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ABSTRACT

Self-Stabilizing Cache P lacem ents in M A N E T s

by

Narendra Ganguru

Dr. Ajoy K. D atta, Examination Committee Chair 
School of Computer Science 

University of Nevada, Las Vegas

Dr. Maria Gradinariu, Examination Committee Co-Chair 
IRISA, Campus de Beaulieu, Prance

In ad-hoc networks mobile nodes communicate with each other using other nodes in the 

network as routers. Each node acts as a router, forwarding data packets for other nodes. 

There are many dynamic routing protocols to find routes between the communicating nodes. 

The bandwidth and power are limited in MANETs. Although routing is im portant in 

MANETs, the final task of MANETs is D ata accessing. So, there is need to implement 

new techniques apart from routing for data access to save bandwidth and power. If some of 

the nodes in MANET is provided some of the services from internet Service Provider, then 

the other nodes also want to access these services. Then, there is a need for caching these 

services to reduce bandwidth and power.

Caching the internet based services in MANETs is an important technique to reduce 

bandwidth, energy consumption and latency. If some of the nodes store the object data and 

code and acts as a cache proxies, then nodes near the cache proxies can get the requested 

data from the cache proxy rather than from a far away server node saving bandwidth and

in
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access latency.

In this thesis research, we design a distributed self- stabilizing algorithm to place the 

caches in MANETs. If a node requests the service, it will search for the service and if that 

service is located in a node that is at a distance greater than D, then the requested node 

caches the data. In our algorithm, nodes that cache the same data will be at a distance 

greater than  D. We also describe an algorithm to have the shortest path from the source of 

the data object to all the nodes tha t cache the same data in the network. This path is used 

to update the DATA that is cached in the nodes. We propose the algorithm for a single 

service or DATA. We can implement this algorithm in parallel for all the services available 

in the MANET.

A self-stabilizing system has the ability to automatically recover to normal behavior 

in case of transient faults without a centralized control. The proposed algorithm does not 

require any initialization, that is, starting from an arbitrary state, it is guaranteed to satisfy 

its specification in finite steps. The protocol can handle various types of faults.

IV
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CHAPTER 1 

INTRODUCTION

In this thesis we present a self stabilizing solution of caching the services in the MANETs.

MANETs are dynamically created and maintained by the individual nodes comprising 

the network (for example see Figure 1.1). They do not require a pre-existing architecture for 

communication purposes and do not rely on any type of wired infra structure [12]. They rely 

on the wireless transm itters of the participating devices. That is, each devices's transm itter 

has a limited range. However, if some devices are willing to serve as ad-hoc routers, and 

forward other devices's messages, it is possible to obtain transitive connectivity or in other 

words a network.

There is an increasing range of applications and distribution of wireless communication 

technologies, cellular phones and personal Digital Assistants (PDA) are becoming more com­

mon among users. Ad hoc networks emerge when these mobile systems are connected in 

infrastructure less environment. This means tha t these networks do not utilize any station­

ary infrastructure, instead they are restricted to use services provided by the participating 

units. Service providers would be benefited from integrating web services with these kind 

of networks.

Web services are a set of standards and a programming method for sharing data be­

tween software applications. In other words, web services is a standardized way to distribute
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services on the Internet. Web services simplifies for service providers due to their interop­

erability and extensibility. Programs providing simple services can interact with each other 

in order to deliver sophisticated added value services.

When considering network based services offered to mobile clients, it is likely that mul­

tiple clients in same MANET or even the same region of a MANET, will try  to access the 

same service concurrently. This suggests that caching such services within the MANET 

would be beneficial. Caching Internet based services is a potentially Internet based applica­

tion for MANETs, as it can improve mobile users perceived quality of service, reduce their 

energy consumption and lower their air time costs.

1.1 Contributions

We use the concept of self stabilization [1, 4, 5, 8, 6] to design a self stabilizing algorithm 

to place the cache of a service (data object) in an ad hoc network. A self-stabilizing 

system has the ability to automatically recover to normal behavior in case of transient 

faults. Regardless of the starting system state, a set of nodes cache the data object and 

these nodes are apart by at most D. Being self stabilizing our algorithm can deal with the 

topology changes. We also describe a self stabilizing algorithm to construct a shortest path 

from source of DATA to all the nodes tha t cache the DATA in the network, which will serve 

to update the caches in the network when the DATA in the source is changed.

1.2 Outline of the Thesis

In chapter 2, we decribe different search techniques for context based routing in the net- 

work.These services will be used to locate the DATA in the network. In chapters, we decribe 

the distributed model of our system and concept of self stabilization. Chapter4 includes
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the Cache Placement Algorithm. In chapter 4, we also describe the D ata structures,system 

model. Cache placement and checking Modules. Error corrections are described in section

4.6 and proof of correctness is described in section 4.7. In the chapters, we describe an 

algorithm to update the caches in the network, by constructing a spanning tree and on that 

spanning tree, a steiner tree is constructed. Finally, the thesis ends with conclusion and 

some future work in chapter 6.
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Figure 1.1: A n A d-H oc Network: In th is exam ple, th e  transm ission  ranges are 
such th at A can only com m unicate d irectly  w ith  B ,B  w ith  A and C,C w ith  B 
and D , D w ith  C and E. H ere B and D act as ad-hoc routers , allowing for full 
connectivity  betw een  all nodes.
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CHAPTER 2

SEARCH TECHNIQUES 

In this chapter we introduce Routing and describe different search techniques called lookup 

services[13] which will be used in our algorithm.

2.1 Routing

It is necessary to hop several hops to reach the packet to the destination.so, a Routing 

Protocol is needed.The routing protocol has two main functions,selection of routes for var­

ious source-destination pairs and the delivery of messages to their correct destination.The 

main object of the routing protocol is to find routes.

Largely speaking, there are three types of routing strategies for MANETs, namely, proac­

tive protocols, reactive protocols, and hybrid protocols. Proactive protocols, e.g., OLSR , 

periodically update their routing tables, and thus always maintain (possibly implicit) routes 

from any node to any node. Reactive protocols, e.g., AODV and DSR , discover a route 

only when it is needed. This way, they do not waste resources on routes that are not needed 

and would never be used, but their response time is much slower and their route discovery 

process is typically communication inefficient. Hybrid protocols, e.g., ZRP , have a proac­

tive behavior in the neighborhood of a node up to a distance k. After that distance, the 

protocol acts as a classical reactive protocols. Thus, they attem pt to enjoy both worlds.
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The proactive lookup assumes tha t the neighborhood of a node is known in advance, e.g., 

due to a proactive heartbeat mechanism, while the reactive class constructs the neighbor­

hood at every reincarnation of a query. Broadcast is one of the most popular services on 

top of MANETs and is highly related to context based search services. The main difference 

between these two is their goal; broadcast tries to ensure delivery of messages to all pro­

cessors in the ad-hoc network, while lookup should provide a path to the service or proxy 

if one exists in the network.

2.2 Search Techniques 

This section first examines several existing and a few novel search techniques including 

flooding, constrained flooding, a novel dynamic variation of probabilistic flooding, and BFS. 

These are superimposed on a Maximal Independent Set (MIS), a Connected Dominating 

Set (DS), and a novel adaptation of BFS-tree based overlays.

2.2.1 Lookup Services

2.2.1.1 (Constrained)Flooding 

The flooding scheme is the simplest way to disseminate a request in a network . A 

requester sends a search message to all its neighbors in the network. When a node receives 

a request for the first time, if it does not have the data, it forwards the request to all its 

neighbors while recording the path the request has traveled so far on the forwarded message. 

If a node tha t receives a request has a copy of the data, it immediately sends a response 

along the reverse path and does not forward the request any further. Nodes also discard 

redundant copies of the same request. Alternatively, when an overlay exist, then only nodes 

tha t are part of the overlay backbone forward the message to their overlay neighbors. Other 

nodes only reply if they have a copy of the data and drop the request otherwise. We refer
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to running flooding on top of an overlay as constrained flooding. Among the advantages of 

flooding, we note that the time latency is minimal. Also, this is the most robust scheme and 

has the highest probability of reaching all network nodes, and therefore find an alternative 

if one exist. However, the price for this is that unconstrained flooding generates a large 

number of messages. This means that the energy consumption of flooding is very high, and 

so is the bandwidth utilization. Since the network is shared between the lookup service and 

the application, this comes at the expense of the bandwidth left for application messages. 

Also, this increases the chances of collisions, which could degrade the overall performance 

of the system. There are two common ways to limit this bad behavior of flooding. One 

option is to limit flooding with a Time-To-Leave (TTL) parameter, which specifies the 

maximum number of hops a search request can be forwarded on. This technique solves 

some scalability problems, but is still not very efficient. Alternatively, constrained flooding 

greatly reduces the number of messages sent on each search request, since only the overlay 

backbone nodes participate in the forwarding. However, this also imposes several challenges, 

since computing the overlay backbone also requires some resources, and one needs to be 

careful to balance the cost of the overlay maintenance with the benefits it brings. This is 

particularly true in MANETs due to their dynamic nature, which means tha t the overlay 

is continuously evolving.

2.2.1.2 Probabilistic Flooding 

Probabilistic flooding is similar to constrained flooding, except tha t nodes only forward 

incoming messages with some probability. In dense networks, when a host decides to forward 

a message, all of its neighbors might already receive the message. Deciding randomly that 

some nodes would not forward a message can save unnecessary messages without harming
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effectiveness. But, in sparse networks, some nodes will not receive all the messages unless 

the probability of rebroadcasting a message is high.

One solution is to adapt the probability parameter to the number of neighbors. Another 

idea is to decide whether to forward a message based on the number of redundant messages 

a host receives . That is, each node counts the number of times it received each message 

during a given time interval starting from the arrival of the first copy of the message. At 

the end of this time interval, if the number is less than a threshold value, the message 

is forwarded, and it is dropped otherwise. This way, in dense networks, some nodes will 

not rebroadcast messages, while all nodes rebroadcast in sparse network. However, in this 

solution messages are delayed at each hop, which greatly increases the delivery latency.

2.2.1.3 BFS

Another scheme is based on the Breadth First Search algorithm . This algorithm can be 

viewed as successive instantiations of flooding with increasing TTL values ranging from 1 

to the expected diameter of the network. More specifically, a requester p e  V first initiates 

the lookup by sending a request to all nodes in N{p). Upon receiving a request, a node 

responds with a positive message if the requested data is in its cache and by a negative 

message otherwise. If the requester does not receive any positive response, it sends another 

request to all nodes in N^{p).  Nodes tha t did not receive the message during the first round 

send their response along the reverse path. This process continues iteratively until either 

the requester receives a positive answer, or the requester believes it has reached all nodes. In 

this protocol, the message propagation is controlled by the requester. Once an alternative is 

detected, the propagation stops, which saves a substantial number of unnecessary messages 

when there exists an alternative close to the requester. Note tha t this idea can be applied
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over an unstructured network, as been described above, or using an overlay. In the latter 

case, only the overlay backbone nodes forward the request, while preserving the TTL of the 

corresponding iteration. The main drawback of this protocol is its potential long latency, 

as messages are not propagated to nodes at distance i hops until a timeout after which it 

is assumed tha t all replies from nodes at distance i 1 have been received. Moreover, it 

may generate many messages when the proxy is far, since search messages travel repeatedly 

through nearby nodes in successive invocations of the search.

2.2.2 Overlay Maintainence

2.2.2.1 A Maximal Independent Set (MIS) Based Overlay 

We start this section by giving a formal definition of a Maximal Independent Set (MIS) 

and then discuss how to obtain an MIS based overlay.2 Let G =  (V,E) be a communication 

graph. Two nodes i and j in G are said to be independent if (i, j)0  E. A subset S Ç V of nodes 

is independent if every pair of nodes in S are independent. A set S is a maximal independent 

set (MIS) if S is independent, yet for any node k e  V /  S, S U k is not independent. The 

MIS based overlay is constructed in two phases tha t are executed in parallel. In the first 

phase, the MIS is computed. Since by definition, the set of nodes in an MIS cannot directly 

communicate with each other, the second phase identifies bridge nodes that connect the 

MIS nodes. Of course, the goal is to find as few bridge nodes as possible, yet to do this 

in a completely decentralized manner. So, we are interested in a distributed algorithm for 

computing an MIS in such a way tha t every node makes local calculations based only on 

the knowledge of its neighbors. Recall tha t the neighbors of p are the nodes tha t appear 

in the transmission disk of p, and thus p can communicate directly with them, and every 

message p sends is received by all of them. Additionally, we would like to influence the
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overlay construction process such tha t the overlay nodes will be the best nodes under a 

given metric. For example, since in mobile systems nodes are often battery operated, we 

may wish to use the energy level as the metric, in order to have the nodes with highest 

energy levels members of the overlay. Alternatively, we might use the number of objects for 

which a node is proxy as the metric, in order to reduce the average number of hops a search 

message has to travel. Similarly, we might use bandwidth, transmission range, or local 

storage capacity, or some combination of several such metrics. This is achieved by having 

a generic function which associates with each node some value from an ordered domain, 

which represents the nodes appropriateness to serve in the overlay. We call this value the 

goodness number. This way, it is possible to compare any two nodes using their goodness 

number and to prefer to elect the one whose value is higher to the overlay. For example, it 

is easy to evaluate and compare the battery level of nodes, or to obtain and compare the 

number of objects for which a node is proxy. The MIS algorithm consists of computation 

steps that are taken periodically and repeatedly by each node. In each computation step, 

each node makes a local computation about whether it thinks it should be in the MIS or 

not, and then exchanges its local information with its neighbors.

2.2.2.2 A Connected Dominating Set (DS) Based Overlay 

We start this section by giving a formal definition of a Connected Dominating Set (DS), 

and then discuss how to obtain a DS based overlay. Let G =  (V,E) be a communication 

graph. A set S C V is a dominating set if any node in V is a member of S or has a neighbor 

in S. S is connected if for any node x in S there is another node y in S such tha t (x, y) e  E.
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2.2.2.3 BFS tree protocol 

The idea in this protocol is to exploit the synchronous behavior of BFS and the broad­

cast nature of wireless networks to produce an efficient reactive dissemination tree for each 

search request. Interestingly, this is obtained without any additional delay or control mes­

sages. Specifically, recall that with BFS dissemination, the search propagates in synchronous 

rounds such tha t in round i the search messages disseminate until distance i hops from the 

requester. The requester waits for receiving the reply messages of round i before continuing 

to round i-t-1. Thus, when the requester receives all replies for round i, it knows the fastest 

paths between all nodes at distance i and itself. Based on this, it can calculate the minimal 

set of nodes tha t need to forward the search during the next round and ensure tha t the 

message will still reach all nodes at distance i +  1.
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CHAPTER 3

PRELIMINARIES

3.1 Distributed system

The term  distributed system is used to describe a communication network, a multi­

processor computer or a multitasking single computer. A distributed system contains of 

two types of components: processors and communication channels between the processors. 

Distributed computing studies the computational activities performed on these systems.In 

the theory of distributed computing, one usually uses the term model to denote an abstract 

representation of a distributed system. An algorithm is the program given to the processors 

to solve a certain problem on a certain model setting. Complexity analysis provides some 

measurement of the performance of algorithm

Various different models arise depending on assumptions about how both processors 

and communication behave. The following subsections describe some common alternative 

choices for several different components of a model of a distributed system

3.1.1 Communication

The communication model describes the mechanism tha t supports information exchange 

between processors. Two common interprocessor communication models are the message 

passing model and the shared memory model.

In the message passing model, processors communicate by exchanging messages. A

12
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processor sends a message by adding it to its outgoing message queue, and receives a message 

by removing it from its incoming queues.A communication link is either unidirectional or 

bidirectional

In the shared memory model, processors communicate through globally shared objects. 

Typically these objects are atomic registers. An atomic register is a shared variable that 

can be either read or written in one indivisible (atomic) step. An atomic register can be 

multi-reader/multi-writer, or multi-reader/singer-writer, or single-reader/single-writer.

3.1.2 Timing Model

The two basic models of timing in distributed systems are called the Synchronous model 

and the Asynchronous model .

The synchronous model, where each processor simultaneously executes one step of its 

program in each time step, is the simplest model to describe, to program and to analyze.

In the asynchronous model, processors execute their programs at different speeds. Both 

the absolute speed of each processor and the relative speed between processors may vary 

arbitrarily during the computation. The asynchronous model is harder to program than the 

synchronous model. W ithout timing restrictions, problems are more general and interesting 

and more realistic.

3.1.3 Scheduler

In an asynchronous system, these differences in the speeds of the processors are simulated 

with the use of a scheduler, alternatively called a daemon. It is assumed that at each time 

step a scheduler determines which processors execute the next step of their program subject 

only to synchronization enforced by explicit program constraints.

The distributed daemon and the central daemon are two types of scheduler. In each step.
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the central daemon activates only one processor at a time. In each step, the distributed 

daemon selects a nonempty set of processors and activates all the processors in the set 

simultaneously.

The scheduler is typically constrained by a fairness assumption tha t provides some 

minimum guarantee on the interval between successive steps of a processor. There are many 

different strengths of fairness. Weak fairness only ensures that in an infinite execution, each 

processors takes an infinite number of steps, k-fairness ensures that no processor executes 

more than k steps between any two successive steps of any other processor. A round robin 

scheduler constrains processors to take a fixed order under a 1-fairness assumption.

3.1.4 Our Model

We use the asynchronous message-passing system model. The asynchronous systems 

are the most common systems, and the hardest to design algorithms for. Every node can 

execute its code at its own pace, and the message delivery can take an arbitrary time.

All nodes execute the same distributed program (uniform). The program is a finite set 

of guarded actions of the form;

< label >::< guard > —»< sta tem ent >

A statement can be executed if and only if its guard, a boolean expression, evaluates to 

true. The selected statement is executed in one atomic step. If a process has at least one 

true guarded command, then it is called enabled.

We consider a distributed daemon: In every execution step, if one or more processes are 

enabled, then the daemon chooses at least one (possibly more) of these enabled processes to 

execute. Once the process is selected, then non-deterministically one of its enabled actions 

is selected and its statement is executed. We assume a weakly fair  daemon: A continuously
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enabled process will be eventually chosen by the daemon.

Each node has a local state defined by its current variables. The global state of the 

system (configuration) is the union of the local state of its nodes and the messages on the 

links.

3.2 Self Stabilization 

The idea of self-stabilization in distributed computing first appeared in a classic paper 

by E.W.Dijkstra in 1974 [4]. In this short paper published in the Communications of ACM, 

he proposed the idea of stabilization of a distributed system: the system should be able 

to converge to a legitimate state with in a bounded amount of time by itself without any 

outside intervention. In this paper he showed three examples of a self-stabilizing token ring 

systems: one with K  states where K  is greater or equal to the number of processors in the 

ring, the other two with three and fo u r  states respectively. The global states of the token 

ring in which there are multiple tokens or there is no token are defined to be illegitimate 

states. There has been considerable amount of interest on analyzing these protocols and 

proving the correctness of these protocols.

A self-stabilizing system S  guarantees that, starting from an arbitrary global state, it 

reaches a legal global state within a finite number of state transitions, and remains in a 

legal state unless a change occurs. In a non-self-stabilizing system, system designers need 

to enumerate the accepted kinds of faults, such as node/link failures, and they must add 

special mechanisms for recovery. Ideally, a system should continue its work by correctly 

restoring the system state whenever a fault occurs. In a non-self-stabilizing system, system 

designers need to enumerate the accepted kinds of faults, such as node/link failures, and 

they must add special mechanisms for recovery. Ideally, a system should continue its work
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by correctly restoring the system configuration whenever a fault occurs.

Each node has a local state defined by its current variables. The global state of the 

system (configuration) is the union of the local state of its nodes and the messages on the 

links. Given C, the set of all possible states, and a predicate V  over C, we denote by Cj> Ç C  

the set of all legitimate states with respect to V , or simply, the set of all legitimate states.

An execution e is a maximal sequence of configurations, e — Ci, cg,... such tha t Vi > 

l ,C j  6  C, and Cj is reached from by executing some guarded action, or c, is a terminal 

configuration (no nodes are enabled).

We now define self-stabilization. Let X  be a set. The notation x  h Q means that an 

element x e  X  satisfies the predicate Q defined on the set X . We define a special predicate 

true as follows: for any x G A, a; h true.

Let P  be a distributed system and R, S  predicates on the configurations of P. R  is 

closed if every configuration of the computation of P  tha t starts in a configuration satisfying 

P  also satisfies R. R  converges to S  if both R  and S  are closed in P , and any computation 

starting from a configuration satisfying R  contains a configuration satisfying S.

D efin ition  3.1 (S e lf-S tab iliza tion ) P  s tab ilizes  to a configuration satisfying predicate 

R  iff true converges to R  in P.
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CHAPTER 4

CACHE PLACEMENT ALGORITHM 

In this chapter we include our algorithm and describe the data structures that are used in 

our algorithm. We provide a brief outline of the algorithm and system model, describe the 

cache placement and checking modules, explain error corrections, followed by the proof of 

correctness. In our algorithm we implement tha t a node requesting a DATA can cache the 

DATA if there is no cache within or at distance D. In this way we place the caches in the 

network. This caching algorithm will implement to cache a single data object or service in 

MANETS.

4.1 Data Structures

The Variables used in our algorithm are:

• LTD: unique identifier .every node in the network has unique ID, which is a positive 

integer

• Np. set containing all the neighbors of node i.

•  Pi : its a pointer points to parent of i

•  RS: responsibility set construct tree function return a RS in a requested node. RS

represents a BFS tree. For example R S = <  2, < 1, < 15,5 > > , <  3, < 12,9 > > >

17
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represents a tree with root 2 and 1, 3 are his children. 15, 5 are children of 1 and 12, 

9 are the children of 3.

• N ; N is a set of tuples < Alj,z > .It is send in response message.For the above tree, 

the field N of the response message send by node 1 to its parent has the < <  A/’i, 1 > 

, <  # i 5 , 15 >, < iVs, 5 > >

4.2 Outline of the Algorithm

In this chapter we present an algorithm to select the nodes to place the cache of DATA 

in MANETs. The nodes having a cache of DATA should be at most distance D with each 

other, so that, it would be memory efficient. It would be unnecessary to cache the same 

DATA in different nodes which are not far from each other.

This algorithm consists of two modules- cache placement module and checking module. 

Cache placement module contains actions related to selection of nodes to place the caches 

in the network. The idea for selection is, if a node requests a DATA, the search tech­

niques (lookup Services) described in the previous chapter will find a node having a DATA. 

If the distance between the requester and node having the DATA is greater than D, then 

the requester caches the DATA in its memory. Checking module will be activated only in 

cached nodes. This module when activated checks whether there is any two nodes cache 

the same DATA within or at distance D. If there is, it will make sure that one of the two 

nodes drop the cache.

4.3 System Model

In this work we focus on wireless mobile systems. A node in the system is a device owning 

an Omni directional antenna that enables wireless communication. A transmission of a node
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i is received by all nodes within a disk centered on p whose radius depends on transmission 

power, referred to in the following as the transm issiondisk] the radius of the transmission 

disk is called the transm issionrange. Thus, there is a single communication primitive 

broadcast{m), allows a node to transm it a message m to all nodes inside its transmission 

disk. The combination of the nodes and the transitive closure of their transmission disks 

forms a wireless ad-hoc network.

Practically, in order to obtain external services, we assume tha t all nodes have another 

mean for accessing the Internet directly e.g., using a cellular connection or a Wireless 

Access Point (WAP); such an access to the Internet passes through an Internet Service 

Provider(ISP). We say tha t a node i is a localproxy for a data object d when the buffer 

cache of i contains d.

The network described above Can also be modeled as a graph G=(V,E) where V is the 

set of network nodes and E models the one-to-one neighboring relations. A node j  is a 

neighbor of another node i if j  is located within the transmission disk off.  In the following, 

N{i) refers to the set of neighbors of a node i. By considering N{i) as a relation, we say 

tha t a node i has a path  to a node j  if j  appears in the transitive closure of N (i) relation.

As nodes can physically move, there is no guarantee tha t a neighbor at time t  will remain 

in the transmission disk at a later time t-|-A. Messages are not guaranteed to be delivered 

,but we assume the most of them are delivered with high probability. Additionally, devices 

might be turned off or on at any time, so the set V of alive nodes varies with time and has 

no fixed size.
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4.4 Cache Placement Module 

In this section we present a normal execution of the cache placement module and we 

describe how the BPS tree constructed in this module is maintained. We use the BPS 

lookup service over an BPS overlay which is described in chapter 2 in this module.

The messages used in this module are request and response. The request message is 

defined by request(requester, DATA, round, dist, RS, k) where requester is the requester, 

DATA is the requested data, round is the distance of nodes the requester want to reach, 

dist is the number of hops the search has traveled so far, RS is the responsibility set, k is 

the node from which this message was received from, in that hop. The response message 

is defined by r e s p o n s e ( j , p r e s e n c e w h e r e  j is the node from which this message is 

initiated, presence (j) represents true or false depending on whether DATA is cached in j or 

not, N is a set of tuples of form < Np,p > where node p belongs to the subtree of the node 

tha t sending this message.

When node i requests a DATA, it sends request message to all its neighbors. It will get 

a response message from all its neighbors. These nodes also send their neighbors in the N 

field in the response message. At the end of first round, the requester has Nl- the nodes 

at distance 1 hop from the requester, N2- the nodes at distance 2 from the requester. So, 

the requester constructs a BPS tree of depth 2. In the second round, the requester send the 

request message to all the nodes at distance 2 along the BPS tree constructed. The nodes 

at distance 2 send a response message. In the response message N field carries N3 and N2. 

At the end of second round, the requester has N1,N2 and N3. It constructs a BPS tree of 

depth3. Similarly, at the round k, the requester send the request message to all the nodes 

at distance k, along the BPS tree of depth k constructed before this round. The response
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message along the path to the requester attach all the sets of neighbors of all the nodes 

along the path. At the end of this round, the requester constructs a BPS tree of depth k+1.

This requester stops sending request messages, when it receives response(j,true,...) or 

the authorized levels are reached. If it receives response(j,true,...) message, then it caches 

the DATA if the distance between requester and j is greater than D, otherwise it does not 

cache the DATA because there is already a node tha t caches the same DATA within or at 

distance D.

If a new node tha t entered in the region may be connected in the middle of the tree 

at the end of a round. If that new node has the DATA , then the search has to stop. To 

include this case, in the algorithm, response(j,true,....) can be send by any node in the BPS 

tree if it has the DATA and response(j,false,...) is send by only the nodes, that are leaves 

of the BPS tree constructed by the requester at tha t round.

4.5 Checking Module

Module checking is activated in each node when tha t node caches a DATA object. This 

checker checks whether there is any node tha t caches the same data within or at distance 

D from this node. There are different coloring algorithms which implements tha t no two 

nodes have the same color within distance d[9, 16, 10]. When a node caches a DATA after 

executing the cache placement module, then the BPS tree constructed is of depth greater 

than D. so, the detect messages are send to all the nodes within or at distance D along the 

BPS tree. After this one time check, this checker checks at regular intervals of time (more 

likely when it moves to a different neighborhood) using flooding technique as described in 

the chapter 2 .

The messages used in this module are detect and dropcache. The detect message is
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A lg o rith m  4.4.1 Cache Placement Module

Parameters:
UID;: i
Ni :: Set of f‘s neighbors;
Pi :: Parent of f;
constructtree{N) :: returns of a BPS tree with the input N

Actions:

TZi :: node i requests a DATA — > 
round:=l;RS='P;
repeat until authorized levels are reached: 
send request(i, DATA, round, 1, RS, i) 
wait response{j,prescencej, N) from all 

j  G NiOi timeout 
if received at least one response{j, true, N) then 
cache the DATA in its memory, 

if distance between i and j  is greater than D 
endif 

return 1; 
endif
RS= constructtree{N)-, 
round= round+ 1  

end repeat 
return 0;

:: Upon first rec. of request{j,DAT A,round,dist,RS,k) — *■
-Pi=k;
if DATA is present at i,then send response{i, true,...) to j 
else

if dist= round, then send response{i, false, «  Ni, i >>) to root j 
else,

send request{j, DATA, round, dist + 1, RS, i) to their children if there is any, 
otherwise send response{i, false, «  Ni, i » )  to root j 

endif 
endif

72-3 :: upon rec. response{j, false, «  Nj , j  > ,... >) from all its children — > 
send response(j, false, N)- to its parent, where N contains the tuples of 

the neighbors of all the nodes in that subtree including the tuple < N i,i>
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defined by detect (DATA, checker, dist), where DATA is the DATA item they are detecting, 

checker is the process having a DATA checks if there any other node within or at distance D 

tha t caches the DATA,dist is the distance traveled so far. The dropcache message is defined 

drop cache (checker), where checker is the process from which the detect message is received.

After regular intervals of time, a node i caching a DATA sends detect(DATA, i, d ist= l) 

to all the nodes within or at distance D. If a node p receives a first detect message and if it 

caches the DATA, then it sends dropcache(checker) to the checker process, a process from 

which this detect message is received if UID(p)>UID(checker), otherwise it will drop the 

cache in its memory. If a node p receives a first detect message, and it did not cache the 

DATA, then it will send the detect message to all the other neighbors (at the first time check 

it will send to its children of the BFS tree) by increasing the dist field in detect message by 

1, if dist in the detect message is less than D.

A lg o rith m  4.5.1 Checking Module

Parameters:
UID:: i

Actions:

Cl :: At regular intervals of time A node i cached the DATA — >
send detect {DAT A ,i,l)

Cg :: Upon first rec. of detect{DATA,j,dist) — >
if DATA is present at i,then drop the cache in its memory, 

if UID, < UIDj  
else send dropcache{j) to node j 
endif 

else,
if (dist < D) then send detect{DATA, j , dist + 1) 
endif 

endif

C3 :: upon rec. dropcache{i) — >
drop the cache in its memory
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4.6 Error Corrections 

There are three illegitimate configurations in the algorithm.We show how this Algorithm 

corrects each of these situations.

1. A node caches the data when there is any other node already cached the same object 

within distance d

A node caches the object only when it receives the response from a node greater 

than distance d. It will gets the response from tha t node only when there is no other 

node within less distance than tha t node. So, it is not possible to get this configuration

2. Two nodes within distance d caches a same object at the same time.

These two nodes activates the checking module and checks whether there is any node 

caches the same object. Then they find out and drop the cache in the node which has 

lower UID. So, there will be no other node that caches the data within d hops of the 

node tha t still caches the data.

3. If a node, cache the data, moves and there is other node cache the data within distance 

d of new location.

Checker Module, in each cached node, checks whether there is any node cached the 

same object within distance d. If there is,the node with a lower UID will drop the 

cache.
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4.7 proof of correctness 

D efin ition  4.1 :The system is considered to be in a legitimate state(i.e.satisfies the legiti­

mate predicate L ) if the following conditions are true with respect to a query region

(i) node which request the data, caches the data if  there is no cached node in d hops 

from the node

(ii) No two nodes with in or at distance d should not cache the same data

4.7.1 Proof of closure 

L em m a 4.1 :The actions in Module Caching are enabled only when any node requests for 

a data

P ro o f. The responsibility of actions in Module Caching in each node are - when a node 

requests a data item, it sends request message to the nodes. If a node has a data, it responds 

to the requester. If requester node is at a distance greater than d from the responder, then 

the request node caches the data item.

□

L em m a 4.2 .• In the legitimate configuration, the actions in Module checking are not en­

abled as long as no topology changes occur or there is no request for a data
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P roo f. The illegitimate configuration is there is atleast two nodes that cached the data 

within or at distance d. If it finds anything it will trigger the actions of Module Checking 

to drop the cache. If these actions are not triggered then there is no two nodes that cached 

the object within or at distance d. The illegitimate configuration can happen only in two 

ways.

(i) If two nodes within distance d requests the same data object and they get the response 

from nodes at a distance greater than  d from them.then these two nodes cache cache the 

data. So, there will be two nodes within or at distance d that cached the same data.

(ii) If the topology changes, there is a possibility that a cached node move to a new neigh­

bourhood so that there is another cached node within or at distance d.

So, if there is no topology changes occur or no node requests for a data, then Module 

checking actions are not enabled.

□

T h eo re m  4.1 .yC losurej The system defined by a legitimate predicate L is closure as long 

as no topology changes occur or no node requests for a data.

P ro o f. By Lemma 4.1, the actions of Module caching is not activated if no node requests 

for a data

By Lemma 4.2, the actions in Module Checking to drop the cache are not enabled if 

there is no topology changes occur or no node requests for a data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

so, this proves tha t legitamacy predicate L holds. Hence, L is a closed predicate.

□

4.7.2 Convergence

L em m a 4.3 :The BFS tree constructed in the cache placement module is self stabilizing

P roo f. : The BFS tree we constructed at the end of each round is self stabilizing. 

To construct a BFS tree of depth round+1 at the end of the round, we only need the 

neighbors of all the nodes at distance round because the BFS tree of depth round is already 

constructed. But it is not self stabilizing because of topology changes.

Due to the mobility of nodes, the BFS tree constructed in the previous round may be 

destroyed. So, in the response message we carry all the neighbors of the nodes in the BFS 

tree constructed. Even if the topology change, these nodes will change its neighbors and it 

will he informed to the requester and a new BFS tree is constructed as of current topology.

Some cases:

i) if a node entered in the region- All the neighbors of this node will change their 

neighborhood set. This set will be send with the response message and the requester 

constructs a BFS tree including this node in the tree.

ii) If a node leaves the tree- The neighboring nodes change their neighboring set and 

this is informed to the requester. The nodes in the subtree of tha t node will not be 

in the tree. Now the requester constructs a BFS tree in which tha t node is not in the 

tree and all the nodes in the subtree of tha t node will be connected to the BFS tree 

constructed at the end of the round.

□
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T h eo rem  4.2 ; ('C onvergence j  Starting from any arbitrary configuration, Cache Place­

ment Algorithm reaches a configuration that satisfies the legitimacy predicate L

P roof. The goal is to prove tha t starting from any arbitrary configuration of the system 

of nodes,algorithm gurantees that in finite steps, the system will reach a configuration that 

satisfies legitimacy predicate L.

We prove this by contradiction.

= >  There exists a configuration in which, after any finite number of steps, the system will 

never reach a configuration that satisfies the legitimacy predicate L.

—> There exists a configuration in which, after any finite steps, the system will never reach 

a configuration in which any two nodes tha t caches the same data should be greater than 

distance d.

There exista a configuration where a requested cannot find a cached node even there is 

a cached node tha t is at a distance less than the BFS tree constructed so far in the cache 

placement module. This can be contradicted by Lemma 4.3

There exists a configuration tha t two nodes caches the same object within or at distance 

d. Module Checking in each cached node i checks whether there is any node with in or at 

distance d. If it finds another node j tha t caches the data within or at distance d and 

UIDi  > UI Dj  then the cached node j drop the cache in its memory. So, there will be no 

other cached node within or at distance d from each cached node.
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This is a contradiction.

□

4.7.3 Self-Stabilizing 

T h e o re m  4.3 Algorithm Cache Placement is self stabilizing.

P roo f. The proof follows from Theorem 4.1 and Theorem 4.2 □
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CHAPTER 5

FURTHER EXTENSIONS 

In this chapter we decribe an algorithm to have the shortest path from all the nodes that 

cached the DATA to the source of the DATA for updating the DATA in the cached nodes. 

The better idea is to construct a spanning tree with root as source of the DATA. On this 

spanning tree, we construct a steiner tree where steiner nodes are the nodes tha t cached the 

DATA or it is the source of DATA. If there is more than one source node in the network, 

we construct a spanning forest in such a way the root of each tree in the forest is the source 

node and construct a steiner tree for each tree separately. The steiner tree constructed 

between cached nodes and source of DATA should be self stabilizing due to the mobility 

nature of nodes in MANETS.

In the first section we describe a self stabilizing spanning tree construction algorithm 

where the source node is a root of the tree. In the next section we describe an self stabilizing 

algorithm to construct a steiner tree on the constructed spanning tree.

5.1 Spanning tree

There are different self stabilizing spanning tree algorithms as mentioned in [7]. One of 

the first papers appered in self stabilizing spanning tree construction in 1990 is by Dolev, 

Israeli and Moran [14, 15]. In the algorithm, every node maintains two variables: (1) a

30
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pointer to one if its incoming edges (this information is kept in a bit associated with each 

communication register), and (2) an integer measuring the distance in hops to the root of 

the tree. The distinguished node in the network acts as the root. The algorithm works 

as follows; The network nodes periodically exchange their distance value with each other. 

After reading the distance values of all neighbors, a network node chooses the neighbor with 

minimum distance dist as its new parent. It then writes its own distance into its output 

registers, which is dist +  1. The distinguished root node does not read the distance values 

of its neighbors and simply always sends a value of 0. The algorithm stabilizes starting 

from the root process.

In the same year as Dolev, Israeli and Moran [14] published their algorithm, Afek, 

Kutten and Yung [17] presented an self-stabilizing algorithm for a slightly different setting. 

Their algorithm also constructs a BFS spanning-tree in the read/w rite atomicity model. 

However, they do not assume a distinguished root process. Instead they assume that all 

nodes have globally unique identifiers which can be totally ordered. The node with the 

largest identifier will eventually become the root of the tree. The idea of the algorithm 

is as follows; Every node maintains a parent pointer and a distance variable like in the 

algorithm above, but it also stores the identifier of the root of the tree which it is supposed 

to be in. Periodically, nodes exchange this information. If a node notices tha t it has the 

maximum identifier in its neighborhood, it makes itself the root of its own tree. If it learns 

tha t there is a tree with a larger root identifier nearby, it joins this tree by sending a join 

request to the root of that tree and receiving a grant back. The subprotocol together with 

a combination of local consistency checks ensures that cycles and fake root identifiers are 

eventually detected and removed.
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Also in 1990, Arora and Gouda [2 , 3] published a self-stabilizing BFS spanningtree 

algorithm Similar to Afek, K utten and Yung, they also assume unique identifiers and the 

node with maximum identifier eventually acts as the root of the system. In contrast to 

Afek, K utten and Yung, the algorithm needs a bound N on the number n of nodes in the 

network to work correctly. The bound N is necessary because the algorithm uses a different 

technique to detect and remove cycles. Again, every node maintains variables for distance, 

parent and root identifier. Periodically, every node compares its own distance and root 

identifier setting with the values stores in the node pointed to by the parent variable. In 

the finished spanning tree, the root identifiers should be the same and the distance should 

be the distance of the parent incremented by 1 .

5.1.1 Constructing Spanning tree

To construct a spanning tree, we use the algorithm of Arora and Gouda [2, 3] with 

some modifications. This algorithm is to maintain a rooted spanning tree. In the solution 

given below, we accommodate such changes by ensuring that the tree layer performs its 

task irrespective of which state its starts from.

Each process maintains a f . i  variable which represents a parent of i. Since, it can start 

in any state, the initial graph of the father relation is arbitrary. In particular, the initial 

graph may be a forest or it may contain cycles.

For the case where initial graph is a forest of rooted trees, all trees are collapsed to one 

by giving to precedence to the tree which root is source of DATA followed by whose root 

has maximum ID. This module contains a variable root.i whose value is the current root 

process of i. If root.i and root.j is not the source of DATA and root.i is less than root.j 

for some adjacent processes i and j ,  root.i is set to root.j and f . i  is sets to j .  If root.i or
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root.j is the source of the DATA then the tree whose root is not the source will attach the 

tree to the tree whose root has the source and changes it root variable to the source node.

For the case, where the initial configuration has cycles, each cycle is detected and re­

moved by using a bound on length of the path from each node to its root process in the 

spanning tree. This length in our module would be the authorized levels allowed to search 

for a cache by the requester in the cacheplacement module described in the last chapter. 

Each process has the variable d.i whose denote the length of path from i to its current root. 

If d.i exceeds K-1,where K is the upper bound on length. Since the length bound by k, a 

cycle is detected. To remove the cycle tha t it has detected, i make itself as a father.

Because, our assumption that initial configuration is arbitrary, we need to consider all 

other cases where the initial values are ’’locally” inconsistent, that is, one of the following 

hold:root.z < i j . i —i but root.i i ov d.i 0, or f . i  is not i nor in Ni. In these cases, the 

module makes itself locally consistent by setting root.i to i j . i  to i and d.i to 0. Another 

possibility is, root of process i is inconsistent to the state of the father, tha t is root.i is 

different from root.(f.i). In this case, root.i is corrects its value to root.{p.i).

G is a legitimate predicate, where G is, root variable is same in all the nodes and that 

value is the source node. In the paper [2, 3], it is shown that the legitamte predicate is 

reached in finite steps. So, a spanning tree rooted to the source node exists.

5.1.2 Spanning forest

If there are more than one source node in a network, then cached node having a path 

to one of the source nodes is enough. So, we need to construct a spanning forest in which 

each tree in the forest has the root which is source of the DATA.

This can be acheived with the same module described above. The idea is, if there are
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two adjacent nodes with different root values then by precedence, one of the tree will attach 

to another by becoming one, but if both the root values are the sources of DATA, then 

they will not become one. The individual tree tha t does not join into another tree in the 

network has to have the root which is the source node. So, a spanning forest is constructed 

with each tree in the forest has the source as a root.

5.2 Steiner tree

Definiton:: Let G=(V,E) be a connected undirected graph, where V is the set of nodes 

and E is the set of edges. For any non-empty subset ZÇ V, Gz={Vz,Ez) is a steiner tree for 

Z and G, if and only if Gz is connected and Z C holds. A self stabilizing steiner tree on 

a given spanning tree with a root as source is given in [11].We have to construct a steiner 

of Z, where Z is a set of all cached nodes and source nodes of that DATA. The idea is, the 

nodes in the path of cached nodes to the root of the spanning tree should be included in 

the steiner tree. So, we can have the path from the root to all cached nodes. To make it 

self stabilizing, the nodes will check its children status continuously.

The actions of the algorithm are:

1. Z-members join the tree

2. non-Z-memher leaf of the spanning tree leave the steiner tree

3. If every children leave the steiner tree,leave the tree

4. If atleast one Steiner tree's member exist in the children, join the tree.

In any illegitimate state, one of these actions is active. From any configuration and any 

computation starting from C, eventually no process is previleged. This algorithm is self 

stabilizing from the above two statements. These are proved in [11].
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5.3 self-stabilization of the Update Algorithm 

The spanning tree constructed is Self-stabilizing and also steiner tree constructed on 

the spanning tree is also self-stabilizing. Even if the co-ordination between the up pro­

cesses is lost( due to node mobility)then each component eventually reaches a state where 

coordination is reached. The self stabilization of the Update algorithm is reached, when 

the spanning tree is stabilized in a finite steps, say T l, and from that configuration, the 

steiner tree will be stabilized beacuse it will stabilize from any arbitrary configuration and 

the steps, say T2, is the steps of the steiner tree algorithm after spanning tree is stabilized. 

Finally, the Update algorithm is stabilized in steps T1+T2.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH 

We have presented a self-stabilizing Cache Placement Algorithm to place the cache of a 

service in the MANETs. The algorithm place the cache of the DATA in a node, when the 

node requests for DATA and it finds the DATA at a node which is at distance greater than 

D. Once a node caches the DATA, it has to make sure that no other node within or at 

distance D caches the same DATA.Overall, the algorithm place the caches in such a manner 

tha t there is only one node that cache the DATA within distance D of a node that requests 

a DATA and if there isn't, then the requested node caches the DATA.

We also described an algorithm to have the shortest path from all the nodes that cached 

the DATA to the source of the DATA for updating the DATA in the cached nodes. We 

constructed a self stabilizing spanning tree and a self stabilizing algorithm to construct a 

steiner tree on a spanning tree. We can update the DATA in the cached nodes if the DATA 

at the source is changed by having the shortest path from source to all cached nodes in the 

network using this algorithm.

In this research, the algorithm is to place the cache of a single data object. We can 

extend this algorithm by implementing it parallel for each data object independently.

In future, further work can be done on caching algorithm we presented in this thesis. 

Work can be done on how to provide incentives to the nodes tha t host the cache of DATA.

36
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There should be some scheme to provide some special previliges or incentives to the cached 

nodes, as it is using its power to provide the DATA in tha t region.

We can also extend the algorithm that caches several services available in the MANETs 

to be LoadBalancing. For a node to be a cache proxy for each of these services should 

be load balancing among all nodes. A device is willing to serve as a proxy if it enjoys the 

benefits of other services for which the proxy is located in other devices.

We can also write the algorithm using the cluster based approach to solve the same 

problem. The idea is, cluster head is the node tha t cached the DATA and the nodes with 

in distance D of the clusterhead will belong to tha t cluster.
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