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ABSTRACT

Hierarchical Approach for Character Recognition

By

KoLishik Reddy Damera

Dr. Evangelos Yfantis, Examination Committee Chair 
Professor o f Computer Science 

University o f Nevada, Las Vegas

This research mainly focuses on recognizing the handwritten character. Several efficient 

algorithms have been developed by us so far to separate: the handwritten characters from 

printed text charaeter, the lines, the words, and each character. In this thesis, we 

concentrate on how to increase the efficiency o f recognition o f segmented handwritten 

characters. Certain characters share common features unique to each other, different from 

the rest o f characters. These subsets o f characters w ith  common features are then further 

analyzed by the classifier thereby reducing the number o f comparisons that are required. 

This results increasing the speed o f character recognition.

I l l
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CHAPTER 1 

INTRO DUCTION

Handwritten character recognition is a process designed to translate images o f 

handwritten or typewritten text into machine-editable text, or to translate pictures o f 

characters into a standard encoding scheme representing them .There are two types o f 

recognition one is o ffline character recognition in which recognition is done using the 

features extracted from the scanned image where as in the online character recognition it 

is done by fo llow ing the movements o f  the pen online. The technology is successfully 

used by businesses which process lots o f handwritten documents, like insurance 

eompanies, postal service etc. But the recognition o f the handwritten characters is 

complicated due to the follow ing reasons

1) From user to user the same character may vary in size, shape and style. Even the 

same user may write in different patterns from time to time.

2) Eike any other images, the character that are written may subject to spoilage 

due to noise.

Hence handwritten characters are first preprocessed to increase the accuracy and 

efficiency o f the recognizers. The fo llow ing algorithms are implemented in preprocessing

1) Binary image conversion

2) Speckle Removal and Noise Removal
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Once the preprocessing is done then comes the feature extraction o f the characters which 

are used by the classifiers. There are many feature extraction algorithms but the important 

key is the selection o f  the efficient feature that would help in implementation o f the 

character recognizer. Once the features are extracted from all the characters, they are 

given to the classifier for recognition.

1.1 Problem Definition

Handwritten characters are d ifficu lt to recognize since the each user writes the same 

character in different ways with different sizes and different shapes. Before the 

recognition is done it has to be separated from the printed text and the background. Once 

the character is separated then we can recognize. Even though lot o f research is going on 

in this fie ld, it is very d ifficu lt to attain high accuracy. Hence there are lot o f  elassifiers 

that are been implemented to increase the accuracy. But the time consumption for these 

processes is more since each character features are to be compared w ith others. In order 

to increase the efficiency we came up w ith the fo llow ing novel concept.

Even though the different user writes the character in different sizes and the different 

shapes but the each character w ill be having the some features which are present in what 

ever shape and size user writes. The basic idea o f our thesis is the characters that are 

having the same features w ill be grouped together and the characters that not having the 

same features are eliminated so that the recognizer uses those characters which having 

the same features for the recognition process avoiding the other characters which are not 

a like For example when you take character 'A ' it w ill be having the two tips at the 

bottom. And i f  you take the character 'I 'it w ill be having only one tip  at the bottom.
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Hence you can climate the characters when you are looking lor "A". Sim ilarly for some 

other character which can be found out by using our algorithm.

1.2 Objective

The main objective o f our work is to develop the optimized preprocessing methods 

and to develop an algorithm which would help in classifying the characters which are 

having the common features and which don't have the common features when you are 

looking for a specific charaeter. There by reducing the number o f comparisons that are 

required and increase the speed o f  the recognition.
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CHAPTER 2

LITERATURE REVIEW 

Optical character recognition abbreviated as OCR is a way in which the handwritten 

text images, printed text images into machine editable format. In 1929, G. Tauschek 

obtained a patent on OCR in Germany, followed by Handel who obtained a patent on 

OCR in USA in 1933 (U.S. Patent 1,915,993). Tauschek was in 1935 also granted a US 

patent on his method (U.S. Patent 2,026,329).These are the first concepts in the fie ld o f 

the OCR. The principle used at that time is the template mask matching. This used the 

optical and mechanical template matching. L ight is been passed through the mechanical 

masks is captured by a photo detector and is scanned mechanically when exact match 

occurs light fails to reach the detector and so machine recognizes the character printed on 

paper. Since there is vast variety o f the handwritten characters the template matching for 

the handwritten characters is very d ifficu lt .Therefore the template matching is been 

followed by the structural analysis o f the hand written characters. Structural analysis o f 

the character is a way in which the geometric orientation o f the characters is found out 

and the features o f the characters are extracted. There are different methods proposed and 

published for the efficient feature extraction method. Since every year different methods 

o f extraction o f features are been adding up to the research in the fie ld o f OCR it is very 

d ifficu lt to tell which method is efficient. And the efficiency o f the OCR not only
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depends on feature extraction method but also classifiers. Each feature extraction method 

requires different type o f classifiers. And we cannot compare the results because the 

recognition process is done on different data sets .Once the features are extracted from 

the characters, the key decision is the selection o f the efficient features that are to be used 

in the recognition process. Once the efficient features are been extracted, then these 

features are been used in by the classifier fo r the recognition o f the characters. D ifferent 

classification methods are been used in recognition process.

These are the fo llow ing classification methods.

2.1) Statistical methods

2.2) A rtific ia l Neural Networks

2.3) Kernel Methods

2.4) M ultip le Classifier Combination.

2.1 Statistical Methods

Statistical methods are based on the Bayes Decision Theory. There are different 

decision theories. Bayes decision theory is optimal and is base on the popular Bayes rule 

P(x/y) = p(y/x)p(x)/p(y)

Assuming the Gaussian density the Baysian Discrim inant method is reduced to one o f the 

follow ing methods

2.1.1) Linear Discriminant Method

2.1.2) Quadratic Discriminant Method

2.1.3) Modified Quadratic Discriminant Method^'^^
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2.2 A rtific ia l Neural Networks

A rtific ia l Neural Networks is been used in successfully in pattern 

recognition^'^'^'^^.They are many artificial neural networks that are been used. They are

2.2.1 Feed Forward Neural Network

2.2.2 Radial Basis Function

2.2.1 Feed Forward Neural Network

Feed forward networks have the follow ing characteristics:

1) Perceptions are arranged in layers, with the first layer taking in inputs and the last 

layer producing outputs. The middle layers have no connection with the external 

world, and hence are called hidden layers.

2) Each perceptron in one layer is connected to every perceptron on the next layer. 

Hence information is constantly "fed forward" from one layer to the next, and this 

explains why these networks are called feed-forward networks.

3) There is no connection among perceptrons in the same layer

2.2.2 Radial Basis Function

A fter the FF networks, the Radial Basis Function (RBF) network comprises one o f 

the most used network models. Figure 2.1 illustrates an RBF network with inputs X|,..., 

Xn and output Â' . The arrows in the figure symbolize parameters in the network. The 

RBF network consists o f one hidden layer o f basis functions, or neurons. A t the input o f 

each neuron, the distance between the neuron center and the input vector is calculated. 

The output o f the neuron is then formed by applying the basis function to this distance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1 An RBF network with one output.

2.3 Kernel Methods (Support Veetor Machines)

Support vector machines is the significant kernel method that is been followed.

SVM is a binary classification with discrim inant function being weighted combination o f 

kernel functions over all training samples. SVM are used for classification and regression. 

Due to the high complexity in implementing the SVM are used for small data 

classification.

2.4 M ultip le Classifier Combination

In order to increase the accuracy and efficiency o f the optical character recognizer the 

single classifier is been replaced by the couple o f classifiers*'"'^ . I f  the multiple classifiers 

are parallel then the accuracy w ill be improved, i f  the multiple classifiers are sequential 

then the speed o f the classifier improves.
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In the all above methods for the recognition o f the characters the algorithm has to be 

trained with huge database o f the characters and the features o f the each character input 

has to be saved .Then the features that are been extracted are to be given to the c lassifie r.

In the classification process the classifier that is been used takes the features and 

compares with the other character features and then the recognition is done.

Flow chart that is been followed

Statistical
Method

Classification

Pre Processing

Feature vectors

Kernel
Methods

A rtific ia l Neural 
Networks

M u lti Classifier 
Combination

Feature Extraction

Paper Document

Figure 2.2 Flowchart General Approach

Hence we came up with the new idea to reduce the time for the recognition process. 

This can be done by reducing the number o f alphabets that has to be compared with the
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other alphabets. Since some o f  the features o f the characters are completely different 

from the features o f the other alphabets.

2.5 Input Database

The efficiency and accuracy o f the recognition algorithms that are been developed 

can be tested against standard database that have the different forms o f characters. Since 

each user writes the character in different shapes and styles, we require the test database 

that contains the characters that are written in most shapes, styles and sizes. Hence we 

took the National Institute o f Standards and Technology (NIST) database as the input for 

testing the functioning and the accuracy o f  the algorithms that are been used.

National Institute o f Standards and Technology

National Institute o f Standards and Technology provides the databases for the 

character recognition, finger print recognition, face recognition. The database that is been 

used is “ Special Database 19-NIST Hand printed Forms and Characters Database” , 

shortly known as SD19 database . It contains the Handwritten Sample Forms(HSF) and 

isolated characters that are been stored by the class that they belong to. Isolated 

characters are divided into upper case letters, lower case letters, numerical numbers. 

Hence you can combine all o f  them to form the total database.
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NIST ItÀNDWITTINO S.4IMPLE FORAI ( HSF >

DATF. C ITY STATE ZIP

This aample of h&ndwrilittg w h*mg cotIect«d for uao in tesLmg computer recognition of hand printed numhcrs 
and letters. Please print the following characters in the boxes that appear betrw.

0 1 2 3 4 S  6 7 8 S  0 12  3 4 5 6 7 8 9   _0 12  3 4 5 6 7 8 9

87 701 3752 80759 660941

158 4586 32123 832856 82

A ?

7481 80539 419219 67 904

p ' /p  Û / ^
61738 729658 75 390

7 ^

5716

106334 40 625 4234

- 7 7 7 /

46002

g y x l f t k p d > f a t i i r u m w f q j e n h o c v ____

9 /  x /  O A/ f  f  J  /I 7) OC
Z X S B N G E C M Y W Q T K F t U O U P l R V D J A

Pleave print the foUowing text in the box below:
We, the People of the United St&t«i, in order to ibrm a  more perfect Union, establish Justice, insure domestic 
lYamqnüity, provide for the common Defense, prcmote the g e n ia l Welfare, and secure the Bksainga of Liberty to 
oeradves and our posterity, do cwdaio and establish this CONSTITUTION for the United States of America

a / f /  -ph-e. p -ec fT -e  Od U ^iP ctc f 3 7 > y - - fS ^ / / ’ o /V e ? r/b
■Pe>rr» O. p \o r'~e  p o p /'« G -- f ' (J n  [ o ^  6 llS > i i^ 5 + lC e _ y
)Y\SD*^ ^  C 4? ^  4  I C ~ p n  I) 1 I I 4-y  ̂ P  |Y)Uid e_. f ' a f  H Vi«a- 

,* o rvi rv\ c Yi ; p /to  bno T-€_ -+ o, e n  ■«? r a  L  \pg|A f6,
A M  g , \ e -ss / :S o f  T ib e r  y-y p o  c u r -
s - e !u  « 5  ot_r\ Cd c) U y  P C 'S  'T \ T y   ̂ c (o  O rd(<xi'r\ On n ° j  

te& T q ^b llsV i (2-OaJ S -p t T D T /O  TM p e r  AyVve
U  f\ '  t-e o{ f e  s  e> f  ( '^ r w e iT ' ie a ^ .

Figure 2.3 Sample HSF form.

These isolated characters are o f size 128 * 128 pixels. The Special Database 19 (SD 

19) contains the 3699 Handwritten Sample Forms and 814255 segmented hand printed 

digit and alphabetic characters form the HSF forms .The isolated characters are divided in 

to 62 classes corresponding to “ A ”  to “ Z ” , “ a”  t o “ z”  and “ 0”  to “ 9” .

10
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2.6 Pre-processing

Before the recognition is done the preprocessing o f the characters is to be performed 

to increase the accuracy o f the recognition. Following are the preprocessing algorithm

2.6.1 Binary image conversation.

2.6.2 Speckle removal and Noise removal

2.6.1 Binary Image Conversation

Once the character is extracted, the extracted character images are converted into 

binary images. Binary image is an image in which the pixel intensity is either 1 (white) or 

0(Black).Here is the procedure for converting the image to binary image. The image is 

first converted into gray scale image using the formula

[Y] = 0 . 2 9 9 * R + 0 . 5 8 7 * G  + 0 . 1 1 4 * B

Once the image is converted into gray scale we w ill find whether the intensity o f the 

each pixel whether it is greater than the threshold value or not. I f  the intensity is greater 

than threshold value then the pixel value is stored as black pixel else the pixel is stored as 

the white pixel. Hence the character is converted into black with white back ground.

Input Output

Figure 2.4 Binarization

I I
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2.6.2 Speckle Removal and Noise Removal

Spurs and dots that are present in the image should be removed to increase the 

accuracy o f the algorithm. Size filte r is been used to remove the spurs and dots present in 

the image. First it finds the number o f components present in the image, and then it 

calculates the areas o f those components. Once all the areas o f all components is found 

out then the mean o f those areas and standard deviation is calculated. Now the value o f 

those components whose area is less than (mean -  standard deviation/ 2) is considered to 

be the speckle in the image and are removed from the image.

Input Output

Figure 2.5 Speckle Removal

Once the spurs and dots are remove form the image, 3 by 3 Gaussian filte r mask is 

been applied to smoothen the image.
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CHAPTER 3 

TH IN N IN G

Thinning is process in which object image is been thinned to one pixel .The final 

output o f the image w ill be the image w ith pixel width one. Thinning is applied to the 

binary image. It is very important in image process to extract the features o f the image.

3.1 H ilditch A lgorithm

The algorithm that is followed is H ilditch thinning algorithm. We consider the 3 by 3 

pixels at a time. Hence 8 neighborhood o f each pixel is taken to decide whether that pixel 

has to remain in the final out put or it has to be peeled o ff  to thin the character. Hence we 

arranged the pixels in the clock wise direction as shown below.

P5 P6 P7

P4 PI P8

P3 P2 P9

13
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Functions that are used

1 ) NZ( PI ) = number o f non-zero neighbors o f PI

2) NT(PI ) = number o f 0,1 patterns in the sequence p2,p3,p4,p5,p6,p7,p8,p9,p2

P5 P6 P7

P4 P i
- \

P3 P2 P9
....

Represents

Represents 0 
(Un shaded)

The algorithm that is been used here is 3 by 3 w idow version. H ilditch algorithm 

repeats it process when ever the black pixel is converted to white pixel. The same process 

is repeated on the new pixel values until the there is no change in the pixels. Hence 

H ild itch algorithm is parallel sequential algorithm. It is parallel because it checks all the 

pixels at one pass and the decision is made whether to keep the pixel or not. It is 

sequential because the process is repeated until no changes are done to pixels. Following 

are conditions that are used to decide whether pixel is to be remained in the final thinned 

output or not.

Conditions

1) 2 < - N Z ( p l )

2) N T (p l)= l

3) p2.p4.p8=0

4) p2.p4.p6=0

14
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When the above conditions are satisfied the pixel is converted from black to white (i.e. 

the pixel is been peeled off). The same procedure is been followed until there is no 

peeling o ff  o f the pixels.

Condition I ; 2<=NZ (PI )

This condition finds out the number o f non zero pixels that are present in the 8 

neighbor hood o f the pixel P I. I f  the value is greater than 2 it ensures that no end-point 

pixel and no isolated one be deleted.

P5
W '"

P6 P7

P4 P I P8

P3 P2 P9

P5 P6 P7

P4 p. P8

P3 P2 P9

As the picture makes it clear, i fN Z  (P l)= l,  then PI is a skeleton tip-point and should 

not be deleted. I fN Z  (P I) -0 ,  then PI is an isolated point and should also be kept . 

Condition 1 : N T  (P I) =1

This condition is been used to test the connectivity . I f  the value o f NT(P1)>1 and the 

pixel is been removed then the connectivity is lost. But the result o f this algorithm is to
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maintain the connectivity. In the fo llow ing picture the value o f N T (P I) is greater than 

1 .Hence the removal o f the pixel w ill make the image disconnected.

NT(P1)=2

P5 P6 P7

P4 PI P8

P3 P2 P9 .

NT(P1)=2 P5 P6 P7

P4 P Î P8

P3 P2 P9

Condition 3 : p2.p4.p8  = 0

P2*P4*P8=0.

P5 P6 P7

P4 PI P8

P3 P3 PV

Condition 4 : p2.p4.p6 = 0

P2*P4*P6=0

P5 P6 P7

P4 PI P8

P3 P9

16
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In the case above NZ (Pl)>=2 and N T (P I) = 1 and P2*P4*P6=0 and 

P2*P4*P8=0.Since all the conditions are satisfied the pixel P I is eroded from the image. 

This process is continued for all the pixels. Every time the pixel is been removed from 

the image the new pixels values are taken as an input and the same process is continued 

till no values of the pixels are been changed. This process will result in the 

skeletonization of the character. Since we have the character written in black color with 

white back ground ,the above condition works only if  the character written in white (1) 

with black (0) back ground .Hence before implementing the above algorithm the image 

color should be changed, i.e. black pixel has to be converted to white and white pixel 

has to be converted to black. Once the thinning is done then we can restore the color , i.e. 

the black color pixel has to be stored as white and white color has to be stored as black

17
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Input

I I 1 I I I I I I I i I I 10000000(101 I 111 I I I I
i i i i i i i i n i o o o o o o o o o o o o o i i i i i i i i  
111I I 11 moooooooooooooooi 111111
I N i l  I I I  I 10000000000000001 I 11 I I I 
11 111 1 11000000000000000000011 11 I
I I I I I 111000000000000000000011111
H i m  loooooooooooooooooool i i i i i  
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Figure 3.1 Thinning
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CHAPTER 4 

FEATURE EXTRACTION

4.1 Feature Extraction

Different feature extraction methods have been published for the extraction o f the 

features o f the characters. But the efficient features should be used for the classification 

o f the characters. Before the extraction o f the features the image may be divided into 

parts horizontally and vertically to extract the features locally. This done because the 

some features are same for different characters when the features are extracted for a 

character as a whole. For example i f  you take character ‘A ’ and character ‘V ’ the total 

number o f tips in this case is 2 for both the characters. But i f  you take the number o f tips 

for 'A ' both the tips are located in the bottom part o f the character and for ‘V ’ they are

located in the top part o f  the character. Hence the character is divided into blocks. 

Features that are extracted are

4.1.1 Extreme points

4 .1.2 Number o f Tips

4.1.3 Change in color o f horizontal pixels at m idpoint vertically

4.1.4 Change in color o f vertical pixels at m idpoint horizontally

4.1.1 Extreme Points

Extreme Points is used to find out the size o f the image and where is it located so that 

you can split the character into vertical and horizontal parts.
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Figure 4.1 Extreme Points

Red color pixels show the extreme pixel position o f the character that is present in the 

128 by 128 pixels. With the help o f  these the position o f the character can be find out and 

we can divide the character into block to find the local tips and total local tips.
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4 .1.2 Number o f Tips

Using the thinning algorithm the image is first thinned. Once the image is thinned we 

w ill calculate the number o f black pixels that are adjacent to each pixel. I f  the total 

number o f pixels is one then we w ill identify it as tip  o f the character.
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i n n  

i n n  

i n n

Figure 4.2 Number Tips

4 .1.3 Change in Color o f Pixels Horizontally

Using this algorithm we can find out the number o f times the color o f  pixel changes 

from white to black at the mid point the character vertically.
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Figure 4.3 Change in color o f pixels horizontally

The number o f times the value o f pixel changes from 1 to 0 at the mid point o f the 

height o f the character is 1.

4.1.4 Change in color o f Pixels vertically

Using this algorithm we can find out the number o f  times the color o f pixel changes 

from white to black at the mid point the character horizontally.
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Figure 4.4 Change in color o f pixels vertically

Flere the total number o f times the value o f pixel changes from 1 to 0 at the mid point 

o f the horizontal width o f the character are 2 .
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4.2 Hierarchical Approach

The probability o f an arbitrary character to occur in a random text location is about 

the same for each character, w ith the exception o f special characters. Thus i f  we 

consider C characters (not counting special characters) that probability is approximately

P,=l/C, I =1, 2. 3, ... , C. The information is l,= Log? ( I/P,) == LogijC ), i=1, 2, 3........

C and signifies the number o f bits needed to encode a character. The entropy H o f the

( ■ r

system is H P, Log 2(I/P ,) (I/C) Log ?C=Log ? C. The probability
/  =  ! H

distribution function o f the system is uniform, below we prove a theorem related to the 

expected number o f searches associated with a set o f items(Characters etc) having 

discrete uniform distribution .

Theorem I :

I f  a set S o f C items has a uniform distribution for each item to occur, i.e. P,= I/C,

i= L  2 , ....... , C and the entropy therefore is Log 2 C, then the expected number o f

searches needed to recognize a random item is C/2 , regardless o f the operating order o f 

the recognition algorithm.

Proof:

Let j] ,  j 2 ,  .jc, 1 < J i < C , i= 1,2,3, C be the order which the pattern

recognition algorithm follows in order to decide which one is the inputted item. The 

probability that the item w ill be recognized in the first tria l is 1/C, in the second trial is

(C-l)/C* 1/(C-1) and in the i""tria l is ( (C - l) .C - i+ l) / (C * (C - l) .................(C - i+ l))  = I/C

| -  I, 2, 3... C. Hence the expected number o f trials needed for one item to be recognized

is l/C+2*l/C+.........+C*I/C=]/C *(C(C+]))/2 = (C+])/2.
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The feature vectors in character recognition contain a relatively large number o f 

components. The pattern recognition algorithms associated w ith large feature vectors, 

are relatively slow due to the complexity o f the operations. To speed up the 

recognition process First we use a very fast algorithm that although not very accurate, 

given that a certain character is scanned , they include this character as part o f their 

recognition set and they also include some other characters w ith variable probability , 

while they exclude certain characters. The way this fast algorithm works is it 

recognizes that the character for example could be an 'A ' or H ' or a ‘ K ' few other 

characters , but it could not be for example an ‘ O ' or a ‘ T etc.Associated with the 

recognition are probability having this information we rank the characters according to 

their probabilities and we employ the more accurate and more computationally 

expensive algorithm which recognizes the character much faster .To make our point 

fo r example i f  there are 10 possible characters in the set and the algorithm recognizes 

C? or C5 or Cy or Cg only , and i f  any time the algorithm recognizes that the character is 

one o f those characters then Cy is the most like ly w ith  probability Py is the next likely 

w ith probability Py C5 is the next likely w ith probability P5 and Cg is the last one with 

probability PgThe expected number o f comparisons fo r the comprehensive algorithm 

now is less than 2.5 as opposed to 5.5 that were before.

Given any set o f characters to be recognized their number is fin ite  , so it is straight

forward to enumerate them w ith a fin ite sequence o f numbers 1,2,3, ,Max. A fte r

applying the recognition algorithm the set is reduced to U|, n y , ,n„ where

l< =  n,<=]Vlax, i= l,  2, 3 ...., N. and N<Max. Further more i f  X  is a random variable 

taking on the numbers ni,ny, Un P(X=ni) >P(X=U2) >  >P(X=Un)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From the experimental results using the capital handwritten letters o f the NIST we 

obtained that the discrete probability function 

F(x)= e"“'‘ , x= l .2,3.....N

Thus, P(X=n,) = e . P(X=n2)= . P(X=n3)= e P(X=nN)= 6 '^ '"

Since P(X=ni) +P(X=n2)+  +P(X=nN)=l

We have e " ''"+  e '"’'" +  + e '^*‘“ = l

=> e '" ( l+  e '*"+  + .................................................................................................e '‘^ '” ‘ ")= l

=> e " {  ( l - e - ^ * ' ) / ( l - e " ) } =1

= > l- e '^ * ‘'= e ‘‘ - l => e ‘’ =2. Using numerical methods we can compute a.

Theorem 2:

Using the preprocessing method and then the fu ll scale character recognition 

algorithm the expected number o f searches reduces from {M ax+1 }/2  to 

e  ̂ { ( ] -  (N + l) e '^^+ Ne'*'^’̂ '**“)/ ( l - e ‘^)^} which for a<l is approximately e ‘7  (1 -6 '““) “ 

Proof ;

The expected number o f searches after the preprocessing is

E(X)= e + 2*e-^% 3'e"^'+............. + N *e-^"

Or E (X )= e "  ( I + 2 *e  " +3<e-^)^ + ............. + N * ( e 'T ' '^ )

Or i f  U = e " then E(X)= U( 1+ 2*U  + 3 *U ' + ............ + N *U ^ '')

Or E(X)= U d/du (1 + U + U 4 ............+U^)

Or E(X) = U {( ] -U ^^ ') /( ]-U )}=  U {- (N + l )U ^ (I-U )+ (I-U ^+ ')} /( l-U )^

Q rE (X )=  U {1- U ^^ '-N U ^+N U ’̂ ’" ' - u '^+u ^ ^ ' ) } / ( 1-U)- = U{ l-(N + l)U ^+ N U ’̂ ’" } / ( l - U f  

E(x)= e " {  I - (N + l)  e ^"+ N e "^ ^ ')^ } /( l-e  Y
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For a<I this is approximately is e '7 (e ‘'- l)^  For the 26 capital English letters 

{M ax+ I j/2  =13.5 after preprocessing the expected numbers o f searches are about 2.3.
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CHAPTER 5 

CLASSIFICATIO N AN D  IM PLEM EN TATIO N

5.1 Classification

Once the preprocessing is done then comes the recognition o f the character. But our 

objective is grouping the characters that have the same features and eliminate the 

character that does not have. This can be done by fo llow ing the rules. Each character w ill 

have its own features that are not present in other characters. Hence these rules are used 

to classify each that have same features and avoid the other characters that do not have 

the same features.

Rules for character ‘A"

I ) It should have two tips at the bottom o f  character.

2) Total number o f  tips should not be more that 6 .

3) When a horizontal line is drawn at the mid point vertically it should intersect two 

slant lines. Hence it should have two black pixels and the number o f times the 

color o f the pixel changes from I to 0 should be more than 2.

I f  the character that satisfies all the above conditions then it should be an ‘A '. I f  the 

character does not satisfy then it is not an ‘A ’ . When the follow ing rules are applied to 

the input database character ‘A ’ may be some times recognized as the other characters 

like ‘R ’ , ‘M ’ , ‘ W ’ since they have the same features described for the character ‘A ’ . So 

‘ M y Ry ‘ W ' fall into the group o f having the same features as ‘A '. But ‘A  'may not
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have the same features as characters like M' hence it doest not fall into the group. Even 

though the character 'A ' may be recognized as other alphabets the probability would be 

different, i f  you take the R' since the features o f ‘ A ' and R ' is same there is more 

probability that the alphabet 'A ' may be recognized as ‘ RE But i f  you take the character 

‘ B ' even though sometimes it may have features a s ‘ A ' the number o f times the ‘ A 

recognized as B w ill be comparatively less. Hence the probabability for ‘A ' to be 

recognized as ‘B ' w ill be less. I f  you take the characters like ‘ E, ‘ .E the probability that 

'A ' recognized as those character w ill be zero since the features o f  'A ' are completely 

different to those to the features o f the ‘ E, ‘J' Hence we can increase the speed o f the 

recognition by decreasing the number o f comparisons by not comparing the characters 

whose probability is zero and apply the hierarchical approach for other characters whose 

probability is not zero. Hierarchical approach is which is been discussed in the previous 

chapter.

5.2 Implementation

The total number o f characters that are used for testing the functioning o f the 

algorithm is 2498 in HSF 2 database and 2498 for HSF 3 database.
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fable I Input Database

HSF 2 characters HSF 3 Characters

Number o f A 's 96
Number o f B's 97
Number o f C's 97
Number o f D 's 97
Number o f E's 96
Number o f F's 96
Number o f  G's 96
Number o f H 's 96
Number o f i's 96
Number o f J's 96
Number o f K 's 96
Number o f L 's 96
Number o f M ’ s 96
Number o f N 's 96
Number o f  O ’s 96
Number o f  P’ s 96
Number o f  Q ’s 96
Number o f R's 96
Number o f S’ s 96
Number o f T ’ s 96
Number o f U ’ s 96
Number o f V ’ s 95
Number o f  W ’s 96
Number o f X ’ s 96
Number o f  Y ’s 96
Number o f  Z ’ s 96

Number o f A 's 95
Number o f B's 97
Number o f C ’ s 97
Number o f D ’ s 97
Number o f E’ s 96
Number o f F's 96
Number o f G's 96
Number o f FI’ s 96
Number o f i's 96
Number o f .I's 96
Number o f K ’ s 96
Number o f L ’ s 96
Number o f M ’s 96
Number o f N ’ s 96
Number o f O ’s 96
Number o f P’s 96
Number o f Q ’s 96
Number o f R’ s 96
Number o f S’s 96
Number o f T ’s 96
Number o f U ’ s 96
Number o f V ’ s 96
Number o f W ’s 96
Number o f X ’ s 96
Number o f Y ’s 96
Number o f Z ’s 96

When the algorithm is ran the fo llow ing results are been obtained for the character 

‘A ’ . The fo llow ing table indicates that number o f  A 's  recognized as other characters. 

From the below table for HSF 2 we can under stand that the 10 times A ’ s has been 

recognized as B. 18 times it been recognized as 'EE 93, 96 , 42 times it been recognized 

as 'M E ‘ R E ‘ W ’ respectively .it is not recognized as D , I, J, L ,0 , S,T ,V,Y,Z.
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Table 2 A 's  Recognized as Other Characters

DATABASE HSF 2 HSF 3
Number o f A's 93 89
Number o f B ’s 10 9

Number o f C's 2 1

Number o f D ’s 0 3

Number o f E’ s 18 12

Number o f F's 21 15

Number o f G's 4 4

Number o f H ’s 8 6

Number o f I ’ s 0 0

Number o f .I's 0 0

Number o f K 's 9 6
Number o f L's 0 0
Number o f M ’ s 93 89
Number o f N 's 23 22

Number o f O ’s 0 0

Number o f P's 2 3

Number o f Q ’s 4 3

Number o f R ’s 96 95

Number o f S’s 0 0

Number o f T ’ s 0 0

Number o f U ’s 4 4

Number o f V ’s 0 0

Number o f W ’ s 42 44
Number o f X ’s 9 6

Number o f Y ’s 0 0

Number o f Z ’ s 0 0
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Table 3 Other Characters Recognized as A 's  

Output o f HSF 2 Output o f HSF 3

Number o f A ’ s 93
Number o f B's 13
Number o f C ’ s 0
Number o f D ’s 4
Number o f E’ s 11
Number o f F's 0
Number o f G 's 0
Number o f H ’ s 90
Number o f l's 0
Number o f J's 0
Number o f K ’ s 61
Number o f L ’ s 2
Number o f M ’ s 89
Number o f N ’ s 48
Number o f O ’s 2
Number o f P’ s 1
Number o f Q ’s 6
Number o f R ’s 80
Number o f S’s 0
Number o f T ’ s 0
Number o f U ’ s 4
Number o f V ’ s 3
Number o f W ’ s 16
Number o f X ’ s 40
Number o f Y ’ s 2
Number o f Z ’ s 3

Number o f A 's 89
Number o f B's 13
Number o f C’ s 0
Number o f D ’ s 5
Number o f E ’s 9
Number o f F’ s 0
Number o f G ’ s 1
Number o f H ’ s 88
Number o f l's 0
Number o f J's 0
Number o f K ’ s 74
Number o f L ’ s 0
Number o f M ’ s 90
Number o f  N ’ s 60
Number o f O ’ s 2
Number o f  P’s 3
Number o f  Q ’s 8
Number o f  R ’ s 87
Number o f  S’ s 1
Number o f T ’ s 0
Number o f U 's 1
Number o f  V ’ s 0
Number o f W ’s 19
Number o f  X ’ s 33
Number o f  Y ’ s 2
Number o f  Z ’ s 0

The fo llow ing above table for database HSF 2 indicates that number o f other 

characters recognized as ‘A ’ s. For example table indicates the out o f the 96 ‘B ’ s 13 

are recognized as ‘A ” s .
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CHAPTER  6 

EFFIEN CY A N D  C O N C LU SIO N

6.1 E ffic iency

I f  the general procedure is been fo llowed then the each alphabet feature should be 

compared w ith  all the other alphabet features o f  the input database. Even though the 

accuracy o f  the recognition process is more but the tim e consumption o f  the process is 

very high which is disadvantage for the recognition process. Hence the hierarchical 

approach is been fo llow ed where the number o f  comparisons required w il l  be less.
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Table 4 Probability o f A ’s Recognized as Other Characters

HSF 2 HSF 3

Probab ility  o f  A ’ s to be A ’s 0.212329 0.216545
Probab ility  o f  A ’s to be B ’ s 0.022831 0.021898
Probability  o f  A ’s to be C ’s 0.004566 0.002433
Probab ility  o f  A ’ s to be D ’s 0.000000 0.007299
Probab ility  o f  A ’ s to be E ’s 0.041096 0.029197
Probab ility  o f  A ’s to  be F ’ s 0.047945 0.036496
Probab ility  o f  A ’s to be G ’s 0.009132 0.009732
Probab ility  o f  A ’s to be H ’s 0.018265 0.014599
Probab ility  o f  A ’s to be I ’ s 0.000000 0.000000
P robab ility  o f  A ’s to be J ’ s 0.000000 0.000000
P robab ility  o f  A ’ s to be K ’ s 0.020548 0.014599
Probab ility  o f  A ’s to be L ’ s 0.000000 0.000000
Probab ility  o f  A ’s to be M ’s 0.212329 0.216545
Probab ility  o f  A ’s to be N ’s 0.052511 0.053528
Probab ility  o f  A ’s to be O ’s 0.000000 0.000000
P robab ility  o f  A ’s to be P ’s 0.004566 0.007299
P robab ility  o f  A ’s to be Q ’s 0.009132 0.007299
Probab ility  o f  A ’s to be R ’s 0.219178 0.231144
Probab ility  o f  A ’s to be S’s 0.000000 0.000000
Probab ility  o f  A ’s to be T ’ s 0.000000 0.000000
P robab ility  o f  A ’ s to be U ’s 0.009132 0.009732
Probab ility  o f  A ’ s to be V ’s 0.000000 0.000000
Probab ility  o f  A ’ s to be W ’s 0.09589 0.107056
Probab ility  o f  A ’s to be X ’s 0.020548 0.014599
Probab ility  o f  A ’s to be Y ’s 0.000000 0.000000
Probab ility  o f  A ’s to be Z ’ s 0.000000 0.000000

From the output o f  the database H S F 2  obtained , the p robab ility  o f  the character ‘A ’ 

to be recognized as the other characters we can understand that the features o f  the ‘ A ’ are
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matching w ith  the features o f  ‘W ’ more compared to the features o f  the

‘Q ’ . Hence the probabilities o f  A ’s recognized as 'M ',' N ', ‘R ’ ,‘ W ' are more then 

compared to the probabilities o f  'A ' recognized as 'B ','C ','D ','E '. Features o f  other 

alphabets such as ‘D ’ ,T ’ , ‘J’ , ‘ L ’ , ‘O ’ ,‘ S’ , ‘T ’ , ‘V ’ , ‘Y ’ , ‘Z ’ are completely contrast 

hence the probab ility  o f  A 's to be recognized is zero. Since the p robab ility  that the ‘A ’ 

recognized as other characters is not the same the hierarchical approach is been followed. 

Since there are total o f  26 characters present in the input database the total number o f  

comparisons required w il l  be (26+1 )/2 W hich is equal to 13.5.But i f  the number the 

hierarchical approach is been fo llowed the number o f  comparisons w il l be less which is 

been showed below. Total number o f  characters is 26.The number o f  characters whose 

probab ility  is zero is 10. Hence the number characters that ‘A ’ should be compared to 

classify is 26-10=16.Hence the number o f  comparisons required is (1 6 + l)/2 =  17/2=8.5. 

From the above results we can understand that the number o f  comparisons required is less. 

Since the probab ility  that the ‘A ’ recognized as other characters is not same for all the 

characters. Therefore the hierarchical approach is fo llow ed where the characters that have 

the maximum probab ility  is compared firs t and which have the m in im um  p robab ility  is 

compared last. Hence the characters are ranked in the order o f  the ir probability.
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Table 5 Rank o f Characters

H S F 2 Rank

P robability  o f  A ’ s to be R ’s 0.219178 1
P robability  o f  A ’ s to be A ’s 0.212329 2
P robability  o f  A ’s to be M ’s 0.212329 3
P robability  o f  A ’s to be W ’s 0.09589 4
Probability  o f  A ’ s to be N ’s 0.052511 5
Probability  o f  A ’ s to be F ’ s 0.047945 6
P robability  o f  A ’ s to be E ’s 0.041096 7
P robability  o f  A ’ s to be B ’s 0.022831 8
P robability  o f  A ’ s to be K ’s 0.020548 9
P robability  o f  A ’ s to be X ’s 0.020548 10
Probability  o f  A ’ s to be H ’s 0.018265 11
Probab ility  o f  A ’ s to be G ’s 0.009132 12
P robability  o f  A ’ s to be Q ’s 0.009132 13
P robability  o f  A ’ s to be U ’s 0.009132 14
Probab ility  o f  A ’ s to be C ’s 0.004566 15
Probab ility  o f  A ’ s to be P ’s 0.004566 16
Probab ility  o f  A ’ s to be D ’s 0.000000 17
P robability  o f  A ’ s to be I ’ s 0.000000 18
Probab ility  o f  A ’ s to be J’ s 0.000000 19
Probab ility  o f  A ’ s to be L ’s 0.000000 20
Probab ility  o f  A ’ s to be O ’s 0.000000 21
Probab ility  o f  A ’ s to be S’s 0.000000 22
P robab ility  o f  A ’ s to be T ’s 0.000000 23
P robability  o f  A ’ s to be V ’s 0.000000 24
Probab ility  o f  A ’ s to be Y ’s 0.000000 25
Probability  o f  A ’ s to be Z ’s 0.000000 26

For the database FISF_2 we can see the ranks o f  the characters that ‘A ’ been 

recognized as others. Hence from  the table we can understand that ‘A ’ has to be
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compared w ith  either ‘A ’ , ‘M ’ , ‘R ’ and then w ith  ‘ W ’ ,’N ’ , ‘E ’ and so on. The sum o f 

the probabilities should be equal

= >  P a+ P b +P c+ P i) +Pr; + P f + P g + P h+ P i+P.i + P k+  P i.+P m +P n + P o+ P p +P q + P r+ P s 

+ P t+ P u+ P v +P \v +  P x + P y + P z =  1

= >  P.a(1 +  (P b + P c+ P d + P e + P f + P g + P h+ P i+P.i + P k+  P l+ P m + P n+ P o+ P p +P q + P r+ P s 

+ P t+ P u+ P v + P \v +  Px+Py +Pz)/ P a) =  1.

= >  P a=  1 /((1 +  (P b + P c+ P d + P e + P f + P g + P h+ P i+P.i + P r+  P l+ P m + P n+ P o+ P p + P q 

+ P r+ P s + P t+ P u+ P v + P w + Px+Py +Pz)/ P a)- 

Expected number o f  tria ls is

P a * R a+ P b* R b + P c * R c + P d * R d + P f* R f + P f* R f + P g * R g + P h * R h +P,*R, +P.i *Rj 

+ P k * R k+ P l*  Ri. + P m * R m + P n * R n +Po*Ro +Pp *Rp + P q * R q + P r* R r +Ps*Rs + P t * R t 

+Pu*Rij +Pv*Rv +Pw*Rw+ Px*Rx +Py*Ry +Pz*Rz
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Table 6 Expected Num ber o f  Trials

HSF 2 Rank
Rank*
Probability

P robab ility  o f  A ’ s to be R ’ s 0.219178 1 0.219178
P robab ility  o f  A ’ s to be A ’ s 0.212329 2 0.424658
P robab ility  o f  A ’ s to be M ’s 0.212329 3 0.636987
P robab ility  o f  A ’ s to be W ’s 0.09589 4 0.38356
Probab ility  o f  A ’ s to be N ’ s 0.052511 5 0.262555
P robab ility  o f  A ’ s to be F ’s 0.047945 6 0.28767
P robab ility  o f  A ’ s to be E ’ s 0.041096 7 0.287672
Probab ility  o f  A ’ s to be B ’ s 0.022831 8 0.205479
P robab ility  o f  A ’ s to be K ’ s 0.020548 9 0.20548
Probab ility  o f  A ’ s to be X ’ s 0.020548 10 0.226028
Probab ility  o f  A ’ s to be H ’ s 0.018265 11 0.21918
Probability  o f  A ’ s to be G ’ s 0.009132 12 0.118716
P robab ility  o f  A ’s to be Q ’ s 0.009132 13 0.127848
Probab ility  o f  A ’ s to be U ’ s 0.009132 14 0.13698
Probab ility  o f  A ’ s to be C ’s 0.004566 15 0.073056
Probab ility  o f  A ’ s to be P ’s 0.004566 16 0.077622
Probab ility  o f  A ’ s to be D ’ s 0.000000 17 0
P robab ility  o f  A ’ s to be I ’ s 0.000000 18 0
P robab ility  o f  A ’ s to be J ’ s 0.000000 19 0
P robab ility  o f  A ’ s to be L ’ s 0.000000 20 0
Probab ility  o f  A ’ s to be O ’ s 0.000000 21 0
Probab ility  o f  A ’ s to be S’s 0.000000 22 0
Probab ility  o f  A ’ s to be T ’ s 0.000000 23 0
Probab ility  o f  A ’ s to be V ’ s 0.000000 24 0
Probab ility  o f  A ’ s to be Y ’ s 0.000000 25 0
Probab ility  o f  A ’ s to be Z ’ s 0.000000 26 0

The total expected number o f  tria ls required fo r database HSF 2 is 3.892669 which 

is less compared to 8 .5.The same procedure is been applied to all the characters in the
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database which shows that the number o f  comparisons required fo r classifications o f  the 

characters is much less i f  the hierarchical procedure is been followed. There by reducing 

the number o f  comparisons we are able to save tim e for the recognition process.

6.2 Conclusion

Optica] character recognition is way in which the printed or handwritten text is 

converted into machine editable form. Character recognition is very important in  modem 

day life  where it  is used in  the postal services, banking and insurance companies and 

many more. Hence it is very im portant fie ld  and the research is going on in this field. 

Recognition o f  the hand w ritten  characters is very d iffic u lt since each user w rites the 

same character in d iffe rent shape and size. In order to recognize the characters fo llow ing  

procedure has to be fo llowed.

1) Character should be converted to b inary image

2) B ig  dots that are present in  the image should be removed.

3) Noise that is present in  the image has to be removed.

Once the preprocessing has been done then it  has to be fo llowed by the feature 

extraction. Once the features are extracted then the resultant features must be trained and 

tested by using the classifier. There are different classifiers that can be used in the optical 

character recognizers.

They are

1 ) Statistical Methods

2) A rtif ic ia l Neural N e tw ork Method.

3) Kernel Method.
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4) Com bination o f  M u ltip le  Classifiers.

The above methods w ill help in high accuracy .But the time taken w il l be more which 

is a disadvantage fo r the recognizer since it  has to be trained and tested against huge data 

base o f  characters. Hence the hierarchical approach is been fo llowed to increase the 

effic iency by decreasing the number o f  comparisons by the recognizer to classify .Since 

all characters would not have the same features hence the characters which not sim ilar 

can be elim inated fo r comparison. There by reducing the number o f  comparisons required 

by the classifier to classify the characters. A fte r e lim inating the characters whose features 

are not same, then the other characters are compared in the order o f  the ir probabilities. 

There by we can increase the speed o f  the recognition process.
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A PP E N D IX

Statistical
Method

Kernel
Methods

Pre Processing

Classification

Feature vectors

A rtif ic ia l Neural 
Networks

M u lti Classifier 
Combination

Feature Extraction

Paper Document

Figure 1 General Approach

In the general approach the paper document where the user writes the text w il l be 

scanned using scanner. Once the paper is been d ig itized then the preprocessing w il l be 

implemented to increase the accuracy and effic iency o f  the algorithm. Once the 

preprocessing is done the features w il l be extracted from  the characters and stored in the 

feature vectors .A ll these feature vectors w il l be used by the classifier to recognized the
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characters. Since each character has to be compared w ith  all other characters the time 

taken w il l  be less. To increase the speed o f  the recognition the hierarchical approach is 

been followed.

Statistical
Method

Kernel
Methods

Feature vectors

Pre Processing

Classification

Hierarchical Approach

A rtif ic ia l Neural 
Networks

M u lti Classifier 
Combination

Paper Document

Feature Extraction

Figure 2 Hierarchical Approach

In the above approach after the feature vectors are extracted the hierarchical approach 

w il l be implemented where by tbe number o f  characters that are to be compared w il l be 

less then the maximum number o f  characters that are present in the characters.

Functions used in the Implementation

1. F lild itch Thinning algorithm

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. ConnectedComponentSementer

3. FilterBySize

4. Findminmax

5. Number o f  tips

1)H ild itch Thinning algorithm

Thinning is process in which object image w idth  w il l be reduced to one pixel w idth. 

Functions used in the thinning algorithm.

1.1 )calculateNZ

This function w il l be calculating the number o f  black pixels that are adjacent to it 

1.2) calculateNT

This function w il l be calculating the number o f  times the value o f  the pixel color 

changes 1 to 0 in the pattern p2, p3 ,p4,p5,p6,p7,p8,p9,p2.

2)FilterbySize

This function is used to remove the speckles that are present in the character image.

3) ConnectedComponentSegmenter

This function w il l be help you to count the number o f  components that arc present in the 

image.

2)Findminmax

This function w ill find  out the size and the position o f  the character that is present in the 

128 by 128 image.

3)Number o f  Tips

This function w ill find  o f  the number o f  tips present in the thinned image.
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1. H ild itch  Function 

package edu.univ.cs.ip;

public class TwoPassThinner implements Thinner {

public Imageinterface apply(final Imageinterface image) 
throws ImageProcessingException { 

return hilditch(image);
}

public Imageinterface hilditch( Imageinterface image ) 

{

int treshold=1;
int []points=new int[10];

int loc;
int image size; 
int image row, image col; 
boolean changed^true; 
int i, j;
char option:

image row -image.getHeight(): 
image col = image.getWidth(); 
image size = image row * image col; 
int Qimage original -  new int[image_size];

Imageinterface image2=image.copy();

for(int r=0;r<128;r++)
for(int p=0;p<128;p++)
{

if(image2.getPixel(r,p)==1 ) 
image_original[p+r*128]=1;

else
image_original[p+r*128]=0;

}

for( i=0; i<image_col; i++){ 
for( j=0; j<image_row; j++)

{
if( image_original[i+j*128] >= 1 ) 

image.setPixel(j,i,0); //set black
else

image.setPixel(j,i,1); //set white
}
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int [] m1 = new int[image_size];
int [] m2 -  new int[image_sizej;
int [] mO = new int[image_sizej;

for( i=0; i<image size; i++){

if(image_original[i]==0)
{

}

m1[i] = 1 
m2[i] = 1 
mO[i] = 1

}
else{

m1[i] = 0 
m2[i] = 0 
mO[i] = 0

}

//set black

//set white

// 4 thinning conditions
//cout «  "\nApplying thinning.............. \n";
while(changed){

changed -  false;

//set A - delete South & West bounds 
for(int x-1; x<image_row-1; x++){ 

i = x*128;
for(int y-1 ; y<image_col-1 ; y++){

j = y;

//fill 3x3 points using m l at (i j)  
fillPoints(i,j,m1,points,imagecol);

if(points[1] = - 1){ // p1 -=  1
/*cond1*/ if( calculateNZ(points) >= 2 ){
/*cond2*/ if( calculateNT(points) == 1 ){
/*cond3*/ if( (points[2] * points[4] * points[6]) == 0 ){
/*cond4*/ if( (points[2] * points[4] * points[8]) == 0 ){

m2[i+j] -  0; //set white (delete) 
changed -  true;

}//end if cond4 
}//end if cond3 

}//end if cond2 
}//end if cond1 

}//end if p1 == 1 
}//end for y 

}//end for x

// copy matrix to for set B 
if(changed){

for(int n=0; n<image_size; n++)

m1[n] = m2[n];
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//set B - delete North & East bounds 
for(int x=1; x<image_row-1; x++){ 

i = x*128;
for(int y=1; y<image_col-1 ; y++){

j = y:

//fill 3x3 points using ml at (i j)  
fillPoints(iJ,m1,points,imagecol);

if(points[1] == 1){ // p i = - 1
/*cond1*/ if( calculateNZ(points) >= 2){
/*cond2*/ if( calculateNT(points) == 1 ){
/*cond3*/ if( (points[2] * points[6] * points[8]) =- 0 ){
/*cond4*/ if( (points[4] * points[6] * points[8]) == 0 ){

m2[i+j] = 0; //set white (delete) 
changed = true;

}//end if cond4 
}//end if cond3 

}//end if cond2 
}//end if condl 

}//end if p i == 1

}//end for y 
}//end for x

// copy matrix to final 
if(changed){

for(int n=0; n<image_size; n++)

m1[n] = m2[n];
}

}//end while

//clean up
for(int x=1 ; x<image_row-1 ; x++){ 

i = x*128;
for(int y=1 ; y<image_col-1 ; y++){

j = y:
if( m1[i+j] > 0){

fillPoints(i,j,ml,points,imagecol);
if(calculateNT(points) == 2){ //means 2-way split

if(points[2]+points[4]=-2 || points[4]+points[6]==2 || points[6]+points[8]==2 ||
points[8]+points[2]==2){

m1[i+j] = 0; //extra, delete point
m2[i+j] = 0;

}
}
else if(calculateNT (points) -=  3){

if(points[2]+points[4]+points[6]==3 || points[4]+points[6]+points[8]==3 || 
points[6]+points[8]+points[2]-=3 || points[8]+points[2]+points[4]=-3){ 

m1[i+j] = 0;
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m2[i+j] = 0 ;
}

}
}

}
}
//(((up to now, m0=original(0|1), m1=m2=thinned&cleaned))))

for(int r=0; r<image_size; r++){ 
if( m1[r] == 1 )

image_original[r] = 0; //set black
else

lmage_original[r] = 1 ; //set white
}

// convert imagematrix(0|1) back to image data(.bmp) 
for( i-0; i<image_col; i++){ 

for( j=0; j<image row; j++)

if( image_original[j+i*128] == 1 ) 
image.setPixel(j,i,1); //set black

else
image.setPixel(j,i,0); //set white

}

return image;
}
public void fillPoints(int i, int j, int []image_matrix,

int Qpoints, int c)
{

// p5 p6 p7 
// p4 p i p8 
// p3 p2 p9

points[1] = image_matrix[(i )+(j )]; 
points[2] = image_matrix[(i+c)+(j )]; 
points[3] = image_matrix[(i+c)+(j-1)]; 
points[4] = image_matrix[i +j-1]; 
points[5] = image_matrix[(i-c)+(j-1)]; 
points[6] = image_matrix[(i-c)+(j )]; 
points[7] = image_matrix[(i-c)+(j+1)]; 
points[8] = image matrix[(i )+(j+1)]; 
points[9] = image_matrix[(i+c)+(j+1 )];

}

public int calculateNZ(int Opt)
{

// non-zero neighbors to pi

}
return (pt[2]+pt[3]+pt[4]+pt[5]+pt[6]+pt[7]+pt[8]+pt[9]);
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public int calculateNT(int []pt)
{

// zero(O) to one(1) transition
II order -  {p2,p3,p4,p5,p6,p7,p8,p9,p2}

int transition^O;

if( (pt[3]-pt[2]) 
if( (pt[4]-pt[3]) 
if( (pt[5]-pt[4J) == 
if( (pt[6]-pt[5]) == 
if( (Pt[7]-pt[6]) == 
if( (pt[8]-pt[7]) == 
if( (pt[9]-pt[8]) =- 
if( (pt[2]-pt[9]) ==

) transition++; 
) transition++; 
) transition++; 
) transition++; 
) transition++; 
) transition++; 
) transition++: 
) transition++;

return transition;

2. Grouping Function 

package edu.univ.cs.ocr.structural;

import java.awt.Rectangle;
import java.io.DataInputStream;
import java.io.File;
import java.io.FlleInputStream;
import java.io.FileWriter;
import java.io.lOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Linked List;
import java.util.List;
import org.animism.math.Statistics;

import edu.unlv.cs.ip.BinaryConverter;
import edu.unlv.cs.ip.Binarylmage;
import edu.unlv.cs.ip.Directlmage;
import edu.unlv.cs.ip.Grayscalelmage;
import edu.univ.cs.ip.Imageinterface;
import edu.univ.cs.ip.ImageProcessingException;
import edu.unlv.cs.ip.ImageRotator;
import edu.unlv.cs.ip.Thinner;
import edu.unlv.cs.ip.TwoPassThinner;
import edu.unlv.cs.ip.filter.GaussianFilter;
import edu.unlv.cs.ocr.CharacterLibrary;
import edu.unlv.cs.ocr.ConnectedComponent;
import edu.unlv.cs.ocr. ConnectedComponentSegmenter;
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import edu.unlv.cs.ocr.*

*/
public class RegUsingEdge extends CharacterLibrary{

protected Imageinterface thin; 
protected Imageinterface 

mJmg,m_binarylmage,m_binarylmage2,m_imageOne,mJmageTwo,m_imageThree,thinnedJma 
ge,thinned_image2,shadow1_image,shadow2Jmage,shadow3Jmage; 

protected Imageinterface mjmgl,thinned,thinnedi; 
protected Thinner m thinner = new TwoPassThinner(); 
protected Thinner m thinnerl = new TwoPassThinner(); 
int[][] imagearray^new int[128][128]; 
int[][] imagearray2=new int[128][128]; 
int[][] imagesmooth-new int[128][128]; 
int[][] imagesmooth2-new int[128][128]; 
int □[] imagecopy^ new int[132][132];
GaussianFilter gf = new GaussianFilter();

protected CharacterSeparator m csParent; 
protected ColorlmageThinning m citParent; 
int r1=0;

int xlmin.ximax;
protected ConnectedComponentSegmenter m segmenter = new 

ConnectedComponentSegmenterO;
protected LinkedList m segList = null; 
int xmax,xmin;
static int TotHeight,TotWidth; 
int[] RotX1=new int[8]; 
int[] RotY1=new int[8];

int lmax,lmin;

int Xmin=200,Ymin=200,Xmax=0,Ymax=0; 
int RegGrp^O; 
int tempi;

int []ActualCharGroup=new int[26]; 
int [][]ActualChar-new int[26][500]; 
int [][]outputchar=new int[26][500];

int [] subclass=new int[1000];

int label=0; 
int charcnt=0; 
int images=0,labels=0; 
int rows=0,cols=0;
int maxX=0,maxY=0,minX=0,minY=0;
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int parts=3; 
int features=34;

int CGx=0,CGy=0;

int EXmin=0,EYmin=0,EXmax=0,EYmax=0; 
int LEXmin-0,LEYmin=0,LEXmax=0,LEYmax=0; 
int REXmin=0,REYmin=0,REXmax=0,REYmax=0;

double nG[]ResVec=new double [26][26][parts*(features)]; 
int []sort=new int[10];

int[] tippositionx-new int[100]; 
int[] tippositiony=new int [100];

int[]junk= new int[26];

int Zeros=0,0nes=0;

public static final int TRAINING_SET = 0; 
public static final int TEST SET = 1;

protected static final int IMAGE_MAGIC_NUMBER = 2051; 
protected static final int LABEL_MAGIC_NUMBER = 2049;

protected String mJmageFile; 
protected String m labelFile; 
protected boolean m convertToBinary = true; 
protected String m directory; 
protected boolean mJsLoaded = false;

protected int m threshold = 128;

protected DigitRecognizer m recognizer = new DigitRecognizer();

private List filterBySize(List components) {
double[] areas = new double[components.size()j;
ArrayList out = new ArrayList(); 
for (int i=0;i<areas.length;i++) {

ImageComponent component = (ImageComponent) components.get(i); 
areas[i] = component.height()*component.width();

}
double std = Statistics.standardDeviation(areas); 
double mean = Statistics.average(areas);

// mJogger.infoC'mean = "+mean+", std = "+std);

for (int i=0;i<components.size();i++) {
ImageComponent component = (ImageComponent) components.get(i); 
if (component.height()*component.width()<mean-std/2) { 

out.add(component);
}

}
return out;
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private void remove(lmagelnterface original, ConnectedComponent component) { 
for (Iterator i = component.getPixels().iterator(); 
i.hasNextO;) {

Point p = (Point)i.nextO;
original.setPixel(p.x,p.y,original.getBackgroundColor());

}
}

public RegUsingEdge(lmagelnterface image){ 
this(TRAINING_SET); 
m jm g  = image;

}

public RegUsingEdge(int mode)
{

if ((mode % 2) == TRAINING_SET) {
mJmageFile = "C:\\eclipse\\database\\HSF_2\\Test.txt";//*/TRAINING_FILE; 
m labelFile = "G:\\eclipse\\database\\HSF_2\\TestLabel.b<t";/r/TRAINING_LABELS; 

} else {
mJmageFile ="C:\\eclipse\\database\\HSF_2\\Test.txt";// TEST FILE; 
mJabelFile ="C:\\eclipse\\database\\HSF_2\\TestLabel.txt";//TEST_LABELS;

}
}

public void setDirectory(String directory) { 
m directory -  directory;

}

public void setConvertToBinary(boolean convert) { 
m convertToBinary -  convert;

}

r
* Restore image info from persistant file
* The data comes with two files:
* One containing the image data and one the labels
* ©throws lOException
‘ ©throws ImageProcessingException 
*/

public void restoreData(double [][]D[]P) throws lOException, ImageProcessingException {

restoreData("C:\\eclipse\\database\\HSF_2\\Test.txt","C:\\eclipse\\database\\HSF_2\\TestLabel.txt
",P):

}

public void restoreData(String imageFile, String labelFile,double [][][][] P)throws lOException, 
ImageProcessingException!

int m=0,n=0;

if (m isLoaded)
{
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mJogger.infoC'Data is already loaded."); 
return;

}

System.out.printlnC'asdaslkn");

FilelnputStream imageStream = new FilelnputStream(imageFile);//open a stream for 
reading the image file

DatainputStream is = new DatalnputStream(imageStream);

FilelnputStream labelStream = new FilelnputStream(labelFile);// open a stream for 
reading the labels file

Data I nputStream Is = new DatalnputStream(labelStream);

// read number of images and labels (should match) 
images = is.readlnt(); 
labels = Is.readlntO;

// read number of rows and columns
int rows = is.readlnt();
m_logger.info("Rows = "+rows);
int cols = is.readlntO;
m_logger.info("Columns = "+cols);
images = Math.min(images, m maximages);
m_logger.info("Reading " + images + " images.");
m logger.info("m maxImages : "+m_maxlmages);
mJmageTwo = new Directlmage(cols,rows,Directlmage.TYPE_B!NARY);
mJmageThree = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadowl image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadow2_image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);
shadow3_image = new Directlmage(cols,rows,Directlmage.TYPE_BINARY);

// this loop reads each image byte by byte and stores in an array 
for (int p = 0; p < images; p++) {
m binarylmage -  new Directlmage(cols, rows, Directlmage.TYPE BINARY); 

System.out.println(p);
label = (int) Is.readlntO;// read the label

System.out.printlnflabel ; "+label); 
char c = lnteger.toString(label).charAt(0);

for (int j = 0; j < rows; j++) 
for (int i = 0; i < cols; i++) {

int value = is.readByte();

m_binarylmage.setPixel(i, j,(value==0)?1:0); //else
//;
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// Removing Spurts and big dots from the binary image
m segList = null;
m segList = (LinkedList) m_segmenter.segment(m_binarylmage);

System.out.printlnC# of components: " + m_segList.size());

int Area = 0; 
int maxArea = 0; 
int CharList = 0;
ConnectedComponent comp = null;

for (int i = 0; i < m_segList.size(); i++) {
comp = (ConnectedComponent) m segList.get(i);

Area = (comp.maxX - comp.minX) * (comp.maxY - comp.minY);
maxX=comp.maxX;
maxY-comp.maxY;
minX=comp.minX;
minY-comp.minY;

if (Area > maxArea) { 
maxArea = Area;
CharList = i;

}
}

ConnectedComponent cc = (ConnectedComponent) m segList.get(CharList); 
Rectangle rect -  cc.getEnclosingRectangle();

mJmageOne = m_binaryimage.copy();

l/JODO Remove speckles 
try {

Imageinterface binary = new BinaryConverter(200).apply(m_imageOne); 
List components = m segmenter.segment(binary);
List out = filterBySize(components); 
for (int i=0;i<out.size();i++) {

ConnectedComponent component = (ConnectedComponent) out.get(i); 
remove(m_imageOne,component);

}

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block 
e.printStackTraceO;

}

for (int j = 0; j < rows; j++)
{

for (int i = 0; i < cols; i++)
{

imagecopy[i+2][j+2]=mJmageOne.getPixel(iJ);
}
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}
for (int j = 2; j < rows+2; j++)
{

imagecopy[1 ][j]=imagecopy[3][j]; 
imagecopy[0][j]=imagecopy[4][j]; 
imagecopy[130][j]=imagecopy[128][j]; 
imagecopy[131]0]=imagecopy[127][j];

}

for (int j = 0; j < cols+4; j++)
{

imagecopy[j][1]=imagecopy[j][3]; 
imagecopyO][0]=imagecopy[j][4]; 
imagecopy[j][130]=imagecopy[j][128]; 
imagecopy[j][131 ]=imagecopy|j][127];

}

for (int i = 1 ; i < rows+1 ; i++) 
for (int j = 1 ; j < cols+1 ; ]++)
{

{

imagesmooth20-1][i-1]=(int) (((double)1/16)*((imagecopyO-1][i-1]+2*imagecopyD- 
1 ][i]+imagecopyG-1 ][i+1 ])

+(2*imagecopy[j][i-1]+4*imagecopy[j][i]+2*imagecopy[j][i+1])
+(imagecopy[j+1][i-

1 ]+2*imagecopy[j+1 ][i]+imagecopylj+1 ][i+1 ])));

}
}

for(int i = 0; i < mJmageOne.getWidth(); i++)
for(int j = 0; j < m_imageOne.getHeight(); j++)
{

imagearray[i][j]=imagesmooth2[i][j];//mJmageOne.getPixej(i,j);

}

mJmageTwo-m imageOne.copyO;

//hsf_2 p==104||p==1711||p==358 
//hsf_3 p==546||p==156 
int temp10=0;

if( p==104||p==1711||p==358) 
{
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temp10=1;
}

else
{
temp10=0; 

NumberOfTips2(imagearray); 
for(int f=0;f<mJmageOne.getWidth();f++)
{

for(int f1 =0;f1 <m JmageOne.getHelght();f1 ++)
{

m_imageOne.setPixel(f1,f,imagearray[f1][f]):
}

Findmaxmin(0,0,128,128);
System.out.println("xmin"+mlnX+" xmax"+maxX+" ymin"+mlnY+"ymax "+maxY); 
int total=NumberOfTips(0,0,128,128);

int ymax=0; 
int ymin=200;

int []sy=new int[total]; 
int []sx=new int[total]; 
for(int i=0;i<total;i++)
{
sy[i]=tippositiony[i];
}

if(total>1)
{
lmax=sy[total-1 ];//ymax 
lmin=sy[total-2];//ysecond max 
xlmin=tippositionx[total-2];//xsecondmax 
xlmax=tippositionx[total-1];//xmax 
}

thinned=m_thinner.apply(mJmageOne);//thinning

int r=0;

int u1=0; 
int u2=0; 
int u3=0; 
int xtop=0; 
int xbottom=0; 
int xleft^O; 
int xright=0; 
int temp=0; 
int y1=0; 
int y2=0;
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int y3=0; 
int y4=0; 
int pix=0; 
int b=0; 
int pixels=0; 
int pixelc=0; 
int pixelt=0; 
int F1-0; 
int F2=0; 
int F3=0; 
int 11=0; 
int 12=0; 
int 13=0; 
int F4=0; 
int g1=0; 
int g2=0; 
int s1=0; 
int s2=0; 
int n1=0; 
int n2=0; 
int i1=0; 
int i2=0;
for( int i = lmin-1; i <= lmax+1; i++ ){ 

for( int j =0; j < 128; j++ )
{
if(thinned.getPixel(i,j)==0)

pixelc++;
}

}

for( int i = lmax+1; i <= 127; i++ ){ 
for( int j =0; j < 128; j++ )
{
if(thinned.getPixelO,i)==0)

pixels++;

}

}
int lowerv=0; 
int upperv=0; 
for(int i=0;i<total;i++)
{
if(tippositionx[i]<(minX+maxX)/2&&tippositiony[i]<(minY+maxY)/2)

u1++;
if(tippositionx[i]>=(minX+maxX)/2&&tippositiony[i]<(minY+maxY)/2)
u2++;
if(tippositiony[i]<(minY+maxY)/2)

lowerv++;
else

}
upperv++;

int k=0;
for(int i=0;i<total;i++)
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if(tippositiony[i]>(maxY+minY)/2)
xbottom++:

else
xtop++;

if(tippositionx[i]>(minX+maxX)/2)
xright++;

else
xleft++;

if(tippositionx[i]>(2*minX+maxX)/3)
k++:

if(total>=4&&k>=2&&xbottom>=2&&xtop>=2&&pixels==0)
{

ActualChar[10][label]++; 
temp10=1;

}

int c1=0;
for(int i=0;i<total;i++)
{

if(tippositionx[i]<(minX+maxX)/2)
c1++;

}

if(c1==0 && total<3)
{

}

ActualChar[2][label]++:

temp10=1;

for(int i=0;i<total;i++)
{

if(tippositiony[i]<(minY+maxY)/2)
y1++:

else
y2++;

if(tippositiony[i]<(minX+maxX)/2)
y3++;

else
y4++:

}
for( int i = lmax+1; i <= 127; i++ ){ 
for( int j =0; j < 128; j++ )
{
if(thinned.getPixelO,i)==0)

pixelt++;
}

}
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int pixelf=0;

for( int i = lmax+3; i <= 127; i++ ){ 
for( int j =0; j < 128; j++ )
{
if(thinned.getPixel(i,j)==0)

pixelf++;
}

}

int f3=0;
for(int i=0;i<total;i++)
{

if(tippositiony[i]<(3*maxY+minY)/4)
F3++;

else
F4++;

if(tippositionx[i]>=(minX+2*maxX)/3)
F1++;

else
F2++;

if(tippositionx[i]<(2*minX+maxX)/3)
f3++;

}

if(F3>=2&&F4>0&&F1!=0&&F2!=0&&f3>0&&pixelf==0)
{

ActualChar[5][label]++;
temp=1;

}
int n3=0;
for(int i=0;i<total;i++)
{

if(tippositiony[i]<(maxY+2*minY)/3) 
n1 ++;

if(tippositionx[i]>(3*minX+maxX)/4)
n2++;

if(tippositionx[i]>(minX+maxX)/2)
n3++;
}

int pixelq=0;
for( int i = lmax+5; i <128; i++ ){ 

for( int j =0; j < 128; j++ )
{
if(thinned.getPixel(ij)==0)

pixelq++;
}

}

if(n2>2&&n1 >0&&n3>1 &&total>2) 
{

ActualChar[4][!abel]++;
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temp10=1;

}

if(F1==0)
{

ActualChar[1][label]++;
temp10=1;

}

for(int i=0;i<total;i++)
{

if(tippositiony[i]<(maxY+3*minY)/4)
g i+ + ;

if(tippositionx[i]<(3*minX+maxX)/4)
g2++:

}

intG1=0; 
int G2=0;
for(int i=0:i<total;i++)
{

if(tippositiony[i]<(maxY+3*minY)/4) 
G1++;

if(tippositionx[i]<(3*minX+maxX)/4)
G2++:

}
if(G2==0&&G1<2)
{

ActualChar[6][label]++;
temp10=1;

}

if(y1 >=2&&y2==1 &&pixelt<1 )
{

ActualChar[24][label]++;
temp10=1;

}

y1=0; 
y2=0; 
int b2=0;
for(int i=0:i<total;i++)
{

if(tippositionx[i]>=(minX+maxX)/2)
b++:

}
if(b<1&&total<5)
{

ActualChar[15][label]++; 

temp10=1;
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if(u1 ==1 &&u2==1 &&r<2)
{

ActualChar[20][label]++;

temp10=1;
}

if(lowerv==2&&upperv<2&&u1!=0&&u2!=0)
{

ActualChar[21][label]++;

temp10=1;
}

int tex=0;
int tmid=(xlmin+xlmax)/2;

for( int ii = lmax+2; ii <= 127; ii++ ){ 
if(thinned.getPixel(ii,tmid)==0) 

tex++;

}
i2=0;

int a[]=new int[128];
for( int ii = 0; ii <= 127; ii++ )
{

a[ii]=0;
}

0))

for( int ii = 0; ii < 127; ii++ ){ 

if((thinned.getPixel(((maxY+minY)/2)+1,ii)==1&&thinned.getPixel(((maxY+minY)/2)+1,ii+1)

{

i2++;
a[ii]=1;

if(i2==1)
{

int temp5=0; 
int Ü3;

for( int ii = 0; ii < 127; ii++ ){
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if((thinned.getPixei((maxY+minY)/2+1 ,ii)==1&&thinned.getPixel((maxY+minY)/2+1 ,ii+1)==0)) 
{

ii3=ii;
while(ii3<127&&thinned.getPixel((maxY+minY)/2+1,ii3+1)==0)
{

Ü3++:
temp5++;

}
if(temp5>4)
{

12=2 :

}

temp5=0;

}
}

int r7=0; 
int r8=0; 
int r9=0; 
int r10=0; 
int q2=0;
for(int i=0:i<total;i++)
{

if(tippositiony[i]>(minY+2*maxY)/3)
r7++;

if(tippositiony[i]<(minY+maxY)/2)
r8++;

if(tippositionx[i]<(minX+maxX)/2)
r9++;

else
r10++;

if(tippositionx[i]<(2*minX+maxX)/3)
q2++;

}

if(i2==2&&b<1)
{
ActualChar[3][label]++;
temp10=1;
}
b=0;
if(i2==1)
{

ActualChar[8][label]++; 
ActualChar[9][labe!]++; 
ActualChar[11 ][label]++ 
ActualChar[18][label]++ 
ActualChar[19][labe!]++ 
ActualChar[25][label]++

temp10=1;
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}
if(i2>2)
{

ActualChar[13][label]++; 
temp10=1;

}

if(i2>=2&&q2==0)
{

ActualChar[16][label]++:
temp10=1;

}

if(i2>1&&r8>1&&r7>1)
{

ActualChar[7][label]++;
temp10=1;

}

if(i2>1&&r7>1)
{

ActualChar[0][label]++; 
ActualChar[12][label]++; 
temp10=1;

}

if(i2>1)
{

ActualChar[17][label]++; 
temp 10=1;

}

if(i2>1&&total>1&&r9!=0&&r10!=0&&r8!=0)
{

ActualChar[22][label]++;
temp10=1;

}

if(xbottom>=2&&xtop==2&&xleft>=1&&xright>=1&&total>=4&&tex==0)
{

ActualChar[23][label]++;//x 
temp10=1 ;

}

if(i2>1 && total<3 && r7==0)
{

ActualChar[14][label]++;//o
temp10=1;

}
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r=0;
if(temp10==0)

{

System.out.println(p);
}

subclass[label]=subclass[label]+1;
}

is.close():
Is.closeO;
imageStream.close(); 
iabelStream.closeO; 
misLoaded = true;
m_logger.info("Completed image loading");

}

public void Findmaxmin(int strXJnt strYJnt endXjnt endY)
{
int Xmin=200,Ymin=200,Xmax=0,Ymax=0; 
int m=0,n=0,temp=0; 
int i=0,j=0;
Imageinterface thinned2; 

try {
thinnedjmage2 = m_thinner.apply(mJmageOne); 

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block 
e.printStackTraceO;

}

for(j=0;j<thinned_image2.getHeight();j++)
for(i=0;i<thinned_image2.getWidth();i++)
{

if((thinned_image2.getPixel(j,i)==0)&&(i<=Xmin))
Xmin=i;

if((thinned_image2.getPixel(j,i)==0)&&(i>=Xmax))
Xmax=i;

}
for(j=0;j<mJmageOne.getHeight();j++)

for(i=0;i<m_imageOne.getWidth();i++)
{

if((thinned_image2.getPixel(j,i)==0)&&(j<=Ymin))
Ymin=j;

if((thinned_image2.getPixel(j,i)==0)&&(j>=Ymax))
Ymax=j;
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}

if(Xmin==200)
Xmin=0;

if(Ymin==200)
Ymin=0;

maxY=Ymax;
minY=Ymin;
minX=Xmin;
maxX-Xmax;

}
public int pixelCount(lnt strx.int stryjnt endxjnt endy) { 

int numberOfPixeis -  0;

for( int i = stry; i <= endy; i++ ){ 
for( int j -strx; j < endx; j++ ){

if( mJmageOne.getPixel(i,j)== 0 ) 
numberOfPixels++;

}
}

return numberOfPixeis;
}

public void ExtremeEdges(int strX.int strYJnt endXJnt endY) 
{

EXmin=200;EXmax=0;EYmin=200;EYmax=0; 

try {
thin = m_thinner.apply(m_imageOne);

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block 
e.printStackT race();

}

//Finding the left extreme edge 
for(int i=strY;i<endY;i++) 

for(int j=strX;j<endX;j++)
{

if((thin.getPixel(j,i)==0)&&{j<=EXmin))
EXmin=j;

if((thin.getPixel(j,i)=-0)&&(j>=EXmax))
EXmax=j;

}

for(int j=strY;j<endY;j++) 
for(int i=strX;i<endX;i++)

{
if((thin.getPixel(i,j)==0)&&(j<=EYmin))
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EYmin=j;

if((thin.getPixel(i,j)==0)&&(EYmin>=0))
EYmax-j;

}

if(EXmin==200)
EXmin-0;

if(EYmin==200)
EYmin-0;

minX=EXmin;
maxX-EXmax;
minY=EYmin;
maxY-EYmax;
System.out.println("EXmin :"+EXmin+" 

EXmax :"+EXmax+"ymin"+EYmin+"ymax"+EYmax); 
}

public void NumberOfTips2(int [][]imagearray)//to remove the tips of the unthinned image 
{ int repeat=0; 

int tipcnt=0; 
int r=0;
in t] RotX=new int[8]; 
in t] RotY=new int[8];

RotY[0] = -1 
RotY[1] = -1 
RotY[2] = -1 
RotY[3] = 0 
RotY[4] = 1 
RotY[5] = 1 
RotY[6] = 1 
RotY[7] = 0

RotX[0] = -1;
RotX[1] = 0;
RotX[2] = 1 ;
RotX[3] = 1;
RotX[4] = 1 :
RotX[5] = 0;
RotX[6] = -1;
RotX[7] = -1 ; 
int ]x -new  int [20]; 
int ]y=new int [20]; 
int k=0;
while] repeat=-0)
{
for] int i=1;i<127;i++)
{
for] int j=1;j<127;j++)
{

tipcnt=0;
if]imagearrayO][i]==0)
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for(int p=0;p<8;p++)
{

if((imagearray[i+RotX[p]][i+RotY[p]]--0))
{

}

tipcnt++;

if(tipcnt==1)
{

x[k]=i;
y[k]=j:
k++;
tipcnt=0;

}

}
}
if(k==0)
{
repeat=1;
}
for(int q=0;q<k;q++)
{

imagearray[y[q]][x[q]]=1 ;

k=0;
}

public int Number01Tips(int strXJnt strYJnt endXJnt endY) 
{

int tips=0; 
int tipcnt=0; 
int r=0;
int] RotX=new int[8]; 
int] RotY=new int[8];

RotY[0] = -1 
RotY[1] = -1 
RotY[2] -  -1 
RotY[3] = 0; 
RotY[4] = 1 
RotY[5] = 1 
RotY[6] = 1 
RotY[7] -  0

RotX[0] = -1 
RotX[1] = 0 
RotX[2] = 1 
RotX[3] = 1
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RotX[4] = 1; 
RotX[5] = 0; 
RotX[6] = -1; 
RotX[7] = -1;

try {
thinnedjmage = m_thinner.apply(mJmageOne); 

} catch (ImageProcessingException e) {
// TODO Auto-generated catch block 
e.printStacklraceO:

}

for] int i=strY+1;i<endY-1;i++) 
for] int j=strX+1 ;j<endX-1 ;j++)
{

tips=0;
if]thinned_image.getPixel]j,i)=-0) 

for]int p=0;p<8;p++)
{

if]]thinned_image.getPixel]j+RotX[p],i+RotY[p])==0))
{

tips++;
}

}

if]tips==1)
{

tippositionx[r]=j;
tippositiony[r]=i;

tipcnt++;
tips=0;
r++;

}

for] int i=0;i<tipcnt;i++)
System.out.println]"the tip positionx:"+tippositionx[i]+"tippositiony:"+tippositiony[i]);

return tipcnt;
}

public Imagelnterface RegUsingEdgeProcess]) throws ImageProcessingException, 
lOException 

{
int grpA=0; 
int grpB=1; 
int []sum=new int[26];

charch[]-{'A','B','C','D','E','F','G','H',T,'J','K','L','M’,'N','0','P','Q','R',’S',T','U','V',W,'X','Y','Z'}; 
Runtime r-Runtime.getRuntime]);
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double [][][]DP=new double[4][26][40][20000];

//double [][][]ResVec-new double [26][26][parts*(features)];
setMaxlmages(2500);
try {

restore Data ( P ) ;//"d ata/M NIST" ) :
} catch (lOException e) {

// TODO Auto-generated catch block 
e.printStackTraceO;

}

for(int i-0;i<=:25;i++)

System.out.println("number of "+" " +ch[i]+ " " +subclass[label]);

for(int i=0;i<26;i++)
{
System.out.println("classification for the character "+ch[i]); 

for(int j=0;j<26;j++)
{

System.out.println(" Number of "+ch[j]+'"s ;"+ActualChar[i][j]);
}
}

for (int i=0;i<26;i++)
{

for(int j=0;j<26;j++)
{
outputchar[j][i]=ActualChar[i]0];
}

}

for (int i=0;i<26;i++)
{

for(int j-0:j<26;j++)
{

sum[i]=sum[i]+outputchar[i][j];
}
}

for(int i=0;i<26;i++)
{
System.out.println("classification for the character "+ch[i]); 

for(int j=0;j<26;j++)
{

System.out.printlnC Number of "+ch[j]+'"s :"+outputchar[i]jJ]);
}

System.out.printInC’total characters "+ch[i]+"recognized as other characters"+sum[i]);
}

System.out.println("Total characters analyzed : "+images);
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r.freeMemoryO;

return shadow3Jmage;
}
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