
UNLV Retrospective Theses & Dissertations

1-1-2006

Hierarchical approach for character recognition Hierarchical approach for character recognition

Koushik Reddy Damera
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Damera, Koushik Reddy, "Hierarchical approach for character recognition" (2006). UNLV Retrospective
Theses & Dissertations. 2048.
http://dx.doi.org/10.25669/pumt-n8p4

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/pumt-n8p4
mailto:digitalscholarship@unlv.edu

H IE R A R C H IC A L APPRO ACH FOR C H A R A C TE R R EC O G N IT IO N

By

KoLishik Reddy Damera

Bachelor o f Engineering in Computer Science and Engineering
Osmania University, Hyderabad, India

June 2004

A thesis submitted in partial fu lfillm ent
o f the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1441705

IN F O R M A T IO N TO U S E R S

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignm ent can adversely affect reproduction.

In the unlikely event that the author did not send a com plete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1441705

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Com pany
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 481 06 -1 34 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ITNTV Thesis Approval
The Graduate College
University of Nevada, Las Vegas

NOVEMBER 13 _ , 20. 06

The Thesis prepared by

KOUSHIK REDDY DAMERA

Entitled

HIERARCHICAL APPROACH FOR CHARACTER RECOGNITION.

is approved in partial fu lfillm en t of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

i Examination Committee Member

Examination Committee Member

H
Grad\ ate CoUigc Faculty Representative

Examination Committee Chair

Dean of the Graduate College

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Hierarchical Approach for Character Recognition

By

KoLishik Reddy Damera

Dr. Evangelos Yfantis, Examination Committee Chair
Professor o f Computer Science

University o f Nevada, Las Vegas

This research mainly focuses on recognizing the handwritten character. Several efficient

algorithms have been developed by us so far to separate: the handwritten characters from

printed text charaeter, the lines, the words, and each character. In this thesis, we

concentrate on how to increase the efficiency o f recognition o f segmented handwritten

characters. Certain characters share common features unique to each other, different from

the rest o f characters. These subsets o f characters w ith common features are then further

analyzed by the classifier thereby reducing the number o f comparisons that are required.

This results increasing the speed o f character recognition.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T A B L E OF CO NTENTS

TABLE OF CONTENTS.. iv

TABLE OF FIGURES...vi

TABLE OF T A B L E S .. v ii

AC KN O W LED G EM EN TS ... v iii

CHAPTER 1 ... 1

IN TR O D U C TIO N ...1
1.1 Problem D efin ition ... 2
1.2 Objective.. 3

CHAPTER 2 LITER ATU R E R E V IE W ... 4
2.1 Statistical Methods... 5
2.2 A rtific ia l Neural N e tw orks ...6

2.2.1 Feed Forward Neural N e tw o rk .. 6
2.2.2 Radial Basis Function ..6

2.3 Kernel Methods (Support Vector Machines)...7
2.4 M ultip le Classifier Combination..7
2.5 Input Database..9
2.6 Pre-processing... 11

2.6.1 Binary Image Conversation.. 11
2.6.2 Speckle Removal and Noise Removal.. 12

CHAPTER 3 T H IN N IN G .. 13
3.1 H ilditch A lgo rithm ... 13

CHAPTER 4 FEATURE E X T R A C TIO N ...19
4.1 Feature Extraction...19

4.1.1 Extreme Points.. 19
4.1.2 Number o f T ip s ...21
4.1.3 Change in Color o f Pixels Horizonta lly..21
4.1.4 Change in Color o f Pixels V ertica lly ..22

4.2 Hierarchical Approach.. 24

CHAPTER 5 CLASSIFIC ATIO N A N D IM P LE M E N T A T IO N ... 28
5.1 Classification... 28

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Im plem entation... 29

C HAPTER 6 EFFIEN C Y A N D C O N C LU S IO N ...33
6.1 E ffic ien cy ... 33
6.2 C onclusion... 39

R E FE R E N C E S ...41

A P P E N D IX ..44

V IT A ... 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF FIGURES

Figure 2.1 An RBF network with one output..7
Figure 2.2 Flowchart General Approach... 8
Figure 2.3 Sample HSF form...10
Figure 2.4 Binary Image conversion..I I
Figure 2.5 Speckle removal... 12
Figure 3.1 Thirming.. 18
Figure 4.1 Extreme Points...20
Figure 4.2 Number of Tips..21
Figure 4.3 Change in color of pixels horizontally..22
Figure 4.4 Change in color of pixels vertically.. 23

V I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T A B L E OF TA B LE S

Table I Input Database.. 30
Table 2 A 's recognized as other characters ... 3 1
Table 3 Other characters recognized as A 's ...32
Table 4 Probabilities o f A 's recognized as other eharacters.. 34
Table 5 Ranks o f the characters..36
Table 6 Expected tria ls... 38

V I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C K N O W LE D G E M E N T S

First o f all I would like to express my gratitude to Professor Evangelos A. Yfantis for

supervising me in my thesis and providing the invaluable support and guidance without

which this thesis would not have been complete.

I would like to thank Dr. A joy K Datta, Dr.Yahoovvan Kim and Dr. Venkatesan

Muthukumar for accepting to be my committee members in short notice. Finally 1 would

like to thank all my friends who were there to help and support me during the

development o f this thesis work.

vni

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRO DUCTION

Handwritten character recognition is a process designed to translate images o f

handwritten or typewritten text into machine-editable text, or to translate pictures o f

characters into a standard encoding scheme representing them .There are two types o f

recognition one is o ffline character recognition in which recognition is done using the

features extracted from the scanned image where as in the online character recognition it

is done by fo llow ing the movements o f the pen online. The technology is successfully

used by businesses which process lots o f handwritten documents, like insurance

eompanies, postal service etc. But the recognition o f the handwritten characters is

complicated due to the follow ing reasons

1) From user to user the same character may vary in size, shape and style. Even the

same user may write in different patterns from time to time.

2) Eike any other images, the character that are written may subject to spoilage

due to noise.

Hence handwritten characters are first preprocessed to increase the accuracy and

efficiency o f the recognizers. The fo llow ing algorithms are implemented in preprocessing

1) Binary image conversion

2) Speckle Removal and Noise Removal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the preprocessing is done then comes the feature extraction o f the characters which

are used by the classifiers. There are many feature extraction algorithms but the important

key is the selection o f the efficient feature that would help in implementation o f the

character recognizer. Once the features are extracted from all the characters, they are

given to the classifier for recognition.

1.1 Problem Definition

Handwritten characters are d ifficu lt to recognize since the each user writes the same

character in different ways with different sizes and different shapes. Before the

recognition is done it has to be separated from the printed text and the background. Once

the character is separated then we can recognize. Even though lot o f research is going on

in this fie ld, it is very d ifficu lt to attain high accuracy. Hence there are lot o f elassifiers

that are been implemented to increase the accuracy. But the time consumption for these

processes is more since each character features are to be compared w ith others. In order

to increase the efficiency we came up w ith the fo llow ing novel concept.

Even though the different user writes the character in different sizes and the different

shapes but the each character w ill be having the some features which are present in what

ever shape and size user writes. The basic idea o f our thesis is the characters that are

having the same features w ill be grouped together and the characters that not having the

same features are eliminated so that the recognizer uses those characters which having

the same features for the recognition process avoiding the other characters which are not

a like For example when you take character 'A ' it w ill be having the two tips at the

bottom. And i f you take the character 'I 'it w ill be having only one tip at the bottom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence you can climate the characters when you are looking lor "A". Sim ilarly for some

other character which can be found out by using our algorithm.

1.2 Objective

The main objective o f our work is to develop the optimized preprocessing methods

and to develop an algorithm which would help in classifying the characters which are

having the common features and which don't have the common features when you are

looking for a specific charaeter. There by reducing the number o f comparisons that are

required and increase the speed o f the recognition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

LITERATURE REVIEW

Optical character recognition abbreviated as OCR is a way in which the handwritten

text images, printed text images into machine editable format. In 1929, G. Tauschek

obtained a patent on OCR in Germany, followed by Handel who obtained a patent on

OCR in USA in 1933 (U.S. Patent 1,915,993). Tauschek was in 1935 also granted a US

patent on his method (U.S. Patent 2,026,329).These are the first concepts in the fie ld o f

the OCR. The principle used at that time is the template mask matching. This used the

optical and mechanical template matching. L ight is been passed through the mechanical

masks is captured by a photo detector and is scanned mechanically when exact match

occurs light fails to reach the detector and so machine recognizes the character printed on

paper. Since there is vast variety o f the handwritten characters the template matching for

the handwritten characters is very d ifficu lt .Therefore the template matching is been

followed by the structural analysis o f the hand written characters. Structural analysis o f

the character is a way in which the geometric orientation o f the characters is found out

and the features o f the characters are extracted. There are different methods proposed and

published for the efficient feature extraction method. Since every year different methods

o f extraction o f features are been adding up to the research in the fie ld o f OCR it is very

d ifficu lt to tell which method is efficient. And the efficiency o f the OCR not only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depends on feature extraction method but also classifiers. Each feature extraction method

requires different type o f classifiers. And we cannot compare the results because the

recognition process is done on different data sets .Once the features are extracted from

the characters, the key decision is the selection o f the efficient features that are to be used

in the recognition process. Once the efficient features are been extracted, then these

features are been used in by the classifier fo r the recognition o f the characters. D ifferent

classification methods are been used in recognition process.

These are the fo llow ing classification methods.

2.1) Statistical methods

2.2) A rtific ia l Neural Networks

2.3) Kernel Methods

2.4) M ultip le Classifier Combination.

2.1 Statistical Methods

Statistical methods are based on the Bayes Decision Theory. There are different

decision theories. Bayes decision theory is optimal and is base on the popular Bayes rule

P(x/y) = p(y/x)p(x)/p(y)

Assuming the Gaussian density the Baysian Discrim inant method is reduced to one o f the

follow ing methods

2.1.1) Linear Discriminant Method

2.1.2) Quadratic Discriminant Method

2.1.3) Modified Quadratic Discriminant Method^'^^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 A rtific ia l Neural Networks

A rtific ia l Neural Networks is been used in successfully in pattern

recognition^'^'^'^^.They are many artificial neural networks that are been used. They are

2.2.1 Feed Forward Neural Network

2.2.2 Radial Basis Function

2.2.1 Feed Forward Neural Network

Feed forward networks have the follow ing characteristics:

1) Perceptions are arranged in layers, with the first layer taking in inputs and the last

layer producing outputs. The middle layers have no connection with the external

world, and hence are called hidden layers.

2) Each perceptron in one layer is connected to every perceptron on the next layer.

Hence information is constantly "fed forward" from one layer to the next, and this

explains why these networks are called feed-forward networks.

3) There is no connection among perceptrons in the same layer

2.2.2 Radial Basis Function

A fter the FF networks, the Radial Basis Function (RBF) network comprises one o f

the most used network models. Figure 2.1 illustrates an RBF network with inputs X|,...,

Xn and output Â' . The arrows in the figure symbolize parameters in the network. The

RBF network consists o f one hidden layer o f basis functions, or neurons. A t the input o f

each neuron, the distance between the neuron center and the input vector is calculated.

The output o f the neuron is then formed by applying the basis function to this distance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1 An RBF network with one output.

2.3 Kernel Methods (Support Veetor Machines)

Support vector machines is the significant kernel method that is been followed.

SVM is a binary classification with discrim inant function being weighted combination o f

kernel functions over all training samples. SVM are used for classification and regression.

Due to the high complexity in implementing the SVM are used for small data

classification.

2.4 M ultip le Classifier Combination

In order to increase the accuracy and efficiency o f the optical character recognizer the

single classifier is been replaced by the couple o f classifiers*'"'^ . I f the multiple classifiers

are parallel then the accuracy w ill be improved, i f the multiple classifiers are sequential

then the speed o f the classifier improves.

Reproduced with permission of the copyrighf owner. Further reproduction prohibited without permission.

In the all above methods for the recognition o f the characters the algorithm has to be

trained with huge database o f the characters and the features o f the each character input

has to be saved .Then the features that are been extracted are to be given to the c lassifie r.

In the classification process the classifier that is been used takes the features and

compares with the other character features and then the recognition is done.

Flow chart that is been followed

Statistical
Method

Classification

Pre Processing

Feature vectors

Kernel
Methods

A rtific ia l Neural
Networks

M u lti Classifier
Combination

Feature Extraction

Paper Document

Figure 2.2 Flowchart General Approach

Hence we came up with the new idea to reduce the time for the recognition process.

This can be done by reducing the number o f alphabets that has to be compared with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other alphabets. Since some o f the features o f the characters are completely different

from the features o f the other alphabets.

2.5 Input Database

The efficiency and accuracy o f the recognition algorithms that are been developed

can be tested against standard database that have the different forms o f characters. Since

each user writes the character in different shapes and styles, we require the test database

that contains the characters that are written in most shapes, styles and sizes. Hence we

took the National Institute o f Standards and Technology (NIST) database as the input for

testing the functioning and the accuracy o f the algorithms that are been used.

National Institute o f Standards and Technology

National Institute o f Standards and Technology provides the databases for the

character recognition, finger print recognition, face recognition. The database that is been

used is “ Special Database 19-NIST Hand printed Forms and Characters Database” ,

shortly known as SD19 database . It contains the Handwritten Sample Forms(HSF) and

isolated characters that are been stored by the class that they belong to. Isolated

characters are divided into upper case letters, lower case letters, numerical numbers.

Hence you can combine all o f them to form the total database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NIST ItÀNDWITTINO S.4IMPLE FORAI (HSF >

DATF. C ITY STATE ZIP

This aample of h&ndwrilittg w h*mg cotIect«d for uao in tesLmg computer recognition of hand printed numhcrs
and letters. Please print the following characters in the boxes that appear betrw.

0 1 2 3 4 S 6 7 8 S 0 12 3 4 5 6 7 8 9 _0 12 3 4 5 6 7 8 9

87 701 3752 80759 660941

158 4586 32123 832856 82

A ?

7481 80539 419219 67 904

p ' /p Û / ^
61738 729658 75 390

7 ^

5716

106334 40 625 4234

- 7 7 7 /

46002

g y x l f t k p d > f a t i i r u m w f q j e n h o c v ____

9 / x / O A/ f f J /I 7) OC
Z X S B N G E C M Y W Q T K F t U O U P l R V D J A

Pleave print the foUowing text in the box below:
We, the People of the United St&t«i, in order to ibrm a more perfect Union, establish Justice, insure domestic
lYamqnüity, provide for the common Defense, prcmote the g e n ia l Welfare, and secure the Bksainga of Liberty to
oeradves and our posterity, do cwdaio and establish this CONSTITUTION for the United States of America

a / f / -ph-e. p -ec fT -e Od U ^iP ctc f 3 7 > y - - fS ^ / / ’ o /V e ? r/b
■Pe>rr» O. p \o r'~e p o p /'« G -- f ' (J n [o ^ 6 llS > i i^ 5 + lC e _ y
)Y\SD*^ ^ C 4? ^ 4 I C ~ p n I) 1 I I 4-y ̂ P |Y)Uid e_. f ' a f H Vi«a-

,* o rvi rv\ c Yi ; p /to bno T-€_ -+ o, e n ■«? r a L \pg|A f6,
A M g , \ e -ss / :S o f T ib e r y-y p o c u r -
s - e !u « 5 ot_r\ Cd c) U y P C 'S 'T \ T y ̂ c (o O rd(<xi'r\ On n ° j

te& T q ^b llsV i (2-OaJ S -p t T D T /O TM p e r AyVve
U f\ ' t-e o{ f e s e> f ('^ r w e iT ' ie a ^ .

Figure 2.3 Sample HSF form.

These isolated characters are o f size 128 * 128 pixels. The Special Database 19 (SD

19) contains the 3699 Handwritten Sample Forms and 814255 segmented hand printed

digit and alphabetic characters form the HSF forms .The isolated characters are divided in

to 62 classes corresponding to “ A ” to “ Z ” , “ a” t o “ z” and “ 0” to “ 9” .

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Pre-processing

Before the recognition is done the preprocessing o f the characters is to be performed

to increase the accuracy o f the recognition. Following are the preprocessing algorithm

2.6.1 Binary image conversation.

2.6.2 Speckle removal and Noise removal

2.6.1 Binary Image Conversation

Once the character is extracted, the extracted character images are converted into

binary images. Binary image is an image in which the pixel intensity is either 1 (white) or

0(Black).Here is the procedure for converting the image to binary image. The image is

first converted into gray scale image using the formula

[Y] = 0 . 2 9 9 * R + 0 . 5 8 7 * G + 0 . 1 1 4 * B

Once the image is converted into gray scale we w ill find whether the intensity o f the

each pixel whether it is greater than the threshold value or not. I f the intensity is greater

than threshold value then the pixel value is stored as black pixel else the pixel is stored as

the white pixel. Hence the character is converted into black with white back ground.

Input Output

Figure 2.4 Binarization

I I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.2 Speckle Removal and Noise Removal

Spurs and dots that are present in the image should be removed to increase the

accuracy o f the algorithm. Size filte r is been used to remove the spurs and dots present in

the image. First it finds the number o f components present in the image, and then it

calculates the areas o f those components. Once all the areas o f all components is found

out then the mean o f those areas and standard deviation is calculated. Now the value o f

those components whose area is less than (mean - standard deviation/ 2) is considered to

be the speckle in the image and are removed from the image.

Input Output

Figure 2.5 Speckle Removal

Once the spurs and dots are remove form the image, 3 by 3 Gaussian filte r mask is

been applied to smoothen the image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

TH IN N IN G

Thinning is process in which object image is been thinned to one pixel .The final

output o f the image w ill be the image w ith pixel width one. Thinning is applied to the

binary image. It is very important in image process to extract the features o f the image.

3.1 H ilditch A lgorithm

The algorithm that is followed is H ilditch thinning algorithm. We consider the 3 by 3

pixels at a time. Hence 8 neighborhood o f each pixel is taken to decide whether that pixel

has to remain in the final out put or it has to be peeled o ff to thin the character. Hence we

arranged the pixels in the clock wise direction as shown below.

P5 P6 P7

P4 PI P8

P3 P2 P9

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Functions that are used

1) NZ(PI) = number o f non-zero neighbors o f PI

2) NT(PI) = number o f 0,1 patterns in the sequence p2,p3,p4,p5,p6,p7,p8,p9,p2

P5 P6 P7

P4 P i
- \

P3 P2 P9
....

Represents

Represents 0
(Un shaded)

The algorithm that is been used here is 3 by 3 w idow version. H ilditch algorithm

repeats it process when ever the black pixel is converted to white pixel. The same process

is repeated on the new pixel values until the there is no change in the pixels. Hence

H ild itch algorithm is parallel sequential algorithm. It is parallel because it checks all the

pixels at one pass and the decision is made whether to keep the pixel or not. It is

sequential because the process is repeated until no changes are done to pixels. Following

are conditions that are used to decide whether pixel is to be remained in the final thinned

output or not.

Conditions

1) 2 < - N Z (p l)

2) N T (p l)= l

3) p2.p4.p8=0

4) p2.p4.p6=0

14

Reproduced with permission of the copyrighf owner. Further reproduction prohibited without permission.

When the above conditions are satisfied the pixel is converted from black to white (i.e.

the pixel is been peeled off). The same procedure is been followed until there is no

peeling o ff o f the pixels.

Condition I ; 2<=NZ (PI)

This condition finds out the number o f non zero pixels that are present in the 8

neighbor hood o f the pixel P I. I f the value is greater than 2 it ensures that no end-point

pixel and no isolated one be deleted.

P5
W '"

P6 P7

P4 P I P8

P3 P2 P9

P5 P6 P7

P4 p. P8

P3 P2 P9

As the picture makes it clear, i fN Z (P l)= l, then PI is a skeleton tip-point and should

not be deleted. I fN Z (P I) -0 , then PI is an isolated point and should also be kept .

Condition 1 : N T (P I) =1

This condition is been used to test the connectivity . I f the value o f NT(P1)>1 and the

pixel is been removed then the connectivity is lost. But the result o f this algorithm is to

Reproduced with permission of the copyrighf owner. Further reproduction prohibited without permission.

maintain the connectivity. In the fo llow ing picture the value o f N T (P I) is greater than

1 .Hence the removal o f the pixel w ill make the image disconnected.

NT(P1)=2

P5 P6 P7

P4 PI P8

P3 P2 P9 .

NT(P1)=2 P5 P6 P7

P4 P Î P8

P3 P2 P9

Condition 3 : p2.p4.p8 = 0

P2*P4*P8=0.

P5 P6 P7

P4 PI P8

P3 P3 PV

Condition 4 : p2.p4.p6 = 0

P2*P4*P6=0

P5 P6 P7

P4 PI P8

P3 P9

16

Reproduced with permission of the copyrighf owner. Further reproduction prohibited without permission.

In the case above NZ (Pl)>=2 and N T (P I) = 1 and P2*P4*P6=0 and

P2*P4*P8=0.Since all the conditions are satisfied the pixel P I is eroded from the image.

This process is continued for all the pixels. Every time the pixel is been removed from

the image the new pixels values are taken as an input and the same process is continued

till no values of the pixels are been changed. This process will result in the

skeletonization of the character. Since we have the character written in black color with

white back ground ,the above condition works only if the character written in white (1)

with black (0) back ground .Hence before implementing the above algorithm the image

color should be changed, i.e. black pixel has to be converted to white and white pixel

has to be converted to black. Once the thinning is done then we can restore the color , i.e.

the black color pixel has to be stored as white and white color has to be stored as black

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input

I I 1 I I I I I I I i I I 10000000(101 I 111 I I I I
i i i i i i i i n i o o o o o o o o o o o o o i i i i i i i i
111I I 11 moooooooooooooooi 111111
I N i l I I I I 10000000000000001 I 11 I I I
11 111 1 11000000000000000000011 11 I
I I I I I 111000000000000000000011111
H i m loooooooooooooooooool i i i i i
m i l l 10000000000000000001 m m
I I I I IlOOOOOOOOOOOOOOOOOOl I I I I I I I
I I I 1100000000000000000111 111 I 111
1111000000000011 111 I I I 111 I I I I I I I
m o o o o o o o o o o m m m m m m i
1110 0 0 0 0 0 0 0 0 I I I I 111 I I I I 1111 I I I I I
I I mOOOOOOOI I I I I H l l l l l l l l l H i l l

I 10 0 0 0 0 0 0 0 1 I I I I I I I I I I I I I 11 I I I I I I

l()()()()()OOOOI I I I I I I I I I I I I 111 I 1 1 111

10 0 0 0 0 0 0 0 1 I I I I 11 I I I I I I I I 11 I I I I I I
10 0 0 0 0 0 0 0 1 I I I I I I I I I I I I I I I I I I I I I I

10 0 0 0 0 0 0 0 1 I I I I I I I I I 111 I I I 11 11 11 I
10 0 0 0 0 0 0 0 1 11 I I I I 111 I 111 I 1 1 1 100 0 0 0

100 000000 011111111111111000000000
100 000000 000000 00111 100000 000000 0
lOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

1 1000000000000000000000000000000
1110000000000000000000000000001

111ÜÜOOOÜÜÜOOOOOOOÜO0OOOOO1 m i

11110000000000000000000001 m i l
n i l 1000000000000000001i i i i i i i i
111 111 11 111111 111 111 1 111 1111111

Output

11
1 1 0 1

10
01

oil
01 1
011
011
011
011
011
oil
1 0 1
110

1 1 1

1
1
1
1
1
1
1
1
1
1
1

1
000

1
1

000
m il

1
1

000
1
1
1

II
0000

Figure 3.1 Thinning

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

FEATURE EXTRACTION

4.1 Feature Extraction

Different feature extraction methods have been published for the extraction o f the

features o f the characters. But the efficient features should be used for the classification

o f the characters. Before the extraction o f the features the image may be divided into

parts horizontally and vertically to extract the features locally. This done because the

some features are same for different characters when the features are extracted for a

character as a whole. For example i f you take character ‘A ’ and character ‘V ’ the total

number o f tips in this case is 2 for both the characters. But i f you take the number o f tips

for 'A ' both the tips are located in the bottom part o f the character and for ‘V ’ they are

located in the top part o f the character. Hence the character is divided into blocks.

Features that are extracted are

4.1.1 Extreme points

4 .1.2 Number o f Tips

4.1.3 Change in color o f horizontal pixels at m idpoint vertically

4.1.4 Change in color o f vertical pixels at m idpoint horizontally

4.1.1 Extreme Points

Extreme Points is used to find out the size o f the image and where is it located so that

you can split the character into vertical and horizontal parts.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1111

i m
1 1 1]

n i l

1111

n i l

n i l
n i l
n i l

n i l
n i l
n i l

n i l
l ino
1110
n 10

noi
1101
ion
ion
0111

oni
0111
0111
1011
ion
1100
n i l 0000000
n i l 1 1 II 111

10
10
10
10
10
10
0
0

01

01

00

00

000

00

00

00

01

01

0
10

10

10

1101

1101

1 101

1 1 1 0

1 1 1 0

I I I '
1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

no
no
101

0011

11 1
1 1 1
1 1 1
111
1 1 1
111
1 1 1
111

Figure 4.1 Extreme Points

Red color pixels show the extreme pixel position o f the character that is present in the

128 by 128 pixels. With the help o f these the position o f the character can be find out and

we can divide the character into block to find the local tips and total local tips.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .1.2 Number o f Tips

Using the thinning algorithm the image is first thinned. Once the image is thinned we

w ill calculate the number o f black pixels that are adjacent to each pixel. I f the total

number o f pixels is one then we w ill identify it as tip o f the character.

1111
1111
1 1 1 1

n i l

n i l
I I I I

1 1 1 1

I I I I

n i l

l i n o

1 1 1 0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

o n I I
Ol l l l
o n i i

o n I I

l o n i

n o n

inooO(
i n n

1 1 1 1 1
i n n

i n n

i n n

i n n

Figure 4.2 Number Tips

4 .1.3 Change in Color o f Pixels Horizontally

Using this algorithm we can find out the number o f times the color o f pixel changes

from white to black at the mid point the character vertically.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 1 1 1 1 1 1 1 m m

i i i n i i i i m i l l

11111 n 111 11111

1 1 1 1 1 1 1 I I

I I I I ! I I I I

m i l l

111111

1 1 1 I I I I I I

1 1 1 1 1 1 1 1 1

1 1 1 1 1 0

1 10001

1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

1 1 1 1 1 1 0 1 1 111111

1 1 1 1 1 0 1 1 1 111111
1 1 1 1 1 0 1 1 1 m m
1 1 1 1 0 1 1 1 1 1 11111

n 10111 1 1 111111

1 1 0 1 1 1 1 1 1 m m

m i n i 111111

101111 111 m i l l

l o i i i n n 111111

1 0 1 1 1 1 1 1 1 111111
101 111 111 111111

1011 111 11 111111

101 111 111 1 11111
1 0 1 1 1 1 1 1 1 1 11111
1 1 0 1 1 1 1 1 1 111111

i n o i n i i m i l l

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 11111

1 1 1 1 1 1 1 1 1 m i l l

i i n i i i n 1 11 11 1

n m n n 1 11111

Figure 4.3 Change in color o f pixels horizontally

The number o f times the value o f pixel changes from 1 to 0 at the mid point o f the

height o f the character is 1.

4.1.4 Change in color o f Pixels vertically

Using this algorithm we can find out the number o f times the color o f pixel changes

from white to black at the mid point the character horizontally.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exam ple Character 'O '

i i i i n i i I I I I I I I I I I I 1 I ! I I I I I I 1
i i i i i i i i 111 1 1 ' lOOOl1 n n n n i
I I I I I I I I 111 10 011100 n n n n i
I I I I I I I I I I I o n n n n i o n I I I I I I

I I I I I I I I 111 o n n n n i i o n 1 I I I I
I I I I I I I I n o 1I I I I I I I I n o n I I I I
I I I I I I I I n o n n n n i i i o n i i n
I I I I I I I I 101 n n n n i n 101 n i l
I I I I I I I I 101 n n n n i i i n o i n i
I I I I I I I I 101 n n n n i i i n o i n i
I I I I I I I I 101 n n n n i i i n o i n i
I I I I I I I I 101 n n n n i i i i n o i n
I I I I I I I I 101 n n n n i i i n i o n i
I I I I I I I I 011 n n n n i i i i n o i n
I I I I I I I I 011 n n n n i i i n i i o n
I I I I I I I I O I I I n n n n i i i n i i o n
I I I I I I I I O I I I n n n n i i i i n i o n
I I I I I I I O I I I n n n n i i i i n i o n
1I I I I I I O I I I n n n n i n i i n o i i
I I I I I I O I I I I n n n n i n i i n o i i
I I I I I O I I I I I n n n n i n i i n o i i
I I I I I O I I I I I n n n n i i i i n i o n
I I I I O I I I I I I n n n n i i i i n i o n
I I I I O I I I I I I n n n n i i i i n o i n
1I I O I I I I I I I n n n n i i i i n o i n
I I I O I I I I I I I n n n n i n n o n n
I I O I I I I I I I I n n n n i n o o n n i
I I O I I I I I I I I n n n n i l o n n n i
I I O I I I I I I I I I I I I I I I I K l o n n n n
I I O I I I I I I I I n n n n o i n I I I i n
I I I O I I I I I I I i i n n o o i n n n n i
I I I O I I I I I I I H i 000111 n n n n i
I I I I OOI I I I I o o c n n n n n n n i
I I I I I I OOOOOOOI I I I I I I I I n n n n i
l n n n n i

Figure 4.4 Change in color o f pixels vertically

Flere the total number o f times the value o f pixel changes from 1 to 0 at the mid point

o f the horizontal width o f the character are 2 .

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Hierarchical Approach

The probability o f an arbitrary character to occur in a random text location is about

the same for each character, w ith the exception o f special characters. Thus i f we

consider C characters (not counting special characters) that probability is approximately

P,=l/C, I =1, 2. 3, ... , C. The information is l,= Log? (I/P,) == LogijC), i=1, 2, 3........

C and signifies the number o f bits needed to encode a character. The entropy H o f the

(■ r

system is H P, Log 2(I/P ,) (I/C) Log ?C=Log ? C. The probability
/ = ! H

distribution function o f the system is uniform, below we prove a theorem related to the

expected number o f searches associated with a set o f items(Characters etc) having

discrete uniform distribution .

Theorem I :

I f a set S o f C items has a uniform distribution for each item to occur, i.e. P,= I/C,

i= L 2 , , C and the entropy therefore is Log 2 C, then the expected number o f

searches needed to recognize a random item is C/2 , regardless o f the operating order o f

the recognition algorithm.

Proof:

Let j] , j 2 , .jc, 1 < J i < C , i= 1,2,3, C be the order which the pattern

recognition algorithm follows in order to decide which one is the inputted item. The

probability that the item w ill be recognized in the first tria l is 1/C, in the second trial is

(C-l)/C* 1/(C-1) and in the i""tria l is ((C - l) .C - i+ l) / (C * (C - l)(C - i+ l)) = I/C

| - I, 2, 3... C. Hence the expected number o f trials needed for one item to be recognized

is l/C+2*l/C+.........+C*I/C=]/C *(C(C+]))/2 = (C+])/2.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The feature vectors in character recognition contain a relatively large number o f

components. The pattern recognition algorithms associated w ith large feature vectors,

are relatively slow due to the complexity o f the operations. To speed up the

recognition process First we use a very fast algorithm that although not very accurate,

given that a certain character is scanned , they include this character as part o f their

recognition set and they also include some other characters w ith variable probability ,

while they exclude certain characters. The way this fast algorithm works is it

recognizes that the character for example could be an 'A ' or H ' or a ‘ K ' few other

characters , but it could not be for example an ‘ O ' or a ‘ T etc.Associated with the

recognition are probability having this information we rank the characters according to

their probabilities and we employ the more accurate and more computationally

expensive algorithm which recognizes the character much faster .To make our point

fo r example i f there are 10 possible characters in the set and the algorithm recognizes

C? or C5 or Cy or Cg only , and i f any time the algorithm recognizes that the character is

one o f those characters then Cy is the most like ly w ith probability Py is the next likely

w ith probability Py C5 is the next likely w ith probability P5 and Cg is the last one with

probability PgThe expected number o f comparisons fo r the comprehensive algorithm

now is less than 2.5 as opposed to 5.5 that were before.

Given any set o f characters to be recognized their number is fin ite , so it is straight

forward to enumerate them w ith a fin ite sequence o f numbers 1,2,3, ,Max. A fte r

applying the recognition algorithm the set is reduced to U|, n y , ,n„ where

l< = n,<=]Vlax, i= l, 2, 3, N. and N<Max. Further more i f X is a random variable

taking on the numbers ni,ny, Un P(X=ni) >P(X=U2) > >P(X=Un)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the experimental results using the capital handwritten letters o f the NIST we

obtained that the discrete probability function

F(x)= e"“'‘ , x= l .2,3.....N

Thus, P(X=n,) = e . P(X=n2)= . P(X=n3)= e P(X=nN)= 6 '^ '"

Since P(X=ni) +P(X=n2)+ +P(X=nN)=l

We have e " ''"+ e '"’'" + + e '^*‘“ = l

=> e '" (l+ e '*"+ + ...e '‘^ '” ‘ ")= l

=> e " { (l - e - ^ * ') / (l - e ") } =1

= > l- e '^ * ‘'= e ‘‘ - l => e ‘’ =2. Using numerical methods we can compute a.

Theorem 2:

Using the preprocessing method and then the fu ll scale character recognition

algorithm the expected number o f searches reduces from {M ax+1 }/2 to

e ̂ { (] - (N + l) e '^^+ Ne'*'^’̂ '**“)/ (l - e ‘^)^} which for a<l is approximately e ‘7 (1 -6 '““) “

Proof ;

The expected number o f searches after the preprocessing is

E(X)= e + 2*e-^% 3'e"^'+............. + N *e-^"

Or E (X)= e " (I + 2 *e " +3<e-^)^ + + N * (e 'T ' '^)

Or i f U = e " then E(X)= U(1+ 2*U + 3 *U ' + + N *U ^ '')

Or E(X)= U d/du (1 + U + U 4+U^)

Or E(X) = U {(] -U ^^ ') /(]-U)}= U {- (N + l)U ^ (I-U)+ (I-U ^+ ')} /(l-U)^

Q rE (X)= U {1- U ^^ '-N U ^+N U ’̂ ’" ' - u '^+u ^ ^ ') } / (1-U)- = U{ l-(N + l)U ^+ N U ’̂ ’" } / (l - U f

E(x)= e " { I - (N + l) e ^"+ N e "^ ^ ')^ } /(l-e Y

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a<I this is approximately is e '7 (e ‘'- l)^ For the 26 capital English letters

{M ax+ I j/2 =13.5 after preprocessing the expected numbers o f searches are about 2.3.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

CLASSIFICATIO N AN D IM PLEM EN TATIO N

5.1 Classification

Once the preprocessing is done then comes the recognition o f the character. But our

objective is grouping the characters that have the same features and eliminate the

character that does not have. This can be done by fo llow ing the rules. Each character w ill

have its own features that are not present in other characters. Hence these rules are used

to classify each that have same features and avoid the other characters that do not have

the same features.

Rules for character ‘A"

I) It should have two tips at the bottom o f character.

2) Total number o f tips should not be more that 6 .

3) When a horizontal line is drawn at the mid point vertically it should intersect two

slant lines. Hence it should have two black pixels and the number o f times the

color o f the pixel changes from I to 0 should be more than 2.

I f the character that satisfies all the above conditions then it should be an ‘A '. I f the

character does not satisfy then it is not an ‘A ’ . When the follow ing rules are applied to

the input database character ‘A ’ may be some times recognized as the other characters

like ‘R ’ , ‘M ’ , ‘ W ’ since they have the same features described for the character ‘A ’ . So

‘ M y Ry ‘ W ' fall into the group o f having the same features as ‘A '. But ‘A 'may not

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have the same features as characters like M' hence it doest not fall into the group. Even

though the character 'A ' may be recognized as other alphabets the probability would be

different, i f you take the R' since the features o f ‘ A ' and R ' is same there is more

probability that the alphabet 'A ' may be recognized as ‘ RE But i f you take the character

‘ B ' even though sometimes it may have features a s ‘ A ' the number o f times the ‘ A

recognized as B w ill be comparatively less. Hence the probabability for ‘A ' to be

recognized as ‘B ' w ill be less. I f you take the characters like ‘ E, ‘ .E the probability that

'A ' recognized as those character w ill be zero since the features o f 'A ' are completely

different to those to the features o f the ‘ E, ‘J' Hence we can increase the speed o f the

recognition by decreasing the number o f comparisons by not comparing the characters

whose probability is zero and apply the hierarchical approach for other characters whose

probability is not zero. Hierarchical approach is which is been discussed in the previous

chapter.

5.2 Implementation

The total number o f characters that are used for testing the functioning o f the

algorithm is 2498 in HSF 2 database and 2498 for HSF 3 database.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fable I Input Database

HSF 2 characters HSF 3 Characters

Number o f A 's 96
Number o f B's 97
Number o f C's 97
Number o f D 's 97
Number o f E's 96
Number o f F's 96
Number o f G's 96
Number o f H 's 96
Number o f i's 96
Number o f J's 96
Number o f K 's 96
Number o f L 's 96
Number o f M ’ s 96
Number o f N 's 96
Number o f O ’s 96
Number o f P’ s 96
Number o f Q ’s 96
Number o f R's 96
Number o f S’ s 96
Number o f T ’ s 96
Number o f U ’ s 96
Number o f V ’ s 95
Number o f W ’s 96
Number o f X ’ s 96
Number o f Y ’s 96
Number o f Z ’ s 96

Number o f A 's 95
Number o f B's 97
Number o f C ’ s 97
Number o f D ’ s 97
Number o f E’ s 96
Number o f F's 96
Number o f G's 96
Number o f FI’ s 96
Number o f i's 96
Number o f .I's 96
Number o f K ’ s 96
Number o f L ’ s 96
Number o f M ’s 96
Number o f N ’ s 96
Number o f O ’s 96
Number o f P’s 96
Number o f Q ’s 96
Number o f R’ s 96
Number o f S’s 96
Number o f T ’s 96
Number o f U ’ s 96
Number o f V ’ s 96
Number o f W ’s 96
Number o f X ’ s 96
Number o f Y ’s 96
Number o f Z ’s 96

When the algorithm is ran the fo llow ing results are been obtained for the character

‘A ’ . The fo llow ing table indicates that number o f A 's recognized as other characters.

From the below table for HSF 2 we can under stand that the 10 times A ’ s has been

recognized as B. 18 times it been recognized as 'EE 93, 96 , 42 times it been recognized

as 'M E ‘ R E ‘ W ’ respectively .it is not recognized as D , I, J, L ,0 , S,T ,V,Y,Z.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2 A 's Recognized as Other Characters

DATABASE HSF 2 HSF 3
Number o f A's 93 89
Number o f B ’s 10 9

Number o f C's 2 1

Number o f D ’s 0 3

Number o f E’ s 18 12

Number o f F's 21 15

Number o f G's 4 4

Number o f H ’s 8 6

Number o f I ’ s 0 0

Number o f .I's 0 0

Number o f K 's 9 6
Number o f L's 0 0
Number o f M ’ s 93 89
Number o f N 's 23 22

Number o f O ’s 0 0

Number o f P's 2 3

Number o f Q ’s 4 3

Number o f R ’s 96 95

Number o f S’s 0 0

Number o f T ’ s 0 0

Number o f U ’s 4 4

Number o f V ’s 0 0

Number o f W ’ s 42 44
Number o f X ’s 9 6

Number o f Y ’s 0 0

Number o f Z ’ s 0 0

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3 Other Characters Recognized as A 's

Output o f HSF 2 Output o f HSF 3

Number o f A ’ s 93
Number o f B's 13
Number o f C ’ s 0
Number o f D ’s 4
Number o f E’ s 11
Number o f F's 0
Number o f G 's 0
Number o f H ’ s 90
Number o f l's 0
Number o f J's 0
Number o f K ’ s 61
Number o f L ’ s 2
Number o f M ’ s 89
Number o f N ’ s 48
Number o f O ’s 2
Number o f P’ s 1
Number o f Q ’s 6
Number o f R ’s 80
Number o f S’s 0
Number o f T ’ s 0
Number o f U ’ s 4
Number o f V ’ s 3
Number o f W ’ s 16
Number o f X ’ s 40
Number o f Y ’ s 2
Number o f Z ’ s 3

Number o f A 's 89
Number o f B's 13
Number o f C’ s 0
Number o f D ’ s 5
Number o f E ’s 9
Number o f F’ s 0
Number o f G ’ s 1
Number o f H ’ s 88
Number o f l's 0
Number o f J's 0
Number o f K ’ s 74
Number o f L ’ s 0
Number o f M ’ s 90
Number o f N ’ s 60
Number o f O ’ s 2
Number o f P’s 3
Number o f Q ’s 8
Number o f R ’ s 87
Number o f S’ s 1
Number o f T ’ s 0
Number o f U 's 1
Number o f V ’ s 0
Number o f W ’s 19
Number o f X ’ s 33
Number o f Y ’ s 2
Number o f Z ’ s 0

The fo llow ing above table for database HSF 2 indicates that number o f other

characters recognized as ‘A ’ s. For example table indicates the out o f the 96 ‘B ’ s 13

are recognized as ‘A ” s .

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

EFFIEN CY A N D C O N C LU SIO N

6.1 E ffic iency

I f the general procedure is been fo llowed then the each alphabet feature should be

compared w ith all the other alphabet features o f the input database. Even though the

accuracy o f the recognition process is more but the tim e consumption o f the process is

very high which is disadvantage for the recognition process. Hence the hierarchical

approach is been fo llow ed where the number o f comparisons required w il l be less.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4 Probability o f A ’s Recognized as Other Characters

HSF 2 HSF 3

Probab ility o f A ’ s to be A ’s 0.212329 0.216545
Probab ility o f A ’s to be B ’ s 0.022831 0.021898
Probability o f A ’s to be C ’s 0.004566 0.002433
Probab ility o f A ’ s to be D ’s 0.000000 0.007299
Probab ility o f A ’ s to be E ’s 0.041096 0.029197
Probab ility o f A ’s to be F ’ s 0.047945 0.036496
Probab ility o f A ’s to be G ’s 0.009132 0.009732
Probab ility o f A ’s to be H ’s 0.018265 0.014599
Probab ility o f A ’s to be I ’ s 0.000000 0.000000
P robab ility o f A ’s to be J ’ s 0.000000 0.000000
P robab ility o f A ’ s to be K ’ s 0.020548 0.014599
Probab ility o f A ’s to be L ’ s 0.000000 0.000000
Probab ility o f A ’s to be M ’s 0.212329 0.216545
Probab ility o f A ’s to be N ’s 0.052511 0.053528
Probab ility o f A ’s to be O ’s 0.000000 0.000000
P robab ility o f A ’s to be P ’s 0.004566 0.007299
P robab ility o f A ’s to be Q ’s 0.009132 0.007299
Probab ility o f A ’s to be R ’s 0.219178 0.231144
Probab ility o f A ’s to be S’s 0.000000 0.000000
Probab ility o f A ’s to be T ’ s 0.000000 0.000000
P robab ility o f A ’ s to be U ’s 0.009132 0.009732
Probab ility o f A ’ s to be V ’s 0.000000 0.000000
Probab ility o f A ’ s to be W ’s 0.09589 0.107056
Probab ility o f A ’s to be X ’s 0.020548 0.014599
Probab ility o f A ’s to be Y ’s 0.000000 0.000000
Probab ility o f A ’s to be Z ’ s 0.000000 0.000000

From the output o f the database H S F 2 obtained , the p robab ility o f the character ‘A ’

to be recognized as the other characters we can understand that the features o f the ‘ A ’ are

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matching w ith the features o f ‘W ’ more compared to the features o f the

‘Q ’ . Hence the probabilities o f A ’s recognized as 'M ',' N ', ‘R ’ ,‘ W ' are more then

compared to the probabilities o f 'A ' recognized as 'B ','C ','D ','E '. Features o f other

alphabets such as ‘D ’ ,T ’ , ‘J’ , ‘ L ’ , ‘O ’ ,‘ S’ , ‘T ’ , ‘V ’ , ‘Y ’ , ‘Z ’ are completely contrast

hence the probab ility o f A 's to be recognized is zero. Since the p robab ility that the ‘A ’

recognized as other characters is not the same the hierarchical approach is been followed.

Since there are total o f 26 characters present in the input database the total number o f

comparisons required w il l be (26+1)/2 W hich is equal to 13.5.But i f the number the

hierarchical approach is been fo llowed the number o f comparisons w il l be less which is

been showed below. Total number o f characters is 26.The number o f characters whose

probab ility is zero is 10. Hence the number characters that ‘A ’ should be compared to

classify is 26-10=16.Hence the number o f comparisons required is (1 6 + l)/2 = 17/2=8.5.

From the above results we can understand that the number o f comparisons required is less.

Since the probab ility that the ‘A ’ recognized as other characters is not same for all the

characters. Therefore the hierarchical approach is fo llow ed where the characters that have

the maximum probab ility is compared firs t and which have the m in im um p robab ility is

compared last. Hence the characters are ranked in the order o f the ir probability.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5 Rank o f Characters

H S F 2 Rank

P robability o f A ’ s to be R ’s 0.219178 1
P robability o f A ’ s to be A ’s 0.212329 2
P robability o f A ’s to be M ’s 0.212329 3
P robability o f A ’s to be W ’s 0.09589 4
Probability o f A ’ s to be N ’s 0.052511 5
Probability o f A ’ s to be F ’ s 0.047945 6
P robability o f A ’ s to be E ’s 0.041096 7
P robability o f A ’ s to be B ’s 0.022831 8
P robability o f A ’ s to be K ’s 0.020548 9
P robability o f A ’ s to be X ’s 0.020548 10
Probability o f A ’ s to be H ’s 0.018265 11
Probab ility o f A ’ s to be G ’s 0.009132 12
P robability o f A ’ s to be Q ’s 0.009132 13
P robability o f A ’ s to be U ’s 0.009132 14
Probab ility o f A ’ s to be C ’s 0.004566 15
Probab ility o f A ’ s to be P ’s 0.004566 16
Probab ility o f A ’ s to be D ’s 0.000000 17
P robability o f A ’ s to be I ’ s 0.000000 18
Probab ility o f A ’ s to be J’ s 0.000000 19
Probab ility o f A ’ s to be L ’s 0.000000 20
Probab ility o f A ’ s to be O ’s 0.000000 21
Probab ility o f A ’ s to be S’s 0.000000 22
P robab ility o f A ’ s to be T ’s 0.000000 23
P robability o f A ’ s to be V ’s 0.000000 24
Probab ility o f A ’ s to be Y ’s 0.000000 25
Probability o f A ’ s to be Z ’s 0.000000 26

For the database FISF_2 we can see the ranks o f the characters that ‘A ’ been

recognized as others. Hence from the table we can understand that ‘A ’ has to be

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compared w ith either ‘A ’ , ‘M ’ , ‘R ’ and then w ith ‘ W ’ ,’N ’ , ‘E ’ and so on. The sum o f

the probabilities should be equal

= > P a+ P b +P c+ P i) +Pr; + P f + P g + P h+ P i+P.i + P k+ P i.+P m +P n + P o+ P p +P q + P r+ P s

+ P t+ P u+ P v +P \v + P x + P y + P z = 1

= > P.a(1 + (P b + P c+ P d + P e + P f + P g + P h+ P i+P.i + P k+ P l+ P m + P n+ P o+ P p +P q + P r+ P s

+ P t+ P u+ P v + P \v + Px+Py +Pz)/ P a) = 1.

= > P a= 1 /((1 + (P b + P c+ P d + P e + P f + P g + P h+ P i+P.i + P r+ P l+ P m + P n+ P o+ P p + P q

+ P r+ P s + P t+ P u+ P v + P w + Px+Py +Pz)/ P a)-

Expected number o f tria ls is

P a * R a+ P b* R b + P c * R c + P d * R d + P f* R f + P f* R f + P g * R g + P h * R h +P,*R, +P.i *Rj

+ P k * R k+ P l* Ri. + P m * R m + P n * R n +Po*Ro +Pp *Rp + P q * R q + P r* R r +Ps*Rs + P t * R t

+Pu*Rij +Pv*Rv +Pw*Rw+ Px*Rx +Py*Ry +Pz*Rz

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6 Expected Num ber o f Trials

HSF 2 Rank
Rank*
Probability

P robab ility o f A ’ s to be R ’ s 0.219178 1 0.219178
P robab ility o f A ’ s to be A ’ s 0.212329 2 0.424658
P robab ility o f A ’ s to be M ’s 0.212329 3 0.636987
P robab ility o f A ’ s to be W ’s 0.09589 4 0.38356
Probab ility o f A ’ s to be N ’ s 0.052511 5 0.262555
P robab ility o f A ’ s to be F ’s 0.047945 6 0.28767
P robab ility o f A ’ s to be E ’ s 0.041096 7 0.287672
Probab ility o f A ’ s to be B ’ s 0.022831 8 0.205479
P robab ility o f A ’ s to be K ’ s 0.020548 9 0.20548
Probab ility o f A ’ s to be X ’ s 0.020548 10 0.226028
Probab ility o f A ’ s to be H ’ s 0.018265 11 0.21918
Probability o f A ’ s to be G ’ s 0.009132 12 0.118716
P robab ility o f A ’s to be Q ’ s 0.009132 13 0.127848
Probab ility o f A ’ s to be U ’ s 0.009132 14 0.13698
Probab ility o f A ’ s to be C ’s 0.004566 15 0.073056
Probab ility o f A ’ s to be P ’s 0.004566 16 0.077622
Probab ility o f A ’ s to be D ’ s 0.000000 17 0
P robab ility o f A ’ s to be I ’ s 0.000000 18 0
P robab ility o f A ’ s to be J ’ s 0.000000 19 0
P robab ility o f A ’ s to be L ’ s 0.000000 20 0
Probab ility o f A ’ s to be O ’ s 0.000000 21 0
Probab ility o f A ’ s to be S’s 0.000000 22 0
Probab ility o f A ’ s to be T ’ s 0.000000 23 0
Probab ility o f A ’ s to be V ’ s 0.000000 24 0
Probab ility o f A ’ s to be Y ’ s 0.000000 25 0
Probab ility o f A ’ s to be Z ’ s 0.000000 26 0

The total expected number o f tria ls required fo r database HSF 2 is 3.892669 which

is less compared to 8 .5.The same procedure is been applied to all the characters in the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

database which shows that the number o f comparisons required fo r classifications o f the

characters is much less i f the hierarchical procedure is been followed. There by reducing

the number o f comparisons we are able to save tim e for the recognition process.

6.2 Conclusion

Optica] character recognition is way in which the printed or handwritten text is

converted into machine editable form. Character recognition is very important in modem

day life where it is used in the postal services, banking and insurance companies and

many more. Hence it is very im portant fie ld and the research is going on in this field.

Recognition o f the hand w ritten characters is very d iffic u lt since each user w rites the

same character in d iffe rent shape and size. In order to recognize the characters fo llow ing

procedure has to be fo llowed.

1) Character should be converted to b inary image

2) B ig dots that are present in the image should be removed.

3) Noise that is present in the image has to be removed.

Once the preprocessing has been done then it has to be fo llowed by the feature

extraction. Once the features are extracted then the resultant features must be trained and

tested by using the classifier. There are different classifiers that can be used in the optical

character recognizers.

They are

1) Statistical Methods

2) A rtif ic ia l Neural N e tw ork Method.

3) Kernel Method.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4) Com bination o f M u ltip le Classifiers.

The above methods w ill help in high accuracy .But the time taken w il l be more which

is a disadvantage fo r the recognizer since it has to be trained and tested against huge data

base o f characters. Hence the hierarchical approach is been fo llowed to increase the

effic iency by decreasing the number o f comparisons by the recognizer to classify .Since

all characters would not have the same features hence the characters which not sim ilar

can be elim inated fo r comparison. There by reducing the number o f comparisons required

by the classifier to classify the characters. A fte r e lim inating the characters whose features

are not same, then the other characters are compared in the order o f the ir probabilities.

There by we can increase the speed o f the recognition process.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1. C .L.W ilson and M .D .Garris. Flandprinted character database. Technical Report

Special Database 1, H W D B , National Institute o f Standards and Technology, A p r il

1990.

2. R .A W ilk inson. Hand printed Segmented Characters Database. Technical Report Test

Database 1, T S T l, National Institute o f Standards and Technology, February 1992.

3. Meenakshisundaram Murugan. “ Handwritten Number Recognition” . MS thesis.

U n ivers ity o f Nevada , Las Vegas .M ay 2005.

4. Mageshkumar Padmanaban . “ Handwritten Character Recognition by Com bining

M u ltip le Recognizers Using Conditional Probabilities” . MS Thesis ,U n ivers ity o f

Nevada Las Vegas. December 2005.

5. Pu Han et al. “ Car license plate feature extraction and recognition based on m ulti

stage classifier” . Proceeding o f Second International Conference on M achine learning

and Cybernetics, X i ’ an,2-5 Novem ber 2003.

6 . L iangrui Pen et al. “ M u ltiling u a l Document recognition research and its applications

in China” . Proceeding o f Second International Conference on Document Image

Analysis fo r L ib ra ries (D IA L 2006)

7. P.J. Grother. Hand printed forms and character database, N IS T special

database 19,March 1995. Technical Report and CDROM .

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 . C .Y. Suen, J. Tan, Analysis o f error o f handwritten d ig its made by a m ultitude o f

classifiers. Pattern R ecognition Letters, 26(3): 369-379, 2005

9. A . F.R. Rahman, M .C . Fairhurst, M u ltip le classifier decision combination strategies

fo r character recognition: a review , Int. J. D ocum ent A nalysis and Recognition, 5(4):

1 6 6 -1 9 4 ,2 0 0 3 .

10. L. Xu, A. Krzyzak, C.Y. Suen, Methods o f com bining m u ltip le classifiers and their

applications to handwriting recognition, IE E E Trans. System M an Cybernet., 22(3):

4 1 8 -4 3 5 ,1 9 9 2 .

11. J. K ittle r, M . Hatef, R.P.W. Duin, .1. Matas, On com bining classifiers, IE E E Trans.

Pattern Anal. M ach .In te l!, 20(3): 226-239, 1998.

12. V. Vapnik, The N ature o f Sta tistical Learning Springer-Verlag. New W ork,

1995.

13. C.J.C. Burges. A tutoria l on support vector machines fo r pattern recognition.

Know ledge D iscovery and D ata M ining, 2(2): 1-43, 1998.

14. A.F.R. Rahman, M .C . Fairhurst, M u ltip le classier decision combination strategies for

character recognition: a review. Int. J. D ocum ent A nalysis and Recognition, 5(4): 166-

1 9 4 ,2 0 0 3 .

15. F.K imura, K.Takashima, S.Tsuruoka and Y .M iyake “ M od ified Quadtratic

discrim inant functions and the application to Chinese character recognition” ,

lEEETrans Pattern Anal. M achine Intel I., vo l.P A M I-9 , p p l4 9 - l5 3 , Jan.1987.

16. C.J H ild itch , “ L inear skeletons from square cupboards” . Machine Intelligence 4,

(Edinburgh Univ,Press), pp 403-420

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17. M . Blumenstein and B. Veim a, “ Neural-based solutions fo r the segmentation and

recognition o f d iffic u lt handwritten words from a benchmark database” , Proc. 5th

International Conference on Document Analysis and Recognition, pages 281-284,

Bangalore, India, 1999.

18. P. D. Gader, M . A . Mohamed, and J. H. Chiang, “ Handwritten word recognition w ith

character and inter-character neural networks” , IEEE Transactions on Systems, Man

and Cybernetics - Part B, 27:158-164, 1994

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A PP E N D IX

Statistical
Method

Kernel
Methods

Pre Processing

Classification

Feature vectors

A rtif ic ia l Neural
Networks

M u lti Classifier
Combination

Feature Extraction

Paper Document

Figure 1 General Approach

In the general approach the paper document where the user writes the text w il l be

scanned using scanner. Once the paper is been d ig itized then the preprocessing w il l be

implemented to increase the accuracy and effic iency o f the algorithm. Once the

preprocessing is done the features w il l be extracted from the characters and stored in the

feature vectors .A ll these feature vectors w il l be used by the classifier to recognized the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characters. Since each character has to be compared w ith all other characters the time

taken w il l be less. To increase the speed o f the recognition the hierarchical approach is

been followed.

Statistical
Method

Kernel
Methods

Feature vectors

Pre Processing

Classification

Hierarchical Approach

A rtif ic ia l Neural
Networks

M u lti Classifier
Combination

Paper Document

Feature Extraction

Figure 2 Hierarchical Approach

In the above approach after the feature vectors are extracted the hierarchical approach

w il l be implemented where by tbe number o f characters that are to be compared w il l be

less then the maximum number o f characters that are present in the characters.

Functions used in the Implementation

1. F lild itch Thinning algorithm

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. ConnectedComponentSementer

3. FilterBySize

4. Findminmax

5. Number o f tips

1)H ild itch Thinning algorithm

Thinning is process in which object image w idth w il l be reduced to one pixel w idth.

Functions used in the thinning algorithm.

1.1)calculateNZ

This function w il l be calculating the number o f black pixels that are adjacent to it

1.2) calculateNT

This function w il l be calculating the number o f times the value o f the pixel color

changes 1 to 0 in the pattern p2, p3 ,p4,p5,p6,p7,p8,p9,p2.

2)FilterbySize

This function is used to remove the speckles that are present in the character image.

3) ConnectedComponentSegmenter

This function w il l be help you to count the number o f components that arc present in the

image.

2)Findminmax

This function w ill find out the size and the position o f the character that is present in the

128 by 128 image.

3)Number o f Tips

This function w ill find o f the number o f tips present in the thinned image.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. H ild itch Function

package edu.univ.cs.ip;

public class TwoPassThinner implements Thinner {

public Imageinterface apply(final Imageinterface image)
throws ImageProcessingException {

return hilditch(image);
}

public Imageinterface hilditch(Imageinterface image)

{

int treshold=1;
int []points=new int[10];

int loc;
int image size;
int image row, image col;
boolean changed^true;
int i, j;
char option:

image row -image.getHeight():
image col = image.getWidth();
image size = image row * image col;
int Qimage original - new int[image_size];

Imageinterface image2=image.copy();

for(int r=0;r<128;r++)
for(int p=0;p<128;p++)
{

if(image2.getPixel(r,p)==1)
image_original[p+r*128]=1;

else
image_original[p+r*128]=0;

}

for(i=0; i<image_col; i++){
for(j=0; j<image_row; j++)

{
if(image_original[i+j*128] >= 1)

image.setPixel(j,i,0); //set black
else

image.setPixel(j,i,1); //set white
}

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int [] m1 = new int[image_size];
int [] m2 - new int[image_sizej;
int [] mO = new int[image_sizej;

for(i=0; i<image size; i++){

if(image_original[i]==0)
{

}

m1[i] = 1
m2[i] = 1
mO[i] = 1

}
else{

m1[i] = 0
m2[i] = 0
mO[i] = 0

}

//set black

//set white

// 4 thinning conditions
//cout « "\nApplying thinning.............. \n";
while(changed){

changed - false;

//set A - delete South & West bounds
for(int x-1; x<image_row-1; x++){

i = x*128;
for(int y-1 ; y<image_col-1 ; y++){

j = y;

//fill 3x3 points using m l at (i j)
fillPoints(i,j,m1,points,imagecol);

if(points[1] = - 1){ // p1 -= 1
/*cond1*/ if(calculateNZ(points) >= 2){
/*cond2*/ if(calculateNT(points) == 1){
/*cond3*/ if((points[2] * points[4] * points[6]) == 0){
/*cond4*/ if((points[2] * points[4] * points[8]) == 0){

m2[i+j] - 0; //set white (delete)
changed - true;

}//end if cond4
}//end if cond3

}//end if cond2
}//end if cond1

}//end if p1 == 1
}//end for y

}//end for x

// copy matrix to for set B
if(changed){

for(int n=0; n<image_size; n++)

m1[n] = m2[n];

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//set B - delete North & East bounds
for(int x=1; x<image_row-1; x++){

i = x*128;
for(int y=1; y<image_col-1 ; y++){

j = y:

//fill 3x3 points using ml at (i j)
fillPoints(iJ,m1,points,imagecol);

if(points[1] == 1){ // p i = - 1
/*cond1*/ if(calculateNZ(points) >= 2){
/*cond2*/ if(calculateNT(points) == 1){
/*cond3*/ if((points[2] * points[6] * points[8]) =- 0){
/*cond4*/ if((points[4] * points[6] * points[8]) == 0){

m2[i+j] = 0; //set white (delete)
changed = true;

}//end if cond4
}//end if cond3

}//end if cond2
}//end if condl

}//end if p i == 1

}//end for y
}//end for x

// copy matrix to final
if(changed){

for(int n=0; n<image_size; n++)

m1[n] = m2[n];
}

}//end while

//clean up
for(int x=1 ; x<image_row-1 ; x++){

i = x*128;
for(int y=1 ; y<image_col-1 ; y++){

j = y:
if(m1[i+j] > 0){

fillPoints(i,j,ml,points,imagecol);
if(calculateNT(points) == 2){ //means 2-way split

if(points[2]+points[4]=-2 || points[4]+points[6]==2 || points[6]+points[8]==2 ||
points[8]+points[2]==2){

m1[i+j] = 0; //extra, delete point
m2[i+j] = 0;

}
}
else if(calculateNT (points) -= 3){

if(points[2]+points[4]+points[6]==3 || points[4]+points[6]+points[8]==3 ||
points[6]+points[8]+points[2]-=3 || points[8]+points[2]+points[4]=-3){

m1[i+j] = 0;

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m2[i+j] = 0 ;
}

}
}

}
}
//(((up to now, m0=original(0|1), m1=m2=thinned&cleaned))))

for(int r=0; r<image_size; r++){
if(m1[r] == 1)

image_original[r] = 0; //set black
else

lmage_original[r] = 1 ; //set white
}

// convert imagematrix(0|1) back to image data(.bmp)
for(i-0; i<image_col; i++){

for(j=0; j<image row; j++)

if(image_original[j+i*128] == 1)
image.setPixel(j,i,1); //set black

else
image.setPixel(j,i,0); //set white

}

return image;
}
public void fillPoints(int i, int j, int []image_matrix,

int Qpoints, int c)
{

// p5 p6 p7
// p4 p i p8
// p3 p2 p9

points[1] = image_matrix[(i)+(j)];
points[2] = image_matrix[(i+c)+(j)];
points[3] = image_matrix[(i+c)+(j-1)];
points[4] = image_matrix[i +j-1];
points[5] = image_matrix[(i-c)+(j-1)];
points[6] = image_matrix[(i-c)+(j)];
points[7] = image_matrix[(i-c)+(j+1)];
points[8] = image matrix[(i)+(j+1)];
points[9] = image_matrix[(i+c)+(j+1)];

}

public int calculateNZ(int Opt)
{

// non-zero neighbors to pi

}
return (pt[2]+pt[3]+pt[4]+pt[5]+pt[6]+pt[7]+pt[8]+pt[9]);

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public int calculateNT(int []pt)
{

// zero(O) to one(1) transition
II order - {p2,p3,p4,p5,p6,p7,p8,p9,p2}

int transition^O;

if((pt[3]-pt[2])
if((pt[4]-pt[3])
if((pt[5]-pt[4J) ==
if((pt[6]-pt[5]) ==
if((Pt[7]-pt[6]) ==
if((pt[8]-pt[7]) ==
if((pt[9]-pt[8]) =-
if((pt[2]-pt[9]) ==

) transition++;
) transition++;
) transition++;
) transition++;
) transition++;
) transition++;
) transition++:
) transition++;

return transition;

2. Grouping Function

package edu.univ.cs.ocr.structural;

import java.awt.Rectangle;
import java.io.DataInputStream;
import java.io.File;
import java.io.FlleInputStream;
import java.io.FileWriter;
import java.io.lOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Linked List;
import java.util.List;
import org.animism.math.Statistics;

import edu.unlv.cs.ip.BinaryConverter;
import edu.unlv.cs.ip.Binarylmage;
import edu.unlv.cs.ip.Directlmage;
import edu.unlv.cs.ip.Grayscalelmage;
import edu.univ.cs.ip.Imageinterface;
import edu.univ.cs.ip.ImageProcessingException;
import edu.unlv.cs.ip.ImageRotator;
import edu.unlv.cs.ip.Thinner;
import edu.unlv.cs.ip.TwoPassThinner;
import edu.unlv.cs.ip.filter.GaussianFilter;
import edu.unlv.cs.ocr.CharacterLibrary;
import edu.unlv.cs.ocr.ConnectedComponent;
import edu.unlv.cs.ocr. ConnectedComponentSegmenter;

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import edu.unlv.cs.ocr.*

*/
public class RegUsingEdge extends CharacterLibrary{

protected Imageinterface thin;
protected Imageinterface

mJmg,m_binarylmage,m_binarylmage2,m_imageOne,mJmageTwo,m_imageThree,thinnedJma
ge,thinned_image2,shadow1_image,shadow2Jmage,shadow3Jmage;

protected Imageinterface mjmgl,thinned,thinnedi;
protected Thinner m thinner = new TwoPassThinner();
protected Thinner m thinnerl = new TwoPassThinner();
int[][] imagearray^new int[128][128];
int[][] imagearray2=new int[128][128];
int[][] imagesmooth-new int[128][128];
int[][] imagesmooth2-new int[128][128];
int □[] imagecopy^ new int[132][132];
GaussianFilter gf = new GaussianFilter();

protected CharacterSeparator m csParent;
protected ColorlmageThinning m citParent;
int r1=0;

int xlmin.ximax;
protected ConnectedComponentSegmenter m segmenter = new

ConnectedComponentSegmenterO;
protected LinkedList m segList = null;
int xmax,xmin;
static int TotHeight,TotWidth;
int[] RotX1=new int[8];
int[] RotY1=new int[8];

int lmax,lmin;

int Xmin=200,Ymin=200,Xmax=0,Ymax=0;
int RegGrp^O;
int tempi;

int []ActualCharGroup=new int[26];
int [][]ActualChar-new int[26][500];
int [][]outputchar=new int[26][500];

int [] subclass=new int[1000];

int label=0;
int charcnt=0;
int images=0,labels=0;
int rows=0,cols=0;
int maxX=0,maxY=0,minX=0,minY=0;

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int parts=3;
int features=34;

int CGx=0,CGy=0;

int EXmin=0,EYmin=0,EXmax=0,EYmax=0;
int LEXmin-0,LEYmin=0,LEXmax=0,LEYmax=0;
int REXmin=0,REYmin=0,REXmax=0,REYmax=0;

double nG[]ResVec=new double [26][26][parts*(features)];
int []sort=new int[10];

int[] tippositionx-new int[100];
int[] tippositiony=new int [100];

int[]junk= new int[26];

int Zeros=0,0nes=0;

public static final int TRAINING_SET = 0;
public static final int TEST SET = 1;

protected static final int IMAGE_MAGIC_NUMBER = 2051;
protected static final int LABEL_MAGIC_NUMBER = 2049;

protected String mJmageFile;
protected String m labelFile;
protected boolean m convertToBinary = true;
protected String m directory;
protected boolean mJsLoaded = false;

protected int m threshold = 128;

protected DigitRecognizer m recognizer = new DigitRecognizer();

private List filterBySize(List components) {
double[] areas = new double[components.size()j;
ArrayList out = new ArrayList();
for (int i=0;i<areas.length;i++) {

ImageComponent component = (ImageComponent) components.get(i);
areas[i] = component.height()*component.width();

}
double std = Statistics.standardDeviation(areas);
double mean = Statistics.average(areas);

// mJogger.infoC'mean = "+mean+", std = "+std);

for (int i=0;i<components.size();i++) {
ImageComponent component = (ImageComponent) components.get(i);
if (component.height()*component.width()<mean-std/2) {

out.add(component);
}

}
return out;

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

private void remove(lmagelnterface original, ConnectedComponent component) {
for (Iterator i = component.getPixels().iterator();
i.hasNextO;) {

Point p = (Point)i.nextO;
original.setPixel(p.x,p.y,original.getBackgroundColor());

}
}

public RegUsingEdge(lmagelnterface image){
this(TRAINING_SET);
m jm g = image;

}

public RegUsingEdge(int mode)
{

if ((mode % 2) == TRAINING_SET) {
mJmageFile = "C:\\eclipse\\database\\HSF_2\\Test.txt";//*/TRAINING_FILE;
m labelFile = "G:\\eclipse\\database\\HSF_2\\TestLabel.b<t";/r/TRAINING_LABELS;

} else {
mJmageFile ="C:\\eclipse\\database\\HSF_2\\Test.txt";// TEST FILE;
mJabelFile ="C:\\eclipse\\database\\HSF_2\\TestLabel.txt";//TEST_LABELS;

}
}

public void setDirectory(String directory) {
m directory - directory;

}

public void setConvertToBinary(boolean convert) {
m convertToBinary - convert;

}

r
* Restore image info from persistant file
* The data comes with two files:
* One containing the image data and one the labels
* ©throws lOException
‘ ©throws ImageProcessingException
*/

public void restoreData(double [][]D[]P) throws lOException, ImageProcessingException {

restoreData("C:\\eclipse\\database\\HSF_2\\Test.txt","C:\\eclipse\\database\\HSF_2\\TestLabel.txt
",P):

}

public void restoreData(String imageFile, String labelFile,double [][][][] P)throws lOException,
ImageProcessingException!

int m=0,n=0;

if (m isLoaded)
{

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mJogger.infoC'Data is already loaded.");
return;

}

System.out.printlnC'asdaslkn");

FilelnputStream imageStream = new FilelnputStream(imageFile);//open a stream for
reading the image file

DatainputStream is = new DatalnputStream(imageStream);

FilelnputStream labelStream = new FilelnputStream(labelFile);// open a stream for
reading the labels file

Data I nputStream Is = new DatalnputStream(labelStream);

// read number of images and labels (should match)
images = is.readlnt();
labels = Is.readlntO;

// read number of rows and columns
int rows = is.readlnt();
m_logger.info("Rows = "+rows);
int cols = is.readlntO;
m_logger.info("Columns = "+cols);
images = Math.min(images, m maximages);
m_logger.info("Reading " + images + " images.");
m logger.info("m maxImages : "+m_maxlmages);
mJmageTwo = new Directlmage(cols,rows,Directlmage.TYPE_B!NARY);
mJmageThree = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadowl image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadow2_image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadow3_image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);

// this loop reads each image byte by byte and stores in an array
for (int p = 0; p < images; p++) {
m binarylmage - new Directlmage(cols, rows, Directlmage.TYPE BINARY);

System.out.println(p);
label = (int) Is.readlntO;// read the label

System.out.printlnflabel ; "+label);
char c = lnteger.toString(label).charAt(0);

for (int j = 0; j < rows; j++)
for (int i = 0; i < cols; i++) {

int value = is.readByte();

m_binarylmage.setPixel(i, j,(value==0)?1:0); //else
//;

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Removing Spurts and big dots from the binary image
m segList = null;
m segList = (LinkedList) m_segmenter.segment(m_binarylmage);

System.out.printlnC# of components: " + m_segList.size());

int Area = 0;
int maxArea = 0;
int CharList = 0;
ConnectedComponent comp = null;

for (int i = 0; i < m_segList.size(); i++) {
comp = (ConnectedComponent) m segList.get(i);

Area = (comp.maxX - comp.minX) * (comp.maxY - comp.minY);
maxX=comp.maxX;
maxY-comp.maxY;
minX=comp.minX;
minY-comp.minY;

if (Area > maxArea) {
maxArea = Area;
CharList = i;

}
}

ConnectedComponent cc = (ConnectedComponent) m segList.get(CharList);
Rectangle rect - cc.getEnclosingRectangle();

mJmageOne = m_binaryimage.copy();

l/JODO Remove speckles
try {

Imageinterface binary = new BinaryConverter(200).apply(m_imageOne);
List components = m segmenter.segment(binary);
List out = filterBySize(components);
for (int i=0;i<out.size();i++) {

ConnectedComponent component = (ConnectedComponent) out.get(i);
remove(m_imageOne,component);

}

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block
e.printStackTraceO;

}

for (int j = 0; j < rows; j++)
{

for (int i = 0; i < cols; i++)
{

imagecopy[i+2][j+2]=mJmageOne.getPixel(iJ);
}

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
for (int j = 2; j < rows+2; j++)
{

imagecopy[1][j]=imagecopy[3][j];
imagecopy[0][j]=imagecopy[4][j];
imagecopy[130][j]=imagecopy[128][j];
imagecopy[131]0]=imagecopy[127][j];

}

for (int j = 0; j < cols+4; j++)
{

imagecopy[j][1]=imagecopy[j][3];
imagecopyO][0]=imagecopy[j][4];
imagecopy[j][130]=imagecopy[j][128];
imagecopy[j][131]=imagecopy|j][127];

}

for (int i = 1 ; i < rows+1 ; i++)
for (int j = 1 ; j < cols+1 ;]++)
{

{

imagesmooth20-1][i-1]=(int) (((double)1/16)*((imagecopyO-1][i-1]+2*imagecopyD-
1][i]+imagecopyG-1][i+1])

+(2*imagecopy[j][i-1]+4*imagecopy[j][i]+2*imagecopy[j][i+1])
+(imagecopy[j+1][i-

1]+2*imagecopy[j+1][i]+imagecopylj+1][i+1])));

}
}

for(int i = 0; i < mJmageOne.getWidth(); i++)
for(int j = 0; j < m_imageOne.getHeight(); j++)
{

imagearray[i][j]=imagesmooth2[i][j];//mJmageOne.getPixej(i,j);

}

mJmageTwo-m imageOne.copyO;

//hsf_2 p==104||p==1711||p==358
//hsf_3 p==546||p==156
int temp10=0;

if(p==104||p==1711||p==358)
{

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temp10=1;
}

else
{
temp10=0;

NumberOfTips2(imagearray);
for(int f=0;f<mJmageOne.getWidth();f++)
{

for(int f1 =0;f1 <m JmageOne.getHelght();f1 ++)
{

m_imageOne.setPixel(f1,f,imagearray[f1][f]):
}

Findmaxmin(0,0,128,128);
System.out.println("xmin"+mlnX+" xmax"+maxX+" ymin"+mlnY+"ymax "+maxY);
int total=NumberOfTips(0,0,128,128);

int ymax=0;
int ymin=200;

int []sy=new int[total];
int []sx=new int[total];
for(int i=0;i<total;i++)
{
sy[i]=tippositiony[i];
}

if(total>1)
{
lmax=sy[total-1];//ymax
lmin=sy[total-2];//ysecond max
xlmin=tippositionx[total-2];//xsecondmax
xlmax=tippositionx[total-1];//xmax
}

thinned=m_thinner.apply(mJmageOne);//thinning

int r=0;

int u1=0;
int u2=0;
int u3=0;
int xtop=0;
int xbottom=0;
int xleft^O;
int xright=0;
int temp=0;
int y1=0;
int y2=0;

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int y3=0;
int y4=0;
int pix=0;
int b=0;
int pixels=0;
int pixelc=0;
int pixelt=0;
int F1-0;
int F2=0;
int F3=0;
int 11=0;
int 12=0;
int 13=0;
int F4=0;
int g1=0;
int g2=0;
int s1=0;
int s2=0;
int n1=0;
int n2=0;
int i1=0;
int i2=0;
for(int i = lmin-1; i <= lmax+1; i++){

for(int j =0; j < 128; j++)
{
if(thinned.getPixel(i,j)==0)

pixelc++;
}

}

for(int i = lmax+1; i <= 127; i++){
for(int j =0; j < 128; j++)
{
if(thinned.getPixelO,i)==0)

pixels++;

}

}
int lowerv=0;
int upperv=0;
for(int i=0;i<total;i++)
{
if(tippositionx[i]<(minX+maxX)/2&&tippositiony[i]<(minY+maxY)/2)

u1++;
if(tippositionx[i]>=(minX+maxX)/2&&tippositiony[i]<(minY+maxY)/2)
u2++;
if(tippositiony[i]<(minY+maxY)/2)

lowerv++;
else

}
upperv++;

int k=0;
for(int i=0;i<total;i++)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(tippositiony[i]>(maxY+minY)/2)
xbottom++:

else
xtop++;

if(tippositionx[i]>(minX+maxX)/2)
xright++;

else
xleft++;

if(tippositionx[i]>(2*minX+maxX)/3)
k++:

if(total>=4&&k>=2&&xbottom>=2&&xtop>=2&&pixels==0)
{

ActualChar[10][label]++;
temp10=1;

}

int c1=0;
for(int i=0;i<total;i++)
{

if(tippositionx[i]<(minX+maxX)/2)
c1++;

}

if(c1==0 && total<3)
{

}

ActualChar[2][label]++:

temp10=1;

for(int i=0;i<total;i++)
{

if(tippositiony[i]<(minY+maxY)/2)
y1++:

else
y2++;

if(tippositiony[i]<(minX+maxX)/2)
y3++;

else
y4++:

}
for(int i = lmax+1; i <= 127; i++){
for(int j =0; j < 128; j++)
{
if(thinned.getPixelO,i)==0)

pixelt++;
}

}

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int pixelf=0;

for(int i = lmax+3; i <= 127; i++){
for(int j =0; j < 128; j++)
{
if(thinned.getPixel(i,j)==0)

pixelf++;
}

}

int f3=0;
for(int i=0;i<total;i++)
{

if(tippositiony[i]<(3*maxY+minY)/4)
F3++;

else
F4++;

if(tippositionx[i]>=(minX+2*maxX)/3)
F1++;

else
F2++;

if(tippositionx[i]<(2*minX+maxX)/3)
f3++;

}

if(F3>=2&&F4>0&&F1!=0&&F2!=0&&f3>0&&pixelf==0)
{

ActualChar[5][label]++;
temp=1;

}
int n3=0;
for(int i=0;i<total;i++)
{

if(tippositiony[i]<(maxY+2*minY)/3)
n1 ++;

if(tippositionx[i]>(3*minX+maxX)/4)
n2++;

if(tippositionx[i]>(minX+maxX)/2)
n3++;
}

int pixelq=0;
for(int i = lmax+5; i <128; i++){

for(int j =0; j < 128; j++)
{
if(thinned.getPixel(ij)==0)

pixelq++;
}

}

if(n2>2&&n1 >0&&n3>1 &&total>2)
{

ActualChar[4][!abel]++;

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temp10=1;

}

if(F1==0)
{

ActualChar[1][label]++;
temp10=1;

}

for(int i=0;i<total;i++)
{

if(tippositiony[i]<(maxY+3*minY)/4)
g i+ + ;

if(tippositionx[i]<(3*minX+maxX)/4)
g2++:

}

intG1=0;
int G2=0;
for(int i=0:i<total;i++)
{

if(tippositiony[i]<(maxY+3*minY)/4)
G1++;

if(tippositionx[i]<(3*minX+maxX)/4)
G2++:

}
if(G2==0&&G1<2)
{

ActualChar[6][label]++;
temp10=1;

}

if(y1 >=2&&y2==1 &&pixelt<1)
{

ActualChar[24][label]++;
temp10=1;

}

y1=0;
y2=0;
int b2=0;
for(int i=0:i<total;i++)
{

if(tippositionx[i]>=(minX+maxX)/2)
b++:

}
if(b<1&&total<5)
{

ActualChar[15][label]++;

temp10=1;

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(u1 ==1 &&u2==1 &&r<2)
{

ActualChar[20][label]++;

temp10=1;
}

if(lowerv==2&&upperv<2&&u1!=0&&u2!=0)
{

ActualChar[21][label]++;

temp10=1;
}

int tex=0;
int tmid=(xlmin+xlmax)/2;

for(int ii = lmax+2; ii <= 127; ii++){
if(thinned.getPixel(ii,tmid)==0)

tex++;

}
i2=0;

int a[]=new int[128];
for(int ii = 0; ii <= 127; ii++)
{

a[ii]=0;
}

0))

for(int ii = 0; ii < 127; ii++){

if((thinned.getPixel(((maxY+minY)/2)+1,ii)==1&&thinned.getPixel(((maxY+minY)/2)+1,ii+1)

{

i2++;
a[ii]=1;

if(i2==1)
{

int temp5=0;
int Ü3;

for(int ii = 0; ii < 127; ii++){

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if((thinned.getPixei((maxY+minY)/2+1 ,ii)==1&&thinned.getPixel((maxY+minY)/2+1 ,ii+1)==0))
{

ii3=ii;
while(ii3<127&&thinned.getPixel((maxY+minY)/2+1,ii3+1)==0)
{

Ü3++:
temp5++;

}
if(temp5>4)
{

12=2 :

}

temp5=0;

}
}

int r7=0;
int r8=0;
int r9=0;
int r10=0;
int q2=0;
for(int i=0:i<total;i++)
{

if(tippositiony[i]>(minY+2*maxY)/3)
r7++;

if(tippositiony[i]<(minY+maxY)/2)
r8++;

if(tippositionx[i]<(minX+maxX)/2)
r9++;

else
r10++;

if(tippositionx[i]<(2*minX+maxX)/3)
q2++;

}

if(i2==2&&b<1)
{
ActualChar[3][label]++;
temp10=1;
}
b=0;
if(i2==1)
{

ActualChar[8][label]++;
ActualChar[9][labe!]++;
ActualChar[11][label]++
ActualChar[18][label]++
ActualChar[19][labe!]++
ActualChar[25][label]++

temp10=1;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
if(i2>2)
{

ActualChar[13][label]++;
temp10=1;

}

if(i2>=2&&q2==0)
{

ActualChar[16][label]++:
temp10=1;

}

if(i2>1&&r8>1&&r7>1)
{

ActualChar[7][label]++;
temp10=1;

}

if(i2>1&&r7>1)
{

ActualChar[0][label]++;
ActualChar[12][label]++;
temp10=1;

}

if(i2>1)
{

ActualChar[17][label]++;
temp 10=1;

}

if(i2>1&&total>1&&r9!=0&&r10!=0&&r8!=0)
{

ActualChar[22][label]++;
temp10=1;

}

if(xbottom>=2&&xtop==2&&xleft>=1&&xright>=1&&total>=4&&tex==0)
{

ActualChar[23][label]++;//x
temp10=1 ;

}

if(i2>1 && total<3 && r7==0)
{

ActualChar[14][label]++;//o
temp10=1;

}

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r=0;
if(temp10==0)

{

System.out.println(p);
}

subclass[label]=subclass[label]+1;
}

is.close():
Is.closeO;
imageStream.close();
iabelStream.closeO;
misLoaded = true;
m_logger.info("Completed image loading");

}

public void Findmaxmin(int strXJnt strYJnt endXjnt endY)
{
int Xmin=200,Ymin=200,Xmax=0,Ymax=0;
int m=0,n=0,temp=0;
int i=0,j=0;
Imageinterface thinned2;

try {
thinnedjmage2 = m_thinner.apply(mJmageOne);

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block
e.printStackTraceO;

}

for(j=0;j<thinned_image2.getHeight();j++)
for(i=0;i<thinned_image2.getWidth();i++)
{

if((thinned_image2.getPixel(j,i)==0)&&(i<=Xmin))
Xmin=i;

if((thinned_image2.getPixel(j,i)==0)&&(i>=Xmax))
Xmax=i;

}
for(j=0;j<mJmageOne.getHeight();j++)

for(i=0;i<m_imageOne.getWidth();i++)
{

if((thinned_image2.getPixel(j,i)==0)&&(j<=Ymin))
Ymin=j;

if((thinned_image2.getPixel(j,i)==0)&&(j>=Ymax))
Ymax=j;

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

if(Xmin==200)
Xmin=0;

if(Ymin==200)
Ymin=0;

maxY=Ymax;
minY=Ymin;
minX=Xmin;
maxX-Xmax;

}
public int pixelCount(lnt strx.int stryjnt endxjnt endy) {

int numberOfPixeis - 0;

for(int i = stry; i <= endy; i++){
for(int j -strx; j < endx; j++){

if(mJmageOne.getPixel(i,j)== 0)
numberOfPixels++;

}
}

return numberOfPixeis;
}

public void ExtremeEdges(int strX.int strYJnt endXJnt endY)
{

EXmin=200;EXmax=0;EYmin=200;EYmax=0;

try {
thin = m_thinner.apply(m_imageOne);

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block
e.printStackT race();

}

//Finding the left extreme edge
for(int i=strY;i<endY;i++)

for(int j=strX;j<endX;j++)
{

if((thin.getPixel(j,i)==0)&&{j<=EXmin))
EXmin=j;

if((thin.getPixel(j,i)=-0)&&(j>=EXmax))
EXmax=j;

}

for(int j=strY;j<endY;j++)
for(int i=strX;i<endX;i++)

{
if((thin.getPixel(i,j)==0)&&(j<=EYmin))

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EYmin=j;

if((thin.getPixel(i,j)==0)&&(EYmin>=0))
EYmax-j;

}

if(EXmin==200)
EXmin-0;

if(EYmin==200)
EYmin-0;

minX=EXmin;
maxX-EXmax;
minY=EYmin;
maxY-EYmax;
System.out.println("EXmin :"+EXmin+"

EXmax :"+EXmax+"ymin"+EYmin+"ymax"+EYmax);
}

public void NumberOfTips2(int [][]imagearray)//to remove the tips of the unthinned image
{ int repeat=0;

int tipcnt=0;
int r=0;
in t] RotX=new int[8];
in t] RotY=new int[8];

RotY[0] = -1
RotY[1] = -1
RotY[2] = -1
RotY[3] = 0
RotY[4] = 1
RotY[5] = 1
RotY[6] = 1
RotY[7] = 0

RotX[0] = -1;
RotX[1] = 0;
RotX[2] = 1 ;
RotX[3] = 1;
RotX[4] = 1 :
RotX[5] = 0;
RotX[6] = -1;
RotX[7] = -1 ;
int]x -new int [20];
int]y=new int [20];
int k=0;
while] repeat=-0)
{
for] int i=1;i<127;i++)
{
for] int j=1;j<127;j++)
{

tipcnt=0;
if]imagearrayO][i]==0)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int p=0;p<8;p++)
{

if((imagearray[i+RotX[p]][i+RotY[p]]--0))
{

}

tipcnt++;

if(tipcnt==1)
{

x[k]=i;
y[k]=j:
k++;
tipcnt=0;

}

}
}
if(k==0)
{
repeat=1;
}
for(int q=0;q<k;q++)
{

imagearray[y[q]][x[q]]=1 ;

k=0;
}

public int Number01Tips(int strXJnt strYJnt endXJnt endY)
{

int tips=0;
int tipcnt=0;
int r=0;
int] RotX=new int[8];
int] RotY=new int[8];

RotY[0] = -1
RotY[1] = -1
RotY[2] - -1
RotY[3] = 0;
RotY[4] = 1
RotY[5] = 1
RotY[6] = 1
RotY[7] - 0

RotX[0] = -1
RotX[1] = 0
RotX[2] = 1
RotX[3] = 1

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RotX[4] = 1;
RotX[5] = 0;
RotX[6] = -1;
RotX[7] = -1;

try {
thinnedjmage = m_thinner.apply(mJmageOne);

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block
e.printStacklraceO:

}

for] int i=strY+1;i<endY-1;i++)
for] int j=strX+1 ;j<endX-1 ;j++)
{

tips=0;
if]thinned_image.getPixel]j,i)=-0)

for]int p=0;p<8;p++)
{

if]]thinned_image.getPixel]j+RotX[p],i+RotY[p])==0))
{

tips++;
}

}

if]tips==1)
{

tippositionx[r]=j;
tippositiony[r]=i;

tipcnt++;
tips=0;
r++;

}

for] int i=0;i<tipcnt;i++)
System.out.println]"the tip positionx:"+tippositionx[i]+"tippositiony:"+tippositiony[i]);

return tipcnt;
}

public Imagelnterface RegUsingEdgeProcess]) throws ImageProcessingException,
lOException

{
int grpA=0;
int grpB=1;
int []sum=new int[26];

charch[]-{'A','B','C','D','E','F','G','H',T,'J','K','L','M’,'N','0','P','Q','R',’S',T','U','V',W,'X','Y','Z'};
Runtime r-Runtime.getRuntime]);

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double [][][]DP=new double[4][26][40][20000];

//double [][][]ResVec-new double [26][26][parts*(features)];
setMaxlmages(2500);
try {

restore Data (P) ;//"d ata/M NIST") :
} catch (lOException e) {

// TODO Auto-generated catch block
e.printStackTraceO;

}

for(int i-0;i<=:25;i++)

System.out.println("number of "+" " +ch[i]+ " " +subclass[label]);

for(int i=0;i<26;i++)
{
System.out.println("classification for the character "+ch[i]);

for(int j=0;j<26;j++)
{

System.out.println(" Number of "+ch[j]+'"s ;"+ActualChar[i][j]);
}
}

for (int i=0;i<26;i++)
{

for(int j=0;j<26;j++)
{
outputchar[j][i]=ActualChar[i]0];
}

}

for (int i=0;i<26;i++)
{

for(int j-0:j<26;j++)
{

sum[i]=sum[i]+outputchar[i][j];
}
}

for(int i=0;i<26;i++)
{
System.out.println("classification for the character "+ch[i]);

for(int j=0;j<26;j++)
{

System.out.printlnC Number of "+ch[j]+'"s :"+outputchar[i]jJ]);
}

System.out.printInC’total characters "+ch[i]+"recognized as other characters"+sum[i]);
}

System.out.println("Total characters analyzed : "+images);

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r.freeMemoryO;

return shadow3Jmage;
}

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University o f Nevada, Las Vegas

Koushik Reddy Damera

Home Address:
4210 Cottage Cire le Apt #01
Las Vegas, N V , 89119

Degree:
Bachelor of Engineering, 2004
Osmania University, Hyderabad, India.

Thesis Title: Hierarchical Approach for Character Recognition.

Thesis Examination Committee:
Chair Person, Dr. Evangelos A. Yfantis, Ph.D.
Committee Member, Dr. Ajoy K Datta, Ph.D.
Committee Member, Dr. Yahoo wan Kim, Ph.D.
Graduate College Representative, Dr. Venkatesan Muthukumar, Ph.D.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Hierarchical approach for character recognition
	Repository Citation

	tmp.1534462568.pdf.i3Iwl

