l lb II /‘ 7 | UNIVERSITY
LIBRARIES

UNLV Retrospective Theses & Dissertations

1-1-2006

Maximizing resource utilization by slicing of superscalar
architecture

Shruti Ravikant Patil
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation

Patil, Shruti Ravikant, "Maximizing resource utilization by slicing of superscalar architecture" (2006). UNLV
Retrospective Theses & Dissertations. 2023.

http://dx.doi.org/10.25669/4xx0-eg3j

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/4xx0-eg3j
mailto:digitalscholarship@unlv.edu

MAXIMIZING RESOURCE UTILIZATION BY SLICING

OF SUPERSCALAR ARCHITECTURE

by

Shruti Ravikant Patil

Bachelor of Engineering
Veermata Jijabai Technological Institute
University of Mumbai
2004

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Engineering
Department of Electrical Engineering
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas
August 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1439974

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1439974
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

UNIVERSITY OF NEVADA LAS VEGAS

June 19 2006

The Thesis prepared by

Shruti Patil

Entitled

"Maximizing Resource Utilization by Slicing of

Superscalar Architecture"

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

S u

Déean of the Graduate College

E mznatzon Commzttee Member

e {f/w

Exammatzon Commiittee Member

AR sl

Graduate College Faculty Representative

1017-53 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Maximizing Resource Utilization By Slicing
Of Superscalar Architecture

by
Shruti Ravikant Patil
Dr. Venkatesan Muthukumar, Examination Committee Chair
Professor of Electrical and Computer Engineering
University of Nevada, Las Vegas

Superscalar architectural techniques increase instruction throughput from one
instruction per cycle to more than one instruction per cycle. Modern processors make
use of several processing resources to achieve this kind of throughput. Control units
perform various functions to minimize stalls and to ensure a continuous feed of
instructions to execution units. It is vital to ensure that instructions ready for execution
do not encounter a bottleneck in the execution stage.

This thesis work proposes a dynamic scheme to increase efficiency of execution
stage by a methodology called block slicing. Implementing this concept in a wide,
superscalar pipelined architecture introduces minimal additional hardwa?e and delay in
the pipeline. The hardware required for the implementation of the proposed scheme is
designed and assessed in terms of cost and delay. Performance measures of speed-up,

throughput and efficiency have been evaluated for the resulting pipeline and analyzed.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ... ce ittt sttt et er e e st et s e ee e e s e s e s rn e an e ras iii
LIST OF FIGURES....u ittt ettt ee ettt rae s ta st st e eaa s s anssansetssanseans v
LIST OF TABLES ... ittt ittt ettt et e ettt e e s e e e e e e eeaeereaseennees vi
CHAPTER 1 INTRODUCTION ...coiiiiiiitiiiiieiieii e ettt caa e ean st ean s sassacssanes 1
1.1 History of CompPutingceieiiiiiiiiiiiii s 1

1.2 Architectures & Classifications..........ccoceeviiiiiiiiiiiii 4

1.3 Design & Evaluation of architecturec.cccoooviiviiiviniiiin, ST 5

1.4 Motivation for the Research wWorkcocoeeviiiiiiiiiiiiiniinin s 6
CHAPTER 2 PRIOR WORK ..ottt e et eenaes 8
2.1 Classification of Computer Architectures........coveiiiniiiiiiviiiiieeiiincereeeeeenen, 8
2.2 Prior research on special architectures........coooviiiiiiniiciiiiiin i 21
CHAPTER 3 SUPERSCALAR PIPELINED ARCHITECTURE........cc.cccoviiiiiiiiiinecnannens 28
3.1 DLX Archit@CtUTC. .ccuiiniiiii i et e eane 28
3.2 Generic Superscalar Pipelinec.ocoviiiiiiiiiiiiiiii e, 32
CHAPTER 4 CONCEPTS AND IMPLEMENTATIONcooiieiiiiiiieeeeceiceicecieeeeenn 39
4.1 BlIoCK SHCINE oovviiniiiiiiii e 41
4.2 Sliced ALU Implementationc..ccceiviriiiiiiiiiiiiiiiiin e eaneies 42
4.3 Architecture of integer execution UNitsccoeeviiiiiiiiiiiiiii e 46
4.4 ATEA ANALYSIS .cuuieiiiiit it a e e 51
4.5 Implementation of DLX Sliced Processor using VHDLc..ccciiiiiiiiniinnnne. 52
CHAPTER 5 RESULTS .oitiiiiiiiiiiieiie sttt etteetinetinersseeanerennsecnsenaserasssnssenssnnsransees 54
5.1 Time of Execution and Speed-Up......ccooccoiiiiriiiiiiiiiiiiiiiiiiiianeen 55
5.2 EffiCIEIICY ittt et ee st e s e aas 56
5.3 ThroughpuUt....coouiiiiiiiiii s ea e 57
5.4 Power-Delay Productccoooiiiiiiiiniiniii e 57
CHAPTER 6 CONCLUSIONS AND FUTURE WORKccoovviiviiiniiniiiniiieir e, 61
6.1 ConclUSIONS ..oivviiiiniiie e ettt e e e aas 61
6.2 FUUTe WOTK ..ottt n e 61
REFERENCES ...ttt ettt e s eb e v s eas sttt e tnn s taneeanaennenias e eraassnesenss 63
U T TSSO PP PP 65

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

LIST OF FIGURES

Computer Generations in 50 yearscccoviiiiiiiiiiiiiiiiiiiinii e 3
The appearance of superscalar processors on a timelinecc..coccevennennen. 17
Evolution of Commercial Superscalar Processors..........ccoveviieiieeiinniennnennnnes 18
Pipeline stages in a DLX architecture........cc..ccovvviiiiiiii 29
Generic Superscalar Pipeline Stagescooccoveeiiiiiiiiiniiiiininceenne 32
Superscalar, Pipelined DLX Implementation in VHDLcccociiiiininn.e. 35

Block diagram of integer unit in VHDL implementation of superscalar DLX36
Dataflow diagram during simulation of VHDL implementation of proposed

070} 11 ¢ =5 o) £ R PP PRUPRON 37
Processing stages for using a sliced ALU implementation............ccoceevvenneen. 43
Block diagram of a sliced ALU.......co.iiiiiiiiiiiiiiii et eaeeeas 44
Steps of operation of a sliced ALUoooiiiiiiiiiiiiiiiiiiinneeee e e 45
Two interconnected 4-bit adder/subtracter units forming one 2-slice

F=Va (s 15 o AN U o] 0 g Uox 1.3 ol OSSP PP OOP PP PP PUPPPIR 47
Architecture of flexible adder/subtracter Unit..........ccooeviviiiiiiiniiniineninenn. 47
Block diagram of a flexible adder/subtracter unit...........c...oooiviiiinn 48
Block diagram of a COmMParatorc..cuuiiiiiiniiiiiii ittt eeeaees 49
Four 8-bit compare slices for signed or unsigned comparison.................... 50
Multiplexer implemented using pass-transistor logicccecvvviviiivinniinennns 51
Waveforms of simulations for ALUinstructions-Part1.out for DLX processor
with (a) non-sliced ALU and (b) sliced ALU.......cccoiureiriiiiviieniinrieneieeennens 58

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1
Table 2

Table 3
Table 4

Table 5
Table 6
Table 7
Table 8
Table 9

LIST OF TABLES

DLX INSEIUCHIONS «.iviiiiiiiiiiii e eas 30
Average of MIPS dynamic instruction mix in SPECint2000 and SPECfp2000
BENChMATK SUITE. . c.uiiiiitiii ittt e et et e een s e e e e e eneennnns 37
Usage of ALU units in benchmarks...........ccooooiiii 40
Truth Table for decoder that directs the output of four slices into result
TEEISTOT .iitiiii i e 48
Additional hardware used for slicing of ALU.........cooiiiiiiiiiiiiniiiiiiiiiiciieene, 52
Results of evaluation of Time of Execution and Speed-upccccceveivanenen. 55
EffiCIENCY ..o 56
Throughput in terms of Instruction Per Fetch Cycle.........ccccevviiiiiiineinennee. 57
Power Delay Product for execution of two worst-case operations for two 16-
bit WOrst-case OPerands.......covviiveiiiiiiiiiiiiiiiiii e 58
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

Graduate school has been a journey with classic experiences that have brought
about a great change in my research and my life. I am thankful for the time I spent at
UNLV.

I feel extremely fortunate to have had Dr. “Venki” Muthukumar as my advisor. He is
the man who has mentored me endlessly and helped me define and refine my research
ideas with an incredible amount of support and patience. As is apparent in the first few
interactions, his knowledge in a wide raﬁge of arenas brings him an all-round
”personality topped by a witty sense of humor. The support and dedication he has for his
students is more than what any student can ask for. I am extremely grateful for the
research tools and the constant guidance that he has given me.

[am thankful for the wonderful laboratory environment sparked by my lab-mates,
Ashwini Raina, Naveen Chinthalcheruvu, Gopinath Balakrishnan and Shankar
Neelakrishnan. It is only in a conducive environment that out-of-box thinking is
cultured. Friendliness and the ability for hard work that has become a mark of all Lab
B348 inmates was rubbed off on me when I joined the research team. I am grateful for
my interactions with my friends, Amruta Tilaye, Rathna Ramaswamy, Pradeep
Nambisan and Navin Veermisti who have helped me at various points professionally
and personally.

Lastly, I would like to thank my parents, sister and my grandmother for being
supportive of my academic journey. They have been extremely understanding and a

constant source of encouragement and joy.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

As we move to the GSI (Giga-Scale Integration) era, the challenges presented to a
computer architect increase in constraints and complexity. Current demands of
technological advances have spurred an exceptional development in the way computers
are designed. Advances in computer architecture span across the concepts of out-of-
order superscalar architectures, aggressive speculative techniques, high bandwidth
caches, etc. to distributed processor architectures.

The next section briefly traces the development of architectures and research on
modern architectures with enhanced performance and capabilities. Among the factors
that are sought to be continuously improved in a machine are ‘clock speeds and
instruction throughput. This research work proposes a dynamic way to increase
instruction throughput, by concentrating on the processing elements of an architecture

and adding flexibility so that the processing bottleneck is addressed.

1.1 History of Computing

During the late forties, computers were mostly developed as a machine performing
logic and arithmetic operations using vacuum tubes. There was a need for suitable
electronic hardware architecture which was much more efficient than the existing
electro-mechanical devices (ENIAC). This led John Von Neumann to formulate a
machine controlled by a sequential program stored in electronic memory along with the
data, and it came to be known as EDVAC (Electronic Discrete Variable Automatic
Computer). With Neumann’s architecture as the base, new architectural concepts were

conceived by integrating software with the hardware. With the invention of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming languages and operating systems, the computing power has increased
from few hundreds to several billion instructions per second. Program sizes increased
from few thousands to several millions of code lines. Computers came to be seen as
both special purpose machines executing a particular program and as universal
machines capable of simulating any special purpose machine.

The Manchester university computer science group developed the idea of indexed
modification of addresses and the memory hierarchy in 1949. The index registers
permitted the execution of loops without modifying the instruction addresses and the
memory hierarchy idea led to the development of caches and virtual machines concept.
In 1951, Wilkes proposed the microprogrammed control, as a systematic way of
controlling the operation of computers. Stack architecture was proposed by Barton in
1958 as a tool for compiling and executing expressions. This resulted in the machine
architecture reflecting the organization of the programming language. The late fifties
saw the development of multiprocessors with separate I/O processors and arithmetic
processors.

Vector processors provided efficient machine operations involving data structures.
Cray-I developed in 1973 is an example of vector supercomputer. With the advent of
vector processors, pipelined architectures came into existence, which have since become
the backbone of subsequent architectures. The pipelined architecture obtains faster
operations by decomposing each operation into steps to be executed by cascaded sub-
units. Systolic array architecture evolved from pipelined architecture characterized by
identical processing elements connected in a lineér or a multi-dimensional array where
in each processing element is connected only to its adjacent elements only.

In 1972, the increasing density of the component on a chip using VLSI techniques
and the corresponding lower costs resulted in implementation of a complete processor
on a single chip, known as microprocessor. Further increase in component density has
led to the evolution of microprocessors with complex instruction set (CISC) and more

functionality on hardware. But this also resulted in slow down of the processor speed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. Technology and Software and Operating
Generation Architecture System Example Systems
First | e Memory, Simgle- | language, programs | PNAC: [BM 701,
1946-1956 bit CPU without subroutines Princeton IAS
S d stcrl;ftfnTranzlstgzls,_ Algol and Fortran with IBM 7030,
econd | core memory, Toating compilers, batch | CDC1604, Univac
1956-1967 | point accelerator, I/O .
channels processing OS LARC
Third Integrated Circuits, C language PDP-11,
1967-1978 Pipelined CPU, multiprogramming, IBM360/370,
microprogrammed CU timesharing OS CDC6600
Symmetric
Fourth | 1 8 orocessors, veetor | paralllizmg compiers, | o 1B FC: VAX
1978-1989 P ’ P & COMPLELS, | 9000, Cray X/MP
supercomputers message-passing
libraries
Fifth | Vo0 STeuits, scalable | Java, microkernels, | IBM SP2, SGI
1990- “Ifar o tz o Cﬁ’us oo multithreading, Origin 2000
present © internet * | distributed OS, WWW | Digital TruCluster

Figure 1. Computer Generations in 50 years [22]

To increase the speed of processing and reduce the number of instructions,
‘architectures with reduced instruction set (RISC) were implemented with simple
circuitry. The invention of CISC and RISC architectures formed the baseline for the
burst of several new architectures which led to the birth of new generation known as
superscalar architectures. Superscalar processors have the ability to process several
instructions in the same instruction cycle based on whether an instruction is an
independent instruction or dependent on another.
Figure 1 shows the five generations of computers [22] concisely, which depict five

distinct development phases in the computer industry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Architectures & Classifications
The parallel processing ability of the superscalar architectures resulted in many
different architectures and it is imperative that we classify the architectures into
various categories based on their features.
1.2.1 Classification based on Instruction Set complexity
» Complex Instruction Set Computer (CISC)
* Reduced Instruction Set Computer (RISC)
* Minimal Instruction Set Computer (MISC)
= High Level Instruction Set Computer (HISC)
= Writable instruction Set Computer (WISC)
» Zero Instruction Set Computer (ZISC)
= Very Long Instruction Word (VLIW)
1.2.2 Flynn’s Taxonomy based on parallelism in instruction and data streams
» Single Instruction Single Data stream (SISD)
» Single Instruction Multiple Data stream (SIMD)
= Multiple Instruction Single Data stream (MISD)
= Multiple Instruction Multiple Data stream (MIMD)
= Centralized Shared Memory
= Distributed Memory
1.2.3 Classification based on internal storage of operands
= Stack ‘Architecture
= Accumulator Architecture
» Load-Store Architecture
= Register-Memory Architecture
= Memory-Memory Architecture
= Extended Accumulator / Special Purpose Register Architecture
1.2.4 Classification based on application

» General Purpose Architectures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= Application Specific Architectures
1.2.5 Recent classification based on ability to exploit Instruction Level Parallelism
* Scalar, Non-pipelined
= * Scalar, Pipelined
= Superscalar, Non-pipelined
= Superscalar, Pipelined

* Superscalar, Superpipelined

1.3 Design & Evaluation of architecture

The essential elements of a processor are datapaths, instruction set and control
unit. A datapath is either designed with general processing elements that process all
incoming tasks or it is designed to handle specific tasks using specialized components.
The datapath controls the processing abilities in the architecture. An instruction set is

. then required to be designed for the processor. An instruction generally consists of a
field to specify opefations to be performed and one or more fields to specify data to
perform the operations on. The instructions may also be designed to provide control
information to the processor to execute the operations in an efficient manner. In this
case, there is another field called the control filed that contains pre-determined control
bits. The control unit generates control signals that allow a concurrent functioning of
different modules in datapaths and enable the processor to output results timely and
correctly.

Various designs for architectures have been developed over the years. Most are
described in the classifications listed above. A new architectural design is generally
required for enhancing current performance, to impart newer capabilities to an existing
architecture or to exploit the latest circuit-level technology.

The impact that a newly designed architecture will have on tasks and programs
needs to be evaluated in order to successfully put it to use in practical applications.

Benchmark suites containing programs that represent a variety of application tasks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been developed to assess the performance of architectures under different
environments. Certain desirable properties have been identified for performance metrics
to evaluate architectures. These are linearity, reliability, repeatability, ease of
measurement, consistency and measurement as described in [2]. The performance
metrics listed below have been extensively used since decades for reflecting performance
of new architectures:

= Clock f.re‘quency

» Millions of instructions executed per second (MIPS),

= Millions of floating point instructions executed per second (MFLOPS)

= Execution Time

= Speed-up with respect to other systems

Once an architecture has been designed, it is analyzed for cost (in terms of gate
equivalents}) and maximum clock frequency. Benchmark programs are run on the
machine and their execution time gives an indication of the quality of the architecture
for the area of applications represented by specific benchmark programs. These metrics
aid in comparing different architectures and facilitate the choice of an architecture for

an application at hand.

1.4 Motivation for the Research work

With advancements in VLSI design tools and fabrication techniques, the chip area
available to implement complex computer architecture has increased exponentially.
This increase in area can be used either to accommodate more number of modules,
modules of increased complexity and functionality or a combination of both. While
acknowledging the available latitude of chip area, this thesis explores ways of
increasing the efficiency of modules on the chip by introducing additional
functionalities to existing modules.

Most modern-day processors have a data width of 64-bits. It is possible to efficiently

use the processing elements to operate on data of smaller word sizes. A scheme called

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as block slicing is proposed in this work to increase instruction throughput when such
data is encountered. The scheme is applied to functional units to increase execution
parallelism in wide superscalar, pipelined architectures. This technique will be more
- effective in general purpose machihes and will lead to a higher processing rate, without
increasing processing units.

The scheme of block slicing, its design, implementation and evaluation have been
elucidated in this thesis. This document is organized as follows. Chapter 2 presents a
literature review of computer architectures and their applications. Chapter 3 describes
the superscalar architectural technique for exploiting Instruction Level Parallelism (ILP)
and the DLX architecture designed for academic purposes and described in [1]. Chapter
4 describes the concepts introduced by this thesis work and their design and
implementation as pipelined units. Chapter 5 evaluates the concepts and presents the
results of simulations. Chapter 6 presents conclusions from this work and proposes

future work that remains to be performed and evaluated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

PRIOR WORK

Computer architectures have advanced from the ENIAC (Electronic Numerical
Integrator And Computer) to present day multi-core processors. Classification of
computer architectures is not only necessary to determine an optimal design for a
systemb, but also to systematize the sample space for architectural exploration and
progression. There are several categories under which architecture can be classified.
Some of the conventional classification methods are based ubon the complexity of the
instruction set, operand storage, application and instruction processing scheme. Other
criteria like cost, capacity, performance and component density have also been used in
the past to provide a basis for classification. Apart from these categories, lately new
classification methodologies based upon number of storage hierarchy levels, number of
addressable fields, fault tolerance of the system and reconfigurability are being used to
compare performance of upcoming architectures.

This chapter discusses conventional computer architecture classifications followed
by a description of different types of superscalar processors. Fourth generation
processors are also briefly explained in this section. A survey of existing literature is

presented at the end of the chapter.

2.1 Classification of Computer Architectures

Architectures can be categorized based on a number of broad classiﬁcation criteria.
Most commercial processors fall into a number of these criteria. It is possible to make a
narrower classification for advanced processors like parallel processors, distributed

processors and network processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 Classification based on Instruction Set Complexity
1. Complex Instruction Set Computer (CISC):

The CISC instruction set comprises of several RISC operations in a single
instruction. This reduces the lines of code for a program and gives the designer the
ability to optimize multiple instructions in a single step. A reduction in instructions
leads to lower memory requirements and fewer memory accesses. However, the
functions of the instruction decoder stage intensify to a large extent. Typically, the
number of instructions in a CISC machine is 80-150. The main features of a CISC
system include register to. memory and memory to register instructions, multiple
addressing modes for memory, two operand format, variable length instructions and
many clock cycles per instruction. The CISC architecture is characterized by a
complex instruction decode logic, a small number of general purpose régisters and
several special purpose registers.

2. Reduced Instruction Set Computer (RISC):

The RISC architecture supports simple basic instructions that can be combined
to achieve complex tasks and capable of running faster than CISC instructions. The
instruction decoder design is simplified due to the nature of instructions, and hence
control path design process is uncomplicated. The RISC architecture enables a
computer architect to exploit instruction parallelism and out-of-order execution.
RISC processors have complex memory hierarchy in order to work at full speed and
allow for uninterrupted pipeline flow.

These processors are often classified based on various measures like the
datapath width, pipeline width, word size, cache structure, bus structure, type of
buffers and types of register files.

3. Minimal Instruction Set Computer (MISC) [4]:

The MISC architecture is made to exploit simplicity by assuming only 32

instructions. As the speed of the RISC processors increases, a bottleneck is created

between the processor and the memory. A cache memory is necessary to buffer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instruction and data streams in order to increase the memory access speed. Cache
memory complicates the system design and makes the system more expensive. RISC
processor is also very inefficient in handling subroutine calls and returns. A large
register window big enough to handle input, output and local parameters is used to
assist in subroutine calls. This large register window wastes the most valuable
resource in the RISC processor and slows the system during context switching.
MISC is implemented with only four instruction groups: transfer instructions,
memory instructions, arithmetic instructions and register instructions.

4. High Level Instruction Set Computer (HISC) [5]:

HISC is 64 bit architecture. It involves simple instructions of fixed length,
entries of operand descriptors and application oriented data types. The operands of
an instruction are described by Operand Descriptors which are records and consist
of virtual addresses, data types, operand sizes, vector information, operand access
codes and design and system dependent information for the operand. The data
types of the operands include integer, floating-point number, BCD, character and
string. The vector information includes number of elements in the vector and the
element spacing for vector operands.

HISC reduces the demand for conditional branching as in RISC by eliminating
the looping count for operands of variable lengths and large size, as well as vectors.
On the other hand, HISC will operate super-scalar on a higher level. The
interdependency of operands will be much less while it is likely to operate super-
scalar for two or more function units. HISC also keeps the vector information so
that vector operations are done by hardware.

This is a general purpose architecture targeted on high performance,
implementation flexibility, expandability, better access control and system
dependent features. HISC processor provides better encapsulation and is better

suited for multimedia applications.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Writable Instruction Set Computer (WISC):

Writable Instruction Set Computer is a stack based architecture whose design is
based (;n VLSI design methodology. These stack machines offer process;)r
complexity that is much lower than that of CISC machines and overall system
complexity that is lower than that of either RISC or CISC machines.

Earlier, stacks were placed in program memory chips. WISC maintains separate
memory chips or even on-chip memory for the stacks. This configuration provides
extremely fast subroutine calling capability and superior performance for interrupt
handling and task switching. WISC combines stack machine design with
opportunities qfféred by VLSI fabrication technology. This combination produces
simplicity and efficiency. Multiple stacks with hardware stack buffers, zero-operand
stack oriented instruction sets and the capability of fast procedure calls lead to
features like high performance without pipelining, simple logic and low system
complexity, small program size, fast program execution and low interrupt response
and a low cost for context switching. A successful application area for WISC is real
time embedded control environments.

6. Zero Instruction Set Computer (ZISC) [6]:

ZISC is a neural network based integrated circuit which is designed for
applications using super computers. ZISC uses accumulated knowledge to recognize
and classify objects and take decisions. It learns by examples from samples of data.
The built-in learning mechanism accumulates knowledge during the training when
examples and their solutions are entered. ZISC has generalization capability which
gives the capability to react to objects which were not part of the learning examples.

ZISC’s learning capability is not limited in time and volume. Its chips can be
cascaded to create a larger system which ensures that the system architecture
caters to the increase in technology density. Several chips can be linked together to
build a wider network, without adding logic. These features make ZISC very easy to

use and capable of solving problems which are not clearly defined.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ZISC has a high performance, capable of operating in real time and can be used
in pattern recognition and classification. It also has the ability to separate noise
from signal and this makes it perfect platform for signal processing.

7. Very Long Instruction Word (VLIW):
Scheduling the instructions is the core problem in a modern processor design.
VLIW design provides an alternative by letting the software do all the scheduling.
The compiler examines the program, finds all the instructions with no
dependencies, strings them together in a very long batch and executes them
concurrently on an equally big array of function units such that all the function
units are used efficiently.
Very long instructions are typically between 256 and 1024 bits wide. These
instructions contain many smaller fields, each of which directly encodes an
operation for a particular function unit. The hardware involved is very simple,
consisting of a collection of function units which include adders, multipliers, and
branch units etc, connected by a bus, plus some registers and caches. More silicon
is used in actual processing and hence VLIW processor runs fast as th¢ only limit is
the latency of the function unit. Due to its ability for scientific number crunching,
VLIW machines are highly used in scientific array processing and signal processing.
2.1.2 Flynn’s Taxonomy

Flynn categorized all systems based on parallelism in the instruction and data
streams which are simultaneously active at the bottleneck component of the
multiprocessor system. All computers are placed into four different categories:

1. Single Instruction Single Data (SISD) Stream:

| This is the class of conventional, sequential Von Neumann machines, in which
only one instruction consuming a restricted amount of data is allowed to execute at
a time. All state changes due to the instruction must be completed before the

execution of next instruction begins. This category is the uniprocessor category.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Single Instruction Multiple Data (SIMD) Stream:

Multiple processors execute the same instrl;lction using different data streams.
Each processor had its own data memory but there is a single instruction memory
and control processor, which fetches and dispatches instructions. Here, only one
instruction can be executed at a time but the state changes induced by the
instruction may be large. Parallelism is exploited by performing the same operation
concurrently on many pieces of data. Vector architectures belong to this class of
computers.

3. Multiple Instruction Single Data (MISD) Stream:

No commercial multiprocessor systems of this type exist to date. Some special
purpose stream processors use this architecture as there is only a single data
stream to be operated on by functional units.

4. Multiple Instruction Multiple Data (MIMD) Stream:

This class includes all parallel machines which contain multiple processors each
with its own program counter. Each processor fetches its own instructions and
operates on its own data. Different operations may be performed concurrently on
many pieces of data. The processors in the multiprocessor system are often taken
off-the-shelf.

Due to its flexibility and cost performance factors, MIMD type of architecture
has clearly emerged as the most preferred architectures for general purpose
multiprocessor systems. MIMD multiprocessors are divided into two different
classes based on the number of processors used, the organization of the memory
and the interconnection strategy:

5. Centralized Shared Memory Architectures:

In this type of architectures, typical processor count would be few dozens. A
single centralized memory is connected to the processors using a single bus when
the processor count is less. By replacing the single bus with multiple buses, the

centralized memory can be scaled to handle more number of processors. These

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiprocessors are called Symmetric Multiprocessors (SMP) because of its single
memory and its symmetric relationship to all the processors and the uniform access
time from any processor. This style of architecture is also known as Uniform Memory
Access (UMA).

6. Distributed Memory Multiprocessor Architecture [1]:

When the number of processors involved is large, a centralized memory system
would not be able to support the bandwidth demands of processors without
incurring excessively long access latency. Hence, memory must be distributed
among the processors rather than being centralized. There are two major benefits of
having a distributed memory system. First, this model reduces the latency for
accesses to the local memory and the second, proves to be a cost effective way of
scaling the memory bandwidth when most of the accesses are to the local memory.

2.1.3 Classification based on storage of operands [1]
The type of internal storage of the operands in a processor is the most basic
differentiation used for classifying the architectures. These are explained below:
1. Stack Architecture: All operands accessed by this type of architecture are stored
in a stack. An operation is performed by taking opérands from the top of the stack.
2. Accumulator Architecture: This architecture implicitly accepts an operand stored
in a special register called as an accumulator, and the second operand is stored into
a register. The result of an operation is also stored implicitly in the accumulator.
The advantage of this scheme is that the address of only one operand needs to be
specified while performing an operation.
3. Load-Store Architecture: In this class of computers, memory access is only
possible with load and store instructions.
4. Register-Memory Architecture: Here, memory access is possible as part of any
instruction.
5. Memory-Memory Architecture: This is a third class of architecture, not found

commercially. All operands are stored and accessed from the memory itself.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Extended Accumulator/ Special Purpose Register Architecture: There are more

registers present in this architecture than a single accumulator but restrictions are

placed on the use of these special registers. Such architecture is known as extended

accumulator or special purpose register architecture.
2.1.4 Classification based on application

Architectures can also fall into two categories based upon the application they can
process: general-purpose, application—speciﬁc and parallel processors [7].

1. General Purpose Architectures

These kinds of architectures can perform a variety of tasks, and are the basis for

most Intel prbcessérs in a desktop machine. This is achieved by breaking down the

tasks to a generic instruction set which is supported by the architecture.

2. Application Specific Architectures

These architectures are targeted towards a specific application, or a family of

applications. Some application-specific architectures have been built for digital

signal processing, image processing and mixed signal processing. Every module in

such architecture is implemented to perform at maximum efficiency and least

redundancy. The instruction set is also customized for the application. |
2.1.5 Classification based on Instruction Level Parallelism

Instruction Level Parallelism (ILP} denotes a processor’s ability to run many
instructions at the same time. Exploiting ILP has led to the evolution of superscalar
pipelined processors from a basic scalar processor. Today, ILP has become a major
factor around which processors are designed. The Amdahl’s Law is generally used to
qugntify a processor’s performance based on ILP. Superscalar processors, when
subjected to Amdahl’s Law increased performance by a great magnitude.

The types of architectures based on their ability to exploit ILP are:

= Scalar, Non-Pipelined

* Scalar, Pipelined

= Superscalar, Non-pipelined

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= Superscalar, Pipelined
= Superscalar, Superpipelined
1. Scalar, Non-Pipelined Architecture:

Architectures with a throughput of 1 Instruction per Clock Cyclé (IPC) aré
termed as scalar architectures and these represent the simplest class of computers.
Architectures like Intel8085™ through Intel386™ were scalar and non-pipelined
architectures, with least clock speeds among all other categories in this
classification.

2. Scalar, Pipelined Architecture

By interconnecting the different phases that an instruction undergoes during
the time it arrives into the processor till the time it leaves it, it is possible to gain
processing speed. The phases are scheduled so that each phase proceeds in a lock-
step fashion, much like the assembly line processing in an automobile factory. Such
architecture is called a pipelined architecture. Pipelining increases clock speeds by a
factor of the number of stages that are included in it. A typical pipeline, shown in
Figure 1 consists of six stages: fetch, decode, read registers, execute, writeback,
write to memory.

3. Superscalar, Non-Pipelined architecture

An architecture that is capable of processing more than one instruction per
cycle is called superscalar. Such an IPC is obtained by having more than one copy
of processing elements. There is no machine that is superscalar and non-pipelined.
This category only exists for the sake of completeness.

Figure 2 shows the time periods within which superscalar architectures were
designed.

4. Superscalar, Pipelined Architecture

Superscalar architectures were built with a view to extract parallelism from data

and instructions. Multiple instructions and data are fetched simultaneously and

out-of-order execution is enabled to reduce stalls. Additional hardware and stages,

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RISC Processors
Intel980 —————960KA/KB——9B0CA
MS88000 MC88100- MC88110
HP PA PA7000——PA7100
Sparc MicroSparc—SuperSparc:
MIPS R R4000 R8000-
Am29000 — 2:5:;;
IBM Power RS/6000
DECa 621064
- Pty
: i % : : : % : : :
87 88 89 90 91 92 93 94 95 96
CISC Processors
Intel x86 1486 Pentium
M68000 M68040- M68060:
Gmicro Gmicro/100p: Gmicro500
AMD K5 K5
CYRIX M1 M1

Figure 2. The appearance of superscalar processors on a timeline [23]

like reservation units and reorder buffer are necessary to process an instruction in a
superscalar pipeline.
5. Superscalar, Superpipelined Architectures
If the internal stages in a pipeline are themselves pipelined, the architecture is
called superpipelined. This facilitates the use of faster clocks and mechanisms to
avoid a kind of WAR stall.
Figure 3 shows the evolution of commercial superscalar processors [23].
2.1.6 Fourth Generation Processors:
Improvements in processor performance are achieved by two means:
» Advances in semiconductor technology
» Advances in processor microarchitecture.
To sustain the historic rate of increase in computing power, it is important for
improvements to occur in both ways mentioned. It is certain that clock frequencies will

continue to increase. The main architectural challenge is to issue many instructions per

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~——960 960CA: 960MM 960HA/HD/HT
Intel

——80x86 Pentiurr: PentiumPro
— Power1 I B "
BM Po RS/6000 RSC- ower2
ES: ES/9000
PowerPC PowerPC601 PowerPC620
Alliance T owete PowerPC603 T ISP CE04—p 5 eiPCE02
——88000: MC8811C
Motorola
——6800C MC68060-
DEC a 021064 a21064A: 021164
HP PA PA710C PA7200- PAB00O—
Sun/Hal —SPARC SuperSpare UltraSparc
PM1(Sparcb4)
TRON —Gmicro Gmicro/500
MIPS R R8000— R10000——
2900C - 29000sup:
AMD
K5 K5
CYRIX ——M1 M1
NexGen Nx NXx586——
Astronautics ZS-1
cor : : | : : : - : 1
89 90 91 92 93 94 95 96

Figure 3. Evolution of Commercial Superscalar Processors

cycle and to do so efficiently. Five next generation processors are described in this
section, which exploit the ILP in a system together with speculation.
1. Superspeculative Processors [8]:

These are wide issue 'super scalar processors. that can issue up to 32
instructions per cycle. The inability to go beyond the data flow limit restricts the
complete exploitation of Instruction Level Parallelism. Superspeculative processors
overcome the dataflow limit problem by aggressively speculating on past true
dependencies and exploring additional instruction parallelism.

The core basis for the superspeculative processors is that the producer
instructions generate highly predictable data in real programs. By successfully
speculating on the source operand values, the consumer instructions can start
execution without waiting for the result of the producer instructions. Thus, a
superspeculative processor removes the serialization constraints between the
producer and consumer instructions, there by thrusting its performance to go

beyond the classical data flow limit without sacrificing the code compatibility.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Trace Processors [9]:

‘Traces’ are dynamic instruction sequences constructed and cached by
hardware. Traces are built as program executes and are stored in a cache. Trace
processor systems work by breaking down the system into several processing
elements (PE) and the program into several traces so that the current trace is
executed on one PE while the future traces are speculatively executed on other PEs.

Each processing element has enough instruction buffer space to hold an entire
trace, multiple dedicated functional units, a dedicated local register file for holding
the local values and a copy of the global register file. Instruction fetch hardware
segments the program into traces, each of which may have 8 to 32 instructions as
well as embedded predicted conditional branches. The traces are placed in a trace
cache and a trace fetch unit subsequently reads the traces from the trace cache and
sends them out to the parallel processing elements. Hence, the trace becomes the
basic execution unit through out the processor. Two major advantages of the trace
processors are:

* The physical registers are divided into local and global registers. This
hierarchical organization allows for smaller register files which have fast
access times and fewer ports per file.

= Successful value prediction of the trace’s data allows the trace to be
executed immediately and in parallel with other traces.

3. Multiscalar Processors [10]:

Multiscalar processors divide a program into different tasks that are distributed
to a number of parallel processing elements (PEs} which are controlled by a single
hardware sequencer.

A program is divided into a collection of tasks by using software and hardware.
These tasks are then distributed to the parallel processing elements. Each PE
fetches and executes the instructions assigned to it. The appearance of a single local

register file is maintained with a copy in each PE. Compiler generated masks enable

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the dynamic routing of the register results to different processing units. Memory
accesses occur speculatively and the addresses are decoded dynamically. The only
wait involved in this system is caused by the true data dependencies.

4. Datascalar Processors [12]:

The Datascalar model of execution runs the same sequential program
redundantly across multiple processors. The data set is distributed across physical
memories that are tightly coupled to their distinct processors. Each processor
broadcasts operands that it loads from its local memory to all other processors.
Instead of explicitly accessing a remote memory, processors wait until the requested
value is broadcasted. Stores are completed only by the processor that owns the
operand, and are dropped by the others.

This architecture exploits the fact that all memory is local to some processor in a
multiprocessor system. Thus each read operand can be fetched by some processor
and each memory update can be achieved by means of a write by some processor. A
major advantage of the datascalar architecture will be its ability to exploit
parallelism in codes that were not traditionally thought of as eligible for parallel
processing. Datascalar model is way of optimizing the memory and is not intended
to be substitute for pafallel processihg.

5. Advanced Superscalar Processors:

These are wide issue superscalar processors that can issue up to 32
instructions per cycle.

An important feature of this architecture is its large trace cache and a large
number of reservation stations to accommodate 2000 instructions. There are 24 to
48 highly optimized, functional units. Aggressive speculation is performed to predict

the branches.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Prior research on special architectures
2.2.1. Billion Transistor Architectures [12,13]:

Doug Burger and Goodman speculate and explore the future trends in computer
architecture. They extrapolate the scope of having one billion transistors on a single
chip. Important trends that would take place over the course of next 10 years are
discusses in this paper.

A one billion transistor chip would require hardware manipulation but the physical
limits like on chip signaling, wire delays, global clock would be serious constraints.
They expect a quantum leap in compiler’s ability to extract parallelism thereby shifting
some of the parallelism from the hardware to the software. Considering the growing
costs involved in design, verification and testing, the authors conclude that
architectures that simplify the interaction among on-chip components and/or reduce
the number of interacting components will have greater advantage over architectures
that do not.

2.2.2. One Billion Transistors, One Uniprocessor, One Chip [14]:

Patt et.al propose that when systems with one billion transistors are available,
computing systems with highest performance will have a single processor on each
processor chip. They identify architecture that will have highest performance by
utilizing the maximum available instruction bandwidth. The hardware will consist of the
following components:

= A large trace cache

* A large number of reservation stations

= A large number of pipelined functional units

= Sufficient on-chip data cache

= Sufficient resolution and forwarding logic
These components are necessary for aggressive speculation using aggressive branch

predictor and for very wide issue superscalar processing.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The highest performance computing system will be a multiprocessor consisting of
powerful single chip uniprocessors. These will issue and execute 16 or 32 instructions
per cycle with nearly 100 percent branch prediction accuracy.

2.2.3. Dynamic Instruction Set Computer [15]

Michael Wirthlin and Brad Hutchings describe a new computer architecture that
can support dynamic modification of its instruction set based on the demand of the
-incoming instruction. They present an implementation of a DISC architecture based on
three techniques:

» Partial FPGA reconfiguration - Partial reconfiguration provides the ability to
reconfigure a sub section of an FPGA while remaining logic operates unaffected.
Instructions occupy FPGAs only when needed while FPGA resources can be
reused to implement an arbitrary number of performance enhancing application
specific instructions.

= Relocatable hardware — Relocatable hardware gives the flexibility to relocate or
make placement decisions of partial configurations at run time. This feature is
use(i in DISC to enhance run time hardware utilization. Relocating hardware
works on a strictly defined global context. Every instruction module is
configured on to FPGA in such a way that each module is as close as possible to
the other in order to avoid wasted hardware between modules. A global context
provides physical placement positions and a communication network necessary
for these modules to operate correctly.

» Linear Hardware Model — DISC implements relocatable hardware in the form of a
linear hardware model. The two dimensional grid of configurable logic cells are
organized as an array of rows. Each module’s location is specified by the vertical
and horizontal location while the size of the module is given by the module
height.

DISC is an example of application specific processor with large instruction sets that

can be implemented on partially reconfigurable FPGAs.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4. VISA: A Variable Instruction Set Architecture [16]

The author of this paper describes an instruction coding technique that reduces the
width of the instructions using dynamic instruction coding managed by the compiler. A
RISC processor is constrained by the instruction width to keep it within the limits
imposed by silicon. In this case, the compiler defines the set of instructions required in
order to execute a given program and selects the hardware function that can be
activated during the same machine cycle by using an instruction.

Compiler divides and determines the instruction set based on two factors:

» Functions to be activated

* Number of bits needed by such functions.

The author presents a new VISA based microprocessor named VISP which delivers high
performance using the variable instruction set architecture for general as well as
floating point calculations. The result of the new architecture is more compact code and
notable increase in optimization capabilities of the compiler.

2.2.5. Application Specific Instruction Set Processor (ASIP) [17]

Chandra Shekhar et al. compare software based general purpose architectures to
dedicated hardware architectures and identify how the benefits of both are realized
through ASIP architectures. Dedicated hardware architectures can be combinational,
sequential, pipelined, and parallel or can be a mix of any of these but a change in
functional specification necessitates a change in the architecture. These are closely tied
to the logic specification of the specific application and hence are very inflexible in their
functionality.

On the other side are the general purpose architectures which can implement any
logical function without requiring any chance in the hardware. This flexibility comes
from the use of a rich instruction set. The CPU hardware is designed only to execute
any instruction from the instruction set loaded into its instruction register and then
proceed to load and execute the next instruction from the memory into instruction

register of the CPU. Whenever there is a change in specification, only the sequence of

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instructions stored in the memory changes, which is why it is called software based
architecture.

The inclusion of complex instructions in the instruction set of the processor in
addition to the necessary general purpose instructions makes the instruction set and
the processor application specific.

Authors propose that the ASIP hardware architecture would contain a number of
application specific functional blocks and the necessary bussing to move the data. This
reduces the memory accesses and the data transfers among the hardware blocks. A
reduced number of busses in the CPU reduces the amount of bus interface logic in thé
functional blocks in the CPU and control logic in the control part of the processor. ASIP
processors will run multiple overlapped executions of operations in different functional
units to achieve maximum possible concurrency. Pipelining occurs at the functional
block level. Application specific instruction sets and processors are suitable for
embedded applications as they permit an alteration of hardware-software boundary to
meet the speed and energy constraints of a specific application.

2.2.6. Application Specific Architectures [18]

Chris Weaver et al. proposed that the potential of the application specific
architectures can be harnessed by specializing a design to a small domain of important
applications. The benefits of this approach would be improved performance, greater
power efficiency and reduced costs. Key differences between general purpose
architecture versus application specific architecture are discussed in this paper.

Producing a dedicated hardware for an algorithm improves the performance
drastically and reducing the silicon area costs. This is obtained by eliminating all
aspects of the design that are not necessary for the algorithm. On the other hand, the
main drawbacks of an application specific architecture are increased marginal design
costs due to lesser production volumes and reduced design flexibility as the hardware
implementation cannot be changed after it has been manufactured. The main barriers

of entry for application specific architectures are:

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Identifying the scope of their application domains. This requires analysis of

performance, power efficiency and economies of scale.

2. Reduce the design problems inherent for application specific architectures.

In support of their arguments, the authors present a detailed case analysis of ‘The
CryptoManiac Processor’. The architecture and its application specific optimizations are
explained.

2.2.7. An FPGA based Forth Microprocessor [19]

Applications which use application specific FPGA along with a microprocessor have
two distinct advantages:

1. Reduce the power consumption

2. Reduce the system costs by incorporating the microprocessor in the FPGA.

In this paper, a 16 bit FPGA based microprocessor called MSL16 is described which
executes the Forth’ programming language. This is based on stack architecture with
each instruction occupying 4 bits leading to small instruction set, simple datapath and
control and high code density.

MSL 16 consists of a 16 deep data stack for temporary variables and subroutine
parameters and a T register holds the top element of the stack so that the top two
elements of the stack are available to the ALU simultaneously. It also contains a 16
deep return stack to store subroutine return addresses, a instruction register which
holds the 4-bit instructions to be executed, a PC and an IR which store the address of
the next instruction and finally an ALU which takes operands from T and the top
element of either DS or RS and returns the result to T.

Forth machines are suitable for embedding in FPGA applications because of good
code density, easy customization, easy to handle development tools, high performance
and small area.

2.2.8. Flexible Instruction Processors [20]
The authors introduce a Flexible Instruction Processor (FIP} for systematic

customization of instruction processor design and implementation. General purpose

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processors lose performance when dealing with custom operations and non-standard
data. Customizing the processor is required in such cases. This can be doﬁe either by
augmenting the processor with programmable logic for implementing custom
instructions or by implementing the instructions using FPGAs. Application specific
instruction processors provide another method of producing custom processors.

The unique features of FIP include:

» A modular framework based on processor templates that capture various

instruction processor styles, such as stack-based or register-based styles.

= Enhancements of this framework to improve functionality and performance,

such as hybrid processor templates and superscalar operation

» Compilation strategies involving standard compilers and FIP specific compilers,

and the associated design flow

» Technology independent and technology specific optimizations such as

techniques for efficient resource sharing in FPGA implementations

FIPs are assembled from a processof template with modules connected together by
communicating channels. The template can used to produce different styles of
processors such as stack-based and register-based. The parameters of a template are
selected to transform a skeletal processor into a processor suited for its task. Possible
parameterizations include addition of custom instructions, removal of unnecessary
resources, customization of data and instruction widths, optimization of op-code
assignments, and varying the degree of pipelining.

When a FIP is assembled, required instructions are included from a library that
contains implementations of these instructions in various styles. Depending on which
instructions are included, resources such as stacks, different decode units are
instantiated. Channels provide a mechanism for dependencies between instructions

and resources to be mitigated. This FIP framework has been implemented in Handel-C.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.9. Power efficient flexible processor architectures for embedded applications [21]

A novel processor architecture is proposed in this paper which provides the

flexibility needed in practice at a reduced power and performance cost. A novel protocol
which combines an efficient, customized component with a flexible processor into
hybrid architecture is proposed.
Based on the required flexibility, target technology and processor architecture are
selected independent of their reuse considerations. Components benefiting from a
custom hardware implementation ére still implemented in their optimal architecture.
Flexibility is added to the system as a separate programmable component, which can
take over control in those cycles where functionality needs to change. This novel
protocol allows for fine grain control which is needed since it is not known in advance
which execution cycles of the hardware realization will have to be substituted by a new
functionality on the flexible platform. The fine grain control is realized with a control
flow inspection mechanism and an interrupt mechanism. The customized memory
architecture is shared with the flexible component, solving the data transfer and storage
bottleneck for multimedia applications.

All processor described above have static datapaths. The hardware is incapable of
adapting to input tasks at run-time. Hardware is usually designed with sufficient
resources for all possible types of applications expected to run on it. However, all tasks
that require minimal resources and the tasks that require maximum resources pass
through the same datapath, which reduces the overall utilization of hardware. This
issue has been addressed in this thesis. Chapter 3 explains the superscalar pipelining

concepts for which the problem can be defined clearly.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

SUPERSCALAR PIPELINED ARCHITECTURE
The scheme proposed in this thesis work is evaluated on the DLX architecture
designed by Hennessey and Patterson as a representative architecture of most
commercial processors; This chapter explains the architectural design of the DLX

machine. It also presents the design concepts of a pipelined, superscalar architecture.

3.1 DLX Architecture

The DLX is a simple load-store architecture described in [1]. It is developed purely
for academic interests, with an architecture similar to most commercial computers like
AMD 29K, DECstation 3100, HP850, IBM801, Intel i860, etc.[1]. The DLX architecture
consists of thirty-two 32-bit general purpose registers called RO, R1, R2, ... R31 where
RO always holds the value zero. The word size for the DLX is 32-bit. Integer data and
floating point data of single precision is thus 32-bit, while double precision floating
point data is 64-bit. The DLX uses the immediate and displacement addressing modes
for data, which are stored in a 16-bit field. Main memory is accessed using a 32-bit
address and it is byte addressable. The operations supported by the DLX are classified
into four major types: ALU, branch, load-store and floating point operations. Table 1
liéts the opcodes of these operations. The control instructions are jumps and branches,
where branches are conditional which need to be evaluated before the branch is
resolved. The floating point unit of DLX handles all floating point operations as well as

integer operations of multiply and divide.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4 shows the scalar, pipelined implementation of DLX. It consists of five
stages: Instruction fetch, instruction decode and register fetch, execute and effective

address calculation, memory access and write-back stage.

Instruction
Fetch

Instruction
Decode

Y
Execution

A
Memory

Access

A
Write Back

Figure 4: Pipeline stages in a DLX architecture

1. Instruction Fetch

The fetch stage is responsible for fetching the instruction to be executed. It
fetches a new instruction at every clock cycle unless the pipeline is stalled. The DLX
uses a special register called the Program Counter (PC) to store the address of the
next instruction to be fetched. The PC is incremented by 4 to point to a sequential
instruction stored in the next memory word. The fetched instruction is stored in a
special register called the Instruction Register (IR), while a special register called the
Next Program Counter (NPC) stores the address of the next instruction to be fetched.
2. Instruction Decode

This stage decodes the instruction stored in IR and accesses the register file to
read registers that contain data. Since the DLX is a load-store architecture,
operands are first loaded into registers using the load instruction and then
operations are performed on them. These operands are read into two temporary

registers (A and B). If immediate addressing mode is used, then it is sign-extended

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 DLX instructions [1]

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between
the integer and FP or special register; only memory
address mode is 16-bit displacement + contents of a
GPR '

LB, LBU, SB Load byte, load byte unsigned, store byte
LH, LHU, SH Load halfword, load halfword unsigned, store halfword
LW, SW Load word, store word {to/from integer registers)

LF, LD, SF, SD

Load SP float, load DP float, store SP float, store DP float
(SP - single precision, DP - double precision)

MOVI2S, MOVS21

Move from/to GPR to/from a special register

MOVF, MOVD

Copy one floating-point register or a DP pair to another
register or pair

MOVFP2I, MOVI2FP

Move 32 bits from/to FP tegister to/from integer registers

Arithmetic / Logical

Operations on integer or logical data in GPRs; signed
arithmetics trap on overflow

ADD, ADDI, ADDU, ADDUI

Add, add immediate (all immediates are 16-bits); signed
and unsigned

SUB, SUBI, SUBU, SUBUI

Subtract, subtract immediate; signed and unsigned

MULT, MULTU, DIV, DIVU

Multiply and divide, signed and unsigned; operands
must be floating-point registers; all operations take and
yield 32-bit values

AND, ANDI

And, and immediate

OR, ORI, XOP, XOPI

Or, or immediate, exclusive or, exclusive or immediate

LHI

Load high immediate - loads upper half of register with
immediate

SLL, SRL, SRA, SLLI, SRLI,

Shifts: both immediate(S__I) and variable form(S__);
shifts are shift left logical, right logical, right arithmetic

S ,S 1 Set conditional: "__" may be LT, GT, LE, GE, EQ, NE
' Conditional branches and jumps; PC-relative or
Control through register
Branch GPR equal/not equal to zero; 16-bit offset from
BEQZ, BNEZ PC
Test comparison bit in the FP status register and branch;
BFPT, BFPF 16-bit offset from PC
J, JR Jumps: 26-bit offset from PC(J) or target in register(JR)
Jump and link: save PC+4 to R31, target is PC-
JAL, JALR relative(JAL) ot a register(JALR)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRAP Transfer to operating system at a vectored address

RFE Return to user code from an exception; restore user code
Floating point Floating-point operations on DP and SP formats
ADDD, ADDF Add DP, SP numbers

SUBD, SUBF Subtract DP, SP numbers

MULTD, MULTF Multiply DP, SP floating point

DIVD, DIVF Divide DP, SP floating point

before being stored in a register. Instruction decoding and accessing of register file

is done concurrently due to fixed-width instruction format.

3. Execution and Effective Address Calculation

The instruction is issued to execution unit which performs the desired arithmetic,v

compare, logical or shifting operation. If it is a load or store instruction, then this

stage performs effective address calculation for generating memory address from

which or at which data is to be loaded or stored.

4. Memory Access

For load instructions, data is fetched from the memory address generated in the

previous stage and loaded into load memory register, while for store instruction,

data is written from specified register into memory. For branch instructions, the

condition for branching is evaluated in the previous stage, and the PC is replaced or

incremented based the result produced. ALU instructions are completed in this

stage by writing the result of ALU operations into the desired register file location.

This is commonly referred to as the MEM stage.

5. Write-back

Register file is updated with the data from Load Memory Register, and the load

instruction is completed.

The scalar DLX pipeline can be extended to a superscalar pipelined version using
superscalar concepts described in the next section. The number of pipeline stages and
their functions remain similar. Section 3.3 describes the VHDL implementation of a

superscalar and pipelined DLX architecture.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Generic Superscalar Pipeline

A superscalar pipeline is characterized by concurrent instruction processing and
out-of-order execution. A superscalar pipeline parallelizes instruction execution by
duplicating processing elements. Figure 5 shows the block diagram of a generic
superscalar pipeline of width s. The pipeline consists of six main stages: instruction
fetch, instruction decode, dispatch, execute, reorder and retirement. These stages
perform tasks similar to those performed by the five-stage pipeline described for the
DLX architecture. The fetch, decode and dispatch stages perform an in-order execution
of instructions, the execute stage processes instructions in an out—of—order»manner. The

reorder stage forces the instructions to retire in an orderly fashion.

Instruction
Fetch

h 4
Instruction

Decode

h 4
Dispatch

\ 4
Execution

A
Completion

Y
Retirement

Figure 5. Generic Superscalar Pipeline Stages

3.2.1 Instruction Fetch

The objective of the instruction fetch stage is to fetch s instructions in every clock
cycle. The IF stage employs mechanisms to maximize the input bandwidth of the
pipeline to achieve this goal. A high input bandwidth is essential to achieve high
instructions per cycle throughput. The fetch bandwidth is affected due to:

1. misaligned instructions

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. control instructions that alter the sequential flow of a program

Misalignment has been addressed dynamically in the IBM RS/6000 architecture by
use of hardware logic that releases run-time control signals to the instruction cache to
fetch misaligned instructions in a single memory access. Other techniques to reduce
misalignment include static mechanisms employed at compiler time. Control
instruvctions like jump and branch instructions change the program flow. These are
dealt using branch prediction schemes that can accurately predict the next instruction
to be fetched and attempt to keep the instruction fetch buffer filled with instructions.
3.2.2 Instruction Decode

The instruction decode stage deals with generating the control signals necessary for
other modules to correctly execute an instruction. This includes separating individual
instructions, establishing the instruction operation and location of operands and
determining inter-instruction dependencies. For machines with a fixed instruction
length, the task of separating instructions is trivial. The number of addressing modes
and instruction types add to the complexity of the decoder. The decoder identifies
dependencies between instructions and extracts parallelism between them. It employs a
large number of comparators for determining dependencies. The decoder in CISC
machines requires a highly intricate design. If the instruction set consists of
instructions with variable lengths, then it is not possible to decode instructions in
parallel. To reduce the time taken for the decoding, some commercial processors like
the AMD K5™][24] use pre-decoders. The pre-decoders decode an instruction partially
and communicate control bits along with the instruction to the instruction decoder.
3.2.3 Dispatch

At the dispatch stage, the following tasks take place:

- register renaming

- allocation of reservation units

- allocation of reorder buffer entries

- forwarding of instructions to the next stage

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are several types of execution units present in a superscalar pipeline, for
processing different types of instructions. For example, integer operations are handled
by integer units, while floating point operation are handled by floating point units. The
dispatch stage is required to route an instruction to the appropriate execution unit.
Instructions that have been decoded, but await oné or more operands are placed in
reservation units. Reservation units are multi-entry instruction buffers that are specific
for each execution unit if implerhented as distributed reservation units, or a single
global multi-entry buffer if implemented as a centralized reservation unit. They keep
track of instructions ready to execute and forward them to the execution unit to be
executed once the required execution unit becomes available. Intel Pentium Pro [25]
uses a centralized reservation unit, while PowerPC 620 [26] uses a distributed
reservation unit.

3.2.4 Execute

The execute stage in a superscalar pipeline consists of one or more functional units
or different types. Functional units are specialized and numerous in order to be able to
execute instructions in parallel and in an efficient manner. The functional units that
are generally present in most superscalar implementations are load-store units, integer
units, branch units and floating point units. The number of these functional units is
decided by the mix of instruction types expected to run on the machine. As the numbér
of functional units is increased, there is an increase in hardware complexity due to
increase in forwarding paths and interconnections required for routing operands to the
appropriate execution unit.

3.2.5 Complete

In this stage results of executed instructions are written into desired registers. It is
also responsible for completing instructions in sequential order. This is necessary to
maintain the sequential nature of program execution. For this purpose, it uses a buffer
called Reorder Buffer. The reorder buffer maintains a circular queue which enables an

in-order retirement of instructions.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.6 Retirement
Memory updates generally require more latency. An instruction that involves writing
to memory is not complete until the memory operation is performed. The retirement

unit performs this action and completes such instructions.

3.3 Superscalar, Pipelined DLX implementation in VHDL

The VHDL implementation of superscalar version of DLX is a two-width five-stage
pipelined 32-bit architecture. It is capable of executing integer arithmetic and logical
operations, compare, shift, jump and branch instructions. It does not contain a floating
point unit. The architecture uses an Instruction Cache to store instructions loaded from

memory. Figure 6 shows the pipeline stages in this implementation.

Instruction Instruction Fetch
Cache

| Instr-A ‘ | Instr—BJ

Decode and

Register File Dispatch

A7 v v
Load/ Multiply
Store Integer /Divide

Unit Unit
L I]

Completion

Figure 6. Superscalar, Pipelined DLX Implementation in VHDL

Each stage can process two instructions simultaneously. Figure 7 shows the block

diagram of the integer unit. It is implemented as a 32-bit functional unit.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l 4 l 4 i A 4 ¢ D flip-flops
E'_ op’ EL>°92 EL op* Er—>oP2 E:— op” iir_ opz E_r_ op° EL op2
| S A A A A A
subtracter Comparator Opomations Shifter

| |
i"'l

Multiplexer

Select
operation

Figure 7. Block diagram of integer unit in VHDL implementation of superscalar DLX

The VHDL program takes a text file containing machine codes as input. It can be
simulated using Active-HDL 7.1. Benchmark programs are usually present as
assembly-level programs. Such benchmark programs for DLX cannot be directly used
as input to the VHDL program. Figure 8 shows the data flow diagram while using the
VHDL DLX processor emulator code. Benchmark programs with extension .asm are first
converted to a text file with extension .out using a DLX assembler program called
dixasm|27] available freely. The dlxasm assembler converts DLX instructions into
respective DLX machine codes. Each machine code is indexed by a 32-bit memory
address in which the instruction is expected to be stored in a true hardware system.

Format of the .asm and converted .out file is given in the Appendix. The .out file is used

as input to the simulator engine that contains the VHDL code.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.asm file

l

dixasm testbench

.out file
A A 4

Simulation
Engine

waveform

y
Waveform
Viewer

Figure 8. Dataflow diagram during simulation of VHDL implementation of proposed
concepts

The simulation engine produces waveforms for signals that propagate in the
processor. These are in the form of a Value Change Dump (.VCD) file and can be easily
viewed using a waveform viewer.

Table 2[1] lists the average of MIPS dynamic instruction mix present in five
SPECint2000 programs: gap, gcc, gzip, mcf, perl, and that present in five SPEC{p2000

programs: applu, art, equake, lucas, swim.

Table 2 Average of MIPS dynamic instruction mix in SPECint2000 and SPEC{p2000
benchmark suite

Instruction types Average % of integer | Average % of integer
operations in integer | operations in
benchmarks floating point

benchmarks

Load-store 38% 22%

Add,sub,compare,shift,and,or,xor | 45% 31%

Branch, conditional move, jump, | 16% 4%

call, return

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Majority of the instruction mix consists of integer operations of add, subtract,
compare, shift, and, or and exclusive-or. From these statistics, we can conclude that if ;
there exists only one integer unit, then more often than not, a centralized reservation
unit will be filled with waiting integer ALU instructions.

To cater to the high percentage of ALU instructions, it is necessary to include more
than one ALU units. The number of ALU instructions can vary wildly from one
benchmark suite to another. Therefore, unchecked addition of more ALU units can
result in idle units or idle other functional units in the execution stage. Hence, a flexible
scheme is proposed in this thesis that takes into account the observation that value of
operands of ALU operations is not always as large as that accommodated by the word
length of the machine. This scheme and all concepts associated with it are explained in

the following chapter.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

CONCEPTS AND IMPLEMENTATION

A pipelined processor is designed so as to impart maximum throughput. The design
decisions include determining the width of the pipeline (superscalar width), number of
functional resources, and nature and degree of depth of the pipeline. This thesis
concentrates on the execution stage of the pipeline. The execution stage consists of one
or more execution units of different types and reservation stations in a centralized or
distributed architecture. While designing the execution stage of a processor, it is
extremely important to determine the optimum number of execution units of each type.
This decision is typically based on applications served by the processor and the type of
tasks that are expected to run on it. Execution units are provided to service all types of
instructions present in the instruction set that need a computation unit. A generic
instruction set consists of four types of instructions: ALU, Branch, Load and Store. The
number of units allotted for each type of instruction has to be determined on the basis
of example programs that will run on the machine and the performance expected. The
number thus decided upon affects the space requirements, power usage and additional
logic necessary for smooth functioning of these units in parallel.

There are several reasons for the design proposed in this thesis. The usage of an
integer ALU unit was studied by running several benchmarks on a VHDL

implementation of the DLX superscalar processor. Table 3 shows the results obtained.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3 Usage of ALU units in benchmarks

Benchmark Program| # of | Time of |# of ALU|# of ALU| # of ALU | # of ALU | # of ALU
instn | simulatio| instns | instns instns instns instns
s n with 8- | with 16- | with 24- | with 32-
bit bit bit bit

ALUinstructionsPart 22 93.5 22 10 4 8 0
ALUinstructionsPart] 33 137.5 33 14 10 4 5
BranchJump 85.5 85.5 10 0 0] 3 7
BubbleSort 6477| 12191.5 2741 658 1 708 1374
DIx 18 61.5 9 0 0 5 4
LoadStore 30 119.5 S 1 1 2 1
MDUinstructions 39 198.5 27 8 9 7 4
PrimeNumber 1321] 6595.5 718 1 22 360 335

On analysis, it can be seen that less than 50% of the ALU instructions use the entire
data width of the ALU. Thus the usage of ALU is less than 100%. In any design, if
additional ALU units are added to cater to larger number of input ALU instructions,
then by projecting a similar usage statistic curve to these additional units, the overall
ALU usage will only decrease.

The use of reservation stations encourages parallelism among ready instructions,
waiting for resources. In an ALU intensive task, the number of such waiting
instructions justifies the use of high number of resources, while in non-ALU intensive
tasks, the usage of ALU units is minimal.

Also, in the older machines, floating point operations were performed using integer
units. As the use of floating point operands increased, dedicated floating point units
were introduced in the execution stage. In these machines, while executing a floating-
point intensive task, the integer units are idle for most period of execution time. If the
integer units had the capability to perform floating point operations on ready and
waiting FP instructions, then the throughput would increase.

It is clear that the usage of execution units would increase if there was a technique
to cater to different types of incoming instruction traffic. This thesis adds run-time
flexibility to hardware modules for the purpose of accommodating as many instructions

as possible in the execution unit. The exact extra hardware and logic required to do this

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is designed, implemented and evaluated in Section 4.3, while the general concepts
associated with the addition of flexibility are described below. These can be applied in

any form to any application.

4.1 Block Slicing

‘Block slicing’ refers to the process of splitting a block into multiple modules. The
concept of block slicing can be explained as follows:

A functional unit which is capable of performing an operation ¥ on two N-bit
operands usually consists of N interconnected copies of units that can perform the
operation W on two 1-bit operands. Let a logic circuit capable of performing a certain
operation on 1-bit operands be called a unit. When N units are interconnected so that
they can concurrently perform the operation on N-bit operands, they form an N-bit
module. In all implementations, N is known or is pre-set. Thus, the interconnection
network, I" between units that form the modules is static in nature. When operand’s of
varying lengths are encountered, the value of N is required to be dynamic. In order to
allow N to be a dynamic value determined at run-time, it is necessary to make the
interconnection network flexible.

T he network can be built to be completely flexible, but it is impractical to reprogram
it before execution of every instruction. Instead, a degree of flexibility is allotted to it.
For this, m units are connected together statically to form m-bit functional units. Let
each m-bit unit be referred to as a slice. Each slice is capable of operating on m-bit
operands. In a contemporary processor, if N-bit functional modules are present, then
there will be N/m slices in a sliced architecture. For example, a processor containing
one 64-bit ALU will now have four 16-bit slices (N=64 and m=16).

The interconnection network I'" I between slices is now completely flexible, so
that each slice can operate independently, or connect itself to more slices and operate

concurrently with them. When two m-bit slices operate independently, they are capable

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of executing two instructions simultaneously, provided the operands are m-bit. When
two slices connect together, they form a 2m-bit functional module and can operate on
one instruction with 2m-bit operands. Since there are N/m slices, when all slices are
connected to each other, they can operate on N-bit operands as before.

When a module is thus separated into smaller parts, it is said to be ‘sliced’. If a
module is sliced into enough m-bit slices in the execution stage of a processor, all ready
instructions requiring m-bit operands can be executed in parallel.

Based on the ready instructions encountered, slices are first allocated to each
instruction. Once slice-allocation is decided, there are two functions associated with the
process of allocation before the instructions are ready to be executed:

1. Directing the operands into the correct oéerand register slices, and

2. Directing the result correctly into an N-bit output register.

These functions can be performed by using decoders at the input and output of the
execution unit. A truth table for the decoder can be easily developed and implemented
as the internal circuitry for the decoder. Different execution units need different

decoding functions as can be seen from the architecture explained in the next section.

4.2 Sliced ALU Implementation

When a sliced ALU is used, the stages in which an instruction undergoes processing
are shown in Figure 9. The Resource Mapping is done by a unit called the ‘Resource
Mapper’. It is the only additional stage that gets added to the pipeline, but its latency is
equivalent to a few logic gates, and hence it need not be pipelined as a separate unit,
rather as a part of the dispatch pipeline stage. It is explained in detail in the next
section.
4.2.1 Resource Mapper

This unit determines the number of slices required by an incoming instruction and
allocates slices for all incoming instructions. For determining the number of slices

required by an instruction, the resource mapper performs a function called “zero-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

checking’. This function determines the length of significant bits in both operands and
returns the maximum of these two lengths as the number of slices required by the
instruction. This can be achieved simply by using AND gates. The zero-checking
function is slightly different for the shift operation, for which not only the number of
significant bits of first operand are required, but also the value of the second operand.
Using these values and a simple logic circuit, the number of units required by a shift
instruction can be determined.

With each reservation ’unit is associated a register called the Resource Allocation
Vector (RAV). The Resource Allocation Vector keeps track of slices allotted to the
instruction stored in a reservation unit. In addition, the Resource Mapper uses a global

register called the Resource Vector (RV). If there are m slices in the execution unit, then

Instruction
Fetch

Instruction
Decode

Dispatch

Resource
Mapping

A
Execution

Retirement

Figure 9. Processing stages for using a sliced ALU implementation

the RAV and RV are m-bit. Each bit in the RAV and RV indicate a status for slices of the
execution unit as allocated/not-allocated. When a slice is allotted to an instruction, the

bit in the respective location of the slice is set to 1. When an instruction finishes using

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the slice, the bit is reset to 0. In absence of slicing, a similar process is followed by a
reservation unit to issue insfructions to an execution unit. The reservation unit checks
the busy/available bit of a functional unit and issues an instruction to it if it is free.
The Resource Mapper also issues an instruction to one or more slices of functional

units and sets one or more bits at a time in the RAV of the instruction and global RV

respectively.
EL>opA1 El>opA2 El>upB1 El>np52
A Yy
Decoder Decoder
v
\ 4 A 4 Y Y A 4 y
-—> op1 El> op2 E_n> op1 El> op2 En_> opt El>op2 El‘>op1 El>op2
Y Y y Y Y Y Y
Adder/ Logical : .
Comparator g Shifter
Subtracter Operations
Y A \ 4 Y A 4 A A
Decoder Decoder Decoder Decoder Decoder Decoder Decoder Decoder
A Y
Compare Compare
logic logic
A\ A 4
A\ y Y A 4
Result-A Result-B

Figure 10. Block diagram of a sliced ALU

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the execution units are all known to finish the execution of an instruction in one
clock cycle, then a global Resource Vector can be assumed to be an all-zero number at
the beginning of every clock cycle, and is redundant. In this case, allocation is done by
examining all ready instructions waiting for a resource and determining the number of
slices required by each. In the situation where th¢ ready instructions need more slices
than available, the instructions can be prioritized based on instruction count and other
instructions can be stalled. De-allocation is not necessary here. The Resource Vector
will only be needed if some instructions take longer than a clock cycle to finish. Though
unused in this thesis work, the use of Resource Vector has been proposed in view of
future work, one instance of which is when integer slices are rearranged into a floating

point pipeline, with a latency of more than one clock cycle.

ALU
Function
A

Generate Enable

1y

Signals
ALU
Function
B
Resource
Allocation
Vector
A B Y
L]
Operands Load operands
Al A2 according to RAVs
—>
Operands /
B1, B2

Compute Result

v

Append Zeros

v

Forward output

v

Figure 11. Steps of operation of a sliced ALU

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 10 shows the block diagram of a sliced ALU, while the flowchart in Figure 11
shows the steps in which a sliced ALU functions. The Enable signals in Figure 10 are
fed to D-flip-flops so that only the appropriate part of the ALU functions, while the other

parts retain their values. This leads to lower power consumption.

4.3 Architecture of integer execution units

The architecture of a sliced integer units that are used to execute different types of
integer instructions is proposed below. The integer unit éomprises of an
adder/subtracter unit, a shifter, a logical unit and a comparison unit.
4.3.1 Adder/Subtracter Unit

Figure 12 shows the ‘design of an adder/subtracter module, built using two slices of
4-bit adder/subtracter. The inputs required for the 4-bit adder subtracter are two 4-bit
operands and a 1-bit operation add/sub (‘0’ for addition and ‘1’ for subtraction). The
adder/subtracter module is designed by interconnecting signals between the two slices
and using multiplexers to enable it to operate at variable data length. It is capable of
performing an addition and/or subtraction operation on the set of operands {X3...X0}
and {X7..X4}. Once the operands are loaded into these registers, control signals
add/subl and add/sub2 are given to the module. The control input sel indicates
whether the two slices are to perform independently or concurrently. Multiplexer MUX1
determines the propagation of add/sub signal to the second slice, while Multiplexer
MUX2 controls the cascading of carry out signal from the unit U3 to unit U4.
Multiplexer-3 generates the overflow exception bits vl and v2. After the output is
produced, it is sign-extended in order to be passed on to the result register and
subsequently stored.

| When only one slice (say, slice-0) is to be used, the signals {S4..S7}, v2 and Cout7

are ignored, and vice-versa. When both slices are used for one operation, the

appropriate signals are routed to the output.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addssub-*

adaisub-2

sel

mux
X7 Xg Xs X4 X3 X2 X- Xo
I I I I r I i &
LD L R 1= RED L L L
? ? ? ? i ? ? ? ?
Y X Cin Y X Cin Y X Cin Y X Cin Y X Cin Y X Cin Y X Cin Y X Cin
Cout S; Cout Sg Cout Ss Cout 84 Cout S3 Cout S; Cout S Cout S§q

N

-—
-—

sel
mux

v

Figure 12. Two interconnected 4-bit adder/ subtracter units forming one 2-slice
adder/subtracter

This design can be extended to include numerous slices of the adder/subtracter
unit. Figure 13 shows the interconnections of four adder/subtracter slices, each

capable of operating on two 8-bit operands, resulting in a 32-bit sliced ALU. The block

diagram of this flexible adder/subtracter unit is shown in Figure 14.

opt op2 add/sub3 op1 op2 add/sub2 Op1[15:8] Op2[15:8] add/sub1 Op1[7:0} Op2{7:0] add/subC
s sel-3 (sel-2 3 sel-1 ® 8 sel-0
A (]) (4 [
% A % % 4 % A
8 8 8 0 8
As B: A B, Ay B, Ac Bc
Cira Cicz i 1 Cire
SLICE-3 SLICE-2 SLICE-1 SLICE-0
Couw SZ Couli S’i Cwn 31 Comc SC
8 8

8

Figure 13. Architecture of flexible adder/subtracter unit

As explained before, there are two functions associated with slice-allocation:

1. Directing the operands into the correct operand register slices, and

2. Directing the result correctly into an N-bit output register.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cout, Vo €—— le——— add/sub 1
Couts Vi *— Flexible Adder/Subtracter [¢——— addisub2
Cow, V2 —— Unit le—— addisub 3
Cout, V3 +——— je——— addisub4

Ry

S: S S S

Figure 14. Block diagram of a flexible adder/subtracter unit

The input operands are initially present in N-bit operand registers. Let an ALU
instruction with two input operand registers containing 8-bit values be ready for
execution and be allotted Slice-1 in Figure X. The operands have to be loaded at
locations [15:8] of registers opl and op2. Similarly, the 8-bit result generated by Slice-1

has to be directed to locations [7:0] of output register.

Table 4 Truth Table for decoder that directs the output of four slices into result register

RAV-3 RAV-2 RAV-1 RAV-0 Res-3 Res-2 Res-1 Res-0
0 0 0 0 0 0 0 o]
0 0 0 1 MSB-0 MSB-0 MSB-0 SO
0 0 1 0 MSB-1 MSB-1 MSB-1 S1
0 0 1 1 MSB-1 MSB-1 S1 SO
0 1 0 0 MSB-2 MSB-2 MSB-2 S2
0 1 0 1 X X X X
0 1 1 0 MSB-2 MSB-2 S2 S1
0 1 1 1 MSB-2 52 S1 SO
1 0 0 0 MSB-3 MSB-3 MSB-3 S3
1 0 0 1 X X X X
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 MSB-3 MSB-3 S3 S2
1 1 0 1 X X X X
1 1 1 0 MSB-3 S3 S2 S1
1 1 1 1 S3 52 S1 S0

The direction of input to appropriate input registers and of the output to a result

register is done by the use of decoders. The truth table for a decoder that performs this

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function is shown in Table 4. The RAV is the individual Resource Allocation Vector set
for an instruction. There are two decoders, one for each instruction, which are input the
RAVs for two instructions and outputs respective sign-extended result.

The adder/subtracter units along with input and output decoders constitute the
complete flexible adder/subtracter. Area analysis for this module is made in section
4.4,

4.3.2 Compare Unit

The compare operation is required to be performed on both singed and unsigned
operands, and requires a slightly different treatment for each. Figure 15 shows the
block diagram of a comparator that can perform signed comparison or unsigned

comparison based on a 1-bit control signal (O for unsigned, 1 for signed).

- opA opB

Signed/
unsigned

L

Comparator

@ o m
AT
< < <«

Figure 15. Block diagram of a comparator

This comparator can be designed as a minimal-delay circuitry, or it can be designed
with minimal area constraint, depending upon the constraints imposed by the system.
Figure 16 shows the use of such comparison units in a sliced comparator design.

Once sliced comparison is performed, the final result of compare operation is
determined by a separate logic circuitry that takes into account the respective outputs
of each compare slice. Therefore, the control signals for compare operations listed in
Table 1 are made available to this unit. The decoder generates an output for the
compare instruction. The logic equations that serve some of these functions are shown

below.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aeq < Aeq0O and Aeql and Aeq2 and Aeq3

Aneq < not Aeq

Agt < Agt3 or (Aeq3 and Agt2) or (Aeq3 and Aeq2 and Agtl) or (Aeq3 and Aeq2 and

Aeql and AgtO)
Alt < Aeq nor Agt

Alteq < not Agt

Agteq < Aeq or Agt
opA opB opA opB opA opB opA7:0] OPB
l l Signed/ l l Signed! l l Signed! l 1 Signed:
jne{: jnﬂ :’\j\m jnec
SLICE-3 SLICE-2 SLICE-1 SLICE-0

A<B «—]
A=B <«—]
A>B €«—
A<B <«—
A=B <€—]
A>B «—
A<B «—]
A=B €«——
A>B «—

A

A<B «—
B «—
A>B «—

Figure 16. Four 8-bit compare slices for signed or unsigned comparison

Resource allocation vector for each instruction is also input to this unit, and
equality is tested based on the allocation. For example, if the RAV for instruction A is
0011, the values returned by Aeq3 and Aeq2 are ‘1’, while the values for Agt3 and Agt2
are ‘0’. Thus, the decoding functions that steer the output of sliced comparators into
correct registers are different for equality and greater-than operation. The final bit
output of the compare unit is determined by the equation for the function enabled by
instruction decoder for that instruction. This is then concatenated with (N-1) leading

zeros and returned as an output of the comparator unit.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Area analysis

This sliced ALU design requires additional hardware for decoders, multiplexers and
added signal.s. For the implementation of 2:1 multiplexers used extensively in the
design, transmission gates (pass transistor logic} can be used. These are designed using
an NMOS and a PMOS transistor in a configuration that result in no static power

consumption. Figure 17 shows a multiplexer implemented using pass transistor logic.

S Voo
1
: |
M,
M,
_ B
a -

S

Figure 17. Multiplexer implemented using pass-transistor logic

The pass transistors add three NMOS and three PMOS gates to the hardware. To
estimate the hardware used for decoders that perform direction of input and output
signals into correct register slices, the average cost of decoders was computed in terms
of logic gate equivalents. Table 5 lists the additional hardware used by various units in
a sliced ALU.

On the whole, additional hardware introduced for implementation of slicing is
minimal.

On performing a delay analysis, the maximum delay path of decoders is found to be
equivalent to three gate propagation delays. Thus each decoder adds minimal delay to

the execution datapath.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5 Additional hardware used for slicing of ALU

2:1 MUX| 4:1 MUX | Logic Gates

Adder 4
Adder Result Decoder 23
Comparator
Comparator Result Decoder 8 44
Shifter 14
Logical Operations
Shifter and Logical Result Decode 23
RAV Decoder 16
Load Operand Decoder 16

Total 26 16 106

4.5 Implementation of DLX Sliced Processor using VHDL

In order to evaluate the block slicing concept in a processor, it was implemented in
a DLX pipeline using VHDL (VHSIC Hardware Description Language).

The first two stages of the DLX pipeline, the fetch and decode stage, are similar to
those described in Section 3.2. The dispatch and execute stages differ from the original
implementation, while the reorder and retirement units stay the same. The DLX
processor has been implemented as a pipelined, out-of-order, superscalar processor of
width two. Thus, there are at most two instructions in each stage of the pipeline at any
given time, except the reorder unit.

Once valid operands are fetched in the dispatch stage and an instruction is ready to
begin execution, the number of units required for the instruction is computed from the
value of the operands. This is done by the simple zero-checking unit described in
Section 4.2.1, which checks the number of leading zeros of operands. It gives the length’
of the significant digits of operands and hence the number of units required. For
shifting operation, the number of units is computed by also considering the value of the
second operand.

Once the zero checking is done, the Resource Mapper allocates execution unit slices
to an instruction. In addition, the resource mapper also sets the control signals that

slice an execution unit appropriately. The resource vector is a bit vector that indicates

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the slices allocated to an instruction. For example, if instruction A is allocated slice
number 1, then its 4-bit resource vector will be 0001. For instruction B with allocated
slice numbers 2 and 3, the resource vector is 0110. Thus, the global resource vector
during that clock cycle is 0111, indicating that only three slices of the execution units
will operate, and the fourth slice will consume idle power.

Data is loaded into the operand registers at the rising edge of the clock. Due to
block slicing, the resource mapping control signals slice the execution unit and the ALU
gives at most two outputs (ALU Output A and ALU Output B) by simultaneous
execution of two instructions. These results are stored into their respective reorder
buffer entries, and forwarded if necessary for the next clock cycle.

The fetch stage is set so as to fetch the next set of instructions when an instruction
is issued to an execution unit. Thus, when instruction-level parallelism eXists in a
program, the fetch stage is also speeded up and the total time of execution of a program
decreases. In the absence of any additional instruction-level parallelism, the time of
execution of the program remains the same as that in a non-sliced processor.

Chapter 5 presents the simulation results of benchmark programs on the VHDL

implementations of the DLX machines with non-sliced and sliced ALU unit respectively.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

RESULTS

The objective of slicing is to increase thel utilization and number of functional units
dynamically. Increasing number of functional units leads to an increase in pafallelism
of execution which contributes to speed-up.

The performance criteria used for evaluating the concept of slicing are speed-up,
throughput, utilization and power. These criteria are widely used for comparison of
different architectures. To evaluate the performance of the block slicing concept with
respect to theée factors, a hardware code for the DLX processor was developed using
VHDL and tested with benchmark programs. Benchmark programé were obtained from
various sources from internet resources. These were assembly level programs written
for the DLX machine. .asm files containing benchmark programs were converted to .out
files using the package dixasm [27] and then run on the VHDL code of the sliced
processor. Instead of developing the code from scratch, the freely available VHDL
package dlx-vhdl[28] was used as base code and it was suitably modified for the
proposed architecture. Section 4.5 describes the VHDL processor code.

Throughput is given by number of instructions completed per unit time. It can also
be related to the number “Instructions Per Cycle (IPC)”, where the unit of time is a clock
cycle. Considering that a new instruction is fetched every clock cycle, the number of
fetch cycles indicates the input stream to the architecture and the number of
instructions committed per fetch cycle indicates the output stream of the processor. The

throughput is then given as:

IPC = Total Number of instructions Committed 5.1)
Total Number of Fetch Cycles

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The speed-up is computed with respect to the DLX architecture without the

processor modifications for block slicing. Thus, speed-up is given as:

Time of execution on non — sliced DLX architecture

Speed —up = (5.2)

Time of execution on sliced DLX architecture

Resource utilization at the bit-level is given by the % of resource used during time of
execution. Resource utilization can be given in terms of the ratio of number of times the
resource slices were completely used to the total number of times the resource was
accessed.

Power consumed during execution of two sequential operations is evaluated using
the Xilinx Xpower tool that is included with Xilinx ISE. The power-delay product is then

used to compare the non-sliced and the sliced architectures.
5.1 Time of Execution and Speed-Up
The above mentioned criteria were evaluated on ten benchmark programs and are

presented below.

Table 6 Results of evaluation of Time of Execution and Speed-up

Benchmark Program|Time of execution (us)|Speed-up| Gain
: non-sliced sliced %

ALUinstrutions-1 93.5 47.5 1.968] 49.198
ALUinstrutions-2 137.5 95.5 1.440(30.545
DLX 61.5 58.5 1.051 4.878
LoadStore 119.5 119.5 1.000 0.000
PrimeNumber 6595.5 6471.5 1.019 1.880
supscal 63.5 39.5 1.608| 37.795
MDUinstructions 198.5 191.5 1.037 3.526
BranchJump 85.5 67.5 1.267] 21.053
NtoK 76.5 62.5 1.224} 18.301

Table 6 presents the speed-up obtained for the benchmark programs by listing time

of execution of each benchmark on a non-sliced and sliced processor and using eqn.2.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Efficiency

Table 7 presents the efficiency of use of ALU slices. In a non-sliced implementation,

each time the ALU is accessed, both potential slices are accessed. In a sliced ALU, each

time two instructions are executed in parallel, they are assumed to use two slices each,

resulting in entire length of ALU being used.

Let,

NSALU =

SALU =

Number of times ALU is accessed in sliced implementation

Number of times ALU is accessed in non - sliced implementation

NS ,;u-sie = Number of times potential ALU slices are accessed in non - sliced

implementation

S ALU-Slice —

NSaru-siice (Columnb5) is given as:

Also, Sy sice =2%S 41y

NSaru-stice=NSaru (Column?2) x 2

Table 7 Efficiency

Number of ALU slices accessed in sliced implementation

Number of times ALU instructions executed in PARALLEL in sliced implementation
Total Number of ALU instructions

Benchmark Program|# of ALU accesses|# of parallell # of ALU slices accessed| # of ALU |Efficiency Gain in

NSaru Saww | executions| NSapu-siice Saru.shce [NStructions eg Efficiency
ALUinstrutions-1 22 13 9 44 26 22 0.846 69.23%
ALUinstrutions-2 33 31 2 66 62 33 0.532 6.45%
DLX 9 7 2 18 14 9 0.643 28.57%
LoadStore 5 5 0 10 10 5 0.500 0.00%
PrimeNumber 718 681 37 1436 1362 718 0.527 5.43%
supscal 14 8 6 28 16 14 0.875 75.00%
MDUinstructions 27 26 1 54 52 27 0.519 3.85%
BranchJump 21 14 7 42 28 21 0.750 50.00%
NtoK 16 15 1 32 30 16 0.533 6.67%
Thus, Efficiency ¢ is given by:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n
NSALUﬁSYice

Ens =

n
and g =

SALU—Slice
5.3 Throughput
Table 8 shows the throughput of both implementations in terms of instructions per

fetch cycle.

Table 8 Throughput in terms of Instruction Per Fetch Cycle

Benchmark Program| # of fetch cycles [# of instructions IPfC Gain in
mnon-sliced sliced non-sliced sliced [IPfC (%)
ALUinstrutions-1 23 14 22 0.957 1.571| 64.286
ALUinstrutions-2 34 32 33 0.971 1.031| 6.250
DLX 27 25 18 0.667 0.720| 8.000
LoadStore 30 30 30 1.000 1.000| 0.000
PrimeNumber 1693 1660 1321 0.780 0.796(1.988
supscal 17 11 16 0.941 1.455]| 54.545
MDUinstructions 71 70 39 0.549 0.557] 1.429
Branchdump 34 29 28 0.824 0.966] 17.241
NtoK 34 33 24 0.706 0.727f 3.030

5.4 Power-Delay Product

For estimation of power consumption, the Xilinx XPower tool was used with
synthesizable designs of sliced ALU and non-sliced ALU. The ALU is capable of
performing addition/subtraction, shift, compare and logical operations. Every
combination of two different operations was selected and simulated with worst case 16-
bit operands. The operations of addition and comparison were found to consume most
power. The ALU designs were then analyzed for power consumption during execution of
the operations of addition and comparison of 16-bit operands sequentially on a non-
sliced ALU and parallelly on a sliced ALU.

Table 9 shows the power-delay product during this analysis.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9 Power Delay Product for execution of two worst-case operations for two 16-bit
worst-case operands

Power (mW}|Delay (ns)|Power-Delay Product

Non-Sliced ALU| 431 20 8620

Sliced ALU 604 10 6040

Figure 18 shows a snapshot of waveforms simulated on DLX processor for the ALU
integer benchmark ALUinstructions-Part]l, with the fetch registers, commit signals and
ALU issue signals shown. Figure 5.1(a} shows the simulation run for a DLX processor
with non-sliced ALU and figure 5.1(b) shows the simulation run for the DLX processor

with sliced ALU.

Name

IncomingClock

IE_instrAddrRegA

IF_instrAddrRegB

CU:CommitinstrA

CU_CommitinstrB

DP._ExecuteOrissuelnstrA

DP. ExecuteOrlssueinstB

DP_lssueAluA I [I ll H H | I

DP IgsueAluB

ALl Issue ’]]] [H H H I]I |||
Figure 18 (a)

Name

IncomingClock

IF_InstrAddrRegA 00000060

IF- InstraddrRegB 00000064

CU_Commilinsirh _ JLJUUTE L e T
GU_Commitinstrd [] N LTI .11
[ALU_A Issue SN O O I O S O B
ALU_B: Issue H H H_ﬂ_.ﬂ_ﬂ__ﬂ ﬂ_ﬂ

Figure 18(b)

Figure 18 Waveforms of simulations for ALUinstructions-Part1.out for DLX processor
with (a) non-sliced ALU and (b) sliced ALU

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IF_InstrAddrRegA and IF_InstrAddrRegB are address registers used by Instruction
Fetch stage. Each contains an address of an instruction to be fetched. Whenever the
contents of these registers change, the instructions present at the addresses stored by
the registers are fetched by the Fetch unit. Thus, at most two instructions (Instruction
A and Instruction B) are fetched at a fime. If, in a previous clock cycle, only one
instruction (Instruction A) is able to execute, then contents of IF_InstrAddrRegB are
transferred to IF_InstrAddrRegA, and IF_InstrAddrRegB fetches a new instruction. Both
instructions fetched are then decoded in the Decode Unit. The instructions are ready to
execute when all their operands are fetched. Ready instructions are issued to execution
units when units are available. The issue to ALU unit is signaled by ALU_Issue signal. If
instruction A is to be issued, then DP_IssueAluA is high, and if instruction B is to be
issued, then DP_IssueAluB is high. Both signals cannot be high simultaneously for a
processor with a non-sliced ALU. However, if the nature of operands allows it, both
signals will be high simultaneously for a processor with a sliced ALU. After instructions
are executed, their results are stored in destination registers and the instruction is
marked for retirement using the commit signals CU_CommitlnstrA and
CU_CommitInstrB. The two-width pipeline is capable of committing at most two
instructions at a time.

The fetch address registers are loaded after an instruction is marked for issue by
the dispatch unit. Thus, an instruction is fetched, decoded nd dispatched in the From
Figure 18(b), it can be seen that there are nine instances when both ALU_A_Issue and
ALU_B_Issue were high, which indicates that during nine cycles, the ALU instructions
present in reservation units were executed simultaneously.

CU_CommitInstrA and CU_CommitinstrB committed two instructions at a time in nine
instances in the sliced ALU processor, while it committed at most one instruction at a
time in a non-sliced ALU processor.

The simulation waveforms show that slicing extracts instruction parallelism present

in the program, and reduces instruction stalls that occur due to resource bottlenecks.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The gain percentages presented in last columns of all result tables give an indication of

unresolved parallelism present in programs that was only extracted after slicing.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK
6.1 Conclusions

The concept of resource slicing was implemented in the DLX processor using VHDL.
Sliced resources process greater number of instructions without the need to add extra
hardware resources. The sliced resource implementation was evaluated with respect to
speed-up, throughput, power and utilization of the integer unit.

From the results thus obtained, it can be observed that by addition of one low-
latency stage, the Resource Mapping and minimal hardware, it is possible to obtain a
speed-up and higher efficiency of execution. The number of functional units required to
be pipelined in a superscalar pipeline can also be reduced if the task running on the
processor allows it. For a generic processor that runs a variety of different applications,
each requiring different number of functional units, this can provide a flexible scheme
for efficient execution.

The Intel MMX architecture was also developed with the purpose of parallelizing
execution of instructions on data with smaller width than word size of the processor.
The sliced architecture, if evaluated with MMX-type data will also perform similarly.
Unlike the MMX, the sliced architecture will not require additional MMX-specific

instructions and will dynamically slice itself into multiple modules to process the data.

6.2 Future Work
It is necessary to evaluate the performance enhancement obtained at varying

superscalar widths on more benchmarks than used here. This will help in determining

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optimél number of slices required for different applications. This number can then
be used to design sliced processors for most efficiency.

Block slicing is a general concept that can be applied in a variety of forms to
modules other than functional units. It may be applied to registers and caches. It is
required to design a suitable hardware to address, identify and access sliced data when
stored in sliced registers and caches. A complete sliced processor will be obtained once

work is performed for slicing these modules.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1]

(2]

[3]

(4]

[S]

(6]

[7]

[8]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

REFERENCES

John L. Hennessy and David A. Patterson, “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann Publishers, Third Edition, 2002.

David J. Lilja, “Measuring Computer Performance, A Practitioner’s guide”,
Cambridge University Press, 2000.

Luigi Dadda, “The Evolution of Computer Architectures”, IEEE CompEuro 1991.

Charles Moore and CH.TING “Minimal Instruction Set Computer”, Fourth
Dimensions, January 1995.

Anthony Fong, “HISC: A High Level Instruction Set Computer”, 7th European
Simulation Symposium, 406-410, Society for Computer Simulation, October 95.

J-P LeBouquin, IBM Microelectronics ZISC, “Zero Instruction Set Computer,
Preliminary Information”, WCNN, San Diego, CA 1994.

Wayne Wolf and Jorgen Staunstrup, “Hardware/Software co-design Principles and
Practice”, Kluwer Academic Publishers, 1997.

M.H. Lipasti and J.P. Shen, “Superspeculative Microarchitecture for Beyond AD
20007, IEEE Computer, September 1997.

J.E. Smith and S. Vajapeyam, “Trace processors: Moving to Fourth-- Generation
Microarchitectures”, IEEE Computer, September 1997.

G. S. Sohi, S. Breach, and S. Vijaykumar, “Multiscalar processors”, in Proceedings
of the 22nd Annual International Symposium on Computer Architecture, June
1995.

S. Kaxiras, D.C. Burger, J.R. Goodman. “DataScalar: A Memory-Centric Approach
to Computing”, Journal of System Architecture (JSA}, special issue on
Microprocessor Architecture, June 1999.

Burger D., Goodman J., “Billion-transistor architectures”, Computer, September
1997.

Doug Burger, James R. Goodman, “Billion-Transistor Architectures: There and
Back Again”, IEEE Computer, 2004.

Yale N Patt, Sanjay J Patel, Marius Evers, Daniel H. Friendly, Jared Stark, “One
Billion Transistors, One Uniprocessor, One Chip”, IEEE Micro, pp. 51-57,
September 1997. ‘

Michael J Wirthlin, Brad L. Hutchings, “A Dynamic Instruction Set Computer”,
IEEE Symposium on FPGAs for Custom Computing Machines, 1995.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16]

[17]

(18]

[19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

Alessandro De Gloria, “VISA: A Variable Instruction Set Architecture”, ACM
SIGARCH Computer Architecture News, Vol. 18, Issue 2, 1990

Chandra Shekhar, Raj Singh, A.S. Mandal, S.C.Bose, Ravi Saini, Pramod Tanwar,
“Application Specific Instruction Set Processors: Redefining Hardware-Software
Boundary”, Proceedings of the 17t International Conference on VLSI Design,
IEEE.

Chris Weaver, Rajeev Krishna, Lisa Wu, and Todd Austin , “Application Specific
Architectures: A Recipe for Fast, Flexible and Power Efficient Designs”,
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’01), November 2001.

P.H.W. Leong, P.K. Tsang and T.K. Lee, “A FPGA Based Forth Microprocessor”,
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), Napa Valley, California USA, pp. 254-255, 1998

Shay Ping Seng, Wayne Luk, Peter Y.K. Cheung, “Flexible Instruction Processors™
CASES 2000, November 17-19,2000, San Jose, California.

Frederik Vermeulen, Francky Catthoor, Lode Nachtergaele, Diederik Verkest,
Hugo De Man, “Power-Efficient Flexible Processor Architecture for Embedded
Applications”, IEEE Transactions on VLSI Systems, Vol 11, No.3, June 2003.

Lecture slides by Minyi Guo, The University of Aizu, available online at the URL:
http:/ /www.u-aizu.ac.jp/~minyi/course/para2001.pdf

Internet Resource: abrak.doc

AMD® K5m™ processor, at URL: http:/ /www.amd.com /us-
en/assets/content_type/white_papers_and_tech_docs/20092.pdf

Intel® Pentium® Pro page at www.intel.com
D. Levitan, T. Thomas, and P. Tu., “The powerpc 620 microprocessor: A high
performance superscalar risc microprocessor”, Proceedings of the 40th IEEE

Computer Society International Conference, pg. 285-291, 1995.

Compiler for DLX instruction set, dixasm package available at URL:
http:/ /www.ashenden.com.au/designers-guide /DG-DLX-material.html

VHDL-DLX package available freely at URL: http://www.rs.e-technik.tu-
darmstadt.de /TUD/res/dlxdocu/SuperscalarDLX.html

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.u-aizu.ac.jp/~minyi/course/para2001.pdf
http://www.amd.com/us-
http://www.intel.com
http://www.ashenden.com.au/designers-guide/DG-DLX-material.html
http://www.rs.e-technik.tu-

VITA

Graduate College
University of Nevada, Las Vegas

Shruti Ravikant Patil

Home Address:
969 East Flamingo Road Apt#101
Las Vegas, Nevada 89119

Degree:
Bachelor of Engineé¢ring, Computer Engineering, 2004
University of Mumbai

Special Honors and Awards:
Member, Tau Beta Pi, Nevada Chapter, Initiated in Fall 2005
Recipient of the National Talent Search Scholarship(India}, 1998
Rank 6, Regional Mathematics Olympiad, 1998, Mumbai
Recipient of Bombay Talent Search Award, 1997

Publications:
“HAUNT-24: Hierarchical, Application Confined Unique Naming Technique”, IEEE
Conference Proceedings of Fifth International Conference on Intelligent Systems
Design and Applications (ISDA 2005), 8-10 Sept. 2005, Poland.

“Simultaneous Column Minimization-Encoding approach for Serial Decomposition”,
IEEE Proceedings of International Conference on Computational Intelligence and
Multimedia Applications Conference (ICCIMA), August 2005, Las Vegas, NV, USA

“Branch Prediction by Checking Loop Terminal Conditions”, Information Systems:
New Generations (ISNG) Conference Proceedings, April 2005, Las Vegas, NV, USA

“Neutron Detector Characteristics in Dead Time Experiments”, presented at 2005
American Nuclear Society Student Conference, April 15, 2005. Awarded the second
prize as Best Student Paper Presentation.

Thesis Title: Maximizing Resource Utilization By Slicing Of Superscalar Architecture
Thesis Examination Committee:

Chairperson, Dr. Venkatesan Muthukumar, Ph. D.

Committee Member, Dr. Emma Regentova, Ph. D.

Committee Member, Dr. Shahram Latifi, Ph. D.
Graduate Faculty Representative, Dr. Ajoy Datta, Ph. D.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Maximizing resource utilization by slicing of superscalar architecture
	Repository Citation

	tmp.1534462568.pdf.phfHK

