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ABSTRACT

Design and Evaluation of Multi-Axis Vibration Shaker Concepts

by

Brinda Holur Venkatesh

Dr.Georg F. Mauer, Examination Committee Co-Chair
Professor

Department of Mechanical Engineering 
University o f Nevada, Las Vegas

and

Dr. Eugene McGaugh, Examination Committee Co-Chair 
Associate Professor 

Department o f Electrical & Computer Engineering 
University o f Nevada, Las Vegas

Elastic bodies exhibit structural resonance and mode shapes at various natural 

frequencies. In order to avoid structural overloads and equipment malfunctions, elastic 

systems, mechanical and/or electrical must be evaluated and tested for their performance 

over the entire frequency range o f their operations. Shaker systems replicate the dynamic 

loads encountered in a field environment, and are used for vibration testing o f elastic 

structures. Such vibration testing ensures tbe reliable performance o f the final product.

The objective o f this research project, sponsored by the Army Research Lab (ARL), 

is the design and Finite Element evaluation o f a new multi-axis shaker system, which will 

be used to test and improve the performance o f mechanical and electronic components 

exposed to severe dynamic loading. The new shaker system should meet three major

111
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design specifications. One, the system should have six degrees o f freedom. Two, the 

system must work in a frequency range from 10 Hz to 3,000 Hz. Three, the system 

should be sturdy enough to carry payloads up to 25 lbs.

In order to develop a sound design methodology, theoretical performance predictions 

based on finite element analysis were compared with experimental records from an 

existing smaller shaker system. Structural modifications aimed at improving shaker 

characteristics were implemented and the performance o f the modified shaker was tested 

experimentally. The predicted and actual dynamics of both small shaker systems were 

found to agree well in terms o f  predicting resonant modes and frequency response 

spectra.

IV
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LIST OF TERMINOLOGY 

Acceleration: Acceleration is a vector quantity that specifies the time rate o f change o f 

velocity.

Accelerometer: An accelerometer is a transducer whose output is proportional to the 

acceleration input.

Amplitude: Amplitude is the maximum value o f a sinusoidal quantity.

Angular Frequency: The angular frequency o f a periodic quantity, in radians per unit 

time, is the frequency multiplied by I k  .

Autocorrelation Function: The autocorrelation function o f a signal is the average o f the

product of the value o f the signal at time t with the value at time t + 1 : R{r) = x(t)x{t + t) 

For a stationary random signal o f infinite duration, the power spectral density (except for 

a constant factor) is the cosine Fourier transform o f the autocorrelation function. 

Autospectral Density (power spectral density): The limiting mean-square value (e.g. of 

acceleration, velocity, displacement, stress, or other random variable) per unit bandwidth, 

i.e. the limit o f the mean-square value in a given rectangular bandwidth divided by the 

bandwidth, as the bandwidth approaches zero.

Auxiliary Mass Damper (Damped Vibration Absorber): An auxiliary mass damper is a 

system consisting o f a mass, spring, and damper which tend to reduce vibration by the 

dissipation o f energy in the damper as a result o f relative motion between the mass and 

the structure to which the damper is attached.

Xll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Center-of Gravity: CG is the point through which passes the resultant o f the weights of 

its component particles for all orientations o f the body with respect to a gravitational 

field; if the gravitational field is uniform, the CG corresponds with the Center-of-Mass. 

Correlation Function: The correlation function o f two variables is the average value of

their product ( ).

Coupled Modes: Coupled modes are modes of vibration that are not independent but 

which influence one another because o f  energy transfer from one mode to the other. 

Critical Damping: Critical damping is the minimum viscous damping that will allow a 

displaced system to return to its initial position without oscillation.

Damper: A damper is a device used to reduce the magnitude o f a shock or vibration by 

one or more energy dissipation methods.

Degrees-of Freedom: The number o f degrees-of-freedom of a mechanical system is equal 

to the minimum number o f independent coordinates required to define completely the 

positions of all parts o f the system at any instant o f time. In general, it is equal to the 

number of independent displacements that are possible.

Deterministic Function: A deterministic function is one whose value at any time can be 

predicted from its value at any other time.

Displacement: Displacement is a vector quantity that specifies the change o f position o f a 

body or particle and is usually measured from the mean position or position at rest. 

Distortion: Distortion is an undesirable change in waveform. Noise and certain desired 

changes in waveform, such as those resulting from modulation or detection, are not 

usually classed as distortion.

Xlll
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Dynamic Vibration Absorber (Tuned Damper): A dynamic vibration absorber is an 

auxiliary mass-spring system which tends to neutralize vibration o f a structure to which it 

is attached. The basic principle o f operation is vibration out-of-phase with the vibration 

o f such structure, thereby applying a counteracting force.

Effective Bandwidth: The effective bandwidth o f a specified transmission system is the 

bandwidth o f an ideal system which (1) has a uniform transmission in its pass band equal 

to the maximum transmission o f the specified system and (2) transmits the same power as 

the specified system when the two systems are receiving equal input signals having a 

uniform distribution o f energy at all frequencies.

Effective Mass: The complex ratio o f force to acceleration during simple harmonic 

motion.

Equivalent System: An equivalent system is one that may be substituted for another 

system for the purpose o f analysis.

Excitation: Excitation is an external force (or other input) applied to a system that causes 

the system to respond in some way.

Filter: A filter is a device for separating waves on the basis o f their frequency. It 

introduces relatively small gain to waves in one or more frequency bands and relatively 

large gain to waves o f otber frequencies.

Forced Vibration: The oscillation o f a system is forced if the response is imposed by the 

excitation. If the excitation is periodic and continuing, the oscillation is steady-state. 

Foundation: A foundation is a structure that supports the gravity load of a mechanical 

system. It may be fixed in space, or it may undergo a motion that provides excitation for 

the supported system.
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Frequency: The frequency o f a function periodic in time is the reciprocal o f the period. 

The unit is the cycle per unit time and must be specified; the unit cycle per second is 

called hertz (Hz).

Induced Environments: Induced environments are those conditions generated as a result 

o f the operation of a structure or equipment.

Isolation: Isolation is a reduction in the capacity o f a system to respond to an excitation, 

attained by the use o f a resilient support.

Linear System: A system is linear if for every element in the system the response is 

proportional to the excitation. This definition implies that the dynamic properties o f each 

element in the system can be represented by a set of linear differential equations with 

constant coefficients, and that for the system as a whole superposition holds.

Mechanical System: A mechanical System is an aggregate o f matter comprising a defined 

configuration o f mass, stiffness, and damping.

Mode of Vibration: In a system undergoing vibration, a mode o f vibration is a 

characteristic pattern assumed by the system in which the motion of every particle is 

simple harmonic with the same frequency. Two or more modes may exist concurrently in 

a multiple degree-of freedom system.

Multiple Degrees-of Freedom System: A multiple degree-of freedom system is one for 

which two or more coordinates are required to define completely the position o f the 

system at any instant.

Natural Frequency: Natural frequency is the frequency o f free vibration of a system. For 

a multiple degree-of-freedom system, the natural frequencies are the frequencies o f  the 

normal modes o f vibration.
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Oscillation: Oscillation is the variation, usually with time, o f the magnitude o f a quantity 

with respect to a specified reference when the magnitude is alternately greater and 

smaller than the reference.

Random Vibration: Random vibration is vibration whose instantaneous magnitude is not 

specified for any given instant o f time. The instantaneous magnitude o f a random 

vibration is specified only by probability distribution function giving the probable 

fraction o f the total time the magnitude lies within a specified range.

Resonance: Resonance o f a system in forced vibration exists when any change, however 

small, in the frequency of excitation causes a decrease in the response o f the system. 

Stiffness: Stiffness is the ratio o f change o f force (or torque) to the corresponding change 

on translational (or rotational) deflection o f an elastic element.

Time History: The magnitude o f a quantity expressed as a function of time.

Transducer: A transducer is a device which converts shock or vibratory motions into an 

optical, a mechanical, or most commonly to an electrical signal that is proportional to a 

parameter o f the experienced motion.

Transfer Impedance: Transfer impedance between two points is the impedance involving 

the ratio o f force to velocity when force is measured at one point and velocity at the other 

point. The term transfer impedance is also used to denote the ratio o f force to velocity 

measured at the same point but in different directions.

Transmissibility: Transmissibility is the nondimensional ratio o f the response amplitude 

o f a system in steady-state forced vibration to the excitation amplitude.

x v i
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Uncorrelated: Two signals or variables xi(t) and X2 (t) are said to be uncorrelated if the 

average value o f their product is zero. If  the correlation coefficient is unity, then the 

signals are said to be completely correlated.

Vibration: Vibration is an oscillation wherein the quantity is a parameter that defines the 

motion of a mechanical system.

Vibration Machine: A vibration machine is a device for subjecting a mechanical system 

to a controlled and reproducible mechanical vibration.

Viscous Damping: Viscous damping is the dissipation o f energy that occurs when a 

particle in a vibrating system is resisted by a force that has a magnitude proportional to 

the magnitude o f the velocity o f  the particle and direction opposite to the direction o f the 

particle.

x v ii
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CHAPTER 1 

INTRODUCTION

Shaker Systems are used for the vibration testing o f structures. Vibration testing is the 

shaking or shocking o f a component or an assembly to see how it will stand up to the real 

world conditions [1,2,  3]. It is an important step in the design and development o f any 

new product that could fail when exposed to vibrations [1,2].

Some tests are as simple as dropping the product from a certain height, or loading it 

into a truck and driving it on rough roads. Others are more complicated like duplication 

o f the vibration history of an airplane or the stress experienced by vehicle tires.

Vibration testing is required for military equipment, in the aerospace industry, the 

automotive industry, and for commercial and consumer electronics. The process o f 

vibration testing is depicted in Figure 1.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r,

s  5

^ - 4 #

D-

«--̂ V'ïtA

)

PROSEDURE

Measurement

1r

Analysis

1r

Taikiriog

T«w Spccification 
lo HmijMe [ht *cW
enviroiiineat w ith a iî

Products, Structure, Vehicles

Requutd know ho»
Hardware & Sa!

Vjbraûon. Force, Transducers, 
In sm im e n ta t io n

- .  S i m a l  P r o e e s s i o g  ,!

Vibrabon A n A io r , 
SofhvM XEA5LRE

% Tel o. En'. iriMient lesrs
lage:Pjbl 

Standard Siwie

.'roc r .e :d ( Prqcpsaiaz

Measurement, Analvsis. M em or\

Communication Net Work

Dam Processms

Vibration ComroUer 
Single .-Vsis ED SH Shakers 
2.-\Xîs ED SH Shakers
3A xa E D S H S h k cr ,
3Axi:6D0F EDSHShakwa 
Shock XlechanicaLlhiémnaùc

ED SH Shakers 

V ibration CorvtroJler 
SHsE Muidj’SingIc Axis Notching 
iR A \D O M  hfiïlti’Sîtsgle Axis Notchtng 
IshOCisl Miilti''Singlg Axis________

Execution « f Tests w ithout 
destroyiiig Specimens

V ib r a t io n ,  Force. T ransduce ra  
i n s t r u m e n ta t io n

V i b r a t i o n  Analyzer. S o f tx a r e  
NE.tSL'RE 

btOD.U. ANALYSIS 

FEA

O ptim al D ata Processing 
for the  task

CAD

Assurance of Perfonnance, Reîiabilitv Cost Down,

Figure 1-1: Vibration Testing Process, [4]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 Vibration Testing Procedures

A typical vibration testing system consists of three groups o f hardware:

• An excitation group comprised o f a signal generator, a power amplifier and 

one or more actuators, e.g. electrodynamic shakers,

• A feedback circuit made up o f one or more accelerometers, signal 

conditioning and monitoring units, and

• A controller. The controller can be analog or digital. Different control 

algorithms exist for sinusoidal and random vibration testing.

The shaker systems are designed to produce vibrations consistent with mathematical 

models or recorded time histories from experiments. MIL std.802.11 depicts a possible 

vibration-testing scenario which is shown in Figure 1-2. First the real world vibration 

data are acquired using a portable recording device. The shaker test should expose the 

test article to the power density spectrum found under operating conditions. The 

controller computes the drive signals applied to the shaker system. The controller 

measures the output. The controller iteratively modifies the drive signal such that the 

tested system’s output power density spectrum agrees as closely as possible with 

specifications.
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Historically, products were tested first using single-axis actuation. It has been proven 

that multi-axis testing provides a more realistic representation o f actual field conditions 

[4], In many cases, field failures can be repeated only when vibration is applied in all 

coordinate directions simultaneously. For example, triaxial excitation can cause twice the 

fatigue damage as similar test amplitudes and duration in single axis testing [ISO 

Standard 2631-I]. Thus multi-axis testing is replacing uniaxial systems in many 

applications.

Random vibration testing is more predominant these days simply because it excites 

all test specimen resonance in the applied spectrum simultaneously, which is much more 

realistic when compared to sine testing [1, 2, 3, 5, 6].
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Usually most shakers have equal number o f transducers and exciters. This is termed 

as “Square” arrangement. It has been proved that “Rectangular” arrangement where there 

are more controllers than exciters, is a better technique to control multi-input multi­

output shaker systems [7].

This type o f control will be useful and practical for MIMO testing where 2 

electrodynamic shakers will be used in a single, usually vertical, axis such as missile 

transportation or airborne applications. Traditional control in these cases, were to place 

two accelerometers near the two attachment points or exciters. Several Limit Channels 

were defined along with these two Control Channels. But limit control is known to 

reduce the excitation levels and create uneven motion on the test article, whereas 

Adaptive Rectangular Control has proven to a more uniform motion on the shaker table 

and the test article. TEAM TENSOR, the shaker under analysis has 16 accelerometers 

and 6 exciters.

Due to the mismatch between the number o f exciters and number o f sensors, 

controlling these multi degree o f freedom (MDOF) shakers becomes a difficult task. A 

method to transform the response from multiple control transducers and the actuation 

capability o f the multiple actuators that are being used from actuator space to MDOF 

space and vice versa to effectively perform these MDOF tests has been developed [8].

1.2 Motivation

The DOD objective o f increasing the reliability o f smart ammunitions and critical 

vehicle components requires the realistic testing of prototypes under duplicate field 

vibrations. The DOD wishes to conduct multi-axial tests at frequencies up to 2 kHz.
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The existing multi-axis devices are either costly and/ or do not satisfy the MIL-STD 

specifications for vibration testing. The development o f shaker concepts capable o f 

meeting the rigorous military specifications requires an in-depth evaluation o f controls, 

excitation, and spatial-motion drive technologies.

The work described in this thesis has been funded by the US Army Research Lab 

with the objective o f  analyzing an existing shaker developed by the TEAM Corp. o f 

Burlington, WA, with the eventual goal to develop a 6-axis shaker system for payloads to 

25-lbs. The existing 5-lbs payload Team shaker system operates at frequencies ranging 

from 10 Hz to 3000 Hz [9].

1.2 Problem Definition

The wider project objective is the design and analysis o f shaker design configurations 

for the vibration testing o f mechanical and electronic components. As a minimum the 

shaker should meet the following specifications:

• Shaker generating 6 D egree-of Freedom (DOF) vibration with complete, 

simultaneous control o f the amplitudes and phase angles o f all 6 degrees of 

freedom.

• Accelerations in six directions simultaneously to 50 g

• Frequency range 10 Hz-3000 Hz

• Payload up to 25 lbs

• The current uniaxial testing method does not adequately reproduce the multi-axis 

vibration environments that prevail in operating conditions.

• Multi-axial vibrations dominate the typical operating environments.
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• Existing multi-axis devices are either costly and/or inadequate in meeting MIL- 

STD vibration test requirements.

• Reduce test time by 67% compared to uniaxial testing

In general, it is difficult to predict resonant frequencies above 500 Hz in shaker 

systems. Thus it is hard to design a shaker system which will satisfy the above 

requirements. In order to save time and money, the capabilities o f Finite Element 

Analysis (FEA) are explored in this project.

Our project seeks to model and analyze an existing electrodynamic six-axis shaker 

system, developed by TEAM Corp. The TEAM shaker system is excited at 6 spatial 

locations by electrodynamic actuators. The analytic model is to be compared to 

experimental results recorded on the TEAM shaker system. These experiments were 

conducted by Mr. Bill Woyski and Mr. Doug Lund o f Team Corp.

The analytic model should be sufficiently detailed and accurate so as to predict the 

experimental response within narrow error bands. The validated analytic model would 

then serve as a basis for designing larger multi-axis shaker systems.

1.3 Thesis Outline

This thesis is divided into six Chapters. The first chapter presents an introduction to 

vibration testing and defines the project objectives. The second chapter describes the 

important features o f hydraulic and eleetrodynamie shaker systems. Chapter three 

describes the physical setup and the Finite Element (FE) modeling o f the shaker system. 

The fourth chapter explains the sensor placement, input signals, controller, experimental 

setup and various mathematical analysis procedures relevant to this work. The fifth
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chapter discusses the experiments eondueted at TEAM, eorresponding simulations at 

UNLV and the results obtained. The power density spectra of experimental records are 

compared with the simulation results. Conclusions and proposed future work are 

presented in the sixth chapter.
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CHAPTER 2 

SHAKER SYSTEM

This chapter presents a brief discussion of the principles o f hydraulic and electric 

shaker systems, followed by a detailed study o f eleetrodynamie shakers. Harris (2002) 

provides a good understanding o f the vibration current shaker technology.

2.1 Hydraulic Shaker

Hydraulic shakers generate large forces and amplitudes as required in testing large 

aerospace or marine structures, automotive industry, and seismic testing or in 

applications where the magnetic fields o f  the eleetrodynamie shakers cannot be tolerated 

[2, 3, 5]. The hydraulic actuators are small in relation to the force attainable. A firm 

ground or a large massive base is necessary to anchor the shaker. The useful frequency 

range is generally limited to about 500 Hz.

Figure 2-1 depicts a 40-ton hydraulic shaker installed in China for seismic testing. 

Eight servo hydraulic actuators drive the table with 4 vertical actuators and 2 pairs of 

horizontal actuators. Frequencies range from 0.1 Hz to 100 Hz with maximum 

displacement o f greater than 200 mm p-p. Loads up to 60 tons can be accommodated [5].
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s
Figure 2-1: Hydraulic Shaker for Seismic Testing

The CUBE, manufactured by TEAM Corporation, is a 6 DOE hydraulic device, 

which permits testing up to 250 Hz in sine, expandable to 500 Hz when using random 

testing in the vertical axis. The 6 servo hydraulic actuators are situated inside the shaker 

structure [9].

2.2 Eleetrodynamie Shaker

Eleetrodynamie multi-shaker systems have the advantages o f high frequency 

capabilities and linearity in a wide dynamic range.

Jens T. Broch and George Fox Lang explain in detail the important design factors of 

these devices. The structure o f an eleetrodynamie shaker is similar to a loudspeaker [3, 

10, 11, 12]. It has a coil o f wire suspended in a fixed radial magnetic field. When a 

current is passed through this coil, an axial force F, is produced proportional to the 

current /, the magnetic flux B, passing through the coil and the length L of the wire within 

the flux field. Laplace law states that the force on the current wire is: F  = R 7L. The coil.

10
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coil form and the table structure comprise the armature assembly on which the test object 

is mounted.

S u p p o rt Structure
L oad T able

inner P o le

tvlagnet

i:oH

O uter P o le
Isolation
Mount

Figure 2-2: Eleetrodynamie Shaker [10]

The performance envelope o f an eleetrodynamie shaker system is strongly influenced 

by three modes o f vibration namely Isolation mode, Suspension mode (low frequency 

modes) and Coil mode which occur at higher frequencies [3, 10, 11, 12].

Other limiting factors are the voltage/current capacities o f the power amplifier that 

drives it, designed stroke (displacement) o f the table, the moving mass and total mass o f 

the shaker, the thermal power limit o f the coil and the stress safety factor o f the armature 

[10, 11, 12, 13].

An eleetrodynamie shaker is usually modeled as electromechanical system with 

experimentally derived two-port network. This depends on the characteristics o f both, the 

shaker and the load. This characterization in turn depends heavily on the accurate

11
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measurement of the input voltage and current along with the aeeelerations o f the shaker 

armature. Thus measuring both current and voltage is advisable [14].

2.4 TEAM TENSOR

Team Corporation’s TENSOR is a 6-DOF eleetrodynamie shaker system. The 

t e n s o r ’s load table (termed ‘center member’ in the following chapters) and actuators 

are assembled in a tight, compact package. The compact design results in considerable 

table stiffness and comparatively high-frequency modes [9].

Figure 2-3: Team TENSOR Multi-Axis Test System

Referring to Fig. 2.3, each actuator operates in compression mode, with pre-loaded 

springs at opposing sides. In equilibrium, each pair o f springs applies a constant pre-load. 

The drive signal generates forces which move the table from the equilibrium position.

12
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Two equal actuator signals in the same coordinate direction cause pure translational 

motion when applied in phase. Phase differences between two equal actuator signals in 

the same coordinate direction cause rotation as well as translation.

13
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CHAPTER 3

ANALYTIC MODEL OF THE SIX-AXIS SHAKER SYSTEM:

FINITE ELEMENT ANALYSIS 

This chapter discusses the mechanical structure o f the shaker table and its finite 

element model in detail. The main part o f interest o f the eleetrodynamie shaker system is 

the center member. The original structure is as shown below.

,1 L

Figure 3-1: TEAM TENSOR

14
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FEA is a mathematical technique for analyzing stress, which breaks down a physical 

structure into substructures called "finite elements." The finite elements and their 

interrelationships expressed as a matrix equation and solved mathematieally. The 

material properties and boundary conditions are eonsidered over these elements and 

expressed in terms o f  unknown values at element eomers. This results in a set of 

equations, the solution to whieh gives us the approximate behavior of the system [15]. In 

essenee a computer model of a material or design is stressed and analyzed for spécifié 

results [2, 15].

We used the graphieal user interfaee MSC.Patran for preproeessing and post 

proeessing work. The solver was MSC.Nastran with MSC.Marc preference. The whole 

finite element analysis proeess is divided into several smaller tasks, which are explained 

below:

• The geometry, shown in Figure 3.2 was ereated in Solidworks.

• Imported into Patran.

• System modeling.

• Meshing the model

• Define physical elemental properties

• Apply load and boundary conditions

• Finite Element Analysis

3.1 Geometry

The eenter member is made up o f magnesium AZ31B. This material was ehosen 

beeause o f its low density and high strength. The physical dimensions o f  the center

15
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member are shown below in Figure 3-2. All the dimensions are in US Customary units. 

The table is 8 inches in height. The tabletop measures 6.5 by 8.5 inches. There are 6 

eleetrodynamie actuators. Two in each X, Y, and Z direction. There are two preloaded 

springs opposing each o f these actuators. They are made o f spring-steel. One end o f each 

o f these springs is fixed to the ground. These springs and actuators are in contact with the 

table through a viscous oil film.

-.056 Ihs.

.34 lbs.
(DOES NOT INCLUDE 

'WEIGHT OF
VOICE COIL COPPER WINDINGS)

THIS END OF SPRING 
I s  FIXED

THIS END OF SPRING 
IS FIXED'

TEAM CORPORATION

Figure 3-2: Engineering Drawing of the Center Member [9]

16
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The design and setup o f the real system has been explained above in the engineering 

drawing. This system was modeled in Patran in preparation for the FE analysis. As seen 

in Fig. 3-2, the moving parts consist o f one single solid body (center member) surrounded 

by actuators, springs, dampers, pre-loads and constraints. The following sections discuss 

the meshing o f  the solid body, assignment o f the material and element properties, and 

then the modeling o f the whole system along with the pre-loads and boundary conditions.

3.2 Meshing the Model

Meshing is a process o f breaking up a physical domain into several small sub- 

domains in order to facilitate the numerical solution o f a partial differential equation. 

Most meshing algorithms use the “bottoms up” method. Nodes are placed at all vertices, 

and then they are distributed along the curves. The result o f  the curve meshing process 

provides input to a surface-meshing algorithm, which decomposes the surface into 

triangular and quadrilateral elements. Finally, if  the body is a solid entity then a set of 

meshed areas defining a closed volume is fed to the volume mesher for the generation of 

different solid element types. Either we can specify the kind o f elements, number of 

elements in various parts o f the body or we can use automatic meshing options available 

in all commercial softwares.

The meshed center member is shown in Figure 3-4 below. We first divided the whole 

body into several smaller and simpler geometric shapes in order to obtain a nice and even 

mesh. The body is divided into tetrahedral elements. Each element connects 10 nodes. 

The meshed center member has 16000 elements and 30000 DOFs.

17
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Figure 3-3: Meshed Model

3.3 Physical Properties

Constitutive Model:

Property Name

Linear Elastic

Value

Elastic Modulus =

P o isson  Ratio =

S h ear Modulus =

D ensity =

Thermal Expan. C oeff = 

Structural Damping C oeff = 

R eferen ce  Temperature =

6500000.

0.34999999

0.000185541

1.41E-005

(ôâoî"

7 0 .

Figure 3-4: Magnesium Az31B Properties as entered in Patran Database
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3.4 System Modeling

Two finite element models for this analysis were considered. The first one is the exact 

replication o f the Tensor system while the second is a simplified version. The geometry 

of the center member and meshing are identical in both models. The major difference 

between the two FE models lies in the definition of the contacts between the sliding 

surfaces. This is explained below in subsections 3.4.1 and 3.4.2.

3.4.1 Nonlinear Model

12 small rigid mass-less surfaces are added to the FE model, see Fig. 3.5. The contact 

between the deformable center member and these rigid surfaces is defined as a sliding 

contact with a friction coefficient o f zero. This contact definition makes the FE model 

non-linear and thus complex to analyze. We used the nonlinear solver MSC.Mare, along 

with MSC.Nastran for the simulations.

The springs are modeled by beam elements, made up of spring-steel material. These 

springs are attached to the center o f the rigid surfaces. The other ends o f  these beam 

elements are attached to another smaller beam element. One end o f these smaller beam 

elements is completely fixed to tbe ground while the other end has 4 degrees o f fi’eedom: 

three rotational and one translational. The spring and the rigid plate are constrained in 

their respective X-Y plane.

The nonlinear system has boundary nonlinearity, which is due to the contact between 

the aetuators and the table. When in contact, mechanical loads and perhaps heat are 

transmitted across the area o f contact. If friction is present, shear forces are also 

transferred. Both deformable-to-rigid and deformable-to-deformable contact situations 

can be modeled in MARC.

19
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Surface

Beam Elements

Figure 3-5: Model with Rigid Surfaces and Beam Elements

3.4.2 Linearized Model

Doug Lund from TEAM has developed the simplified structure. Here a cluster of 

rigid elements is attached to the surface o f the center member at each o f the 12 pad 

bearing locations. These rigid elements have no mass. Instead of beam elements, the 

inbuilt linear spring elements are used. Each end o f the spring element acts like a ball 

joint, transmitting only axial forces.

20
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A single mass element represents the total moving mass o f the actuator. A second 

mass element represents the mass o f the preload piston. These single mass elements are 

constrained to allow uniaxial motion only in the direction parallel to the linear spring 

element. The linear model simulates the sliding surface contact without using nonlinear 

elements.

Figure 3-6: Model with Rigid Elements and Linear Springs

21
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Rimci E lem ents

Spring Elements

[lint Mass

Figure 3-7: Inset from Figure 3.6

3.5 Load & Boundary Conditions:

A preload o f 90 lbs is applied at the end o f each spring element in the nonlinear 

model. The preloads are not considered in the linear model since the equal and opposite 

preloads cancel each other.

The sinusoidal excitation force is applied at the eenter o f the surface where the beam 

is conneeted. In the linear system, the sinusoidal force is applied where the spring 

element is connected to the cluster o f rigid elements.

22
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3.6 Comparing the Two Models using Transient Analysis

Transient Analyses were conducted on both systems. The input was a single 

frequeney sine wave o f 1000 Hz. The simulation was eondueted for 0.05 seconds. 

Nastran took 48 hours for the complex model and 6 hours for the simplified one. The 

linear analysis proved to be approximately 8 times faster than the nonlinear analysis. The 

output acceleration at point 8 (comer pt on table top) is shown below. The results from 

both FE models are nearly identical, and indistinguishable fi-om another in Fig. 3.7, 

eonfirming that the simplified model does portray the contacts correctly.

Figure 3-8: Time Response from both FE Models

Figure 3-7 shows a transition period o f 0.03 seconds before the output reaches a 

steady state response. We also observe a second fi-equency along with the expected 1000 

Hz signal. The 50-Hz envelope seen in Fig. 3-7 results fi-om the undamped resonant 

spring elements attached to the body. The 50Hz resonance was not observed 

experimentally. The addition o f viscous damping in parallel to the springs, as shown 

Figure 3-8, eliminated the resonance. The transitory oscillations disappear completely

23
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after 0.08 seconds. Fig. 3.9 shows the time-domain response to a 1,000 Hz drive signal 

after viscous damping was added.

Figure 3-9: Dampers Added to the Simplified Model

P E Q E IN tP1133 1

Figure 3-10: Time Response after Adding Dampers

24
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CHAPTER 4 

SPECTRAL ANALYSIS

4.1 Quantitative Descriptions

The complete definition of a vibration condition requires the description o f magnitude 

and its variation with both frequency and time. Vibration data can consist of 

deterministic, random and mixed signals. The following seetions provide an overview o f 

the statistical operations performed on such data [2, 16, 17, 18]. These theories and 

equations were extensively used to obtain the results presented.

4.1.1 Fourier Transform

The Figure 4-1 shows the transformation o f a vector x(t) from time domain to 

frequency domain and vice versa. Discrete Fourier Transforms (DFTs) are applied to the 

signals recorded over a time period T. Standard DSP uses lower case letters to represent 

time domain information such as x(«A t), and upper case letters to represent frequency 

domain information that is X («A /) [18].

25
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(oUcctivdy refMifd o  as X[

Figure 4-1: Discrete Fourier Transforms [18]

The following relationships [2, 16, 17, 18] apply:

X (wA/") = x{nAt)e ^ (4.1)

(4.2)

Here « = 0,1,2,3, °o and m -  0,1,2,3 , (N  - 1)

Block size (no. of samples) : N  = T / At

Frequency range (Hertz) : = 1 / 2At -  A f ( N / 2)

Sampling rate (Hertz) : l /A t  = 2F^

(4.3)

(4.4)

(4.5)
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Frequency resolution (Hertz) : A f  -  1/7 ^

Record length (Seconds) : T = \!  A f  -  NAt (4.7)

The DFT, and thus any other quantities derived thereafter, is susceptible to Aliasing, 

which arises when the signal x(t) contains frequency components or “energy” above F^ax 

o f the DFT. Owing to the sampling or digitizing process, this energy will appear to be 

within the DFT frequency range. To avoid this, either F  max must be large enough to 

include all significant frequency components o f x(t) or, for a given F„ax, the components 

above Fmax must be removed by analog filtering before sampling.

4.1.2 Spectral Density

Power Spectral Density (PSD), also called Auto Spectral Density G, . f f ) , and 

describes the frequency or spectral properties of a single time history [2, 16, 17, 18]. The 

cross spectral density G ( / ) ,  describes the joint spectral properties o f two time 

histories.

G„( f )  = • ( / )  = |5 , ( / ) f  (4.9)

G , ( / )  = S . ( / ) 5 , n / )  (4.10)

Here Sx(f) is the two sided spectrum and Sx*(f) is the complex conjugate o f Sx(f)- 

G ^ ( /)  is the one sided spectral density.
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4.1.3 Spectral Density-Correlation Functions

The correlation function o f two random time records is a measure o f how predictable, 

on average; one is at any instant from a measurement o f the other at the same instant [2, 

16, 17, 18]. It is obtained, in theory, by time shifting and multiplying the two variables 

together and integrating over all time. Correlation on a single time history is known as 

autocorrelation.

As seen in section 4.1.2, the spectral density functions G ^^(/)and Ĝ  ̂( / )  describe 

signal characteristics in the frequency domain, whereas the correlation functions 

^xx ( / )  ^xy ( / )  describe signal characteristics in the time domain. They are related 

through the Fourier transformation as follows.

Autocorrelation :G ^^(/) = 2 0 <  f  <oo  (4.11)

R_(T) = 1/2 j G _ ( /K ' '^ '#  -o . < T< oc (4.12)

Crosscorrelation :2 0 < f < o o  (4.13)

;;^(T) = 2 jG ^ (/)e " '^ '#  _oo<T<oo (4.14)

Correlation analysis is concerned with stationary processes. Thus in vibration 

analysis, it is usually carried out on a short interval o f record during which physical 

parameters are assumed unchanged. Correlation techniques are used for detecting and

28
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analyzing a weak signal in the presence o f noise. They can also determine the 

contribution o f each of several independent sources o f excitation to a single output [2, 3].

4.1.4 Frequency Response Functions

Transfer functions are the Laplace transforms o f a Single Input Single Output (SISO) 

linear dynamic system. The frequency response o f a linear SISO system, H(f), is easily 

obtained from the transfer function by replacing the Laplace operator, 5 , with the Fourier 

operator, jw  (w=2*pi*J). The relationship between the input and output or response o f a 

linear system is shown in Figure 4.2. The complex transfer function H(f) describes the 

magnitude and phase o f the response per unit sinusoidal input as a function o f the input 

frequency.

INPUT, X ( t )
OUTPUT, y ( t )

H(f)w w

Sx (0 Sy(f)

Figure4-2: Linear SISO System

Transfer functions can also be determined from the Fourier transforms o f the input 

and response time-histories and from the spectral densities o f the input and response 

signals when the input is a random process. The governing relationships [2, 16, 17, 18] 

are:
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Fourier transforms : H { f )  =
S, ( f )
s , ( / )  (4.15)

Auto spectral densities : | / / ( / ) |  ̂
G _ ( / )  (4.16)

G y .(/)
Cross spectral densities : H { f )  = -----  (4.17)

G _ ( / )

4.1.5 Coherence Function

The coherence function is a measure o f the quality o f the input, response and cross- 

spectral densities for a system as shown in Figure 4.2

G „(/)G ,,,(/) (4.18)

From eq.4.16 and 4.17

,  ' ( / ) =  jg-(/w/)r
G „ ( / ) |« ( / ) f c „ ( / )  (4.19)

The value o f y  is less than unity in practical cases. A coherence < 1 indicates that

the response is not entirely attributable to the input alone, but may also be due to, for 

example, to extraneous noise and/ or nonlinearity o f the system. In the frequency domain, 

the coherence function is analogous to the correlation coefficient in the time domain.
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4.2 Spectral Density Matrix and Impedance Matrix

The Multi Input Multi Output (MIMO) Random Vibration Controller simulates 

environments that can be characterized by a reference spectral density matrix [R (/)] . Its 

objective is to find a set o f drive signals for the actuators o f the system-under-test, such 

that its response has a spectral density matrix which agrees with[7?(/)] [2, 3, 12, 19, 20]. 

The difference between the measured control signals and the reference signals is termed 

as control error signals.

System Identification is an important aspect o f MIMO random control. This is done 

by actuating the system with drive signals that are band-limited and uncorrelated. The 

drive signals and the output signals are collected and stored as shown in Figure 4-3. The 

transfer function o f the system is computed using this stored data. From equation 4.17:

= (4.20)

[ / / ( / ) ]  = [G ,,(/)][G ^ (/)]-' (4.21)

Here [G^^(/)] is the cross spectral density matrix between the output signals and the 

drive signals, and [G^^(/)]is the auto spectral density matrix o f the input signals. The 

inverse matrix o f [ / / ( / ) ] ,  [Z (/)]  is termed Impedance matrix. It allows the control 

system to determine the relative contribution o f the control errors to each actuator’s drive 

signal.

The initial drive signal is estimated using the prescribed reference signal[/?(/)] 

instead of the control signal. This is as shown in equations 4.22, 4.23 and 4.24.

[G ,X/)] = [ ^ ( / ) ] [ G ^ ( / ) ] [ ^ ( / ) r  (4.22)
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[ G ^ ( / ) ] = [ ; / ( / ) r ' [ G , x / ) ] [ ; / ( / ) r  (4 .2 3 )

[G ,//)]= [/f(/)r '[G ,,(/)][;^ (/)r  (4.24)

Above, the asterisk []^* denotes the complex conjugate transpose of a matrix. The 

drive signal amplitudes are iteratively calculated to minimize the error between the 

reference and the control.

The elements o f the spectral density matrix elements are ordinary power spectral 

densities (PSDs) and cross-spectral densities (CSDs) as described in section 4.1.2. The 

PSDs are the diagonal elements, describing the power at each o f the control points. The 

CSDs represent the coherence and phase between each o f the control points, i.e. the 

spatial and frequency domain representation o f the motion of the multiple control points 

[2, 12, 13, 16, 17, 18, 19].

4.3 Test Methodology

The Spectral Dynamics Jaguar controller is capable o f generating random signal 

multi-axes drive functions. The controller principle is as discussed in section 4.2. This is 

again illustrated in Figure 4.3 [17].

Referring to Fig. 4-3, the data logger connected to the Jaguar controller records the

time histories o f both the input (Current ~ Force) termed as the drive signal (d i dn) and

output signals (accelerometer readings at the chosen locations) also referred to as the

control signal (c ;..... c„) from the TEAM electrodynamic shaker. The recorded input

(drive) signals’ time histories were then applied as input signals to the FEA model at
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UNLV. The recorded output time histories, as well as the PSDs computed by the Jaguar 

controller, were compared with the FEA output time histories and PSDs.

Drive
signals
recorded

Control-1Drive-1

Multi-Exciter
Controller Output 

signals 
recorded 
by data

System-under-
testrIve-N

Control-N

Figure 4-3: Spectral Dynamics Controller Concept

PRESCRIBED TEST  
REFERENCES

CONTROL
AM LITUDES
ESTIM ATION

riM E-FREQ UENCY-
TRANSFORM ATION

UPD A TE DRIVES  
TO MINIMIZE  
CONTROL ERROR

F R E Q U E N C Y -T IM E - 
TRANSFORM ATION

Figure 4-4: Spectral Dynamics Controller Block Diagram
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Figure 4-4 depicts the basic working the Spectral Dynamics controller, Jaguar [20]. 

This block is a part o f Figure 4-3. In the sense that the input and output signals collected 

by the data logger are processed in this block to compute the drive signals. Control 

vectors C], cz, C3 ...c„ and drive signals di, Ü2, ds...dn are fed to a time-frequency- 

transformation block. This block produces the auto spectral density matrix [C^^(/)j and 

cross spectral density matrix ( / ) ] .  Then the system-under-test is characterized by 

computing the transfer function matrix [ / / ( / ) ]  [19, 20].

4.4 Reference Signals

Referring to Fig. 4-4, the set o f ‘prescribed test references’ would be logically derived 

from MIL-STD 810F, METHOD 514.5. Among the spectra listed in MIL-STD 810F, 

METHOD 514.5, those extending to frequencies to 2 kHz are o f the highest interest, 

since 2 kHz is generally accepted as the highest frequency of mechanically transmitted 

vibrations. PD spectra listed in MIL-STD 81 OF, METHOD 514.5 characterize uniaxial 

test regimes. Fig. 4-5 shows one PSD spectra from MIL-STD 810F, METHOD 514.5 [4]. 

This is the type o f vibration experienced by Jet aircraft store equipment.
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2000

Figure 4-5: Sample PD Spectra from MIL-STD 810F [4]

4.5 Sensor Placement

Tri-axial accelerometers were strategically placed at 16 different locations on the 

center member to record the data. These locations were carefully chosen following 

several experiments at Team Corp., to control the original table through the 1200 Hz 

resonance. The ‘stick-model’ o f Figure 4-6 lists locations for sensor placement.

Referring to table 4-1, signal streams are labeled according to accelerometer location, 

direction and orientation based on the global frame xyz. The numbers 1-16 denote 

location points according to the stick model o f  Figure 4-6. Points 1, 2, and 3 denote 

points on the bottom shoulder o f  the center member. Points 5, 6, and 7 are located on the 

top shoulder o f the center member. Point 4 is in the middle o f the vertical section. Points 

8 through 16 are on the table top o f the center member.
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The orientation o f each triaxial accelerometer varies with the orientation o f the 

surface onto which it is mounted. The orientation o f a particular output signal is 

characterized in Table 4-1 relative to the global X-Y-Z frame shown at the bottom right 

comer o f Figure 4-6. Sensor orientation is expressed as + when consistent with the global 

X-Y-Z frame, and as -  otherwise. For example, the upward directed signal at point 3 is 

expressed as 3Z+.

Drive inputs are applied to points 1Z+ (zl), 2Y- (yl), 3Z+ (z2), 5X+ (xl), 7X+ (x2) 

and 7Y- (y2). Two drive signals (x l, x2), (y l, y2), and (z l, z2) are averaged to calculate 

the frequency response with respect to the outputs. This is explained in section 4.6. Table 

4-1 shows each point and the actuator location and orientation.
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Shakers

Shaker

Shaker 4

S h a k e r :

Figure 4-6: Sensor Locations

Table 4-1: Actuator Location and Orientation

Drive# Orientation

1 3Z+

2 1Z+

3 7Y+

4 5Y-

5 2X+

6 7X+
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^0000007

Figure 4-7: Sensor Locations in FE Model

4.6 Single-Axis and MIMO Testing

The primary objective o f the test program was to determine the modal characteristics 

as well as the frequency response o f the shaker system and to compare predictions from 

the finite element model against these experimental test results. The difference between 

both permits validation o f the accuracy o f  the finite element model.

The structural analysis consisted o f modal analysis and various vibration testing 

experiments single frequency single exciter tests, followed by single axis two exciter 

tests, two axes sinusoidal excitation tests and six axes excitation tests. These are 

discussed in the following sections.
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4.6.1 Modal Analysis

Modal tests, also known as ground vibration tests in the aircraft industry, are tests 

conducted to determine experimentally the natural Irequencies, mode shapes, and 

associated damping factors of a structure [2 ,3 ,6 ,2 1 , 22, 23].

For linear systems, the modes also result as the roots o f the characteristic equation o f 

the mathematical model o f any given system. Consider a single DOF spring-damper-mass 

system. The general mathematical model o f this system is shown in equation 4.26 

my{t) + cy{t) 4- ky{t) -  u{t) (4.26)

Where m = mass constant, c = damping constant, k = stiffness constant and u(t) is 

the input force. ÿ{t) = y{t)Id t^ ?inà y{t) = dy{t)I dt are acceleration, velocity and 

displacement.

The Laplace transform o f this differential equation is called the characteristic 

equation and is given by;

m s^+cs + k = Q (4.27)

The roots o f this equation give us the modal information about the system under 

consideration.

Âj = —(J| 4- jO) and À-2 — —(72 jG) (4.28)

T, and 2^ are called the modes, (7, is the damping factor for mode 1 and a  is the 

undamped natural frequency for mode 1. 2^ = -(J2 +jco  is usually the complex 

conjugate of 2̂ .

The system o f equation 4.26 can also be represented using state space equations. Let 

select the displacement and velocity as the state variable; that is, x, = y and x ^ -  ÿ  ■ Then
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we have, x, = x  ̂ and mx^ = w -  cXj -  Ax,. This can be represented as a state-space 

equation as shown;

:(:,(0
X2(f)

0 1

■kim - d m
p i(0 +

~ 0 ■
X2(f) l /m

[1 o f x,(f)
X2(0

(4.29)

(4.30)

Generally, a linear time invariant system can be represented as a state space equation 

o f the form

x{t) = Ax{t) + Bu{t) (4.31)

y{t) = Cx{t) + Du{t) (4.32)

Here A is called the mass matrix and det(A/ -  J )  = 0 is the characteristic equation. 

The solution to the homogeneous equation also gives us the modes 2̂  and 2^ also known 

as the eigenvalues [21, 22, 23].

Experimentally, the modes are found by exciting the system with sinusoidal or 

transient excitation at a number o f points o f the structure. The responses at locations 

throughout the structure then define the mode shape for that frequency. The methodology 

and results o f modal analysis are discussed in chapter 5.

4.6.2 Six-Axis Testing

Accelerometer signals at points 1, 3, 4, 8, 12, 13 and 14 have been recorded. X, Y 

and Z are output signal coordinates. Table 4-2 shows each point and the accelerometer 

location and orientation.
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Table 4-2: Accelerometer Location and Orientation

Point X Y Z

1 +3 -1 +2

3 +1 -̂ 2 -3

4 +3 +2 +1

8 +2 +1 +3

12 +2 + 1 +3

13 +2 + 1 +3

14 +2 +1 +3

We apply spectral output reference definitions as per MIL-STD 81 OF analogous to 

Fig. 4-5 to each driven coordinate. In each of the cases listed in table 4-5, the input/output 

time histories, in turn the shaker system performance and coherence were recorded after 

the Jaguar controller had modified the ‘drives’ such that the spectrum of each observed 

I/O pair was within the specified bounds, o f say +!- 3dB deviation from the specified 

reference.

In order to make reasonable comparison between the experiments and simulations, 

the time domain input functions applied to the TEAM Tensor during experiments were 

recorded with a sampling rate o f 0.09775 10,230 kHz. These input functions included 

sine as well as random signals. These recorded inputs were then applied to the FE model 

for the simulation purposes. Time domain output responses were recorded and 

statistically compared.

Table 4.3 describes the experiments conducted at TEAM, and the corresponding FEA 

performed at UNLV. Accelerometers are installed at points 1, 3, 4, 8, 12, 13 and 14. X, Y
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and Z are output signal coordinates. Table 4-2 shows each point and the accelerometer

location and orientation.

First column o f Table 4-3 shows the drive locations, which are actuators that were 

active for that particular set o f experiment, the test type, which could be any o f the 

following: single input, single axis, and dual input, dual axis, and six inputs, three axis. 

Within these experiments, the input could have been Sine or Random. The third column 

shows the accelerometer locations where data were collected. These experiments and 

their respective results are discussed in chapter 5.

Table 4-3: List of Tests Conducted on Modified Team Shaker Platform

Drive
locations Test Type Accelerometer Locations Responsible

1, or 3, or 5, 
or 7

Single Input 
• Random (30 to 3,000 

Hz)
• Sine sweep 300 to 3,000

Hz
• Sine input at 1 kHz, 1.6

kHz, 2,050 Hz

Points 1 through 7, point 
12, and two sides o f table, 

e.g. points 8, 11, 14 
through 16.

TEAM

1 and 3, 
in phase & 

out o f phase 
(0, 90, & 180

degrees)

Dual input 
• Random (30 to 3,000 

Hz)
• Sine sweep 300 to 3,000

Hz
• Sine input at 1 kHz, 1.6 

kHz, 2,050 Hz (excite
both (z-axis) voice coils)

Points 1 through 7, point 
12, and two sides o f table, 

e.g. points 8, 11, 14 
through 16.

TEAM

All Shakers
Six-axis translation Random 

(30 to 3,000 Hz) 
no coherence

Points 1 through 4, point 
12, and two sides o f table, 

e.g. points 8, 11, 14 
through 16.

TEAM & 
UNLV

All Shakers

Controlled Tablet op 
Six-axis translation Random 

(30 to 3,000 Hz) 
no coherence

Points 8, 13, 14 TEAM &
UNLV
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4.7 Mathematical Analysis of Experimental Data

4.7.1 Transfer Function: Translations & Rotations

The relationship between drives and outputs are as shown in the transfer function 

matrix in Figure 4-7, they are consistent with Marcos Underwood’s publication, [8]. This 

method is briefly discussed in chapter 1 on page 5 o f this publication.

There are 6 input signals and there are 6 outputs (3 translations and 3 rotations). The 

contribution o f each input to each output should be determined first in order to obtain the 

transfer functions.

Translation in each direction (X, Y, and Z) will result mainly due to the inputs in the 

same direction.

The rotations (roll, pitch and yaw) are function of the forces in the perpendicular 

directions. Referring to Figure 4-8, the inertial mass is accelerated at points A and B, with 

R being the distance between A and B. The angular acceleration o f the mass is the 

difference o f accelerations at points A and B divided by the distance R.
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Inertial Mass 

A B

Distance R

AcceL AccelB

Figure 4-8: Rotational Components

Figure 4-9 shows the tahle top. The points o f interest are 8, 13, and 14. Accelerometer 

measurements were recorded at these three locations in the following coordinate 

directions: 8z (Z2), 13x (X), 13y (Y l), 13z (Z l), 14y (Y2), and 14z (Z3). Using these 

acceleration data, the rotational component is calculated as described above in Figure 4-8.

P t8
Z2

Pt 13
Z3

Yl Pt 14
Y2

Figure 4-9: Sensor Locations and Orientations for 6-Axis Control
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1 0 0 0 0 0 f x  '

Y 0 0.5 0.5 0 0 0 Ti
Z 0 0 0 0.33 0.33 0.33 T2

Rx 0 0 0 0 0.1538 -0.1538
Ry 0 0 0 0.1076 0 -0 .1076 Z2

y 0 0.1076 -0 .1076 0 0 0

• The rotation about the X-axis is estimated from the difference in accelerations Z2 and 

Z l due to the inputs Iz and 3z. Using the Pythagoras theorem, the distance between 

the two accelerometers at points 8 and 13 is approximately 9.29 inches. The distance 

between the two actuators at points 1 and 3 is 4 inches.

• The rotation about the Y-axis is estimated from the phase o f the transfer function 

between Z3 and Z l, the inputs considered are Iz and 3z. The distance between the 

two accelerometers at points 13 and 14 is approximately 9.29 inches. The distance 

between the two actuators at points 1 and 3 is 4 inches.

• The rotation about the Z-axis is estimated from the phase o f Y2 to Y l, the inputs 

considered are 5y and 7y. The distance between the two accelerometers at points 13 

and 14 is approximately 9.29 inches. The distance between the two actuators at points 

5 and 7 is 4 inches.

4.7.2 Data Analysis using MATLAB

The experimental data were recorded by TEAM as ASCII text files, listing the time 

histories o f the input and output variables during the experiment. The records are 

imported to Excel worksheets, which are then loaded into MATLAB.
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The plots in Figure 4-10 shows the raw and the filtered data obtained from both 

experiment and simulation. Standard Savitzky-Golay Mat lab filtering fimctions were 

used reduce the noise. The frequency transforms employed Kaiser-Bessel windowing.

A utocorrelation o f ttie Input Z=0.5(z1 +z2)

10

10

Raw
Filtered

200 400 600 800 1000 1200 1400 1600 1800 2000
C ro ss  Correlation o f ttie Output TEAM 8Z

Raw 
Filtered 

r

10"
200 400 600 800 1000 1200 1400 1600 1800 2000

C ro ss  Correlation o f the Output UNLV 8Z

10

Raw 
Filtered

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Figure 4-10: Raw and Filtered Data

Savitzky-Golay smoothing filters (also called digital smoothing polynomial filters or 

least-squares smoothing filters) "smooth out" a noisy signal whose frequency span 

(without noise) is large. In this type o f  application, Savitzky-Golay smoothing filters 

perform much better than standard averaging FIR filters, which tend to filter out a 

significant portion of the signal's high frequency content along with the noise. Savitzky-
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Golay filters are optimal in the sense that they minimize the least-squares error in fitting a 

polynomial to frames o f noisy data. The Matlab code to obtain the frequency response is 

shown below.

X : input 
y  : output
xl = fft{autocorrelation{x)) 
y l : fft{crosscorrelation{x, y))

frequencyresponse : —  
xl

‘xcorr’ estimates the auto-correlation and cross-correlation sequence o f a random 

process. ‘Y = fft(X)’ returns the discrete Fourier transform (DFT) o f vector X, computed 

with a fast Fourier transform (FFT) algorithm. If  X is a matrix, fît returns the Fourier 

transform of each column o f the matrix.
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CHAPTER 5

RESULTS

5.1 Modal Analysis

Several experiments were conducted at the Team Corp in order to determine the 

dynamics and natural frequencies o f the structure.

In a first series o f experiments, both center members (original and modified) were 

excited using one exciter at a time, collecting 3-axis acceleration to drive force transfer 

functions at 16 locations on the eenter member and tabletop.

Figure 5.1 shows the frequency response o f the original center member due to the 

single exeiter testing. The frequency response at all the 16 points with respect to all the 

actuating points is overlaid in this graph.

Resonance is observed around 1200 Hz and 1500 Hz within the 2000 Hz bandwidth 

range o f interest. The resonant frequencies move to 1600 Hz and 2000 Hz in the stiffened 

modified center member, see Figure 5-2.
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Figure 5-1: Collective Frequency Responses of the Original Center Member

The modified eenter member was excited with a broadband random signal using both 

vertical exciters simultaneously in phase. The frequency response at all the 16 points 

with respect to all the actuating points are overlaid and shown in Figure 5-2.
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Figure 5-2: Collective Frequency Responses of the Modified Center Member

The data collected using simultaneous excitation by all 6 exciters, while controlling 

the power spectral density of 6 response accelerometers (which together form a linearly 

independent set o f measurements suitable to define 6 degrees o f freedom) turned out to 

be useless, due to suspieious data sets strewn throughout the data.

At UNLV, the MSC-NASTRAN modal analysis module computed the natural 

frequencies o f the FE model. The FE model exhibits consistently higher resonance 

frequencies than the experimental observations. The results agree better when the number 

o f elements is increased in the FE model, making the FE model ‘softer’.
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A comparison o f experimentally recorded and computed modes for the original 

geometry is shown in table 5-1.

Table 5-1: Eigenfrequencies of Original Center Member

Mode # Experiment

Frequency

FEA

Frequency
Description

1 1180 1230 Bending about X & Y at point 4

2 1520 1701 Torsion about Z, Bending about Y at point 4, 

Torsion & Bending about X at point 4

The results o f  modal analysis o f the original center member suggested that the 

structure lacked stiffness. The center member was stiffened by making the vertical beam 

section solid, raising the resonant frequencies o f the center member considerably. The 

result is shown in table 5-2.

Table 5-2: Eigenfrequencies of Modified Center Member

Mode #

Experiment

Frequency

FEA

Frequency Description

1 1600 1617 Arms bending at joint with vertical CM

3 2020 2285 & 2398 Lower Arm bending about X
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5.2 Six-Axis Random Testing

The center member was excited in all six axes with random input signal without any 

coherence. The resulting input and output time histories were recorded and stored on the 

Jaguar system’s Throughput Disk (TPD).

The recorded 6-axis force-input time histories were applied to the MSC-Nastran FE 

model. Several delays were caused by the MSC-Nastran requirement to write very large 

scratch files to the hard drive. We added the largest hard drive available from Dell (160 

GB capacity) and were able to extend the simulation to a reasonable time length.

As mentioned in Sections 4.2, 4.3 and 4.4, and 4.6, the Jaguar controller modifies the 

drive signals in order to obtain the output (control) signals within a error margin o f +/- 

3dB deviation from the specified reference. Thus it is sufficient for us to match the 

waveform shape in order to validate the finite element model.

Figures 5-3 to 5-5 show the frequency response o f the system for random inputs at 

point 8. The graphs obtained for various other center member locations, namely points 1, 

3 and 4, 12, 13, and 14 are shown in Appendix A. The Y axis magnitude o f the frequency 

response in Figures 5-3 through 5-5 and Figures A1 through A18 is Ibfrg and X axis scale 

is Hz.
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Figure 5-3: Frequency Response at Pt 8 in X Direction
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Figure 5-4: Frequency Response at Pt 8 in Y Direction
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Figure 5-5: Frequency Response at Pt 8 in Z Direction

5.3 Six Axis Shaker Control

In one test, the shaker was actively controlled to maintain the table top flat over the 

entire frequency range to 2 kHz. The three reference locations are the Z-coordinates of 

points 8, 13, and 14. Six measurements points were chosen so as to obtain a 6-by-6 

control matrix in the Jaguar Controller. The number o f sensors can easily be increased by 

adding additional channels. The Jaguar Controller seeks to minimize the error between 

the reference and the recorded spectra. The controller updates the Z-matrix (see chapter 

4.2) iteratively seeking the best possible agreement o f the measured output at the 

reference locations with the reference spectra. The objective o f the control experiment 

was to suppress the resonance within the frequency range of 0 Hz to 2000 Hz. The 

frequency responses o f  the controlled table top are shown below and it is evident that the 

objective was achieved.

Here the response is measured with respect to all the individual inputs. The graphs are 

labeled in a simple manner. For example, the frequency response at point 8 in the Z
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direction due to excitation in the X direction is labeled as 8Z/X. This is seen in Figure 5- 

6. The main diagonal o f the spectra is shown here. The rest o f the frequency response 

curves are shown in Appendix B. The Y axis magnitude o f the frequency response in 

Figures 5-6 through 5-12 and Figures B1 through B13 is Ibfrg and X axis scale frequency 

is Hz.

experiment
simulation
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10

10

200 400 600 800 1000 
Frequency in Hz

1200 1400 1600 1800 2000

Figure 5-6: 8Z / Z
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Figure 5-8: 13Y / Y
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Figure 5-10: 14Y
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It is evident that though there is a differenee in magnitudes, the frequency response 

curve obtained experimentally is replicated with simulations.

5.4 Modal Analysis o f Shaker with Attached Test Object

At UNLV, we ran simulations with a 2 pound steel block attached to the shaker table. 

This block acts as a test object. These experiments are not yet conducted at the TEAM 

Corporation to make any comparison. The input is the random drive signal from the six 

axis random experiment and the outputs were collected at 4 different points on the table 

top. They are 8, 12, 13 and 14. The modal analysis o f the structure when a test object is 

attached to it is discussed below in Figure 5.40 and table 5.3. In the first set o f data, the 

load is placed in the center o f the table.
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Table 5-3: Eigenfrequencies with the Test Object Attached at the Corner

Mode # FEA Freq Description

1 860.48 Table flapping at the point o f attachment

2 1560.8 Torsion ahout X at point

In the second case the load is attached to the comer o f the table top. It is noticed that 

the predicted resonant frequencies o f the system vary, depending on the placement and 

mass o f the attached load. This has to be verified experimentally.

Table 5-4: Test Object Attached to the Center

Mode # FEA Freq Description

1 761.45 Torsion about Z

2 1561 Bending about X at point 4

3 1020.2 Bending about Y at point 4

4 1497.6 Table top flapping

5 1531.6 Arms bending at joint with vertical CM

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The objective o f  the research effort described here is the predictive analysis o f  six- 

axis dynamic shaker designs, and the validation o f the modeling and design concepts 

through experiments. Finite element analysis and spectral response analysis were used to 

compare FE model predictions and experimental results. Overall, good correlation 

between the experimentally measured and model computed frequency responses has been 

achieved.

6.2 Future Work

The test data indicate that more damping o f the structural modes is very desirable in 

future systems. The Spectral Dynamics control system performed well in controlling the 

shaker system through its resonances. However, even with the good dynamic range of the 

control system, the resonance at about I600Hz was not well controlled.

In the experiments, the drive current o f the electrodynamic actuators was measured 

as a voltage differential across a small series resistor. Drive current is assumed to be 

proportional to the actuation force.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Measuring the current with a voltage drop across a resistor has potential 

problems. Hall Effect current sensors might offer better signal quality. Additional 

experiments are planned to characterize the controller and shaker system performance 

under various MIMO control scenarios.
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APPENDIX A

SIX-AXIS RANDOM FREQUENCY RESPONSE
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20001 5001 0 0 0500

Frequency in Hz

Figure A l: Frequency Response Spectrum at Point 1 in X Direction
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Figure A2: Frequency Response at Ft 1 in Y Direction

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



experiment
simulation

■•A

20001 500500 1000
Frequency in Hz

Figure A3: Frequency Response at Pt 1 in Z Direction
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Figure A4: Frequency Response at Pt 3 in X Direction
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Figure A5: Frequency Response at Pt 3 in Y Direction
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Figure A6: Frequency Response at Pt 3 in Z Direction
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Figure A7: Frequency Response at Pt 4 in X Direction
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Figure A8: Frequency Response at Pt 4 in Y Direction
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Figure A9: Frequency Response at Pt 4 in Z Direction

—  experiment
—  sim ulation

-§

I

10

2500200015001000500
Frequency in Hz

Figure AlO: Frequency Response at Pt 12 in X Direction
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Figure A12: Frequency Response at Pt 12 in Z Direction
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Figure A13: Frequency Response at Pt 13 in X Direction
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Figure A14: Frequency Response at Pt 13 in Y Direction
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Figure A15: Frequency Response at Pt 13 in Z Direction
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Figure A16: Frequency Response at Pt 14 in X Direction
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Figure A17: Frequency Response at Pt 14 in Y Direction

experiment
sim ulation

t

10
1500 

Frequency in Hz
2000 2500500 1000

Figure A18: Frequency Response at Pt 14 in Z Direction

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

SIX AXIS CONTROL CROSS SPECTRA
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