GAlib, a C++ library, are

also given. Finally, Chapter 7 summarizes the experiments performed, and gives

results.

Background

Tables 1.1 and 1.2 show various batching problems. The problems are given

using the notation a | j81 y . The letter a expresses the number of machines,

which for these problems the number of machines is always one. The letter ^

expresses any restriction placed on the set of jobs. The letter y expresses the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objective function (Albers & Brucker, 1993).

Precedence Constraints (prec): The precedence constraints allows certain

jobs to be processed before other certain jobs can start being processed in the

schedule. Precedence constraints are represented with a directed acyciic graph

in which each job is represented by a node of the graph. Job J, comes before

job Jj if there is a directed edge from / to j (Brucker, 2004).

Series Batch (s-batch): The jobs of each batch in the schedule are processed

one after the other, such that job if J, is before job Jj in the batch, then job J,

completes before Jj starts (Brucker, 2004).

Chains (chains): The chains of a problem are part of the precedence

constraints. If the directed acyclic graph representation of the precedence

constraints has jobs nodes where each node has at most one predecessor and

at most one successor, then the constraints are referred to as chains (Brucker,

2004).

Processing Time (p,) : Job Ji is processed on one machine, and requires

time p, . If Pi is present, then J, is restricted to taking oniy as much time as

allowed. For example, if P,=P then J, is only allowed a time unit of p , or if

P/=1 then Ji is oniy allowed 1 time unit. Otherwise if P/ is not present, then J,

time is not restricted (Brucker, 2004).

Release Time (f/) : Job J, arrives at the system at time , and that time is

the earliest it may be processed. If r, is not present, the J/ may start at any time

(Brucker, 2004).

Maximum Lateness (1-max) : Of the set of jobs that are late (L.,, ...,L„)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximum lateness is max{L^,...,L„) (Brucker, 2004).

Œi C,) : denotes the total unweighted completion time (Brucker, 2004).

(X Q) : denotes the total weighted completion time (Brucker, 2004).

(X ^;) : denotes the total unweighted number of jobs that are tardy (Brucker,

2004).

Œé ^1 ̂ i) • denotes the total weighted number of jobs that are tardy (Brucker,

2004).

(S 7",) : denotes the total unweighted tardiness (Brucker, 2004).

Table 1.1: Polynomial Solvable s-Batch Problems (Brucker, 2004)

Problem
Time

Complexity Reference

1 1 prec; s-batch | 0(n") Ng, Cheng, & Yaun, 2002

1 1 prec; P/ = P ; s-batch | X C, O(n^) Albers & Brucker, 1993

1 1 s-batch 1 X C/ 0 {n\og{n)) Coffman, et al., 1990

1 1 P/ = P : s-batch 1 J^w,C, O(n\og{n)) Albers & Brucker, 1993

1 1 P/ = P; s-batch; r, \ C, 0 (0 Baptiste, 2000

1 1 s-batch 1 X 0 {n^) Brucker & Kovalyov, 1996

11 P/ = P ; s-batch | X O(n') Hochbaum & Landy, 1994

1 1 P, = P ; s-batch; r, | X w, U, 0 (n '') Baptiste, 2000

11 P /= P ; s-batch; r, \ X ^ , 0 (0 Baptiste, 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1.2: NP-hard s-Batch Problems (Brucker, 2004)
Problem Reference

1 1 r, ; s-batch | L̂ ax Lenstra & Rinnooy Kan, 1980

1 1 chains; s-batch | X C, Albers & Brucker, 1993

1 1 prec; s-batch | X 0, Lawler, 1978

1 1 r, ; s-batch | X 0/ Lenstra & Rinnooy Kan, 1980

1 1 s-batch 1 ^ w , C , Albers & Brucker, 1993

1 1 chains; P, = 1 ; s-batch | X Albers & Brucker, 1993

1 1 chains; P; = 1 ; s-batch | X 0, Lenstra, 1977

1 1 s-batch 1 X 0; Karp, 1972

1 1 s-batch 1 X 7"/ Du & Leung, 1990

1 1 chains; P/ = 1 ; s-batch | X Leung & Young, 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THE S-BATCH PROBLEM UNDER AVERAGE

WEIGHTED COMPLETION

Imagine a single photocopy machine. This copy machine is state-of-the-art,

as it only needs the documents loaded onto the document scanning tray, and the

machine does the rest. Placing a document onto the scanning tray is referred to

as setup. Since the setup takes time, loading the machine requires a setup time.

A single document may have a single page or many pages for copying. If a multi

page document is copied, the machine will fasten the loose pages together,

otherwise any single page documents are left loose on the collating/output tray.

Now imagine a large set of documents, in an arbitrary order, to be copied.

Some documents having just a single page, while others are multi-page

documents. An inefficient method of completing this task would be to copy the

documents one by one. This, of course, requires a setup time for each document

to be copied. For productive purposes, the documents should be arranged in an

order to utilize the machine, and time, efficiently. Also, an even more efficient

method would be to batch certain documents together to be loaded at the same

time. Since only one setup time is required for each batch, overall time is

reduced. This photocopy machine example leads to the one machine batching

problem. The one machine batching problem is defined as: “To find a sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of jobs and a collection of batches that partition this sequence of jobs such that

the objective function is minimized.” (Albers & Brucker, 1993)

Jobs

Using the photocopy machine example, each document to be copied can be

viewed as a job. Each job has a time for completion; obviously It would take more

time to copy a document containing ten pages than a document of one page.

Also, each job has a priority, or weight. Perhaps some documents are being

waited for, therefore they haves a higher priority. To generalize, there is a

positive integer n number of jobs J,(/ = 1, n) , with times P;(/ = 1 ,..., n) ,

and weights iv,{/ = 1 ,..., n), to be processed on one machine.

Batching

To improve the usage of the one machine, batching jobs together will

increase job throughput efficiency (Albers & Brucker, 1993). A batch is a set of

jobs which are processed jointly (Albers & Brucker, 1993). For example, it would

be more efficient to copy a batch of single page documents, then a batch of

multi-page documents requiring stapling, rather than have some multi-page

documents mixed in with some single page documents. Batch size is the number

of jobs contained in the batch. All jobs in a batch are not available until the last

job in a batch is finished (Albers & Brucker, 1993). In other words, one could not

remove any documents from the collating/output tray until the copy machine

finished copying all documents set in the loading tray. Therefore, each job's

completion time C,(/ = 1,..., n) is defined to be the completion time of the entire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

batch CjU = the j"'batch) (Albers & Brucker, 1993).

Weighted Average Completion Time

Recall our machine is state-of-the-art, and its only requirement is to load the

document scanning tray. We can refer to this procedure as machine setup. Since

time is required for setup, we can define this time as a constant where setup time

s > 0. Set up time s is independent, so it does not depend on batch sequence,

and it does not depend on the number of jobs in a batch (Albers & Brucker,

1993).

Using the batch completion times and priorities, the weighted average

completion time for the schedule is defined as

F = H,w,C, .

Here is an example of four documents needing to be copied. The first

document has one page, the second has two pages, the third three pages, and

finally the fourth a four page document. Also, for simplistic purposes, they all

have the same priority. So, using a fixed job sequence JS = J^, J j, J 3 , J 4 ,

processing times Pi = 1, P2 = 2, Pg = 3, P4 = 4 , and priorities of

Wi = Wj = W3 = W4 = 1, Figure 2.1 shows a possible batched schedule with an

objective function of F = 29 .

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 4 - 1 * 4 4 - 1 * 64 - 1 * 13 ” 29

Figure 2.1: A Batched Schedule

NP-Completeness

The one machine batching problem is NP-hard (Albers & Brucker, 1993). This

is shown by reducing the 3-Partitioning problem, which is already known to be

NP-hard, to the one machine batching problem as proved by (Albers & Brucker,

1993).

3-Partition: Given a sequence of 3m positive integers A = {a ,, ..., a3^ } ,

and a positive integer B , such that

B B
-T- < a, < — and a, = m B ,
4 ^ i = r

for all 1 < / < 3 m . Can A be divided into m disjoint sequences " such

that

' Z a, = B
a , e l j

for all 1 < j < m (Albers & Brucker, 1993)? Therefore, by reducing 3-Partition to

the one machine s-batching problem, the s-batch problem under average

weighted completion is NP-complete.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

THE 2-APPROXIMATION ALGORITHM

For any Instance of an s-batch scheduling problem I , there is an algorithm

that computes a solution that is no worse than twice the optimal schedule. As

mentioned in Chapter 2, finding an optimal solution is NP-complete (Albers &

Brucker, 1993). To apply an upper and lower bound for comparison against an

approximate solution for /, a standardized structure is necessary to compute the

bounds. This standardized structure is called the 'standard' order, in which the

Jobs of I are place in descending order according to priority. The priority of a job

is the job's weight divided by the job's time. For example, if a job has a short

processing time and a high weight, then that job has a high priority, and should

be placed toward the front of the schedule.

Standard Order: Order jobs by priority. Given jobs JiU = 1 ,..., n) , weights

Wj{i = 1 ,..., n) , and times P/(/‘ = 1, •••, n) such that

Wi ^
Pi P/+1

This process was done by placing the divided results into an array

w,
A = (/ — 1, ..., /?),

Pi

and then sorting A from greatest to least using merge sort.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w, w

The 1 I s-Batch | ^ w, C, Problem

Inversion: Given a standard order, an inversion is two values — and
P i P j

with / < j such that

P i P j '

Lemma 3.1: Given a set of jobs Ji{i = 1 ,...» n) , with times P/(/ = 1 ,..., n) ,

priorities w,{i = 1 ,..., n) , and a setup time s = 1 . Let

P i - Z P j -
y=i

Then

n
Y,PlW,
/ = 1

is minimized if the jobs are ordered in standard order.

Proof: Assume an inversion of the standard order as such, • * My I ” •.

Then

w. w.

Notice that

P i P j

w, w,
— p j < w j p , ^ w , P j - W j P i < 0 .
Pi P j

Now switch the inversion so that ••• MyM; I ••• and

P j P i '

and the objective function differs by A where

A = P j W j + { P j + Pi) W, - P , W , - {P, + P j) W j

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= PjWj + P j W, + P , W i - P , W, - P , W j - P j W j

= P jW , - P ,W j .

Since PjWj - P,Wj< 0, then

/=i

is minimized if the jobs are in standard order. □

Lemma 3.2: Let C, be the completion times of the optimal schedule for the 1

I s-batch I 22 w, C; problem. Also let the processing times p,(/‘ = 1 ,..., n) be

given in standard order. Then the objective function is

X C, w, > 2 (P, + 1) w,.
; = 1 (■ = 1

Proof: Let

Qi= Z P j
ye 8,

where B, is the set of all jobs such that job Jj \s not after job J/ in an optimal

schedule. For example, given a schedule of jobs in order of I s | P j IP 3 1 I ^ 4 1,

~ P2 P3 Pi > ^ 2 “ P2 1 O3 — P2 P3 , 3nd Q4 ~ P2 P3 "*■ Pi P4 • Keep

in mind that the optimal schedule has inversions. It is obvious that C, > 0, + 1

because of s = 1 . Now apply the Lemma 3.1, and

Z C, w, > X (0, + 1) Wi
/ = 1 / = 1

n n n n

= Z O i W , + ' Z w , > ' Z Pi w, + Z W,
/ = 1 ; = 1 I = ̂ ; = 1

/ = 1

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore,

Z c , Z (p , - + 1) w,,
/ = 1 / = 1

showing an optimal schedule cannot be better than the schedule of jobs in

standard order, thus setting a lower bound. □

An Upper Bound

Pseudo Batch: Given a set of n jobs J;(/ = 1 ,..., n) with times

p,(/ = 1 ,..., n) , a setup time s = 1 , variable t such that f = Z P /, and batch

B the pseudo batch algorithm is as follows:

insert s into B ;

insert into B;

f = 0;

for / = 2 ,..., n

f = f + P/ ;

if f > 1

Insert s Into B ;

insert Ji into S;

f = 0 ;

else insert Ji into S;

The Approximation Algorithm: Order the jobs in standard order, and then

make a schedule using Pseudo Batch. Call this Pseudo Priority (PP).

Let m be the number of batches up to job Ji in the schedule, let

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P /= Ê Py.y=i

and let C, be the completion time of the pseudo batch. Given the setup time of

s = 1 , and the tally of the job times within a pseudo batch is at least 1, each

pseudo batch has a completion time C, > 2 , see Figure 3.1. Then m < P, + 1 .

Figure 3.1: Pseudo Batch

Lemma 3.3: ^ C , w , < 2 ^ C , w , .
/ = i / = i

Proof: Notice that Cj < P, + m + ^. Plug m < P, + 1 into C, < P, + m + 1 ,

so C/ < P/ + P/ + 1 + 1 < 2 P/ + 2 . Now the objective function of the schedule

is,

' Z C , w , < ' ^ { 2 P , + 2) w , < 2 ' Z (P i + ^) w , < 2 f ^ C , W | .
I = ̂ I = ^ / = i / = i

Therefore, ordering the jobs in PP, the upper bound will never be more than

twice the the optimal schedule. □

An Alternative Bound

Using the Hire Fire Retire (HFR) algorithm, that is described in Chapter 4, an

alternative bound can be computed using the following algorithm. Place the jobs

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in standard order, and batch the jobs using the HFR algorithm. Call this algorithm

Optimal Priority (OP). Note: the standard order is sorted using merge sort, so it

has a time complexity of 0{n log(n)). Also, the HFR algorithm has a time

complexity of 0 {n log(n)), which is described in Chapter 4. Therefore, OP can

be computed in 0 {n log(n)).

Theorem 3.1 : Algorithm PP is a 2 - Approximation.

Proof: Theorem 3.1 follows by Lemma 3.3.

Also we have:

Theorem 3.2: Algorithm OP is a 2 - Approximation.

Proof: Notice the cost of OP is better than the cost of PP.

The conjecture can be made that algorithm OP is much better that 2 -

Approximation. However, a formal proof is not given of any bound in this thesis.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

EFFICIENT MONOTONE MATRIX

SEARCHING

We first give intuition regarding monotone matrix searching. A totally

monotone matrix has a special property that is useful for finding row minima in a

time that is better than o (n ^). Assume matrix A[i , j] is totally monotone. Also

assume row / minimum is found in column J. The row minimum for row / + 1 is

guaranteed not to be found in any column before J. For a monotone matrix, the

row minima can be found in a diagonal pattern starting in the upper left comer,

and tracing downward and to the right. Now more formally we define:

Monotone: Given a 2 x 2 matrix A = [â ,̂ â g, ag ̂ , a^g} , it is monotone if

@1,1 ^ @1,2 implies @2.1 ^ @2.2 (Bein, Brucker, Larmore, & Park, 2004).

A
@1,1 @12

@2.1 @2.2

V V

Figure 4.1: @1.1 ^ @1,2 @2,1 ^ @2.2

Totally Monotone: A m x n matrix A = {a, j } , / = 1 , m and j = 1 ,..., n ,

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is totally monotone (TM) If every 2 x 2 sub-matrix of A Is monotone (BeIn,

Brucker, Larmore, & Park, 2004). Using the monotonie property, TM Implies that

If a, j > , then It cannot be that a ,+ ij a,+^ ̂ (Bein, Brucker, Larmore, &

Park, 2004). Therefore, given row / minimum In column j , row / + 1 minimum

cannot be found In column y - 1. For every minimum found at S /j, the

remaining row and column portions of [/... n, j] and [/, j ... n] are

unnecessary, see Figure 4.2. Thus, finding row minima can be done In

0 {n log(n)) time. However, this time complexity can be Improved to 0(n) by

using the SMAWK algorithm (Bein, Brucker, Larmore, & Park, 2004).

m

Row Minimum

nFigure4.2: T(n) = 2 T l— + 0(n)

The Monge Property

Given an m x n matrix A = (c , j} , / = 1, m and y = 1 ,..., n , A Is

Monge If c, ,y + c, < c, y + c, j^, see Figure 4.3 (Bein, Brucker, Larmore, &

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Park, 2004). The Monge property implies the matrix is totaily monotone (Bein,

Brucker, Larmore, & Park, 2004).

Proof: Assume a 2 x 2 sub-matrix of A is not monotone, so ̂^ and

^2.1 < ^2.2 ■ Then it wouid follow that c, ̂+ Cg g > Cg ., + c, 2 , which contradicts the

Monge property. Therefore, the Monge property impiies A is totally monotone.

Figure 4.3: c, j + ĉ ~ I ^ 1 I

Table 4.1 shows some various exampies of Monge matrices. The 'Matrix'

coiumn gives the formuia that generates the matrix eiement c [i , j] , The 'Type'

coiumn gives the type of Monge matrix the element creates. There are two

different types of Monge matrices. The standard Monge type, labeled as M,

implies the monotone matrix of c [i j] > c [i , j +^] -» c [/+1 ,y] > c [/+ 1 ,y+ 1],

which will show the row minima from left to right, diagonally from top to bottom of

the matrix. The reverse Monge type, labeled as RM, implies the monotone matrix

of c [/ , ;]< c [/,y+ 1] c [/+ 1 ,y]< c[/ + 1 ,y+ 1], which will show the row

maxima from left to right, diagonally from top to bottom of the matrix.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1 : Monge Types
Matrix Type

>J
J
,J

i , J

=/+_/
= m a x { i j }

=min{ i , j }
=max { i j } -min {/, y }
= i j

= { i + j f

= /î(/-y) for convex h
= h { i - j) for concave h

= F (/,y) if aii second derivatives are non-positive
=F{ i , j) if ali second derivatives are non-negative

! f {y)dy<x,<Pj

S 9 iy)dy0j<c(,
f and g are given non-negative integrabie functions with
f + g > 0 and ofo<...cx„,^o<.../3„ are reai parameters.

M and RM
RM
M

RM
RM
RM

M

M
RM
M

RM
M

Negative to Positive Crossing Point

Given our matrix A is Monge, we can expioit the property to efficientiy find a

row w between any two coiumns y’ i < y 2 in which < c„ and

<̂ w+i.y, > + ■ Row w is referred as the negative to positive crossing point, or

in short, the crossing point because < 0 and ~ > 0 .

This crossing point is found using a binary searching technique. Figure 4.4

shows the crossing point between two columns. Let A = , B = ,

^ = 0 ,^+1./,, and O = .

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: Positive to Negative Crossing Point

On-Line Matrix Indexing

Given a n x n 2-dimensionai matrix A [i , j] , row indices are numbered such

that / = 1 ,..., n , and coiumn indices are numbered such that y = 0 ,..., n - 1 ,

see Figure 4.5. Numbering row indices starting at 1 simplifies the algorithm

description and impiementation.

0 1 2 3 4 S 6

Figure 4.5: Matrix Indexing

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On-Line Protocol

The on-line protocol, or on-line row column protocol (ORC) is used for the

dynamic program that is explained in Chapter 5. ORC is described as, once row

/ minimum m, has been found, column j = / is available. Column availability is

defined as, for every element e, can be computed. Note for j = 0 , a value

of mj, = 0 is used as a minimum for computing e, „ q , see figure 4.6.

%Q

Figure 4.6: The On-Line Protocol

Hire Fire Retire Algorithm (HFR)

The purpose of this algorithm is to find the minimum of each matrix row in

0 {n log(n)) time. First the algorithm will be given, then its details. To make the

algorithm description easier to describe, some basic business company terms

are used. These terms are: employee, staff, boss, potential boss, lackey, sackee,

newbie, hire, fire, and retire. These terms will be defined as used in the scope of

this algorithm, and then a description will be given of the algorithm's data

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structures.

The HFR algorithm is as follows:

1. Hire newbie = 0 ;

2. Find row 1 minimum;

3. Hire newbie = 1 ;

4. Find row 2 minimum;

5. For j = 2 ,..., n - 1 repeat

5.1.Hire nevMb/e = y;

5.2.Fire as many sackees using newbie and lackeys as possible;

5.3.Find row / = J minimum;

> If the boss does not contain the minimum, then the potential boss

must contain the minimum, and retire the boss.

HFR Terminology

Employee: Using the dynamic program shown in Chapter 5, and the on-line

protocol as a technique for iterating through the Monge matrix, entire columns

are either used for finding row minima, or ignored. An employee is considered an

entire column of the matrix. The column index j is used as the employee

number.

Cost: A cost is a single element of the matrix.

Staff: A staff is the current collection of employee numbers. The staff must be

kept in strict order from least to greatest.

Boss: An employee is the boss if and only if the employee is the first member

of the staff.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Potential Boss: An employee Is a potential boss if and only if the employee is

the second member of the staff.

Newbie: An employee is a newbie if and only if the employee is the last

member of the staff.

Sackee: An employee is a sackee if and only if the employee is the second

from the last member of the staff.

Lackey: An employee is a lackey if and only if the employee is the third from

the last member of the staff.

HFR Data Structure

Linked List: The staff is maintained by using a doubly linked list of employee

numbers. The doubly linked list is necessary to keep a 0(1) time for staff

operations. The list Staff operations are:

• isEmpty(): Returns true if the list is empty, otherwise returns false.

• print(): Prints a list of the current employee numbers to the screen.

• size(): Returns the current number of employee numbers in the list.

• hire(j) : Appends employee number J to the end of the list.

• retire(): Removes the first employee number from the list.

• fire(): Removes the second to the last employee number from the list.

• getBoss(): Returns the first employee number of the list.

• getPotentialBoss(): Returns the second employee number of the list.

• getSackee(): Returns the second from the last employee number of the

list.

• getLackey(): Returns the third from the last employee number of the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

list.

HFR Operators

Hire: An employee is hired using the on-line matrix protocol. The new

employee's number j is appended to the staff.

Fire: Firing an employee is done because it can be determined with certainty

that the suspected employee could not possibly contain a row minimum. When

an employee j is fired, the employee's number is removed from the staff.

Recall algorithm step 5.2.Fire as many sackees using newbie and lackeys as

possible. The firing sequence is as follows:

1. Find the negative to positive crossing point at row x between lackey

and sackee.

2. Find the negative to positive crossing point at row y between sackee

and newbie.

3. If X > y , then fire sackee and try to fire another sackee with another

lackey.

3.1.Else stop trying to fire a sackee.

Finding the negative to positive crossing points can be expanded from

searching for this point between two employees lackey and sackee, then

searching for the crossing point between sackee and newbie, to searching for the

two points between the three employees simultaneously. This Is done by a set of

comparisons performed at row w between costs c such that A = and

B = C„,,sackee, and between costs B = and C = • Now the firing

sequence is as follows:

1. If A < 6 > C , then fire sackee, and try again.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w

Figure 4.7: Pire

> The negative to positive crossing point at row x between lackey

and sackee, and the negative to positive cross point at row y between

sackee and newbie must be in positions such that x > y , see Figure

4.7.

2. \f A > B < C , then do not fire sackee, and stop trying.

Figure 4.8: No Fire

> The negative to positive crossing point at row x between lackey

and sackee, and the negative to positive crossing point at row y

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between sackee and newbie must be in positions such that x < y , see

Figure 4.8.

3. If iA < 8 < C , then iook down.

Figure 4.9: Look Down

> The negative to positive crossing point at row x between iackey

and sackee, and the negative to positive crossing point at row y

between sackee and newbie must be in positions such that w < x and

w < y , see Figure4.9.

4. If iA > 8 > C , then look up.

> The negative to positive crossing point at row x between lackey

and sackee, and the negative to positive crossing point at row y

between sackee and newbie must be in positions such that w > x and

w > y , see Figure 4.10.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.10: Look Up

In the event of equality between costs, a tie breaker occurs in the form of a

coercive comparison, to give the costs a lexicographical order. See table 4.2.

Table 4.2: Lexicographical Coercive Comparisons
TEST COERCIVE TEST OPERATION

A < B > C A < B > C Fire
A < B < C A < B < C Look Down
A < B = C A < B < C Look Down
A > B > C A > B > C Look Up
A > B < C A > B < C No Fire
A > B = C A > B < C No Fire
A = B > C A < B > C Fire
A = B < C A < B < C Look Down
A = B = C A < B < C Look Down

Using Table 4.2, comparisons can be grouped according to their

corresponding operations. Then the comparisons can be simplified into four basic

comparisons used in the firing sequence. See table 4.3.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Simplified Comparisons
Fire No Fire Look Down Look Up

A < B > C
A = B > C

A > B < C
A > B = C

A < B < C
A < B = C
A = B < C
A = B = C

A > B > C

Simplified: A < B > C A > B < C A < B < C A > B > C

Find Row Minimum/Retire: An employee is retired if and only if the employee

is the boss, and the boss no longer contains a row minimum. To find the row

/ = j minimum, the sequence is as follows:

1. Set =

2. If min < , then return min ;

2.1.Else retire the boss, goto step 1.

HFR Testing

Figure 4.11 shows the HFR algorithm's output using a statically declared

18x18 matrix. Along with the hiring, firing, row minimum, and retiring reports,

the output displays a graph of which matrix elements, or costs, are accessed,

and the number of accesses per element.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Û 1 2 1 à £ 6 1 a a l e 11 1 2 1 2 14 1 2 1 6 11
33

2| 28 60
3| 24 62 56
4| 7 43 35 46
5| 13 47 37 46 36
G| 22 54 42 49 37 50
71 13 43 29 34 20 31 47
8| 18 46 30 33 17 26 40 38
9| 31 57 39 40 22 29 41 37 48

10| 38 62 42 41 21 26 36 30 39 51
111 43 65 43 40 18 21 29 21 28 38 44
12| 52 72 48 43 19 20 26 16 21 29 33 37
13| 77 95 69 62 36 35 39 27 30 36 38 40 45
14| 96 112 84 75 47 44 46 32 33 37 37 37 40 58
15| 114 128 98 87 57 52 52 36 35 37 35 33 34 50 62
16] 131 143 111 98 66 59 57 39 36 36 32 28 27 41 51 59
17| 164 174 140 125 91 82 78 58 53 51 45 39 36 48 56 62 63
18| 171 179 143 126 90 79 73 51 44 40 32 24 19 19 35 39 38 54

Off-Line Matrix

Hire Fire Retire Row Min Staff
0 - - 33 (0)
1 - - 20 (0.1)
2 1 - 24 (0.2)
3 2 - 7 (0.3)
4 3 - 13 (0.4)
5 - - 22 (0.4.5)
6 - - 13 (0.4.5.6)
7 6,5 0 17 (4.7)
8 - - 22 (4 .7 .8)
9 - - 21 (4.7.B.9)
10 9.8 - 18 (4.7.10)
11 10 4 16 (7.11)
12 - - 27 (7.11.12)
13 - - 32 (7.11.12,13)
14 13 7 33 (11.12.14)
15 14 11 27 (12.15)
16 15 - 36 (12.16)
17 16 - 19 (12.17)

HFR Output

a 1 2 1 A i fi I £ a l a 11 IZ 11 14 12 12 11
1| 1
2| 1 1
3| 1 3 2
4| 1 1 2 8
Sj 1 1 1 2 1
6] 1 1 1 1 2 8
7| 2 8 1 2 3 8 8
8| 2 8 1 1 3 1 1 1
9| 8 1 2 1 1 8 1 2 8

181 4 2 4 4 5 1 1 5 8 8
111 4 1 2 3 7 1 8 6 8 8 8
121 8 8 8 8 a 6 3 a 8 8 1 8
131 8 8 8 8 5 6 3 a 3 1 2 2 8
141 1 1 8 8 8 2 2 18 9 3 6 4 8 8
ISj 1 1 8 8 8 2 2 18 11 4 4 7 4 8 8
161 1 1 8 8 8 8 8 3 5 2 8 4 9 3 4 8
17| 2 2 8 8 8 8 8 8 8 8 8 8 11 6 7 4 2
181 2 2 8 8 8 8 8 8 8 8 8 8 13 6 a 5 5 1

25 18 16 14 35 19 13 53 28 10 13 17 37 15 19 9 7 1 349

Number of Off-Line Matrix Element Accesses

Figure 4.11 : Hire Fire Retire Algorithm Run

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

AN 0 {n log(n)) ALGORITHM FOR THE BATCHING

PROBLEM WITH FIXED ORDER

Shortest Path Problem Reduction: Given a fixed order of jobs, the one

machine batching problem can be solved in polynomial time by reducing it to a

shortest path problem. Using such a fixed order of Jobs JiO = 1 ,..., n) , with

processing times PiU = 1,. n) , priorities w,{i = 1 ,..., n) , and a setup time of

3 = 1, a schedule is defined as

JS = J, I 3 J, +1 ••• JjJ 3 J/̂ +1 I *■' I S + 1 ••• .

The processing time of the f ' batch is defined as

P j= s + E p.-
= + ̂

The following is an example of a schedule with three batches:

+1 J ;+1 ••• Jf; .

Then

I2 4 U
Pi = 1 + Z , P2 = 1 + Z , and P 3 = 1 + X Pp.

P=/, + 1 (l = /2 + 1 = i, + ̂

It is important to point out that the weighted cost of each batch is dependent

on the previous batches, except for the first batch. Keeping with the example, the

weighted cost of the first batch is

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z w .
\»i = /, + 1

The weighted cost of the second batch is

w.
\p = 4+i

Also the weighted cost of the third batch is

P1 + Z

E Pi + Z Pa + Z ^1,
\P = '3+1 „̂ = /3+1 ^ \P = '3+1

Pz-

Finally, an objective function can be computed for the example as

u \ l u
Z w\p,+ z w,

\ = /, +1 I \fi = /'J +1 \P = '3+1

Therefore, an objective function for JS can be written as

Z w\Pz-

Z C, w, = X/ = 1 7=1

'y.i
Z w,

It = IJ+1 I Pj-

Now the schedule can be represented as a path in a directed acyclic graph

(DAG). Figure 5.1 shows an example of such a graph for four jobs. Each edge of

the graph c[i j , i j+.,] has a cost defined as the cost of the batch. Using the

example from above.

2̂] “
n n

Z W'p P i 1 ^[^'2» ^3] ■" E P 2 , and c[ï3 , i 4] = z %
jP=/i+1 , * / = / j + i ^ Ip = '3 + 1

A .

Notice c [/i, /j] + c[i2 ,iz] + is the same as the objective function for this

example. The processing time of the f * batch is

'y.i
P/ = 3 + E P.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: Graph for Ju Jg, *̂ 3 » *^4

To generalize, the cost of an edge from / to J is calculated as

C» — i » .
; i = / + 1

S + E P j = (w „ - W ,) { s + P i - P ,) .
I p=f+1

Lemma 5.1: The matrix representation of the DAG is Monge.

Proof: For a positive integer n , given are Po, ..., p„, with Po = 0 ,

Wq = 0 , and Pi, > 0 ,..., p„, ^ 0 , as well as s > 0 . Assume s = 1 . Let

k k

Pk = Z P/ and = Z ^1 for k = ^ , n.
1=0 1=0

Consider the matrix

C = !c [/.y l) , with cH, j] = (W „ - W ,) (s + P , - P ,) ,

so

c =
Ci, j-{W„-Wj){s+Pj-Pi) c,j+i-(W„-l/V/)(s+Py+i-P/)
0/+1,y=(l^n“ *^ /+ l)(a + P y -P /+ l) +

To show 0 is Monge, it is necessary to show that

0/,; + C;+1_y+1 < Cj + Cj+^ j , Or {Cj J ~ C; J + (Cy+3 y+̂ — 0;+̂ y) < 0

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(O /J Oy y + J + (Cy+1 y+3 ^ l + t , j)

= { W „ - W ,) { P j - P y + J + { W „ - W , + J (P y + , - P j)

= - P j { W „ - W i) + P j { W „ - W i , ,)

= P j { W „ - W y + , - W „ + W y) = - P y (W y + , - W y) = ~ P y W y < 0

Therefore C is Monge. □

Dynamic Program

Now that the batching problem with fixed order has been shown to reduce to

a shortest path problem, a dynamic program is used to find the shortest path

from the first DAG node to the last. Recall the matrix indexing from Chapter 4, so

the dynamic program matrix uses indices of / = 1 ,...» n for rows and

y = 0 , ..., n -1 for columns. The matrix is defined as e { i , j) = E [y] + Cj, where

E [j] = m i n o ^ i ^ j { e [j , l] } .

€5
I
1 2 £[0]=0

1 £ [1 i E[k j -f 11
/ 2 E [0| + Ce,a

3 £ |1]+ c.,3 £:[2]4C;2,3 £ |3] ̂ mhQ^^3 \E[kl

Figure 5.2: A Dynamic Program for a 3x3 Matrix

Figure 5.2 shows an example of a matrix E = e{ i , j) for n = 3 . Following the

example, E is formalized to

e(0,0) = 0
e (/ ,y) = mino^,^j {e{ j , l) + c [y , /] } '

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Notice in Figure 5.2 that when E[j] is known, column J = i is available. It

should be clear that the dynamic program can use the ORC protocol as

described in Chapter 4. It should also be pointed out that E is Monge if c is

Monge. This can be shown in a similar manner that was used in Lemma 5.1.

However, rather than giving a formal proof, the remark is made that the Monge

property is preserved under the operations of minimum and addition.

Dynamic Program Testing

For testing purposes the following results was used: An optimal value can be

compared with the following: If all n jobs have processing time P i, ..., p„ = 1

with setup time s = 1 , and if

m(m + 1)
" — — '

then we can describe the value of an optimal batching schedule with

(Bein, Epstein, Larmore, & Noga, 2004).

Then a set of

n = {120, 465, 1830, 7260, 28920, 64980}

jobs were used with processing times p ^ ,..., p„ = 1 , weights w ^,..., w„ = 1 ,

and a setup time s = 1 . The dynamic program reports an optimal value by

returning the minimum of the last row of the matrix.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m=15
« = 120
^ ^ ̂ 1) 3«M ^lm +10 = 8500

Program output;
Size of N: 120
Number of MATRIX lookups ;
2342
N log N = 828.827
Factor: 2.82568
Optimal Score: 8500

7m = 30
«=465

m (m +l) 3«i + l l» i + 10
24

= 117800

Program output :
Size of N : 465
Number of MATRIX lookups :
11932
N log N = 4120.41
Factor: 2.89583
Optimal Score : 117800

«1=60
« = 1830

«i(« j+ l) 3«i + l l« i+ 1 0 .
24

=1749175

«1=120
«=7260

«i(« i+ l) 3«t +11 «1+10.
24

=26940650

Program output :
Size of N : 1830
Number of MATRIX lookups :
57363
N log N = 19832.9
Factor : 2.89232
Optimal Score: 1749175

Program output :
Size of N : 7260
Number of MATRIX lookups :
269216
N log N = 93115
Factor : 2.89122
Optimal Score: 26940650

«1=240
«=28920

«1=360
«=64980

3 m +11 «1+10
24

=422834500 3m +11 «1+10
24 =2126849550

Program output :
Size of N : 28920
Number of MATRIX lookups :
1229429
N log N = 428588
Factor : 2.86856
Optimal Score: 422834500

Program output :
Size of N : 64980
Number of MATRIX lookups :
2981879
N log N = 1.03888e+06
Factor : 2.87028
Optimal Score : 2126849550

Figure 5.3: Dynamic Yogram Test Results

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

A GENETIC ALGORITHM

A genetic algorithm (GA) gives a searching technique used to find

approximate solutions for optimization problems. Such optimization problems

include scheduling and routing. A GA has three basic operators: selection,

crossover, and mutation. Later in the chapter, a 5 step GA will be described

along with the operator descriptions. But first, in order to better understand the

algorithm, a list of GA terms are defined.

Genetic Algorithm Terminology

Chromosome: A chromosome is one possible solution for a given problem

(Mitchell, 1996). Usually the solution is represented as a string of bits. However,

it is also convenient to use a simple array of indexes that represent a mapping to

a solution candidate.

Gene: A gene is a component of the chromosome that represents a single

element of the solution candidate (Mitchell, 1996).

Locus: Locus is an exact location of a gene in a given chromosome (Mitchell,

1996).

Allele: An allele is the value of a gene at a given locus in a particular

chromosome (Mitchell, 1996).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Genome/Genotype: The genome, or genotype, is the data structure used to

represent a chromosome, with each element of the genome representing the

locus of a gene (Mitchell, 1996).

Population: A population is a set of chromosomes. For the GA, the population

size is predetermined, and passed as a parameter to the algorithm. Each

chromosome of the population is randomly chosen (Mitchell, 1996).

Parent: A parent is a chromosome selected for mating with another

chromosome, or the other parent. The selection of a parent from the population is

based on the fitness score given to each chromosome by the fitness function

(Mitchell, 1996).

Offspring: The offspring are the children of the chosen parents. Exactly two

offspring will be generated from a given set of parents, and the offspring are

based on the crossover (Mitchell, 1996).

Fitness Function: Also known as an objective function, the fitness function is a

key element of the GA. It is the bases of whether a chromosome will continue as

a member of the population in future generations, or be deleted. The fitness

function is also used as a deciding factor for selection in crossover mating

(Mitchell, 1996). Since each chromosome of a population must be 'scored' by the

objective function, it is important that the function be computed efficiently with a

good time complexity.

Genetic Algorithm Operators

Selection: Selection is the process of choosing chromosomes for crossover

mating. This selection is based on the fitness of the chromosome, therefore, the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fitter the chromosome, the better chance it has of being selected for reproduction

(Mitchell, 1996). An example of a selection method is the roulette wheel analogy.

Using a chromosomes fitness score to associate a likely hood of being selected,

think of the pockets of the roulette wheel varying in size, based on this

probability. If the ball falls into a chromosome's pocket, that chromosome is

selected. To chose N chromosomes is to play N games of roulette.

Crossover: Crossover is the process of generating two offspring using a pair

of chromosomes as parents (Mitchell, 1996). A locus is randomly chosen for the

parents, then the sequences are exchanged before and after the locus for the

ONE POINT CROSSOVER TWO POINT CROSSOVER

PARENTS

OiiLDREN

ŒGSSOVER
— POINTS —

Figure 6.1: One and Two Point Crossover

new children. Figure 6.1 shows examples of crossover for a single selected locus

and a dual selected locus. Crossover will occur based on a probability, or

crossover rate, which is predetermined and passed to the GA as a parameter.

The crossover rate is usually set to be large. A typical crossover rate would be

Pc = 0.7 (Mitchell, 1996).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutation: Mutation is a probable change at each locus of a given

chromosome (Mitchell, 1996). A chromosome gene will mutate only if the

probability of mutation, or mutation rate, allows it. The mutation rate is

predetermined, passed to the GA as a parameter, and is usually set to be very

small; typically Pm = 0.001 (Mitchell, 1996). The purpose of mutation is to avoid

the GA from failing into a local minima, which could occur if all of the

chromosomes where to become too similar.

A 5 Step Genetic Algorithm

A problem's solution candidate can easily be represented with a string of bits.

Then a GA would operate as follows; stated from (Mitchell, 1996):

1. Start with a randomly generated population of n I -bit chromosomes

(candidate solutions to a problem).

2. Calculate the fitness f {x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

a) Select a pair of parent chromosomes from the current population,

the probability of selection being an increasing function of fitness.

Selection is done “with replacement,” meaning that the same

chromosome can be selected more than once to become a parent.

b) With probability Pc (the “crossover probability" or “crossover rate”),

cross over the pair at a randomly chosen point (chosen with uniform

probability) to form two offspring. If no crossover takes place, form two

offspring that are exact copies of their respective parents. (Note that

here the crossover rate is defined to be the probability that two parents

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will cross over in a single point. There are also “multi-point crossover”

versions of the GA in which the crossover rate for a pair of parents is

the number of points at which a crossover takes place.)

c) Mutate the two offspring at each locus with probability Pm (the

mutation probability or mutation rate), and place the resulting

chromosomes in the new population.

If n is odd, one new population member can be discarded at random.

4. Replace the current population with the new population.

5. Go to step 2.

A generation is one iteration of the GA. A run is one complete cycle through a

given number of generations. Given the randomness of the GA, two runs of the

same problem may yield two different solutions (Mitchell, 1996). It is generally a

good idea to take an average of the results from several runs of the same

problem.

Genetic Algorithm Library for C++

As previously mentioned, finding an optimal schedule for the s-batch problem

under weighted average completion time is NP-complete. The next best solution

to optimal is near-optimal, or an approximation. A GA was used to find an

approximation in the search space. The GA for this project is a C++ library called

GAiib, that was developed by Mathew Wall of the Massachusetts Institution of

Technology (Wall, 2005). The library offers practical and extensible classes for

applications using a GA where optimization is critical. GAlib includes some

simple default GA models with default genome types and operators for quick

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications. However, if one wishes to implement a complex solution, GAlib is

very customizable. GAlib is capable of being installed on several platforms such

as UNIX, MacOS, Windows 9x/NT/2K/XP, and DOS/Windows 3.1 (Wall, 2005).

For this project, GAlib was built on the UNIX platform using the g++ compiler.

Even though GAlib supplies many GA models, a simple GA, which is GAIib's

default model and was described previously in this chapter, was used for

impiementation of this project. When GAlib uses the simple model, the population

is compietely replaced by crossover and mutation of the previous generation's

population, after each generation (Wall, 2005).

Two primary ciasses are involved when using the library, a genome class and

a genetic algorithm class. An instance of a genome class represents a single

possible solution of the problem. Then the genetic aigorithm class specifies how

the genomes will evolve. Using these ciasses, there are three basic entities one

must define to implement a solution using a GA (Wall, 2005).

1. Define a representation.

2. Define the genetic operators.

3. Define the objective function.

GAlib provides many functions to aid in implementing 1 and 2, with little to no

modifications, which greatly simplifies the usage of GAlib. However, 3 must be

programed by the user. The HFR algorithm is used to define the objective

function for the impiementation of the simple GA used for this project.

Genetic Algorithm Object

The GA object determines the evolution of the generations of populations.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GAlib performs the process of evolution by determining, through selection, which

pairs of genomes to mate, which genomes to replace, and which genomes will

survive during the current generation. When an instance of the GA object is

created, a population is initialized. Then until termination, for each generation,

genomes are selected for mating. For each pair of selected genomes, crossover

occurs to generate two new offspring. The offspring are mutated if the mutation

rate decides mutation should take place. Finally the offspring is then placed into

the current population, replacing any genomes with worse scores. Usually, the

user of GAlib decides the requirement for termination, and usually that

requirement is a predetermined number of generations.

Population Object

All of the genomes that make a population are contained in a population

object (Wall, 2005). This object also calculates and stores statistics about the

population. Some of these statistics are deviation, best genome, and average

fitness. An important method of the population object is to decide which genomes

are selected for mating (Wall, 2005).

Defining A Representation

Since the s-batch problem just utilizes job indices, in which times and weights

are assigned to each job, using a simple one dimensional array for schedule

representation is sufficient. GAlib has a template class, that is derived from the

GA genome class, called GA1 DArrayGenome (Wall, 2005). This class is a

dynamic array of objects. A predefined population size of these genomes is

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

declared, along with a predefined genome length, of which is size n . During

initialization of each genome (or chromosome), the job indices are used as

alleles, which are randomly chosen, and assigned to each locus of the

chromosome.

Defining The Genetic Operatore

The genetic operators does the work of evolution for each generation (Wali,

2005). GAlib utilizes three primary operators, initialization, mutation, and

crossover. For this project, an initializer was implemented by the user so that

each genome is randomly initialized in linear time. To do this, a source array

A = {1 ,..., n] of job indices is generated. Then, an index / of A is randomly

selected, and the value of / is assigned to locus j of the genome for

y = 0 ,..., n -1 . As indices of A are selected, A shrinks by piecing the value of

A„ into the empty slot. The default mutation of GAlib is used, and is performed

based on the mutation probabiiity. Lastly, a predefined crossover is used, simply

because certain elements of this project make the list order based crossover of

GAiib convenient to use. When the order based crossover mates two genomes

together, it does not allow any gene duplication.

Defining The Objective Function

A GA only needs a single score to determine how good a chromosome when

compared to the other chromosomes of the popuiation (Wall, 2005). Selection,

for mutation and mating purposes, is based on a fitness score. The fitness score

is based on the objective score that is returned, as a floating point value, from the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objective function.

“It is important to note the distinction between fitness and objective scores.

The objective score is the value returned by your objective function; it is the raw

performance evaluation of a genome. The fitness score, on the other hand, is a

possibly-transformed rating used by the genetic algorithm to determine the

fitness of individuals for mating. The fitness score is typically obtained by a linear

scaling of the raw objective scores.” (Wall, 2005)

As previously mentioned, the user is to define the objective function for GAlib.

The HFR algorithm is used to determine an objective score for each genome of

the current population for each generation. The actual value returned by the

objective function for this project, is the reported minimum for row n .

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

GAs-BATCH EXPERIMENT

Four tests were performed to find a near optimal schedule given a set of n

jobs with respective times and priorities. Job processing times, P,(/ = 1 ,..., n) ,

were randomly chosen as real numbers between 0 and 2, excluding 0 to avoid an

illegal divide during boundary calculations. Job weights, w,{i = 1 ,..., n), were

randomly chosen integers between 1 and 3. The experiment used a genetic

algorithm library GAlib, written by Mathew Wall of MIT. The genetic algorithm

begins by initializing a population by randomly selecting a fixed schedule. Each

fixed schedule is then given a score using an objective function, which is the

HFR aigorithm described in Chapter 4. Then appropriate crossover mating and

mutation occurs within the popuiation for each generation. The best genome

score is reported at certain intervals of generations; either every 100* generation

or every 1000* generation. Each test was allowed three runs, with slightly

different parameters. All tests had the following parameters in common:

• Number of jobs n = 100 .

• Crossover rate Pc = 0 85 .

• Mutation rate Pm = 0.005 .

The tests popuiation size, and number of generations are as follows:

1. Generations: 1000, Population: 100

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Generations: 1000, Population: 500

3. Generations: 5000, Population: 500

4. Generations: 5000, Population: 1000

The following figures contain the results for the best run of an experiment. For

every run, an upper bound, a lower bound, and the OP were calculated, and

reported, for the given set of jobs. A percentage is given of how far from the

lower bound the score of the best permutation is, as reported by the GA.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Job# Time Wbight Job# Time Weight Generation # Best Score
1 05206 2 51 0.1981 1 100 9,140.38
2 1.6986 3 52 0.4955 3 200 8,951.24
3 05605 3 53 12885 3 300 8,765.39
4 0.9909 1 54 0.9622 1 400 8,883.60
5 06627 1 55 1.0279 3 500 8,658.44
6 1.6407 3 56 02198 1 600 8,526.46
7 1.7567 2 57 0.1857 1 700 8,411.15
8 0.7364 1 58 0.7334 3 800 8,365.98
9 0.3230 2 59 0.0884 1 900 8,365.98
10 1.9437 3 60 05797 2 1,000 8,208.30
11 0.4776 1 61 1.1130 1 GA Run
12 1.7822 3 62 12216 1
13 16396 1 63 15254 1
14 1.6600 1 64 1.4773 3 |S|67 83 90 46 69 34 3 55 71 21 87 100 56 59 31 76
15
16

1.2882
0.1151

2
2

65
66

15481
0.0689

2
1 |S|52 86 89 24 16 1 27 9 51 50 92

|S|75 60
|S|93 45 39 57
|S|73 58
|S|79 23 15 8 2 2 35 12
|S|4296 25 41 10
|S|47 98
|S|95 28 94 80

17
18

0.7665
16352

3
3

67
68

0.0370
0.6845

3
2

19
20
21

0.4980
1.3071
0.0070

1
2
2

69
70
71

0.3084
12801
02^5

3
2
1

22 1.4429 1 72 1.6273 2
23
24

12838
0.0354

3
2

73
74

0.0618
1.9481

2
1 |S|78 8 5 32 53 6 5 77 63

|S|88 85
|S|7 40 13 18 97 38 3725 15993 2 75 05557 3

26 1.9621 1 76 0.6094 1 |S|48 14 68 36 81 22 6427 1.1795 2 77 1.1720 2 |S|6219 70 30 544
28
29

1.1843
1.7196

3
3

78
79

12712
05732

3
3 |S|66 3311

|S|20 26
|S|4317
|S|44 91 6
|S|99
|S|72 49 29 74
IS184
|S|61|

30 1.4565 1 80 1.7556 3
31 0.3918 3 81 1.9838 1
32 06165 2 82 02675 2
33
34

1.3852
0.4852

2
3

83
84

05888
1.3463

2
1

35 1.4778 2 85 05986 1
36 1.0439 1 86 0.0335 3
37 0.7401 3 87 0.1262 2 s-Batch Schedule
38 12485 3 88 12632 1
39 0.6660 2 89 0.0215 3
40 1.6307 3 90 05383 3 Upper Bound: 12635.6
41 12630 2 91 1.7391 2 Optimal Priorily Score: 12171.8
42 0.3422 2 92 02458 3 GA Best Score: 8208.3
43 1.3372 1 93 0.7786 3 Lower Bound: 5682.48
44 1.4616 2 94 1.6084 3 36.3266% away from Lower Bound.
45 06707 2 95 02656 1 s-Batch Schedule Fitness
46 00646 2 96 02730 3
47 0.4896 2 97 1.1884 1
48 10207 2 98 02701 2
49 15328 3 99 1.4924 1
50 1.7579 3 100 02743 2

Raw Data
Figure 7.1: Experiment 1

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Job# Time Wbight Job# Time Weight Generation # Best Score
1 0.6980 3 51 05908 3 100 10,924.70
2 05071 2 52 0.1183 3 200 10,570.40
3 0.6779 3 53 1.6488 3 300 10,475.50
4 0.3681 2 54 12726 1 400 10,335.10
5 1.8432 1 55 1.0431 2 500 10,120.50
6 0.5274 2 56 1.3951 3 600 9,966.96
7 1.6636 3 57 19027 2 700 9,875.67
8 0.7772 1 58 1.0873 2 800 9,834.13
9 1.4492 1 59 0.1567 3 900 9,797.30
10 0.7715 3 60 0.0476 3 1,000 9,731.60
11 1.7246 1 61 1.6370 1 GA Run
12 15973 3 62 1.9125 3
13 0.0141 2 63 1.1631 1
14 12447 2 64 1.4929 3 ISI28 2 18 40 10 74 47 26 13 43 76 52 3 65 71 27
15 15968 3 65 02943 1 isjsi 64 45
16 15605 2 66 1.1296 2 |S|60

|S|67 4 6 46 12 53 9 0 9217 0.6310 2 67 05993 3
18 0.4577 3 68 1.4112 1 |S|59

|S|69 55 36 35 89 91 1519 1.7845 2 69 0.4068 3 42 231
20 0.7560 2 70 0.9062 1 |S|20 22 38 88
21 1.4653 2 71 0.1632 2 |S|77

|S|39 100 84 7 98 58 2522 0.6264 2 72 1.9921 1 17 95 83
23 1.7112 3 73 1.8858 3 |S|37

|S|14 33
|S|96 93 3216 82 87

24 0.8435 1 74 02054 3
25 1.7277 3 75 1.7719 1
26 02162 3 76 0.3991 3 |S|57 21

jS|99 31 78 50 11 927 1.0461 2 77 12769 2
28
29

0.3829
1.6714

3
1

78
79

1.1902
1.7670

2
2 |S|44 86 62

|S|81 85 79 29
30 1.3393 2 80 15631 2 |S|41 56 2494
31 15561 1 81 12395 1 |S|30

|S|49
|S|34 5 73 8
|S|66 63
|S|54 80
|S|70 72 61
|S|68
|S|48
|S|97 19
|S|75|

32 1.1630 2 82 12463 2
33
34

15674
12960

2
1

83
84

1.7405
0.0868

2
1

35 0.4465 1 85 1.3412 3
36
37

09795
1.3353

3
3

86
87

15972
12943

3
2

38 1.0407 3 88 15704 2
39 1.0093 1 89 0.6687 2
40 02070 1 90 12227 2
41 1.4991 1 91 0.0288 3
42 0.1893 3 92 15495 3 s-Batch Schedule
43 02367 3 93 1.9333 2
44 1.6053 3 94 1.7457 3
45 0.1998 2 95 1.7227 3 Upper Bound: 14684.1
46 09763 3 96 1.7615 2 Opiimai Priority Score: 13181.9
47 0.1442 3 97 1.6014 2 GA Best Score: 9731.6
48 15429 1 98 05009 2 Lower Bound: 7163.79
49 1.7600 1 99 1.6653 1 34.1448% away from Lower Bour
50 1.0635 1 100 1.4891 1 s-Batch Schedule Fitness

Raw Data
Figure 7.2: Experiment 2

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Job# Time Wbight Job# Time Weight Generation # Best Score
1 1.4723 2 51 15558 1 100 9,138.16
2 15870 2 52 1.7750 2 500 8,711.31
3 12853 2 53 15052 2 1,000 8,627.66
4 0.7184 1 54 05435 2 1,500 8,627.66
5 1.0012 2 55 0.3513 3 2,000 8,627.66
6 1.7627 2 56 1.4792 1 2,500 8,627.66
7 05403 2 57 05633 2 3,000 8,627.66
8 05925 2 58 1.4387 1 3,500 8,627.66
9 0.7079 1 59 1.8687 2 4,000 8,627.66
10 1.4038 1 60 0.8654 3 4,500 8,627.66
11 15698 3 61 0.7533 1 5,000 8,627.66
12 05951 3 62 1.4328 3 GA Run
13 12328 3 63 02217 2
14 0.0050 2 64 1.3325 1
15
16
17

1.7997
12894
0.1257

3
O

65
66
67

1.1605
1.1871
1.4463

1
1
3

|S|72 47 89 74 91 7 77 40 94100 75 68 36 25 241216 80 95 55
£.
1 |S|93 22 66 15 18 78 63 46 8514 48 82 28 65

|S|88 601171
18 05553 3 68 05575 2 |S|87 50 19

|S|27 97 73
|S|30 79 17 83 20 2 41

19 0.1126 2 69 0.6695 3
20 1.7960 3 70 1.6516 2
21
22

1.0479
0.1276

1
1

71
72

02718
0.1314

3
1 |S|324259 56249

|S|454
|S|90 33
jS|81 39 86
|S|29 6438
ISI56 58
|S|69 26 4452 34849

23 05169 1 73 15429 3
24 0.7116 2 74 0.7515 3
25
26

0.9842
12654

3
1

75
76

0.1386
12655

3
1

27 15688 1 77 05267 3
28 0.5235 1 78 0.1745 2 |S|6157

|S|21991
|S|67 96
|S|92 38 53 35 10 23
m
|S|7045 31 13
|S|37 51
|S|98 6
PI76I

29 15958 3 79 1.4296 3
30 1.0551 1 80 1.0046 2
31
32

15939
05674

1
3

81
82

05229
1.1064

1
1

33
34

15207
1.1306

1
2

83
84

1.1538
0.7206

2
2

35 1.4963 1 85 0.6650 3
36 0.7471 3 86 05441 1
37 0.4854 1 87 15029 1
38 1.9324 1 88 1.7718 3 s-Batch Schedule
39 15949 1 89 0.5457 3
40 02272 2 90 0.4575 3
41 0.7593 2 91 0.1401 3 Upper Bound: 12662.9
42 0.9330 1 92 15763 1 Optimal Priorily Score: 11925.5
43 1.3532 1 93 0.4212 1 GA Best Score: 8627.66
44 1.1298 1 94 0.0152 3 Lower Bound: 5776.06
45 15851 1 95 12578 3 41.4064% away from Lower Boi
46 0.3444 2 96 0.4408 1 s-Batch Schedule Fitness
47 0.5292 3 97 12114 3
48 12986 3 98 1.7498 1
49 1.7345 3 99 1.0111 2
50 1.6833 3 100 0.1884 3

Raw Data
Figure 7.3: Experiment 3

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Job# Time Weight Job# Time Weight Generation # Best Score
1 02722 1 51 05848 3 100 8,577.57
2 1.6789 3 52 1.5856 1 500 8,180.34
3 1.7256 2 53 0.0804 1 1,000 7,600.96
4 12755 3 54 1.1824 1 1,500 7,593.00
5 1.4722 2 55 05506 3 2,000 7,593.00
6 15200 2 56 15823 1 2,500 7,593.00
7 12205 1 57 1.1425 2 3,000 7,593.00
8 1.3335 1 58 0.4053 3 3,500 7,593.00
9 1.9777 2 59 0.7607 1 4,000 7,593.00
10 05422 3 60 12667 2 4,500 7,593.00
11 05540 3 61 1.9024 1 5,000 7,593.00
12 0.4561 2 62 0.9458 2 GA Run
13 05582 3 63 0.1634 2
14 1.7128 3 64 0.3440 2
15 0.1353 3 65 0.3950 3 |S|51 1215 74 28 10 92 5017 441813 69 53 58 4511 84 46
16 0.6228 2 66 12024 3 |S|82 38 33 65 55 4117 0.1844 2 67 0.4024 1 |S|91 32 99 4 67 57 37 27
18 0.6841 2 68 1.6157 1 |S[72

|S|71 43 52 60 4819 0.9181 1 69 0.3737 3
20
21

1.1683
1.0516

3
3

70
71

1.1461
1.0001

2
3 |S|93874240 66 22

|S|86 25
|S|79 146376
|S|2462
|S|96 88 216 36 49 47
|S|81
|S|97 7364
|S|75 30 31 9 21 94 80 100
|S|23 59 78 20 26 8319 34 85
|S|54 39 77 29
|S|70
|S|90 8
|S|56 35 6 5 31
|S|95 68 98
|S|617
|S|89|

22
23

05114
0.4954

2
1

72
73

0.3468
1.3197

1
2

24
25

1.0649
0.6361

3
2

74
75

0.6023
1.3092

3
1

26
27
28
29
30

15208
0.4108
05603
1.4898
1.1935

3
1
2
1
2

76
77
78
79
80

1.0835
1.5677
02758
05024
1.0757

3
1
1
3
1

31 1.7002 3 81 12796 3
32
33

0.0^6
0.1181

2
2

82
83

0.1771
1.0661

3
1

34 1.7946 2 84 0.1648 2
35 05764 3 85 05908 1
36 1.4265 1 86 0.4641 2
37 0.0511 3 87 0.3392 1 s-Batch Schedule
38 0.0000 1 88 1.7336 2
39 05829 2 89 15629 1
40 1.0196 2 90 1.7392 1 Upper Bound: 12473.5
41 05719 3 91 02048 2 Optimal Priority Score: 10777.2
42 0.4091 1 92 0.0837 3 GA Best Score: 7593
43 1.3172 3 93 05521 3 Lower Bound: 5357.96
44 0.1518 1 94 15035 3 31.4105% away from Lower Boun
45 02424 3 95 0.9791 1 s-Batch Schedule Fitness
46 0.4321 3 96 05518 3
47 1.1617 2 97 05574 2
48 15273 3 98 1.9408 1
49 1.1813 1 99 05216 3
50 0.3160 3 100 1.3633 1

Raw Data
Figure 7.4: Experiment 4

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSION

In this thesis paper, the s-batch problem was described along with

descriptions of heuristics and approximations for the s-batch probiem. Finding an

optimal schedule for a set of jobs, with processing times and priorities, is NP-

complete (Albers & Brucker, 1993). However, given a fixed order of jobs, a batch

schedule can be computed in 0{n log(n)) time. This was accomplished by

reducing the one machine s-batch problem to a shortest path problem. It was

also shown that the matrix representation of the DAG is a Monge matrix. To

exploit this property, a dynamic program was created to find the shortest path in

a way such that the HFR algorithm, along with the on-line protocol, could be

used.

A 2-approximation algorithm was given and its solution used for an upper

bound. A lower bound was proved. An alternative approximation algorithm, OP,

was given which used the 0 {n log(n)) matrix searching technique. This

algorithm is better than PP, but we conjecture that it has an approximation ratio

which is close to 1 if n is very large. This thesis neither formalizes this nor gives

any proof of such conjecture. However, future work will focus on such results.

For experimentation, a set of jobs were generated with random values as

times and weights. Then a population of randomly selected permutations was

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generated. A genetic algorithm was used to find the best permutation out of the

set of originally generated permutations. The HFR algorithm was used as the

objective function for the genetic algorithm.

Using a set of jobs of size n = 100 the genetic algorithm created solutions

with an average of 35.8% away from the lower bound. It was also found that the

genetic algorithm did not need a large set of permutations or generations to

converge to this average.

Instead of using approximations of the type described here, future work could

also employ linear programming techniques. The main issue here is to define

appropriate integer linear programming formulations.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

SOURCE CODE

/* GASbatch.C
^ * * * * * * ^

using namespace std;

#include "personnei.h"

#include <iostream.h>
#include <math.h>

#include <ga/GASimpleGA.h>
#include <ga/GA1 DArrayGenome.h>

struct Job {
int n;
float p;
int w;
float q;
float P;

};

const int NJ = 5;
const int N = NJ + 1 ;
const int 8 = 1 ;
Job jobs[NJ];
Job temp[NJ];
float P[N];
int W[N];

/** GA support functions **/
void mylnitializer(GAGenome &);
float myObjective(GAGenome &);

/** support functions **/
void initJobsO;
float fRand();
float myRand(float, float);
int beinRand(int, int);
void pSum(const float*);

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void wSum(const int*);
void fire(emplD, Personnels, float*);
float getRowMin(emplD, Personnels, float*);
float getRowElement(int, int, float);
float CiJ(int, int);
void initQO;
void sortQO;
void mergeSort(Job Q, Job Q, int, int);
void merge(Job Q, Job Q, int, int, int);
float getLowerBoundO;
float getUpperBoundO;
void printMySchedule(GAGenome S);

int main(int *argc, char *argvQ) {
const int Generations = atoi(argv[1]);
const int Popuiation = atoi(argv[2]);
const float P_crossover = 0.85;
const float P_mutation = 0.005;
float best_score;
float upper_bound;
float lower_bound;
float op_genome_score;
float away;

srand(time(NULL));

initJobsO;

GA1 DArrayGenome<int> genome(NJ, myObjective);
genome.initializer(mylnitializer);
genome.crossover(GAlDArrayGenome<int>::OrderCrossover);

GASimpleGA ga(genome);
ga.populationSize(Population);
ga.nGenerations(Generations);
ga.pMutation(P_mutation);
ga.pCrossover(P_crossover);
ga.minimizeQ;
ga.initializeO;

for(int i = 1 ; i < Generations; i++) {
if (i % 100 == 0) {
cout « "Generation #" « i « ' ';
cout « " best score: " « ga.statistics().bestlndividual().score();
cout « endl;

}
ga.stepO;

}

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cout « "Generation #" « Generations;
cout « " best score: " « ga.statistics().bestlndividuai().score();
cout « endl;

for (int i = 0; i < NJ; i++) {
cout « jobs[i].n « ": " « jobs[i].p « ", " « jobs[i].w « endl;

}

initQO;
sortQO;

GA1DArrayGenome<int> best_genome(NJ);
GA1 DArrayGenome<int> op_genome(NJ);

// initialize the op_genome
for (int i = 0; i < NJ; i++) {

op_genome.gene(i, jobs[i].n);
}

best_genome = ga.statistics().bestlndividual();

best_score = best_genome.score();

upper_bound = getUpperBound();
lower_bound = getLowerBound();
op_genome_score = myObjective(op_genome);
away = (best_score - lower_bound) / (upper_bound - lower_bound);

cout « "Upper Bound: " « upper_bound « endl;
cout « "Optimal Priority Score: " « op_genome_score « endl;
cout « "GA Best Score: " « best_score « endl;
cout « "Lower Bound: " « lower_bound « endl;
cout « away * 100 « "% away from Lower Bound." « endl;

printMySchedule(best_genome);

return(O);
}

void mylnitializer(GAGenome & g) {
int index;
int source[NJ];

for (int i = 0; i < NJ; i++) {
source[i] = i + 1 ;

}

GA1 DArrayGenome<int>& genome = (GA1DArrayGenome<int>&)g;

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int i = NJ -1 ; i >= 0; J-) {
index = beinRand(0, i);
genome.gene(i, source[index]);
sourcepndex] = sourcep];

}
}

float myObjective(GAGenome & g) {
Personnel staff;
empID newbie;
float current_p[N];
int current_w[N];
float E[N];
int index;

GA1DArrayGenome<int>& genome = (GA1DArrayGenome<int>&)g;

currentjd [0] = 0.0;
current_w[0] = 0;
in tj = 1;
for (int i = 0; i < genome.length(); i++) {

index = genome.gene(i);
current_pp] = jobs[index-1].p;
current_w[j] = jobs[index-1].w;
j++;

}

pSum(current_p);
wSum(current_w);

for (int i = 0; i < N; i++) {
cout « P[i] « " ;

}

for (int i = 0; i < N; i++) {
cout « W[i] « " ;

}

E[0] = 0.0;
newbie = 0;

// hire first column
staff.hire(newbie);
E[newbie+1] = getRowMin(newbie, staff, E);

// hire second column
newbie++;
staff.hire(newbie);

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E[newbie+1] = getRowMin(newbie, staff, E);

// run the algorithm for the rest of the columns
for (newbie = 2; newbie < N-1 ; newbie++) {

// hire a newbie
staff.hire(newbie);

// newbie tries to fire employees with imediate seniority using a lackey
fire(newbie, staff, E);

// find row min associated with newbie
E[newbie+1] = getRowMin(newbie, staff, E);

}

return E[NJ];
}

void initJobsO {
for (int i = 0; i < NJ; i++) {
jobs[i].n = i + 1 ;
jobs[i].p = myRand(0.00000000001, 2.0);
jobs[i].w = beinRand(1, 3);

}
}

float fRandO {
return rand() / (float(RAND_MAX) + 1);

}

float myRand(float min, float max) {
return fRand() * (max - min) + min;

}

int beinRand(int lower, int upper) {
return (lower + rand() % (upper - lower + 1));

}

void pSum(const float* p) {
P[0] = 0.0;
// p[0] = 0 because of dummy job
for (int i = 1 ; i < N; i++) {

P[i] = P[i] + P[i-1];
}

}

void wSum(const int* w) {
W[0] = 0;
// w[0] = 0 because of dummy job

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (inti = 1; i < N; i++){
W[i] = w[i] + W[i-1];

}
}

void fire(emplD newbie, Personnels staff, float* Ek) {
bool firing;
bool trying;
empID sackee; // employee with imediate seniority to newbie
empID lackey; II employee with imediate seniority to sackee
float newbie_cost;
float sackee_cost;
float lackey_cost;
int low;
int high;
int mid;

firing = true;
while (firing SS staff.size() > 2) {

sackee = staff.getSackee();
lackey = staff.getLackey();
low = newbie;
high = N -1 ;
trying = true;

while (trying) {
mid = (low + high) / 2;
newbie_cost = getRowElement(newbie, mid+1, Ek[newbie]);
sackee_cost = getRowElement(sackee, mid+1, Ek[sackee]);
lackey_cost = getRowElement(lackey, mid+1, Ekpackey]);

if ((lackey_cost <= sackee_cost) SS (sackee_cost > newbie_cost)) {
staff.flreO;
trying = false;

}
else if ((iackey_cost > sackee_cost) SS (sackee_cost <= newbie_cost)) {

firing = false;
trying = false;

}
else if ((lackey_cost <= sackee_cost) SS (sackee_cost <= newbie_cost)) {

if (low >= high) {
Staff.flreO;
trying = false;

}
else{

low = mid + 1 ;
}

}

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else If ((lackey_cost > sackee_cost) && (sackee_cost > newbie_cost)) {
if (low >= high) {
Staff.flreO;
trying = false;

}
else {

high = mid - 1 ;
}

}
}

}
}

float getRowMin(emplD newbie, Personnels staff, float* Ek) {
empID boss = staff.getBoss();
float min = getRowElement(boss, newbie+1, Ek[boss]);

if (staff.sizeO == 1){
return min;

}

empID poten_boss = staff.getPotentialBoss();

if (min < getRowElement(poten_boss, newbie+1, Ek[poten_boss])) {
return min;

}

staff.retireO;
return getRowMin(newbie, staff, Ek);

}

float getRowElement(int i, in tj, float Ek) {
//C ij + E[i]
return (Cij(i, j) + Ek);

}

float Cij(int i, in tj){
// Cij = (Wn - Wi)(S + (Pj - Pi))
return ((W[N-1j - W[i]) * (S + (P[j] - P[i])));

}

void initQO {
for (int i = 0; i < NJ; i++) {
jobspj.q = (jobs[i].w/jobs[i].p);

}
}

void sortQO {

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mergeSortüobs, temp, 0, NJ - 1);
}

void mergeSort(Job jobsQ, Job tempQ, int left, int right) {
int mid;

if (right > left) {
mid = (right + left) / 2;
mergeSort(jObs, temp, left, mid);
mergeSort(jobs, temp, mid + 1, right);
merge(jobs, temp, left, mid + 1, right);

}
}

void merge(Job numbersQ, Job tempQ, int left, int mid, int right) {
int left_end;
int num_elements;
int tmpjDos;

left_end = mid -1 ;
tmp_pos = left;
num_elements = right - left + 1 ;

while ((left <= left_end) && (mid <= right)) {
if O'obs[left].q >= jobs[mid].q) {
temp[tmp_pos] = jobs[ieft];
tmp pos += 1 ;
left += 1 ;

}
else {
temp[tmp_pos] = numbers[mid];
tmp_pos += 1 ;
mid += 1 ;

}
}

while (left <= left_end) {
temp[tmp_pos] = numbers[left];
left += 1 ;
tmp_pos += 1 ;

}

while (mid <= right) {
temp[tmp_pos] = numbers[mid];
mid += 1 ;
tmp_pos += 1 ;

}

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (int i = 0; i < num_elements; i++) {
numbers[right] = temp[right];
right -= 1 ;

}
}

float getLowerBoundO {
float lb = 0.0;

// compute completion times c for each job
jobs[0].P = jobs[0].p;
for (int i = 1 ; i < NJ; i++) {
jobspj.P = jobs[i-1].P + jobspj.p;

}

// compute the lower bound
for (int i = 0; i < NJ; i++) {

lb = lb + ((jobspj.P + 1) * jobspj.w);
}

return lb;
}

float getUpperBoundO {
intj;
int schedulejength;
float ub = 0.0;
float tally = 0.0;
float C__hat[NJj;
float schedule[2*NJj; II worst case, one job per batch; m=n

II make the pseudo batch schedule
schedule[0] = -1 ;
schedule[1] = jobs[0].p;
j = 2;
for (int i = 1; i < NJ; i++){

tally = tally + jobs[i].p;
if (tally >= 1.0) {
schedule!]] = -1 ;
J++;
schedule]]] =]obs[i].p;
j++:

}
else {
schedule]] = jobspj.p;
j++:

}
}

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schedulejength = j;

j = 0;
float batch Jim e = 0.0;
for (int i = 0; i < schedulejength;) {

if (schedule]] == -1) {
i++;
batch Jim e = S + batchjime;
int batch_size = 0;
while (schedule]] != -1 && i < schedulejength) {

batchjim e = batchjim e + schedule]];
i++;
batch_size++;

}
for (int k = 0; k < batch_size; k++) {

C_hatO] = batchjim e;
]++;

}
}

}

for (int i = 0; i < NJ; i++) {
ub = ub + (C_hat[i] * jobspj.w);

}

return ub;
}

void printMySchedule(GAGenome & g){
Personnel staff;
emplD newbie;
int index;
float current_p[N];
int current_w[N];
float E[N];
int batches[N];

GA1 DArrayGenome<int>& genome = (GA1DArrayGenome<int>&)g;

current_p[0] = 0.0;
current_w[0] = 0;
in tj = 1;
for (int i = 0; i < genome.lengthQ; i++) {

index = genome.gene(i);
current_pO] = jobs]ndex].p;
current_w[j] = jobs]ndex].w;
j++;

}

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pSum(current_p);
wSum(current_w);

E[0] = 0.0;
newbie = 0;

// hire first column
staff.hire(newbie);
E[newbie+1] = getRowMin(newbie, staff, E);
batches[newbie] = staff.getBoss();

// hire second column
newbie++;
staff, hire(newbie);
E[newbie+1] = getRowMin(newbie, staff, E);
batches[newbie] = staff.getBoss();

II run the algorithm for the rest of the columns
for (newbie = 2; newbie < N-1 ; newbie++) {

II hire a newbie
staff.hire(newbie);

// newbie tries to fire employees with imediate seniority using a lackey
fire(newbie, staff, E);

// find row min associated with newbie
E[newbie+1] = getRowMin(newbie, staff, E);
batches[newbie] = staff.getBoss();

}
batches[NJ] = -1 ;

int start_batch = 0;
for (int finish_batch = 0; finish_batch < NJ; finish_batch++) {

while (batches[finish_batch] == batches[finish_batch+1]) {
finish_batch++;

}
cout « endl « "|S|";
for (int j = start_batch; j <= finish_batch; j++) {

cout « genome.gene(j) « ' ';
}
cout « "\b";
start_batch = finish_batch + 1 ;

}
cout « 'I' « endl « endl;

}

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* personnei.h

typedef int empID;

struct NodeType;

class Personnel {
public:
bool isEmptyO const;
void printO const;
int size() const;
void hire(emplD assignjd);
void retireO;
void fireO;
empID getBossO;
empID getPotentialBossO;
empID getSackeeO;
empID getLackeyO;
PersonnelO; // constructor
Personnel(const Personnel& otherList); // copy constructor
"-Personnel̂); // deconstructor
private:
NodeType* head;
NodeType* tail;
int length;

};

/* personneI.C
y *

#include "personnei.h"
#include <iostream.h>

typedef NodeType* NodePtr;
struct NodeType {

empID id;
NodePtr Mink;
NodePtr b jin k ;

};

bool Personnel::isEmpty() const {
return (head == NULL && tail == NULL);

}

void Personnel::print() const {
NodePtr currPtr = head;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cout «
while (currPtr 1= NULL) {

cout « currPtr > Id;
currPtr = currPtr > fjin k ;
if (currPtr 1= NULL) {
cout «

}
}
cout « ')' « endl;

}

int Personnel::size() const {
return length;

}

void Personnel::hire(emplD assignjd) {
NodePtr newNodePtr;

newNodePtr = new NodeType;
newNodePtr > id = assignjd;

if (length == 0) {
newNodePtr > bJink = NULL;
newNodePtr > fJInk = NULL;
head = newNodePtr;
tail = newNodePtr;

}
else {
tail -> f jin k = newNodePtr;
newNodePtr > b jin k = tail;
newNodePtr > f jin k = NULL;
tail = newNodePtr;

}

length++;
}

void Personnel::retire() {
if(isEmpty()){
cout « "Error: personnel list Is empty." « endl;
exit(O);

}

NodePtr tempPtr = head;

If (length == 1) {
head = NULL;
tail = NULL;

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
eise{

head = tempRr > fjin k ;
head > b jin k = NULL;

}
delete tempPtr;
length--;

}

void Personnel::fire() {
if (length < 3) {
cout « "Error: cannot fire, staff size less than 3." « endl;
exit(O);

}
NodePtr newbie = tail;
NodePtr sackee = newbie -> b jink;
NodePtr lackey = sackee -> b jink;

newbie -> b jin k = sackee -> b jink;
lackey -> f jin k = sackee -> fjin k ;
delete sackee;
length-;

}

empID Personnel::getBoss() {
if (isEmptyO) {
cout « "Error: personnel list is empty." « endl;
exit(O);

}
return head -> id;

}

empID Personnel ::getPotentialBoss() {
if (isEmptyO) {

cout « "Error: personnel list is empty." « endl;
exit(O);

}
else if (length < 2) {

cout « "No potential boss exists." « endl;
exit(O);

}

return head -> f jin k -> id;
}

empID Personnel : :getSackee() {
if (isEmptyO) {
cout « "Error: personnel list is empty." « endl;

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exit(O);
}
else If (length < 3) {

cout « "No sackee exists." « endl;
exit(O);

}

return tail > b jin k > id;
}

empID Personnel::getLackey() {
if (isEmptyO) {
cout « "Error: personnel list is empty." « endl;
exit(O);

else If (length < 3) {
cout « "No lackey exists." « endl;
exit(O);

}

return tail > b jin k > b jin k > id;
}

Personnel::Personnel() {
head = NULL;
tail = NULL;
length = 0;

}

Personnel::~Personnel() {
while (lisEmptyO) {

retireQ;
}

}

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Albers, S., & Brucker, P. (1993). The complexity of one-machine batching
problems. Discrete Applied Mathematics, Combinatorial Algorithms,
Optimization and Computer Science, 47(2), 87 - 107.

Baptiste, P. (2000). Batching identical jobs. Mathematical Methods of Operations
Research, 53(3), 355 - 367.

Bein, W.W., Brucker, P., Larmore, L.L., & Park, J.K. (2004). The algebraic Monge
property and path problems. Discrete Applied Mathematics, 145(2005),
455 - 464.

Bein, W.W., Epstein, L., Larmore L.L., & Noga, J. (2004). Optimally competitive
list batching. In Proceedings of the 9^ Scandinavian Workshop on
Algorithm Theory, (SWAT 2004), July 2004. LNCS 3111 Springer-Verlag,
77 - 89.

Brucker, P. (2004). Scheduling Algorithms {4^ ed.). Berlin, Heidelberg, New York:
Springer-Verlag.

Brucker, P., & Kovalyov, M.Y. (1996). Single machine batch scheduling to
minimize the weighted number of late jobs. Mathematical Methods of
Operations Research, 43(1), 1 - 8.

Coffman, E.G., Jr., Yannakakis, M., Magazine, M.J., & Santos, 0. (1990). Batch
sizing and job sequencing on a single machine. Annals of Operations
Research, 26(1 - 4), 135 - 147.

Du, J., & Leung, J.Y.-T. (1990). Minimizing total tardiness on one machine is NP-
hard. Mathematics of Operations Research, 15(3), 483-495.

Hochbaum, D.S., & Landy, D. (1994). Scheduling with batching: minimizing the
weighted number of tardy jobs. Operations Research Letters, 16(2), 7 9 -
86.

Karp, R.M. (1972). Reducibility among combinatorial problems. In Complexity of
computer computations (Proc. Sympos., IBM Thomas J Watson Res.
Center, Yorktown Heights, N.Y., 1972), (pp. 8 5 - 103). Plenum, New York.

Lawler, E.L. (1978). Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Annals of Discrete Mathematics, 2, 75
-90 .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lenstra, J.K. (1977). Sequencing by enumerative methods. Mathematical Centre
Tracts. 69.

Lenstra, J.K., & Rinnooy Kan, A.H.G. (1980). Complexity results for scheduling
chains on a single machine. European Journal of Operational Research,
4(4), 270 - 275.

Leung, J.Y.-T., & Young, G.H. (1990). Preemptive scheduling to minimize mean
weighted flow time. Information Processing Letters, 34(1), 47 - 50.

Mitchell, M. (1996). An introduction to genetic algorithms. Massachusetts: MIT
Press.

Ng, C.T., Cheng, T.C.E., & Yuan, J.J. (2002). A note on the single machine serial
batching scheduling problem to minimize maximum lateness with
precedence constraints. Operations Research Letters, 30, 66 - 68.

Wall, M. (2005). GAiib Documentation. Retrieved April 15, 2006, form
Massachusetts Institute of Technology Web site:
http://lancet.mit.edU/galib-2.4/GAIib.html

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://lancet.mit.edU/galib-2.4/GAIib.html

VITA

Graduate College
University of Nevada, Las Vegas

Lewis A. Raymond

Home Address:
2120 Farmouth Circle
North Las Vegas, Nevada 89032

Degrees:
Bachelor of Science, Computer Science, 2003
University of Nevada, Las Vegas

Thesis Title: A Heuristic for Batching Jobs Under Weighted Average Completion
Time

Thesis Examination Committee:
Chairperson, Dr. Wolfgang Bein, Ph. D.
Committee Member, Dr. John Minor, Ph. D.
Committee Member, Dr. Laxmi Gewali, Ph. D.
Graduate Faculty Representative, Dr. Henry Selvaraj, Ph. D.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Heuristics for batching jobs under weighted average completion time
	Repository Citation

	tmp.1534456447.pdf._sbR0

