Evidence of an active Enso and Pdo during the mid-Holocene from a Costa Rican speleothem

April Dianne Azouz
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation
https://digitalscholarship.unlv.edu/rtds/2016
EVIDENCE OF AN ACTIVE ENSO AND PDO DURING THE MID-HOLOCENE FROM A COSTA RICAN SPELEOTHEM

by

April Dianne Azouz

Bachelor of Science
Boston University
2004

A thesis submitted in partial fulfillment of the requirements for the

Master of Science Degree in Geoscience
Department of Geoscience
College of Sciences

Graduate College
University of Nevada, Las Vegas
August 2006
The Thesis prepared by

April Dianne Azouz

Entitled

EVIDENCE OF AN ACTIVE ENSO AND PDO DURING THE MID-HOLOCENE FROM

A COSTA RICAN SPELEOTHEM

is approved in partial fulfillment of the requirements for the degree of

MASTERS IN GEOSCIENCE

Examination Committee Chair

Dean of the Graduate College

Examination Committee Member

Examination Committee Member

Graduate College Faculty Representative
ABSTRACT

Evidence of an active ENSO and PDO during the mid-Holocene from a Costa Rican speleothem

by

April D. Azouz

Dr. Matthew Lachniet, Examination Committee Chair
Professor of Geoscience
University of Nevada, Las Vegas

The El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are the most important sources of interannual to multidecadal climate variability in the tropics. A high resolution (~3.8 years/sample) paleoclimate record of Central American rainfall variability has been reconstructed from a U/Th-dated stalagmite (7890 to 6490 yrs B.P.) from Costa Rica to constrain the onset and variability of ENSO throughout the Holocene, and to determine its role in generating regional climate anomalies. I suggest drier conditions, forced by El Niño and/or the PDO, are represented by higher $\delta^{18}O$ values, and are correlative with higher $\delta^{13}C$ values, indicating that soil respiration rates are affected by regional climate variability, which are recorded in the speleothem stratigraphy grayscale values. This study provides new evidence, based on 3 different proxies, that throughout the middle Holocene, rainfall was
varying at interdecadal timescales, which I attribute to low frequency variability in ENSO and the PDO.
TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES ... vii

ACKNOWLEDGMENTS ... viii

CHAPTER 1 INTRODUCTION ... 1
 Purpose of Study .. 1

CHAPTER 2 BACKGROUND .. 6
 Geologic Background ... 6
 Cave and Speleothem Formation ... 7
 Oxygen and Carbon Isotopes .. 8
 Climatological Background .. 12
 Previous Work ... 15

CHAPTER 3 METHODS ... 24
 Sample Collection .. 24
 Sample Preparation .. 24
 Stable Isotope Sampling .. 25
 Radiometric Dating ... 25
 Grayscale Analysis ... 28
 Statistical Analysis ... 29

CHAPTER 4 RESULTS AND INTERPRETATIONS .. 33
 Cave Environment ... 33
 Thin Section Qualitative Analysis ... 33
 Geochronology ... 34
 Stable Isotopes ... 36
 Grayscale Analysis ... 38
 Fourier Analysis ... 39

CHAPTER 5 DISCUSSION ... 53
 ENSO and the PDO ... 53
 Solar Variability ... 57
 Atlantic Climate Variability ... 57
 Carbon Isotope Variations ... 58
 Covariation ... 59
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map of Central America</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Cross-section of Barra Honda National Park</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>DEM of southern Central America</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Cave formation diagram</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Amount effect</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Normal vs. El Niño condition diagrams</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Pacific Decadal Oscillation</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Photograph of sample CT-7</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of Terciopelo cave</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>CT-7 age model</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>CT-7 δ^{18}O time series</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>CT-7 δ^{13}C time series</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Grayscale time series</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>CT-7 δ^{18}O spectral analysis</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>CT-7 δ^{13}C spectral analysis</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>Grayscale spectral analysis</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>CT-7 δ^{18}O wavelet analysis</td>
<td>50</td>
</tr>
<tr>
<td>4.9</td>
<td>CT-7 δ^{13}C wavelet analysis</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>CT-7 grayscale wavelet analysis</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of ENSO proxy with CT-7</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>CT-7 covariation</td>
<td>62</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

This project was funded by Matthew Lachniet's National Science Foundation Grant #ATM-0318172; the Bernada E. French Foundation, University of Nevada, Las Vegas; the Graduate and Professional Student Association, University of Nevada, Las Vegas; and the Geological Society of America.

I would like to thank Matthew Lachniet, the best advisor a grad student could ever ask for, for his support, guidance, and encouragement over the past two years. To my other committee members, Ganqing Jiang, Mike Nicholl and Barbara Luke, thank you for your patience, time, and support throughout this project. A special thanks to Yemane Asmerom and in particular, Victor Polyak from the University of New Mexico Radiogenic Laboratory, for their invaluable help with learning and interpreting the U/Th data while working in their lab. Thanks to Steve Burns at the University of Massachusetts, Amherst for running all 374 stable isotope samples.

To my roommates, Aaron Hirsch, Nate Suurmeyer, Colin Robins, and Milo the cat, thank you for reminding me there is life outside of speleothems. And finally, thank you to my family and friends for their encouragement and support over the past few years.
CHAPTER 1

INTRODUCTION

Purpose of Study

The development of high quality Holocene paleoclimate records throughout the tropical Pacific is crucial to our understanding of the driving forces that produce the two dominant modes of Pacific climate variability: the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The tropics receive the greatest amount of solar radiation, and as the 'heat engine' for global circulation are responsible for driving atmospheric and oceanic circulation to higher latitudes. Few quantitative terrestrial isotopic paleoclimatic studies exist for this part of the world, therefore, understanding tropical climate history is important because it provides information for ENSO and PDO predictive climate modeling and future water use planning in Central America.

Many studies throughout the Pacific basin suggest that the Holocene is characterized by an increase in ENSO frequency and amplitude towards the present since the mid-Holocene (Moy et al., 2002; Tudhope et al., 2001; Cole, 2001; Rodbell et al., 1999). The middle Holocene is of
special interest because various proxy records and modeling studies suggest that ENSO was suppressed/weakened during this period (Otto-Bleisner, 1999; Tudhope et al., 2001; Clement et al., 2000; Koutavas et al. 2002), and only between 7000-5000 years B.P. did the onset of modern ENSO conditions begin (Moy et al. 2002; Rodbell et al., 1999; Sandweiss et al., 2001). Not all regions are affected by tropical Pacific climate variability in the same manner and magnitude, therefore knowledge of the stability of teleconnections between Costa Rica and other regions directly affected by ENSO and the PDO during the Holocene will help elucidate how the tropics respond to climatic shifts and variations in moisture availability.

Tropical climate change is reflected in speleothem carbonate because oxygen isotope variations reflect the amount of rainfall. Speleothems are cave calcite deposits that incorporate rainfall derived oxygen into their precipitated calcite, and can be precisely dated by U-series isotopes (Richards and Dorale, 2003). In this study, a speleothem is used as a paleoclimatic proxy to determine the role of ENSO and the PDO in generating regional climate anomalies in Costa Rica throughout the middle Holocene.

Costa Rica is located between 9-11° N and is found at almost the narrowest point on the Central American isthmus (Figure 1.1). Costa Rica is segmented by high cordilleras, therefore, the oceanic and climatological affects on Costa Rica are produced from both the Pacific
Ocean and Caribbean Sea (Waylen et al., 1996). Costa Rica is an important area to document the speleothem isotope record because it is a region directly affected by Pacific climate variability and should provide a reliable record to track changes in the migration of the Intertropical Convergence Zone (ITCZ). During El Niño events and the positive phase of the PDO, drier conditions throughout Costa Rica are produced (Waylen et al., 1996) due to an increase in SSTs across the equatorial Pacific Ocean, which displaces the ITCZ further south. Costa Rica is a key region affected by ENSO and the PDO, therefore, paleoclimatic records generated there should reflect ENSO and PDO history.

The goal of this study is to determine the role of Pacific climate variability, ENSO and the PDO, in Central America throughout the mid-Holocene. A high resolution rainfall proxy based on oxygen isotope ($\delta^{18}O$) variations has been reconstructed from a Costa Rican speleothem. The amount effect is the dominant control on $\delta^{18}O$ variations, therefore during El Niño events and the warm phase of the PDO, drier conditions with higher $\delta^{18}O$ values should be recorded in speleothem carbonate.

Carbon isotope ($\delta^{13}C$) variations, combined with $\delta^{18}O$ as a rainfall proxy, were analyzed to address the relationship between tropical rainfall and biological respiration. Carbon isotope values in speleothems are dependent on the photosynthetic pathway of overlying vegetation (Dorale et al., 1998; Richards and Dorale, 2003), soil respiration, soil/water rock equilibration time (Baker et al., 1997), and climate (Burns et al., 2002).
Grayscale stratigraphic analysis was also performed, and provides an ultra high resolution record of the internal speleothem stratigraphy, resulting in three time series which will be compared to establish a climate proxy that can be used to resolve rainfall variability and carbon cycling within the soil zone, overlying limestone bedrock, and atmospheric CO₂, over the interval of speleothem growth.
Figure 1.1. Map of Central America. Star indicates location of field area in Barra Honda National Park in Costa Rica
CHAPTER 2

BACKGROUND

Geological Background

During the Pliocene, the convergence of the Caribbean plate with the Cocos and Nazca plates produced the Isthmus of Panama, which includes Costa Rica and Panama (Duque-Caro, 1990). The oldest rocks found in Costa Rica are the ophiolitic Late Mesozoic Nicoya Complex, which are Jurassic to Upper Cretaceous sea floor rocks (Mora, 1992; Castillo-Munoz, 1983). Since the late Mesozoic, several tectonic events have accreted, faulted, uplifted, and allowed deposition of oceanic and neritic sediments (Mora, 1992). The Rivas formation, which consists primarily of interbedded mudstones and siltstones, directly overlies the Cretaceous ophiolite sequence.

During the Eocene, the Barra Honda formation, consisting of shallow water reef limestones, were later uplifted above sea level and commonly show evidence of karstic features (Figure 2.1). Barra Honda National Park, which is one of the best known and best developed areas of karst in Central America, is located in the Tempisque Basin where the Nicoya Peninsula joins the mainland (Figure 2.2). The maximum thickness of
the Barra Honda formation is ~250 m and it is not overlain by any other unit, suggesting that continuous uplift of this region occurred since deposition during the Eocene (Mora, 1992).

Terciopelo cave, which is where sample CT-7 was collected, is one of the many caves located in Barra Honda National Park. Barra Honda presently receives ~1.5 m of rain each year (Coen, 1983) and the mean monthly temperature in the Guanacaste dry forest was 28°C for the period between 1960-1970 (Gordon et al., 1974).

Cave and Speleothem Formation

Unsubmerged limestone caves provide a favorable environment for speleothem calcite deposition, which precipitates from dripwaters entering the cave from the land surface above (e.g. White, 2004). Speleothem formation results from rainfall percolating through the soil zone. As rainwater infiltrates the soil, biological respiration increases the pCO₂, which is higher than the pCO₂ in the atmosphere. This soil moisture is charged with the biogenic CO₂, which increases the acidity of water by the formation of carbonic acid. Water infiltrates downward until it reaches the carbonate bedrock, where it percolates through fractures within the limestone, dissolving the calcite until reaching calcite saturation. Upon reaching a pre-existing cave with atmospheric pCO₂ concentrations, calcite saturated groundwater will degas CO₂ (Hendy, 1971), resulting in precipitation of solid calcite speleothems
Paleoclimate information, in the form of δ^{18}O and δ^{13}C values are also preserved within the calcite structure of the speleothem (Gascoyne, 1992).

The internal speleothem stratigraphy can display varying degrees of color and intensity when viewed in both reflected and ultraviolet light (Van Beynen et al., 2001), and can provide paleoclimate information in combination with stable isotope analysis. Speleothems fluoresce due to the presence of organic acids trapped within the calcite (Gascoyne, 1977), varying concentrations of trace elements (James, 1997), and can result from differences in porosity of individual layers, driven by infiltration and dripwater rate (Genty, 1992). Luminescent laminations are dependent on surface climate, soil/vegetation characteristics, and groundwater hydrology at the site (Baker et al., 1999), therefore, the internal speleothem stratigraphy provides an excellent paleoenvironmental proxy.

Oxygen and Carbon Isotopes

Isotopes are used as tracers of certain geochemical processes, such as evaporation, precipitation, and photosynthesis. An isotope is an atom with the same number of protons and a different number of neutrons located in its nucleus. Isotopes of an element have identical chemical properties, but differ in their masses. Isotopic fractionation occurs due
to the difference in masses, in which certain geochemical processes prefer either the heavier or lighter form of that element.

Isotopic values are reported as ratios expressed in delta (δ) notation where $R = \text{18O}/\text{16O}$ or $\text{13C}/\text{12C}$, expressed in per mil ($\%o$) notation with respect to two standards: Vienna PeeDee Belemnite (VPDB) for calcite, and Vienna Standard Mean Ocean Water (VSMOW) for water.

$$\delta \text{ ($\%o$)} = \frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \times 1000$$

where $R = \text{18O}/\text{16O}$ or $\text{13C}/\text{12C}$

Many factors contribute to the $\delta^{18}O$ values of speleothem calcite. The average $\delta^{18}O$ values of rainfall may reflect the temperature of condensation, seasonality of precipitation, ice volume effect, continental effects, sources of water vapor and the amount effect (Dansgaard, 1964; Harmon et al., 1978). The air temperature in Costa Rica does not vary more than a few degrees annually, and within a cave system, temperature variations are dampened relative to the atmospheric temperature. Variations in $\delta^{18}O$ values due to temperature dependent fractionation are likely to be constant, because at ~25°C, cave temperature variations of ~1°C should result in only a 0.25%o effect on $\delta^{18}O$ values of speleothem calcite precipitating in isotopic equilibrium with drip waters (Kim and O’Neil, 1997). Also, in poorly ventilated tropical caves, such as Terciopelo cave, where relative humidity is near 100% year-round, kinetic fractionation from evaporation should be minimal.
In the tropics, variations in δ¹⁸O values of rainfall indicate changes in the amount of precipitation due to the 'amount effect' (Dansgaard, 1964), in which the initial rainfall is enriched in ¹⁸O isotopes, while further precipitation becomes increasingly depleted in ¹⁸O isotopes (Dansgaard, 1964; Rozanski, 1993; Lachniet and Patterson, 2003, 2006) (Figure 2.4). Kinetic fractionation caused by rapid CO₂ degassing, rapid calcite precipitation and cave-water evaporation may also affect the δ¹⁸O and δ¹³C values of stalagmite carbonate (Mickler et al., 2004). In tropical regions, the most likely source of kinetic fractionation would be due to rapid degassing of CO₂ from carbonate-saturated drip waters, and not from evaporation of water (McDermott, 2004), due to the high relative humidity within the cave system. Evaporation within the soil zone could affect the δ¹⁸O values of speleothem calcite and would increase the δ¹⁸O value of drip water before reaching the stalagmite (Lachniet et al., 2004a). Rapid CO₂ degassing produces an enrichment in δ¹⁸O values, which results in a shift in the δ¹⁸O values in the same direction as the amount effect (Burns et al., 2002). For example, rapid degassing produces higher δ¹⁸O value, similarly to the amount effect, where drier conditions produce higher δ¹⁸O values. Therefore, kinetic fractionation due to rapid degassing or evaporation within the soil zone, leads to an increase in the δ¹⁸O values of the speleothem calcite.

Many factors influence speleothem δ¹³C values. The carbon isotope composition of speleothems can be used to infer the isotopic composition
of atmospheric CO₂ (Baskaran and Krishnamurthy, 1993), type of vegetation overlying the cave (Dorale et al., 1992), contribution of soil carbon relative to aquifer limestone, the dissolved inorganic carbon (DIC) content of the dripwater, and climate (Burns et al., 2002). Dry tropical rainforest vegetation, which is located throughout Barra Honda National Park, is dominated by C₃ plants, which produce δ¹³C values in speleothems to have a range between -14 to -6‰ VPDB. Plants that utilize the C₄ pathway, such as warm season grasses and maize, exhibit higher δ¹³C values and produces speleothem δ¹³C values between -6 to +2‰ VPDB. In environments where the soil-water residence time is short, complete isotopic equilibration between soil CO₂ and infiltrating water may not occur, resulting in water containing an isotopically heavier atmospheric CO₂ component (McDermott, 2004).

Kinetic fractionation processes, such as evaporation, rapid CO₂ degassing, and prior calcite precipitation would enrich the δ¹³C values of the precipitated calcite. To determine the effects of equilibrium versus kinetic fractionation of tropical speleothems, Mickler et al. (2004) analyzed drip water samples, CaCO₃ precipitated on glass plates, and speleothem δ¹⁸O and δ¹³C values. Although speleothems may appear to precipitate in isotopic equilibrium, Mickler et al. (2004) concluded that kinetic fractionation effects most likely are occurring, which can increase or decrease the δ¹³C values. Precipitation of calcite in isotopic equilibrium is assumed to occur when cave environments have high
relative humidity, which is an assumption that must be made in order to use $\delta^{18}O$ and $\delta^{13}C$ values of speleothems as a paleoclimate proxy.

Climatological Background

The two dominant factors that control intra- and inter-annual precipitation throughout much of Central America are the annual migration of the Intertropical Convergence Zone (ITCZ) and ENSO (Waylen et al., 1996). The ITCZ is a zone of low pressure that occurs where the Northeast and Southeast trade winds converge at $\sim 5-10^\circ$ N, resulting in a band of heavy precipitation. The ITCZ migrates seasonally following the most intense solar radiation and the warmest sea surface temperatures (SSTs) to reach $\sim 12^\circ$ N in August and recede to its southernmost position in February (Coen, 1983).

The annual migration of the ITCZ results in wet and dry seasons in the tropics, and together with seasonal changes in wind direction, is referred to as the Central America Monsoon (Giannini et al., 2000). The wet season in Costa Rica commonly starts in May and lasts through November, while the dry season occurs from December to April (Coen, 1983). Although rain can occur in the dry season, $\sim 70\%$ of the annual precipitation falls during the wet season (Coen, 1983).

The El Niño/Southern Oscillation (ENSO) also affects Costa Rican climate. There is a strong link between ENSO events and large-scale precipitation patterns (Ropelewski and Halpert, 1987). ENSO events
occur from the complex interaction between the ocean and atmosphere. ENSO refers to tropical Pacific Ocean variability, including both El Niño and La Nina events. El Niño warm events disrupt normal atmospheric and oceanic circulation, which produces anomalous weather patterns throughout the world every 2-7 years (Enfield and Cid, 1991). El Niño modulates the annual migration of the ITCZ by displacing it further south near South America. This prolongs the dry season of El Niño and produces drought on the Pacific Coast drainage of Costa Rica (Waylen et al., 1996).

During an El Niño year, a warm tongue of water spreads eastward along the equator due to a weakening of the trade winds and produces large changes in atmospheric circulation (Figure 2.5). Above average SSTs in the Eastern Equatorial Pacific during El Niño years can induce an early dry season through much of southern Central America (Enfield and Alfaro, 1999). When SSTs are elevated for five or more consecutive months, an El Niño warm phase is generated. The warm phase is associated with lower mean annual precipitation over much of the equatorial Americas (Waylen et al., 1996; Vuille et al., 2003). During a La Niña year, the opposite occurs, in which a cool tongue spreads eastward along the equator due to a strengthening of the trade winds and increases rainfall on the Pacific slope of Costa Rica and decreases rainfall on the Atlantic slope.
Similarly to ENSO, the Pacific Decadal Oscillation (PDO) is a long-lived El Niño-like pattern of Pacific climate variability (Mantua and Hare, 2002) (Figure 2.6). Three main characteristics distinguish the PDO from ENSO. First, 20th century PDO events occur on longer timescales (20-30 years) (Mantua and Hare, 2002) compared to ENSO events (2-7 years) (Enfield and Cid, 1991). Second, the primary effects of the PDO occur in the extratropics, more specifically in the North Pacific, with secondary climatic effects in the tropics. However, ENSO primarily affects the tropics with teleconnections to the extratropics occurring later. Third, while the causes for ENSO variability are relatively well-understood, the causal mechanisms for the PDO remain unclear (Mantua and Hare, 2002).

The PDO varies from warm to cool phases, similarly to ENSO. During warm PDO phases, SSTs are anomalously cool in the central North Pacific with anomalously warm SSTs along the west coast of North America. Sea level pressure (SLP) in the northern North Pacific is low, causing enhanced counterclockwise (cyclonic) winds. High SLP occurs over the northern subtropical Pacific, causing enhanced clockwise (anticyclonic) winds. The cool phases of the PDO are opposite of those associated with the warm PDO phases (Mantua and Hare, 2002). Temporally, the PDO fluctuates between common periodicities in the 15-25 year and 50-70 year bands (Minobe, 1999). PDO variability demonstrates that “normal” climate conditions can vary, resulting in
climate anomalies that can persist on decadal to multi-decadal time periods. The PDO is dependent on ENSO variability on all time scales (Newman et al., 2003); therefore, it is their interaction that determines interannual variability of the tropical Pacific (Lluch-Cota et al., 2001).

Previous Work

Although the instrumental record of tropical climate is only present for the past ~150 years, various proxy records throughout the tropical Pacific record past ENSO events during the Holocene, which indicate variable intensities and recurrence intervals (e.g. Sandweiss et al., 2001). Rodbell et al. (1999) and Moy et al. (2002) used sediment cores from an alpine lake in Ecuador that contains clastic laminae deposits that directly correlate with historical El Niño events. They suggested that interannual ENSO variability was dramatically weaker prior to ~7000 years B.P as shown by the increase in frequency of the clastic laminae deposits after 7000 yrs B.P.

Corals can record seasonal to annual resolution (Gagan et al., 2000) and are excellent paleoclimate proxies. The stable isotopic composition of corals can extend the instrumental record of tropical climate back to the late Quaternary (Charles et al., 2003). Since corals only grow in warm tropical waters and ENSO is focused primarily in the tropics, corals record annual to monthly variations and can produce long-term ENSO records relative to the historical record of ENSO. Corals from the tropical
Pacific have been the focus of many paleoclimate studies due to the importance of ENSO in global climate variability (Gagan et al., 1999). However, high resolution coral records are often discontinuous and of short duration (Cole et al., 1993). A further problem is that corals may bleach during very warm El Niño events, which could alter the original isotopic signature (Linsley et al, 1994).

ENSO paleoclimate records based on speleothems can complement those derived from corals (Lachniet et al., 2004; Brooks et al., 1999). Most speleothem-based paleoclimate reconstructions rely upon oxygen isotopic measurements of speleothem calcite or upon thickness of annual growth bands (e.g., Fleitmann et al., 2004) because oxygen isotopes from tropical speleothems provide a detailed rainfall record relating to ENSO. For example, to better predict the Indian Monsoon and its link to ENSO, Fleitmann et al. (2004) analyzed three stalagmites from Southern Oman which provided a detailed Indian Ocean monsoon rainfall record for the past 780 years. Lachniet et al. (2004) generated a high resolution δ¹⁸O rainfall record from the Isthmus of Panama to determine the influence ENSO has on generating regional hydrologic anomalies. Speleothems collected from locations surrounding the Pacific Ocean, and throughout the world, can generate high resolution long-term records of ENSO variability throughout the Holocene.

To illustrate the long-term trends in the PDO, several studies have used proxy evidence to demonstrate PDO-related climate change. A
dendrochronology study reconstructed for North American air
temperature since 1600 A.D., demonstrated the 50-70 year PDO
periodicity throughout the entire record (Fritts, 1991; Minobe, 1997).
The Sr/Ca variability in long-lived corals from the western tropical Pacific
show a strong PDO signal in the extracted SST history (Linsley et al.,
2000), suggesting that robust teleconnections to the tropics and the
southern hemisphere exist (Evans et al., 2000).
Figure 2.1. Cross-sectional view of Barra Honda National Park. Stratigraphically, the oldest unit is the Nicoya complex, although it is not visible in Barra Honda National Park. Black lines overlying the Rivas Formation illustrate folded beds. Adapted from Mora Castro, 1981.
Figure 2.2. Digital Elevation Model of southern Central America. The star represents Barra Honda National Park located on the Nicoya Peninsula of Costa Rica. The DEM source is the USGS GTOPO30 data set US Geological Survey (1996).
Figure 2.3. Schematic diagram illustrating cave formation processes. Water infiltrates through the soil zone where biological respiration increases pCO₂ in the soil, and increases the acidity of the infiltrating water. As water reaches the limestone bedrock, it dissolves the limestone until saturation. Once the water reaches a preexisting cave with lower pCO₂, CO₂ degasses and calcium carbonate precipitates out of solution. Modified from Holland et al., 1964.
Figure 2.4. The amount effect of rainfall in Panama and Costa Rica. From Lachniet et al. 2004.
Figure 2.5. Schematic diagrams comparing A) normal conditions of the tropical Pacific and B) El Niño conditions. Modified from http://www.elnino.noaa.gov/.
Figure 2.6. The Pacific Decadal Oscillation during its positive and negative phases. The colors represent sea surface temperatures (SST), the contours represent sea level pressure (SLP), and the vectors represent surface wind stress anomaly patterns. From http://jisao.washington.edu/pdo/
CHAPTER 3

METHODS

Sample Collection

Stalagmite CT-7, which is ~37cm long along the growth axis (Figure 3.1), was collected from Terciopelo cave in Barra Honda National Park. The entrance to Terciopelo cave is a vertical shaft with a ~17 m drop onto an inclined surface that descends ~39 m below the surface to the back of the cave (Figure 3.2). Sample CT-7 was collected in January of 2004 and was removed from a constricted, poorly ventilated passage approximately ~25 m laterally and ~50 m vertically from the cave entrance. Within the cave system, no streams were present. At the sample location in March 2005, the temperature was 26-27° C and the relative humidity was 94-97%.

Sample Preparation

Sample CT-7 was halved along the growth axis. The surface was polished to reveal an interior of white and clear calcite with visible sub-millimeter layers of calcite of varying density. Thin sections were made
sequentially, from the base to the tip, to analyze and identify any possible hiatuses, inclusions, and detritus within the calcite. By illuminating sample CT-7 with ultraviolet light, the internal speleothem stratigraphy is displayed in greater detail, which allowed for more accurate drilling within single layers, and provided more confidence in the age calculated with U-series dating.

Stable Isotope Sampling

Calcite subsamples were drilled from the cut and polished speleothem surface at 1mm intervals along the growth axis to sample for oxygen and carbon isotopes. Using a Sherline™ drill press model 5410, fitted with a 0.5mm drill bit, 374 calcite subsamples of ~100 µg were extracted and analyzed for oxygen and carbon isotopic ratios using a Finnigan Delta +XL ratio mass spectrometer with dual inlet system coupled to a Kiel III automated carbonate preparation device. This work was performed at the University of Massachusetts stable isotope laboratory.

Radiometric Dating

Sixteen calcite subsamples of ~400 mg were removed, along growth bands, from sample CT-7 for U/Th analysis at the University of New Mexico Radiogenic Laboratory. Four calcite subsamples were removed along an individual growth band, at four different locations throughout CT-7, to produce one weighted average age per growth band.
Chemical separations were performed to purify and separate uranium from thorium according to a modified version of the procedures followed by the isotope lab at the University of Minnesota as described by Polyak and Asmerom (2001). Calcite powders were transferred to pre-weighed 30 ml teflon vials and reweighed. The samples were covered with deionized water and then dissolved in 15N HNO₃. Once dissolved, the samples were spiked with ~1g of a solution containing known concentrations and isotopic composition of ⁹²⁶U, ⁹³³U, and ⁹²⁹U and then the solution was dried on a hot plate. Then, a few drops of deionized water and perchloric acid were added to the samples and re-dissolved in a few drops of 15N HNO₃ and dried. The U and Th are co-precipitated with Fe by adding NH₄OH, until Fe coagulates and precipitates. The mixture is centrifuged and the supernatant discarded. The solution is re-dissolved in 15N HNO₃, transferred back to the clean 30 ml Teflon vial, dried and re-dissolved twice in 15N HNO₃. The sample is dissolved again in 7N HNO₃ and loaded on an anion exchange column to separately extract purified U and Th fractions. For a more detailed description of chemical separations and procedures, see Appendix I.

Measurements were made on a Micromass Sector 54 Thermal Ionization Mass Spectrometer (TIMS) with a WARP filter. It has seven Faraday cups and an ion-counting Daly multiplier. Samples were loaded onto filaments using the graphite sandwich method in which the sample
is loaded onto the center of the filament between two layers of graphite in order to amplify ionization efficiency.

Speleothems can be dated by the \(^{238}\text{U}-^{234}\text{U}-^{230}\text{Th}\) disequilibrium techniques (Dorale et al., 2004). Uranium series dating is based on the fractionation of parent U isotopes (\(^{238}\text{U},^{235}\text{U}\) and \(^{234}\text{U}\)) from their long-lived daughters \(^{231}\text{Pa}\) and \(^{230}\text{Th}\). The \(^{238}\text{U}\) decay series, and the \(^{234}\text{U}/^{230}\text{Th}\) ratio of a sample can be used to determine the time since carbonate deposition in karst environments (Richards and Dorale, 2003). Uranium is soluble in water and therefore is mobilized in the meteoric environment. In typical groundwater, uranium combines with water to form the uranyl ion (\(\text{UO}_2^{2+}\)) which is stable in carbonate complexes (Gascoyne 1992b). In contrast, thorium is insoluble and is essentially left behind, and is either precipitated or adsorbed onto detrital particulates (Richards and Dorale, 2003). Therefore, during the formation of secondary calcite deposits, such as speleothems, uranium is co-precipitated with the \(\text{CaCO}_3\), while the immediate daughter products (\(^{230}\text{Th}\)) is absent. This form of disequilibrium occurring in speleothem deposition is referred to as the daughter-deficiency method (Richards and Dorale, 2003).

The general equations used in determining the age of speleothems assume that all \(^{230}\text{Th}\) present was formed \textit{in situ} by radioactive decay of the co-precipitated U. For pure authigenic calcite or aragonite, the thorium content at the time of formation can be negligible, although,
allochthonous material, such as detrital clays with a significant amount of Th can become cemented or occluded within the speleothems. Initial 230Th can also be incorporated into the speleothems by being transported in the colloidal phase, attached to organic molecules, or as carbonate complexes in solution (Richards and Dorale, 2003).

The isochron methodology allows one to separately distinguish between the amount of ingrown radiogenic daughter and its initial abundance. To determine and accommodate for initial 230Th, four separate isochrons were created by dating 3 to 5 subsamples along the same growth layer to determine the initial 230Th/232Th activity ratio. By comparing 234U/232Th and 230Th/232Th data for age equivalent carbonate, the initial 230Th/232Th can be estimated from the intercept of this straight line relationship (Richards and Dorale, 2003). In speleothems with clean calcite where 232Th contamination is minimal, the effect of using the incorrect 230Th/232Th initial ratio will be negligible (Richards and Dorale, 2003). U-series dates are presented with a 2σ error based on an initial 230Th/232Th ratio of the global value, 4.4×10^{-6}, with an uncertainty of ± 50 % applied.

Grayscale Analysis

An ultraviolet luminescence record for CT-7 was obtained by taking high resolution digital images from the base to the tip and splicing them together to produce one high resolution digital image. The image was
converted from blue-scale to grayscale with Adobe Photoshop. No adjustments for color contrast, resolution, or filtering were done to the image. Using Scion, a National Institute of Health grayscale image processing program, a multi-line transect paralleling the growth axis was analyzed for grayscale values throughout the entire length of the sample. Values range from 0 to 255, with lower values indicating lighter layers, and higher values indicating darker layers.

Statistical Analyses

Statistical analyses of paleoclimate time series provides a synthesis of proxy data that enhances the understanding of trends in the data set. The proxy data is analyzed with mathematical techniques that allow us to interpret the data in terms of the underlying geological mechanisms and processes.

Spectral analysis decomposes the original data set into underlying sine and cosine functions of particular wavelengths to determine the strength (power) of a given signal and helps elucidate the physical processes which generate variability within the time series (Schulz and Mudelsee, 2002).

Spectral analysis using the Lomb-Scargle Fourier transform was performed on all three data sets: oxygen and carbon isotopes, and grayscale values using the REDFIT program (Schulz and Mudelsee, 2002). REDFIT is useful because it allows spectral analysis from
unevenly spaced time series without requiring interpolation (Schulz and Mudelsee, 2002).

Wavelet analysis was performed on the detrended and normalized time series, which takes basic spectral analysis a step further by localizing variations of power within a time series (Torrence and Compo, 1998). The wavelet transform decomposes a time series into time-frequency space, which helps determine both the dominant modes of variability and how those modes vary with time (Torrence and Compo, 1998). The advantage of wavelet analysis over a Fourier transform is that it allows time localization of statistically significant variance within a time series.
Figure 3.1. Photograph of stalagmite sample CT-7. Major tick marks on sample are in centimeters.
Figure 3.2. Schematic diagram of cave Terciopelo in plan view and in cross-section. Red star indicates sample CT-7 location. Modified from the National Speleological Society Costa Rica Project, 1982.
CHAPTER 4

RESULTS AND INTERPRETATIONS

Cave Environment

The cave from which speleothem sample CT-7 was removed is relatively shallow (≤50 m) below the surface. Rainwater infiltrating through the soil zone and limestone bedrock likely flows into the cave within the same year that it fell. Sample collection occurred in March 2005 during the dry season in northern Costa Rica. Active dripping was occurring very slowly during the dry season in March 2005, suggesting that rainfall during the wet season enters the cave system before the end of the dry season. Since groundwater typically represents the average isotopic composition of rainfall (Darling, 2004), this short residence time allows the climatic δ¹⁸O variability to be recorded in the stalagmite calcite.

Thin Section Qualitative Analysis

Speleothem sample CT-7 contains columnar calcite crystals with irregular and interlocking crystal boundaries. Secondary alteration, such as corrosional features were not found. Laminations are present
throughout CT-7, but vary in thickness and continuity. White, relatively porous laminae alternate with slightly darker, more dense laminae throughout the sample. Detrital material, such as silt particles, was not observed in thin section, indicating very clean calcite. Under magnification with cross-polarized light, crystal growth transects laminae throughout the entire length of the sample, suggesting continuous growth with no apparent hiatuses.

Geochronology

The U/Th chemical analyses of four, three- and five-point isochrons produced weighted average dates of 8017±330 yrs B.P. near the base, and a date of 6639±250 yrs B.P. near the tip (Table 1). All dates are in correct stratigraphic order, which suggests continuous growth throughout. The final weighted ages were calculated using an Excel add-in ISOPLOT (Ludwig, 2003) and the associated errors are 8017 ± 330 for ISO-1, 7274 ± 290 for ISO-2, 6929±310 for ISO-3, and 6639 ± 250 for ISO-4. Ages were assigned to stable isotope subsamples according to a linear best fit age model (Figure 4.1) between ~7890 to 6490 yrs B.P using the equation:

\[
\text{Age} = -3.79234 \times (\text{distance from base in mm}) + 7898.32
\]

The isochron methodology was attempted to determine and correct for initial 230Th contamination. Initial 230Th/232Th ratios were determined for each isochron: ISO-1, 1.18×10^{-6} ± 9.7×10^{-5} (near base); ISO-2, 1.04×10^{-5} ±
1.1×10⁻⁵; ISO-3, -1.42×10⁻⁵± 2.9×10⁻⁵; and ISO-4, -3.71×10⁻⁶± 5.7×10⁻⁶
(near tip). Due to the low 230Th concentration and relatively clean
samples with low detritus in thin sections and U-series leachates, the
isochron method proved unsuccessful. Although there are four or five
subsamples within each isochron, the errors associated with the
230Th/232Th and 234Th/232Th ratios for each subsample are too large to
constrain the initial value with precision. Due to the very clean calcite,
the 230Th/232Th and 230Th/234Th for each subsample did not
provide enough spread in the data. “Dirtier” calcite with more 232Th
and/or older samples with more 230Th would have provided a larger
spread within the data, which would constrain the initial 230Th/232Th
ratios better. The negative initial 230Th/232Th ratios for ISO-3 and ISO-4
are implausible; therefore, by omitting the negative 230Th/232Th ratios,
the average 230Th/232Th initial value of ISO-1 and ISO-2 is $5.79×10⁻⁶$.

Despite a wide range of initial 230Th/232Th values for all four CT-7
isochrons, the “global” initial value of $4.4×10⁻⁶$ was used to correct their
ages for detrital thorium, as it falls within the errors of ISO-1 and ISO-2.
A global value for initial 230Th/232Th is the best choice, despite the failed
attempts of the isochron method. A sensitivity analysis was performed
using a 230Th/232Th value of $1.0×10⁻⁵$, to determine the effect of using a
higher value. Although the age model is significantly shifted up to 700
years in some places, in absence of data to the contrary, we use the
global initial value. Given continuous growth, CT-7 grew at an average
rate of 0.26 mm per year, over ~1400 yrs between the interval 7890 and 6490 yrs B.P.

Stable Isotopes

CT-7 was sampled for stable isotopes at 1mm intervals, therefore representing ~3.79 years of growth between each sample. Stable isotope analysis of CT-7 calcite yielded 372 \(\delta^{18}O \) values, excluding 2 outliers, ranging from -11.8‰ to -6.4‰ relative to VPDB. The \(\delta^{18}O \) values show a small linear trend, and oscillate about a mean of ~ -8.5‰ (Figure 4.2). Greatest variability occurs between 7200 and 6800 yrs B.P. with a high \(\delta^{18}O \) anomaly at ~7000 yrs B.P. In general, the \(\delta^{18}O \) values rise slightly from -8.5‰ at ~7890 yrs B.P. to -7.3 at ~7540 yrs B.P., then decline to -9.1‰ at ~7340 yrs B.P. The \(\delta^{18}O \) values then rise sharply to -7.4‰ at ~7170 yrs B.P. and then steeply decline to -9.0‰ at ~7120 yrs B.P. The \(\delta^{18}O \) values rise again to the most significant peak of -6.7‰ at ~7050 yrs B.P., quickly decline to -8.9‰ at ~6920 yrs B.P., slightly rise to -7.4% at ~6850 yrs B.P., significantly decline to -9.8‰ at ~6610 yrs B.P. and rise to -7.2‰ at ~6490 yrs B.P. at the end of the time series.

Since tropical rainfall \(\delta^{18}O \) values are dominated by the amount effect (Dansgaard, 1964), I interpret the \(\delta^{18}O \) values in stalagmite CT-7 as a paleo-rainfall record, with higher \(\delta^{18}O \) values indicating drier conditions and lower \(\delta^{18}O \) values as wetter conditions. The most significant peak
occurs at ~7000 yrs B.P., which is interpreted as the most prominent dry period of the record.

The δ¹³C time series from stalagmite CT-7 shows values ranging from -11.9‰ to -6.8‰ relative to VBDP (Figure 4.3). There is a large δ¹³C decrease of ~5‰ occurring at ~7000 yrs B.P. The δ¹³C time series shows much more variability than the δ¹⁸O time series. In general, the δ¹³C values increase gradually from -11.2‰ at ~7880 yrs B.P. to -6.9‰ at 7000 yrs B.P., with many oscillations from higher to lower δ¹³C values occurring throughout this time period. After the most significant peak at 7000 yrs B.P., there is a dramatic decrease in δ¹³C values to -11.6‰ at ~6940 yrs B.P. The δ¹³C values then increase gradually to -7.3‰ at ~6680 yrs B.P., decrease rapidly to -11.7‰ at ~6610 yrs B.P. and rise again to -6.8‰ at ~6490 yrs B.P.

Although the δ¹³C variations are commonly interpreted to be indicators of vegetation type overlying the cave (Dorale et al., 1998), I interpret the δ¹³C variations in stalagmite CT-7 are due to changes in the amount of soil moisture available for biological respiration. All the δ¹³C values are within the range of C₃ type vegetation suggesting dry tropical forest was likely present over the cave during the early to mid-Holocene. The variability in the δ¹³C time series may be interpreted due to soil moisture variability. The δ¹³C record (figure 4.3) shows a broad increasing trend with a maximum δ¹³C value ~7000 yrs B.P., which may reflect a general drying trend resulting in a decrease in soil moisture.
available for biological respiration. At ~7000 yrs B.P., there is a dramatic peak in the $\delta^{13}C$ values, which may reflect a decrease in biological respiration and a decrease in the production of soil biogenic CO$_2$, resulting from isotopically heavier $\delta^{13}C$ values. I assumed no prior precipitation of calcite, which would produce an increase in the $\delta^{13}C$ values. Therefore in order to produce a decrease in biological respiration, a shift in climate to drier conditions must occur. Drier conditions would produce less water infiltrating into the soil zone and limit biological respiration which decreases soil pCO$_2$. Higher $\delta^{13}C$ values therefore result from less biological respiration within the soil zone, and a decrease in the proportion of soil CO$_2$ to the contributing drip waters, which should produce a $\delta^{18}O$-$\delta^{13}C$ correlation.

Grayscale Analysis

Grayscale analysis yielded 19,651 grayscale values ranging from 105 to 227, with a value of 0 representing white, and a value of 255 representing black. With the use of the NIH grayscale program SCION, very high resolution sampling was possible at less than 1 year resolution. The grayscale values show a gradual decrease from 227 at ~7900 yrs B.P. to 110 at ~7230 yrs B.P. (Figure 4.4). There is a sharp increase in values to 198 at 7060 yrs B.P., which represents one of the most significant peaks in the time series. There is a sharp decline to a
grayscale value of 109 at ~6920 yrs B.P. and then a gradual increase in values until 218 at ~6480 yrs B.P.

Speleothems commonly contain annual couplets of white porous calcite, and dark compact calcite, resulting from seasonal variations in supersaturation and rate of dripwaters (Genty and Quinif, 1996; Genty et al., 1997). Although sample CT-7 does not appear to contain annual banding in which to observe seasonal fluctuations, I interpret the dark dense bands represent dry conditions, while the white porous bands are indicative of increased precipitation events (Figure 4.4). During periods of increased precipitation, more water is able to infiltrate through the soil zone, resulting in faster drip rate into the cave system, producing faster growing speleothems with lighter and more porous bands. During dry conditions, less infiltration occurs, producing slower drip rates into the cave leading to darker and denser bands.

Fourier Analyses

Spectral analysis based on the Lomb-Scargle Fourier transform, which uses a program (REDFIT) (Schulz and Mudelsee, 2002), allowed for direct processing of an unevenly spaced time series without the requirement of interpolation between data points. Analysis on the oxygen isotope time series suggests statistically significant variance at the 99% confidence interval to occur at 191 years (Figure 4.5). At the 95% confidence interval, statistically significance variance is occurring at 15,
12, and 10 years. At the 90% confidence interval, statistically significant variance is occurring at 15 and 13 years. At the 85% confidence interval, statistically significant variance is occurring at 25, 20, and 8 years.

The Lomb-Scargle Fourier transform method on the carbon isotope time series suggests no statistically significant variance occurring at the 99% confidence interval. At the 95% confidence interval, there is statistical power occurring at 25 and 16 years (Figure 4.6). At the 90% confidence interval, statistically significant variance is occurring at 11 years. At the 85% confidence interval, statistical power is occurring at 14, 9, and 8 years.

Analysis on the grayscale time series suggests statistically significant variance at the 99% confidence interval occurring at 13, 12, 5, 4, 3, and 2 years (Figure 4.7). At the 95% confidence interval, statistical power is occurring at 19, 5 and 3 years. At the 90% confidence interval, there is statistical power at 9 and 6 years. At the 85% confidence interval, statistically significance variance occurring at 15 and 7 years, with many peaks of statistical power ranging from 6-2 years.

Another form of spectral analyses, called wavelet analysis, was also performed on the time series. Oxygen isotope time series at the 2-8 year time scale suggest statistically significant variance occurring at ~6800 and ~7500 years B.P (Figure 4.8). On the 10-20 year time scale, statistically significant variance is occurring at ~6800 years B.P. No
statistically significant variance at the 95% confidence interval was present at the 20-30, 30-50, 50-70, or 70-100 time periods.

Wavelet analysis was also performed on the carbon isotope time series and suggests statistically significant variance occurring at the 10-20 year time scale at ~6500, 6700, 6800, 7200, and 7300 years B.P (Figure 4.9). At the 20-30 year time scale, statistically significant variance is occurring at ~6700 years B.P. On the 30-50 year time scale, significant variance is occurring at ~6600 years B.P. There is no significant variance occurring on the 2-8, 30-50, 50-70, and 70-100 time scales.

Wavelet analysis suggests that the grayscale time series produces statistically significant variance throughout the growth period of stalagmite CT-7 at all time periods (2-8, 10-20, 20-30, 30-50, 50-70, and 70-100) (Figure 4.10).
Table 1. Uranium/thorium radiometric isotopic data and ages for sample CT-7. Isochrons are abbreviated as ISO and represent the weighted average of 3-5 subsamples along the same growth layer.
Figure 4.1. Chronology of CT-7 versus distance from the base in mm. Ages are based on U/Th dating. Each data point represent the weighted average of 3-5 subsamples along the same growth layer. The associated errors with each data point is represented by error bars. A linear trendline was fit to the data.
Figure 4.2. $\delta^{18}O$ time series with values ranging from ~-6.5 to $\sim-10\%$. The gray line represents the raw data and the bold black line represents the 7-pt running average. A significant peak occurs at ~7000 years B.P. Values vary about a consistent mean of $\sim-8.5\%$.
Figure 4.3. δ^{13}C time series with values ranging from \sim-7 to \sim12‰ with the most significant peak occurring at \sim7000 years B.P. The gray line represents the raw data and the bold black line represents the 7-pt running average.
Figure 4.4. Grayscale time series with values ranging from ~100-220. The gray line represents the raw data and the bold black line represents the 215-pt running average. Grayscale values are a result of digital image processing, in which sample CT-7 was illuminated with UV light and then converted into a grayscale record. A value of zero represents white and a value of 255 represents black.
Figure 4.5. Spectral analysis of the $\delta^{18}O$ time series illustrating the 99, 95, 90, and 85% confidence intervals (from top to bottom). The numbers above the peaks represent the years of statistical significance.
Figure 4.6. Spectral analysis of the δ^{13}C series illustrating the 99, 95, 90, and 85% confidence intervals (from top to bottom). The numbers above the peaks represent the years of statistical significance.
Figure 4.7. Spectral analysis of the grayscale time series illustrating the 99, 95, 90, and 85% confidence intervals (from top to bottom). The numbers above the peaks represent the years of statistical significance.
Figure 4.8. Wavelet analysis on δ^{18}O time series. A) Detrended normalized data in standard deviation units. B) Wavelet power spectrum for 3.8 year sampled δ^{18}O values. White contours represent 95% confidence interval.
Figure 4.9. Wavelet analysis on δ¹³C time series. A) Detrended normalized data in standard deviation units. B) Wavelet power spectrum for 3.8 year sampled δ¹³C values. White contours indicate the 95% confidence interval.
Figure 4.10. Wavelet analysis on grayscale time series. A) Detrended normalized data in standard deviation units. B) Wavelet power spectrum for 1 year sampled grayscale values. White contours indicate the 95% confidence interval. C) 2-8 yr scale average time series. Dotted line represents the 95% confidence interval. Data above the dashed line indicates statistically significant variance.
CHAPTER 5

DISCUSSION

ENSO and the PDO

The $\delta^{18}O$ values obtained from CT-7 are interpreted as a rainfall proxy and are used to evaluate if El Niño became more active since \sim7ka (Rodbell et al., 1999; Moy et al., 2002; Sandweiss et al., 2001). The $\delta^{18}O$ values show rainfall varied about a consistent mean with no large isotopic shifts in $\delta^{18}O$ values (Figure 5.1 A). This suggests there was no significant rainfall regime shift throughout the growth of stalagmite CT-7. A climatic regime shift is defined as a transition from one climatic state to another, within a period substantially shorter than the lengths of each climatic state (Minobe, 1997). A major regime shift would have a noticeable shift in the $\delta^{18}O$ values and/or a shift in variability, from low to high frequency variability (or vice versa), after 7000 yrs B.P., but no such shift is evident.

To evaluate the relationship between rainfall $\delta^{18}O$ values and ENSO events, the $\delta^{18}O$ time series was compared with an El Niño proxy record spanning 15 ka from Laguna Pallcacocha, Ecuador (Figure 5.1 D) (Rodbell et al., 1999; Moy et al., 2002). In the Laguna Pallacocha record,
the deposition of clastic laminae were suggested to be a direct response to slope erosion associated with heavy El Niño rainfall events (Rodbell et al., 1999). The Pacific coast of South America experiences anomalous wet conditions during El Niño years due to the southern position of the ITCZ. After 7000 yrs B.P., the Laguna Pallcacocha record shows an increase in clastic laminae deposits, and an increase in ENSO-band variance, but the CT-7 δ¹⁸O values do not show an increase in δ¹⁸O variability after 7000 yrs B.P. A possible explanation for the lack of correlation between the two records could be that the wet season may have become shorter due to the southward migration of the ITCZ, but the intensity of rainfall and thus the δ¹⁸O values remained the same. Although I observe a δ¹⁸O peak at 7.6 ka, representing the most intense dry period, there is no evidence for enhanced δ¹⁸O variability after this time, as would be expected if El Niño became more dominant. Spectral analysis of the CT-7 δ¹⁸O values display decadal to multidecadal variability, indicating that low frequency ENSO-band variance was present throughout the middle Holocene.

Many researchers suggested that modern ENSO events began between 7000 and 5000 yrs B.P. and have increase in frequency and intensity to the present (Sandweiss et al., 2001; Rodbell et al., 1999; Moy et al., 2002). Sandweiss et al. (2001) suggested that modern ENSO events were absent before 5800 yrs B.P. in Peru, but spectral analysis of CT-7 grayscale values indicate decadal to multidecadal climate variability.
throughout the mid-Holocene. Speleothem luminescence, which I interpret as a rainfall/moisture proxy record, displays dark dense bands representing slow drip rates and drier conditions, and white porous bands indicative of increased drip rates and wetter conditions. An important feature of the normalized/detrended grayscale time series (Figure 4.10 A) is a change in character of variability at ~7ka. Although previous studies suggested an increase in ENSO-band variance after 7ka (Koutavas et al., 2002; Otto-Bleisner, 1999; Tudhope et al., 2001; Clement et al., 2000), CT-7 grayscale analysis indicates greater variability before this time. Despite the evidence from South America suggesting that ENSO was weak or absent prior to ~5800 yrs B.P. (Sandweiss et al., 2001), the CT-7 grayscale time series suggest that ENSO-band variance was occurring throughout the mid-Holocene.

The coupled interactions of the ocean-atmosphere system associated with ENSO occur on both annual and seasonal cycles, and are also affected by extra-tropical forcings (Clement et al., 1999). Evidence of an active PDO during the middle Holocene is suggested by spectral analysis of the $\delta^{18}O$ time series, which illustrates spectral power occurring at decadal to multi-decadal periodicities (Figure 4.5). Minobe (1999, 2000) used wavelet analysis of SST and SLP from the North Pacific (north of 20° N), the epicenter of the PDO, and found the most statistical power occurring in the 15-25 year and 50-70 year periodicities. The PDO produces similar climate anomalies as those produced with ENSO.
variations, though not as extreme (Mantua and Hare, 2002). In Central America and northern South America, the warm phase of the PDO coincide with dry periods, much like the warm phase of ENSO (Mantua and Hare, 2002). Although there are many dendroclimatic reconstructions of the PDO (e.g. Arrigo et al., 2001; Biondi et al., 2001; Gray et al., 2003), the CT-7 δ¹⁸O time series indicates rainfall variability on decadal to multidecadal timescale, suggesting that the PDO was active at modern periodicities during the middle Holocene. Decadal to centennial scale climate variability is present in the δ¹⁸O record of forams from a Santa Barbara Basin sediment core, and provides supporting evidence from modern PDO periodicities during the mid-Holocene (Friddell et al., 2003).

The main evidence for an active PDO during the middle Holocene is suggested by wavelet analysis of the grayscale time series, which illustrates statistically significant variance occurring at the two main PDO periodicities, 15-25 and 50-70 years (Minobe, 1997), throughout the interval of growth. Despite the lack of PDO periodicities in the δ¹⁸O and δ¹³C wavelet analysis, the presence of PDO-band variance in the grayscale time series is interpreted as indicating that the PDO was active throughout the middle Holocene.
Solar Variability

Variations in solar activity and intensity are recorded by $\Delta^{14}C$ variations (Stuiver and Braziunas, 1993) from tree rings and other proxy data, and has been suggested as the primary control on centennial to decadal scale changes in rainfall and intensity of the Indian Ocean monsoon (Neff et al., 2001). Although there is no direct correlation between the atmospheric $\Delta^{14}C$ data and the CT-7 $\delta^{18}O$ values, spectral analysis of the $\delta^{18}O$ time series indicates statistically significant power at 10 and 191 years, which are similar to the 11 and 206 year solar cycles, and may be a result of solar forced variations in atmospheric $\Delta^{14}C$ values. Minor variations in solar variability could be amplified due to changes in atmospheric and/or oceanic circulation (Neff et al., 2001) and therefore, may result in some feedback mechanism that can act together with ENSO producing regional climatic anomalies in Central America.

Atlantic Climate Variability

Although modern climate variability in the Pacific Ocean is dominated by ENSO and the PDO, Costa Rica may also be affected by Atlantic Ocean variability. For example, ENSO forces weaker Atlantic SST anomalies with a lagged response of approximately 8 months (Hastenrath, 1978). Evidence from GCM modeling studies suggests that the Atlantic Ocean is also capable of forcing rainfall anomalies throughout northeast South America. When warm SST anomalies occur
in the north tropical Atlantic, northeast South America experiences dry conditions, similarly to Costa Rica. Therefore, climate variability in the Atlantic, such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO), may also affect climate in Costa Rica.

Carbon Isotopes

Paleoenvironmental interpretations based on speleothem δ¹³C values are extremely complex due to the many factors that can influence δ¹³C values. Both equilibrium and kinetic fractionation can alter the δ¹³C values. Although the raw δ¹³C and δ¹⁸O correlation show a weak relationship most likely due to high frequency noise ($r^2=0.36$), the 7-pt running averaged δ¹³C and δ¹⁸O values are highly correlative ($r^2=0.68$), suggesting a common forcing mechanism for the covariation. Covariation between the δ¹⁸O and δ¹³C values is likely to be due to variations in soil respiration rates. I interpret higher (lower) δ¹³C values coincide with drier (wetter) conditions inferred from the δ¹⁸O record, which is a common relationship observed in other tropical stalagmites (Burns et al., 2002). Drier periods may result in a thinner water film on the tip of the stalagmite due to slower drip rates into the cave, enhancing CO₂ degassing and enriching the δ¹³C values. In regions where the amount effect is the dominant isotopic control, reduced rainfall increases the δ¹⁸O values which may be enhanced by evaporation within the cave in correlation with δ¹³C values (Fleitmann et al., 2004), although
evaporation within poorly ventilated tropical cave systems, such as Terciopelo cave, is not likely. It may be possible that the δ¹³C values in speleothems are more sensitive indicators of climate variability than δ¹⁸O values in the tropics, as suggested by increased variability in the δ¹³C time series (Figure 4.3) compared to the δ¹⁸O time series (Figure 4.2)

Similarly, δ¹³C variations have been linked to variations in ENSO strength and frequency, producing variations in tropical rainfall δ¹⁸O values which forces changes in biological respiration rates in the soil zone (Frappier et al., 2002; Burns et al, 2002). δ¹³C values from a speleothem in Belize reveal a strong correlation to the Southern Oscillation Index (SOI), providing evidence that ENSO-related changes in the terrestrial carbon cycle can be recorded by speleothems, despite the fact that Belize does not experience a change in weather patterns commonly associated with the SOI (Frappier et al., 2002). The CT-7 δ¹³C values indicate that although the climatic response to ENSO may be weak, as suggested by the δ¹⁸O values, the ecological system may be more sensitive to climatic variability (Frappier et al., 2002).

Covariation

Figure 5.2 illustrates that δ¹⁸O, δ¹³C, and grayscale values vary in a consistent manner, which are interpreted as being forced by changes in the amount of precipitation. The presence of common peaks (labeled #1-12) in the δ¹⁸O, δ¹³C, and grayscale time series, imply that there is a
common forcing mechanism responsible for the observed covariation. If all three proxies display similar patterns of change and/or trends, then it is likely that a common environmental variable is involved (Curtis et al., 1998). Rainfall variability is interpreted as the dominant force affecting grayscale values, and therefore, grayscale values can also be used as a moisture proxy. The observed covariation between the $\delta^{18}O$, $\delta^{13}C$, and grayscale values is interpreted as being forced by rainfall, such that during El Niño events and/or the warm phase of the PDO, drier conditions occur on the Pacific slope of Costa Rica (Waylen et al., 1996). Drier conditions (high $\delta^{18}O$ values) lead to a decrease in soil moisture and a decrease in biological respiration (high $\delta^{13}C$ values). As a result of a drier climate, less water percolates through the soil zone and into the cave, resulting in darker/denser laminae (high grayscale values).
Figure 5.1. Comparison between the Laguna Pallcacocha ENSO red intensity record (Moy et al., 2002) and CT-7. A) CT-7 δ^{18}O values with 7-pt running average in bold. B) CT-7 grayscale values with 215-pt running average in bold. C) CT-7 δ^{13}C values with 7-pt running average in bold. D) Laguna Pallcacocha, Ecuador sediment core red intensity record with 7-pt running average in bold.
Figure 5.2. Comparisons of all three detrended/normalized data sets with a 7-pt running average superimposed for the $\delta^{18}O$ and $\delta^{13}C$ time series and a 215-pt running average for the grayscale time series, which illustrate correlative peaks labeled by #1-12. A) Grayscale time series. B) $\delta^{18}O$ time series. C) $\delta^{13}C$ time series. Data shown in standard deviation units.
CHAPTER 6

CONCLUSIONS

Variations in ENSO and the PDO impact climate worldwide due to changes in the heat budget of the tropical Pacific, which can disrupt weather patterns in remote regions due to the complex teleconnections of the ocean-atmosphere system. The middle Holocene is a key time period in which many proxy records suggest the onset of modern ENSO conditions (Sandweiss et al., 2001; Rodbell et al., 1999; Moy et al., 2002).

Speleothems from tropical areas are ideal geologic material that can be used as terrestrial paleoclimate proxies because they can be precisely dated using U-series isotopes and may grow continuously for several thousand years. Speleothem-based ENSO paleoclimate records can provide high-resolution records that extend the climate record to pre-historical times and can elucidate Pacific climate variability.

During the mid-Holocene, proxy evidence and modeling studies suggest a suppressed and/or weakened ENSO compared to the modern ENSO cycle (Clement et al., 2000; Tudhope et al., 2001; Otto-Bleisner, 1999), but this study suggests that in Costa Rica, and most likely throughout much of Central America, low-frequency ENSO and the PDO
persisted throughout the mid-Holocene, from ~7890 and 6490 yrs B.P. The \(\delta^{18}O \) and grayscale values from stalagmite CT-7 suggest there was no significant regime shift at ~ 7 ka, rather persistent decadal to multidecadal variability is occurring throughout the sample. Low-frequency ENSO and/or the PDO seem to be operating in Costa Rica throughout the mid-Holocene.

Despite the complex processes and mechanisms that influence \(\delta^{13}C \) values in speleothem calcite, the \(\delta^{13}C \) values obtained from stalagmite CT-7 most likely record vegetation type and variations in the amount of biological respiration. If this is the case, the \(\delta^{13}C \) values may be a more sensitive climate proxy than \(\delta^{18}O \) values in the tropics. Grayscale values are assumed to be dependent on the amount of infiltrating water into the cave system and can provide an additional proxy for infiltration/drip rate into the cave.

A very prominent relationship exists between the \(\delta^{18}O \), \(\delta^{13}C \), and grayscale values (Figure 5.4), suggesting a common geological process or mechanism linking all three proxies together. Tropical climate variability is dominated by ENSO, such that during El Niño events in Costa Rica, enhanced orographic rainfall occurs on the Caribbean slope, while drier conditions occur on the Pacific slope (Waylen et al., 1996). Based on the amount effect (Dansgaard, 1964), drier conditions forced by El Niño produce higher \(\delta^{18}O \) values. Less moisture leads to a decrease in biological respiration rates and produces higher \(\delta^{13}C \) values. Due to drier
conditions, less water infiltrates through the soil zone, limestone bedrock, and into the cave system, producing slower drip rates into the cave and darker/denser calcite layers.

Since climate in the tropics is relatively stable throughout the year, the dominant control on climate variability in Costa Rica would be ENSO and/or the PDO. The paleoclimate record generated from stalagmite CT-7 demonstrates decadal rainfall variability throughout the interval of growth of CT-7, which can be interpreted as ENSO and PDO band variance.

Variations in the strength and frequency of ENSO and the PDO impact climate worldwide, due to the complex interaction between the ocean-atmosphere system in the tropical Pacific Ocean. Presently, ENSO operates on a 2-7 year frequency (Moy et al., 2002), but the paleoclimate record suggests that throughout the Holocene, ENSO has varied in both strength and frequency. By elucidating past variations in the ENSO cycle, the future will benefit from better ENSO predictions which can affect societies around the world. Determining ENSO and PDO variability throughout the Holocene will help resolve the history and dynamics of tropical Pacific climate variability.
APPENDIX I

STANDARD PROCEDURE - CARBONATE U-SERIES CHEMISTRY
(Modified from the University of Minnesota and applied at University of New Mexico)

1. Add a few drops of clean water to 30 ml teflon beaker (to avoid dispersing powder).
2. Add sample (~200 to 300 mg) then add enough water to cover sample (no more).
3. Add drops of 15N HNO₃ until fizzing stops.
4. Spike sample (~1 g of spike) - see spiking procedures.
5. Dry down.
6. Add a few drops of 15N HNO₃ until just wet. May need to reduce volume by heating.
7. Add a couple of drops of perchloric acid. Dry down.
8. Re-dissolve in 2N HCl (~2-4 ml), then add enough H₂O to ensure that the sample is entirely dissolved. (WARNING - do not use 6N HCl during this step.)
9. Transfer solution to centrifuge (CF) tubes. Use the 12 ml tubes.
10. Clean the 30 ml beaker with 6N HCl, then H₂O; ~1 ml at a time warming on a hot plate. Do this as you are centrifuging the sample after co-precipitation.
11. Add about 2 drops of Fe-solution.
12. Add water to make solution volume ~5 ml. (do not need to be exact)
13. Co-precipitate U & Th with ammonium hydroxide (NH₄OH). Add drops of NH₄OH until pH=7. You will see the Fe coagulate and precipitate.
14. Make sure that centrifuge canisters are balanced to within ~0.10 g.
15. After 4 minute CF at 2700 rpm, decant solution (do not loose precipitate).
16. Wash with H₂O (add H₂O and stir with teflon rod), then add 1 drop of NH₄OH.
17. Repeat 4 minute centrifugation and decant solution.
18. Add ~4-5 drops 15N HNO₃ to dissolve precipitate and transfer back to 30 ml beaker.
19. Dry EASY.
20. Add another 3-4 drops 15N HNO₃ and dry down.
21. Sample ready to dissolve in 1 column volume 7N HNO₃ for loading into columns.
Elution
Sample size: 200 - 300 mg.
Columns: large = 500 μl, small = 150 μl.
Column and resin wash: 6 CV 6N HCl, 6 CV H2O,
Clean Column reservoir: fill to brim with H2O, let resin settle and empty water
Column conditioning: 6 CV 7N HNO3.

1st Stage of Column Work
large column = 500 μl
Load 1 CV 7N HNO3
Clean 0.75 CV 7N HNO3
Clean 0.75 CV 7N HNO3
clean 30 ml beaker with ~1 ml of 6N HCl on hot plate, then with ~ 1 ml water on hot plate. Rinse well with water.
Collect Th 4 CV 6N HCl
(1 CV, then 3 CV)
dry down
Collect U 1 CV H2O
3 CV HBr (1N)
dry down
Add 3-4 drops 15N HNO3, dry again easy.
Repeat.

2nd Stage of Column Work
small column = 150 μl
Load (Th) 1 CV 7N HNO3
Clean 1 CV 7N HNO3
Clean 1 CV 7N HNO3 optional
Clean 1 CV 7N HNO3 optional

Collect Th 3 CV 6N HCl Do not clean beaker! (1 CV, then 2 CV)
dry down
Clean 10 CV H2O
Condition 6 CV 7N HNO3
Load (U) 1 CV 7N HNO3
Clean 2 CV 7N HNO3
Clean (optional) 2 CV 6N HCl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Collect U 1 CV H₂O Do not clean beaker!
3 CV HBr (1N)
dry down
Add 3-4 drops 15N HNO₃, dry again easy.

Yemane Asmerom, asmerom@unm.edu 505-277-4434
Victor Polyak, polyak@unm.edu 505-277-1640
Radiogenic Isotope Laboratory
Department of Earth and Planetary Sciences, University of New Mexico
200 Yale Blvd, Northrop Hall, Albuquerque, New Mexico 87131
APPENDIX II

STABLE ISOTOPE DATA

<table>
<thead>
<tr>
<th>Dist from base (mm)</th>
<th>δ13C</th>
<th>δ18O</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>8130</td>
<td>59</td>
<td>-10.50</td>
<td>8755</td>
</tr>
<tr>
<td>6180</td>
<td>60</td>
<td>-9.75</td>
<td>8711</td>
</tr>
<tr>
<td>5180</td>
<td>61</td>
<td>-9.63</td>
<td>8767</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>-10.20</td>
<td>8763</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>-10.35</td>
<td>8759</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>-10.04</td>
<td>8765</td>
</tr>
<tr>
<td>1</td>
<td>65</td>
<td>-10.62</td>
<td>8762</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>-10.19</td>
<td>8769</td>
</tr>
<tr>
<td>1</td>
<td>67</td>
<td>-11.03</td>
<td>8764</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>-9.99</td>
<td>8760</td>
</tr>
<tr>
<td>1</td>
<td>69</td>
<td>-10.81</td>
<td>8737</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>-11.25</td>
<td>8763</td>
</tr>
<tr>
<td>1</td>
<td>71</td>
<td>-10.56</td>
<td>8729</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>-11.12</td>
<td>8725</td>
</tr>
<tr>
<td>1</td>
<td>73</td>
<td>-10.75</td>
<td>8721</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>-10.30</td>
<td>8716</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>-10.96</td>
<td>8714</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>-9.36</td>
<td>8710</td>
</tr>
<tr>
<td>1</td>
<td>77</td>
<td>-10.34</td>
<td>8706</td>
</tr>
<tr>
<td>1</td>
<td>78</td>
<td>-9.36</td>
<td>8703</td>
</tr>
<tr>
<td>1</td>
<td>79</td>
<td>-10.19</td>
<td>7599</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>-9.68</td>
<td>7555</td>
</tr>
<tr>
<td>1</td>
<td>81</td>
<td>-9.52</td>
<td>7591</td>
</tr>
<tr>
<td>1</td>
<td>82</td>
<td>-9.84</td>
<td>7587</td>
</tr>
<tr>
<td>1</td>
<td>83</td>
<td>-8.93</td>
<td>7584</td>
</tr>
<tr>
<td>1</td>
<td>84</td>
<td>-8.30</td>
<td>7580</td>
</tr>
<tr>
<td>1</td>
<td>85</td>
<td>-9.60</td>
<td>7576</td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>-9.41</td>
<td>7572</td>
</tr>
<tr>
<td>1</td>
<td>87</td>
<td>-9.47</td>
<td>7568</td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>-10.05</td>
<td>7565</td>
</tr>
<tr>
<td>1</td>
<td>89</td>
<td>-10.48</td>
<td>7561</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>-10.48</td>
<td>7557</td>
</tr>
<tr>
<td>1</td>
<td>91</td>
<td>-10.81</td>
<td>7553</td>
</tr>
<tr>
<td>1</td>
<td>92</td>
<td>-10.48</td>
<td>7549</td>
</tr>
<tr>
<td>1</td>
<td>93</td>
<td>-10.70</td>
<td>7546</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
<td>-10.66</td>
<td>7542</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
<td>-8.55</td>
<td>7538</td>
</tr>
<tr>
<td>1</td>
<td>96</td>
<td>-10.42</td>
<td>7534</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>-10.52</td>
<td>7530</td>
</tr>
<tr>
<td>1</td>
<td>98</td>
<td>-10.19</td>
<td>7527</td>
</tr>
<tr>
<td>1</td>
<td>99</td>
<td>-9.51</td>
<td>7523</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>-10.67</td>
<td>7519</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>-10.42</td>
<td>7515</td>
</tr>
<tr>
<td>1</td>
<td>102</td>
<td>-10.20</td>
<td>7512</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>-10.64</td>
<td>7508</td>
</tr>
<tr>
<td>1</td>
<td>104</td>
<td>-9.88</td>
<td>7504</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
<td>-9.42</td>
<td>7500</td>
</tr>
<tr>
<td>1</td>
<td>106</td>
<td>-9.59</td>
<td>7496</td>
</tr>
<tr>
<td>1</td>
<td>107</td>
<td>-9.54</td>
<td>7493</td>
</tr>
<tr>
<td>1</td>
<td>108</td>
<td>-9.80</td>
<td>7489</td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td>-9.52</td>
<td>7485</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>-9.75</td>
<td>7481</td>
</tr>
<tr>
<td>1</td>
<td>111</td>
<td>-10.27</td>
<td>7477</td>
</tr>
<tr>
<td>1</td>
<td>112</td>
<td>-10.45</td>
<td>7474</td>
</tr>
<tr>
<td>1</td>
<td>113</td>
<td>-10.27</td>
<td>7470</td>
</tr>
<tr>
<td>1</td>
<td>114</td>
<td>-10.45</td>
<td>7466</td>
</tr>
<tr>
<td>1</td>
<td>115</td>
<td>-10.05</td>
<td>7462</td>
</tr>
</tbody>
</table>

Note: δ18O and δ13C values represented in ‰ notation relative to VPDB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Dist from base (mm)</th>
<th>δ13C</th>
<th>δ18O</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>-9.60</td>
<td>-7.95</td>
<td>7242</td>
</tr>
<tr>
<td>174</td>
<td>-9.09</td>
<td>-8.01</td>
<td>7238</td>
</tr>
<tr>
<td>175</td>
<td>-8.18</td>
<td>-8.02</td>
<td>7235</td>
</tr>
<tr>
<td>176</td>
<td>-7.92</td>
<td>-7.83</td>
<td>7231</td>
</tr>
<tr>
<td>177</td>
<td>-8.57</td>
<td>-7.67</td>
<td>7227</td>
</tr>
<tr>
<td>178</td>
<td>-8.80</td>
<td>-8.50</td>
<td>7223</td>
</tr>
<tr>
<td>179</td>
<td>-8.42</td>
<td>-7.96</td>
<td>7219</td>
</tr>
<tr>
<td>180</td>
<td>-10.13</td>
<td>-8.42</td>
<td>7216</td>
</tr>
<tr>
<td>181</td>
<td>-9.34</td>
<td>-8.43</td>
<td>7212</td>
</tr>
<tr>
<td>182</td>
<td>-7.88</td>
<td>-7.66</td>
<td>7208</td>
</tr>
<tr>
<td>183</td>
<td>-7.64</td>
<td>-7.72</td>
<td>7204</td>
</tr>
<tr>
<td>184</td>
<td>-8.63</td>
<td>-8.22</td>
<td>7201</td>
</tr>
<tr>
<td>185</td>
<td>-9.37</td>
<td>-8.43</td>
<td>7197</td>
</tr>
<tr>
<td>186</td>
<td>-8.05</td>
<td>-7.99</td>
<td>7193</td>
</tr>
<tr>
<td>187</td>
<td>-9.35</td>
<td>-8.35</td>
<td>7189</td>
</tr>
<tr>
<td>188</td>
<td>-8.86</td>
<td>-7.86</td>
<td>7185</td>
</tr>
<tr>
<td>189</td>
<td>-8.56</td>
<td>-7.08</td>
<td>7181</td>
</tr>
<tr>
<td>190</td>
<td>-8.70</td>
<td>-7.38</td>
<td>7177</td>
</tr>
<tr>
<td>191</td>
<td>-7.50</td>
<td>-7.38</td>
<td>7174</td>
</tr>
<tr>
<td>192</td>
<td>-8.43</td>
<td>-7.44</td>
<td>7170</td>
</tr>
<tr>
<td>193</td>
<td>-9.11</td>
<td>-7.63</td>
<td>7166</td>
</tr>
<tr>
<td>194</td>
<td>-8.87</td>
<td>-7.63</td>
<td>7159</td>
</tr>
<tr>
<td>195</td>
<td>-8.99</td>
<td>-7.57</td>
<td>7155</td>
</tr>
<tr>
<td>196</td>
<td>-9.31</td>
<td>-8.33</td>
<td>7151</td>
</tr>
<tr>
<td>197</td>
<td>-9.45</td>
<td>-9.03</td>
<td>7147</td>
</tr>
<tr>
<td>198</td>
<td>-9.17</td>
<td>-8.31</td>
<td>7144</td>
</tr>
<tr>
<td>199</td>
<td>-10.17</td>
<td>-9.02</td>
<td>7140</td>
</tr>
<tr>
<td>200</td>
<td>-11.04</td>
<td>-8.84</td>
<td>7136</td>
</tr>
<tr>
<td>201</td>
<td>-9.50</td>
<td>-8.27</td>
<td>7132</td>
</tr>
<tr>
<td>202</td>
<td>-8.97</td>
<td>-7.94</td>
<td>7128</td>
</tr>
<tr>
<td>203</td>
<td>-9.87</td>
<td>-8.90</td>
<td>7124</td>
</tr>
<tr>
<td>204</td>
<td>-10.21</td>
<td>-9.20</td>
<td>7119</td>
</tr>
<tr>
<td>205</td>
<td>-10.63</td>
<td>-10.00</td>
<td>7115</td>
</tr>
<tr>
<td>206</td>
<td>-9.13</td>
<td>-8.39</td>
<td>7113</td>
</tr>
<tr>
<td>207</td>
<td>-9.58</td>
<td>-8.61</td>
<td>7110</td>
</tr>
<tr>
<td>208</td>
<td>-9.65</td>
<td>-8.72</td>
<td>7106</td>
</tr>
<tr>
<td>209</td>
<td>-10.07</td>
<td>-9.30</td>
<td>7102</td>
</tr>
<tr>
<td>210</td>
<td>-9.85</td>
<td>-8.66</td>
<td>7098</td>
</tr>
<tr>
<td>211</td>
<td>-9.42</td>
<td>-8.69</td>
<td>7094</td>
</tr>
<tr>
<td>212</td>
<td>-9.21</td>
<td>-8.32</td>
<td>7091</td>
</tr>
<tr>
<td>213</td>
<td>-8.69</td>
<td>-9.00</td>
<td>7087</td>
</tr>
<tr>
<td>214</td>
<td>-8.71</td>
<td>-6.70</td>
<td>7063</td>
</tr>
<tr>
<td>215</td>
<td>-9.27</td>
<td>-8.22</td>
<td>7079</td>
</tr>
<tr>
<td>216</td>
<td>-8.58</td>
<td>-7.57</td>
<td>7075</td>
</tr>
<tr>
<td>217</td>
<td>-9.10</td>
<td>-7.52</td>
<td>7072</td>
</tr>
<tr>
<td>218</td>
<td>-8.68</td>
<td>-7.51</td>
<td>7068</td>
</tr>
<tr>
<td>219</td>
<td>-8.73</td>
<td>-7.85</td>
<td>7064</td>
</tr>
<tr>
<td>220</td>
<td>-9.51</td>
<td>-8.06</td>
<td>7060</td>
</tr>
<tr>
<td>221</td>
<td>-9.03</td>
<td>-8.29</td>
<td>7056</td>
</tr>
<tr>
<td>222</td>
<td>-8.33</td>
<td>-7.94</td>
<td>7053</td>
</tr>
<tr>
<td>223</td>
<td>-8.12</td>
<td>-7.28</td>
<td>7049</td>
</tr>
<tr>
<td>224</td>
<td>-7.61</td>
<td>-6.69</td>
<td>7045</td>
</tr>
<tr>
<td>225</td>
<td>-6.86</td>
<td>-7.65</td>
<td>7041</td>
</tr>
<tr>
<td>226</td>
<td>-8.39</td>
<td>-7.54</td>
<td>7037</td>
</tr>
<tr>
<td>227</td>
<td>-8.30</td>
<td>-7.50</td>
<td>7034</td>
</tr>
<tr>
<td>228</td>
<td>-8.00</td>
<td>-7.49</td>
<td>7030</td>
</tr>
<tr>
<td>229</td>
<td>-9.05</td>
<td>-7.60</td>
<td>7026</td>
</tr>
<tr>
<td>230</td>
<td>-9.05</td>
<td>-7.60</td>
<td>7026</td>
</tr>
<tr>
<td>Dist from base (mm)</td>
<td>δ13C</td>
<td>δ18O</td>
<td>age</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>345</td>
<td>-11.16</td>
<td>-8.76</td>
<td>6590</td>
</tr>
<tr>
<td>346</td>
<td>-11.14</td>
<td>-8.21</td>
<td>6586</td>
</tr>
<tr>
<td>347</td>
<td>-11.13</td>
<td>-8.49</td>
<td>6582</td>
</tr>
<tr>
<td>348</td>
<td>-10.96</td>
<td>-8.28</td>
<td>6579</td>
</tr>
<tr>
<td>349</td>
<td>-9.78</td>
<td>-8.09</td>
<td>6575</td>
</tr>
<tr>
<td>350</td>
<td>-10.07</td>
<td>-8.12</td>
<td>6571</td>
</tr>
<tr>
<td>351</td>
<td>-7.93</td>
<td>-8.00</td>
<td>6567</td>
</tr>
<tr>
<td>352</td>
<td>-9.26</td>
<td>-8.48</td>
<td>6563</td>
</tr>
<tr>
<td>353</td>
<td>-9.71</td>
<td>-8.26</td>
<td>6560</td>
</tr>
<tr>
<td>354</td>
<td>-8.51</td>
<td>-8.05</td>
<td>6556</td>
</tr>
<tr>
<td>355</td>
<td>-9.10</td>
<td>-8.09</td>
<td>6552</td>
</tr>
<tr>
<td>356</td>
<td>-9.59</td>
<td>-8.06</td>
<td>6548</td>
</tr>
<tr>
<td>357</td>
<td>-10.26</td>
<td>-8.44</td>
<td>6544</td>
</tr>
<tr>
<td>358</td>
<td>-9.72</td>
<td>-8.39</td>
<td>6541</td>
</tr>
<tr>
<td>359</td>
<td>-9.31</td>
<td>-8.20</td>
<td>6537</td>
</tr>
<tr>
<td>360</td>
<td>-8.46</td>
<td>-7.86</td>
<td>6533</td>
</tr>
<tr>
<td>361</td>
<td>-8.89</td>
<td>-7.96</td>
<td>6529</td>
</tr>
<tr>
<td>362</td>
<td>-8.74</td>
<td>-8.19</td>
<td>6525</td>
</tr>
<tr>
<td>363</td>
<td>-9.22</td>
<td>-8.55</td>
<td>6522</td>
</tr>
<tr>
<td>364</td>
<td>-9.10</td>
<td>-8.38</td>
<td>6518</td>
</tr>
<tr>
<td>365</td>
<td>-10.99</td>
<td>-8.57</td>
<td>6514</td>
</tr>
<tr>
<td>366</td>
<td>-10.61</td>
<td>-8.30</td>
<td>6510</td>
</tr>
<tr>
<td>367</td>
<td>-10.13</td>
<td>-8.06</td>
<td>6507</td>
</tr>
<tr>
<td>368</td>
<td>-9.81</td>
<td>-8.09</td>
<td>6503</td>
</tr>
<tr>
<td>369</td>
<td>-9.89</td>
<td>-8.11</td>
<td>6499</td>
</tr>
<tr>
<td>370</td>
<td>-9.46</td>
<td>-7.77</td>
<td>6495</td>
</tr>
<tr>
<td>371</td>
<td>-8.22</td>
<td>-7.29</td>
<td>6491</td>
</tr>
<tr>
<td>372</td>
<td>-6.84</td>
<td>-7.16</td>
<td>6488</td>
</tr>
</tbody>
</table>
REFERENCES

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Harmon, R.S., Thompson, P., Schwarcz, H.P. et al., 1978, Late Pleistocene paleoclimates of North America as inferred from stable isotope studies of speleothems: Quaternary Research, v. 9, p. 54-70.

Yapp, C.J., 1982, A model for the relationships between precipitation, D/H ratios, and precipitation intensity: Journal of Geophysical Research,
VITA

Graduate College
University of Nevada, Las Vegas

April Dianne Azouz

Home Address:
5984 Turhan Circle
Las Vegas, NV 89146

Degrees:
Bachelor of Science, Earth Science, 2004
Boston University

Thesis Title:
Evidence of an active ENSO and PDO during the mid-Holocene from a
Costa Rican speleothem

Thesis Examination Committee:
Chairperson, Dr. Matthew Lachniet, Ph.D.
Committee Member, Dr. Ganqing Jiang, Ph.D.
Committee Member, Dr. Michael Nicholl, Ph. D.
Graduate Faculty Representative, Dr. Barbara Luke, Ph.D.