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ABSTRACT

Dose Comparison of Multi-Slice Computed Tomography Scanners

by

James J. Kelley

Dr. Phillip Patton, Examination Committee Chair 
Associate Professor of Health Physics 

University o f Nevada, Las Vegas

The rapid technological advances in CT over the past 30 years have resulted in a 

steady increase in the number of CT scans being performed annually, making it the major 

source o f exposure to the population via diagnostic x-rays. With this increased utilization, 

the concerns over patient radiation doses from CT have also grown. Although CT studies 

only amount to about 5% of all X-ray examinations, it contributes approximately 40% of 

the collective dose from diagnostic radiology to the population. This fact has made CT 

dosimetry an important topic in diagnostic radiology today. The introduction of multi­

slice scanners has focused further attention on this issue; and it is generally believed 

multi slice scanners can lead to higher patient doses. This is due to the increased abilities 

o f the multi-slice scarmers, i.e. increased volume coverage at higher tube currents, which 

could lead to an increase in patient dose.

This study will provide a comparison of three multi-slice CT scanners. All three 

scanners are the same make and model and only vary in their slice capabilities. Six 

protocols are performed, two axial protocols, consisting of one head and one abdomen 

scan, and four helical protocols, consisting of two head and two abdomen scans. The

iii
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acquisition parameters was kept consistent for each set of scans with the goal of 

providing comparative data to substantiate or refute the concern that multi-slice scanners 

will increase patient dose.

Doses for all three CT scanners were compared for each protocol. The results 

showed that the 4-slice CT generated a larger dose than both the 16-slice and the 64-slice 

scanners. In the axial protocols, the dose decreased as the slice capabilities if  the scarmers 

increased. In the helical protocols, the 64-slice scarmer produced a larger dose in 

comparison to the 16-slice scanner.

IV
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CHAPTER 1

INTRODUCTION

1.1 History

Computed Tomography (CT) was the first medical imaging modality completely 

dependent on computer technology. The term tomography simply means picture (graph) 

o f a slice (tomo). The first CT prototype, invented in the early 1970’s by Sir Godfrey 

Hounsfield, was a dedicated head scanner capable of displaying the anatomy of the brain 

without over or underlying structures. This major advancement in diagnostic radiology, 

for which Hounsfield later earned a Nobel Prize, ushered in an era o f high technology and 

non-invasive imaging. The Nobel Prize received by Hounsfield was shared with Allan 

MacLeod Cormack, a nuclear physicist at Tufts University, who helped conquer the 

mathematical problems associated with CT. The first whole-body CT scanner was 

developed in 1974 by Dr. Robert Ledley, a professor of radiology at Georgetown 

University. This new advancement by Ledley sparked the growth of CT, and the number 

of CT units installed worldwide increased dramatically.

The first CT scanner, or conventional scanner, provided one transaxial slice as the 

beam rotated 360 degrees around the patient. The beam would then be turned off, the 

table would be repositioned and another slice would be generated until the entire area of 

interest was covered. In spiral or helical scanners the beam is left on for the entire 

procedure while the table is continually advancing through the beam. This is much faster
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than conventional scanners thus allowing for smaller slice thicknesses, which allows for 

an increase in resolution and a decrease in the possibility of overlooking a smaller lesion 

without increasing the total scan time. Multi-slice helical CT scanners image several 

slices simultaneously due to the multiple detectors present (currently up to 64 detector 

elements are used clinically). In practice, a multi-slice helical scanner acquires images 

two to three times faster than a single slice helical scarmer.

There are presently seven generations o f CT scanners with the term generation 

simply describing the method of scarming and does not necessarily infer an advancement 

in technology, but simply another approach to data acquisition (Seeram 2001). The 

seventh generation of CT scarmers is the basis for this research project. The seventh 

generation is the newest and fastest of the modem CT scarmers utilizing multiple detector 

banks with a helical or spiral pattern o f acquisition used to generate multiple slices from a 

single x-ray beam. The helical acquisition pattern is generated from the movement o f the 

imaging table through the x-ray beam while the beam is continuously rotating aroimd the 

entire area of interest. This improvement in x-ray beam utilization allows for shorter scan 

times per patient; oftentimes the entire scan can be performed over the course of a single 

breath hold, which reduces artifacts generated by patient motion.

The rapid technological advances in CT over the past 30 years have resulted in a 

steady increase in the number of CT scans being performed annually, making it the major 

source o f exposure to the population via diagnostic x-rays (Mettler et al. 2000). With this 

increased utilization, the concerns over patient radiation doses from CT have also grown 

(Mettler et al. 2000). Although CT studies only amoimt to about 5% of all X-ray 

examinations, it contributes approximately 40% of the collective dose to the population
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from diagnostic radiology (Kwan et al 1998). This fact has made CT dosimetry an 

important topic in diagnostic radiology today. The introduction of multi-slice scanners 

has focused further attention on this issue, and it is generally believed multi slice 

scanners can lead to higher patient doses (Golding et al. 2002). This is due to the 

increased abilities and ease of use of the multi-slice scarmers, i.e. increased volume 

coverage at higher tube currents with shorter scan times, which could lead to an increase 

in patient dose. This deviates from the standard assumption that under the same imaging 

parameters increased slice capabilities result in less dose. The overall goal of this paper is 

to investigate this hypothesis.

1.2 The Seven CT Generations

As mentioned previously the term generation does not necessarily imply advances 

in technology but this does not mean there have been no improvements as the generations 

have progressed but some generations are very similar in use to others but with varying 

geometry. First generation scanners utilized a pencil beam geometry which is defined by 

a set of parallel rays that generates a projection profile (Seeram 2001). These scanners 

were coined translate-rotate scanners because a highly collimated beam was used in 

conjunction with a detector to translate across the patient. Once across the patient, the 

tube and detectors then rotate one degree and translate across the patient as can be seen in 

Fig.1.1.

This would continue until 180 projections were acquired around the patient and 

thus was extremely time consuming; approximately four to five minutes to produce a 

complete scan. An advantage of first generation scanners was its efficiency of scatter
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reduction. Since only one detector was used, any scatter that was deflected from the 

highly collimated beam was not measured by the detector. Even by today’s standards first 

generation scanners offer the best scatter rejection.

translate rotate translate

Figure 1.1. First generation (rotate/translate) computed tomography (CT). The x-ray tube 
and a single detector (per CT slice) translate across the field o f view, producing a series 
o f parallel rays. (Bushberg et. al. 2002).

Second generation scanners still utilized translate-rotate geometry but simply 

incorporated a fan beam and a greater number o f detectors, usually thirty, which were 

placed in a linear array. This better utilized the x-ray beam and theoretically would 

reduce scan times by a factor of thirty. This was not the case however because the choice 

was made to increase the amount o f data collected to increase image quality. However, 

the second generation models were still generally 15 times faster than the first generation 

models for comparable types o f studies.

Third generation scarmers implemented an even larger number o f detectors, more 

than 800, and increased the angle o f the beam which allowed total coverage of the patient 

without translation. A problem associated with this large number of detectors was the 

inability to keep the gain of each detector from drifting. This drift in gain led to artifacts
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inherent to the third generation geometry known as ring artifacts. Ring artifacts are 

produced because every voxel within the object slice is not seen by every detector, 

therefore detector drift will only effect the voxels seen by that detector and is not 

averaged over all the voxels in that slice. An example of a third generation ring artifact is 

shown in Fig 1.2.

Artifact

i
1 ►

Figure 1.2. Clinical example of ring artifacts. (Morgan 1983).

These third generation scanners are known as rotate-rotate scanners referring to the 

rotation o f the x-ray tube and the rotation of the detectors as shown in Fig. 1.3.

With the elimination o f the translate motion, scan times were reduced drastically 

to less than 5 seconds per slice (Bushberg et al. 2002). Third generation geometry first 

introduced in 1975 is still the most commonly used geometry for today’s scanners and 

with the advances in calibration software, have become effectively fi-ee o f ring artifacts 

(Bushberg et al. 2002).
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Figure 1.3. Third generation computed tomography. In this geometry, the x-ray tube and 
detector array are mechanically attached and rotate together inside the gantry. (Bushberg 
et al. 2002).

Fourth generation seanners were engineered to eliminate the ring artifacts 

associated with the third generation scarmers. Fourth generation scarmers implement a 

full ring, 360 degrees, o f stationary detectors and a rotating beam thus termed a rotate- 

stationary geometry. These new searmers utilized approximately 4,800 individual 

detectors increasing the eost of the scarmers. However, due to the fact that each detector 

acts as its own reference detector the dependenee on uniform detector gains is eliminated 

and consequently so are the ring artifaets.

Fifth generation scarmers are termed stationary-stationary because there are no 

moving parts associated with this searmer. It is targeted for eardiology uses and allows 

extremely fast scan times, on the order o f 50 msec, which can generate fast-frame rate CT 

images o f the beating heart (Bushberg et al. 2002).

Sixth generation scarmers ineorporated a new technological advancement known 

as a slip ring. In previous searmers the deteetors and x-ray tube needed to be cormected to 

the stationary eleetronie eomponents of the scarmer by wires. This meant that after eaeh
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360 degree, rotation the gantry would need to rotate 360 degrees in the opposite direction 

to keep the wire connections from being damaged. This was not time efficient because of 

dead times at the end o f each rotation in which no data was being acquired. In the early 

1990s the slip ring technology became available and allowed the gantry to rotate 

continuously without the tethers o f wires connecting the detectors and tube to the 

electronic components of the scanner. The slip rings are electromechanical devices 

consisting of circular electrical conductive rings and brushes that transmit electrical 

energy across a rotating interface (Brunnett 1990). The ability to image continuously 

without the need to rewind cables or wires further decreased scan times. This slip ring 

technology allowed for a new type o f acquisition termed helical scanning. Helical 

scanners allow data to be acquired continuously while the imaging table is being 

translated through the gantry. This constant movement o f the x-ray tube and table 

produce a helical pattern around the patient as shown in Fig. 1.4.

table translation

x-ray tube rotation
helical x-ray tube 

path around patient

Figure 1.4. With helical CT scanners, the x-ray tube rotates around the patient while the 
patient and table are translated through the gantry. The net effect of these two motions 
results in the x ray tube traveling in a helical path around the patient (Bushberg et al. 
2002).
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Helical scanners reduce imaging times by avoiding the extra time associated with 

translating the patient table, and generally, an entire scan of the abdomen can be 

completed in approximately 30 seconds. Benefits of these shorter scan times include 

reduced artifacts due to patient motion as well as a reduction in the amount of contrast 

agent necessary to perform a study.

Seventh generation scanners, have overcome the physics that limit standard x-ray 

production due to tube overheating. This was accomplished by decreasing the amount of 

collimation and increasing the number of detectors in the z axis allowing for greater 

utilization o f the x-ray beam and increased coverage. In older single array scanners, a 

decrease in the collimation of the beam would indeed allow for greater coverage and 

larger slice thickness, but would also decrease the spatial resolution in the slice thickness 

dimension. Multi-detector arrays allow slice thickness to be determined by the detector 

size and not by the beam collimation allowing for increased coverage with no loss in 

spatial resolution. The ability to increase coverage allows for a reduction in scan times, 

which is always beneficial in diagnostic imaging. The designs of single slice and multi­

slice scanners are similar in most aspects that affect radiation dose, but multi-slice 

scanning can potentially result in higher radiation risk to the patient due to increased 

capabilities, which allow longer scan lengths at high tube currents (Lewis 2005). The 

newer multi-slice scanners better utilize the existing x-ray beam than did single slice 

scanners o f the past. Single slice scanners were limited to lower mA and shorter scan 

lengths due to overheating o f the tube. Multi-slice CT increased utilization o f the existing 

beam allowing longer scan lengths at higher mA with less worry o f tube overheating. 

These facts allow much more flexibility for the physician in generating scanning
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protocols but with this increased flexibility comes the greater responsibility of 

safeguarding against unnecessary exposure.

1.3 Physics of Helical Scanning 

The advent o f helical scanners has brought forward many different considerations, 

both positive and negative in nature. An immediate problem was the fact that modem 

reconstruction algorithms for CT are based on the assumption that the x-ray source and 

detectors acquire data in an axial slice and not in the helical pattern that the newer CT 

scanners utilize. This is corrected by adding an interpolation phase to the processing of 

the raw data prior to the normal reconstruction utilized in conventional axial scanning. 

Interpolation is essentially a weighted average o f the data from either side of the 

reconstruction plane, with slightly different weighting factors used from each projection 

angle (Bushberg et al. 2002). Although this does add another step to the processing of the 

acquired CT data it does afford a very important advantage. With standard axial scanning 

techniques, images are acquired contiguously and abut each other along the cranial- 

caudal axis of the patient. This is of importance due to the fact that the sensitivity of the 

CT image to objects not centered in the voxel is reduced (as quantified by the slice 

sensitivity profile), and therefore subtle lesions, which lie between two contiguous 

images may be missed (Bushberg et al. 2002). The major advantage of helical scanning is 

the ability to retrospectively reconstruct images at any position or interval in the volume 

area producing a scan that is almost uniformly sensitive to even subtle abnormalities that 

may have not been visualized by standard axial imaging due to its proximity to the edge 

of the voxel (Bushberg et al. 2002). A noted problem with helical scanners is the need for
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additional information at each end of the planned image volume in order to provide 

enough information to interpolate the first and last images. This has been found to cause 

an increase in exposure outside of the imaged volume (Nicholson and Fetherston 2002). 

On single slice helical scanners an additional half or full rotation is generally required at 

each end of the imaged volume. For multi-slice helical scanners the number of extra 

rotations depends on a number of factors such as the interpolation method, the pitch and 

the reconstructed image width (Nicholson and Fetherston 2002). Each of these additional 

rotations can add substantially to the patient dose when compared to standard axial 

scanners. This can especially be true in smaller scan volumes, and in those cases, it may 

be preferable to perform the scan in the conventional slice by slice mode.

The term utilized in helical scanning to describe the table movement speed is 

pitch. Pitch is a ratio o f the table movement per gantry rotation to the beam collimation. 

Values less then one alert the user that overscanning is occurring, causing unnecessary 

exposure to the patient and values greater then two alert the user that image quality may 

be degraded severely by underscanning. Pitches o f 1.0 to 1.5 are commonly used with 

today’s helical scanners, and manufacturers have spent a great deal of time, money, and 

effort to develop scan protocols which utilize this range of pitch (Bushberg et al. 2002). 

On multi-slice scanners the radiation dose is inversely proportional to pitch, if  the tube 

current and tube potential are kept constant (i.e. the dose will be halved if the pitch is 

doubled) (Lewis 2005). With these factors in mind it is of utmost importance to 

understand the increased dose associated with multi-slice helical scanning and decreased 

pitches. If these points are fully understood, the advantages o f decreased scan times.

10
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increased sensitivity and a reduction in the amount of contrast needed are a compelling 

argument for their continued use.

1.4 Single Slice vs. Multi-slice CT 

In previous generations o f CT scanners only a single row of detectors were 

utilized, which limited the volume covered per 360° rotation o f the x-ray beam, 

increasing scan times. The modem CT detectors are solid state in construction and are 

composed of a scintillator joined to a photodetector. The scintillator emits visible light 

which is captured by the photdetector when stmck by x-rays (Seeram 2001). In single 

slice scanners, the detectors are about 15 mm, and the slice thickness is determined by 

collimators proximal to the beam origin (Bushberg et al. 2002). The slice width chosen 

for single slice scanners, varies widely depending on the organ or body part being 

imaged, but generally ranges from 1 mm to 10 mm. Increasing the slice width would 

limit the resolution capabilities o f the scanner, therefore slice thicknesses are generally 

less than 3 mm. The multi-slice scanners have multiple rows o f detectors varying in size 

from 0.5 mm to 5 mm. The advantages o f multi-slice CT, as outlined by Saito (1998), 

include increased speed and volume coverage, improved spatial resolution and a more 

efficient use of the x-ray beam. It has been shown that a 4-slice helical CT scanner is 

approximately twice as fast as a single slice CT scanner while still allowing for a 

comparable image quality (Hu 1999). A comparison of the scanning times for 4-slice CT 

versus single slice CT can be seen in Table 1.1.

11
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Table 1.1. Comparison o f scanning times for a 4-slice CT and single-slice CT (Seeran 
2001).

SCAN AREA 
(mm)

SLICE THICKNESS 
(mm)

SCAN
FOUR-
SLICE

TlME(sec)
SINGLE­

SLICE
Lung study 300 10 4 30

300 3 15 100
Trauma case 1300 10 , 17 130
CT Angiography 40 1 5 40

Additionally the improved spatial resolution is due to the fact that multi-slice CT 

produces thin slices, approximately 1-2 mm, which allows for detection o f smaller 

structures than the more commonly used wider slices o f the single slice scanners (Seeram 

2001). More efficient use of the x-ray beam is another benefit of multi-slice scanners. In 

a single slice scanner, the beam must be collimated down to dictate the slice thickness, 

whereas the beam is less collimated in the z direction for multi-slice scanners to allow for 

coverage o f the entire array of detectors. With these above-mentioned advantages of 

multi-slice scanning, as compared to single slice, it is easy to see why the trend in most 

modem radiology departments is toward the purchase and utilization o f multi-slice 

scanners.

1.5 CT Dosimetry

Exposure during a CT procedure is quite different than that received from 

conventional x-ray procedures, and specific dose calculation techniques have to be 

formulated in order to provide accurate assessment of patient dose. These dose 

calculations are utilized by the physician to weigh the risk verses benefits of ordering a 

CT scan for a particular patient. The radiation doses from CT scans, as mentioned

12
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previously, are among the highest of all the diagnostic radiology procedures making it 

imperative to have an accurate determination of the patient’s received dose. The primary 

interaction mechanism in CT is Compton scattering, so the dose attributed to scattered 

radiation is substantial and can even be higher than the dose from the primary beam 

(Bushberg et al. 2002). This scattered radiation is not confined within the collimated 

beam as the primary x-rays are, and therefore the acquisition of a CT slice delivers a 

considerable dose from scatter to adjacent tissues, outside the primary beam. In practical 

CT applications multiple contiguous slices are acquired over a specified volume resulting 

in slices receiving dose from the primary beam radiation as well as scattered radiation 

dose from the acquisitions of other slices that either abut it or are very close to it. There 

have been many different methods reported to calculate CT doses, but most are very time 

consuming and require highly specialized equipment. The easiest and most accurate 

method is the CT dose index (CTDl). In 1981 the Bureau o f Radiological Health 

suggested an easy and accurate utilization of the CTDl and the multiple scan average 

dose (MSAD) to calculate patient dose (Seeram 2001). CTDl can be measured in any 

material and is given by the integral along a line parallel to the axis of rotation (z) o f the 

dose profile, D(z), for a single slice, divided by the nominal slice thickness (T) (lessen et 

al. 1999), Equation 1:

CTD/ = 1  j"Z)(z)6/(z) (I)

These CTDl numbers are very useful for dose calculation of a single slice, but 

most CT examinations are composed of multiple slice scans; therefore, the MS AD has

13
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been designed to cover these real world situations. For a sufficient number o f slices such 

that the first and last slice do not contribute significant dose over the central slice, the 

MS AD is given by Equation 2 (Jessen et al. 1999):

MSAD = jC T D I  (2)

where T equals the slice thickness and I is the distance between successive slices. By 

utilizing the theory of volume averaging (Jucius and Kambic, 1977), a measurement with 

a standard 100 mm pencil shaped ionization chamber recorded for a single slice in a 

phantom is equivalent to a measurement at the midpoint of a series of contiguous slices 

covering the active length o f the chamber (Ng et al. 1998). Based on this principle, 

MSAD can be easily measured and has become the recommended method of dose 

calculation by the American Association o f Physicists in Medicine (AAPM) to be utilized 

for evaluation and acceptance testing o f CT scanners. CTDl measurements are obtained 

by using a dosimeter with a 100 mm long pencil ionization chamber and a body or head 

CT polymethyl-methacrylate (PMMA) phantom.
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CHAPTER 2

METHODS AND MATERIALS

2.1 Acquisition Systems 

A dose comparison for different scaning protocols utilizing three different multi­

slice helical CT scanners was performed. All three CT scanners being used are seventh 

generation helical Toshiba Aquillion®^ scanners with 3"̂  ̂ generation geometries and 

varying slice capabilities o f 4, 16, and 64 slices per 360 degree revolution. They have a 

wide area 2D detector design that utilizes present CT technology and can be operated in 

axial mode and helical scan mode to cover volumes beyond the detector’s width. The 

technical specifications for the Toshiba Aquillion® CT scanners can be seen in Table 2.1.

Table 2.1. Technical specifications for the Toshiba Aquillion® CT scanners.
4-SLICE 16-SLICE 64-SLICE

Number of 
detector elements 30464 35840 57344

Element sizes Immxlmm Immxlmm Immxlmm

Longitudinal
FOV 4 mm 16 mm 32 mm

Data sampling 
rates

1800
views/sec

1800
views/sec

1800
views/sec

Dynamic range of 
analog to digital 
converter

18 bits 18 bits 18 bits

Toshiba America, Inc. 1251 Avenue o f  the Americas, Suite 4110 N ew  York, NY 10020
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The detector elements consist o f a scintillator attached to a photodiode, which are 

the predominant type o f detectors in use in today’s modem CT scanners. All three 

systems consist of three wedge designs (large, small, and flat). The large and small 

wedges are shaped to compensate for the variable path length of the patient across the 

scan FOV. The small wedge is used for an object under 240 mm FOV (e.g. head and 

pediatric patients), and the large wedge is used for over 240 mm FOV (e.g. chest and 

abdomen scans). The flat wedge is thicker at the center than the other wedges. A 

Feldkamp-Davis-Kress (FDK) algorithm (Feldkamp et al. 1984) is used for 

reconstruction. All other data processing and interpretation is performed with a high­

speed image processor with field programmable gate-array based (FPGA) architecture. It 

takes less than 1 sec to reconstmct volume data o fa512  x 512 x 256 matrix.

2.2 Phantoms

Standardized CTDI head and abdomen phantoms (76-414-4150 Nuclear 

Associates)^ composed o f polymethyl-methacrylate (PMMA) were used in all dose 

measurements. The CTDI phantoms, were designed in accordance with the Food and 

Drug Administrations performance standards specifically applicable to CT systems as 

described in 21 CFR 1020.33 (Cardinal Flealth, 1991). By definition, a CTDI phantom is 

a phantom used for the determination o f the dose delivered by a CT x-ray system, and 

shall be a right circular cylinder o f PMMA with a density of 1.19 ± 0.01 grams per cubic 

centimeter (Cardinal Health, 1991). The phantom shall be at least 14.0 cm in length and 

have diameters of 32.0 cm for testing any CT system designed to image any section of 

the body (whole body scanners) and 16.0 cm for any system designed to image the head

 ̂Fluke Biomedical, Nuclear Associates. 6045 Cochran Road. Cleveland, OH 44139
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(head scanners) or for any whole body scanner operating in the head scanning mode. The 

phantom must allow means for the placement o f a dosimeter along its axis of rotation and 

along a line parallel to the axis of rotation 1.0 cm from the outer surface and at the center 

o f the phantom (21 CFR 1020.33, 2003). The CTDI phantoms used in this study, as seen 

in Fig. 2.1, have a diameter of 160 mm for the head and 320 mm for the abdomen with 

both having a length of 150 mm and five probe holes; one in the center and four around 

the perimeter, 90 degrees apart and 1 cm from the edge. These conventional phantoms 

contain holes just large enough to accept the pencil-shaped ionization chamber utilized 

for this study. Each phantom includes five acrylic rods for filling the holes in the 

phantom when not occupied by the dosimeter.

Figure 2.1. Standard CTDI head and abdomen phantoms.
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2.3 Detector

A pencil-shaped ionization chamber (10X9-3 CT Radcal®)^ of active length 

100 mm was connected to a dosimeter (9095 Radcal®) and used to perform dose 

measurements. The ionization chamber is composed of C552 air equivalent walls and a 

polyacetal exterior cap with a 3 cm^ active volume. The minimum rate of detectable 

exposure is 20 nGy/sec with a maximum exposure rate o f 350 mGy/sec. The maximum 

dose that can be accurately recorded is 1.4 kGy. The dosimeter was calibrated by Radcal 

Corporation for the appropriate radiation qualities on April 14, 2006.

2.4 Scarming Techniques 

This study consists o f a simple repeated measurement design and was performed 

at Steinberg Diagnostic Medical Imaging Centers (SDMI) of Las Vegas, Nevada. Scans 

were performed utilizing the afore mentioned CTDI head and abdomen phantoms in both 

axial and helical modes. The axial scans were acquired in a service mode of operation 

due to the fact that in normal scarming mode, Toshiba’s multi-slice scarmers default to a 

four-slice scarmer when operated in axial mode. If service mode was not utilized these 

scans would simply be a comparison of three different four-slice CT scarmers. Operating 

in service mode allows the nominal beam width to be expanded to encompass the full 

area of the detectors, i.e. 4 mm’s for the four-slice, 16 mm’s for the sixteen-slice and 32 

mm’s for the sixty four-slice. The axial scans were performed in a step and shoot marmer 

begirming on the probe end o f the CTDI phantom. The scarmer performs one rotation 

around the phantom and then is manually moved 4 mm, 16 mm or 32 mm, depending on 

the particular scarmer, and sequential scans were performed until the entire 96 mm of the

 ̂Radcal Corporation, 426 West Duarte Road, Monrovia, CA 91016
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scanned volume was covered. Two sets of helical acquisitions were acquired in normal 

scanning mode with the head and body phantoms. The main differences between the two 

helical acquisitions was the distance scarmed and the mA used. Pitch factors were 

difficult to keep constant in helical mode due to variations in the slice capabilities o f the 

scarmers but the variations were kept to a minimum. Dosimetry measurements were 

made in all four outer probe holes and four measurements were taken in the center probe 

hole. The phantom was placed in the center of the scanner’s aperture for the six protocols 

mentioned. The acquisition parameters for the helical scans can be seen in Tables 2.2, 

2.3, and 2.4, and the axial scan parameters can be seen in Tables 2.5, 2.6, and 2.7.

Table 2.2. Parameters for 4-slice Toshiba Aquillion® CT scanner helical acquisitions.
Head 

Helical 
Set 1

Head 
Helical 
Set 2

Abdomen 
Helical 

Set 1

Abdomen 
Helical 

Set 2
kVp 120 120 120 120
mA 300 200 300 200
Time per revolution (sec) 1 1 0.5 0.5
FOV 240 mm 240 mm 400 mm 400 mm
Range 154 mm 96 mm 154 mm 98 mm
Pitch 0.88 0.88 0.88 0.88
Nominal beam width 4.0 mm 4.0 mm 4.0 mm 4.0 mm
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Head Head Abdomen Abdomen
Helical Helical Helical Helical

Set 1 Set 2 Set 1 Set 2
kVp 120 120 120 120
mA 300 200 300 200
Time per revolution (sec) 1 1 0.5 0.5
FOV 240 mm 240 mm 400 mm 400 mm
Range 154 mm 96 mm 154 mm 98 mm
Pitch 0.94 0.94 0.94 0.94
Nominal beam width 16.0 mm 16.0 mm 16.0 mm 16.0 mm

Table 2.4. Parameters for 64-slice Toshiba Aquillion® CT scanner helical acquisition.
Head Head Abdomen Abdomen

Helical Helical Helical Helical
Set 1 Set 2 Set 1 Set 2

kVp 120 120 120 120
mA 300 200 300 200
Time per revolution (sec) 1 1 0.5 0.5
FOV 240 mm 240 mm 400 mm 400 mm
Range 155 mm 100 mm 154 mm 98 mm
Pitch 0.91 0.91 0.91 0.91
Nominal beam width 32.0 mm 32.0 mm 32.0 mm 32.0 mm

Table 2.5. Parameters for 4 slice Toshiba Aquillion® CT scarmer axial acquisitions.
Head Abdomen
Axial Axial

kVp 120 120
mA 200 200
Time per revolution (sec) 1 1
FOV 240 400
Range 96 96
Nominal beam width 4 mm 4 mm
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Head
Axial

Abdomen
Axial

kVp 120 120
mA 200 200
Time per revolution (sec) 1 1
FOV 240 400
Range 96 96
Nominal beam width 16 mm 16 mm

Table 2.7. Parameters for 64 slice Toshiba Aquillion® CT scarmer axial acquisitions.
Head Abdomen
Axial Axial

kVp 120 120
mA 200 200
Time per revolution (sec) 1 1
FOV 240 400
Range 96 96
Nominal beam width 32 mm 32 mm

Since the pitch varied slightly it was important to look at the effect o f pitch on 

dose. As mentioned previously if the tube current and potential are kept constant and the 

pitch is doubled the dose will be halved. To validate this statement we performed four 

center cavity measurements utilizing the helical head set 2 protocol with three different 

pitches on each scanner. With the above mentioned information regarding the theoretical 

relationship between dose and pitch the point was to select minimum and maximum pitch 

values where one would be half o f the other, therefore the two chosen for all three 

scarmers was 0.7 and 1.4. The third pitch value varied slightly for each of the scanners, 

0.88, 0.94 and 0.91, for the 4-slice, 16-slice and 64-slice scarmers, respectively.
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2.5 Dose Measurements 

The dose from all scans on the three CT scanners was measured with the 100 mm 

long pencil shaped ionization chamber placed in the phantom’s various cavities while 

scarming ~ 154 mm of the phantom’s length, in set 1 of the helical acquisitions, and 

= 96 mm of the phantom’s length for all other acquisitions. The head phantom was placed 

in the CT scanners head holder with the foam pad removed, and its center was aligned at 

the isocenter o f the CT scarmer with the four outer cavities placed at the 12, 3, 6, and 

9 o ’clock positions. The abdomen phantom was placed directly on the patient table and 

positioned exactly the same as the head phantom. The ionization chamber was inserted 

sequentially into the central cavity and the four peripheral cavities of the phantom (other 

cavities not being used were filled with PMMA rods). Four exposures were measured for 

the central cavity followed by one measurement in each of the outer cavities. This 

procedure was repeated for all six of the scarming protocols utilized in this study. The 

scans to assess pitch effects were performed with the head phantom positioned as 

mentioned above and four central cavity measurements were taken. No outer cavity 

measurements were taken for the pitch assessment.

2.6 Dose Assessment 

The dose was assessed using the CTDIvoi over varying scan lengths, (96 mm to 

155 mm) as shown in Tables 2.2 -  2.7. CTDIvoi is a measure o f exposure per slice and is 

independent o f scan length. The CTDIyoi for a given scan series can be calculated by 

applying weighting factors to measurements given by the output o f the pencil ionization 

chamber at both the center and periphery of the CTDI phantom. This weighted average
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also takes into account the pitch factor when calculating dose received during helical 

studies. The CTDIvoi is given by Equation 3:

/^ 7 ’n  T _   ̂^ ^ ^ ’̂ ^ h o O ( c e n t e r )  +  ^
-  (3)

Where the CTDIioo(center) is calculated from measurements with the probe in the central 

cavity o f phantom, CTDIioo(peripheiy) is calculated from measurements with the probe in 

the outer cavities and p  is the pitch used during the scans. The CTDIioo values are 

calculated from Equation 4.

where: L = Active length of pencil ion chamber
C = Calibration factor for electrometer 
f  = 0.87
E = Average measured exposure in mR
N = Actual number of data charmels used during one axial acquisition 
T = Nominal slice width of one axial image

The four central cavity measurements for each protocol were averaged to produce the 

CTDIioo(center) for each specific protocol. The same was also done for the outer 

measurements to produce the CTDIioo(periphery)- Another term used to express CT dose 

that is being utilized by several manufacturers is the dose length product (D TP). The DTP  

will also be determined for the data and is simply the product of the CTDIvoi and the 

length o f each particular scan. The DTP is calculated from Equation 5:
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OLP = CTDI ̂ ^,xL (5)

were L is the length of the area being scanned.

There are numerous CTDI spreadsheets being utilized in the field o f dosimetry 

today, and they all are based on the acquisition o f axial scans and are designed to 

estimate helical scan dose based on this data. An example o f the spreadsheet utilized in 

this study can be seen in Fig 2.2.

As can be seen in Fig. 2.2, the kVp, mA, time per rotation, z-axis collimation 

(slice thickness) and scan length are accounted for when generating dose values. The 

axial scan exposure data is entered, both central and peripheral exposure measurements, 

into the spreadsheet where a weighted CTDI^ value is calculated. This CTDIw value is 

the dose if  the scan was acquired in axial mode, but to generate a helical scan dose the 

CTDIw must be divided by the pitch to account for the table translation during 

acquisition, to produce the CTDIvoi dose. The complete set o f CTDI calculation sheets 

can be viewed in Appendix A. There is a concern that there may be an underestimation of 

dose utilizing this technique. This is due to the previously mentioned extra revolutions of 

the scanner needed outside o f the volume o f interest for interpolation o f the first and last 

slices o f the scan (Nicholson and Fetherston 2002). The dose from these extra revolutions 

is not taken into account when only axial acquisition data is used to generate dose values 

for helical scans. A comparison of the axial head and helical head set 2 data is being 

performed to determine if there is in fact any underestimation of the dose received during 

a helical acquisition, if  exposures are not acquired utilizing helical protocols. These CTDI 

calculation sheets can be viewed in Appendix B.
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CT Equipment nformation
DEP Facility Number: SDMI
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date Performed
Ionization Chamber Instrumentation

Manufacturer and Model Radcal 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Head

kVp 120
mA 200
Exposure time per rotation
Z axis collimation (T) (mm) 1.00
# of data charmels used (N) 96

Procedures Types Not 
Performed by Facility

If  Axial:Table Increment (I)(mm) 
OR
If Helical:Table Speed (I) (mm/rot)

96.00

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 5849.0
2nd Measurement (mR)* 5849.0
3rd Measurement (mR)* 5849.0

5849.0 53.01

At 12 o'clock Position of Phantom
* Measurements must be w/i 

5% of each other

1st Measurement (mR)* 6692.0
2nd Measurement (mR)* 6692.0
3rd Measurement (mR)* 6692.0

6692.0
CT D o se  Calculations and Pitch

58.10 58.10
1.000

Figure 2.2. Standard CTDI dose calculation sheet as used for the 4-slice axial head scans.
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The effective dose, in Sieverts (Sv), will be determined based on the DLP values 

calculated for each individual scan. The effective dose is the “sum over specified tissues 

o f the products of the equivalent dose in a tissue and the weighting factor for that tissue” 

(Hall 2000). The effective dose takes into account that different types of radiations are 

more damaging than others, and that different body tissues are more radiosensitive than 

others. This allows for a more accurate determination of the biological effect of the 

procedure. The American College o f Radiology (ACR) has adopted a simple conversion 

process for CT, dependent on what body part is being scanned (head or abdomen), were 

the effective dose is the product of the DLP times a constant, 0.0023 for the head and 

0.015 for the abdomen.
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CHAPTER 3

RESULTS

3.1 Axial Exposure Measurements 

The axial exposure measurements for all three CT scanners are summarized in 

Tables 3.1, 3.2, and 3.3. Tables 3.1 - 3.3 show that the axial values are consistent for 

repeated scans at the central locations, with standard deviations ranging from 3.4 to

18.6 mR for each type o f scan and for each scarmer. The peripheral measurements 

displayed a little more fluctuation, with standard deviations ranging from 118 to 304 mR, 

for each type o f scan and for each scanner. When comparing the head axial (HA) scans to 

the abdominal axial (AA) scans for each scanner, there was a decrease in exposure 

measurements in the abdomen scans in relation to the head scans. This is a direct effect of 

the field o f view (FOV) size. The head protocols employed a 240 mm FOV while the 

abdomen protocols employed a 400 mm FOV. Utilizing a smaller FOV focuses the x-ray 

beam into a smaller area increasing the photon density. This increased photon density 

increases the exposure measurements; conversely, the larger FOV disperses the x-ray 

beam, decreasing the photon density and ultimately decreasing the exposure 

measurements. The average decrease, in central cavity measurements, from the HA scans 

to the AA scans was 64% (5089 mR vs. 1815 mR), 65% (3571 mR vs. 1243 mR) and 

67% (3323 mR vs. 1090 mR) for the 4, 16 and 64-slice scanners, respectively.
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Table 3.1. Axial exposure measurements and averages, in mR, for the 4-slice Toshiba

Peripheral
4-Slice Center (mR) 12 o'clock 3 o'clock 6 o'clock 9 o'clock Average
Head 5099

5090
5085
5083

5985 5703 5800 5800 5822 (118)

Average 5089 (7.1)
Abdomen 1819

1815
1811
1813

4028 3778 3450 4054 3828 (281)

Average ISIS (3.4)

Table 3.2. Axial exposure measurements and averages, in mR, for the 16-slice Toshiba 
Aquillion® CT scarmer , with standard deviations in parenthesis.

Peripheral
16-Slice Center (mR) 12 o'clock 3 o'clock 6 o'clock 9 o'clock Average
Head 3572

3574
3569
3569

4306 4070 3911 3787 4069 (171)

Average 3571 (3.9)
Abdomen 1216

1257
1247
1253

3125 3011 2445 2985 2892 (304)

Average 1243 (18.6)
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Table 3.3. Axial exposure measurements and averages, in mR, for the 64-slice Toshiba

Peripheral
64-Slice Center (mR) 12 o'clock 3 o'clock 6 o'clock 9 o'clock Average
Head

Average

3318 
3333 
3321 
3320 

3323 (6.8)

4057 3897 3722 3717 3848 (162)

Abdomen

Average

1100 
1087 
1082 
1091 

1090 (7.6)

3110 2809 2734 3054 2927 (183)

The exposure measurements o f the 4-slice scanner, it can be noted that all were 

higher than the comparable protocols for the 16 and 64 slice scarmers. The percent 

decrease, in central cavity measurements, of the 16-slice relative to the 4-slice for the HA 

and AA scans was 30% (5089 mR vs. 3571 mR) and 32% (1815 mR vs. 1243 mR), 

respectively. The percent decrease, in central cavity measurements, o f the 64-slice 

relative to the 4-slice for the HA and AA scans was 35% (5089 mR vs. 3323 mR) and 

40% (1815 mR vs. 1090 mR), respectively. Additionally the average peripheral 

measurements for the HA and AA were 14% (5089 mR vs. 5822 mR) and 111% 

(1815 mR vs. 3828 mR) higher than the average central measurements for the 4-slice 

scarmer. This large variation is due to two reasons. Firstly, the head phantom is 16 cm in 

diameter and the abdomen phantom is 32 cm in diameter, which means that the abdomen 

phantoms surface is 8 cm closer to the x-ray source than the head phantom. The second 

factor being that the x-ray beam must travel through an extra 8 cm of PMMA in the
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abdomen phantom in order to be measured in the central cavity leading to increased 

attenuation of the x-ray beam.

When reviewing the 16-slice exposure measurements, it can be noted that all were 

higher than the comparable protocols for the 64-slice scanner. The percent decrease, in 

central cavity measurements, upon comparison of the 64-slice to the 16-slice for the HA 

and AA scans was 7% (3571 mR vs. 3323 mR) and 12% (1243 mR vs. 1090 mR) 

respectively. The average peripheral measurements for the HA and A A were 14% 

(3571 mR vs. 4069 mR) and 132% (1243 mR vs. 2892 mR), higher than the average 

central measurements.

3.2 Helical Exposure Measurements

The helical exposure measurements for all three CT scanners are summarized in 

Tables 3.4, 3.5, and 3.6. Tables 3.4 - 3.6 show that the values also are consistent between 

repeated scans for the central measurements, with standard deviations ranging from 2.1 to 

28.9 mR for each type of scan and for each scanner. The peripheral measurements 

displayed slightly more fluctuation, with standard deviations ranging from 36 to 210 mR. 

The exposure values for the helical head set one (HHl) were higher than the exposure 

values for helical head set two (HH2) on all scanners because o f two factors. The first 

being HHl was scanned at a higher tube current, 300 mA, as apposed to the HH2 scans 

200 mA, and the range for HHl was longer, 154 mm, as apposed to 98 mm for the HH2 

scans. The increase in mA directly increases the number o f photons delivered to the 

target, therefore, increasing the exposure. The increase in range also increases the 

exposure because the exposure time is increased. This same relationship was seen
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between the helical abdomen set one (HAl) and the helical abdomen set two (HA2) 

exposures as well.

Table 3.4. Helical exposure measurements and averages, in mR, for the 4-slice Toshiba 
Aquillion® CT scanner, with standard deviations in parenthesis.______________________

Peripheral
4-Slice Center (mR) 12 o’clock 3 o'clock 6 o’clock 9 o'clock Average

11620 11150 11230 11430 11358(210)Head
Helical
S etl

10330
10340
10300
10370

Average 10335 (28.9)
Head 
Helical 
Set 2

6351
6345
6344
6355

7370 6955 6998 7090 7103(186)

Average 6349 (5.2)
Abdomen
Helical
S etl

2019
2012
2023
2015

3937 3748 3892 3863 3860(102)

Average 2017 (4.8)
Abdomen 
Helical 
Set 2

1113
1110
1110
1108

2398 2316 2082 2310 2277(135)

Average 1110 (2.1)
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Table 3.5. Helical exposure measurements and averages, in mR, for the 16-slice 
Toshiba® Aquillion CT scanner, with standard deviation in parenthesis. _____________

_____________________ Peripheral___________________
16-Slice Center (mR) 12 o’clock 3 o'clock 6 o'clock 9 o'clock Average
Head 6816 7310 7287 7213 7223 7258(48)
Helical 6785
Set 1 6776

6775
Average 6788 (19.2)_____________________________________________________
Head 4244 4852 4605 4477 4627 4640 (156)
Helical 4241
Set 2 4232

4234
Average 4238 (5.7)______________________________________________________
Abdomen 1344 2319 2314 2088 2367 2272(125)
Helieal 1352
Set 1 1343

1341
Average____ 1345 (4.8)______________________________________________________
Abdomen 816 1513 1561 1286 1430 1448(121)
Helical 800
Set 2 801

799
Average 804 (8.0)

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.6. Helical exposure measurements and averages, in mR, for the 64-slice 
Toshiba® Aquillion CT scanner, with standard deviation in parenthesis._______________

Peripheral
64-Slice Center (mR) 12 o’clock 3 o'clock 6 o'clock 9 o'clock Average
Head
Helical
S etl

Average

7504 
7494 
7501 
7511 

7503 (7.0)

8460 8153 8104 8020 8184 (192)

Head 
Helical 
Set 2

Average

4799 
4785 
4813 
4817 

4804 (14.5)

5316 5098 5024 5079 5129 (128)

Abdomen
Helical
S etl

1650
1637
1647
1644

2875 2874 2818 2903 2868 (36)

Average 1644 (5.6)
Abdomen 
Helical 
Set 2

1041
1016
1025
1040

1872 1849 1816 1900 1859(36)

Average 1031 (12.1)
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The percent decrease in dose was consistent when comparing, central cavity 

measurements, of the HHl to HH2 and the AHl to AH2 for each scanner. For the 4-slice 

the decrease from HHl to HH2 was 39% (10335 mR vs. 6349 mR) and the corresponding 

decrease for AHl to AH2 was 44% (2017 mR vs. 1110 mR). For the 16-slice the 

decrease from HHl to HH2 was 38% (6788 mR vs. 4238 mR) while the decrease from 

AHl to AH2 was 40% (1345 mR vs. 804 mR). For the 64-slice the decrease from HHl to 

HH2 was 36% (7503 mR vs. 4804 mR) and for the AHl to the AH2 was 37% (1644 mR 

vs. 1031 mR). When comparing the helical head scans to the helical abdomen scans on 

all scanners, there was a decrease in exposure measurements o f the abdomen scans in 

relation to the head scans. This decrease is a direct effect of the FOV size, as previously 

explained in the axial exposure measurements section, and the scan time. The scan times 

were shortened by decreasing the time per revolution from 1.0 sec, for the helical head 

scans, to 0.5 sec for the helical abdomen scans. This shortening of the exposure time 

reduces the number of photons incident on the phantom contributing to the decrease in 

the measured values.

For the 4-slice helical scanner, as seen in Table 3.4, it can be noted that all 

exposures were higher than the comparable protocols for the 16 and 64 slice scanners. On 

average, the reduction in central cavity measurements for all protocols was 32% when 

comparing the 16-slice to the 4-slice scanner and 19% when comparing the 64-slice to the 

4-slice. The reduction in central cavity exposures for the head protocols on the 16 and 64- 

slice scanners compared to the 4-slice were more consistent than the abdomen protocols. 

The 16-slice HHl and HH2 protocols decreased by 34% (10335 mR vs. 6788 mR) and 

33% (6349 mR vs. 4238 mR), repectively while the 64-slice HHl and HH2 protocols
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decreased by 27% (10335 mR vs. 7503 mR) and 24% (6349 mR vs. 4804 mR), 

respectively. The 16-slice AHl and AH2 protocols were reduced by 33% ( 2017 mR vs. 

1345 mR) and 28% (1110 mR vs. 804 mR) while the 64-slice AHl and AH2 were 

reduced by 18% (2017 mR vs 1644 mR) and 7% (1110 mR vs. 1031 mR), respectively.

When analyzing the 16-slice helical data, in Table 3.5, the exposure 

measurements were less than those of the 64-slice, ranging from 10-22%, for all of the 

helical protocols. The average decrease, in central cavity measurements, was 16% for all 

helical scans, from the 64-slice to the 16-slice scanner. This finding was o f significance 

because the standard belief regarding multi-slice helical scanners is that increasing the 

slice capabilities o f the scanners would decrease the associated dose if all other factors 

remained constant. The findings here seem too directly disagree with that standard 

assumption. The reduction in exposure measurements when comparing the average 

central to average peripheral measurements of the H H l, HH2, A H l, and AH2 were 6%, 

9%, 41% and 44%, respectively. As mentioned previously these large differences in 

central to peripheral measurements between the head and abdomen scans can be 

accounted for by the decreased distance o f the phantom to the x-ray source in the case of 

the abdomen phantom and is compounded by the increased amount o f PMMA that the 

beam must travel through in comparison to the head phantom.

3.3 CTDIvoi Results

To simply use exposure values for dose assessment would limit the ability to 

account for variations in scanning techniques such as pitch, range and variations in 

electrometers. To account for these factors the standard method of dose calculation
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utilizes the computed tomography dose index (CTDI). The CTDI values for both the 

central and peripheral exposures are calculated using Eq. 4 o f Section 2.6. A weighting 

factor is then applied to the central and peripheral CTDI values as well as a pitch 

correction, if  a helical scan was performed, to calculate the CTDIvoi as seen in Eq. 3, also 

in Section 2.6. Table 3.7 compares the calculated CTDI values to the measured exposure 

values for the 4-slice scanner.

Table 3.7. Calculated CTDIvoi values, in mGy, for the 4-slice Toshiba Aquillion CT

Exposure Values (mGy) CTDI values (mGy)
HA 55.22 58.1
HHl 123.94 81.01
HH2 77.08 79.67
AA 31.25 32.89
AHl 36.51 24.05
AH2 21.24 21.96

Utilizing the recorded exposure values instead of the calculated CTDI values 

produced underestimations of dose for the HA, HH2, AA, and AH2 scans of 5%, 3%, 5% 

and 1% respectively. The HHl and AHl scans however, were overestimated by 53% and 

52% respectively. The large overestimations were both on scans that were 154 mm in 

length while the four underestimated scans were only 94 mm in length. This would 

suggest that the CTDI values become increasingly important at longer scan lengths, 

which is more consistent with patient scan lengths. This would be expected after 

reviewing Eq. 4 o f Section 2.6. Equation 4 divides out the product of the number of data 

channels used and the nominal slice width, i.e. the range o f the scan, to produce a per 

slice dose that can be more easily applied to a scan o f any other length, where as the
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exposure is highly dependent on the length of the scan. The actual calculated CTDIvoi 

values for all the scans performed in this study can be seen in Table 3.8.

Table 3.8. CTDIvoi values in mGy for the 4, 16, and 64-slice Toshiba Aquillion® CT 
scanners, with standard deviation in parenthesis.

4-Slice (mGy) 16-Slice (mGy) 64-Slice (mGy)
Axial Head 58.10(1.18) 40.66(1.71) 38.26(1.62)

Helical Head 
Set 1

81.01 (2.12) 49.31 (0.52) 56.43 (1.92)

Helical Head 
Set 2

79.67(1.86) 48.98 (1.56) 55.17(1.29)

Axial Abdomen 32.89(2.81) 24.40 (3.05) 24.11 (1.83)

Helical Abdomen 
Set 1

24.05 (1.02) 13.63 (1.25) 17.58 (0.36)

Helical Abdomen 
Set 2

21.96(1.35) 13.41 (1.21) 17.79 (0.38)

The calculated values for the CTDIvoi showed a definitive drop in dose for all 

protocols when comparing the 16-slice and 64-slice CT to that o f the 4-slice CT. This 

was not the case, however when comparing the 64-slice to the 16-slice. The 64-slice dose 

exhibited a slight increase in dose when compared to the 16-slice for all of the helical 

scans performed, while the axial scans did continue to follow the pattern of reduced dose. 

The percent decrease in dose from the 4-slice to the 16-slice for the AH, H H l, HH2, AA, 

A H l, and AH2 was 30%, 39%, 39%, 26%, 43% and 39%, respectively. The percent 

decrease in dose from the 4-slice to the 64-slice for the AH, H H l, HH2, AA, A H l, and 

AH2 was 34%, 30%, 31%, 27%, 27% and 19%, respectively. The percent decrease in
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dose from the 16-slice to the 64-slice for HA and AA was 6% and 1%, respectively. 

Where as the percent increase for the H H l, HH2, AHl and AH2 was 14%, 13%, 29% 

and 33%, respectively. The CTDI calculation sheets can be reviewed in Appendix A.

3.4 DLP Results

The dose length product (D LP) is a practical quantity that expresses the total 

energy deposited by x-rays over the entire length of the scan. The CTDIvoi is an 

expression of dose for a slice but the DLP provides a summation o f dose for all the slices, 

and thus the DLP is the product of the CTDIvoi and the scan length. Most manufactures 

are now displaying both the DLP and CTDIvoi values on the scanner monitor. For this 

study, the DLP values were calculated for each scanner and protocol and can be seen in 

Table 3.9.

Table 3.9. DLP values, in mGy-cm, for the 4, 16, and 64-slice Toshiba Aquillion® CT 
scanners.

Scan (mGy cm) 4-Slice 16-Slice 64-Slice
Axial Head 557.8 390.3 367.3

Helical Head 
Set 1

1247.6 759.4 874.7

Helical Head 
Set 2

780.8 480.0 551.7

Axial Abdomen 315.7 234.2 231.5

Helical Abdomen 
Set 1

370.4 209.9 270.7

Helical Abdomen 
Set 2

215.2 131.4 174.3
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The DLP values give a better representation o f the dose received from the 

performed scans, due to the fact that it takes into account the entire scanned length. The 

H Hl had the highest DLP value of any of the helical scans, which would be expected due 

to the length o f the scan being 154 mm as apposed to 96 mm for the rest o f the helical 

scans performed. Likewise the AH scan had the highest DLP of the axial scans. Upon 

review o f the data it can be noted that the DLP values for the 4-slice were all higher than 

the comparable protocols for the 16 and 64 slice scanners. The axial scan DLP’s 

continued to decrease from the 16-slice to the 64-slice protocols but as seen with the 

previous helical scan data the helical DLP’s increased from the 16-slice scans to the 64- 

slice scans.

3.5 CT Dose Relationship to Pitch 

Three varying pitch factors were applied to the HH2 protocol utilizing the 

minimum and maximum pitches available for the CT scarmers that would allow one pitch 

to be 50% o f the other. This was performed to test that if the tube current and potential 

are kept constant and the pitch is doubled, the dose will be halved. The measurements 

recorded with the varying pitch factors for all three scanners are summarized in 

Table 3.10.

There is a positive result for dose being reduced by a factor o f one-half when the 

pitch was doubled. All values measured at the 1.4 pitch value were ~ 50% of the 

measurements made at the 0.7 pitch. This verifies that doubling the pitch reduces the 

exposure by one-half.
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Table 3.10. Exposure measurements at center o f phantom, in mR, o f varying pitch factors 
for the 4, 16, and 64-slice Toshiba Aquillion® CT scanners.

Pitch Factors
0.7 0.9 1.4

4-Slice (mR) 7888 6351 3949
7897 6345 3952
7873 6344 3955
7891 6355 3950

16-Slice (mR) 5658 4244 2844
5656 4241 2841
5668 4232 2840
5671 4234 2840

64-Slice (mR) 6207 4799 3124
6224 4785 3123
6211 4813 3119
6220 4817 3121

3.6 Helical Dose Estimation 

The comparison of dose calculation for helical scans utilizing helical scan 

exposures to a calculated dose o f helical scans utilizing axial exposures, as suggested by 

the ACR, was performed and is summarized in Table 3.11. The CTDI calculation sheets 

can be seen in Appendix B. The ACR helical doses were calculated from the AH scans of 

each CT scanner. The helical dose values were calculated from the HH2 of each of the 

CT scanners. These two sets o f data were chosen because they were identical in all 

acquisition parameters except that one was acquired in helical mode while the other was 

acquired in axial mode.
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Table 3.11. Comparison o f  CTDIvoi dose values, in mGy, calculated from exposures

A C R  Calculated  
H elical D ose  

(m Gy)

Actual 
Helical D ose  

(m Gy)
Percent

Difference
4-Slice 66.21 79.67 16.9

16-Slice 43.32 48.98 11.6

64-Slice 42.03 55.17 23.8

There was a sizable underestimation of dose when utilizing axial exposures to 

calculate helical dose, with the largest underestimation, of 23.8% coming from the 64- 

slice scanner. This does seem to support the argument that the dose received by the extra 

revolutions outside of the imaged volume from helical scanning necessary for 

interpolation o f the first and last slice is ignored when utilizing axial exposure data. Even 

though the pitch factor is accounted for, there is still quite a large underestimation of 

dose. This would suggest that when it is necessary to calculate helical CTDI, the scans 

must be acquired in helical mode to provide accurate results.

3.7 Effective Dose Results 

The effective dose values, which are the standard for quantifying an individual’s 

exposure to radiation, were calculated for all scans performed. The effective dose was 

calculated by multiplying the DTP by a correction factor established by the ACR. The 

factor is 0.0023 for head scans and 0.015 for abdomen scans. The effective dose takes 

into account that different tissues are more radiosensitive than other tissues and that 

different types o f radiation produce different biological effects. The effective dose values 

can be seen in Table 3.12
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Table 3.12. Effective dose values, in mSv, for the 4, 16, and 64-slice Toshiba Aquillion® 
CT scanners.

4-Slice (mSv) 16-Slice (mSv) 64-Slice (mSv)
Head Axial 1.28 0.90 0.84

Head Helical 
Set 1

2.87 1.75 2.01

Head Helical 
Set 2

1.80 1.10 1.27

Abdomen Axial 4.74 3.51 3.47

Abdomen Helical 
S e tl

5.56 3.15 4.06

Abdomen Helical 
Set 2

T23 1.97 2.61

When comparing the effective dose values of the AA scans to those of the HA 

scans on all scanners, there was a decrease in exposure measurements of the head scans 

in relation to the abdomen scans. This is a complete reversal of what was previously seen 

in the exposure and DTP values. The head scans had the largest exposure values and DLP 

values but upon utilizing the weighting factor associated with the effective dose 

calculations, the abdomen scans produced the higher effective dose values in this study. 

This is a direct result of the fact that the tissues in the abdomen are overall more 

radiosensitive than tissues in the head. This fact reiterates why exposure values are not an 

accurate way to express dose from radiation exposure. The patterns seen in the previous 

data did continue in regards to the scarmers slice capabilities and mode of scanning. The 

axial scans continued to display a reduction in dose as the slice capabilities o f the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



scanners increased. The percent decrease of the 16-slice relative to the 4-slice for the HA 

and AA scans was 30% (1.28 mSv vs. 0.90 mSv) and 26% (4.74 mSv vs. 3.51 mSv), 

respectively, and the percent decrease o f the 64-slice relative to the 16-slice for the HA 

and AA scans was 7% (0.90 mSv vs. 0.84 mSv) and 1% (3.51 mSv vs. 3.47 mSv), 

respectively. The helical scans also did follow the patterns seen previously with all 

exposures o f the 16-slice being less than those of the 4-slice and with all exposures from 

the 64-slice being higher than those o f the 16-slice. The percent decrease was very 

uniform upon comparison of the 16-slice to the 4-slice, for the H H l, HH2 AHl and AH2 

scans the decreases were 39% (2.87 mSv vs. 1.75 mSv), 39% (1.8 mSv vs. 1.1 mSv), 

43% (5.56 mSv vs. 3.15 mSv) and 39% (3.23 mSv vs. 1.97 mSv), respectively. The 

percent decrease of the 16-slice relative to the 64-slice for the H H l, HH2 AHl and AH2 

scans the decreases were 13% (2.01 mSv vs. 1.75 mSv), 13% (1.27 mSv vs. 1.1 mSv), 

12% (4.06 mSv vs. 3.15 mSv) and 25% (2.61 mSv vs. 1.97 mSv), respectively.
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CHAPTER 4

STUDY CONCLUSIONS 

Over the past 30 years, rapid technological advances in CT have resulted in the 

number o f scans being performed to inerease annually, making it the major source o f 

exposure to the population via diagnostic x-rays (Mettler et al. 2000). As the number of 

CT scans being performed has increased, so too has the concern over patient dose from 

CT (Mettler et al. 2000). CT contributes approximately 40% of the collective dose from 

diagnostic radiology to the general public even though it only accounts for about 5% of 

all the x-ray examinations (Kwan et al 1998). Due to their faster scan times at increased 

tube currents the multi-slice CT scanners have heightened the concern o f dose in CT, and 

it is generally believed multi-slice scanners can lead to higher patient doses (Golding et 

al. 2002). This study’s aim was to address these concerns by performing a dose 

comparison of three multi-slice CT scanners. All three scanners were the same make and 

model but varied in their slice capabilities, 4, 16, and 64-slice scanners were tested. Six 

protocols were utilized consisting of two axial protocols, one head and one abdomen, and 

four helical protocols, two head and two abdomen. All scan techniques were kept 

consistent for each scan performed on each scanner.

The CTDlvoi values showed that the 4-slice scanner dose was the highest of any of 

the scanners for all o f the protoeols performed. Upon comparison o f the 16-slice dose to 

the 64-slice, the 64-slice dose decreased for the two axial protocols but showed a slight
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increase in the dose received during the helical protocols. The percent decrease in 

CTDIvoi for the 16-slice to that o f the 4-slice varied from 26% to 43%. The percent 

decrease in CTDIvoi for the 64-slice to that o f the 4-slice varied from 19% to 34%. The 

percent decreases in the axial scans CTDfroi for the 64-slice to that o f the 16-slice were 

between 1 and 6% for the HA, and AA, respectively, while the helical scans CTDfroi 

values increased upon comparison of the 64-slice to the 16-slice scanner with a range of 

13 to 33%.

The dose for the 16 and 64-slice axial scans were less than that o f the 4-slice in all 

protocols used for the following reasons. For multi-slice CT scanners the nominal beam 

width is set to cover the entire area of the detectors with an added margin on both ends of 

the z-axis to account for penumbra and any mechanical errors (Mori et al. 2006). The 

exposure received in these margins does not add to the image quality but does add to the 

subject dose. As the nominal beam width enlarges, the effect on dose o f these marginal 

exposures become less. This same effect holds true for the helical scans when comparing 

the 16 and 64-slice scanners to the 4-slice but does not hold true in this study upon 

comparison of the 16-slice to the 64-slice scanner. The increase in dose seen from the 16- 

slice to the 64-slice helical scans can be attributed to the interpolation phase of the helical 

image reconstruction, which necessitates added beam rotations outside of the volume of 

interest to allow reconstruction o f the first and last image slices. Since the scan length for 

these protocols was o f limited size, no greater than 15.5 cm, the extra revolutions needed 

by the 64-slice composed a larger area of the total volume imaged than that of the 16- 

slice. The exposures received due to this larger area outside the volume of interest 

outweighed the reduced exposure from the larger nominal beam width generating an
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overall increase in dose. This effect should become less of a factor as the scan length 

increases, therefore, implying that smaller volumes should be imaged in either axial mode 

or 16-slice helical mode, rather than with 4-slice or 64-slice scanners.

The CTDIvoi values were much higher for all the head protocols in comparison to 

the abdomen scans performed on the same scanners. This relationship was completely 

reversed upon calculation of effective dose values. The effective dose values take into 

account the overall increased radiosensitivity of the tissues in the abdomen as apposed to 

the tissues in the head producing numbers that gave a better reflection o f the impact of 

the exposure to the imaged volume. We did continue to see the same pattern o f decreased 

dose upon comparing the 16, and 64-slice scanners to the 4-slice for all protocols. The 

64-slice axial scans continued the decrease when compared to the 16-slice axial scans but 

did show an increase in effective dose values for the helical scans in comparison to the 

16-slice protocols. The effective dose values in this study ranged from 0.9 -  2.87 mSv for 

the head protocols and 1.97 -  5.56 mSv for the abdominal protocols. These values are the 

same magnitude as the average annual effective dose from background radiation in the 

United States (2.95 mSv) (Hall 2000). So on an individual basis the small dose 

differences between scanners is not so worrisome, but for the collective dose based on the 

thousands of CT scans being performed annually there is a significant impact.

The results o f the dose comparison of the HH2 protocols utilizing three different 

pitch values showed there is a direct relationship between dose and pitch utilized in 

helical CT scanning. All exposures measured at a 1.4 pitch were exactly 50% of the 

exposures measured at a pitch o f 0.7. Previous work has shown that CT scans utilizing 

pitch factors of up to 1.5 provide comparable image quality to scans performed at a pitch
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factor o f 1.0 in pediatric studies (Vade et al. 1996). With this in mind an obvious way to 

reduce dose while limiting the reduction of image quality is to increase the pitch. Image 

quality is always of the utmost importance in CT, but so should be the reduction of dose 

in the modality that produces approximately 40% of the collective dose from diagnostic 

radiology to the American population (Kwan et al 1998).

Standard CTDI calculation spreadsheets are utilized frequently to handle the 

laborious calculations involved in determining CT dose, but all are designed to estimate 

helical dose from axial scan exposures. This is a concern since in this study it was 

determined that there is an underestimation o f dose when attempting to utilize axial data 

for helical dose calculations. The spreadsheets take into account the effect of the pitch in 

regards to the dose by dividing the CTDIw by the pitch factor used in the scan, but it does 

not take into account the extra revolutions needed by the helical scanners outside the 

imaged volume for the interpolation phase o f image reconstruction. By not accounting for 

these extra revolutions an underestimation of dose ranging from 11% to 24% for the 

various scanners was produced. This sizable underestimation must be accounted for when 

performing dose calculations. There are methods to avoid this problem, but one must be 

aware when reviewing these records as to how the exposures were performed.

4.1 Overall Conclusions

With these conclusions comes a greater understanding of CT dose when 

comparing the newer scanners in use today. The biggest concern for increased dose from 

multi-slice CT scanners has commonly been attributed to the ease of use, i.e. faster scan 

times at increased tube outputs. This allows scans to be performed on patients that
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previously would not have been candidates for CT scans, i.e. pediatric and elderly 

patients or anyone unable to hold still for minutes on end. This is still true, but by the 

results o f this study, there must also be some thought process involved when ordering a 

CT scan as to which scanners should be utilized for various studies and types o f patients. 

Pediatric patients should benefit the most from the information in this study because their 

smaller size generally infers that a smaller scan length is necessary and as we have 

determined here the optimum CT scanner would be a 16-slice for these individuals. I 

hope that the data presented here will aid health practitioners in deciding what CT studies 

and scanners should be utilized in various situations.

4.2 Future Work

Future research in this area could concentrate more on determining at what scan 

length does the dose from the 64-slice scanner become less than that o f the 16-slice. In 

this study, the scan lengths were between 94 and 155 mm, which are not quite consistent 

with modem CT usage. Large portions o f the CT scans performed today are for oncology 

purposes and generally consist of scanning the patient’s neck, chest, abdomen and pelvis 

in one session. The dose from these longer length scans should be reduced by the use of 

the 64-slice models, but it would be of interest to determine at what length would the 64- 

slice scanner be the preferred scarmer over the 16-slice. A 256-slice CT seanner has also 

been introduced into the market recently and the same questions could be raised 

regarding its use. The advertised use for these new units is as a cardiac screening tool but 

it would be interesting to perform a dose analysis for this type of scan. It would be very
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unfortunate if in screening for cardiac disease the individual’s likelihood of cancer could 

be increased.
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APPENDIX A
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CT Equipment Information
DEP Facility Number: SDMI
DEP Registration Number: Facility Name
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis collimation (T) (mm) 1.00
# of data channeis used (N) 96
if Axiai:Tabie Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 5849.0
2nd Measurement (mR)* 5849.0
3rd Measurement (mR)* 5849.0

5849.0 53.01

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 6692.0 60.95
2nd Measurement (mR)* 6692.0
3rd Measurement (mR)* 6692.0

6692.0
CT Dose Calculations and Pitch

58.10 58.10
1.000
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber Instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channels used (N) 154
If AxiahTable Increment (l)(mm)
OR 136.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 11879.0
2nd Measurement (mR)* 11879.0
3rd Measurement (mR)* 11879.0

11879.0 67.11

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 13055.0 73.75
2nd Measurement (mR)* 13055.0
3rd Measurement (mR)* 13055.0

13055.0
CT Dose Caiculations and Pitch

71.54 81.01
0.883
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CT Equipment Information
DEP Faciiity Number; SDMI
DEP Registration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis collimation (T) (mm) 1.00
# of data channels used (N) 98
If AxiahTable Increment (l)(mm)
OR 86.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 7298.0
2nd Measurement (mR)* 7298.0
3rd Measurement (mR)* 7298.0

7298.0 64.79

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 8164.0 72.48
2nd Measurement (mR)* 8164.0

3rd Measurement (mR)* 8164.0
8164.0

CT Dose Calculations and Pitch

69.92 79.67
0.878
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg 
Type:

stration Number: Facility Name
ToshibaAxial X

Helical CT Manufacturer
Jim KelleyTotal No. of Detectors 4

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis collimation (T) (mm) 1.00
# of data channels used (N) 96
If AxiahTable Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 2086.0
2nd Measurement (mR)* 2086.0
3rd Measurement (mR)* 2086.0

2086.0

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4400.00 39.88
2nd Measurement (mR)* 4400.00

3rd Measurement (mR)* 4400.00
4400.00

CT Dose Calculations and Pitch

32.89 32.89
1.000
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Model Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 0.5
Z axis collimation (T) (mm) 1.00
# of data channels used (N) 154
If AxiahTable Increment (l)(mm)
OR 135.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 2318.0
2nd Measurement (mR)* 2318.0
3rd Measurement (mR)* 2318.0

2318.0

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4437.0 25.07
2nd Measurement (mR)* 4437.0

3rd Measurement (mR)* 4437.0
4437.0

CT Dose Calculations and Pitch

21.08 24.05
0.877
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CT Equipment Information
DEP Facility Number: SDMI
DEP Registration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber Instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 0.5
Z axis collimation (T) (mm) 1.00
# of data channels used (N) 98
If AxiahTable Increment (l)(mm)
OR 86.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 1276.0
2nd Measurement (mR)* 1276.0
3rd Measurement (mR)* 1276.0

1276.0 11.33

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 2617.0 23.23
2nd Measurement (mR)* 2617.0

3rd Measurement (mR)* 2617.0
2617.0

CT Dose Calculations and Pitch

19.27 21.96
0.878
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber Instrumentation
Manufacturer and Model Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 96
If AxiahTable Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 4105.0
2nd Measurement (mR)* 4105.0
3rd Measurement (mR)* 4105.0

4105.0

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4677.0
2nd Measurement (mR)* 4677.0

3rd Measurement (mR)* 4677.0
4677.0

CT Dose Calculations and Pitch

40.66 40.66
1.000
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CT Equipment Information
DEP Faciiity Number; SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber Instrumentation
Manufacturer and Model Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 154
If Axiai:Tabie Increment (l)(mm)
OR 144.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 7802.0
2nd Measurement (mR)* 7802.0

3rd Measurement (mR)* 7802.0
7802.0 44.08

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 8342.0 47.13
2nd Measurement (mR)* 8342.0

3rd Measurement (mR)* 8342.0
8342.0

CT Dose Calculations and Pitch

46.11 49.31
0.935
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber Instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channels used (N) 98
If AxlahTable Increment (l)(mm)
OR 92.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 4871.0
2nd Measurement (mR)* 4871.0

3rd Measurement (mR)* 4871.0
4871.0 43.24

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 5333.0 47.34
2nd Measurement (mR)* 5333.0

3rd Measurement (mR)* 5333.0
5333.0

CT Dose Calculations and Pitch

45.98 48.98
0.939
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 96
if Axiai:Tabie Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 1429.0
2nd Measurement (mR)* 1429.0
3rd Measurement (mR)* 1429.0

1429.0 12.95

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 3324.0 30.12
2nd Measurement (mR)* 3324.0

3rd Measurement (mR)* 3324.0
* --.tv 3324.0

CT Dose Caicuiations and Pitch

24.40
1.000
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CT Equipment Information
DEP Facility Number: SDMI
DEP Registration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber Instrumentation
Manufacturer and Model Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channels used (N) 154
If AxiahTable Increment (l)(mm)
OR 144.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 1546.0
2nd Measurement (mR)* 1546.0

3rd Measurement (mR)* 1546.0
1546.0

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 2611.0 14.75
2nd Measurement (mR)* 2611.0

3rd Measurement (mR)* 2611.0
2611.0

CT Dose Caiculations and Pitch

12.75 13.63
0.935
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Registration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 0.5
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 98
if Axiai:Table increment (i)(mm)
OR 92.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 924.0
2nd Measurement (mR)* 924.0
3rd Measurement (mR)* 924.0

924.0 8.20

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 1664.0
2nd Measurement (mR)* 1664.0

3rd Measurement (mR)* 1664.0
1664.0

CT Dose Calculations and Pitch

12.58 13.41
0.939
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 96
If AxiahTable Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 3819.0
2nd Measurement (mR)* 3819.0
3rd Measurement (mR)* 3819.0

3819.0 34.61

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4423.0 40.08
2nd Measurement (mR)* 4423.0

3rd Measurement (mR)* 4423.0
4423.0

CT Dose Caiculations and Pitch

38.26 38.26
1.000
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber Instrumentation
Manufacturer and Model Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 155
If Axiai:Tabie Increment (l)(mm)
OR 141.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 8624.0
2nd Measurement (mR)* 8624.0
3rd Measurement (mR)* 8624.0

8624.0

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 9407.0 52.80
2nd Measurement (mR)* 9407.0

3rd Measurement (mR)* 9407.0

y;-''! 9407.0
CT Dose Calculations and Pitch

51.34 56.43
0.910
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coliimation (T) (mm) 1.00
# of data channeis used (N) 100
if Axiai:Table Increment (l)(mm)
OR 91.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 5522.0
2nd Measurement (mR)* 5522.0
3rd Measurement (mR)* 5522.0

5522.0 48.04

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 5895.0 51.29
2nd Measurement (mR)* 13055.0
3rd Measurement (mR)* 13055.0

13055.0
CT Dose Caiculations and Pitch

50.21 55.17
0.910
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CT Equipment Information
DEP Facility Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axial X Toshiba

Helical CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber Instrumentation
Manufacturer and Model Radcal 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis collimation (T) (mm) 1.00
# of data channels used (N) 96
If AxiahTable Increment (l)(mm)
OR 96.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 1252.0
2nd Measurement (mR)* 1252.0

3rd Measurement (mR)* 1252.0
1252.0 11.35

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 3364.0 30.49
2nd Measurement (mR)* 3364.0

3rd Measurement (mR)* 3364.0
3364.0

CT Dose Calculations and Pitch

24.11 24.11
1.000
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CT Equipment Information
DEP Facility Number: SDMI
DEP Registration Number: Facility Name
Type: Axiai Toshiba

Helical X CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber Instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Caiibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocol
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 300 By Facility
Exposure time per rotation 0.5
Z axis coilimation (T) (mm) 1.00
# of data channeis used (N) 154
If AxiahTable Increment (l)(mm)
OR 140.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 1890.0
2nd Measurement (mR)* 1890.0
3rd Measurement (mR)* 1890.0

1890.0 m s s

At 12 o'ciock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 3297.0.0 18.63
2nd Measurement (mR)* 3297.0.0

3rd Measurement (mR)* 3297.0.0
3297.0.0

CT Dose Calculations and Pitch

15.98 i7J58
0.909
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Registration Number: Facility Name
Type: Axial Toshiba

Helical X CT Manufacturer
Total No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Caiibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Abdomen

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 0.5
Z axis coiiimation (T) (mm) 1.0
# of data channels used (N) 97
If AxiahTable Increment (l)(mm)
OR 89.00
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 1185.0
2nd Measurement (mR)* 1185.0

3rd Measurement (mR)* 1185.0
1185.0 10.52

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 2137.0 18.97
2nd Measurement (mR)* 2137.0

3rd Measurement (mR)* 2137.0
2137.0

CT Dose Caicuiations and Pitch

16.16 17.79
0.908

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CT Equipment Information
DEP Facility Number: SDMI
DEP Registration Number: Facility Name
Type: Axiai Toshiba

Helical X CT Manufacturer
Total No. of Detectors 4 Jim Kelley

Physicist's Name and Date 
Performed

Ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1.0
Z axis coiiimation (T) (mm) 1.00
# of data channeis used (N) 96
if AxiahTable Increment (l)(mm)
OR 84.25
If HelicahTable Speed (1) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 5849.0
2nd Measurement (mR)* 5849.0
3rd Measurement (mR)* 5849.0

5849.0 53.01

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 6692.0 60.65
2nd Measurement (mR)* 6692.0

3rd Measurement (mR)* 6692.0
6692.0

CT Dose Caicuiations and Pitch

58.10 66.21
0.878
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axiai Toshiba

Helicai X CT Manufacturer
Total No. of Detectors 16 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Caiibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Facility
Exposure time per rotation 1
Z axis coiiimation (T) (mm) 1.00
# of data channeis used (N) 96
if Axiai:Tabie increment (i)(mm)
OR 90.10
if Heiicai:Tabie Speed (i) (mm/rot)

Scan Measurements
At isocenter of Phantom

1st Measurement (mR)* 4105.0
2nd Measurement (mR)* 4105.0
3rd Measurement (mR)* 4105.0

4105.0 37.20

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4677.0 42.39
2nd Measurement (mR)* 4677.0

3rd Measurement (mR)* 4677.0
4677.0

CT Dose Caicuiations and Pitch

40.66 43.32
0.939
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CT Equipment Information
DEP Faciiity Number: SDMI
DEP Reg stration Number: Facility Name
Type: Axiai Toshiba

Heiicai X CT Manufacturer
Totai No. of Detectors 64 Jim Kelley

Physicist's Name and Date 
Performed

ionization Chamber instrumentation
Manufacturer and Modei Radcai 9095
Last Date of Calibration 4/14/2006
Active Chamber Length (L) (mm) 100
Chamber Correction Factor (C) 1

Patient Scan Protocoi
Procedure Type: Head

kVp 120 Procedures Types Not Performed
mA 200 By Faciiity
Exposure time per rotation 1
Z axis coiiimation (T) (mm) 1.00
# of data channeis used (N) 96
if AxiahTabie increment (l)(mm)
OR 87.40
if Heiicai:Tabie Speed (i) (mm/rot)

Scan Measurements
At Isocenter of Phantom

1st Measurement (mR)* 3819.0
2nd Measurement (mR)* 3819.0
3rd Measurement (mR)* 3819.0

3819.0 34.61

At 12 o'clock Position of Phantom
* Measurements must be w/i 5% of 

each other

1st Measurement (mR)* 4423.0 40.08
2nd Measurement (mR)* 4423.0

3rd Measurement (mR)* 4423.0
4423.0

CT Dose Caicuiations and Pitch

3&26 S^%BB8#Q3%%%B&aËB8BMW8ag42a3
0.910

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

Bushberg JT, Siebert JA, Liedholt EM, Boone JM. The EssentialPhysics of Medical 
Imaging. Philidelphia, PA: Lippincott Williams & Wilkins; 2002: 747-759.

Bnmnett CJ. CT design considerations and specifications. Cleveland, Ohio. Picker 
International; 1990.

Cardinal Health. Instruction Manual for CT Head and Body Dose Phantom Model 
Number 76-414-4150; 1991.

Dawson P, Lees WR. Multi-slice technology in computed tomography. Clinical 
Radiology 56: 302-309; 1990.

Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. Journal Opt. Soc. 
Am. A l: 612-619; 1984.

Food and Drug Administration. Code of Federal Regulations; Title 21 Part 1020 
Section 33; 2003. Available at: http://frwebgcite.access.gpo.gov/cgi-bin/get- 
cff.cgi. Accessed 19 July 2006.

Golding SJ, Shrimpton PC. Radiation dose in CT: are we meeting the challenge? British 
Journal o f Radiology 75: 1-4; 2002.

Hall EJ. Radiobiology for the Radiologist. Philidelphia, PA: Lippincott Williams & 
Wilkins; 2000: 234-248.

Hu H. Multislice Helical CT: Scan and Reconstruction. Med Physics 26: 5-18; 1999.
Jessen KA, Shrimpton PC, Geleijns J, Panzer W, Tosi G. Dosimetry for optimization of 

patient protection in computed tomography. Applied Radiation and Isotopes 50: 
165-172; 1999.

Jucius RA, Kambic GX. Radiation dosimetry in computed tomography. Appl. Opt. 
Instrum. Eng. Med. 127: 286-295; 1977.

Lewis M. Radiation Dose Issues in Multi-Slice CT Scanning. 2005. Available at: 
http://www.impaetscan.org/msctdose.htm. Accessed 10 May 2006.

Mettler FA, Wiest P, Locken JA. CT scarming: Patterns of Use and Dose. Radiol. Prot. 
20:353-359; 2000.

Morgan CL. Basic Principles of Computed Tomography. Baltimore, MD; University 
Park Press; 1983: 51-68.

Mori S, Endo M, Nishizawa K, Murase K, Fuji war a H, Tanada S. Comparison of patient 
doses in 256-slice CT and 16-slice CT scanners. British Journal o f Radiology 79: 
56-61; 2006.

Ng KH, Bradley DA. Warren-forward, H.M. Subject Dose in Radiological 
Imaging New York, NY; Elsevier; 1998: 165-172.

Nicholson R, Fetherston S. Primary Radiation Outside the Imaged Volume of a Multi­
slice Helical CT Scan. British Journal o f Radiology. 75: 518-522; 2002.

R adcai. 9095 Technical Specifications Brochure. 2005. Available at: 
http://www.radcal.com/9095.html. Accessed 12 July 2006.

Saito Y. Multislice X-ray CT Scarmer. Med Rev. 66: 1-8; 1998.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://frwebgcite.access.gpo.gov/cgi-bin/get-
http://www.impaetscan.org/msctdose.htm
http://www.radcal.com/9095.html


Seeram E. Computed Tomography Physical Principals, Clinical Applications and Quality 
Control, 2"^ Ed.. Philadelphia, PA: Saunders; 2001: 245-265.

Vade A, Demos TC, Olson MC, Subbaiah P, Turbin RC, Vickery K, Carrigan K. 
Evaluation o f image quality using 1:1 pitch and 1.5:1 pitch helical CT in children: 
a comparative study. Pediatric Radiology 26: 891-893; 1996.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA

Graduate College 
University o f Nevada, Las Vegas

James J. Kelley

Home Address:
284 Ben Johnson Ct.
Las Vegas, Nevada 89123

Degrees:
Bachelor of Science, Nuclear Medicine, 1988 
University o f Nevada, Las Vegas

Thesis Title: Dose Comparison of Multi-Slice Computed Tomography Scanners

Thesis Examination Committee:
Chairperson, Dr. Phillip Patton, Ph.D.
Committee Member, Dr. Steen Madsen, Ph.D.
Committee Member, Dr. Mark Rudin, Ph.D.
Graduate Faculty Representative, Dr. J. Wesley McWhorter, Ph.D.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Dose comparison of multi-slice computed tomography scanners
	Repository Citation

	tmp.1534462568.pdf.K8Ojl

