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ABSTRACT

Maximizing Resource Utilization By Slicing  
Of Superscalar Architecture

by

S h ru ti R avikant Patil

Dr. V enkatesan  M uthukum ar, Exam ination Com m ittee C hair 
Professor of E lectrical and  C om puter Engineering 

U niversity of Nevada, Las Vegas

S uperscalar a rch itec tu ra l techn iques increase in struction  th ro u g h p u t from one 

in struction  per cycle to m ore th a n  one in stru c tio n  per cycle. M odern p rocessors m ake 

u se  of several processing resources to achieve th is  k ind of th roughpu t. Control u n its  

perform  various functions to minimize sta lls  an d  to en su re  a  con tinuous feed of 

in structions to execution u n its . It is vital to en su re  th a t in stru c tio n s  ready for execution 

do not encoun ter a  bottleneck in  the  execution stage.

This thesis  w ork proposes a  dynam ic schem e to increase efficiency of execution 

stage by a  m ethodology called block slicing. Im plem enting th is concept in a  wide, 

su p ersca la r pipelined arch itec tu re  in troduces m inim al additional hardw are and  delay in 

the  pipeline. The hardw are required  for the  im plem entation  of the  proposed schem e is 

designed and  assessed  in term s of cost an d  delay. Perform ance m easu res  of speed-up , 

th ro u g h p u t an d  efficiency have been evaluated  for the  resu lting  pipeline and  analyzed.

I l l
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CHAPTER 1 

INTRODUCTION

As we move to the  GSI (Giga-Scale Integration) era, the challenges p resen ted  to  a  

com puter arch itec t increase in co n stra in ts  an d  complexity. C u rren t dem ands of 

technological advances have spu rred  an  exceptional developm ent in  th e  way com puters 

a re  designed. Advances in  com puter arch itec tu re  sp an  across the  concepts of out-of- 

o rder su p e rsca la r a rch itec tu res, aggressive speculative techn iques, high bandw id th  

caches, etc. to d istribu ted  processor a rch itec tu res.

The nex t section briefly traces the  developm ent of a rch itec tu res an d  resea rch  on 

m odern a rch itec tu res  with enhanced  perform ance and  capabilities. Among the  factors 

th a t a re  sough t to be con tinuously  im proved in  a  m achine are  clock speeds and  

in struction  th ro u g h p u t. This resea rch  w ork proposes a  dynam ic way to increase 

in struction  th ro u g h p u t, by concen tra ting  on the  processing elem ents of a n  a rch itec tu re  

and  adding flexibility so th a t  the  processing  bottleneck  is addressed .

1.1 History of Com puting

D uring the  late forties, com puters were m ostly developed as a  m achine perform ing 

logic an d  arithm etic  operations u s in g  vacuum  tubes . There w as a  need for su itab le  

electronic hardw are arch itec tu re  w hich w as m uch  more efficient th a n  the  existing 

electro-m echanical devices (ENIAC). This led Jo h n  Von N eum ann to form ulate a  

m achine controlled by a  sequen tial program  stored in  electronic m em ory along w ith the  

da ta , an d  it cam e to be know n as EDVAC (Electronic D iscrete Variable A utom atic 

Com puter). W ith N eum ann’s a rch itec tu re  as the  base, new a rch itec tu ra l concepts were 

conceived by in tegrating  software w ith the  hardw are. W ith the  invention of

1
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program m ing languages and  operating system s, the  com puting power h a s  increased  

from few h u n d red s  to several billion in stru c tio n s  per second. Program  sizes increased  

from few th o u sa n d s  to several m illions of code lines. C om puters cam e to be seen  as 

both  special pu rpose  m ach ines executing a  p a rticu la r program  an d  as  universal 

m ach ines capable of sim ulating  any  special purpose  m achine.

The M anchester university  com puter science group developed the  idea of indexed  

modification o f  addresses  and  the mem ory hierarchy in 1949. The index registers 

perm itted  the execution of loops w ithou t modifying the  in struction  add resses  an d  the  

m em ory h ierarchy  idea led to the  developm ent of caches and  v irtua l m ach ines concept. 

In 1951, Wilkes proposed the  microprogrammed control, as a  system atic  way of 

controlling the  operation of com puters. S tack  architecture w as proposed by B arton  in 

1958 as a  tool for com piling and  executing expressions. This resu lted  in  the  m achine 

a rch itec tu re  reflecting the  organization of the  program m ing language. The late  fifties 

saw  the developm ent of multiprocessors w ith  separa te  I /O  processors  an d  arithmetic 

processors.

Vector processors  provided efficient m achine operations involving d a ta  s tru c tu re s . 

Cray-I developed in 1973 is an  exam ple of vector supercom puter. W ith the  advent of 

vector processors, pipelined architectures cam e into existence, w hich have since becom e 

the  backbone of su b seq u en t arch itec tu res . The pipelined a rch itec tu re  ob tains faster 

operations by decom posing each  operation  into step s  to be executed by cascaded  s u b ­

u n its . Systolic array  arch itec tu re  evolved from pipelined a rch itec tu re  characterized  by 

identical processing  elem ents connected in  a  linear or a  m ulti-d im ensional a rray  where 

in  each  processing elem ent is connected only to its ad jacen t elem ents only.

In 1972, the  increasing  density  of the  com ponent on a  chip u sing  VLSI techn iques 

an d  the corresponding  lower costs resu lted  in im plem entation of a  com plete processor 

on a  single chip, know n as microprocessor. F u rth e r  increase in com ponent density  h as  

led to the  evolution of m icroprocessors w ith complex in struction  se t (CISC) and  m ore 

functionality  on hardw are. B u t th is  also resu lted  in  slow down of the  processor speed.
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Figure 1. C om puter G enerations in 50 years [22]

To increase  the  speed of processing  an d  reduce the n u m b er of in structions , 

a rch itec tu res w ith reduced  in struction  se t (RISC) were im plem ented w ith sim ple 

circuitry. The invention of CISC an d  RISC a rch itec tu res form ed the  baseline for the 

b u rs t of several new a rch itec tu res w hich led to the  b irth  of new generation  know n as 

superscalar architectures. S upersca lar p rocessors have the ability to process several 

in stru ctio n s  in  the  sam e in struction  cycle based  on w hether a n  in struction  is an  

independen t in struction  or dependen t on ano ther.

Figure 1 show s the  five generations of com puters [22] concisely, w hich depict five 

d istinc t developm ent p h ases  in  the  com puter industry .
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1.2 A rchitectures & C lassifications

The parallel processing ability of the  sup e rsca la r a rch itec tu res resu lted  in m any 

different a rch itec tu res  an d  it is im perative th a t  we classify the  a rch itec tu res  into 

various categories based  on th e ir features.

1.2.1 C lassification based  on Instruction  Set complexity

■ Complex In struction  Set C om puter (CISC)

■ Reduced Instruction  Set C om puter (RISC)

■ M inimal Instruction  Set C om puter (MISC)

■ High Level In struction  Set C om puter (HI SC)

■ W ritable in struction  Set C om puter (WISC)

■ Zero In struction  Set C om puter (ZISC)

■ Veiy Long Instruction  Word (VLIW)

1.2.2 F lynn’s Taxonom y based  on parallelism  in in struction  and  d a ta  s tream s

■ Single Instruction  Single D ata  s tream  (SISD)

■ Single Instruction  M ultiple D ata  stream  (SIMD)

■ M ultiple In struction  Single D ata  stream  (MISD)

■ M ultiple In struction  M ultiple D ata  s tream  (MIMD)

■ Centralized S hared  Memory

■ D istribu ted  Memoiy

1.2.3 C lassification based  on in ternal storage of operands

■ S tack  A rchitecture

■ A ccum ulator A rchitecture

■ Load-Store A rchitecture

■ R egister-M em ory A rch itecture

■ Memory-Memory A rchitecture

■ Extended A ccum ulator /  Special Purpose Register A rchitecture

1.2.4 C lassification based  on application

■ G eneral Purpose A rchitectures
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■ A pplication Specific A rchitectures

1.2.5 Recent classification based  on ability to exploit In struction  Level Parallelism

■ Scalar, Non-pipelined

■ Scalar, Pipelined

■ S uperscalar, Non-pipelined

■ S uperscalar, Pipelined

■ S uperscalar, Superpipelined

1.3 Design & Evaluation of a rch itec tu re

The essen tia l elem ents of a  processor are d a tap a th s , in stru c tio n  se t and  control 

u n it. A d a ta p a th  is e ither designed w ith general processing elem ents th a t  process all 

incom ing ta sk s  or it is designed to hand le  specific ta sk s  u sing  specialized com ponents. 

The d a ta p a th  controls the processing  abilities in th e  arch itec tu re . An in stru c tio n  se t is 

th en  required  to be designed for the  processor. An instruction  generally consists  of a  

field to specify operations to be perform ed and  one or more fields to specify d a ta  to 

perform  the  operations on. The in stru c tio n s  m ay also be designed to provide control 

inform ation to the  processor to execute the  operations in an  efficient m anner. In th is 

case, there  is an o th e r field called the  control filed th a t  con ta ins pre-determ ined  control 

b its. The control u n it  generates control signals th a t  allow a  concu rren t functioning of 

different m odules in d a ta p a th s  and  enable the  processor to o u tp u t re su lts  tim ely and  

correctly.

Various designs for a rch itec tu res have been  developed over the  years. M ost are 

described in the  classifications listed  above. A new arch itec tu ra l design is generally 

required for e n h a n c in g  cu rren t perform an ce, to  im part n ew er ca p a b ilities  to a n  ex ist in g  

arch itec tu re  or to exploit the  la te s t circuit-level technology.

The im pact th a t  a  newly designed a rch itec tu re  will have on ta sk s  an d  program s 

needs to be evaluated  in order to successfully  p u t it to u se  in p ractical applications. 

B enchm ark  su ites  contain ing  program s th a t  rep resen t a  variety of application ta sk s
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have been  developed to a sse ss  the  perform ance of a rch itec tu res u n d e r  different 

environm ents. C ertain  desirable properties have been  identified for perform ance m etrics 

to evaluate a rch itec tu res. These are  linearity, reliability, repeatability , ease of 

m easurem ent, consistency an d  m easu rem en t as described in  [2]. The perform ance 

m etrics listed below have been  extensively u sed  since decades for reflecting perform ance 

of new arch itectu res;

■ Clock frequency

■ Millions of in stru c tio n s  executed per second (MIPS),

■ Millions of floating poin t in stru c tio n s  executed per second (MFLOPS)

■ Execution Time

■ Speed-up w ith respect to o ther system s

Once an  arch itec tu re  h a s  been  designed, it is analyzed for cost (in term s of gate 

equivalents) an d  m axim um  clock frequency. B enchm ark  program s are ru n  on the 

m achine an d  th e ir execution tim e gives a n  indication of the quality  of the  a rch itec tu re  

for the a rea  of applications rep resen ted  by specific benchm ark  program s. These m etrics 

aid  in com paring different a rch itec tu res  an d  facilitate the  choice of an  a rch itec tu re  for 

an  application a t  hand .

1.4 M otivation for the R esearch w ork

W ith advancem ents in  VLSI design tools and  fabrication techn iques, the  chip a rea  

available to im plem ent complex com puter a rch itec tu re  h as  increased  exponentially. 

This increase in a rea  can  be u sed  e ither to accom m odate m ore n u m b er of m odules, 

m odules of increased  complexity an d  functionality  or a  com bination of bo th . While 

acknowledging the  available la titude  of chip a rea , th is thesis  explores w ays of 

increasing  the  efficiency of m odules on the  chip by in troducing  additional 

functionalities to existing m odules.

M ost m odern-day p rocessors have a  d a ta  w idth of 64-bits. It is possible to efficiently 

u se  the processing  elem ents to operate  on d a ta  of sm aller word sizes. A schem e called

6
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as  block slicing is proposed in  th is  w ork to increase in struction  th ro u g h p u t w hen su ch  

d a ta  is encountered . The schem e is applied  to functional u n its  to increase execution 

parallelism  in wide supersca la r, pipelined a rch itec tu res. This techn ique will be m ore 

effective in general pu rpose  m ach ines an d  will lead to a  h igher processing  ra te , w ithou t 

increasing  processing  u n its .

The schem e of block slicing, its design, im plem entation an d  evaluation  have been 

elucidated in th is  thesis. This docum ent is organized as follows. C hap ter 2 p resen ts  a  

litera tu re  review of com puter a rch itec tu res  an d  their applications. C hap ter 3 describes 

the  su p ersca la r arch itec tu ra l techn ique for exploiting In struction  Level Parallelism  (ILF) 

an d  the DLX arch itec tu re  designed for academ ic pu rposes and  described  in [1]. C hap ter 

4 describes the  concepts in troduced  by th is thesis  work an d  th e ir  design and  

im plem entation as  pipelined u n its . C hap ter 5 evaluates the  concepts and  p resen ts  the 

resu lts  of sim ulations. C hap ter 6 p resen ts  conclusions from th is  w ork an d  proposes 

fu tu re  w ork th a t rem ains to be perform ed an d  evaluated.
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CHAPTER 2 

PRIOR WORK

C om puter a rch itec tu res have advanced from the  ENIAC (Electronic Num erical 

In tegrator And Com puter) to p resen t day m ulti-core processors. C lassification of 

com puter a rch itec tu res is n o t only necessary  to determ ine an  optim al design for a  

system , b u t also to system atize the  sam ple space for arch itec tu ra l exploration and  

progression. There are  several categories u n d e r  w hich arch itec tu re  can  be classified. 

Some of the  conventional classification m ethods are  based  upon  the  complexity of the 

in struction  set, operand  storage, application and  in struction  processing  schem e. O ther 

criteria  like cost, capacity, perform ance an d  com ponent density  have also been  u sed  in 

the  p as t to provide a  basis  for classification. A part from these  categories, lately new 

classification m ethodologies based  upon  n u m b er of storage h ierarchy  levels, n u m b er of 

addressab le  fields, fau lt to lerance of the  system  and  reconfigurability are  being u se d  to 

com pare perform ance of upcom ing a rch itec tu res.

This ch ap te r d iscusses conventional com puter arch itec tu re  classifications followed 

by a  descrip tion of different types of sup e rsca la r processors. F ourth  generation  

processors are  also briefly explained in th is  section. A survey of existing lite ra tu re  is 

p resen ted  a t the  end of th e  chapter.

2 .1  C lassifica tio n  o f C om p u ter A rch itectu res

A rchitectures can  be categorized based  on a  n u m b er of b road  classification criteria. 

M ost com m ercial p rocessors fall into a  n u m b er of these  criteria. It is possible to m ake a  

narrow er classification for advanced p rocessors like parallel p rocessors, d istribu ted  

p rocessors an d  netw ork processors.
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2.1.1 C lassification based  on Instruction  Set Complexity

1. Complex Instruction  Set C om puter (CISC):

The CISC in struction  se t com prises of several RISC operations in  a  single 

in struction . This reduces the  lines of code for a  program  and  gives the  designer the  

ability to optim ize m ultiple in stru c tio n s  in a  single step. A reduction  in  in stru c tio n s  

leads to lower m em ory requ irem en ts and  fewer m em oiy accesses. However, the 

functions of the  in struction  decoder stage intensify to a  large extent. Typically, the  

nu m b er of in stru c tio n s  in  a  CISC m achine is 80-150. The m ain  fea tu res of a  CISC 

system  include reg ister to m em oiy and  m em ory to reg ister in stru ctio n s , m ultiple 

addressing  m odes for m em oiy, two operand  form at, variable length  in stru ctio n s  and  

m any clock cycles per in struction . The CISC arch itec tu re  is characterized  by a  

complex in stru c tio n  decode logic, a  sm all nu m b er of general pu rpose  reg isters an d  

several special purpose  registers.

2. Reduced In struction  Set C om puter (RISC):

The RISC arch itec tu re  su p p o rts  sim ple basic  in structions th a t  can  be com bined 

to achieve complex ta sk s  an d  capable of ru n n in g  faster th a n  CISC in structions . The 

in struction  decoder design is simplified due to the  n a tu re  of in stru ctio n s , a n d  hence 

control p a th  design process is uncom plicated . The RISC a rch itec tu re  enables a  

com puter a rch itec t to exploit in stru c tio n  parallelism  an d  out-of-order execution. 

RISC processors have complex m em ory h ierarchy  in order to w ork a t full speed and  

allow for u n in te rru p ted  pipeline flow.

These p rocessors are  often classified based  on various m easu res  like the 

d a ta p a th  w idth, pipeline w idth, word size, cache s tru c tu re , b u s  s tru c tu re , type of 

buffers and  types of reg ister files.

3. M inimal Instruction  Set C om puter (MISC) [4]:

The MISC arch itec tu re  is m ade to exploit sim plicity by assum ing  only 32 

in structions. As the  speed of the  RISC processors increases, a  bo ttleneck  is created  

betw een the  processor an d  the m em ory. A cache m em oiy is n ecessa iy  to buffer
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in struction  a n d  d a ta  s tream s in  o rder to increase the  m em oiy access speed. Cache 

m em oiy com plicates the  system  design a n d  m akes the  system  m ore expensive. RISC 

processor is also veiy inefficient in  hand ling  subrou tine  calls an d  re tu rn s . A large 

reg ister window big enough to hand le  inpu t, o u tp u t and  local param eters  is u sed  to 

a ss is t in  sub rou tine  calls. This large reg ister window w astes the  m ost valuable 

resource in  the  RISC processor and  slows the  system  during  context sw itching. 

MISC is im plem ented w ith only four in struction  groups: tran sfe r in structions , 

m em ory in structions , arithm etic  in stru c tio n s  an d  register in structions.

4. High Level In struction  Set C om puter (HISC) [5]:

HISC is 64 b it arch itec tu re . It involves sim ple in structions  of fixed length, 

en tries of operand  descrip tors and  application oriented d a ta  types. The operands of 

an  in struction  are  described by O perand  D escrip tors w hich are  records and  consist 

of v irtual add resses, d a ta  types, operand  sizes, vector inform ation, operand  access 

codes and  design and  system  dependen t inform ation for the  operand . The d a ta  

types of the  operands include integer, floating-point num ber, BCD, cha rac te r and  

string. The vector inform ation includes n u m b er of elem ents in  the  vector an d  the 

elem ent spacing  for vector operands.

HISC reduces the  dem and  for conditional b ranch ing  as  in  RISC by elim inating 

the looping co u n t for operands of variable lengths an d  large size, a s  well a s  vectors. 

On the  o ther hand , HISC will operate super-sca la r on a  h igher level. The 

in terdependency  of operands will be m uch  less while it is likely to operate su p e r­

scala r for two or m ore function  u n its . HISC also keeps the  vector inform ation so 

th a t  vector operations are done by hardw are.

This is a  general purpose  a rch itec tu re  targeted  on high perform ance, 

im plem entation flexibility, expandability , b e tte r  access control an d  system  

dependen t features. HISC processor provides b e tte r encapsu la tion  an d  is be tte r 

su ited  for m ultim edia  applications.
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5. W ritable In struction  Set C om puter (WISC):

W ritable Instruction  Set C om puter is a  s tack  based  a rch itec tu re  w hose design is 

based  on VLSI design m ethodology. These stack  m ach ines offer processor 

complexity th a t  is m uch  lower th a n  th a t  of CISC m achines and  overall system  

complexity th a t  is lower th a n  th a t of e ither RISC or CISC m achines.

Earlier, s tack s  were placed in  program  m em oiy chips. WISC m ain ta in s  separa te  

m em ory ch ips or even on-chip m em oiy for the  stacks. This configuration provides 

extrem ely fast sub rou tine  calling capability  an d  superior perform ance for in te rru p t 

hand ling  an d  ta sk  switching. WISC com bines stack  m ach ine design w ith 

opportunities offered by VLSI fabrication technology. This com bination produces 

sim plicity an d  efficiency. M ultiple s tack s  w ith hardw are s tack  buffers, zero-operand 

s tack  oriented in struction  se ts  an d  the  capability  of fast procedure calls lead to 

featu res like high perform ance w ithou t pipelining, sim ple logic and  low system  

complexity, sm all program  size, fast program  execution an d  low in te rru p t response 

and  a  low cost for context sw itching. A successfu l application a rea  for WISC is real 

tim e em bedded control environm ents.

6. Zero In struction  Set C om puter (ZISC) [6]:

ZISC is a  n eu ra l netw ork based  in tegrated  circuit w hich is designed for 

applications u s in g  su p e r com puters. ZISC u ses  accum ulated  knowledge to recognize 

and  classify objects and  take  decisions. It lea rns by exam ples from  sam ples of da ta . 

The bu ilt-in  learn ing  m echan ism  accum ula tes knowledge du ring  the tra in ing  w hen 

exam ples and  their so lutions are en tered . ZISC h as  generalization capability  w hich 

gives the  capability  to reac t to objects w hich were no t p a rt of the  learn ing  exam ples.

ZISC’s learn ing  capability is no t lim ited in tim e and  volume. Its ch ips can  be 

cascaded  to create a  larger system  w hich en su res  th a t the  system  a rch itec tu re  

ca ters to the  increase in technology density . Several chips can  be linked together to 

build  a  w ider netw ork, w ithou t adding  logic. These featu res m ake ZISC very easy  to 

u se  an d  capable of solving problem s w hich are  no t clearly defined.
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ZISC h a s  a  high perform ance, capable of operating in  real tim e an d  can  be u sed  

in p a tte rn  recognition an d  classification. It also h a s  the  ability to separa te  noise 

from signal an d  th is  m akes it perfect platform  for signal processing.

7. Very Long Instruction  Word (VLIW):

Scheduling the  in stru c tio n s  is the  core problem  in a  m odern  processor design. 

VLIW design provides an  alternative by letting  the  software do all the  scheduling. 

The com piler exam ines the  program , finds all th e  in stru c tio n s  w ith no 

dependencies, strings them  together in  a  very long b a tch  an d  executes them  

concurren tly  on an  equally big a rray  of function  u n its  su ch  th a t  all the  function 

u n its  are  u sed  efficiently.

Very long in stru ctio n s  are typically betw een 256 and  1024 b its  wide. These 

in structions  con ta in  m any sm aller fields, each  of w hich directly encodes an  

operation for a  p a rticu la r function un it. The hardw are involved is very sim ple, 

consisting of a  collection of function  u n its  w hich include adders, m ultip liers, and  

b ranch  u n its  etc, connected by a  b u s , p lus som e registers an d  caches. More silicon 

is u sed  in ac tu a l processing and  hence VLIW processor ru n s  fast a s  the  only lim it is 

the latency of the  function un it. Due to its ability for scientific n u m b er crunch ing , 

VLIW m achines are highly u sed  in  scientific a rray  processing an d  signal processing.

2 .1.2 F lynn’s Taxonomy

Flynn categorized all system s based  on parallelism  in the  in struction  an d  d a ta  

s tream s which are sim ultaneously  active a t  the  bottleneck  com ponent of the 

m ultiprocessor system . All com puters are  placed into four different categories:

1. Single Instruction  Single D ata  (SISD) Stream :

This is the  c lass of conventional, sequen tial Von N eum ann m achines, in  w hich 

only one in stru c tio n  consum ing a  restric ted  am o u n t of d a ta  is allowed to execute a t 

a  tim e. All s ta te  changes due to the  in struction  m u st be com pleted before the 

execution of next in struction  begins. This category is the  un ip rocesso r category.
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2. Single In struction  M ultiple D ata  (SIMD) Stream :

M ultiple processors execute the  sam e in struction  using  different d a ta  stream s. 

Each processor h ad  its own d a ta  m em ory b u t there  is a  single in stru c tio n  m em ory 

and  control processor, w hich fetches an d  d ispatches in structions . Here, only one 

in struction  can  be executed a t  a  tim e b u t  the  sta te  changes induced  by the  

in struction  m ay be large. Parallelism  is exploited by perform ing the  sam e operation 

concurren tly  on m any pieces of da ta . Vector a rch itec tu res belong to th is  c lass of 

com puters.

3. M ultiple Instruction  Single D ata  (MISD) Stream :

No com m ercial m ultip rocessor system s of th is  type exist to date. Some special 

purpose s tream  processors u se  th is  arch itec tu re  as there  is only a  single d a ta  

stream  to be operated  on by functional u n its .

4. M ultiple Instruction  M ultiple D ata  (MIMD) Stream :

This c lass includes all parallel m ach ines w hich contain  m ultiple p rocessors each  

with its own program  counter. E ach  processor fetches its own in stru c tio n s  and  

operates on its  own data . Different operations m ay be perform ed concurren tly  on 

m any pieces of da ta . The p rocessors in  the  m ultiprocessor system  are often taken  

off-the-shelf.

Due to its flexibility and  cost perform ance factors, MIMD type of a rch itec tu re  

h as  clearly em erged as the  m ost preferred a rch itec tu res for general pu rpose  

m ultiprocessor system s. MIMD m ultip rocessors are  divided into two different 

classes based  on the  nu m b er of p rocessors u sed , the organization of the  m em oiy 

and  the  in terconnection  strategy:

5. C entralized  S h ared  M em ory A rch itectures:

In th is  type of a rch itec tu res, typical p rocessor coun t w ould be few dozens. A 

single centralized m em oiy is connected  to the  processors u s in g  a  single b u s  w hen 

the processor co u n t is less. By replacing the  single b u s  w ith m ultiple b u ses , the  

centralized m em ory can  be scaled to hand le  m ore nu m b er of processors. These
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m ultiprocessors are  called Sym m etric M ultiprocessors (SMP) b ecause  of its  single 

m em ory a n d  its sym m etric rela tionsh ip  to all the  p rocessors and  the  uniform  access 

tim e from any  processor. This style of a rch itec tu re  is also know n as  Uniform Memory 

A ccess  (UMA).

6. D istribu ted  Memory M ultiprocessor A rchitecture [1]:

W hen the  nu m b er of p rocessors involved is large, a  centralized m em ory system  

would not be able to su p p o rt the  bandw id th  dem ands of p rocessors w ithou t 

incurring  excessively long access latency. Hence, m em ory m u st be d istribu ted  

am ong the  p rocessors ra th e r  th a n  being centralized. There are  two m ajor benefits of 

having a  d istribu ted  m em oiy system . F irst, th is  model reduces the  latency  for 

accesses to the  local m em oiy and  th e  second, proves to be a  cost effective way of 

scaling the m em ory bandw id th  w hen m ost of the  accesses are  to the local m em oiy.

2.1 .3  C lassification based  on storage of operands [1]

The type of in te rnal storage of the  operands in a  processor is the  m ost basic 

differentiation u sed  for classifying the  a rch itec tu res. These are  explained below:

1. S tack  A rchitecture: All operands accessed  by th is type of arch itec tu re  are  stored 

in a  stack . An operation is perform ed by tak ing  operands from the  top of the  stack.

2. A ccum ulator A rchitecture: This a rch itec tu re  implicitly accepts an  operand  stored 

in a  special reg ister called as a n  accum ulato r, and  the second operand  is stored into 

a  register. The resu lt of an  operation is also stored implicitly in  the  accum ulato r. 

The advantage of th is schem e is th a t  the  ad d ress  of only one operand  needs to be 

specified while perform ing an  operation.

3. Load-Store A rchitecture: In th is  c lass of com puters, m em ory access is only 

p o ss ib le  w ith  load  an d  store  in str u c tio n s .

4. Register-M emoiy A rchitecture: Here, m em oiy access is possible a s  p a rt  of any 

instruction .

5. M emoiy-M emory A rchitecture: This is a  th ird  class of a rch itec tu re , no t found 

commercially. All operands are  stored  an d  accessed  from the  m em ory itself.
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6. E xtended A ccum ulato r/ Special Purpose Register A rchitecture; There are  m ore 

registers p resen t in  th is  arch itec tu re  th a n  a  single accum ula to r b u t restric tions are 

placed on the  u se  of these  special registers. Such  arch itec tu re  is know n as  extended 

accum ula to r or special purpose  reg ister arch itec tu re .

2 .1 .4  C lassification based  on application

A rchitectures can  also fall in to  two categories based  upon  the application they can  

process: general-purpose, application-specific an d  parallel p rocessors [7].

1. G eneral Purpose A rchitectures

These k inds of a rch itec tu res can  perform  a  variety of ta sk s , an d  are  the  basis for 

m ost Intel p rocessors in a  desk top  m achine. This is achieved by break ing  down the 

ta sk s  to a  generic in stru c tio n  se t w hich is supported  by the  a rch itec tu re .

2. Application Specific A rchitectures

These a rch itec tu res  are  targeted  tow ards a  specific application, or a  family of 

applications. Some application-specific a rch itec tu res have been  bu ilt for digital 

signal processing, image processing an d  mixed signal processing. Every m odule in 

su ch  arch itec tu re  is im plem ented to perform  a t m axim um  efficiency an d  least 

redundancy . The in struction  se t is also custom ized for the application.

2 .1 .5  C lassification based  on In struction  Level Parallelism

Instruction  Level Parallelism  (ILP) denotes a  processor's ability to ru n  m any 

in structions a t  the  sam e tim e. Exploiting ILP h as  led to the evolution of su p ersca la r 

pipelined p rocessors from a  basic  scala r processor. Today, ILP h a s  becom e a  m ajor 

factor a round  w hich processors are  designed. The A m dah l’s  Law  is generally u sed  to 

quantify  a  p rocesso r’s perform ance based  on ILP. S upersca lar processors, w hen 

subjected  to A m dahl’s Law increased  perform ance by a  great m agnitude.

The types of a rch itec tu res  based  on th e ir  ability to exploit ILP are:

■ Scalar, Non-Pipelined

■ Scalar, Pipelined

■ S uperscalar, Non-pipelined
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■ Superscalar, Pipelined 

* Superscalar, Superpipelined

1. Scalar, Non-Pipelined A rchitecture:

A rchitectures w ith a  th ro u g h p u t of 1 Instruction  per Clock Cycle (IPC) are 

term ed as  scala r a rch itec tu res  and  these  rep resen t the  sim plest c lass of com puters. 

A rchitectures like Intel8085™  th rough  Intel386™  were scala r an d  non-pipelined 

a rch itec tu res, w ith least clock speeds am ong all o ther categories in  th is 

classification.

2. Scalar, Pipelined A rchitecture

By in terconnecting  the  different p h ases  th a t  an  in struction  undergoes during  

the tim e it arrives into the  processor till the  tim e it leaves it, it is possible to gain 

processing speed. The p h ases  are  scheduled  so th a t each  p hase  proceeds in  a  lock­

step  fashion, m uch  like the  assem bly  line processing  in an  autom obile factory. Such 

a rch itec tu re  is called a  pipelined arch itec tu re . Pipelining increases clock speeds by a  

factor of the  n u m b er of stages th a t  are  included in  it. A typical pipeline, show n in 

Figure 1 consists of six stages: fetch, decode, read  registers, execute, w riteback, 

write to m em oiy.

3. Superscalar, Non-Pipelined arch itec tu re

An a rch itec tu re  th a t  is capable of processing m ore th a n  one in struction  per 

cycle is called supersca la r. Such  an  IPC is ob tained  by having m ore th a n  one copy 

of processing elem ents. There is no m achine th a t  is su p ersca la r and  non-pipelined. 

This category only exists for the  sake of com pleteness.

Figure 2 show s the  tim e periods w ithin w hich su p ersca la r a rch itec tu res  were 

designed.

4. Superscalar, Pipelined A rchitecture

S upersca lar a rch itec tu res were bu ilt w ith  a  view to ex tract parallelism  from d a ta  

and  in structions. M ultiple in stru c tio n s  and  d a ta  are fetched sim ultaneously  and  

out-of-order execution is enabled to reduce stalls. Additional hardw are an d  stages,
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Figure 2. The appearance  of su p e rsca la r processors on a  tim eline [23]

like reservation u n its  and  reorder buffer are  necessary  to p rocess an  in stru c tio n  in  a  

supersca la r pipeline.

5. S uperscalar, Superpipelined A rchitectures

If the  in ternal stages in  a  pipeline are  them selves pipelined, the  arch itec tu re  is 

called superpipelined. This facilitates the  u se  of faster clocks and  m echan ism s to 

avoid a  k ind of WAR stall.

Figure 3 show s the  evolution of com m ercial su p ersca la r p rocessors [23].

2 .1 .6  F ourth  G eneration Processors:

Im provem ents in  processor perform ance are  achieved by two m eans:

> Advances in  sem iconductor technology

> Advances in processor m icroarchitecture .

To su s ta in  the  h istoric  ra te  of increase in  com puting power, it is im portan t for 

im provem ents to occur in bo th  ways m entioned. It is certain  th a t  clock frequencies will 

continue to increase. The m ain  a rch itec tu ra l challenge is to issue  m any in stru ctio n s  per
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Figure 3. Evolution of Com m ercial S uperscalar Processors

cycle an d  to do so efficiently. Five nex t generation processors are  described  in  th is  

section, w hich exploit the  ILF in  a  system  together w ith speculation.

1. Superspeculative Processors [8]:

These are wide issue  su p e r  sca la r processors, th a t  can  issue  u p  to 32 

in structions per cycle. The inability to go beyond the  d a ta  flow lim it res tric ts  the  

com plete exploitation of In struction  Level Parallelism . Superspeculative processors 

overcome the  dataflow  lim it problem  by aggressively specu lating  on p a s t true  

dependencies an d  exploring additional in stru c tio n  parallelism .

The core b asis  for the superspecu lative processors is th a t  the  p roducer 

in structions generate highly predictable d a ta  in  real program s. By successfully  

sp ecu la tin g  o n  th e  so u rce  op eran d  v a lu e s , th e  c o n su m er  in str u c tio n s  c a n  start  

execution w ithout w aiting for the  resu lt of the  producer in structions. T hus, a  

superspeculative processor rem oves the  serialization co n stra in ts  betw een the 

p roducer and  consum er in stru ctio n s , there  by th ru s tin g  its perform ance to go 

beyond the  classical d a ta  flow lim it w ithou t sacrificing the code com patibility.
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2. Trace Processors [9]:

T ra ce s’ are  dynam ic in stru c tio n  sequences construc ted  and  cached  by 

hardw are. Traces are bu ilt a s  program  executes an d  are  stored  in a  cache. Trace 

processor system s work by b reak ing  down the  system  into several p rocessing  

elem ents (PE) and  the  program  into several traces so th a t  the  cu rre n t trace  is 

executed on one PE while the  fu tu re  traces are  speculatively executed on o ther PEs.

E ach  processing  elem ent h a s  enough in struction  buffer space to hold a n  entire  

trace, m ultiple dedicated  functional u n its , a  dedicated  local reg ister file for holding 

the local values an d  a  copy of the  global reg ister file. In struction  fetch hardw are 

segm ents the  program  into traces, each of w hich m ay have 8 to 32 in stru ctio n s  as  

well a s  em bedded predicted  conditional b ranches. The traces are placed in  a  trace 

cache and  a  trace  fetch u n it subsequen tly  reads the  traces from the  trace cache and  

sends them  o u t to the  parallel processing elem ents. Hence, the  trace becom es the  

basic execution u n it th rough  ou t the  processor. Two m ajor advantages of the  trace 

processors are;

■ The physical reg isters are divided into local an d  global registers. This 

h ierarch ical organization allows for sm aller reg ister files w hich have fast 

access tim es and  fewer po rts  pe r file.

■ Successful value prediction of the  tra c e ’s d a ta  allows the  trace  to be 

executed im m ediately an d  in  parallel w ith o ther traces.

3. M ultiscalar Processors [10]:

M ultiscalar p rocessors divide a  program  into  different ta sk s  th a t  are d istribu ted  

to a  nu m b er of parallel processing elem ents (PEs) which are controlled by a  single 

hardw are sequencer.

A program  is divided into a  collection of ta sk s  by u sing  software an d  hardw are. 

These ta sk s  are  th en  d istribu ted  to the  parallel processing elem ents. E ach  PE 

fetches an d  executes the  in stru c tio n s  assigned  to it. The appearance  of a  single local 

reg ister file is m ain ta ined  w ith a  copy in  each  PE. Compiler generated  m asks enable
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the  dynam ic rou ting  of the  register re su lts  to different processing  u n its . Memory 

accesses occur speculatively and  the  add resses  are  decoded dynam ically. The only 

w ait involved in th is  system  is caused  by the  tru e  d a ta  dependencies.

4. D a tasca la r Processors [12]:

The D atasca la r m odel of execution ru n s  the  sam e sequen tial program  

redundan tly  across m ultiple processors. The d a ta  se t is d istribu ted  across physical 

m em ories th a t  are  tightly coupled to th e ir  d istinc t p rocessors. E ach processor 

b roadcasts  operands th a t  it loads from its local m em ory to all o ther processors. 

Instead  of explicitly accessing  a  rem ote mem ory, processors w ait u n til the  requested  

value is b roadcasted . S tores are  com pleted only by the processor th a t  owns the 

operand , and  are  dropped by the  o thers.

This arch itec tu re  exploits the  fact th a t  all m em ory is local to som e processor in a  

m ultiprocessor system . T hus each  read  operand  can  be fetched by som e processor 

and  each  m em ory u p d a te  can  be achieved by m eans of a  write by some processor. A 

m ajor advantage of the d a ta sca la r arch itec tu re  will be its ability to exploit 

parallelism  in codes th a t  were not traditionally  though t of a s  eligible for parallel 

processing. D atasca la r m odel is way of optim izing the  m em ory and  is no t in tended  

to be su b s titu te  for parallel processing.

5. Advanced S upersca lar Processors:

These are wide issue  sup e rsca la r p rocessors th a t  can  issue  u p  to 32 

in structions  pe r cycle.

An im portan t feature  of th is  arch itec tu re  is its large trace  cache and  a  large 

n u m b er of reservation  sta tions to accom m odate 2000 in structions. There are 24 to 

4 8  h igh ly  op tim ized , fu n ctio n a l u n its . A ggressive sp ecu la tio n  is  perform ed to pred ict  

the b ranches.
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2.2 Prior resea rch  on special a rch itec tu res

2.2.1. Billion T ransisto r A rchitectures [12,13]:

Doug B urger an d  G oodm an specu la te  and  explore the fu tu re  tren d s  in  com puter 

arch itec tu re . They extrapolate the  scope of having one billion tra n s is to rs  on a  single 

chip. Im portan t tren d s  th a t  would take  place over the  course of next 10 years  are 

d iscusses in  th is  paper.

A one billion tra n s is to r  chip would require hardw are m anipu lation  b u t the  physical 

lim its like on chip signaling, wire delays, global clock would be serious constra in ts . 

They expect a  q u an tu m  leap in com piler’s ability to ex tract parallelism  thereby  shifting 

som e of the  parallelism  from the  hardw are  to th e  software. Considering the  growing 

costs involved in  design, verification an d  testing, the au th o rs  conclude th a t 

a rch itec tu res th a t  simplify the  in terac tion  am ong on-chip com ponents a n d /o r  reduce 

the  nu m b er of in terac ting  com ponents will have g rea ter advantage over a rch itec tu res  

th a t  do not.

2.2 .2 . One Billion T ransisto rs , One U niprocessor, One Chip [14]:

Patt e t.al propose th a t  w hen system s w ith one billion tran s is to rs  are  available, 

com puting system s w ith h ighest perform ance will have a  single processor on each  

processor chip. They identify a rch itec tu re  th a t  will have h ighest perform ance by

utilizing the  m axim um  available in stru c tio n  bandw idth . The hardw are will consist of the

following com ponents:

■ A large trace  cache

■ A large n u m b er of reservation  sta tions

■ A large n u m b er of pipelined functional u n its

■ Sufficient on-chip d a ta  cache

■ Sufficient reso lu tion  an d  forw arding logic

These com ponents are n ecessa iy  for aggressive speculation  u s in g  aggressive b ran ch  

predictor an d  for veiy wide issue  sup e rsca la r processing.
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The h ighest perform ance com puting system  will be a  m ultiprocessor consisting  of 

powerful single chip un iprocessors. These will issue  an d  execute 16 or 32 in stru c tio n s  

per cycle w ith nearly  100 percen t b ran ch  prediction accuracy.

2.2.3. Dynam ic In struction  Set C om puter [15]

Michael W irthlin an d  B rad H utchings describe a  new com puter arch itec tu re  th a t  

can  sup p o rt dynam ic m odification of its in stru c tio n  se t based  on th e  dem and  of the 

incom ing instruction . They p resen t a n  im plem entation  of a  DISC a rch itec tu re  b ased  on 

th ree  techniques:

■ Partial FPGA reconfiguration -  Partial reconfiguration provides the  ability to 

reconfigure a  su b  section of a n  FPGA while rem aining logic operates unaffected. 

In structions occupy FPGAs only w hen needed while FPGA resources can  be 

reused  to im plem ent an  arb itra ry  n u m b er of perform ance enhancing  application 

specific in structions.

■ Relocatable hardw are -  Relocatable hardw are gives the flexibility to relocate or 

m ake p lacem ent decisions of partia l configurations a t ru n  tim e. This featu re  is 

u sed  in  DISC to enhance  ru n  tim e hardw are  utilization. Relocating hardw are 

w orks on a  strictly  defined global context. Every in struction  m odule is 

configured on to FPGA in su c h  a  way th a t  each  m odule is a s  close as possible to 

the  o ther in  o rder to avoid w asted  hardw are  betw een m odules. A global context 

provides physical p lacem ent positions an d  a  com m unication netw ork necessary  

for these  m odules to operate correctly.

■ Linear H ardw are Model -  DISC im plem ents relocatable hardw are in the  form of a  

linear hardw are model. The two dim ensional grid of configurable logic cells are 

organized as an  array  of rows. E ach  m odule’s location is specified by the  vertical 

and  horizontal location while the  size of the  m odule is given by the  m odule 

height.

DISC is an  exam ple of application specific processor w ith large in stru c tio n  se ts  th a t 

can  be im plem ented on partially  reconfigurable FPGAs.
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2.2.4. VISA: A Variable In struction  Set A rchitecture [16]

The a u th o r  of th is  paper describes an  in stru c tio n  coding techn ique th a t  reduces the  

w idth of the  in stru ctio n s  u sing  dynam ic in stru c tio n  coding m anaged  by the  com piler. A 

RISC processor is constra ined  by the  in struction  w idth to keep it w ith in  th e  lim its 

im posed by silicon. In th is case, the  com piler defines the  set of in stru ctio n s  required  in 

order to execute a  given program  an d  selects the  hardw are function  th a t  can  be 

activated du ring  the  sam e m achine cycle by u sing  an  instruction .

Compiler divides an d  determ ines the  in stru c tio n  se t based  on two factors:

■ F unctions to be activated

■ N um ber of b its  needed by su ch  functions.

The au th o r p resen ts  a  new VISA based  m icroprocessor nam ed VISP w hich delivers high 

perform ance u sing  the  variable in stru c tio n  se t arch itec tu re  for general a s  well as 

floating point calculations. The resu lt of the  new arch itec tu re  is m ore com pact code and  

notable increase in  optim ization capabilities of the  compiler.

2.2.5. Application Specific Instruction  Set Processor (ASIP) [17]

C hand ra  S hekhar e t al. com pare software based  general purpose a rch itec tu res  to 

dedicated  hardw are  a rch itec tu res and  identify how th e  benefits of bo th  are  realized 

th rough  ASIP arch itec tu res. D edicated hardw are a rch itec tu res can  be com binational, 

sequential, pipelined, an d  parallel or can  be a  mix of any of these  b u t a  change in

functional specification necessita tes  a  change in the  arch itec tu re . These are  closely tied

to the logic specification of the  specific application and  hence are  veiy inflexible in  their 

functionality.

On the  o ther side are the general purpose  a rch itec tu res w hich can  im plem ent any 

logical function  w ithout requiring any  chance in the  hardw are. This flexibility com es 

from  th e  u se  of a  rich  in struction  set. The CPU hardw are is designed only to execute 

any  in struction  from the  in struction  se t loaded into its in struction  reg ister and  th en  

proceed to load an d  execute the  next in struction  from the m em ory into in struction  

reg ister of the  CPU. W henever there  is a  change in  specification, only the  sequence of
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in stru ctio n s  stored  in  the  m em ory changes, w hich is why it is called software based  

arch itec tu re .

The inclusion of complex in stru c tio n s  in  the in struction  se t of the  processor in 

addition  to the  necessary  general purpose  in stru ctio n s  m akes the  in stru c tio n  se t and  

the  processor application specific.

A uthors propose th a t  the  ASIP hardw are  arch itec tu re  would con ta in  a  n u m b er of 

application specific functional blocks an d  the  necessary  bussing  to move the  da ta . This 

reduces the  m em ory accesses an d  the  d a ta  tran sfe rs  am ong the  hardw are  blocks. A 

reduced nu m b er of b u sses  in the  CPU reduces the  am o u n t of b u s  interface logic in  the  

functional blocks in  the  CPU an d  control logic in the  control p a rt  of the  processor. ASIP 

processors will ru n  m ultiple overlapped executions of operations in  different functional 

u n its  to achieve m axim um  possible concurrency. Pipelining occurs a t the  functional 

block level. Application specific in stru c tio n  se ts  and  p rocessors are su itab le  for 

em bedded applications as they  perm it a n  a ltera tion  of hardw are-softw are b oundary  to 

m eet the  speed and  energy co n stra in ts  of a  specific application.

2.2.6. Application Specific A rchitectures [18]

Chris W eaver e t al. proposed th a t  the  po ten tia l of the  application specific 

a rch itec tu res can  be h a rn essed  by specializing a  design to a  sm all dom ain of im portan t 

applications. The benefits of th is  approach  would be improved perform ance, g rea ter 

power efficiency an d  reduced  costs. Key differences betw een general purpose  

arch itec tu re  v ersu s application specific arch itec tu re  are  d iscussed  in th is  paper.

Producing a  dedicated  hardw are  for an  algorithm  im proves the  perform ance 

drastically  an d  reducing  the  silicon a re a  costs. This is obtained by elim inating all 

aspec ts  of the  design th a t  are n o t necessary  for the  algorithm . On the  o ther h an d , the  

m ain  d raw backs of an  application specific arch itec tu re  are increased  m arginal design 

costs due to lesser p roduction  volum es an d  reduced  design flexibility a s  the  hardw are 

im plem entation canno t be changed  after it h a s  been  m anufactu red . The m ain  barriers  

of en try  for application specific a rch itec tu res  are:

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Identifying the  scope of th e ir application dom ains. This requ ires analysis of 

perform ance, power efficiency an d  econom ies of scale.

2. Reduce the  design problem s in h eren t for application specific a rch itec tu res.

In suppo rt of their a rgum en ts, the  a u th o rs  p resen t a  detailed case analysis of T he 

CryptoM aniac P rocessor’. The a rch itec tu re  an d  its application specific optim izations are 

explained.

2.2.7. An FPGA based  Forth  M icroprocessor [19]

Applications w hich u se  application specific FPGA along w ith a  m icroprocessor have 

two d istinct advantages:

1. Reduce the  power consum ption

2. Reduce the  system  costs by incorporating  the  m icroprocessor in  the  FPGA.

In th is paper, a  16 b it FPGA based  m icroprocessor called MSL16 is described  w hich 

executes the ‘F o rth ’ program m ing language. This is based  on s tack  a rch itec tu re  w ith 

each  in struction  occupying 4 b its  leading to sm all in struction  set, sim ple d a ta p a th  and  

control and  high code density.

MSL 16 consists  of a  16 deep d a ta  s tack  for tem poraiy  variables an d  subrou tine  

param eters  an d  a  T reg ister holds the  top elem ent of the stack  so th a t  the  top two 

elem ents of the  s tack  are  available to the  ALU sim ultaneously . It also con ta ins a  16 

deep re tu rn  s tack  to store sub rou tine  re tu rn  add resses, a  in stru c tio n  reg ister w hich 

holds the  4-b it in stru c tio n s  to be executed, a  PC an d  an  IR w hich store the  add ress  of 

the  next in struction  an d  finally an  ALU w hich takes operands from T an d  the  top 

elem ent of e ither DS or RS an d  re tu rn s  the  resu lt to T.

Forth  m ach ines are su itab le  for em bedding in  FPGA applications because  of good 

code density , easy  custom ization, easy  to hand le  developm ent tools, high perform ance 

and  sm all area.

2.2.8. Flexible In struction  Processors [20]

The au th o rs  in troduce  a  Flexible In struction  Processor (FIP) for system atic  

custom ization of in stru c tio n  processor design an d  im plem entation. G eneral pu rpose
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processors lose perform ance w hen dealing w ith custom  operations and  n o n -stan d a rd  

da ta . Custom izing the  processor is required  in  su ch  cases. This can  be done e ither by 

augm enting  the  processor w ith program m able logic for im plem enting custom  

in structions  or by im plem enting the  in stru c tio n s  u s in g  FPGAs. A pplication specific 

in struction  p rocessors provide an o th er m ethod  of producing custom  processors.

The un ique  featu res of FIP include:

■ A m odu lar fram ew ork based  on processor tem plates th a t  cap tu re  various 

in struction  processor styles, su c h  a s  stack -based  or reg ister-based  styles.

■ E nhancem en ts of th is  fram ew ork to improve functionality  an d  perform ance, 

su ch  as hybrid processor tem pla tes an d  su p ersca la r operation

■ Com pilation stra teg ies involving s ta n d a rd  com pilers and  FIP specific com pilers, 

an d  the  associated  design flow

■ Technology independen t an d  technology specific optim izations su c h  as 

techn iques for efficient resource sh a rin g  in FPGA im plem entations

FIPs are  assem bled  from a  processor tem plate w ith m odules connected together by 

com m unicating channels. The tem plate  can  u sed  to produce different styles of 

processors su ch  as  s tack -based  and  reg ister-based . The pa ram ete rs  of a  tem plate  are 

selected to transform  a  skeletal p rocessor in to  a  processor su ited  for its task . Possible 

param eterizations include addition  of custom  in structions, rem oval of u n n ecessa ry  

resources, custom ization of d a ta  an d  in struction  w idths, optim ization of op-code 

assignm en ts, an d  varying the  degree of pipelining.

W hen a  FIP is assem bled, required  in stru c tio n s  are included from a  lib rary  th a t  

con ta ins im plem entations of these  in stru c tio n s  in  various styles. D epending on w hich 

in structions are  included, resources su ch  as s tacks, different decode u n its  are 

in stan tia ted . C hannels provide a  m echan ism  for dependencies betw een in stru ctio n s  

an d  resources to be m itigated. This FIP fram ew ork h a s  been im plem ented in Handel-C.
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2.2.9. Power efficient flexible processor a rch itec tu res  for em bedded applications [21]

A novel processor a rch itec tu re  is proposed in  th is paper w hich provides the 

flexibility needed in practice a t  a  reduced  pow er an d  perform ance cost. A novel protocol 

which com bines a n  efficient, custom ized com ponent w ith a  flexible processor into 

hybrid arch itec tu re  is proposed.

Based on the  required  flexibility, target technology and  processor a rch itec tu re  are 

selected independen t of their reuse  considerations. Com ponents benefiting from a  

custom  hardw are  im plem entation are  still im plem ented in th e ir optim al arch itec tu re . 

Flexibility is added  to the  system  as  a  separa te  program m able com ponent, w hich can  

take over control in  those cycles w here functionality  needs to change. This novel 

protocol allows for fine grain  control w hich is needed since it is n o t know n in advance 

which execution cycles of the  hardw are realization will have to be su b s titu te d  by a  new 

functionality  on the  flexible platform . The fine grain  control is realized w ith a  control 

flow inspection m echan ism  an d  an  in te rru p t m echanism . The custom ized m em oiy 

a rch itec tu re  is shared  w ith the  flexible com ponent, solving the d a ta  tran sfe r and  storage 

bottleneck  for m ultim edia  applications.

All p rocessor described above have s ta tic  d a tap a th s . The hardw are  is incapable  of 

adap ting  to in p u t ta sk s  a t run-tim e. H ardw are is usually  designed w ith sufficient 

resources for all possible types of applications expected to ru n  on it. However, all ta sk s  

th a t  require m inim al resources and  th e  ta sk s  th a t  require m axim um  resources p ass  

th rough  the  sam e d a tap a th , w hich reduces the  overall u tilization of hardw are. This 

issu e  h as  been add ressed  in th is  thesis. C hap ter 3 explains the  su p ersca la r pipelining 

concepts for w hich the  problem  can  be defined clearly.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

SUPERSCALAR PIPELINED ARCHITECTURE 

The schem e proposed in th is  thesis  w ork is evaluated on the  DLX arch itec tu re  

designed by H ennessey and  P a tte rson  as  a  representative a rch itec tu re  of m ost 

com m ercial processors. This ch ap te r explains the  arch itec tu ra l design of the  DLX 

m achine. It also p resen ts  the  design concepts of a  pipelined, su p e rsca la r arch itec tu re .

3.1 DLX A rchitecture

The DLX is a  sim ple load-store arch itec tu re  described in  [1]. It is developed purely  

for academ ic in te rests , w ith an  a rch itec tu re  sim ilar to m ost com m ercial com puters like 

AMD 29K, D EC station 3100, HP850, 1BM801, Intel i860, etc .[l]. The DLX arch itec tu re  

consists of thirty-tw o 32-b it general pu rpose  registers called RO, R l, R2, ... R31 where 

RO always holds the  value zero. The word size for the  DLX is 32 -bit. Integer d a ta  and  

floating point d a ta  of single precision is th u s  32 -bit, while double precision floating 

poin t d a ta  is 64-bit. The DLX u se s  the  im m ediate an d  d isp lacem ent addressing  m odes 

for da ta , w hich are  stored in a  16-bit field. Main m em oiy is accessed  u s in g  a  3 2 -bit 

add ress an d  it is byte addressab le . The operations supported  by the  DLX are  classified 

in to  four m ajor types: ALU, b ran ch , load-store an d  floating point operations. Table 1 

lists  the opcodes of these  operations. The control in structions  are  ju m p s  an d  b ran ch es, 

w here b ran ch es are conditional w hich need to be evaluated before the  b ran c h  is 

resolved. The floating poin t u n it  of DLX hand les all floating poin t operations as  well as 

in teger operations of m ultiply an d  divide.
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Figure 4 show s the  s c a l^ ,  pipelined im plem entation of DLX. It consists  of five 

stages: In struction  fetch, in struction  decode an d  register fetch, execute an d  effective 

add ress calculation, m em ory access and  w rite-back  stage.

M e m o r y

A c c e s s

W r i t e  B a c k

I n s t r u c t i o n

F e t c h

I n s t r u c t i o n

D e c o d e

E x e c u t i o n

Figure 4: Pipeline stages in  a  DLX arch itec tu re

1. In struction  Fetch

The fetch stage is responsib le for fetching the  in struction  to be executed. It 

fetches a  new in stru c tio n  a t  eveiy clock cycle u n less  the pipeline is stalled. The DLX 

u ses  a  special reg ister called the  Program  C ounter (PC) to store the  add ress of the  

next in struction  to be fetched. The PC is increm ented  by 4 to poin t to a  sequen tial 

in struction  stored  in  the  next m em ory word. The fetched in stru c tio n  is stored  in a  

special reg ister called the  Instruction  Register (IR), while a  special reg ister called the 

Next Program  C ounter (NPC) sto res the  add ress of the  next in stru c tio n  to be fetched.

2. In struction  Decode

This stage decodes the  in stru c tio n  stored  in  IR and  accesses the  reg ister file to 

read registers th a t  con ta in  data . Since the  DLX is a  load-store a rch itec tu re , 

operands are  first loaded into reg isters u sing  the  load in stru c tio n  and  th en  

operations are perform ed on them . These operands are read  in to  two tem porary  

registers (A an d  B). If im m ediate add ressing  m ode is u sed , th en  it is sign-extended
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Table 1 DLX instructions [1]
Instruction type/opcode Instruction m eaning

Data transfers

Move data between registers and memory, or between  
the integer and FP or special register; only memory 
address mode is 16-bit displacem ent + conten ts o f a 
GPR

LB, LBU, SB Load byte, load byte unsigned , store byte

LH, LHU, SH Load halfword, load halfword unsigned , store halfword

LW, SW Load word, store  word (to/from  in teger registers)

LF, LD, SF, SD
Load SP float, load DP float, store SP float, store  DP float 
(SP - single precision, DP - double precision)

M 0VI2S, MOVS2I Move fro m /to  GPR to /fro m  a  special reg ister

MOVF, MOVD
Copy one floating-point register or a  DP pa ir to an o th e r 
reg ister or pa ir

MOVFP21, MOV12FP Move 32 b its  fro m /to  FP tegister to /fro m  integer reg isters

Arithm etic /  Logical
Operations on integer or logical data in GPRs; signed  
arithm etics trap on overflow

ADD, ADDI, ADDU, ADDUl
Add, add  im m ediate (all im m édiates are  16-bits); signed 
an d  unsigned

SUB, SUBI, SUBU, SUBUI S ub trac t, su b tra c t im m ediate; signed an d  unsigned

MULT, MULTU, DIV, DIVU

M ultiply an d  divide, signed and  unsigned ; operands 
m u s t be floating-point registers; all operations take  and  
yield 32-b it values

AND, ANDI And, an d  im m ediate

OR, ORI, XOP, XOPI Or, or im m ediate, exclusive or, exclusive or im m ediate

LHI
Load high im m ediate - loads u p p e r ha lf of reg ister w ith 
im m ediate

SLL, SRL, SRA, SLLI, SRLI,
Shifts: bo th  im m ediate(S__I) and  variable form (S_);
shifts are  shift left logical, right logical, righ t arithm etic

S _ ,  S _ I Set conditional: "__" m ay be LT, GT, LE, GE, EQ, NE

Control
Conditional branches and jumps; PC-relative or 
through register

BEQZ, BNEZ
B ranch  GPR e q u a l/n o t equal to zero; 16-bit offset from 
PC

BFPT, BFPF
Test com parison b it in  the  FP s ta tu s  reg ister an d  b ranch ; 
16-bit offset from PC

J ,  JR Ju m p s: 26-b it offset from PC(J) or target in register(JR)

JAL, JALR
Ju m p  and  link: save PC+4 to R 3 1, target is PC- 
relative(JAL) ot a  register(JALR)
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TRAP T ransfer to operating system  a t  a  vectored ad d ress

RFE R eturn  to u se r  code from an  exception; resto re  u se r  code
Floating point Floating-point operations on DP and SP formats
ADDD, ADDF Add DP, SP num bers
SUED, SUBF S u b trac t DP, SP num bers

MULTD, MULTF M ultiply DP, SP floating point
DIVD, DIVF Divide DP, SP floating point

before being stored  in a  register. In struction  decoding an d  accessing  of reg ister file 

is done concurren tly  due  to fixed-width in struction  form at.

3. E xecution an d  Effective A ddress Calculation

The in stru c tio n  is issued  to execution u n it w hich perform s the  desired  arithm etic, 

com pare, logical or shifting operation. If it is a  load or store in struction , th en  th is 

stage perform s effective ad d ress  calcu lation  for generating m em ory add ress from 

w hich or a t  w hich d a ta  is to be loaded or stored.

4. Memory Access

For load in structions , d a ta  is fetched from the  m em ory add ress  generated  in  the 

previous stage and  loaded into load m em ory register, while for store in struction , 

d a ta  is w ritten  from specified reg ister into mem ory. For brsm ch in stru ctio n s , the 

condition for b ranch ing  is evaluated  in  the  previous stage, an d  the  PC is replaced or 

increm ented  based  the resu lt produced. ALU instructions are com pleted in  th is 

stage by w riting the  resu lt of ALU operations into the  desired reg ister file location. 

This is com m only referred to as  the  MEM stage.

5. W rite-back

Register file is u p d a ted  w ith the  d a ta  from Load M emoiy Register, an d  the  load 

in struction  is com pleted.

The scala r DLX pipeline can  be extended to a  su p ersca la r pipelined version u sing  

sup e rsca la r concepts described in the  next section. The nu m b er of pipeline stages and  

th e ir  functions rem ain  sim ilar. Section 3.3 describes the VHDL im plem entation  of a  

sup e rsca la r an d  pipelined DLX arch itec tu re .
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3.2 Generic S upersca lar Pipeline

A su p ersca la r pipeline is characterized  by concurren t in stru c tio n  processing  and  

out-of-order execution. A sup e rsca la r pipeline parallelizes in stru c tio n  execution by 

duplicating  processing elem ents. Figure 5 show s the  block diagram  of a  generic 

sup e rsca la r pipeline of w idth s. The pipeline consists of six m ain  stages: in struction  

fetch, in struction  decode, d ispatch , execute, reorder and  retirem ent. These stages 

perform  task s  sim ilar to those perform ed by the  five-stage pipeline described  for the  

DLX arch itec tu re . The fetch, decode an d  d ispa tch  stages perform  a n  in-order execution 

of in structions, the  execute stage processes in stru ctio n s  in a n  out-of-order m anner. The 

reorder stage forces the in stru ctio n s  to retire  in  an  orderly fashion.

R e t i r e m e n t

I n s t r u c t i o n

F e t c h

I n s t r u c t i o n

D e c o d e

D i s p a t c h

E x e c u t i o n

C o m p l e t i o n

Figure 5. G eneric S upersca lar Pipeline Stages

3.2.1 Instruction  Fetch

The objective of the  in stru c tio n  fetch stage is to fetch s  in stru ctio n s  in every clock 

cycle. The IF stage employs m echan ism s to m aximize the  in p u t bandw id th  of the 

pipeline to achieve th is  goal. A high in p u t bandw id th  is essen tia l to  achieve high 

in structions per cycle th roughpu t. The fetch bandw id th  is affected due  to:

1. m isaligned in structions
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2. control instructions tha t alter the sequential flow of a program

M isalignm ent h a s  been  add ressed  dynam ically in  the  IBM R S /6 0 0 0  a rch itec tu re  by 

u se  of hardw are logic th a t releases run -tim e control signals to the  in struction  cache to 

fetch m isaligned in stru ctio n s  in a  single m em ory access. O ther techn iques to reduce 

m isalignm ent include s ta tic  m echan ism s em ployed a t  com piler tim e. Control 

in structions like ju m p  an d  b ran ch  in stru c tio n s  change the program  flow. These are  

dealt u s ing  b ran ch  prediction schem es th a t  can  accurately  pred ict the  nex t in stru c tio n  

to be fetched an d  a ttem p t to keep the  in stru c tio n  fetch buffer filled w ith in structions.

3.2.2 Instruction  Decode

The in stru c tio n  decode stage deals w ith generating the  control signals necessary  for 

o ther m odules to correctly execute an  in struction . This includes separa ting  individual 

in structions, estab lish ing  the in stru c tio n  operation and  location of operands and  

determ ining in te r-in struction  dependencies. For m achines w ith a  fixed in struction  

length, the  ta sk  of separa ting  in stru c tio n s  is trivial. The num ber of add ressing  m odes 

an d  in struction  types add  to the  com plexity of the  decoder. The decoder identifies 

dependencies betw een in stru ctio n s  an d  ex tracts  parallelism  betw een them . It em ploys a  

large nu m b er of com parato rs for de term ining  dependencies. The decoder in  CISC 

m achines requires a  highly in trica te  design. If the  in struction  se t consists  of 

in structions  w ith variable lengths, th en  it is n o t possible to decode in stru c tio n s  in 

parallel. To reduce the  tim e tak en  for the  decoding, some com m ercial p rocessors like 

the AMD K5™[24] u se  pre-decoders. The pre-decoders decode a n  in stru c tio n  partially  

an d  com m unicate control b its  along w ith the  in struction  to the  in stru c tio n  decoder.

3 .2 .3  D ispatch

At the  d ispa tch  stage, the  following ta sk s  tak e  place: 

reg ister renam ing  

allocation of reservation  u n its  

allocation of reorder buffer en tries 

forw arding of in stru c tio n s  to the  nex t stage
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There are  several types of execution u n its  p resen t in a  sup e rsca la r pipeline, for 

processing different types of in structions . For exam ple, integer operations are  hand led  

by integer u n its , while floating point operation  are  hand led  by floating poin t u n its . The 

d ispatch  stage is required  to rou te  an  in stru c tio n  to the appropriate  execution un it. 

In structions th a t  have been  decoded, b u t aw ait one or more operands are  placed in 

reservation u n its . Reservation u n its  are m ulti-en try  in struction  buffers th a t  a re  specific 

for each  execution u n it if im plem ented as  d istribu ted  reservation  u n its , or a  single 

global m u lti-en tiy  buffer if im plem ented as  a  centralized reservation  un it. They keep 

track  of in stru ctio n s  ready to execute an d  forward them  to the  execution u n it  to be 

executed once the  required  execution u n it  becom es available. Intel Pentium  Pro [25] 

u se s  a  centralized reservation  un it, while PowerPC 620 [26] u se s  a  d istribu ted  

reservation un it.

3 .2 .4  Execute

The execute stage in a  su p e rsca la r pipeline consists of one or m ore functional u n its  

or different types. Functional u n its  are specialized and  n um erous in  o rder to be able to 

execute in stru ctio n s  in parallel an d  in  a n  efficient m anner. The functional u n its  th a t  

are  generally p resen t in m ost su p ersca la r im plem entations are  load-store u n its , in teger 

u n its , b ran ch  u n its  an d  floating poin t u n its . The num ber of these  functional u n its  is 

decided by the  mix of in stru c tio n  types expected to ru n  on the  m achine. As the  n u m b er 

of functional u n its  is increased , there  is an  increase in  hardw are complexity due to 

increase in  forw arding p a th s  an d  in terconnections required  for rou ting  operands to the 

appropriate  execution un it.

3 .2 .5  Complete

In th is stage resu lts  of executed in stru c tio n s  are  w ritten  into desired registers. It is 

also responsible for com pleting in stru c tio n s  in  sequential order. This is necessary  to 

m ain ta in  the  sequen tial n a tu re  of program  execution. For th is purpose, it u se s  a  buffer 

called Reorder Buffer. The reorder buffer m ain ta in s  a  c ircu lar queue w hich enab les an  

in-order retirem ent of in structions.
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3 .2 .6  R etirem ent

Memory u p d a te s  generally require m ore latency. An instruction  th a t  involves w riting 

to m em ory is no t com plete u n til the m em ory operation is perform ed. The re tirem en t 

u n it perform s th is  action and  com pletes su ch  in structions.

3.3 Superscalar, Pipelined DLX im plem entation  in VHDL

The VHDL im plem entation of su p e rsca la r version of DLX is a  tw o-w idth five-stage 

pipelined 32 -bit arch itec tu re . It is capable of executing integer arithm etic  an d  logical 

operations, com pare, shift, ju m p  an d  b ran c h  in structions. It does no t con ta in  a  floating 

point un it. The arch itec tu re  u ses  an  In stru c tio n  Cache to store in stru ctio n s  loaded from 

m em oiy. Figure 6 show s th e  pipeline stages in  th is  im plem entation.

Instr-A Instr-B

Multiply
/Divide

Unit

Load/
Store
Unit

Integer
unit

Instruction Fetch

Decode and 
Dispatch

Retirement

Completion

Register File

Instruction
Cache

Figure 6. S uperscalar, Pipelined DLX Im plem entation in  VHDL

Each stage can  process two in stru c tio n s  sim ultaneously . Figure 7 show s the  block 

diagram  of the  in teger un it. It is im plem ented as  a  32-b it functional un it.
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Reservation Unit

Select
operationMultiplexer

■0p2

R e s u l t

A d d e r /

S u b t r a c t e r
S h i f t e r

L o g ic a l

O p e r a t i o n s
C o m p a r a t o r

Figure 7. Block diagram  of in teger u n it  in  VHDL im plem entation of su p ersca la r DLX

The VHDL program  takes  a  tex t file contain ing  m achine codes as  inpu t. It can  be 

sim ulated  u sing  Active-HDL 7.1. B enchm ark  program s are usua lly  p resen t as 

assem bly-level program s. Such  b enchm ark  program s for DLX canno t be directly used  

as in p u t to the  VHDL program . Figure 8 show s the  d a ta  flow diagram  while u s in g  the  

VHDL DLX processor em ulato r code. B enchm ark  program s w ith extension .a sm  are  first 

converted to a  tex t file w ith extension .out u s ing  a  DLX assem bler program  called 

dlxasm[27] available freely. The dlxasm  a ssem bler converts DLX in stru ctio n s  into 

respective DLX m achine codes. E ach  m achine code is indexed by a  32-b it m em ory 

add ress  in w hich the  in struction  is expected to be stored in a  tru e  hardw are system . 

Form at of the  .a sm  an d  converted .out file is given in the  Appendix. The .out file is u sed  

a s  in p u t to the sim ulato r engine th a t  con ta ins the  VHDL code.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.asm file

.out file

waveform

testbenchdlxasm

Waveform
Viewer

Simulation
Engine

Figure 8. Dataflow diagram  during  sim ulation  of VHDL im plem entation of proposed
concepts

The sim ulation  engine p roduces waveform s for signals th a t  propagate in  the 

processor. These are in the  form of a  Value Change D um p (.VCD) file an d  can  be easily 

viewed u sing  a  waveform viewer.

Table 2[1] lists the  average of MIPS dynam ic in struction  mix p resen t in five 

SPECint2000 program s: gap, gcc, gzip, mcf, peri, an d  th a t p resen t in  five SPECfp2000 

program s: app lu , a rt, equake, lucas, swim.

Table 2 Average of MIPS dynam ic in stru c tio n  mix in SPECint2000 and  SPECfp2000
b en ch m ark  su ite

Instruction  types Average % of integer 
operations in integer 
benchm arks

Average % of integer 
operations in 
floating point 
benchm arks

Load-store 38% 22%
Add, s u b , com pare, shift, an d  ,or ,xor 45% 31%
B ranch, conditional move, jum p , 
call, re tu rn

16% 4%
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Majority of the  in struction  mix consists  of in teger operations of add , su b trac t, 

com pare, shift, and , or and  exclusive-or. From  these  sta tis tics , we can  conclude th a t  if 

there  exists only one in teger u n it, th en  m ore often th a n  not, a  centralized reservation  

u n it will be filled w ith w aiting in teger ALU instructions.

To ca te r to the  high percentage of ALU in stru ctio n s , it is necessary  to include m ore 

th a n  one ALU u n its . The n u m b er of ALU in stru ctio n s  can  vary wildly from one 

benchm ark  su ite  to ano ther. Therefore, unchecked  addition  of m ore ALU u n its  can  

resu lt in  idle u n its  or idle o ther functional u n its  in  the execution stage. Hence, a  flexible 

schem e is proposed in  th is  thesis  th a t  takes into accoun t the  observation th a t  value of 

operands of ALU operations is no t always as  large as  th a t accom m odated by the  word 

length  of the  m achine. This schem e a n d  all concepts associated  w ith it a re  explained in 

the  following chap ter.
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CHAPTER 4

CONCEPTS AND IMPLEMENTATION 

A pipelined processor is designed so as  to im part m axim um  th ro u g h p u t. The design 

decisions include determ ining  the  w idth of the  pipeline (superscalar width), n u m b er of 

functional resources, and  n a tu re  an d  degree of dep th  of the  pipeline. This thesis  

concen tra tes on the  execution stage of the  pipeline. The execution stage consists of one 

or more execution u n its  of different types an d  reservation sta tions  in a  centralized or 

d istribu ted  arch itec tu re . While designing the  execution stage of a  processor, it is 

extrem ely im portan t to determ ine the  optim um  n u m b er of execution u n its  of each  type. 

This decision is typically based  on applications served by the processor an d  the  type of 

ta sk s  th a t  are expected to ru n  on it. E xecution u n its  are  provided to service all types of 

in stru ctio n s  p resen t in  th e  in struction  se t th a t  need a  com putation  u n it. A generic 

in struction  set consists of four types of in structions: ALU, B ranch , Load and  Store. The 

n u m b er of u n its  allotted for each  type of in struction  h as  to be determ ined  on the  basis  

of exam ple program s th a t  will ru n  on the  m achine and  the perform ance expected. The 

n u m b er th u s  decided upon  affects the  space requirem ents, power usage and  additional 

logic necessary  for sm ooth  functioning of these  u n its  in  parallel.

There are several reasons for the  design proposed in th is  thesis. The usage of an  

integer ALU u n it w as stud ied  by ru n n in g  several benchm arks on a  VHDL 

im plem entation of the  DLX sup e rsca la r processor. Table 3 shows the  resu lts  obtained.
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Table 3 Usage of ALU u n its  in  benchm arks
B enchm ark Program # of 

instn  
s

Time of 
sim ulatio 

n

# of ALU 
instns

# of ALU 
instns 
with 8- 

bit

# of ALU 
instns 

with 16- 
bit

# of ALU 
instns 

with 24- 
bit

# of ALU 
instns 

with 32- 
bit

ALUinstructionsPart 22 93.5 22 10 4 8 0
ALUinstructionsPart; 33 137.5 33 14 10 4 5
B ranchJum p 85.5 85.5 10 0 0 3 7
BubbleSort 6477 12191.5 2741 658 1 708 1374
Dbc 18 61.5 9 0 0 5 4
LoadStore 30 119.5 5 1 1 2 1
M DUinstructions 39 198.5 27 8 9 7 4
PrimeNumber 1321 6595.5 718 1 22 360 335

On analysis, it can  be seen th a t  less th a n  50% of the  ALU in stru ctio n s  u se  the  entire  

d a ta  w idth of the ALU. T hus the  usage of ALU is less th an  100%. In any design, if 

additional ALU u n its  are  added to ca te r to larger num ber of in p u t ALU in structions , 

th en  by projecting a  sim ilar usage  s ta tis tic  curve to these additional u n its , th e  overall 

ALU usage wül only decrease.

The u se  of reservation  sta tions encourages parallelism  am ong ready in stru ctio n s , 

w aiting for resources. In an  ALU intensive task , the n u m b er of su ch  w aiting 

in stru ctio n s  justifies the  u se  of high n u m b er of resources, while in  non-ALU intensive 

ta sk s , the  usage  of ALU u n its  is m inim al.

Also, in the  older m achines, floating point operations were perform ed u sing  integer 

u n its . As the  u se  of floating poin t operands increased , dedicated floating poin t u n its  

were in troduced  in the  execution stage. In these  m achines, while executing a  floating­

poin t intensive task , the in teger u n its  are idle for m ost period of execution tim e. If the 

in teger u n its  had  the  capability to perform  floating point operations on ready and  

w a itin g  FP in str u c tio n s , th e n  th e  th ro u g h p u t w ou ld  increase.

It is clear th a t the  usage  of execution u n its  would increase if there  w as a  techn ique 

to ca ter to different types of incom ing in stru c tio n  traffic. This thesis  adds run-tim e 

flexibility to hardw are m odules for the  purpose  of accom m odating as  m any in stru ctio n s  

a s  possible in the  execution un it. The exact ex tra  hardw are and  logic required  to do th is
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is designed, im plem ented and  evaluated  in  Section 4.3, while the  general concepts 

associa ted  w ith th e  addition  of flexibility are  described below. These can  be applied in  

any  form to any  application.

4.1 Block Slicing

‘Block slicing’ refers to the  process of splitting  a  block into m ultiple m odules. The 

concept of block slicing can  be explained as  follows:

A functional u n it  w hich is capable of perform ing an  operation T  on two N-bit 

operands usua lly  consists of N in terconnected  copies of u n its  th a t can  perform  the 

operation W on two 1-bit operands. Let a  logic circuit capable of perform ing a  certa in  

operation on 1-bit operands be called a  unit. W hen N u n its  are in terconnected  so th a t  

they can  concurren tly  perform  the  operation  on N-bit operands, they form a n  N-bit 

module. In all im plem entations, N is know n or is pre-set. T hus, the  in terconnection  

netw ork, F  betw een u n its  th a t  form the  m odules is s ta tic  in  n a tu re . W hen operands of 

varying lengths are  encountered , the  value of N is required to be dynam ic. In order to 

allow N to be a  dynam ic value determ ined  a t run-tim e, it is necessary  to m ake the  

in terconnection  netw ork  flexible.

The netw ork can  be bu ilt to be com pletely flexible, b u t  it is im practical to reprogram  

it before execution of every in struction . Instead , a  degree of flexibility is allotted to it. 

For th is, m  u n its  are  connected together statically  to form m -bit functional u n its . Let 

each  m -bit u n it be referred to as  a  slice. E ach slice is capable of operating on m -bit 

operands. In a  contem porary  processor, if N-bit functional m odules are  p resen t, th en  

there  will be N /m  slices in a  sliced a rch itec tu re . For exam ple, a  processor contain ing  

one 64-bit ALU will now have four 16-bit slices (N=64 an d  m=16).

The in terconnection  netw ork F ' c  F  betw een slices is now com pletely flexible, so 

th a t  each slice can  operate independently , or connect itself to m ore slices an d  operate 

concurren tly  w ith them . W hen two m -bit slices operate independently , they  are  capable
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of executing two in structions  sim ultaneously , provided the operands are  m -bit. W hen 

two slices connect together, they  form a  2m -bit functional m odule an d  can  operate on 

one in struction  w ith 2m -bit operands. Since there  are N /m  slices, w hen all slices are 

connected to each  o ther, they can  operate on N-bit operands as  before.

W hen a  m odule is th u s  separa ted  into sm aller p a rts , it is said  to be ‘sliced’. If a  

m odule is sliced into enough m -bit slices in  the  execution stage of a  processor, all ready 

in structions requiring  m -bit operands can  be executed in  parallel.

Based on the  ready in stru ctio n s  encountered , slices are  first allocated to each  

instruction . Once slice-allocation is decided, there  are  two functions associa ted  w ith the 

process of allocation before the  in stru ctio n s  are ready  to be executed:

1. Directing the  operands into the  correct operand  reg ister slices, and

2. Directing the  resu lt correctly into an  N-bit o u tp u t register.

These functions can  be perform ed by u s in g  decoders a t the  in p u t and  o u tp u t of the 

execution un it. A tru th  table for the  decoder can  be easily developed and  im plem ented 

as  the in te rnal c ircu itry  for the  decoder. Different execution u n its  need different 

decoding functions as  can  be seen from the  a rch itec tu re  explained in  the next section.

4.2 Sliced ALU Im plem entation

W hen a  sliced ALU is u sed , the  stages in  w hich a n  in struction  undergoes processing 

are  show n in Figure 9. The Resource M apping is done by a  u n it  called the  ‘Resource 

M apper’. It is th e  only additional stage th a t  gets added  to the pipeline, b u t  its latency is 

equivalent to a  few logic gates, and  hence it need n o t be pipelined as a  separa te  u n it, 

ra th e r  as  a  p a rt  of the  d ispatch  pipeline stage. It is explained in  detail in the  next 

section.

4.2.1 Resource M apper

This u n it  determ ines the  n u m b er of slices required  by an  incom ing in stru c tio n  and  

allocates slices for all incom ing in structions . For determ ining the  n u m b er of slices 

required  by an  in struction , the  resource  m apper perform s a  function called ‘zero-
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checking’. This function determ ines the  length  of significant b its in  bo th  operands an d  

re tu rn s  the  m axim um  of these  two leng ths as the  num ber of slices requ ired  by the  

in struction . This can  be achieved sim ply by u sin g  AND gates. The zero-checking 

function is slightly different for the  shift operation, for which no t only the  n u m b er of 

significant b its  of first operand  are  required , b u t also the value of the  second operand. 

Using these  values an d  a  sim ple logic circuit, the num ber of u n its  requ ired  by a  shift 

in struction  can  be determ ined.

W ith each  reservation  u n it  is associa ted  a  reg ister called the  Resource Allocation 

Vector (RAY). The Resource Allocation Vector keeps track  of slices allotted to the  

in struction  stored in a  reservation  u n it. In addition, the  Resource M apper u se s  a  global 

reg ister called the  Resource Vector (RV). If there  are  m  slices in  the  execution u n it, th en

I n s t r u c t i o n

D e c o d e

R e o r d e r

I n s t r u c t i o n

F e t c h

D i s p a t c h

R e s o u r c e

M a p p i n g

R e t i r e m e n t

E x e c u t i o n

Figure 9. Processing stages for u sing  a  sliced ALU im plem entation

the  RAV and  RV are  m -bit. E ach  b it in  the  RAV an d  RV indicate a  s ta tu s  for slices of the 

execution u n it  as a llocated /no t-allocated . W hen a  slice is allotted to an  in struction , the  

b it in the  respective location of the  slice is se t to 1. W hen an  in struction  fin ishes u sing
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th e  slice, the  b it is rese t to 0. In absence of slicing, a  sim ilar p rocess is followed by a  

reservation  u n it  to issue  in structions to an  execution un it. The reservation  u n it  checks 

th e  busy /ava ilab le  b it of a  functional u n it  an d  issu es  an  in stru c tio n  to it if it is free. 

The Resource M apper also issu es  a n  in stru c tio n  to one or m ore slices of functional 

u n its  an d  se ts  one or m ore b its  a t a  tim e in the  RAV of the  in struction  and  global RV 

respectively.

ôp1

En
> pA1

En
ipA2

En
•pB1

En
ipB2

Decoder

3

Decoder

Adder/
Subtracter

Decoder Decoder

Comparator

r >r

Decoder Decoder

r r

Compare Compare
logic logic

En En En En En En En
/o p 2 / o p ^ /0 P 2 / o p 1 /o p 2 / o p ^ / o p 2

Logical
Operations Shifter

. ) r  y r r  y r

Decoder Decoder Decoder Decoder

Result-A Result-B

Figure 10. Block diagram  of a  sliced ALU
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If the  execution u n its  are all know n to finish the  execution of a n  in stru c tio n  in  one 

clock cycle, th en  a  global Resource Vector can  be assum ed  to be a n  all-zero n u m b er a t 

the  beginning of eveiy clock cycle, a n d  is red u n d an t. In th is case, allocation is done by 

exam ining all ready in stru c tio n s  w aiting for a  resource and  determ ining  the  n u m b er of 

slices required  by each. In the  situa tion  w here the  ready in stru ctio n s  need m ore slices 

th a n  available, the  in stru c tio n s  can  be prioritized based  on in struction  coun t an d  o ther 

in structions can  be stalled. De-allocation is no t necessary  here. The R esource Vector 

will only be needed if som e in stru ctio n s  take  longer th a n  a  clock cycle to finish. Though 

u n u se d  in th is thesis  work, the  u se  of Resource Vector h as  been proposed in  view of 

fu tu re  work, one in stance  of w hich is w hen in teger slices are  rearranged  into a  floating 

point pipeline, w ith a  latency of m ore th a n  one clock cycle.

ALU
Function

A

ALU
Function

B

Resource 
Allocation 

Vector 
A. B

-M Generate Enable 
-M Signals

Operands
A1.A2

Operands 
B1, B2

Load operands 
according to RAVs

Compute Result

___________]_r___________

Append Zeros 

Forward output

I
Figure 11. S teps of operation of a  sliced ALU
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Figure 10 show s the  block diagram  of a  sliced ALU, while th e  flow chart in  Figure 11 

show s the  steps in  w hich a  sliced ALU functions. The Enable signals in Figure 10 are  

fed to D-flip-flops so th a t only the  appropriate  p a rt of the  ALU functions, while the  o ther 

p a rts  re ta in  their values. This leads to lower power consum ption.

4.3 A rchitecture of in teger execution u n its

The arch itec tu re  of a  sliced in teger u n its  th a t  are  used  to execute different types of 

integer in stru c tio n s  is proposed below. The integer u n it  com prises of an  

a d d e r/su b tra c te r  u n it, a  shifter, a  logical u n it an d  a  com parison un it.

4.3.1 A d d er/S u b trac te r Unit

Figure 12 show s the  design of a n  a d d e r /s u b tra c te r  m odule, bu ilt u s ing  two slices of 

4-b it a d d e r/su b tra c te r. The in p u ts  required  for the  4 -b it adder su b tra c te r  are  two 4-b it 

operands and  a  1-bit operation a d d /s u b  ('O' for addition  and  T ’ for subtraction). The 

a d d e r/su b tra c te r  m odule is designed by in terconnecting  signals betw een the  two slices 

an d  using  m ultiplexers to enable it to operate a t  variable d a ta  length. It is capable of 

perform ing an  addition  a n d /o r  sub trac tion  operation on the se t of operands {X3...X0} 

an d  {X7...X4}. Once the  operands are loaded into these registers, control signals 

a d d /s u b l  and  a d d /su b 2  are given to the  m odule. The control in p u t sel ind icates 

w hether the  two slices are  to perform  independently  or concurrently . M ultiplexer MUXl 

determ ines the propagation of a d d /s u b  signal to the second slice, while M ultiplexer 

MUX2 controls the  cascading  of carry  o u t signal from the  u n it  U3 to u n it  U4. 

M ultiplexer-3 generates the  overflow exception b its  v l  and  v2. After the  o u tp u t is 

produced, it is sign-extended in o rder to be p assed  on to the  resu lt reg ister and  

subsequen tly  stored.

W hen only one slice (say, slice-0) is to be u sed , the  signals {S4..S7}, v2 an d  Cout7 

are  ignored, an d  vice-versa. W hen bo th  slices are  u sed  for one operation, the 

appropriate  signals are  rou ted  to the  ou tpu t.
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X,

Y X Gin 
Gout S7

o

Xs

V X Gin 
Gout Sb

X,

Y X Cin 
Cout S5

Y X Cin 
Cout Sa

X2

Y X Cin 
Cout S3

j r

Y X Cin 
Cout S2

Y X Gin 
Gout S

Y X Gin 
Gout So

v2

Figure 12. Two in terconnected  4-b it a d d e r /su b tra c te r  u n its  form ing one 2 -slice
adder /  su b trac te r

This design can  be extended to include num erous slices of the  a d d e r/su b tra c te r  

u n it. Figure 13 show s the  in terconnections of four a d d e r/su b tra c te r  slices, each  

capable of operating  on two 8-b it operands, resu lting  in  a  32-b it sliced ALU. The block 

diagram  of th is  flexible a d d e r /su b tra c te r  u n it  is show n in Figure 14.

op1 op2 add/sub3 op1 op 2 add/sub2 Op1[15:8] Op2[15:8] add/sub  1 O p1|7:0) Op2[7:0] add/subO

LT

3 83Cir3SLICE-3
cOul3 S3

fiZ B;
SLICE-2

coui: S2

fi1 Bi
C.MSLICE-1

C0UI1 s,

Ac Be
SLICE-0

COutc Sc

Figure 13. A rchitecture of flexible a d d e r/su b tra c te r  u n it

As explained before, there  are  two functions associated  w ith slice-allocation:

1. Directing the  operands into the  correct operand  register slices, and

2. Directing the  resu lt correctly in to  a n  N-bit o u tp u t register.
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o p -1 o p -2

Couti Vq adC/sub 1

Cout, Vi add/sub 2Fexibe Adder/Subtracter
C out. V2 add/sub 3

Cout: V3 add/sub 4

Figure 14. Block diagram  of a  flexible a d d e r/su b tra c te r  u n it

The in p u t operands are initially p resen t in  N-bit operand  registers. Let an  ALU 

in struction  w ith two in p u t operand  reg isters contain ing 8-bit values be ready for 

execution and  be allotted Slice-1 in  Figure X. The operands have to be loaded a t 

locations [15:8] of registers o p l and  op2. Similarly, the  8-bit re su lt generated  by Slice-1 

h a s  to be directed to locations [7:0] of o u tp u t register.

Table 4 T ru th  Table for decoder t la t  d irects the  o u tp u t of four slices into resu lt registe r
RAV-3 RAV-2 RAV-1 RAV-0 Res-3 Res-2 Res-1 Res-0

0 0 0 0 0 0 0 0
0 0 0 1 MSB-0 MSB-0 MSB-0 SO
0 0 1 0 MSB-1 MSB-1 MSB-1 SI
0 0 1 1 MSB-1 MSB-1 SI SO
0 1 0 0 MSB-2 MSB-2 MSB-2 S2
0 1 0 1 X X X X
0 1 1 0 MSB-2 MSB-2 S2 SI
0 1 1 1 MSB-2 S2 SI SO
1 0 0 0 MSB-3 MSB-3 MSB-3 S3
1 0 0 1 X X X X
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 MSB-3 MSB-3 S3 S2
1 1 0 1 X X X X
1 1 1 0 MSB-3 S3 S2 SI
1 1 1 1 S3 S2 SI SO

The direction of in p u t to appropriate  in p u t reg isters and  of the  o u tp u t to a  re su lt 

register is done by the  u se  of decoders. The tru th  table for a  decoder th a t  perform s th is
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function is show n in  Table 4. The RAV is the  individual Resource Allocation Vector se t 

for an  instruction . There are  two decoders, one for each  in struction , w hich are  in p u t the  

RAVs for two in stru ctio n s  an d  o u tp u ts  respective sign-extended resu lt.

The a d d e r /su b tra c te r  u n its  along w ith in p u t an d  o u tp u t decoders constitu te  the 

com plete flexible a d d e r/su b tra c te r . Area analysis for th is  m odule is m ade in  section 

4.4.

4 .3 .2  Com pare Unit

The com pare operation is requ ired  to be perform ed on bo th  singed and  unsigned  

operands, and  requires a  slightly different trea tm en t for each. Figure 15 show s the  

block diagram  of a  com parato r th a t  can  perform  signed com parison or unsigned  

com parison based  on a  1-bit control signal (0 for unsigned , 1 for signed).

o p A  o p B

uSigned/
unsigned

C o m p a r a to r

TTT

Figure 15. Block diagram  of a  com parator

This com parato r can  be designed as a  m inim al-delay circuitry, or it can  be designed 

w ith m inim al a rea  constra in t, depending  u p o n  the  constra in ts  im posed by the system . 

Figure 16 shows the  u se  of su ch  com parison  u n its  in  a  sliced com parato r design.

Once sliced com parison is perform ed, the  final resu lt of com pare operation  is 

determ ined by a  separa te  logic c ircu itry  th a t  tak es  into accoun t the  respective o u tp u ts  

of each com pare slice. Therefore, the  control signals for com pare operations listed  in 

Table 1 are m ade available to th is  u n it. The decoder generates an  o u tp u t for the  

com pare instruction . The logic equations th a t  serve som e of these  functions are  show n 

below.
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Aeq <= AeqO an d  A eql an d  Aeq2 an d  AeqS 

Aneq <= not Aeq

Agt <t= Agt3 or (Aeq3 and  Agt2) or (Aeq3 an d  Aeq2 an d  Agtl) or (Aeq3 a n d  Aeq2 and  

Aeql an d  AgtO)

Alt <= Aeq nor Agt 

Alteq <= n o t Agt 

Agteq <= Aeq or Agt

opA opB opA opB opA opB opA[7:0] OpB
Signed/ Signed/ Signed/

SLICE-1 SLICE-0SLICE-3 SLICE-2

CO m  cQ 

<  <  <
m m 00 
< <  <

00 CO 00 

< <  <
00 00 00 

< <  <

Figure 16. Four 8-bit com pare slices for signed or unsigned  com parison

Resource allocation vector for each  in stru c tio n  is also in p u t to th is  u n it, and  

equality  is tested  based  on the allocation. For exam ple, if the  RAV for in stru c tio n  A is 

0011, the values re tu rn ed  by Aeq3 an d  Aeq2 are ‘1’, while the  values for Agt3 an d  Agt2 

are  ‘O’. Thus, the  decoding functions th a t  s teer the  o u tp u t of sliced com parato rs into 

correct reg isters are  different for equality  and  g rea ter-than  operation. The final b it 

o u tp u t of the  com pare u n it  is determ ined  by the  equation  for the  function  enabled  by 

in struction  decoder for th a t  in struction . This is th en  concatenated  w ith (N-1) leading 

zeros and  re tu rn ed  as  a n  o u tp u t of the  com parato r un it.
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4.4  Area analysis

This sliced ALU design requires add itional hardw are for decoders, m ultip lexers and  

added signals. For the  im plem entation of 2:1 m ultiplexers u sed  extensively in the 

design, tran sm ission  gates (pass tra n s is to r  logic) can  be used . These are  designed u sing  

an  NMOS and  a  PMOS tra n s is to r  in  a  configuration th a t re su lt in  no s ta tic  power 

consum ption . Figure 17 show s a  m ultip lexer im plem ented u sing  p ass  tra n s is to r  logic.

s  —

M,

n

Figure 17. M ultiplexer im plem ented u sing  p ass- tra n s is to r  logic

The p ass  tran s is to rs  add  th ree  NMOS and  th ree  PMOS gates to the  hardw are. To 

estim ate the  hardw are u sed  for decoders th a t  perform  direction of in p u t an d  o u tp u t 

signals into correct reg ister slices, the  average cost of decoders w as com puted  in  term s 

of logic gate equivalents. Table 5 lists the  additional hardw are u sed  by various u n its  in 

a  sliced ALU.

On the  whole, additional hardw are  in troduced  for im plem entation of slicing is 

m inim al.

On perform ing a  delay analysis, th e  m axim um  delay pa th  of decoders is found to be 

equivalent to th ree gate propagation  delays. T hus each  decoder ad d s m inim al delay to 

the  execution d a tap a th .
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Table 5 Additional hardw are  u sed  for slicing of ALU
2:1 MUX 4:1 MUX Logic G ates

Adder 4
Adder R esult Decoder 23
C om parator
C om parator Result Decoder 8 44
Shifter 14
Logical O perations
Shifter an d  Logical R esult Decode 23
RAV Decoder 16
Load O perand Decoder 16

Total 26 16 106

4.5 Im plem entation of DLX Sliced P rocessor u s in g  VHDL

In order to evaluate the  block slicing concept in a  processor, it w as im plem ented in 

a  DLX pipeline u s in g  VHDL (VHSIC H ardw are D escription Language).

The first two stages of th e  DLX pipeline, the  fetch and  decode stage, are  sim ilar to 

those  described in  Section 3.2. The d ispa tch  and  execute stages differ from the  original 

im plem entation, while the  reorder an d  re tirem en t u n its  stay  the  sam e. The DLX 

processor h as  been im plem ented a s  a  pipelined, out-of-order, sup e rsca la r processor of 

w idth two. T hus, there  are a t  m ost two in stru ctio n s  in  each stage of the  pipeline a t  any 

given tim e, except the  reorder un it.

Once valid operands are fetched in  the  d ispa tch  stage and  an  in stru c tio n  is ready to 

begin execution, the  n u m b er of u n its  requ ired  for the  in struction  is com puted from the 

value of the  operands. This is done by the  sim ple zero-checking u n it described in 

Section 4 .2.1, w hich checks the  n u m b er of leading zeros of operands. It gives the  length  

of the significant digits of operands an d  hence the  num ber of u n its  required . For 

shifting operation, the nu m b er of u n its  is com puted  by also considering the  value of the 

second operand.

Once the  zero checking is done, the  R esource M apper allocates execution u n it  slices 

to an  in struction . In addition, the  resource  m apper also se ts  the  control signals th a t  

slice an  execution u n it  appropriately. The resource vector is a  b it vector th a t  ind icates
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th e  slices allocated to an  in struction . For exam ple, if in stru c tio n  A is allocated slice 

num ber 1, th en  its 4 -b it resource vector will be 0001. For in stru c tio n  B w ith allocated 

slice n um bers  2 and  3, the  resource vector is 0110. Thus, the  global resource  vector 

during  th a t  clock cycle is 0111, indicating th a t  only th ree  slices of the  execution u n its  

will operate, and  the  fourth  slice will consum e idle power.

D ata is loaded into the operand  reg isters a t the  rising edge of the  clock. D ue to 

block slicing, the  resource m apping control signals slice the execution u n it  an d  the  ALU 

gives a t m ost two o u tp u ts  (ALU O u tp u t A an d  ALU O u tp u t B) by s im ultaneous 

execution of two in structions . These resu lts  are stored  into th e ir  respective reorder 

buffer en tries, and  forw arded if necessary  for the  nex t clock cycle.

The fetch stage is se t so as to fetch the  next set of in stru c tio n s  w hen an  in stru c tio n  

is issued  to a n  execution un it. T hus, w hen instruction-level parallelism  exists in a  

program , the  fetch stage is also speeded u p  an d  the total tim e of execution of a  program  

decreases. In th e  absence of any additional instruction-level parallelism , the  tim e of 

execution of the  program  rem ains the  sam e as th a t  in a  non-sliced processor.

C hap ter 5 p resen ts  the  sim ulation  resu lts  of benchm ark  program s on the  VHDL 

im plem entations of the  DLX m achines w ith non-sliced and  sliced ALU u n it respectively.
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CHAPTER 5 

RESULTS

The objective of slicing is to increase  th e  u tilization and  n u m b er of functional u n its  

dynam ically. Increasing  nu m b er of functional u n its  leads to a n  increase  in  parallelism  

of execution w hich con tribu tes to speed-up.

The perform ance criteria  u sed  for evaluating  the  concept of slicing are  speed-up , 

th roughpu t, u tilization and  power. These criteria  are  widely u sed  for com parison of 

different a rch itec tu res. To evaluate the  perform ance of the block slicing concept w ith 

respect to these  factors, a  hardw are code for the  DLX processor w as developed u sing  

VHDL and  tested  w ith b enchm ark  program s. B enchm ark  program s were obtained  from 

various sources from in te rnet resources. These were assem bly level program s w ritten  

for the DLX m achine, .asm  files contain ing  b enchm ark  program s were converted to .out 

files using  the  package dbcasm  [27] and  th en  ru n  on the VHDL code of the  sliced 

processor. In stead  of developing the  code from scra tch , the  freely available VHDL 

package dlx-vhdl[28] w as u sed  as  base  code an d  it w as su itab ly  modified for the  

proposed arch itec tu re . Section 4.5 describes the  VHDL processor code.

T hroughput is given by nu m b er of in stru c tio n s  com pleted per u n it  tim e. It can  also 

be related to the  nu m b er “In stru ctio n s  Per Cycle (IPC)”, where the  u n it  of tim e is a  clock 

cycle. C onsidering th a t  a  new in stru c tio n  is fetched eveiy clock cycle, the  n u m b er of 

fetch cycles ind icates the  in p u t s tream  to the  arch itec tu re  an d  the  n u m b er of 

in stru ctio n s  com m itted per fetch cycle ind icates the  o u tp u t s tream  of the  processor. The 

th ro u g h p u t is th en  given as:

Total Number o f  instructions Committed
IPfC  = ----------- ------------------------------------------------ (5.1)

Total Number o f  Fetch Cycles
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The speed-up  is com puted w ith respec t to the  DLX arch itec tu re  w ithou t the  

p rocessor m odifications for block slicing. T hus, speed-up  is given as:

Time o f  execution on non -  sliced D LX architecture
Speed - u p  = ---------    (5.2)

Time o f  execution on sliced D LX architecture

Resource utilization a t the  bit-level is given by the % of resource u sed  du ring  tim e of 

execution. Resource u tilization can  be given in term s of the ratio  of nu m b er of tim es the 

resource slices were completely u sed  to the  to tal num ber of tim es the  resource  w as 

accessed.

Power consum ed  during  execution of two sequen tial operations is evaluated  u sing  

the  Xilinx Xpower tool th a t is included w ith Xilinx ISE. The power-delay p roduct is th en  

u se d  to com pare the  non-sliced and  the  sliced arch itec tu res.

5.1 Time of Execution an d  Speed-Up

The above m entioned criteria  were evaluated  on ten  benchm ark  program s and  are 

p resen ted  below.

Table 6 R esults of evaluation  of Time of Execution anc
B enchm ark  Program Time of execution (us) Speed-up G ain

%non-sliced sliced
A L U instru tions-1 93.5 47.5 1.968 49.198
A LU instrutions-2 137.5 95.5 1.440 30.545
DLX 61.5 58.5 1.051 4.878
Load Store 119.5 119.5 1.000 0.000
Prim eN um ber 6595.5 6471.5 1.019 1.880
supsca l 63.5 39.5 1.608 37.795
M D U instructions 198.5 191.5 1.037 3.526
B ran ch Ju m p 85.5 67.5 1.267 21.053
NtoK 76.5 62.5 1.224 18.301

Speed-up

Table 6 p resen ts  the  speed-up  obtained  for the  b enchm ark  program s by listing  tim e 

of execution of each  b enchm ark  on a  non-sliced an d  sliced processor and  u s in g  eqn.2.
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5.2 Efficiency

Table 7 p resen ts  the  efficiency of u se  of ALU slices. In a  non-sliced im plem entation, 

each  tim e the  ALU is accessed , bo th  po ten tia l slices are  accessed. In a  sliced ALU, each  

tim e two in stru ctio n s  are executed in parallel, they  are assum ed  to u se  two slices each, 

resu lting  in en tire  length  of ALU being used .

Let,

^^ALu ~ Number o f times ALU is accessed in non - sliced implementation 

^Aw -  Number o f times ALU is accessed in sliced implementation 

ALU-Slice ~ Number o f times potential ALU slices are accessed in non - sliced 

implementation

S^Lu-siice -  Number o f ALU slices accessed in sliced implementation

p  = Number o f times ALU instructions executed in PARALLEL in sliced implementation

n = Total Number o f  ALU instructions

N S alu-succ (Column5) is given as:

NSALu-siice=NSALu (Column2) x 2

Also, = 2 X

Table 7 Efficiency
Benchmark Program # of ALU accesses # of parallel 

executions
# of ALU slices accessed # of ALU 

nstruction:
Efficiency

6s
Gain in 

EfficiencyNSalu Salu NSALUSlice SALU-Slice
ALUinstrutions-1 22 13 9 44 26 22 0.846 69.23%
ALUinstrutions-2 33 31 2 66 62 33 0.532 6.45%
DLX 9 7 2 18 14 9 0.643 28.57%
LoadStore 5 5 0 10 10 5 0.500 0.00%
PrimeNumber 718 681 37 1436 1362 718 0.527 5.43%
supscal 14 8 6 28 16 14 0.875 75.00%
MDUinstructions 27 26 1 54 52 27 0.519 3.85%
BranchJump 21 14 7 42 28 21 0.750 50.00%
NtoK 16 15 1 32 30 16 0.533 6.67%

Thus, Efficiency S  is given by:
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^NS ~
A L U -S lic e

and
~  '

A L U -S lic e

5.3 T hroughput

Table 8 show s the  th ro u g h p u t of bo th  im plem entations in  term s of in stru ctio n s  per 

fetch cycle.

Table 8 T hroughpu t in  term s of Instruction Per Fetch Cycle
B enchm ark Program # of fetch cycles # of instructions IPfC Gain in

non-sliced sliced non-sliced sliced IPfC (%)
A LUinstrutions-1 23 14 22 0.957 1.571 64.286
ALUinstrutions-2 34 32 33 0.971 1.031 6.250
DLX 27 25 18 0.667 0.720 8.000
LoadStore 30 30 30 1.000 1.000 0.000
PrimeNumber 1693 1660 1321 0.780 0.796 1.988
supscal 17 11 16 0.941 1.455 54.545
M DUinstructions 71 70 39 0.549 0.557 1.429
B ranchJum p 34 29 28 0.824 0.966 17.241
NtoK 34 33 24 0.706 0.727 3.030

5.4 Power-Delay Product

For estim ation  of power consum ption , the  Xilinx XPower tool w as u sed  w ith 

synthesizable designs of sliced ALU an d  non-sliced ALU. The ALU is capable of 

perform ing addition  /  su b tra c tio n , shift, com pare an d  logical operations. Every 

com bination of two different operations w as selected an d  sim ulated  w ith w orst case  16- 

b it operands. The operations of addition  an d  com parison were found to consum e m ost 

power. The ALU designs were th en  analyzed for power consum ption  du ring  execution of 

the  operations of addition and  com parison of 16-bit operands sequentially  on a  non- 

sliced ALU an d  parallelly on a  sliced ALU.

Table 9 show s the  power-delay p roduct du ring  th is  analysis.
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Table 9 Power Delay Product for execution of two w orst-case operations for two 16-bit

Power (mW) Delay (ns) Power-Delay Product
Non-Sliced ALU 431 20 8620
Sliced ALU 604 10 6040

Figure 18 show s a  sn a p sh o t of waveform s sim ulated  on DLX processor for the  ALU 

integer benchm ark  A LU instructions-Part 1, w ith the  fetch registers, com m it signals and  

ALU issue  signals shown. Figure 5.1(a) show s the  sim ulation  ru n  for a  DLX processor 

w ith non-sliced ALU and  figure 5.1(b) show s the sim ulation ru n  for the  DLX processor 

w ith sliced ALU.

Name 0 ID 20 30 40 50 op 70 80
us

IncomingÇlock

IF_lnstrAatlrRegA I__ X:,X X: X, X X, X X X X X X X X X X X X X
IFJnstrAddrRagB K_ JUJOLX X X X X X X X X X X X X X X X X X X :
CU_CommltlnstrA .........n . n n . f i n n n n n n n n n n n n n n n n n n
CU_CommitlnstrB

:DP_ExecuteOrlssuelnstrA ___A...:n..n.n.n.n n n n n n n n,n n n n n n n n n n
DP_ExecuteOrlssuelnstrB

DPJssueA luA .. iAa...n.n.n„n n n n ..non n n n
DPJssueA luB

A L U js s u e .. . . . . . n n  n n n n n n n n n n o n n n n n n n n n
Figure 18 (a)

N a m e
p 5 to 15 20 25 30 35 40 45 50 55

' . 1 • > 1 • . 1 • 1 1 1 1 1 1 * 1 I 1 • 1 > 1 . I (
. •. . r . , .

IncomingClock

IF_lnstrAddrRegA <______ X X  X X X n c T  r  x - x '  X x  xooopooGo

IF_lnslrAddrRegB i c : x . . . . x  X X X a  X X X X x
CU_CofnmitlnstrA n n n n n n n n n n n n n
CU_CommHln®trB n . n....  n n n n n n n
ALU_A_lssue JL_a.n..n n n n n n n n  n n
ALU_B_lssue n n n n n n n n n

Figure 18(b)

Figure 18 W aveforms of sim ulations for A L U instructions-Part 1.o u t for DLX processor 
w ith (a) non-sliced ALU an d  (b) sliced ALU
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IFJnstrA ddrR egA  and  IFJnstrA ddrR egB  are  add ress registers u sed  by In struction  

Fetch stage. E ach  con ta ins an  add ress of a n  in struction  to be fetched. W henever the 

con ten ts of these  registers change, the  in stru ctio n s  p resen t a t the  add resses  stored  by 

the  registers are  fetched by the  Fetch u n it. T hus, a t  m ost two in stru c tio n s  (Instruction 

A and  Instruction  B) are  fetched a t  a  tim e. If, in a  previous clock cycle, only one 

in struction  (Instruction A) is able to execute, th en  con ten ts of IFJnstrA ddrR egB  are 

transferred  to IFJnstrA ddrR egA , an d  IFJnstrA ddrR egB  fetches a  new  in struction . Both 

in structions fetched are  th en  decoded in  the  Decode Unit. The in stru c tio n s  are  ready to 

execute w hen all their operands are  fetched. Ready in structions  are  issued  to execution 

u n its  w hen u n its  are  available. The issu e  to ALU u n it is signaled by A L U jssu e  signal. If 

in struction  A is to be issued , th en  D PJssueA luA  is high, an d  if in stru c tio n  B is to be 

issued , th en  D P JssueA luB  is high. Both signals canno t be high sim ultaneously  for a  

p rocessor with a  non-sliced ALU. However, if the  n a tu re  of operands allows it, bo th  

signals will be high sim ultaneously  for a  p rocessor w ith a  sliced ALU. After in structions 

a re  executed, their resu lts  are  stored  in  destina tion  registers an d  the  in stru c tio n  is 

m arked  for re tirem en t u sing  the  com m it signals CU_CommitInstrA and  

CU_Com mitlnstrB. The two-width pipeline is capable of com m itting a t  m ost two 

in stru ctio n s  a t a  time.

The fetch add ress reg isters are  loaded after an  in struction  is m arked  for issu e  by 

the  d ispa tch  un it. Thus, a n  in struction  is fetched, decoded nd  d ispatched  in  the  From  

Figure 18(b), it can  be seen th a t  there  are  n ine in stan ces  w hen bo th  A LU_AJssue and  

A LU _BJssue were high, w hich ind icates th a t  du ring  nine cycles, the  ALU in stru ctio n s  

p resen t in reservation  u n its  were executed sim ultaneously .

CU_CommitlnstrA and  CU_Com mitInstrB com m itted two in structions  a t  a  tim e in n ine 

in stances  in  th e  sliced ALU processor, while it com m itted a t  m ost one in stru c tio n  a t  a  

tim e in a  non-sliced ALU processor.

The sim ulation  waveforms show  th a t  slicing ex tracts in struction  parallelism  p resen t 

in the  program , and  reduces in stru c tio n  sta lls  th a t occur due to resource bottlenecks.
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The gain percentages p resen ted  in la s t co lum ns of all resu lt tab les give an  ind ication  of 

unresolved parallelism  p resen t in  program s th a t w as only extracted  after slicing.
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The concept of resource slicing w as im plem ented in  the DLX processor u sin g  VHDL. 

Sliced resources process g reater n u m b er of in stru ctio n s  w ithout the  need to add  ex tra  

hardw are resources. The sliced resource im plem entation w as evaluated  w ith respect to 

speed-up , th ro u g h p u t, power and  utilization of the  integer un it.

From the resu lts  th u s  obtained , it can  be observed th a t  by addition  of one low- 

latency stage, the  Resource M apping and  m inim al hardw are, it is possible to obtain  a  

speed-up  and  h igher efficiency of execution. The nu m b er of functional u n its  requ ired  to 

be pipelined in a  sup e rsca la r pipeline can  also be reduced if the  ta sk  ru n n in g  on the  

p rocessor allows it. For a  generic processor th a t  ru n s  a  variety of different applications, 

each  requiring different n u m b er of functional u n its , th is  can  provide a  flexible schem e 

for efficient execution.

The Intel MMX arch itec tu re  w as also developed w ith the  pu rpose  of parallelizing 

execution of in stru ctio n s  on d a ta  w ith sm aller w idth th a n  word size of the  processor. 

The sliced a rch itec tu re , if evaluated  w ith MMX-type d a ta  will also perform  similarly. 

Unlike the MMX, the  sliced a rch itec tu re  will no t require additional MMX-specific 

in structions  and  will dynam ically slice itself in to  m ultiple m odules to process the  data .

6.2 F u tu re  W ork

It is necessary  to evaluate the  perform ance en hancem en t obtained  a t  varying 

su p ersca la r w idths on m ore b enchm arks th a n  u sed  here. This will help in determ ining
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th e  optim al n u m b er of slices required  for different applications. This n u m b er can  th en  

be used  to design sliced p rocessors for m ost efficiency.

Block slicing is a  general concept th a t  can  be applied in a  variety of form s to 

m odules o ther th a n  functional u n its . It m ay be applied to reg isters an d  caches. It is 

required  to design a  su itab le  hardw are  to add ress, identify and  access sliced d a ta  w hen 

stored in sliced registers and  caches. A com plete sliced processor will be obtained  once 

w ork is perform ed for slicing these  m odules.
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