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ABSTRACT

Performance of Plate Fin Compact Heat Exchangers

by

Ibrahim Mohamed Khalil

Dr. Robert F. Boehm, Examination Committee Chair 
Professor of Meehanical Engineering 

University of Nevada, Las Vegas

Heat exehangers design includes the consideration of both the heat transfer rates 

between two fluids and the pumping power required to overcome fluid friction and push 

the fluids through the heat exchangers. In gas flow heat exchangers, the friction power 

limitations force the designer to select moderately low mass veloeities. Low mass 

velocities with low thermal conduetivities will result in low heat transfer rate per unit of 

the surface area. Thus a large surface area is a typical characteristic of a gas flow heat 

exchanger.

The problem of a large required area can be solved by using large area density which 

will lead to compact heat exchangers. The main target of this study is to provide full 

explanation of previous comparison methods of compact heat exchangers surfaces (plain, 

strip, louvered, wavy, pin, perforated and vortex) used in plate fin compact heat 

exehangers and to generalize these methods in order to identify the advantages and 

disadvantages of eaeh type of geometry based on required size, entropy generation, 

pumping power, weight, and cost.

Ill
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NOMENCLATURE

^  Total transfer area of one side of exchanger, ft^ or m ̂
a Plate thickness, ft or m

Base plate area, ft ̂  or m ̂

■̂ c Free-flow area of one side, ft ̂  or m ̂

4 /  Total fin area on one side, ft ̂  or m ̂
Afr Frontal area of one side, ft ̂  or m ̂
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Cc Flow stream capacity rate of cold side fluid

Flow stream capacity rate of cold side fluid 
cp Specific heat at constant pressure
Dh Hydraulic diameter of any internal passage, ft or m
/  Mean friction factor
fo  Mean friction factor for reference surface

G Flow stream mass velocity, kg/m ̂  s

b Convective heat transfer coefficient, w/ m ̂  K
j  Colburn factor
jo  Colburn factor for reference surface
k  Thermal conductivity, w/mK
Kc Contraction loss coefficient at entrance
Ke Expansion loss coefficient at exit
L Flow length on one side, ft or m
/ Fin length from root to center, ft or m
Lstack No flow length, ft or m
m Correction factor for friction factor
N  Entropy factor
n Correction factor for colbum factor
n f  Number of fins per meter
NTU  Number of heat transfer units
Nu Nusselt Number
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Pumping power on cold side, w

Pumping power on hot side, w

Pr Prandtl number
Q Heat transfer rate, w
Re Reynolds number
Re ̂  Reynolds number for reference surface

Hydraulic radius, ft or m

S^ Entropy generation rate per unit exchanger length

St Stanton number
T Absolute temperature, K
Ti Inlet temperature, K

Wall temperature, K

U Overall thermal conductance, w/m ̂  K

V Total exchanger volume, ft^  ,m^

VG Vortex generator
W Mass flow rate, kg/s
WVG Wing vortex generator

Weight of one side of the heat exchanger, kg

a  Ratio of total area on one side to total exchanger volume
/S Ratio of total area on one side to volume between plates
)8* Angle of attack for vortex element
AP  Pressure drop on one side, kPa
Ô Fin thickness, ft or m
e Exchanger Effectiveness

Fin Efficiency

rĵ  Total surface effectiveness

cr Ratio of free-flow to frontal area o f one side of exchanger
A Dynamic viscosity. Pa s

P  Density, Kg/m ̂
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CHAPTER 1

INTRODUCTION AND BACKGROUND 

The importance of compact heat exchangers (CHEs) has been recognized in 

aerospace, automobile, gas turbine power plant, and other industries for the last 50 years 

or more. This is due to several factors, such as packaging constraints, sometimes high 

performance requirements, low cost, and the use o f air or gas as one of the fluids in the 

exchanger. For nearly two decades, the additional driving factors for heat exchanger 

design have been reducing energy consumption for operation of heat exchangers and 

process plants, and minimizing the capital investment (Hesselgreaves, 2001).

The use of plate heat exchangers and other CHEs has been increasing due to some of 

the inherent advantages mentioned above. In addition, CHEs offer the reduction of floor 

space, decrease in fluid inventory in closed system exchangers, use as multifunctional 

units, and tighter process control with liquid and phase-change working fluids.

Heat transfer and flow friction single-phase design correlations are given for the most 

commonly used modem heat transfer surfaces in CHEs, The main design considerations 

for compact heat exchangers are surface size, shape, weight and pumping power.
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1.1 Compact Heat Exchangers Surfaces

The following sub-sections briefly explain the different geometries o f CHE’s (Kays 

and London, 1984). The heat transfer enhancement mechanism for each type o f geometry 

will be explained as well.

1.1.1 Plain F in Geometry

The plain fm surfaces include rectangular passages, triangular passages, and passages 

with rounded and reentry comers and characterized by long uninteirupted flow passages 

used to increase the total surface area as shown in Figure La (Hall, 2003). Plain surfaces 

considered in this study are shown in Table 1.1.

The semi-descriptive method of designating plain fm surfaces refers to the number of 

fin per inch transverse to the flow direction. Thus surface 19.86 has 19.86 fins per inch 

The number given for plain surface denotes for the number of fins per inch and the suffix 

T denotes for triangular flow passage.

1.1.2 Strip Fin Geometry

The strip fin surfaces are similar in principle to the louvered fin surfaces, the only 

difference being that the short sections o f fins are aligned entirely with the flow direction. 

With the strip fin configuration it is feasible to have very short flow length fins and thus 

very high heat transfer coefficients as shown in Figure. Lb (Hall, 2003). The designation 

scheme for the strip fin surfaces is essentially the same as that used for the louvered 

surfaces. Strip surfaces considered in this study are shown in T ablel.l.

1.1.3 Louvered Fin Geometry

The louvered fin surfaces are characterized by fins that have been cut and bent out 

into the flow stream at frequent intervals. The purpose o f louvering is to break the 

boundary layers so as to yield higher heat transfer than are possible with plain fins under
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the same flow conditions as shown in Figure 1 .c (Hall, 2003). The louvered fm surfaces 

are designated by two figures. The first refers to the length of the louvered fin in the flow 

direction, the second to the fins per inch transverse to the flow. Thus surface 3/8-11.1 has 

3/8 in louvers and 11.1 fins per inch. Louvered surfaces considered in this study are 

shown in Tablel.l.

1.1.4 Wavy Fin Geometry

The wavy fin surfaces are also high-performance surfaces with performance quite 

similar to the louvered and strip-fin surfaces. The change in flow direction induced by the 

fins, caused boundary-layer separation with effeets similar to eomplete fin interruption as 

shown in Figure.l.d (Hall, 2003). The wavy-fin surfaces are designated by two figures, 

giving the number of fins per-inch and the wavelength, followed by the letter W. Thus 

surface 11.5 -  3/8 W has 11.5 fins per inch and a complete wave every 3/8 in. Wavy 

surfaces considered in this study are shown in Tablel.l.

1.1.5 Pin Fin Geometry

Pin fin surfaces are another example o f the plate-fm system, where the purpose is to 

achieve very high heat transfer coefficients by maintaining thin boundary layers on the 

fins as shown in Figure l.e (Hall, 2003). By constructing the fins from small diameter 

wire, the effeetive flow length of the fins can be very small indeed. The pin-fin surfaces 

are charaeterized by quite high friction factors attributable primarily to form drag 

associated with the boundary layer separation, that occurs on the pins. Nevertheless, the 

very high heat transfer coefficients attainable often more than offset the high friction 

factors when the final heat exchanger design is eonsidered.

The designation scheme for the pin fin surfaces is not descriptive. Pin surfaces 

considered in this study are shown in Tablel.l.
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1.1.6 Perforated F in Geometry

Perforated fin surface is designated simply by the number of fins per inch transverse 

to the flow and the letter P as shown in Figure l .f  (Stevens, 2001). Holes cut out o f the 

fins again provide boundary layer interruption. The friction factors for this surface are 

quite low (promising surface). Perforated surface eonsidered in this study is shown in 

Tablel.l.

1.1.7 Vortex Generator Geometry

Vortex generator surface depends on generating longitudinal vortices that enhances 

thermal mixing and increasing the heat transfer coefficient as shown in Figure l.g 

(Brockmeier, 1993).

Plain Fins 
(Straight Fins);

Fin Pitch

Plate
Spacing

Fin'^
Thickness

Figure l.a  Plain Fin Surface (Hall, 2003)
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strip Fins 
(Lanced Offset):

Lanced Offeet 
Length

Figure l.b Strip Fin Surface (Hall, 2003)

Louvered Fins:

Louwr

Louver
Spacing

Figure l.e Louvered Fin Surface (Hall, 2003)

Wavy Fins:

Figure l.d  Wavy Fin Surface (Hall, 2003)
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p in  F in s: 
P in

iianieter 
I TranflversB Pin
£ j  Spacing

Longitud ina] P in  
S pacing

Figure.l.e Pin Fin Surface (Flail, 2003)

Figure l . f  Vortex Generator Surface (Brockmeier, 1993)

Figure l.g Perforated Fin Surface (Stevens, 2001)
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Table 1.1 Different Types o f Geometries

Surfaces Analyzed
Plain Strip Louvered Wavy Pin Perforated Vortex

2.0 1/4S-11.1 3/8-6.06 11.44-3/8 AP-1 13.95 (P) Vortex Gen.
3.01 1/8-15.2 3/8 a-6.06 11.5-3/8 AP-2
3.97 1/8-13.95 1/2-6.06 17.8-3/8 PF-4(F)
5.3 1/8-15.61 1/2 a-6.06 PF-9(F)
6.2 1/8-19.86 3/8-8.7 PF-10(F)
9.03 1/9-22.68 3/8 a-8.7
11.11 1/9-25.01 3/16-11.1
11.11a 1/9-24.12 1/4-11.1
14.77 1/10-27.03 l /4 b - l l . l
15.08 1/10-19.35 3/8-11.1
1&86 1/10-19.74 3 /8 b -ll.l
10.27T 3/32-12.22 1/2-11.1
11.94T 1/2-11.9 D 3/4-11.1
12.00T 1/4-15.4 D 3 /4 b -ll.l
16.96T 1/6-12.18 D
25.79T 1/7-15.75D
30.33T 1/8-16.00D
46.45T 1/8-16.12D

1/8-19.82D
1/8-20.06D
1/8-16.12T

The designation scheme for the surfaces considered in Table 1.1 is:

• 19.86 Plain : The surface 19.86 has 19.86 fins per inch

• 1/8-13.95 Strip : The surface 1/8-13.95 has 1/8 in strips and 13.95 fins per inch

• 3/8-11.1 Louvered : The surface 3/8-11.1 has 3/8 in louvers and 11.1 fins per inch

• 11.5-3/8 Wavy : The surface has 11.5 fins per in and wave length equal 3/8 in

• 13.95 (P) : The number of fins per inch transverse to the flow is 13.95
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1.2 Compact Heat Exchangers Design Procedures

The methodology of achieving optimum heat exchanger design (Kays and London, 

1984) is a complex one because so many design factors may contribute in changing the 

final design as shown in Figure 1.2.

SiirTâce
Characteristics

Design  
The coy 

PiDcedure

Pioblem
Specifications

Optimum
Solution

Figure 1.2 Methodology of Heat Exchanger Design (Kays and London, 1984)
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Two broad categories o f design problem specification are as follow : Given the core 

geometry, the flow rates, and the entering fluid temperatures, and the rating of the heat 

exchanger (heat transfer rate and exchanger effectiveness) is required to be determined.

The second category, which is the major subject o f this study, is termed the sizing 

problem in distinction to the rating problem. The purpose o f the sizing problem is to 

specify the size o f the core.

In case o f a plate fin type heat exchanger, the designer can in principle select the 

surface configurations for the two fluid sides completely independently. This is one o f the 

virtues o f the plate fin construction. Also it is the best heat exchanger type in case both 

fluids are gases.

The procedure for sizing any one of plate fin heat exchangers is almost inevitably an 

iterative one and thus lends itself very conveniently to computer implementation. To 

illustrate such a procedure, a single pass cross flow arrangement will be considered, and it 

will he assumed that each pass is unmixed.

The two fluids (hot and cold streams) will be designated by subscripts h and c. The 

two fluid flow rates, Wh and Wc, are specified, as well as all four terminal temperatures 

and the pressure drop for each fluid.

The target of the sizing problem is the determine the three dimensions, the flow length 

in cold fluid , the flow length in hot fluid , and no flow length , thus the 

volume of the heat exchanger.
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1.3 Heat Transfer and Flow Friction Design Data

All direct test data are attached in this thesis in Appendix A. The test data for plain, 

strip, wavy, louvered, pin, and perforated surfaces were obtained from Kays and London 

(1984) and test data for vortex generator surface were obtained from Fiebig (1993).

The test data for each surface is the main source o f sizing this surface according to the 

required heat transfer rate, fluid mass flow rates and pressure drop restrietions on each 

side.

The abscissa on each figure is the Reynolds number that depends directly on mass 

velocity G, and the ordinate is used for two parameters; the first is heat transfer parameter 

( j  ) and the second one is mean friction factor ( / ) .

1.4 Core Geometry Relations

Some geometrical relations are important in application of the basic heat and flow 

friction data to the sizing problem in plate fin compact heat exchangers.

The equations below (Kays and Lodon,1984) give the relations between surface and 

core factors for one side of the exchanger. Subscript 1 refers to any one side, and 2 refers 

to the other side. Factors without a subscript are common to both sides.

V A  y

( a C r A T h  1 _ ( A r h ) i

1 1 V

biPifh,

a , -

b| +\)2 +2a

biPi 
b] + b 2 +2a

( 1- 1)

(1-2)

(1-3)

(1-4)

10
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fr (1-5)

A Ac L

A l  = =
Aru

V  L  7 ]

/I

^Ao^ 
V Let yj

= ( a r j ,

vLctyi

( 1-6)

(1-7)

(14%

1.5 Objective o f the Study

The objective of this work focuses around two primary tasks, sizing the compaet heat 

exchanger core to specify the core dimensions for different high performance surfaces, 

studying entropy generation, and minimum weight and selection of the best surface for 

specific application.

1.6 Geometry Characteristics

The dimensional data given in Appendix A provide all the necessary information 

required for the basic heat transfer and flow-friction performance applied to the plate-fm 

surfaces to heat exchanger design, ft will be noted that the heat transfer area density is 

given as p the area per unit of volume between the plates on one flow side.

Extrapolation of the plate fin performance data to surfaces possessing a superfieial 

geometrical similarity but different hydraulic diameter can probably be aceomplished 

without introducing serious uncertainty for moderate changes in hydraulic diameter.

11
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1.7 Vortex Generation

Using vortex generators is one o f the common methods of heat transfer enhancement. 

This method depends on creating vortices that enhance the thermal mixing o f the flow, 

hence increasing the local heat transfer and overall heat transfer coefficient. The price of 

this enhanced heat transfer will be a significant increase in pressure drop and pumping 

power. Wing-type vortex generator (WVG) can be used as fins or to modify fins and are 

easily incorporated in to heat exchangers. Different WVGs are evaluated experimentally 

and numerically with regard to heat transfer enhancement and pressure loss. Detailed data 

are presented for flow structure, local and global heat transfer and pressure losses 

(Guntermann, 1992). The high potential of WVGs for compact heat exchangers is very 

clear from previous studies and current research. Comparison of WVG-fms with offset- 

strip and louvered fins shows the advantages of WVG’s (Brockmeier, 1993). Because of 

the many geometrical parameters of WVGs, many possibilities for improvements and 

incorporation into heat exchangers exist.

The requirements for the vortex generators to be used in compact heat exchangers can 

be deduced from the characteristics of compact heat exchangers. These are summarized 

with the associated design problems and partial solutions.

Two types of vortex generators are commonly used; The first is transverse vortex 

generators (TVG) and the second type is longitudinal vortex generators (LVG).

TVGs generate vortex structures with their vortex axes mainly transverse to the 

primary flow direction, while LVGs generate vortex systems with vortex axes mainly 

along the primary flow direction. All experimental and theoretical investigations point out 

that LVGs are preferable to TVGs for compact heat exchangers (Fiebig, 1993).

12
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Wing-type vortex generators (WVG) are easy to incorporate into heat exehangers. 

The numerous geometrical parameters not only open a large potential, but also afford 

eonsiderable effort for optimization.

Figure 1.3 Symmetrie Pair of Longitudinal Vortiees (Fiebig, 1993)

The mechanism for beat transfer enhancement of vortex generators is different from 

that of offset strip fins and louvered fins. Instead of periodic flow separation, wake 

recovery and developing laminar boundary layers, they generate swirl or angular rotation 

o f the fluid as shown in Figure 1.3 (Fiebig, 1993).

Heat transfer enhancement is always accompanied by additional pressure or flow 

losses. The price to be paid for beat transfer enhancement is the increased pumping 

power. The question arises about the acceptable price. To answer the question in terms of 

beat transfer area, beat exchanger volume or pumping power, a number o f eriteria have 

been developed by Cowell (1990), Shah (1978), Webb (1981). They allow the 

comparative evaluation of different beat transfer surfaces for different objectives.

13
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They will be used for the evaluation of the different heat transfer surfaces in 

conjunction with the typical heat exchanger design problem.

The enhancement mechanism for longitudinal vortices consists of strong swirling 

around an axis essentially aligned with the main flow direction. This causes a heavy 

exchange of core and wall fluid while the enhancement mechanism for transverse vortices 

requires unsteady flow and implies reserved flow regions.

The following are some facts about vortex generators (Fiebig, 1993):

• WVGs can easily be incorporated into compact heat exchangers. The same 

manufacturing methods as developed for louvered fins and offset strip fins can 

be used.

•  Delta (triangular) forms are slightly more effective than rectangular forms.

• Winglets give higher heat transfer and pressure loss enhancement that wings.

•  Heat transfer and pressure loss enhancement increase with Reynolds number 

(Re > 2000)

• WGs can generate appreciable heat transfer enhancement (on the average

better than 30%), over an area several hundred times the VG area.

• Pressure loss inerease is mainly due to form drag of the WVG.

• Transition to turbulence occurs at smaller Reynolds numbers than in plane

channel flow, turbulence intensity is increased by VG.

• The two most important dimensionless geometric parameters which control 

vortex structure, i.e. heat transfer and pressure drop enhancement, are angle of 

attack and VG primary area.

14
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Gas

Gas

Figure 1.4 a Schematic of Plate Fin Heat Exchanger (Fiebig, 1993)

Figure 1.4 b Compact Heat Exchanger Surface with Fins in the Form of Vortex Generator

. -

Figure 1.4 c Rectangular Winglets Elements (Fiebig, 1993)
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Figure 1.4 a illustrates the construetion of cross flow heat exehanger using vortex 

generators, Figure 1.4 b illustrates one row of the exchanger. Figure 1.4 c shows the 

vortex generator element (reetangular).

Comparison of High Performance 
Surfaces

1.4
1.2

1
« 0.8
< 0.6

0.4
0.2

0

-  Louvered Fin

— * - -Offset Strip Fin
— -D W

-RW P-ISB

0 1000 2000 
Re

3000

Figure 1.5 Comparison of Vortex Surfaces with Louvered and Strip Surfaces

Figure 1.5 (Fiebig, 1993) eompares heat transfer surface requirement for offset-strip 

fin: 3/32-12.22 and louvered fin: 3/16-11.1 configurations documented in Kays and 

London (1984) with the delta wing of Brokmeier (1989) and the ISB configuration for 

500 < Re < 2000 (Brokmeier, 1993). The offset-strip fin is considered the standard of 

comparison (A^), with index (°) for the same mass flow, heat duty, pumping power, 

hydraulic diameter and temperature.

The offset-strip fin is about 25% better than the louvered fin. ft should be noted the 

experimental data for the offset-strip and louvered fin are compared with numerieal data

16
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for the DW-VG of Broekmeier (1989) and ISB-WVG of Guntermann (1992). It might be 

coneluded that WVGs are highly interesting for compact heat exchangers. The ISB 

eonfiguration needs about 50% less heat transfer surfaee than the offset-strip fin array and 

about 25% less than the DW-VG of Broekmeier (1993). Compared to the offset-strip fin 

and louvered fin, the ISB configuration increases its performance advantage at the lower 

Reynolds number.

It should, however, be stated the louvered and offset-strip fin configurations can 

realize much smaller hydraulic diameters than attached WVGs.

Figure 1.6 Eight Periodic WVG Fin Plate Heat Exchanger Elements.
First letter: I-in-line and S-Staggered, Second letter. S-Symmetrie P-Parallel, Third letter:

O-One and B-Both sided (Fiebig, 1993)
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Figure 1.7 Nusselt Number and Friction Factor Enhancement as a Function of Angle of 
Attack p* of the Vortex Generator for ISB, ISO, SSB, and SSO WVG Fin Plate Heat

Exchanger Elements (Fiebig, 1993)

The heat transfer enhancement is higher of the configurations where the WVGs 

attachment alternates between both walls. In-line configurations are also better than 

staggered ones. Symmetric configurations give higher heat transfer but also considerably 

higher pressure drop enhancement than parallel configurations.

The relative highest value of heat transfer enhancement to pressure loss increase 

occurs at the lowest angle of attack of P*= 15".

From Figure 1.7, it is now clear that the ISB configuration is the best one that can be 

used in the core of the heat exchanger because it gives high heat transfer rates. However 

at the same time it causes high pressure drop due to high friction.

18
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CHAPTER 2

REVIEW OF CURRENT METHODOLOGIES FOR DESIGN PLATE FIN HEAT

EXCHANGER

2.1 Basic Concepts of Heat Exchangers

The gas side heat transfer often limits the thermal performance. The basic concepts of 

compact heat exchangers are to use high performance surfaces so compact heat 

exehangers are characterized by high heat duties per unit volume and high heat transfer 

coefficients.

2.1.1 Direct Test Data

Direct test data for each compact heat exehanger surface is the relation between 

Colburn factor ( j )  and mean friction factor ( / )  obtained by Kays and London (1984), 

their 24-year project sponsored by the Office of Naval Research, these are experimental 

data and cover 132 compact heat transfer surfaces including the plate fin surfaces and 

tube fin surfaces. While this book is still very widely used worldwide, the most recent 

design data are from 1967. Because manufacturing technology has progressed 

significantly since the 1970s, many new and sophisticated forms of heat transfer surfaces 

have been in use in CHE (Hesselgreaves, 2001). The data of plate fin surfaces are 

mentioned in Appendix A.
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2.1.2 Surface Selection

Selection o f surface is an important step in the design of a compact heat exchanger 

because a variety o f surfaces are being used in compact heat exehanger applications. 

There is no such thing as a surfaee that is hest for all applications. The particular 

application strongly influences the selection of the surfaee to he used.

The selection criteria for these surfaces are dependent upon the qualitative and 

quantitative considerations. The qualitative considerations include the designer’s 

experience and judgment, availability of surfaces, manufacturability, maintenance 

requirements, reliability, safety, cost and the quantitative considerations include 

performance comparison of surfaces based on surfaces merits.

The following basic categories were identified by Shah (1978):

• Direct comparison of Colburn number j  and friction factor/ values

• Comparison o f heat transfer as a function of fluid pumping power

• Miscellaneous comparison methods

• Performance comparison with a reference surface

In Shah’s research, over 30 different methods have been suggested in the heat transfer 

literature for performance comparisons. In all of the comparison methods reviewed, the 

surface on only one side of the exehanger is considered. Thus in many cases, the hest 

performing surface may not be an optimum heat exchanger surface for a given 

application. Hence, there is no need to fine tune the selection of a surface individually, 

and as a result, the selection criteria should be as simple and direct as possible while 

being meaningful.
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A general method for eomparison o f eompaet heat transfer surfaees has been reeently 

proposed by Cowell (1990). The method provides compact statements of the relative 

merits of different heat transfer surfaces by comparing relative pumping powers and 

relative hydraulic diameters. Also, the relation between several faetors of the performanee 

parameters were elarified.

Nunez (1999) developed a thermo hydraulic model that represents the relationship 

between pressure drop, heat transfer eoefficient and exchanger volume. A simple 

approach to surface selection was based on the concept of volume performance index 

(VPI): the higher the VPI, the lower the core volume required. Surfaces were compared 

on the basis o f VPI and envelopes for best performance. Simultaneous surfaee selection 

and design for full pressure drop utilization eould be aehieved by using envelopes for best 

surface performance together with the thermo-hydraulic model.

Taylor (1987) and Shah (1988) used the traditional approaeh to design the plate fin 

heat exchangers, and treated the pressure drop as a constraint to see the aceeptable 

pressure drop values for the specified heat duty.

Hesselgreaves (2001) has attempted to provide a treatment that goes beyond 

dimensionless design data information. In addition to the basic design theory, he includes 

descriptions of industrial CHEs, specification of a CHE as a part of a system using 

thermodynamic analysis and broader design eonsiderations for surface size, shape and 

weight. Heat transfer and flow friction single phase design eorrelations are given for the 

most commonly used modem heat transfer surfaces in CHEs, with the emphasis on those 

surfaces that are likely to be used in the process industries, and some o f the operational
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considerations including installation, commissioning, operation, and maintenance, 

including fouling and corrosion.

2.2 Design Procedures

Shah and Sekulic (2003) presented the procedures of rating and sizing problems using 

the mean temperature difference of the fluid on each side of the heat exchanger in order to 

calculate the fluid properties assuming the uniformity o f thermo-physical properties.

Sekulic (2005) offered a very clear methodology for calculating core dimensions of a 

compact heat exchanger. Considering the analytical complexity of implemented 

calculations, the most intricate basic flow arrangement situation in a single pass 

configuration would be a crossflow in which fluids do not mix orthogonal to the 

respective flow directions. Calculations are executed using an explicit step-by-step 

routine based on set o f known input data is provided in the problem formulation. The 

procedure follows a somewhat modified thermal design (sizing) procedure derived from 

the routine advocated in Shah and Sekulic (2003). The main purpose of the calculation 

sequence is to illustrate the iteration procedures used in commercial software.

The target of this study is to design (to size) a heat exchanger, specifically to 

determine principal heat exchanger core dimensions (width, length, and height of the 

specified heat-transfer surfaces).

2.3 Entropy Generation

Tagliafico (1996) provided a comparative study of entropy generation of many 

surfaces scaled by that of a reference configuration (a parallel-plate channel), considering 

the irreversibility analyses an important factor in determining the operating costs of the 

heat exchanger.
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A possibility to combine hydraulic and heat transfer characteristics is offered by the 

thermodynamic (second law) analysis developed by Bejan (1987). From this point of 

view, the entropy generation (irreversibility) in the heat exchanger can be assumed to 

measure the quality of the performance (London, 1982, Sekulic, 1990, Schenone, 1991).

2.4 Vortex Generators

Fiebig (1995) provided a comprehensive study on the use of vortex generators in 

either tube fin or plate fin compact heat exchangers and showed the recent results from 

the "Vortices & Heat Transfer" group. He compared the performance of transverse vortex 

generators and longitudinal vortex generators, described the mechanism of heat transfer 

enhancement due to using vortex generators and compared the performance of high 

performance surfaces (louvered, strip) used in plate type compact heat exchangers with 

two types of vortex generators surfaces. The first vortex characteristics were obtained 

from Broekmeier (1989) and the second is the ISB configuration (Guntermann, 1992).

Jacobi and Shah (1995) discussed the recent progress of vortex-induced heat transfer 

enhancement, the theoretical basis for passive and active implementation. They also 

identified the research needs in the area of vortex-induced heat exchanger enhancement. 

Also they provided a full coverage for the application of vortex generators in compact 

heat exchangers.

Jacobi and Shah (1998) studied the behavior of air flow in complex heat exchangers 

passages with a focus of boundary layer development, turbulence, span wise and stream 

wise, and wake management. Each of these flow features is discussed for the plain, wavy, 

and interrupted passages found in contemporary heat exchanger design.
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The results obtained may be used to explain the role o f these mechanisms in heat 

transfer enhancement strategies.

Bergeles (1988) estimated that more than 500 papers, reports, and patents were 

published on heat transfer augmentation.

2.5 Minimum Weight of Compact Heat Exchangers

Hesselgreaves (1993) presented a dimensionless analytical method of calculating the 

size and weight parameters of a simplified plate fin heat exchanger core for a given 

thermal duty. The thickness o f fin material and separating plates which constitute the bulk 

of the core weight, have lower limits set by pressure containment capability, but it does 

not necessarily follow that the minimum fin thickness gives the minimum core weight. It 

is shown that there is a unique fin thickness at which the core weight is a minimum. This 

optimum fin thickness is shown to be a function o f several geometric, material and 

performance parameters.

2.6 Compact Heat Exchanger Theories

Many theories were developed to describe the design and performance of compact 

heat exchangers starting with Dahlgren and Jenssen (1970), Bergeles and Taborek (1974), 

Bergeles (1974), Bejan (1978), Sparrow and Liu (1979), Raju and Bansal (1981), Shah 

and Bergeles (1983), London (1983), Kays and London (1984), Song (1990), Sekulic 

(1990), Campell and Rohsenow (1992), Smith (1994). More recent texts such as those of 

Webb, Hewitt, Bott and Shires (1994), Andrews and Fletcher (1996), Kakac and Liu 

(1997) have also been referred to extensively in the CHE research.
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Much recent knowledge has been accumulated in two proceedings of conferences 

edited by Shah (1997, 1999), specifically called to promote compact process exehangers.

2.7 Ranking of Compact Heat Exchangers

Hall (2003) discussed air-eooled compact heat exehanger design using published data 

(Kays and London, 1984) contains measured heat transfer and pressure drop data on a 

variety of circular and rectangular passages. These includes circular tubes, straight fins, 

louvered fins, strip or lanced offset fins, wavy fins and pin fins.

Soland, Mack, and Rohsenow, (1978), used comparison method converts these j  and/  

magnitudes to the base plate area, ; hence, the effect of the fins is included in the new

(y„) and ( /„ )  based on Further, the new Reynolds number will be based on the open

flow area, A^, as though the fins were not present. This requires that the metal

conductivity of the fins be specified in incorporating the effect of the fins into .
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CHAPTER 3

PLATE FIN COMPACT HEAT EXCHANGERS SIZING AND COMPARISON

3.1 Sizing Procedures Overview

This chapter offers step-by-step methodology for calculating core dimensions of a 

compact heat exchanger. Considering the analytical complexity of implemented 

calculations, the most intricate basic flow arrangement situation in a single-pass 

configuration would be a crossflow situation in which fluids do not mix orthogonally. The 

set of known input data is provided in the problem formulation. The procedure follows a 

somewhat modified sizing procedure derived from the routine advocated in Shah and 

Sekulic (2003).

The main purpose of the calculation sequence is to illustrate the procedure, usually 

hidden behind a user-friendly, but content-non-revealing, platform of any existing 

commercial software package. Such a black-box approach is executed by a computer. 

This calculation is not intended to focus on a particular design; rather it illustrates the 

detailed procedure of sizing.

3.2 Problem Data

A task at hand is to design (to size) a heat exchanger. Specifically this is to determine 

principal heat exchanger core dimensions (width, length, and height of the specified heat- 

transfer surfaces).
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The heat exchanger has to cool a hot-air gas stream, available at an elevated 

temperature, with a eold-air stream, available at a significantly lower temperature. 

Terminal states of the both fluid streams are known.

Table 3.1 Problem Formulation (Sekulie, 2006)

Fluid ^ Cold fluid Hot fluid

Property 4̂ Symbol Unit Value Symbol Unit Value

Inlet temperature Tc, K 500 K 700

Outlet
temperature Tc,o K 620 K

Inlet pressure Pc, kPa 500 n . kPa 100

Mass flow ïhc kg/s 20 kg/s 20

Pressure drop A n kPa 5 A n kPa 4.2

Fluid type Air - Air - -

3.3 Assumptions for Heat Transfer Analysis

Determination of the core dimensions assumes an a priori deeision regarding selection 

of heat transfer surface types on both sides of a heat exchanger. This selection is, as a 

rule, within the realm of an engineer's decisions for any sizing problem; a decision 

regarding the surface seleetion will be made at a point when geometrie and heat transfer 

and/or hydraulic characteristics of the core need to be assessed for the first caleulation 

iteration. That decision may always be modified and calculation repeated. The types of 

heat transfer surfaces will be selected, and data involving geometric, heat transfer, and 

hydraulic properties will be obtained from a database given in Kays and London (1984).
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The assumptions on which the calculation procedure is based are listed and discussed 

in detail in Shah and Sekulic (2003) as follows:

1. The heat exchanger operates under steady state conditions [i.e., constant flow 

rates and fluid temperatures (at the inlet and within the exchanger) 

independent of time].

2. Heat losses to or from the surroundings are negligible (i.e. the heat exchanger 

outside walls are adiabatic).

3. There are no thermal energy sources or sinks in the exchanger walls or fluids, 

such as electric heating, chemical reactions, nuclear processes.

4. The temperature of each fluid is uniform over every cross section in counter 

flow and parallel flow exchangers (i.e., perfect transverse mixing and no 

temperature gradient normal to the flow direction). Each fluid is considered 

mixed or unmixed from the temperature distribution viewpoint at every cross 

section in single-pass cross flow exchangers, depending on the specifications. 

For a multi pass exchanger the foregoing statements apply to each pass 

depending on the basic flow arrangement o f the passes; the fluid is considered 

mixed or unmixed between passes as specified.

5. Wall thermal resistance is distributed uniformly in the entire exchanger.

6. Longitudinal heat conduction in the fluids and in the wall is negligible.

7. The individual and overall heat transfer coefficients are constant (independent 

o f temperature, time, and position) throughout the exchanger including the 

case of phase changing fluids in assumption 6.
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8. The specific heat of each fluid is constant throughout the exchanger, so that 

the heat capacity rate on each side is treated as constant. The other fluid 

properties are not involved directly in the energy balance and rate equations, 

hut are involved implicitly in NTU  and are treated as constant.

9. For an extended surface exchanger, the overall extended surface efficiency t/ q

is considered uniform and constant.

10. The heat transfer surface area A is distributed uniformly on each fluid side in 

a single pass or multi pass exchanger. In a multi pass unit, the heat transfer 

surface area is distributed uniformly in each pass, although different passes 

can have different surface areas.

11. The velocity and temperature at the entrance of the heat exchanger on each 

fluid side are uniform over the flow cross section. There is no gross flow 

maldistribution at the inlet.

12. The fluid flow rate is uniformly distributed through the exchanger on each 

fluid side in each pass so no maldistribution occurs in the exchanger core. 

Also, no flow stratification, flow bypassing, or flow leakages occur in any 

stream. The flow condition is characterized by the bulk (or mean) velocity at 

any cross section.
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Assumptions 1 through 5 are necessary in a theoretical analysis of steady state heat 

exchangers. Assumption 6 essentially restricts the analysis to single-phase flow on both 

sides or one side with a dominating thermal resistance. For two-phase flows on both 

sides, many of the foregoing assumptions are not valid since mass transfer in phase 

ehange results in variable properties and variable flow rates of each phase, and the heat 

transfer eoeffieients may also vary signifieantly.

3.4 Caleulation Steps

Design procedure for a sizing problem features two distinct segments o f caleulation. 

The first one delivers the magnitude of the thermal size of the eore, expressed as a 

product o f the overall heat-transfer eoefficient and the heat-transfer area UA. 

Determination of this quantity should be based on an application of thermal energy 

balanee [i.e., the heat-transfer rate delivered by one fluid is received by the other; no 

losses (gains) to (from) the surroundings are present]. Formulation of this balance 

involves a fundamental analysis of heat-transfer phenomena within the heat exchanger 

eore, which can be summarized through a concept of heat exchangers effectiveness (Kays 

and London, 1984, Shah and Sekulic, 2003). The resulting design procedure is the 

"effectiveness number of heat-transfer units" method. The effectiveness is expressed in 

terms o f known inlet and outlet temperatures, and mass flow rates (for known fluids). The 

unknown temperatures (for some problem formulations) must be determined, and any 

assumed thermo-physical properties should be re-calculated multiple times (i.e., an 

iterative procedure is inherent). This feature of the calculation is only one aspect of the 

design methodology that ultimately leads to an iterative calculation sequence.
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The main reason for an iterative procedure is the constraint imposed on pressure 

drops. The magnitudes of pressure drops must be obtained from the hydraulic part o f the 

design procedure. The hydraulic design o f the part o f the procedure can not be decoupled 

from the thermal part, which leads to the calculation of pressure drops after thermal 

calculations are completed, and hence is followed by a comparison of calculated pressure 

drops with the imposed limits. As a rule, these limits are not necessarily satisfied after the 

first iteration.

In Sekulic (2006) routine calculation presentation, determination of the thermal size 

of the heat exchanger was termed the "targeting the design goal". Each step was 

separately marked for the purpose of cross-referencing. The second segment of the 

calculation was devoted to the determination of actual overall dimensions o f the core, in a 

manner to satisfy the required overall heat transfer area and to achieve the overall heat- 

transfer coefficient to satisfy the required thermal size. This segment was inherently 

iterative because it required a satisfaction of pressure drop constraints. This segment of 

calculation was termed "matching geometric characteristics" (MGC) procedure.

Both procedures were organized as a continuous sequence of calculations. The most 

important comments were given as notes to the respective calculation steps immediately 

after the equation(s) defining the step. A detailed discussion of numerous aspects o f these 

calculations, and the issue involving relaxation of the assumptions, are provided in Shah 

and Sekulic (2003).
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Some numerieal values of the derivative variables presented may differ from the 

ealculated values because o f rounding for use elsewhere within the routinely determined 

data.

T +T
(3.1)

(3.2)

To initiate the iterative procedure for a sizing problem like the one given in this 

formulation, a determination of reference temperatures of both fluids is needed. As a first 

guess, either an arithmetic mean of temperature terminal values or a given temperature 

value (if single) for each fluid may be selected.

(3.3)

^ p , h  -  ^ p , a i r  ( P h , r e f  ) (3.4)

The specific heat o f either of the two fluids is determined at the calculated referenee 

temperatures. Since both fluids are gases in this case, and since both are considered as air,

ideal gas thermodynamie properties data will be assumed.

Q =(m xC^)^ (3.5)

C^=(mxCp)f,  (3.6)

Heat capacity rates of the fluid streams represent the products o f respective mass flow 

rates and corresponding speeific heats, caleulated at the estimated referenee temperature.

(3.7)
'^2
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At this point, it is convenient to determine which of the two fluid streams has a larger 

heat capacity (for a nonbalanced case). The designator 1 denotes the weaker fluid (lower 

heat capacity) and the designator 2, the stronger fluid (larger heat capacity). The heat 

capacity rate ratio is not equal to 1; therefore, the heat exchanger operates with 

nonbalanced fluid streams.

T - T
(3.8)h,i -'i,,-

Heat-exchanger effectiveness represents the dimensionless temperature o f the weaker 

fluid (C| = Cc) (Sekulic, 1990). The current decision on which fluid is weaker was based 

on the rough estimate, namely, a first iteration of referent temperatures. These are not 

necessarily the best assumptions, in particular for the hot fluid in this case. So the outlet 

temperature of the hot fluid must be determined with more precision.

r , . « = r , , ( i - r ^ ) ( T ,_ , - 7 ; , )  (3.9)

The relationship used for determining the outlet temperature of the hot fluid is a 

straightforward consequence of adopted definitions of the heat-exchanger effectiveness 

and heat capacity rate ratio, both expressed as functions of terminal temperatures. 

Therefore having this originally unknown temperature estimated, a new value of the 

reference temperature for the hot fluid can be determined.

= (3.10)

A new value can be obtained of originally unknown outlet temperature o f the hot fluid. 

The criterion for a termination of the iterative procedure may involve either a sufficiently 

small change o f two successive values of this temperature, or a change of the successive 

values for heat-exchanger effectiveness. In this case, these comparisons indicate that
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either no change or a very small change takes place, and the iterative procedure is 

terminated at this point.

For the crossflow unmixed-unmixed arrangement the relationship between 

effectiveness and the number o f units (NTU) (explicit in terms o f effectiveness but not 

explicit in terms o f  NTU) is as follows (Baclic and Heggs, 1985):

^ - N T U ( ] + C* )

£  =

Ê  (-1)" k * ) ' "

C *NT U

Therefore, the exact expression for the heat-exchanger effectiveness of an unmixed- 

unmixed crossflow arrangement used by Sekulic (2006) is algebraically very complex. 

Graphical representation, as well as tabular data for the crossflow unmixed-unmixed flow 

arrangement can be found in (Kays and London, 1984, Figure 2-16), this graphical 

representation is much easier than using Equation (3.11) and it has been used in this 

study. Figure 2-16 is also attached in Appendix A.

LC4 = A 7I/xC , (3.12)

The product UA, also termed the "thermal size", is a compounded thermal and 

physical size of the unit. This size involves the physical size (area of the heat-transfer 

surface A) and heat-transfer size (U is the overall heat-transfer coefficient). 

Determination of fluids' thermo-physical properties is required:

• Specific heats Cp, , Cp,i

•  V iscosities Mi

•  Thermal conductivities

Prandtl numbers p  p  

Densities ( i n l e t ) ,,p^.
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• Densities ( o u t l e t ) „

• Densities (bulk mean) A.m’Pz.m

The fluid properties are usually determined at arithmetic (or integral) mean values of 

fluid temperatures. In this calculation, the arithmetic mean values will be adopted from 

the second iteration. Certain data (temperatures, pressures) are provided in the problem 

formulation (Table 3.1), and/or devised from the inlet data and known pressure drops. 

Specific heats and viscosities are based on the mean temperatures. Densities are 

calculated assuming the ideal-gas assumption. The mean density is based on the 

following relationship.

1-1
1 1

 1-----
Pi  Po

(3.13)

NTU, = NTU c = 2NTU  (3.14)

NTU, = NTU, = C N T U ,  (3.15)

Distribution of the total dimensions thermal size between two fluid sides is 

determined in this step. Since both fluids are gases, both thermal resistances are to be 

assumed as equal in the first iteration. That leads to the given distribution of  NTUi  and 

NTU2 versus NTU  (Shah and Sekulic, 2003).

Selection of heat surface type may be one of more than sixty surfaces (Kays and 

London, 1984). The following data are the specifications of each surface:

• Plate spacing b

• Number o f fins » .

• Hydraulic diameter D,

• Fin thickness ô

• Uninterrupted flow length
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• Heat-transfer area per volume between passes fi

Fin area per total area A j  IA

•  Plate thickness a

The sizes and shapes o f heat-transfer surfaces are correlated with the heat-transfer and 

hydraulic characteristics. However, these characteristics in turn are needed to determine 

the sizes and shapes of the heat-transfer surfaces. This interrelation renders the 

calculation procedure iterative. A selection of the surface geometry (i.e., selection of both 

fluid flow area geometries) should be done first. Subsequently, calculation of heat- 

transfer and fluid flow characteristics may be conducted to establish whether the surfaces 

selection fits the thermal size distribution and the overall thermal size (but in a manner to 

satisfy the pressure drop constraints). A variety of different surfaces may be chosen for 

both fluid sides (Kays and London, 1984). In this research, characteristics o f sixty four 

surfaces were studied in order to calculate the required size o f each surface and obtain a 

comprehensive comparison.

For each surface, the ratio of j  and /  over the wide range of Reynolds numbers (the 

value of j  and /  depend mainly on Reynolds number) is approximately constant (the 

average of (j/f) for 500 < Re > 4000). This range of Reynolds number was selected 

because most of compact heat exchangers work in this range.

y  = const (3.16)
)  c.h

Although selection of surface types leads to the known heat-transfer geometries on 

both fluid sides, the calculation of y (Re) and /(Re) parameters (i.e., heat-transfer and 

friction factors in dimensionless form) cannot be performed straightforwardly at this 

point. This is because the actual Reynolds numbers for fluid flows are still unknown.
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Since this ratio is nearly eonstant in a wide range of Reynolds numbers, a unique value 

can be suggested as indicated above. In the first iteration (whieh will follow) only the 

value o f j / f  (rather than separate j  and /  values) would be needed for calculation of both 

fluid core mass veloeities. Subsequently, these core mass velocities (Eq.3.17) will be used 

to determine the first iteration o f Reynolds numbers, leading to the corresponding values 

o f j  and f .  Subsequently, the second iteration for j / f  can be caleulated from known j  and /  

values. In this case of the surfaee 19.86 (Kays and London, 1984),/,/' range is (0.25- 

0.37) for Re range (500-4000), so the average value would lead to ///-0 .3 0 .

^ j }
v / y V J NTUVr 2/3

J
v / y y t ' in  y NTUVr 2/3

1/2

1/2

(3.17)

(3.18)

It is generally assumed that the total surface temperature effectiveness for a compact 

heat-transfer surface (for a good design) must be within the range of 0.7 to 0.9. The high 

end of this range was assumed for both sides, (i.e., =Voh =0-9, the same geometry

was suggested for both surfaces).

In this step, the first estimates of core mass velocities are based on the estimates of j / f  

and 7  ̂ parameters as discussed. This estimate, as given above, is based on a simplified

expression for G that takes into aecount the assumptions as follows (Sekulic, 2006):

•  Only friction contributes to the pressure drop

• Fouling resistances are neglected

• Thermal resistance of the heat-transfer wall is neglected
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•  Thermal resistances caused by formations o f convective boundary layers on both 

fluid sides are equal.

G D
Re, -  '  (3.19)

Me

R e , - ^*^*'* (3.20)
Mh

The uncertainties involved with an experimental determination o f the Reynolds 

values, and subsequently j  a n d /  are ±2, ±14, and ±3 percent, respectively. So the first 

estimates for Reynolds numbers must be refined later (in subsequent iterations) up to the 

margin of ±2 percent. One iteration would likely suffice.

This explicit calculation of the refined values for j  and /  is conducted by using y(Re) 

a n d /R e )  correlations for the selected geometry based on both fluid sides have the same 

geometry. The values are calculated for Reynolds numbers using (Eq.3.19, 3.20). The 

values o f j  and /  that correspond to the Reynolds number can be easily calculated using 

the experimentally obtained data listed in Kays and London (1984), Appendix A.

Three iterations (calculation of Reynolds number based on initial guess of j  a n d /  then 

calculated j  and /  ) are enough to result in fast convergence of the correct Reynolds 

number.

= , NTU,C-
1 H-------------

The temperature of the heat-transfer surface wall between the fluids is calculated from 

a balance equation that relates heat-transfer rates delivered from one fluid to those 

received by the other. These heat-transfer rates are expressed in terms of fluid-to-wall and
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wall-to-fluid temperature differences and the respective thermal resistances on both fluid 

sides. The wall temperature is needed to perform a correction of thermo-physical 

properties. This correction is due to temperature gradients between the fluids and the 

heat-transfer surface wall across the respective boundary layers on both fluid sides.

J  c,corr J c

« = 0 .3 -

T

log,
T

T

1/4

(3.22)

(3.23)

The cold air is exposed to heating, and that its flow regime is turbulent. For details of 

the alternate exponent determination see Shah and Sekulic (2003), table 7.13, p. 531. The 

conditions to be satisfied are \<T„^ref/Tc,ref< 5; Pr < 0.9.

J  h.i J t -  J  h (3.24)

The hot fluid experiences cooling conditions. The flow regime is in the laminar 

region. Therefore, the exponent n = 0 (Shah and Sekulic, 2003, table 7.12, p.531).

f c ,c o r r  f c T
, w = -0.1 (3.25)

Cold fluid is heated, and the flow regime is turbulent. The suggested calculation of the 

exponent in the correction term is valid for the range of temperature ratios as follows:

1 < _ ^ < 5
Tc ,ref

In this case, the ratio is 1.07; therefore, the calculation of the exponent m is performed 

as indicated. Fluid at the cold side is air; therefore, it is treated as an ideal gas.
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f  h ̂ corr f  h TV y
(3.26)

For a fluid cooling case and laminar flow, the exponent is equal to 0.81. The 

conditions to be satisfied are; 0.5 = 0.94 , 1; 0.6 < Pr = 0.699 < 0.9.

Because the temperature difference in this study is the same as Sekulic (2006), all 

correction exponents (m, n) are the same.

K  = j , „ ,  (3.27)

The heat-transfer coefficient for the cold fluid is determined from the definition of the 

Colburn factor.

K  = (3.28)

The heat-transfer coefficient for the hot fluid is determined from definition o f the 

Colburn factor.

tanh(«7/),
n u  = (3.29)

= ^ j l h j k ô  (3.30)

4 = ^ - 5  (3.31)

The thermal conductivity o f the fin is assumed to be 200 W/m.K for an alloy at the 

given temperature. The resulting fin efficiency (Eq.3.29) becomes higher than the actual 

value. The actual fin efficiency in a brazed heat exchanger throughout the core may be 

significantly smaller (Zhao et al., 2003).
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^f,h -
tanh(m/)^

ml.

= V2hh/kô

(3.32)

(3.33)

(3.34)

The fin geometry is the same on both fluid sides; therefore, the lengths are the same.

Ar
rio,c = 1 - 0 - ^ / , c)- (135)

A detailed discussion of the meaning of the total extended surface efficiency can be 

found in Shah and Sekulic (2003), p. 289.

(3.36)

The extended surface efficiencies must differ for both fluid sides even if the same 

geometry of the fins is used. This is due to the difference in the heat-transfer coefficients.

U =
1 1

(fioh)c (fioh)h
(3.37)

Because of a high thermal conductivity of wall material, thermal resistance o f the wall 

is neglected in this calculation. Therefore, the overall heat-transfer coefficient is defined 

by heat-transfer conductance due to convection on both fluid sides only. Again, the heat- 

transfer surface areas are the same on both fluid sides because the same fin geometry is 

used.

( m C \N T U

u (138)

The heat-transfer surface areas are the same on both fluid sides (same geometries).
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(3 39)

The free-flow area on the cold fluid side is determined from the definition of the mass 

velocity.

A,h = -p r  (3.40)

The free-flow area on the hot fluid side is determined analogously to the same entity 

on the cold fluid side.

b/3D,

Aec
(3/12)

The frontal area on the cold fluid side is determined from the relation between 

porosity and free-flow area.

(3/W)

The frontal area on the cold fluid side is determined from the relation between 

porosity and free-flow area.

The fluid flow length on the clod fluid side represents the principal core dimension in 

this direction.

(3.45)
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The fluid flow length on the hot fluid side represents the principal core dimension in 

this direction.

T A  fr c
^  stack = (3.46)

The core dimension in the third direction (no flow length) can be calculated by using 

the frontal area of either the cold fluid or the hot fluid. If  the calculations were conducted 

correctly, both values would have to be within the margin of error only as a result of 

rounding o f the numbers. No constraint regarding the aspect ratio (Hesselegreaves, 2001, 

p. 136) of any pair of the core side dimensions is imposed. In case o f imposed constraint 

on the aspect ratio, an additional iterative procedure would be needed. Such a procedure 

would require a reconsideration of the heat-transfer surface geometry on both fluid sides 

(the geometries used on both sides may not be the same).

V P i Jc 2 (P in P in  )c
( l - a ^ + K , )  + f ^ ^  + 2 ^ - 1

,P o  .

- ( l - o ^ - K J - B L
Po

(3.47)
ThPr

Kc,c = fi (Oc, Rec, surface geometry), Ke,c = f  (<7c, Rcc, surface geometry)

The relative pressure drop calculations require determination of both entrance and exit 

pressure loss coefficients Kc, Ke. These coefficients can be determined from Kays and 

London (1984, Figures 5.4, 5.5 p.113-114). The values of pressure drop coefficients 

depend on surface geometry, porosity and Reynolds number (attached in Appendix A). 

Fanning friction factors should be determined by accounting for corrections for the 

reference wall and fluid temperatures. The reference wall temperature may be calculated 

by taking into account thermal resistances on both fluid sides. In Eq.3.21, the wall 

temperature is determined in the first approximation without accounting for this factor 

(thermal resistances on both sides were assumed as equal).
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v P i  y

Gg
2 (P in P in )h

( l _ a 2 + K J  + f ^ ^  + 2 
4iPm

pl

Po
1 ( l- a 2 -K e )-2 i-

Po
(3.48)

Kc,h = fi (oh, Rch, surface geometry), Ke,h = f  (oh, Rch, surface geometry)

From the input data, an allowed pressure drop is 5 kPa on the cold side and 4.2 kPa on 

the hot side (Sekulic, 2006). If  the imposed condition is not satisfied on any side, this 

prompts a need to reiterate the calculation with a new value of the mass velocity (in the 

first iteration, the mass velocity was calculated by using the first approximation based on 

a weak dependence o f j / f  on the Reynolds number).

Constra in t

' y

( l - ( r '+ Æ J  + / : ^ + 2
/"A/7m VP o  .

- ( 1 - 0 - '
P o

(3.49)

G h  = ■

ARConstra in t

i J

V P  o J  P  o

(3.50)

The new iteration loop starts with the determination of the set of new mass velocities. 

These values will be used to calculate the refined values of Reynolds numbers (Eq.3.19, 

3.20).

The new mass velocities G  should be calculated from the exact expression for the 

pressure drop (Eq. 3.49, 3.50), assuming G  values as unknown and the other numerical 

values in these equations are given. The convergence would be very fast.

(3 51)Re„ =
P c

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RC;, - Gĥ H.h (3.52)

Ph
Then repeating the procedures from equation 3.22 to 3.50. The pressure drop 

constraint should be satisfied in order to calculate the final dimensions of the core 

(Appendix B).

3.5 Entropy Generation

The entropy generation (irreversibility) can be used as the quantitative measure o f the

quality of energy transformation in the heat exchangers (Sekulic, 1990). The analysis of 

entropy generation (Tagliafico, 1996) only considers the behavior of one fluid in the heat 

exchanger, the thermal resistance between the other fluid and the exchanger surface is 

neglected. In real compact-surface heat exchangers with gas on the side under study and 

liquid on the other side, this assumption can be closely approached. Other assumptions 

include: The flow is steady in time and hydraulically and thermally fully developed (i.e., 

the pressure gradient along the main direction of flow and the mean wall-to-fluid 

temperature difference AT  are constant along the heat exchanger length L), thermo

physical properties are constant, and fin efficiency effects, entry/ exit pressure losses are 

both ignored.

The geometry is defined by the following parameters:

• heat exchanger plate spacing b

• heat exchanger frontal area A

• total heat exchanger volume V

• minimum free flow to frontal area ration <r

• hydraulic diameter D ̂
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The entropy generation rate per unit exchanger length is;

Q ^T  m (  dp^
I T '

+
PT

CT50)

The first term represents the entropy generation rate due to the heat transfer between 

the wall and the fluid. The second term (in which m is the mass flow rate, p  is the 

density) is due to the irreversibilities caused by fluid friction.

Re =

/  =

J =

m D ^ m D f,

( jp A

d p

2m'

Nu

P l-

Re Pr

PG,

1/3

Nu=- % %
AkATAL AkATaV

CT51)

(3.52)

(3.53)

CT54)

CT55)

where p, Cp and k are the dynamic viscosity, specific heat, and the thermal conductivity 

of the fluid respectively.

Integrating Eq. (3.50) between x = 0 and x = L leads to:

A kTi^A L
1

j  Re Pr 1/ 3
■ +

Ti p^D
/ R e ' (3.56)

The j  and /  values as a function of Re and Pr depend on the particular configuration 

being studied; in this study they have been deduced from the literature data reported by 

Kays and London (1984).
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Sp,o =
r  6 '^ .»  ^ 1

A R e « P r " '  '
A  Re: (3.57)

The subscript (o) refers to the reference condition, / ,  and y, are obtained from direct

test data of the reference surface (Kays and London, 1984).

In order to quantify the thermodynamic impact of the compact geometry with respect 

to the reference geometry, the entropy generation number N  is introduced;

#  = (3 jg )

The dimensionless variable B:

B =
p^kTi

(3.59)

1

y-RePr'
+ 16crJ^5fR e’

1 (3.60)

/  Re, Pr'

where S  = b /

The constraints considered (Tagliafico, 1996) involve keeping the heat exchanger 

plate spacing b and volume V fixed and assuming the same mass flow rate in and heat 

transfer Q for both compact and references configurations. The Reynolds numbers Re and 

Reo are linked through the relationship;

Re=Reo/2crA (3.61)

Thus for any value Reo, Re is automatically fixed by the constraints.

If the dimensions (V  and b), thermo-physical properties { p ,k ,p ) ,  and inlet 

temperature Ti, are specified, the parameter B depends only on heat transfer duty Q. In 

conclusion, under the given constrains, N  emerges as a function o f the flow rate (R eo ) ,
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heat transfer duty {B), and working fluid (Pr). In the ranges o f variation of the parameters 

Reo, B, and Pr, the entropy generation number A  is a measure of thermodynamic quality 

o f the compact surface geometry. Operating conditions for which N  values are minimized 

are thermodynamically advantageous.

Calculation o f N  values have been performed considering air as working fluid (Pr = 

0.71), and varying the operational parameters B  within an appropriate range, and Reo 

within the limits for which the performance data are available. It is possible to determine 

the thermodynamically optimum operating regime of a given compact heat transfer 

surface, where the optimum corresponds to the working condition for which N  is 

minimum.

For the highest Reo values , N  tends to the pure fluid-flow irreversibility Reo limit. In 

this case friction effects are dominant and the improvement in heat transfer performance 

is of little value. As Reo is reduced, N  values fall into a wide range, depending on 

operating parameters Reo and B  because of the components between flow and heat 

transfer irreversibilities. The higher the heat transfer duty Q (or the lower B), the greater 

the importance of entropy production by thermal effects.

As Rco is reduced, N  approaches the pure heat transfer irreversibility limit. Very low 

values of N  can be achieved when the heat transfer performance of the surface under 

consideration is markedly higher than that of the reference system.

The computed N  values for each particular geometry can be used to directly compare 

performance under the constraint that mass flow rate (Reo), heat transfer duty (B), and 

overall dimensions (W, L, and b) are fixed.
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N  trends reflect the general considerations previously discussed. Furthermore, 

decreasing the hydraulic diameter D  ̂ is advantageous when Reo and B  are low (region 

dominated by wall-fluid AT  irreversibility), and is disadvantageous when RCo and B 

values are high (region dominated by fluid-friction irreversibility).

Comparisons among surfaces with different plate spacing b are also possible. A 

number o f criteria can be considered for comparison purposes among surfaces with 

different 6; for instance, the entropy generation rates, (Eq.3.56), of different surface 

configurations can be directly compared assuming the same mass flow rate per unit 

frontal area and the same heat transfer duty per unit volume (Q/V=  const.).

A different constraint involves keeping the mass flow rate m and the heat transfer 

duty Q, (as well as fV and L dimensions), fixed. Under these conditions, the comparison 

can be developed on the basis of the entropy generation number N.

Equation 3.59 shows that B parameter includes the heat transfer duty Q and a 

geometric factor, V̂ /b'  ̂ = (W .l/b^ . Keeping fV and L  fixed, the comparison between 

surfaces with a different b and the same Q implies considering different B  values 

according to the relationship.

B = B* (3.62)

Where {B*, b*) and (B, b) refer to the two surfaces to be compared.

Tagliafico (1996) showed A-curves for six different types of plate-fin surfaces. The 

selected surfaces were chosen among those reported in Kays and London (1984). The 

values B*  = 10"" and B* = 10'" are based on b* = 6.35 mm, (surface l/4 (s)- ll.l) . The 

corresponding values o f B (at fixed heat transfer duty Q) for the other surfaces can be
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calculated from Eq. (3.62). The statement of the thermodynamic performance o f surfaces 

is related to N  values. For B*= 10 '" and Reo less than 10000, the best performance was 

obtained by strip-fm and wavy-fm surfaces with A  values in the range o f 0.02-0.1. Even 

with Reo higher than 10000, the use of strip-fm and wavy-fin surfaces remains 

advantageous.

As the heat transfer duty Q is increased, {B*= 10'"), the thermodynamic performance 

o f the surfaces improves, especially for Re higher than 10000.

In this research, the methodology of thermodynamic analysis for comparing the 

performance of plate-fin heat transfer surfaces used by Tagliafico (1996) was applied to 

more than sixty different surfaces in order to get comprehensive results for all surfaces 

that may be used as a core for compact heat exchangers. The comparison process has 

been performed under the constraints that heat transfer duty, mass flow rate, and heat 

exchanger length are fixed and the relative merit of each surface geometry has been 

linked to its irreversibility level.

It is apparent that the same heat transfer surface may do its job very close to its 

thermodynamic optimum for certain values of heat transfer and mass flow rates, but 

perform very far from the optimum when the operational parameters are changed. 

Therefore, the choice of a suitable surface from the thermodynamic standpoint should be 

addressed by heat transfer and mass flow rate considerations under the given design 

constraint.

Finally, the thermodynamic performance of the all studied surfaces turned out to be 

strongly related to the operating conditions (both heat transfer duty and mass flow rate)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the results obtained from this research are completely matched with the paper 

presented by Tagliafico (1996).

3.6 Combination of Different Surfaces

Using different surfaces on both sides of the compact heat exchangers will have 

many effects on the performance and cost of the plate fin compact heat exchangers, These 

effects are as follows:

• Decreasing the total volume required by more than 50%

• Significant change in the total area required on both sides (this can be used to

decrease the area o f the expensive surface and increase the area of the cheap

surface)

• Increasing the pressure drop by the ratio o f 1 to 20%.

• Decreasing the stack length (no flow length)

According to these effects, the use of different surfaces is highly recommended as a 

method of improving the performance of plate fin compact heat exchangers.
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3.7 Minimum W eight of CHE ’ s

Most of the compact heat exchangers used in aviation and aerospace involve the use 

o f some plate fin surfaces, which may be straight, corrugated, strip and louvered 

depending on the available space and other requirements. The use of stainless steel or 

other low conductivity material o f construction carries the penalty o f low fin efficiency, 

which leads to excessive weight if  the fin thickness is not correctly chosen.

In aerospace applications, weight saving is of paramount importance. The thickness 

o f the fin and the separating plates material, which constitute the bulk o f core weight, has 

a lower limit set by pressure containment capability, but it does not necessarily follow 

that the minimum fin thickness gives the minimum core weight.

The formula of weight calculation on one side is reported in Hesselgreaves (2001) as; 

Ws= /7 „E (1 -o-) (3.63)

Where is the material density, V is the total volume of the exchanger, and a  is the

porosity. Equation 3.63 can be multiplied by 2 in order to obtain the whole weight o f the 

heat exchanger based on the both sides have the same geometry.

3.8 Pumping Power Calculation

Pumping power can be easily calculated using Eq.3.64 
p  _  mx AR

P
(3.64)

Where m is mass flow rate and p  is density of the fluid.
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CHAPTER 4

DATA AND RESULTS ANA VLSIS 

The goal of this work is to develop a comprehensive comparison of high performance 

surfaces, giving a full description of previous comparison methods and connecting the 

results obtained from this study to the selection of the best surface that can be used in air 

cooled condensers.

4 .1 Sizing Data Analysis and Comparison

The sizing results obtained from this study are based on the analysis suggested by Sekulic 

(2006). These results show the relative core dimensions of plain, louvered, strip, wavy, pin, 

perforated and vortex generator geometries. Pressure drop satisfaction on both sides is a 

very important issue, the values of pressure drop constraints are 5 kPa for the cold side and

4.2 kPa for the hot side (Table 3.1). The geometry may give small volume but fails to satisfy 

the pressure drop on any side (the pressure drop may be higher by 3%). In this case, the 

geometry will be excluded completely from the selection. The minimum volume of plate fin 

compact heat exchanger can be obtained by using vortex generator geometry, this geometry 

proves that it is the best geometry that can be used as a core despite the fact that it requires 

very high pumping power. The sizing results obtained from this study are shown in Tables

4.1 to 4.10.
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Table 4.1 Frontal and Free Flow Area for Plain Surfaces

G e o m e tr y U , W / m ' . K Ac, m ' Ah, m ' Ajrc, m  ' Acc, m ' Afrh, m  ' Ach, m '

2.0 72.29 521.579 521.579 0.932 0.381 1.693 0.691
3.01 69.13 542.2 5 4 2 .2 1.005 0.397 1.933 0.764
3.97 56.003 673.269 673.269 1.125 0.428 2.15 0.817
5.3 89.443 421.553 421.553 0.909 0.369 L 8 3 8 0.746
6.2 70.765 5 3 2 8 2 4 5 3 2 8 2 4 1.067 0.414 1.994 0.774

9.03 50.745 743.026 743.026 1.13 0.479 2.09 0 3 8 6

11.11 84.684 445.264 445.264 1 .2 0 8 0.426 2 3 3 9 0.825
11.11a 70.224 5 3 6 .9 2 8 5 3 & 9 2 8 1.12 0.433 2.148 0.851
14.77 8 1 3 2 452.53 452.53 1.232 0.44 2 4 8 6 0.895
15.08 71.382 528.215 528.215 1.168 0.445 2 3 2 3 0 3 8 5

1 9 .8 6 8 7 .6 5 2 430.166 430.166 1.272 0.417 2.662 0.872
10.27T 70.564 5 3 4 3 3 6 5 3 4 3 3 6 1.041 0.414 2.12 0.844
11.94T 66.315 568.315 568.315 1.254 0.44 2.43 0 3 5 3

12.00T 66.764 564.754 564.754 1.313 0.461 2 3 3 5 0 3 9

16.96T 59.783 630.702 630.702 1.359 0.446 2.787 0.914
25.79T 8 7 .3 9 9 431.44 431.44 1.364 0 3 9 8 3.254 0.947
30.33T 8 ^ 8 5 419.642 419.642 1.253 0.416 3.018 1.002
46.45T 116.688 323.126 323.126 1.633 0.402 4.348 1.07

In Table 4.1, it is clear that the best five surfaces based on high conductance U and low heat 

transfer area, which also satisfy pressure drop and belong to the plain fin family are;

• Surface 46.45T

• Surface 30.33T

• Surface 19.86

• Surface 25.79T

• Surface 11.11

The surface 5.3 is excluded from this ranking because it failed to satisfy the pressure drop 

on one side.
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Table 4.2 Volume and Dimensions of Plain Fin Surfaces

Geometry r , m ' Lc, m Lh, m L stack, m o
Pressure

Drop

2.0 4.617 4.953 2.729 0.342 0.408 Failed on 
hot side

3.01 3.717 3398 1.922 0323 0.395 Satisfied
3.97 3.799 3.375 1.768 0.636 038 Satisfied
5.3 1.596 1.756 0368 1.047 0.406 Satisfied
6.2 1.902 1.782 0.954 1.119 0388 Satisfied
9.03 2.034 1.801 0.973 1.161 0.424 Satisfied
11.11 0.973 0.805 0.415 2.908 0.353 Satisfied
11.11(a) 1.221 1.09 0.568 1.971 0.387 Satisfied
14.77 0.814 0.66 0.327 3.764 0.36 Satisfied

15.08 0.925 0.792 0.399 2.929 0.381 Failed on 
cold side

1936 0.615 0.483 0.231 5.508 0328 Satisfied
10.27T 1.287 1.236 0.607 1.714 0398 Satisfied
11.94T 1.161 0.926 0.478 2.621 0.351 Satisfied
12.00T 1.153 0.878 0.455 2383 0.351 Satisfied
16.96T 0.827 0.609 0.297 4.574 0328 Satisfied
25.79T 0.426 0.312 0.131 10.407 0.291 Satisfied
30.33T 0.387 0.308 0.128 9.795 0.332 Satisfied
46.45T 0.264 0.162 0.061 26363 0.246 Satisfied

Table 4.2 shows the dimensions and the volume required by each plain surface that can 

transfer the same heat duty. The best five surfaces that belong to the plain fin family based 

on high compactness (large area in small volume) are;

• Surface 46.45T

• Surface 30.33T

• Surface 25.79T

• Surface 16.96T

• Surface 19.86
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Table 4.3 Frontal and Free Flow Area for Louvered Surfaces

Geometry U, W/ m' . K Ac, m ' Ah, m ' Afrc, m ' Acc, m ' Afrh, m ' Ach, m '

3/8-6.06 124.446 302.982 302.982 1.56 0.555 2.917 1.038
3/8(a)-6.06 135.343 278389 278.589 1.715 0.61 3.234 1.151

1/2-6.06 125.01 301.613 301.613 1.519 0.54 2839 1.011
l/2(a)-6.06 131.934 285.788 285.788 1.637 0.582 3.098 1.103

3Z8-8.7 132.741 284.049 284.049 1.52 0.531 2.87 1.002
3/8(a)-8.7 139.787 269.732 269.732 1.61 0.563 3.008 1.05
3/16-11.1 159.15 236.918 236.918 1.493 0.527 2928 1.033

1/4-11.1 157.858 238.858 238.858 1.447 0.511 2.797 0.987
1/4(b)-11.1 159.52 236.366 236366 1.481 0.523 2.777 0.98

3/8-11.1 148.982 253.084 253.084 1.384 0.489 2.702 0.954
3 /8 (b )-ll.l 155.187 242.964 242.964 1.362 0.481 2.626 0.927

1/2-11.1 139.965 269.388 269388 1.351 0.477 2537 0.896
3/4-11.1 123.927 304.253 304.253 1.257 0.444 2.457 0.867

3 /4 (b )-ll.l 120.853 311.99 311.99 1.294 0.457 2.506 0385

In Table 4.3, the best five surfaces based on high conductance U and low heat transfer 

area, which also satisfy pressure drop that belong to the louvered fin family are:

• Surface l/4(b)-l 1.1

• Surface 3/16-11.1

• Surface 3/8(b)-11.1

• Surface 1/2-11.1

• Surface 3/8(a)-6.06

The surfaces 1/4-11.1 and 3/8(a)-8.7 are excluded from this ranking because they failed to 

satisfy the pressure drop on one side. Failure in satisfying the pressure drop does cancel the 

geometry selection completely, but this means it causes a slight increase in pressure drop 

specified in Table 3.1.
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Table 4.4 Volume and Dimensions of Louvered Fin Surfaces

Geometry r ,m ' Lc, m Lh, m Lstack, m a
Pressure

Drop

3/8-6.06 0.949 0.608 0.325 4.802 0.356 Satisfied
3/8(a)-6.06 0.872 0.509 0.269 6.366 0.356 Satisfied
1/2-6.06 0.944 0.622 0.332 4.572 0.356 Satisfied
l/2(a)-6.06 0.895 0.546 0.288 5.677 0.356 Satisfied
3/8-8.7 0.742 0.488 0.259 5376 0.349 Satisfied

3/8(a)-8.7 0.704 0.437 0.234 6367 0.349
Failed on 
hot side

3/16-11.1 0.518 0.347 0.177 8.445 0.353 Satisfied

1/4-11.1 0.522 0.361 0.187 7.756 0.353
Failed on 
hot side

1/4(b)-11.1 0.516 0.349 0.186 7.965 0.353 Satisfied
3/8-11.1 0.553 0.399 0.205 6.764 0.353 Satisfied
3/8 (b )-ll.l 0.531 0.39 0.202 6.741 0.353 Satisfied
1/2-11.1 0388 0.436 0.232 5362 0.353 Satisfied
3/4-11.1 0.665 0.529 0.27 4.646 0.353 Satisfied
3/4 (b )-ll.l 0.681 0.527 0.272 4.759 0.353 Satisfied

Table 4.4 shows the dimensions and the volume required by each louvered surface that 

can transfer the same heat duty. The best five surfaces that belong to the louvered fin family 

based on high compactness (large area in small volume) are;

• Surface 1/2-11.1

• Surface 3/4(b)-11.1

• Surface 1/4(b)-11.1

• Surface 3/8-11.1

• Surface 3/8(b)-11.1
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The surface 1/4-11.1 was excluded from high compactness ranking because it failed to 

satisfy the pressure drop on hot side.

Table 4.5 Frontal and Free Flow Area for Strip Surfaces

Geometry U,W/m'.K Ac, m ' Ah, m ' Afrc, m ' Acc, m ' Afrh, m ' Ach, m '
l/4 (s )- ll.l 142.924 263.811 263.811 1.281 0.452 2322 0 39
1/8-15.2 180.658 208.709 208.709 1.484 0.564 2382 1.057
1/8-13.95 236.466 159.452 159.452 1.61 0.557 2.973 1.029
1/8-15.61 190.429 198 198 1.396 0.489 2383 0.974
1/8-19.86 217.454 173.393 173.393 L893 0.456 3.918 0.944
1/9-22.68 179.139 210.48 210.48 1353 0.481 2.797 0.996
1/9-25.01 22638 166338 166338 1.518 0.482 3.096 0.981
1/9-24.12 190.357 198.076 198.076 2.469 0.516 4.984 1.042
1/10-27.03 23535 160.208 160.208 1.421 0.474 2.903 0.97
1/10-19.35 212.618 177.337 177.337 2.061 0.44 4.325 0.921
1/10-19.74 172.998 217.951 217.951 2.78 0.503 5389 1.048
3/32-12.22 165.542 227.767 227.767 1.347 0.551 2.65 1.084
1/2-11.94D 132.869 283.775 283.775 1.267 0.407 2.611 0338
1/4-15.4D 146.211 257.864 257.864 1.456 0.445 2.747 0.901
1/6-12.18D 145.169 259.732 259.732 1.155 0.43 1.155 0.834
1/7-15.75D 171.362 220.031 220.031 1.214 0.431 2.5 0387
1/8-16.00D 208.681 180.683 180.683 1.44 0.462 2362 0.919
1/8-16.12D 177.177 212.81 212.81 1.615 0.491 3.177 0.966
1/8-19.82D 210.935 178.752 178.752 1.591 0.493 3.213 0.996
1/8-20.06D 206.543 182.553 182353 1.501 0.46 1084 0.947
1/8-16.12T 157.882 238.818 238.818 1.586 0.53 1092 1.033

In Table 4.5, the best five surfaces based on high conductance U and low heat transfer 

area, which also satisfy pressure drop that belong to the strip fin family are:

• Surface 1/10-27.03

• Surface 1/9-25.01
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• Surface 1/8-19.86

• Surface 1/10-19.35

• Surface 1/8-19.82

Surface 1/8-13.95 was excluded because it did not satisfy the pressure drop (Table3.1).

Table 4.6 Volume and Dimensions of Strip Fin Surfaces

Geometry F , m ' Lc, m Lh, m Lstack, m a
Pressure

Drop
l/4(s)- l l . l 0.576 0.45 0.228 5.607 0.353 Satisfied
1/8-15.2 0363 0.245 0.131 11.356 038 Satisfied

1/8-13.95 0.309 0.192 0.104 15.496 0.346
Failed on 
hot side

1/8-15.61 0336 0.241 0.121 11.539 0.35 Satisfied
1/8-19.86 0.277 0.147 0.071 26.783 0.241 Satisfied
1/9-22.68 0.257 0.19 0.092 14.763 0.356 Satisfied
1/9-25.01 0.196 0.129 0.064 23.876 0.317 Satisfied
1/9-24.12 0.287 0.116 0.057 42.967 0.209 Satisfied
1/10-27.03 0.171 0.12 0.059 24.17 0.334 Satisfied
1/10-19.35 0.292 0.141 0XM8 30.529 0.213 Satisfied
1/10-19.74 0.367 0.132 0.063 43.863 0.181 Satisfied

3/32-12.22 0.475 0.353 0.179 7.521 0.409 Satisfied
1/2-11.94D 0.5 0.395 0.192 &608 0.321 Satisfied
1/4-15.4D 0339 0333 0.115 12.676 0.306 Satisfied

1/6-12.18D 0.459 0.397 0.205 5.637 0.372
Failed on 
hot side

1/7-15.75D 0.321 0.264 0.128 9.46 0.355 Satisfied
1/8-16.00D 0.262 0.182 0.092 15.889 0.321 Satisfied

1/8-16.12D 0.272 0.168 0.173 9.344 0.304
Failed on 
cold side

1/8-19.82D 0.222 0.139 0.069 23.067 0.31 Satisfied
1/8-20.06D 0.222 0.148 0.072 20.883 0.307 Satisfied

1/8-16.12T 038 0.177 0.091 17.503 0.334 Satisfied
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Table 4.6 shows the dimensions and the volume required by each strip surface that can 

transfer the same heat duty. The best five surfaces that belong to the strip fin family based on 

high compactness (large area in small volume) are:

• Surface 1/10-27.03

• Surface 1/9-25.01

• Surface 1/8-20.06

• Surface 1/9-22.68

• Surface 1/8-19.82 (D)

The surface 1/8-16.12 (T) was excluded because it failed to satisfy the pressure drop on the 

cold side.

Table 4.7 Frontal and Free Flow Area for Wavy Surfaces

Geometry U,W /m'.K Ac, m ' A h ,m ^ Afrc, m '
Acc,

m '
Afrh, m ' Ach, m '

11.44-3/8 148.577 253.775 253.775 1.426 0.557 2.919 1.141
11.5-3/8 180.494 208.899 208399 1.486 0.525 3.059 1.083
17.8-3/8 151.872 248.268 248368 1387 0.521 2.861 1.076

In Table 4.7, the best wavy fin surface based on high conductance U and low heat 

transfer area and satisfies pressure drop is 11.5-3/8 Wavy.

Table 4.8 Volume and Dimensions of Wavy Fin Surfaces

Geometry F , m ' Lc, m Lh, m Lstack, m a
Pressure

Drop
11.44-3/8 0.525 0.368 0.18 7.939 0.391 Satisfied
11.5-3/8 0.447 0.3 0.146 10.196 0.354 Satisfied
17.8-3/8 0.351 0.253 0.122 11.32 0.376 Satisfied
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Table 4.8 shows the dimensions and the volume required by each wavy surface that can 

transfer the same heat duty. The best surface that belong to the wavy fin family based on 

high compactness (large area in small volume) is 17.8-3/8 Wavy.

Table 4.9 Frontal and Free Flow Area for Pin Surfaces

Geometry U,W /m'.K 4c, m ' Ah, m ' Afrc, m '
Acc,

m '
Afrh, m ' Ach, m '

AP-1 169.18 222.86 222.86 2.489 0.636 4.355 1.115
AP-2 201.11 187.48 187.48 3.144 0.785 5.377 1.344
PF-3 canceled cancel canceled canceled cancel canceled canceled

PF-4F 229.5 164.29 164.29 2389 0.727 4.03 1.322
PF-9F canceled cancel canceled canceled cancel canceled canceled

PF-lOF 240.43 156.81 156.81 1.569 0.507 3.005 0.971

Table 4.10 Volume and Dimensions of Pin Fin Surfaces

Geometry F , m ' Lc, m Lh, m Lstack, m o
Pressure

Drop

AP-1 0.96 0386 0.22 11.31 0.256
Failed on 
hot side

AP-2 0.671 0.214 0.125 25.214 0.25
Failed on 
hot side

PF-3 canceled canceled canceled canceled canceled
canceled. 
Lack of 

Data
PF-4F 0328 0.32 0.176 14.723 0.281 Satisfied

PF-9F canceled canceled canceled canceled canceled
canceled.
Whistling

PF-lOF 0.527 0336 0.175 8.946 0323 Satisfied
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In Table 4.9 and 4.10, the best surface based on high conductance U and low heat 

transfer area, high compactness and satisfies pressure drop that belongs to the pin fin family 

is PF-10 (F) Pin. The surface PF-9 (F) is canceled because of whistling problem at high 

Reynolds number (Re > 4000).

Table 4.11 Frontal and Free Flow Area for Perforated and Vortex Generator Surfaces

Geometry U,W/m'.K Ac, m ' Ah, m ' Afrc, m ' Acc, m ' Afrh, m ' Ach, m '

13.95(P) 157.733 239.043 239.043 1.423 0.399 2.649 0.744
Vortex 355.336 106.11 106.11 1.579 0.51 3.2 1.034

Table 4.12 Volume and Dimensions of Perforated and Vortex Generator Surfaces

Geometry F , m ' Lc, m Lh, m Lstack, m a
Pressure

Drop
Surface 13.95(P) 
Perforated

0.533 0.375 0.201 7.079 0.281 Satisfied

Vortex Generator 0.099 0.062 0.031 5L283 0323 Satisfied

In Table 4.11 and 4.12, the best surface that can be used as a core of heat exchanger is 

the Vortex Generator, because it gives the highest heat conductance U and very high 

compactness, if  compared with the other sixty-four surfaces.
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4.2 Results Validation

In this section, the results obtained from this study will be compared with the previous 

research results in order to prove the validation of this recent study.

Many studies were performed on the compact heat exchanger sizing in the last two 

decades. All these studies aimed to compare different surfaces, but only one side of the heat 

exchanger was studied.

This study represents a complete sizing process for the whole heat exchanger (using 

different surfaces), assuming the same geometry on both sides.

Volume & Geometry Type

CO

E 0.8
I Volume

12.00T 14.77 19.86 30.33T 46.45T

Geometry Type

Figure 4.1 Volume Comparison of Different Types of Plain Surfaces
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Volume & Geometry Type

■ Volume

1/4(b)-11.1 3/8-11.1 3/8(b)-11.1

Geometry Type

Figure 4.2 Volume Comparison of Different Types of Louvered Surfaces

The results obtained from Figure 4.1 and Figure 4.2 are exactly matched with Nunez 

(1999), using the volume performance index method.
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Total Area & Geometry Type

600

® 300

(Q̂ 200

I Total Area

Type A Type B Type C Type D Type E 

G e o m e tr y  T ype

Figure 4.3 Total Area Comparison of Different Types of Surfaces

Figure 4.3 illustrates various types of surfaces: type A is 11.11a plain, type B is 11.94T 

plain, type C is 3/32-12.22 strip, type D is 3/16-11.1 louvered, and type E is vortex generator 

geometry. The results represented in Figure 4.3 (obtained from this study) match very well 

with the results obtained by Brockmeier (1993) using the same designation of the surfaces 

studied.

There is a very important concept in sizing compact heat exchangers: the dependence 

o f sizing procedures on Reynolds number on both sides. This dependence may lead to 

different ranking of compact heat exchangers surfaces. All the results obtained from this
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research were matched with the previous research of Brockmeier (1993) because both 

studies used the laminar region in analysis.

h

5
4

3
2

1

0
3 4 5 6 7 6

Re n.iotibex' (TTiovisajuds )
9  1 0  11

-ppf14.7 - # - p p f  19.86 -~»-ppf 3033 T -ft-ja p f46,45 T

Figure 4.4 Envelop for Best Plain-Fin Surface Performance (Brockmeier, 1993)

2.5

2,0

0.0 +

to
Re n.'umbex' (niousaiiids)

— Ipf 1W(b) -11.1

Figure 4.5 Envelop for Best Louvered-Fin Surface Performance (Brockmeier,
1993)
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Figures 4.4 and 4.5 illustrate that the best high performance surface that gives small 

volume and high VPI is not fixed for all heat transfer loads, but it depends mainly on the 

value of the Reynolds number.

It is very important to explain the concept of volume performance index (VPI) which 

was applied in Nunez (1999): the higher value of VPI, the smaller the volume o f the 

exchanger and vice versa.

0.09

straight Ft■»
0.08

0.07
FinsLouvered

JO

I
i
5,

0.06

0.05

Offset Fir

0.04

0.03

0.02
0 2000 4000 6000 8000

Reynolds Number

Figure 4.6 Area Goodness Factor (//^of Different Types of Surfaces (Hall, 2003)

Figure 4.6 represents the relationship between the area goodness factor and Reynolds 

number. A surface having a highery//"factor is good (Shah, 1978) because it will require a 

lower free flow area and hence a lower frontal area for the exchanger. These facts are 

presented in Tables 4.1, 4.3, 4.5, 4.7, 4.9, and 4.11.
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4.3 Entropy Generation

The results obtained in this section are based on using the methodology reported in 

Tagliafico (1996), using the surface 5.3 plain as the reference surface and the

dimensionless variable B* = 10 .

4.3.1 Strip Fins

The entropy generation factor N  is shown in Figures 4.9 and 4.10. It is clear that the 

strip fin surfaces have a significantly lower entropy generation rate if  compared with 

other surfaces.

Entropy Factor of Strip Surfaces 1

5 0 0 0  1 0 0 0 0  1 5 0 0 0

Reo

-1 /4(s)-11.1S

-1/8-15.2 S

— * r ~ -1 /8-13.95 S

^ < -1 /8 -1 5 .6 1  S

-1/8-19.86 S

—#—-1/9-22.68 S

—h--1/9-25.01 S

-1/9-24.12 S

-1/10-27.03 S

-1/10-19.35 S

Figure 4.7 Entropy Generation Factor for the First Group of Strip Surfaces

From Figure 4.7, the highly recommended surfaces that produce low entropy 

generation and belong to the strip family are:

• Surface 1/8-15.2

• Surface 1/8-13.95
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• Surface 1/9-22.68

Entropy Factor of Strip Surfaces 2
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— 1/8-20.06(0) 8  

-* -1 /8 -1 6 .1 2 (0 )8

Figure 4.8 Entropy Generation Factor for the Second Group of Strip Surfaces

From Figure 4.8, the highly recommended surfaces that produce low entropy 

generation and belong to the strip family are:

• Surface 3/32-12.22

• Surface 1/8-16.12

• Surface 1/7-15.75(D)

The ascending order of all strip fin surfaces is represented in Table 4.13. According to 

Table 4.13, the best five strip surfaces based on low entropy generation rate are:

• Surface 1/8-13.95

• Surface 1/10-27.03

• Surface 3/32-12.22
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• Surface 1/8-15.2

• Surface 1/9-22.68

Table 4.13 Ascending Order for Strip Geometry

Ascending order for Strip Geometry
Surface Average Entropy Factor

1/8-13.95strip 0.044333
l/10-27.03strip 0.0495
3/32-12.22strip 0.049667

l/8-15.2strip 0.051
l/9-22.68strip 0.053875

l/8-16.12(T)strip 0.058286
l/7-15.75(D)strip 0.061714

1/9-25.01 strip 0.064125
l/8-16.00(D)strip 0.066571
l/8-19.82(D)strip 0.070833
l/8-20.06(D)strip 0.071
1/8-16.12(D)strip 0.0722
l/6-12.18(D)strip 0.072667

1/8-15.61strip 0.076444
l/4-15.4(D)strip 0.11025

1/2-11.94(D)strip 0.129714
l/4(s)-l 1.1 strip 0.14125
l/8-19.86strip 0.191286
1/9-24.12strip 0.212

l/10-19.35strip 0.2576

4.3.2 Louvered Fins

As shown in Figure 4.9, the highly recommended louvered surfaces that produce low 

entropy generation and belong to the louvered family are:

• Surface 3/16-11.1

• Surface 1/4-11.1

• Surface l/4(b)-l 1.1
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Entropy Factor o f Louvered Surfaces
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Figure 4.9 Entropy Generation Factor for Louvered Surfaces

Table 4.14 Ascending Order for Louvered Geometry

Ascending order for Louvered Geometry
Surface Average Entropy Factor

3/16-1 l.lLouvered 0.119125
1 /4(b)-11.1 Louvered 0.119625

1/4-1 l.lLouvered 0.12125
3/8(b)-11.1 Louvered 0.129125

3/8-1 l.lLouvered 0.13
1/2-1 l.lLouvered 0.146

3/8(a)-8.7Louvered 0.156625
3/4-1 l.lLouvered 0.16825

3/4(b)-11.1 Louvered 0.17125
3/8-8.7Louvered 0.171375

3/8-6.06(a)Louvered 0.181625
1/2-6.06(a)Louvered 0.19925
3/8-6.06Louvered 0.215125
1/2-6.06Louvered 0.217875
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According to Table 4.14, the best five louvered surfaces based on low entropy generation 

rate are:

• Surface 3/16-11.1

• Surface 1 /4(b)-11.1

• Surface 1/4-11.1

• Surface 3/8(b)-11.1

• Surface 3/8-11.1

4.3.3 Wavy Fin

As shown in Figure 4.10, the best surface that produces the lowest entropy generation 

and belong to the wavy family is surface 17.8-3/8Wavy.

Entropy Factor of Wavy Surfaces
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-$— 17.8-3/8wavy 

-m — 11.5-3/8wavy 

-Tit— 11.44-3/8wavy

R eo

Figure 4.10 Entropy Generation Factor for Wavy Surfaces
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Table 4.15 Ascending Order for Wavy Geometry

Ascending order for Wavy Geometry
Surface Average Entropy Factor

17.8-3/8 Wavy 0.049
11.44-3/8 Wavy 0.056571
11.5-3/8Wavy 0.062125

4.3.4 Plain Fin

Table 4.16 Ascending Order for Plain Geometry

Ascending order for Plain Geometry
Surface Average Entropy Factor

30.33T Plain 0.071933
9.03 Plain 0.11374
10.27T Plain 0.120571
15.08 Plain 0.1316125
11.11(a) Plain 0.1425
14.77 Plain 0.146375
19.86 Plain 0.152375
25.79T Plain 0.153571
16.96T Plain 0.192143
46.45T Plain 0.2365
11.1 Plain 0.28425
12.00T Plain 0.28343
11.49 T Plain 0.2898
6.2 Plain 0.378857

According to Table 4.16, the best five plain surfaces based on low entropy generation rate

are:

• Surface 30.33T

• Surface 9.03

• Surface 10.27T
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• Surface 15.08

• Surface II . 11 (a)

4.3.5 Vortex Generator

Entropy Factor of Vortex Generator
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0.2
Vortex Generatorz 0.15
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50000 10000 15000
R eo

Figure 4.11 Entropy Generation Factor for Vortex Surface

Figure 4.11 shows that the entropy generation rate will increase rapidly when 

Reynolds number increases so using vortex generator geometry is not recommended in 

case of very high Reynolds number.

Table 4.17 Entropy Generation Classification o f Different Surfaces

Geometry Type
Minimum
Entropy

Maximum
Entropy

Average
Entropy

Min
Entropy
Surface

Max
Entropy
Surface

Plain 0.071933 0.37885 0.191978 30.33T 6.2
Strip 0.044333 0.2576 0.096277 1/8-13.95 1/10-19.35

Wavy 0.049 0.062125 0.055898 17.8-3/8 11.5-3/8
Louvered 0.119125 0.217875 0.160464 3/16-11.1 1/2-6.06 L

Vortex 0.083625 0.083625 0.083625 V.G V.G
Perforated 0.1795 0.1795 0.1795 13.95(P) 13.95(P)
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Table 4.17 shows the lower and the higher entropy generation extremes for different 

surfaces. Pin surfaces were excluded from this table because they cause high pressure 

drop and most of that type do have sufficient data.

Table 4.18 Entropy Generation Ascending Order for Best 30 Surfaces

Ascending order of all surfaces studied
Surface Average Entropy Factor

l/8-13.95strip 0.044333
17.8-3/8wavy 0.049

l/10-27.03strip 0.0495
3/32-12.22strip 0.049667

l/8-15.2strip 0.051
PF-10(F) Pin 0.051143

PF-4F Pin 0.051714
1/9-22.68 Strip 0.053875
11.44-3/8 Wavy 0.05657

AP-2 Pin 0.056571
1/8-16.12T Strip 0.058286

1/7-15.75 (D) Strip 0.061714
11.5-3/8 Wavy 0.062125
1/9-25.01 Strip 0.064125

1/8-16.00(D) Strip 0.066571
1/8-19.82 (D) Strip 0.066571
1/8-19.82 (D) Strip 0.070833
l/8-20.06(D) Strip 0.071

30.33T Plain 0.071933
1/8-16.12(D) Strip 0.0722
1/6-12.18(D) Strip 0.072667
1/8-15.61(D) Strip 0.076444
l/8-20.06(D) Strip 0.0825
Vortex Generator 0.083625
l/4-15.4(D) Strip 0.11025

9.03 Plain 0.113714
3/16-11.1 Louvered 0.119125

l/4 (b ) - l l . l l  Louvered 0.119625
10.27T Plain 0.120571

1/4-11.1 Louvered 0.12125
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4.4 Pumping Power

The value of pumping power required to push the fluid may be considered one o f the 

valuable criteria for judging the selection o f compact heat exchangers, the lower pumping 

power required to push the same amount of fluid, the better the surface is.

Tables 4.19 to 4.23 illustrate the values of pumping power on both cold and hot sides 

for various types of examined surfaces. These values are obtained using Eq.3.64.

4.4.1 Plain Fin Surfaces

Table 4.19 Pumping Power Requirements on Both Sides for Plain Surfaces

Geometry Pcc*10^,w Phh*10%w

Surface 2.0 Plain Failed on hot side
Surface 3.01 Plain 0.6489 2.681
Surface 3.97 Plain 1.974 8.487
Surface 5.3 Plain 1.851 7.02
Surface 6.2Plain 1.15 4.866
Surface 9.03 Plain 1.111 4.903
Surface 11.11 Plain 1.615 6.679
Surface 11.11(a) Plain 1.314 5.707
Surface 14.77 Plain 1.598 7.052
Surface 15.08 Plain Failed on cold side
Surface 19.86 Plain 1.771 7.586
Surface 10.27T Plain 1.238 4.887
Surface 11.94T Plain 1.505 5.998
Surface 12.00T Plain 1.487 6.207
Surface 16.96T Plain 1.482 6.94
Surface 25.79TPlain 1.822 7.579
Surface 30.33T Plain 2.37 9.959
Surface 46.45T Plain 3.496 15.93

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4.2 Louvered Fin Surfaces

Table 4.20 Pumping Power Requirements on Both Sides for Louvered Surfaces

Geometry Pec*10^ ,w Phh* 10% w

Surface 3/8-6.06 Louvered 2.02 9.015
Surface 3/8(a)-6.06 Louvered 2.221 9.729

Surface 1/2-6.06 Louvered 2.03 9.012
Surface l/2(a)-6.06 Louvered 2.073 9.278

Surface 3/8-8.7 Louvered 2.074 10.03
Surface 3/8(a)-8.7 Louvered Failed on hot side
Surface 3/16-11.1 Louvered 2.261 10.55
Surface 1/4-11.1 Louvered Failed on hot side

Surface 1/4(b)-11.1 Louvered 2.39 10.94
Surface 3/8-11.1 Louvered 2.239 10.05

Surface 3/8(b)-l 1.1 Louvered 2.29 10.51
Surface 1/2-11.1 Louvered 2.155 9.85
Surface 3/4-11.1 Louvered 2.07 9.167

Surface 3/4(b)-l 1.1 Louvered 2.02 9.062

4.4.3 Wavy Fin Surfaces

Table 4.21 Pumping Power Requirements on Both Sides for Wavy Surfaces

Geometry Pcc*10% w Phh*10%w
Surface 11.44-3/8 Wavy 2.555 10.55
Surface 11.5-3/8 Wavy 2.063 8.63
Surface 17.8-3/8 Wavy 2.42 10.42

4.4.4 Perforated and Vortex Generator Surfaces

Table 4.22 Pumping Power Requirements on Both Sides for Perforated, Vortex Surfaces

Geometry Pec* 10% w Phh*10%w
Surface 13.95(F) Perforated 1.542 7.072
Vortex Generator Geometry 3.61 16.24

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4.5 Strip Fin Surfaces

Table 4.23 Pumping Power Requirements on Both Sides for Strip Surfaces

Geometry Pcc*10% w Phh*10% w

Surface l/4 (s )- ll.l  Strip 2.212 9.989
Surface 1/8-15.2 Strip 2.368 11.36
Surface 1/8-13.95 Strip Failed on t le hot side
Surface 1/8-15.61 Strip 3.104 13.81
Surface 1/8-19.86 Strip 3.287 14.18
Surface 1/9-22.68 Strip 3.293 13.81
Surface 1/9-25.01 Strip 3.478 15.08
Surface 1/9-24.12 Strip 3.059 13.95
Surface 1/10-27.03 Strip 3.699 16.39
Surface 1/10-19.35 Strip 3.245 14.16
Surface 1/10-19.74 Strip 4.543 18.87
Surface 3/32-12.22 Strip 2.905 12.86
Surface 1/2-11.94(D) Strip 2.187 8.456
Surface 1/4-15.4(D) Strip 2.241 9.751
Surface 1/6-12.18(D) Strip Failed on t le hot side
Surface 1/7-15.75(D) Strip 3.262 14.17
Surface 1/8-16.00(D) Strip 2.67 11.85
Surface 1/8-16.12(D) Strip Failed on the cold side
Surface 1/8-19.82(D) Strip 2.806 12.37
Surface l/8-20.06(D) Strip 3.343 14.23
Surface 1/8-16.12(T) Strip 2.463 10.83

From the above results, generally, it is very clear that the plain fin is the best 

geometry considering the pressure drop and required pumping power, on the other hand 

the strip fin requires the largest pumping power. The main factor that influences the value 

of pumping power is the hydraulic diameter. Although plain surfaces require smaller 

pumping power than other surfaces, the surface 46.45T plain (Dh=0.805mm) requires
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more pumping power than most o f other surfaces. We conclude that the lower value of 

hydraulic diameter, the higher expected consumed pumping power. The calculated values 

for pin surfaces were excluded from this study because most o f these surfaces failed to 

satisfy the pressure drop requirements.

4.5 Combination Between Two Different Surfaces

The combination between two different surfaces inside the compact heat exchanger 

core is a promising technique that can be used to reduce the total required volume and 

cost for the same heat transfer load, but in the same time, there will be a significant 

increase in the pressure drop and consequently the required pumping power as shown in 

Table 4.24.

Table 4.24 The Effect o f Combination of Two Different Surfaces

Geometry Type Volume APc APh Lstack

3/4-11.1 L (Both Sides) 0.665 m^ 4.39 kPa 4.11 kPa 4.65 m

l/4 (s )- ll.l  S (Both Sides) 0.576 m ' 4.38 kPa 4.14 kPa 5.6 m

3/4-1 L IE  and l/4 (s )- ll.l 0.232 m ' 4.99 kPa 6.07 kPa 1.19 m

Table 4.24 illustrates the value of using different surfaces on both sides o f the heat 

exchanger instead of using the same geometry on the both sides. The surface 3/4-11.1 

louvered and l/4(s)-l 1.1 strip were selected for this comparison because both o f them 

have the same hydraulic diameter, plate spacing, fin pitch, area density, and the same 

ratio of fin area to total area. Although this technique is promising, there is 30% increase 

in pressure drop on the hot side ( M*h = 6.07 kPa instead o f 4.2 kPa).
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4.6 Final Surface Ranking

The ranking method proposed by (Hall, 2003) will be used in this section in order to 

get general idea about the various merits of all surfaces studied in this thesis.

Table 4.25 Performanee Aspects o f Conventional High Performance Surfaees

Fin
configuration AP size weight cost

Straight 1 5 4 2

Offset 4 2 3 4
Wavy 3 3 2 3

Louver 3 3 3 5
Perforated 1 3 3 3

Vortex 4 1 1 3

The rankings in Table 4.25 are from 1 to 5 with a ranking 1 being the most desirable 

and a ranking of 5 being the least desirable (based on the thesis results).

A relative comparison of the fin configurations based on all the factors discussed is 

critical in determining the proper design. All of the parameters are presented as individual 

design points and the assumption is made that pressure drop is unlimited as well as 

weight or cost. All of these parameters must be considered to obtain the proper design.

Table 4.25 is an important design tool that guides the designer to the right direction, 

however, in order to get the optimum design the results obtained for each surface should 

be considered.

Finally, it is clear that the vortex generator and perforated geometries are attractive for 

designers of compact heat exchangers. The eombination between the above surfaces may 

lead to obtain very small size with reasonable pumping power.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS 

The main purpose of sizing process is to obtain an accurate assessment o f the surfaces 

used in the compact heat exchangers. Some surfaces fail to satisfy the pressure drop on 

one side so these surfaces are excluded from the right selection, also the purpose of 

studying the entropy generation, pumping power is to refine the selection of the best 

surface. The best performing surface may not be an optimum heat exchanger surface for a 

given application. Hence, there is no need to “fine tune” the selection of a surface 

individually. As a result, the selection criteria should be as simple and direct as possible 

but meaningful for initial screening and selection of the surfaces.

The main advantage of this thesis is to study the performance of heat exchanger 

surfaces on both sides, in all of the previous comparison methods reviewed, the surface 

on only side o f the exchanger is considered. However, when this surface is incorporated 

into a heat exchanger, there are other criteria, not necessarily related to the surface 

characteristics, that are imposed to optimize a heat exchanger. These criteria are included 

in this study.
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5.1 Sizing Results

The sizing results show that the vortex generator geometry is the promising surface to 

be selected as a core surface because it can transfer the required heat rate with very small 

volume and it also satisfies the pressure drop requirements. Although this geometry 

requires significant pumping power due to boundary layer separation, it remains the best 

selection for the compact heat exchanger designer.

The sizing results obtained are matched with all former comparative research for the 

selection o f the optimum surface. These results give more clear vision of these surfaces, 

their sizes, pumping power requirements and entropy generation. It was a fact that all 

highly compact surfaces require large frontal area and small flow length, also they may 

require high pumping power. This study proves these facts and gives exact ratios of the 

frontal areas, flow length and pressure drop for more than sixty different geometries.

Frontal Area Comparison

Frontal Area

11.94T 3/32- 3/16- 17.8-3/8 13.95(F) Vortex
12.22 11.1

Geometry Type

Figure 5.1 Frontal Area Comparison of Various Geometries
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5.2 Entropy Generation

A thermodynamic analysis for comparing the performance o f a number of plate-fm 

heat transfer surfaces has been generalized to more than sixty geometries. The relative 

merit o f each surface geometry has been linked to its irreversibility level, taking into 

account both heat transfer and fluid flow friction. Comparison has been performed under 

the constraint that heat transfer duty, mass flow rate, heat exchanger length, all of which 

are fixed.

The thermodynamic performance o f the most suitable surfaces, among those 

considered in this research, turned out to be strongly related to the operating conditions 

(both heat transfer duty and mass flow rate)

5.3 Minimum Weight

The analysis of a simplified plate-fm geometry indicates that a minimum weight 

solution is a function of the performance requirements and material parameters, given 

basic surface dimensions. This solution corresponds to a unique fin thickness and fin 

efficiency.

For plate fin surfaces, cores are usually made from sheet stock o f a fixed range of 

thicknesses: rolling fin stock to a special optimum thickness could be uneconomic. It may 

not be possible to form fins o f sufficient dimensional accuracy if they are too thin; if  they 

can be made they might deform unsatisfactorily on brazing. There may also be lower 

thickness limits set by corrosion requirements. Pressure containment capability often sets 

a minimum fin thickness, as could stress fatigue requirements.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Future Work and Recommendations

The direct test data used in this study were published 39 years ago, so many heat 

transfer enhancement and material development were achieved during this long period.

Nowadays there are a lot of very sophisticated compact heat exchangers used in 

industrial applications which may present a great step in the design of the compact heat 

exchangers. Printed circuit heat exchangers (PCHE) is one of these sophisticated heat 

exchangers, originally developed for refrigeration applications, is formed by using a 

technology adapted from that used for electronic printed circuits, this type is 

characterized by very high pressure containment capability, high compactness and very 

high fin efficiency but it requires more weight than the regular plate fin exchanger. The 

other type is Marbond heat exchangers, giving very low hydraulic diameter, high porosity 

and very high corrosion resistance. These two types of heat exchangers are commonly 

used in most o f industrial applications but their characteristic curves are unknown. Future 

work should focus on these types of heat exchangers in order to make fair comparison 

between all surfaces known used either in academic research and industry.
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APPENDIX A-CHARACHTARESTIC CURVES OF HIGH PERFORMANCE 
SURFACES OF PLATE FIN HEAT EXCHANGERS

Characteristic curves are the main information needed to design any type of compact 

heat exchangers surfaces, they are a relation between Colburn factor (/) that represents the 

heat transfer factor and mean friction factor (/) factor 

A-1 Characteristic Curves for plain fin surfaces 

I. Surface 2.0 Plain

O0€

0 0 4

00 3

R e . *0  (4  G /w )10 15 20 30 40 SO 50 70

b = 19.05 X IQ-̂  m, Dh= 14.453 x lO'^m 

Fin metal thickness = 0.813 x 10'  ̂m 

P = 76.1 ft^/ft^ -  249.672 m W  
Fin area/total area = 0.606
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2-Surface 3.01 Plain

o t n

Re* 10'* C4fh G/tf)
5 6 8 10 15 20

b = 19.05 X 10  ̂m, Dh = 10.82 x lO^m 

Fin metal thickness = 0.813 x 10  ̂m, aluminum 

p = 98.3 fP/ft^ = 322.507 m W  
Fin area/total area -  0.706

3-Surface 3.97 Plain

0150

005 CO

b = 19.05 X 10  ̂m, Dh=8.585 x 10'  ̂ Fin area/total area = 0.766 

Fin metal thickness =0.813 x 10'^ m, aluminum 

P = 119.4 ft^/ft^ = 391.7 m W ’
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4-Surface 5.3 Plain

L/4rk-ioa005C|
0 . 0 4 0

Uo.4ril
0 . 0 3 0

0.020

0 . 0 1 5

O.OIC

E S T  i n t e r p r e t a t i o n

0 . 0 0 6 ^  

0 0 0 5  ^I waoo

R e .  lO '  lAr^G/M)
OA  0 5  0 6  0 8  I Q  1 5  2 0  3 0  4 0  5 0  6 0

b = 11.94 X 10'  ̂m, Dh= 6.147 x 10'  ̂m 

Fin metal thickness = 0.152 x 10'^ m, aluminum 

P = 188 = 616.8 m W
Fin area/total area = 0.719

5- Surface 6.2 Plain

o.32r

( L / 4 a ) .  5 5

0 0 8

)  BEST INTERPRETATION

R e m o " ’  (4r^G/>j)
1.5 2 .0  3 .0  4 0  6 0  8 .0  10.0 1500 .6  0 8  lO

b = 10.29x 10'  ̂m, Dh=5.54x 10 ^m

Fin metal thickness = 0.254 x 10'^ m, aluminum

p = 204 ft^/ft^ = 669.3 m^/m^
Fin area/total area = 0.728
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6- Surface 9.03 Plain

Cl./4r„)< 6 5

BCST WTEfiPftETATION0 0 5  m

R e»lO  '  (4r^G/>»J 
15 2 0  3 0  4 0  6 0  6 0  K 30 1500 6  0 8  lO

b = 20.9x 10  ̂m, Dh=4.643 x 10 " m

Fin métal thickness = 0.203 x lO  m, aluminum 

P = 244 ftVft^ = 800.5 m W  

Fin area/total area = 0.888

7-Surface 11.11

L / 4 K . =  2 0 . G  t - 0 2 5 - j

. 0 0 8
BEST INTERPRETATION

. 0 0 6

Rc XlO*’  (4r^G^)
1 .0  1 .5  2 0  3 0  4 . 0  5 0  6 00 . 5  0 . 6

b = 6.350 X 10  ̂m, Dh=3.081 x lO^m 

Fin métal thickness = 0.152 x 10  ̂m , ,aluminum 

p = 367 ft^/ft^ = 1204 m W  
Fin area/total area = 0.756
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8-Surface 11.11(a) Plain

0 4 0

FLOW

BEST INTERPRETATION

R e  m icT’  (4T C ^ )
0  8  l O  1 .5  2 . 0  3  0  4 0

b = 12.19 X 10'^ m, Dh=3.518 x 10 ^

Fin metal thickness = 0.203 x 10'  ̂m, aluminum 

P = 312 ft^/ft^= 1024 m W  
Fin area/total area = 0.854

9- Surface 14.77

0 5 0

0 4 0

.030

020

0 1 5 -

oo-
0 0 8

.0 0 6  S  

.0 0 5  i

0 0 4

.0 0 5

0  5  0 6

L/ATh-  2 4 .7 h0330i

BEST INTERPRETATION

R e  )clO'3 (Ar„G/>j)
0 .8  I l O 1.5 2 0  3 0  4  0  5 0  6 .0 8 0 10.0

b — 0.330 in — 8.38 x 10'^ m, Dh= 2.59 x lO’̂ m

Fin metal thickness = 0.152 x 10'^ m, aluminum

P = 420.3 ft^/ft^ = 1378 m W  
  Fin area/total area = 0.844
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10-Surface 15.08 Plain

\  ( L / 4 r » ) - 6 5
0.416*

BEST INTERPRETATION

Me xK)  ^  (4 r^ G /p )
0 .4  0 .6  0 .8  lO  15 2 0  3 0  4 0  6 0  8 0

b = 10.6 X 10  ̂m, Dh= 2.67 x 10'^

Fin metal thickness = 0.152 x 10'^ m, aluminum 

P = 414 ft2/ft3= 1358 m W  
Fin area/total area = 0.870

11-Surface 19.86 Plain

(L /4n,1-35jO

8 r = = ~ = =  -

-  .25“-
LOO .

N
0 4 0 - — X

X
0 3 0  -

N
0 2 0 ^

Ol5

N
\
\0 0 8 3— BEST INTERPRETATION.,

0 0 6 t  
0 0 5  (

004 '

X
Ci. 3 .

~T~ r r C 03 X

Ç .4 Q 5  Ç Ç 0 9
R e  K l( 
10 15 2

(4r^G//j 
0  3 0  40  5 Q Q e 0 K0

b = 6.35 X 10“̂  m, Dh= 1.875 x lO^m

Fin metal thickness = 0.152 x 10'^ m, aluminum

p = 561 f f / f f  =1841 m W  
Fin area/total area = 0.849
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12-Surface 10.27 T Plain

0 0 6 B E S T  I N T E R P R E T A T I O N
0 0 5

b = 13.8 X 10-3 m, Dh= 3.835 x 10-3 

Fin metal thickness = 0.254 x 10-3 m, aluminum 

p = 289.93 A2/A3 = 951 m2/m3 
Fin area/total area = 0.863

13-Surface 11.94 T Plain

2 4 9(L 44 .4

.1675“

008

0 0 6 I N T E R P R E T A '

Re <*4r^G>^)» lO

b = 6.325 X 10-3 m, Dh=2.870 x 10-3m 

Fin metal thickness = 0.152 x 10-3 m, aluminum 

P = 393.0 A2/A3 = 1289 m2/m3 
Fin area/total area = 0.769.
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14-Surface 12.00T Plain

. 0 5 0

0 4  0

008
B E S T  IN T E R F ^ R E T A T I O N

R e ( » 4 r j^ G /u )  % to

b = 6.35 X 10'  ̂m, Dh= 2.870 x 10 

Fin metal thickness = 0.152 x 10'^ m, aluminum 

p = 392.7 ft^/ft^ = 1288 m W  
Fin area/total area = 0.773

15-Surface 16.96T Plain

( L / 4 r ^ ) . 7 3 . 8  &

. 1 1 7 9 “  ;
O ' O

n - i o s o  ,
. 0 3 0  --------

< ?
î<

V ? o

>
Va

. 0 0 8 -------

. 0 0 6 -------
0 0 5 -------

. 0 0 4 -------

. 0 0 3 -------

X

I E S T I N T I R P I E A rii •
«?

s
CO

R e  ( .  4 ' h ) » l o " ®

Ï .  1 1
- 8

1
1 ,0 : : : I :S , ; 1

b = 6.50 X 10^ m, Dh= 1.722 x lO'^m
'> - 3Fin metal thickness = 0.152 x 10 m, aluminum 

p = 607.81 ft^/ft^ = 1994 m W  
Fin area/total area = 0.861
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16- Surface 25.79T Plain

.2 0 4 "( L /4 r ^ ) .S 5 .3
♦

-
. 0 7 7 5 "  - n

.0 4 0

%

s V ’« o «

N

.0 0 6  M IEST INTf R P )E A rii >r
/

p e  ( • 4 ' h G / ) i o ‘ *

>
1 1 1 

3 4  5 6
1
e

1
1.0 Z > , 13

b = 5.182 X 10'^ m, Dh=1.151 x lO'^m 

Fin métal thickness = 0.152 x 10^ m, aluminum 

P = 855.58 ft^/ft^ = 2807 m W  
Fin area/(including splitter) total area = 0.884

17- Surface 30.33T Plain

lO O  x _ fL /4 r ) -  52 1 .3 4 5 “
---- 4

0V o
o c  o 4

0 6 5
0 5 0  ----- V p 9 “

s
' e
\ si P

V.

.O lO  ---
.0 0 8  ----
•0 0 6
0 0 5  ----^
0 0 4  ----^

>< \
\

E S T N T E E T AT 1C N -

X
'«o

R 2 < 4 A > io‘*

»
I 1 i

 ̂ . 4  . 5  6
1

. 8
1

1 O i* 2i *I !i C' 13

b = 8.763 X 10^ m, Dh= 1.222 x 10^ m 

Fin métal thickness = 0.152 x 10^ m, aluminum 

P = 812.51 ft^/ft^ = 2666 m W  
Fin area/(including splitter) total area = 0.928
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18- Surface 46.45T Plain

f  . 8 3 . 0

»

f  = d ^ L £ _ !

0 5 0 %
0 . 0 4 3 1 "

. 0 4 0  —
>

L1
?

. O l O  -----

0 0 8  ----

0 0 6  ----
. 0 0 5  ----

0 0 4  ----

?5 1
S T  1 MTER PR E o r 4

CO

R e ( • 4 ''h G / U )  X 1o ' *

2 3 1 . 5  .6  1 . 8  1 I'.O 1 2 3 5 3 1

b = 2.54 X 10'  ̂m, Dh= 0.805 x 10 

Fin métal thickness = 0.051 x 10'^ m, stainless steel 

P = 1332.45 ft^/ft^ = 4372 m W  
Fin area/total area = 0.837

A-2 Characteristic Curves for Louvered surfaces

1-Surface 3/8-6.06 Louvered

OJIO* 0 0 5 5 "
.0 8 0

0 4 0

.020

B E S T  IN T E R P R E T A T IO N

O lO - t  

0 0 8

0 .4 OB 0.8 lO 1.5 20 3.0 4 6 0 8 0 lO

b = 6.35 X 10'^ m, Dh=4.453 x 10‘̂ m

Fin métal thickness = 0.153 x 10'^ m, aluminum

P = 256 ft^/ft^ = 840 m W  
Fin area/total area = 0.640
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2-Surface 3/8(a)-6.06 Louvered

lO •

0 8 0

0 6 0
.050

0 4 0

0 3 0

020

0 0 6  ‘
04 05 09

BEST I N T E R P R E T /  T IO N

R e  .  10-3 (4r^G/>.)
IQ  L5 s a  3 0  4 0 ^ _80.1PQ-

b = 6.35 X 10-3 m ,, Dh=4.453 x 10" m 

Fin metal thickness= 0.152 x 10  ̂m, aluminum 

p = 256 ft2/ft3 = 840 m2/m3 
Fin area/total area = 0.640

3-Surface 1/2-6.06 Louvered

^BEST interpretation

R e X 10-3 (4 rftC//jJ 
0 8  11.0 15 2 0  3.0 4 0 6 0  6 0  KX)0.4 0 5  0.6

b = 6.35 X 10-3 m, Dh=4.453 x 10 m 

Fin metal thickness = 0.152 x 10"̂  m , aluminum 

p = 256 ft2/ft3 = 840 m2/m3 
Fin area/total area = 0.640

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4-Surface 172(a)- 6.06

BEST IN TE TION

Re a IO » I 
0 6  t o  1 5  2 0 _____ 3 0  _ 4 00 5 0 6

b = 6.35 X 10-3 m, Dh=4.453 x lO'^m 

Fin metal thickness = 0.152 x 10 ^m ,aluminum 

P = 256 A2/A3 = 840 m2/m3 
Fin area/total area = 0.640

5-Surface 378-8.7 Louvered

0  25*
0 .0 6 0 ' 0 .0 5 5 ’

0 .0 5
0 .3 7 50 .0 4

B E S T  i n t e r p r e t a t i o n

0.010 -

0 0 0 8

0 .0 0 6
0 .0 0 5 R e  x IO -f  ( 4 r  G /u)

081 1.0
b = 6.35 X 10-3 m, Dh=3.650 x 1 0 'm 

Fin metal thickness = 0.152 X lO'^m, aluminum 

P = 307 A2/A3 = 1007 m2/m3 
Fin area/total area = 0.705
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6-Surface 3/8(a)-8.7 Louvered

RPRET/ TIONINTE

Re *IO'* (4r^<V>J)-  «V
______________ 0 8 1 IQ  I S 2 0  3 0 8 0 1 0 0

b = 6.35 X 10'^ m, Dh= 3.650 x  lO'^m 

Fin metal thickness = 0.152 x 10  ̂m, aluminum 

p = 307 ft^/ft^ = 1007 m W  
Fin area/total area = 0.705

7-Surface 3/16-11.1 Louvered

lOO

0 8 0

0 6 0 -
050*̂
0 4 0 -

0 3 0 -

020 

015

OlO W)

.0 0 8 -

0 0 6
0 4  0 . S 0 6

-1 1 8 7 5 -1-

BES INTE RPRE TATION

R e  x tO - i  - (4% G /p)
1.0 I S  2  0  3 .0  4 0 6 0  8 0 1 1 0  0

b = 6.35 X 10  ̂m, Dh=3.084 x lO^m 

Fin metal thickness = 0.152 x 10'  ̂m, aluminum 

p = 367 ft^/ft^ = 1204 m W  
Fin area/total area = 0.756
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8- Surface 1/4-11.1 Louvered

1-0.25:4

TERPRI TATION

0 0 8  .-i

Re X lO"’
0 .4  0 5  0 .6  0  8 l O 1.5 2 .0  3  0  4  0 6 0  6 0  K3 Q

b = 6.35 X 10 m, Dh=3.084 x 10' m

Fin métal thickness = 0.152 x 10'^ m, aluminum

1204 m^/m^
Fin area/total area = 0.756

9-Surface 1/4(b)-11.1 Louvered

oisH

BES r IN . ERPRE rATIO M

f R e  110-3 ( Ar̂ O/jii 
0 . 4  0 .5 0 Æ  0 .8  IQ  1.5 2 .0

b = 6.35 X 10-3 m, Dh=3.084 x 10' m 

Fin métal thickness = 0.152 X lO'^m, aluminum 

P = 367 A2/A3 = 1204 m2/m3 
Fin area/total area = 0.756
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10-Surface 3/8-11.1 Louvered

0 .2 5

0 0 3 5 "  T - 0 0 5 5

0 .3 7 5

B E S T  IN T E R P R E T A T IO N

0 0 0 6 -  
0 0 0 5 R e  x I O 'L  ( 4 r .G /p )

O S  IjO 8  0  IO C

b = 6.35 X 10'^ m, Dh= 3.084 x 10'^ m 

Fin metal thickness = 0. 152 x 10  ̂m, aluminum 

p = 367.1 ft^/ft^ = 1204 m W  
Fin area/total area = 0.756

11-Surface 3/8(b)-l 1.1 Louvered

0 4 0

BEST INTERPRETATION

Recnr* (4r̂ Oÿj)
0 4  0 5  0 6  I 0 8  I IQ

b = 6.35 X 10'^ m, Dh=3.084 x 10'  ̂m 

Fin metal thickness = 0.152 x 10'^ m, aluminum

P 367.1 ft^/ft^= 1204 m W
Fin area/total area = 0.756
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12-Surface 1/2-11.1 Louvered

.0 8 0

; t  i n t ë r p r i ;ta t io n

0 5  0 .6 0  8 I i .O 8 0  10.0

b = 6.35 X 10'^ m, Dh=3.084 x 10  ̂m 

Fin metal thickness = 0.152 x 10'  ̂m, aluminum

p = 367.1 ftVft^ 1204 m W
Fin area/total area = 0.756

13-Surface 3/4-11.1 Louvered

0.05"

0.75"

y — BEST INTERPRETATION

R e * ICr’  (4 r^G //j)
08  I lb 15 20  _30  ^0 .4  0  5

b = 6.35 X 10'^ m, Dh=3.084 x 10'^ m

Fin metal thickness = 0.152 x 10'  ̂m, aluminum

P = 367.1 ftVft^ = 1204 m W  
Fin area/total area = 0.756
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14-Surface 3/4(b )-ll.l

RPRE T/TION

0 0 3  a.

Re .  IQ-3 (4r^G/>j) 
0 4  0 5  0 6  I OS lO I S 2 0

b = 6.35 X 10-3 m, Dh=3.084 x 10  ̂m 

Fin metal thickness = 0. 152 x 10  ̂m, aluminum 

P = 367.1 ft2/ft3 = 1204 m W  
Fin area/total area = 0.756
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A-3 Characteristic Curves for Strip Surfaces

1-Surface l/4 (s )- ll.l  Strip

0 .0 3 5  T— 0 0 5 5

WO.25̂

T E R P R i TA TIO N

0 0 8  -

Re X I0"3
0.4 0 5  0 6  0  8  IO  15 2 .0  3 0  4  0 8 0 0 0

b = 6.35 X 10'^ m, Dh=3.084 x 10'^ m

Fin metal thickness = 0.152 x 10’ m, aluminum

P = 367.1 ftVft^ = 1204 m W  
Fin area/total area = 0.756

2-Surface 1/8-15.2 Strip

150-^
.OGG'-C==—

A P P R O X .

B E S T  IN T E R P R E T A T IO N

B e  « IO -»  ( 4 r^ G < u )
0 8 1 1.0 1.5 2 .0  3 0  4  0  5 0  6 0

b = 10.5 X 10  ̂m, Dh=2.647 x 10'^ m 
Fin metal thickness^ 0. 152 x 10  ̂m, aluminum 

P = 417 ft^/ft^ = 1368 m W  
Fin area/total area = 0.873
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3-Surface 1/8-13.95 Strip

B E S T  I N T E R P R E T A T I O N

020

.015

.OlO

b= 9.525 X 10'" m, Dh=2.68 x 10'" m
Fin metal thickness = 0. 254 x 10’̂  m, aluminum 

P = 381 = 1250 m W
Fin area/total area = 0.840

4-Surface 1/8-15.61 Strip

BEST in t e r p r e t a t io n  
I.020

Rc{»4

b = 6.35 X 10'^ m, Dh=2.38 x 10  ̂m 

Fin metal thickness = 0. 102 x 10'^ m 

p = 471.9 ft^/ft^= 1548 m W  
Fin area/total area = 0.809
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5-Surafce 1/8-19.86 Strip

BEST INTERPRETATION

miO

0 3  0 4  0 5  0 6  OB LO

b = 2. 49 X 10  ̂m, Dh= 1.54 x 10'  ̂m 

Fin metal thickness = 0. 102 x 10'^ m 

P = 687 f t W  = 2254 m W  
Fin area/total area = 0.785

6-Surface 1/9-22.68 Strip

0044
ICO

BEST in t e r p r e t a t io n

0)0 Re*4rG )̂*lO

b = 7.65 X 10  ̂m, Dh= 1.735 x 10  ̂m 

Fin metal thickness = 0. 102 x 10'^ m 

p = 630.5 ftVft^ = 2069 m W  
Fin area/total area = 0.885
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7-Surface 1/9-25.01 Strip

.200

.100

.0 5 0
. 0 4 0

.0 3 0
B E S T  I N T E R P R E T A T I O N

R e (-4 r.G ^ > « IOO l O

.0 0 8

b = 5.08 X 10'^ m, Dh=1.50 x 10'^ m 

Fin metal thickness = 0.102 x 10'  ̂m 

p = 719.4 ft^/ft^ -  2360 m W  
Fin area/total area = 0.850

8-Surface 1/9-24.12 Strip

0  0 7  5 0

0 0 4 1 5

.100

.0 5 0

.0 4 0

B E S T  I N T E R P R E T A T I O N

010 R e (-4 r  G/*)»IO

b = 0.075 in =  1.91 x 10  ̂m, Dh= 1.209 x 10'^ m 

Fin metal thickness = 0.102 x 10'^ m 

p = 862.7 ft^/ft^ = 2830 m W  
Fin area/total area = 0.665
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9-Surface 1/10-27.03 Strip

102504

.0 6 0

B E S T  I N T E R P R E T A T I O N

020

I _  1 _ 1 X !
jO I O

0 3  O.-» 0 5  0  6 0 8  I iO

b = 6.38 X 10'^ m,Dh= 1.423 x 10  ̂m 

Fin metal thickness = 0.102 x 10'  ̂m 

p = 751.7 A^/ff = 2466 m W  
Fin area/total area = 0.887

10-Surface 1/10-19.35 Strip

Re("4r̂ Ĝ )xlO

,-3b = 1.91 X 10 " m, D h -1.403 x 10 

Fin metal thickness = 0.102 x 10  ̂m 

p = 758.9 ftVft^ = 2490 m W  
Fin area/total area = 0.611
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11-Surface 1/10-19.74 Strip

.150

.050

040
.050

B E S T  I N T E R P R E T A T I O N

R e  ( - 4 r . G ^ ) * I O
lJ'l a I

b = 1.29 X 10  ̂m, Dh=1.219 x 10  ̂m 

Fin metal thickness = 0.051 x 10'^ m 

p = 923 f f / f f  = 3028 m W  
Fin area/total area = 0.508

12-Surface 3/32-12.22

.ICO

060

.008

.006 BEST interpretation

004

0 03
Re ( • 4 r  G/W)« IO

002

-3b =  12.3 X 10  ̂m, Dh=3.41 x 10 

Fin metal thickness = 0.102 x 10'^ m, aluminum

p = 340 ft^/ft^= 1115 mVm 
Fin area/total area = 0.862

2 /_ 3
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13-Surafce 1/2-11.94(D) Strip

e i .l O O . 0 8 3 8
0 8 0

. 0 5 0

. 0 3 0

.0 1 5

O l O  —
B E S T  I N T E R P R E T A T I O N

0 0 5  —  

0 0 4

b = 6.02 X 10'  ̂m, Dh=2.266 x 10'^

Fin metal thickness= 0.152 x 10'^ m, aluminum 

p = 461.0 ft^/ft^ =1512 m W  
Fin area/total area = 0.796

14-Surafce 1/4-15.4(D) Strip

0 4 0

.0 3 0

B E S T  IN T E R P R E T A T IO N

b = 5.23 X 10^ m, Dh= 1.605 x 10'  ̂m 

Fin metal thickness = 0.152 x 10'^ m, aluminum 

p = 642 ft^/ft^ = 2106 m W  
Fin area (including splitter) /total area = 0.816
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15-Surafce 1/6-12.18(D) Strip

. t o o

. 0 3 0

.0 1 5 N T £  R P R E  T A T I O N

. O l O

0 0 6

b = 8.97 X 10'^ m,Dh=2.63 x 10  ̂m 

Fin metal thickness= 0.102 x 10'  ̂m, aluminum 

p = 422.4 ft^/ft^ = 1385 m W  
Fin area (including splitter) /total area = 0.847

16-Surafce 1/7-15.75(D) Strip

I S O

0 8 0

. 0 5 0

. 0 1 5

R e  < ■ 4  G / ^ >  »  I O

b = 7.72 X 10^ m, Dh=2.07 x 10^ m 

Fin metal thickness = 0.102 x  10'^ m, aluminum 

P = 526 ft^/ft^ = 1726 m W  
Fin area (including splitter) /total area = 0.859
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17-Surface 1/8-16.00(D) Strip

.  4 %  g
ISO

IV
■s

0 5 0
0 4 0

0 3 0 \
R P I.020 — 

.015 —

. O l O  — 

0 0 8  —
.0 0 6

\
------f E S T N T E E T A1 1C N

1
S  

. ^

C

■ 55

0 3 R e  ( - 4 f ^ B //L ) s 1 O *

.1; 1 .w.  .L i 1
. 8 .'o : : \  *1 S (S X 1

b = 6.48 X 10'  ̂m, Dh= 1.862 x 10'^ m

Fin metal thickness = 0.152 x 10' m, aluminum 

p = 549.5 ft^/ft^ = 1804 m W  
Fin area (including splitter) /total area = 0.845

18-Surafce 1/8-16.12(D) Strip

040

I 3 — e e S T  IN T E R P R E T A T IO N

020

006

R e • IO • )

b = 0.206 in = 5.23 x 10  ̂m, Dh=1.552 x 10  ̂m 

Fin metal thickness = 0.152 x 10  ̂m, aluminum 

P = 660 ft^/ft^ = 2165 m W  
Fin area (including splitter) /total area = 0.823
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19-Surface 1/8-19.82(0) Strip

.100
080

B E S T  I N T E R P R E T A T I O N

008

b = 5.21 X 10  ̂m,Dh= 1.537 x 10'  ̂m 

Fin metal thickness = 0 . 102 x 10  ̂m, aluminum 

P = 680 ft^/ft^ = 2231 m W  
Fin area (including splitter) /total area = 0.841

20-Surface 1/8-20.06(0) Strip

.125" 201" 

.0489" —=
.150 —
.100 —
.080 —. ^  .

060050
040—
030 \ 1
015 —
OlO — 
008- 
.00 6 —

"s -0 --  EEST INTERPf El A1IONA6

55
o'*

004
C » - A

3 .-* , 1 I  Jo 12 3 -k S > 9
b = 5.11 X 10  ̂m, Dh= 1.491 x 10 ^m 

Fin metal thickness = 0. 102 x 10'^ m, aluminum 

P = 698 ft^/ft^ = 2290 m W  
Fin area (including splitter) /total area = 0.843
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21-Surface 1/8-16.12(1) Strip

K  o.>*« —H
— 0 0*21" -------

o o e o k
0  0 6 0 s ,

1 U» i 1

hs

-
\

I

! \
X

u BEST 1*TER PRETATiO^

O O IS

O O lO

o .o o e

0006
0 0 0 5

9

R  .
r r x , ^

t o '

2 0 }  0 *  0 ;  0 i . 9 e
r i c  - l u  --------- 1

ID  1 5  2 0  3 0  4 0  ? O 6 0 e o

b = 7.98 X 10'^ m, Dh=1.567 x 10'^ m 

Fin metal thickness = 0.152 x 10  ̂m, aluminum 

P = 650 ft^/ft^ = 2133 m W  
Fin area/total area = 0.882

A-4 Characteristic Curves for Wavy Surfaces 

1-Surface 11.44-3/8 Wavy

EST INTERPRETATION

Re * 10“» (A r ^ O /p )
1.0 15 2 0  3 0  4 .0 e o  ao  10.0

b = 10.49 X 10  ̂m, Dh= 3.231 x 10'^ m 

Fin metal thickness = 0.152 x 10  ̂m, aluminum 

p = 351 ft^/ft^ = 1152 m W  
Fin area/total area = 0.847
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2-Surface 11.5-3/8 Wavy

.375' - ,

087"

.375"

040

B E S T  i N r e U P ^ C T A T l O N
030

b = 9.25 X 10'^ m, Dh=3.023 x 10 "m

Fin metal thickness = 0.254 x 10  ̂m, aluminum

P = 345 ft^/ft^= 1138 m W  
Fin area/total area = 0.822

- 3 .

3-Surface 17.8-3/8 Wavy

0562"

0 7 7 5  A P P R O X

“ BEST INTERPRETATION

Re «IO-* (47^0^) 

0 .8  1.0 1.5 2 0 8 0  lOO

b = 0.413 in = 10.49 X 10'^ m, Dh= 2.123 x lO'^m 

Fin metal thickness= 0.152 x 10'^ m, aluminum 

p = 514 ft^/ft^ = 1686 m W  
Fin area/total area = 0.892
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A-5 Characteristic Curves for Pin Surfaces

1-Surface AP-1 Pin

.10

.08

.060

.050

0 4 0
E TATIONb e ; T I rjT : r

.030

.020

.015 S

c/7
.010

.008
R e  ■ 10 :

60 8.0 100

b = 6.10 X 10'  ̂m, Dh=4.404 x 10  ̂m 

P =  188 ft^/ft^ = 616.8 m W  
Fin area/total area = 0.512

2-Surface AP-2 Pin

.100

.060

.060

0)0

040

020
t o

010
0.4 0.5 06 0.8 3.0 4.0 5.0 6.0 8.0 KXO

b = 0.398 in =10.1 x 10  ̂m, Db=3.576 x 10'  ̂m

p = 204 ft^/ft^ = 669 m W  
Fin area/total area = 0.686
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3-Surface PF-3 Pin

.060

.050

040
.030 —

020

015

OlO %
CO

008

015 02 3  0  4  0  5 0 6 0

b = 19.1 X 10  ̂m, Dh=1.636 x 10  ̂m

p = 339 ft^/ft^= 1112 m W  
Fin area/total area = 0.843

4-Surface PF-4(F) Pin

#**T' ___

QD8 &

aûfr 08
b = 12.75 X 10'  ̂m, Dh=5.66 x 10'^ m

p = 140 ft^/ft^ = 459 m W  
Fin area/total area = 0.704
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5-Surface PF-9(F) Pin

0100

0060

0 060

0040

eesr im u r p r c t a t io m

0030

0020

CO

0010

0 006
R e *  10’

20

b = 12.95 X 10'^ m, Dh= 9.042 x 10'^ m 

p = 96.2 ftVft^ = 316 m W  
Fin area/total area = 0.546

6-Surface PF-10(F) Pin

0 0  • -  

07 

06

04

03

02

O lO

000 Re K io'*(4 vc/i i)

b =  11.18 X 10'^ m, Dh=4.343 x lO 'V  

P = 214ft^/ft^ = 702 m W  
Fin area/total area = 0.693
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A-6 Characteristic Curve for Perforated Surface

1-Surface 13.95(F) Perforated

•«n too’i

.060

.040

020

Oi9
8 EST  flKTFRPRETATlON

006
trc

006 to

.005

004 15.00.5 0 6

b = 5.08 X 10  ̂m , Dh=2.504 x lO^m 

P = 381 ft^/ft^ = 1250 m W  
Fin area/total area = 0.705

A-7 Characteristic Curve for Vortex Generator Surface (Brockmeier, 1993)

Rex 10
3 t  5 6 6 10

b = 6.35 X 10'^ m , Dh=1.2 x  lO'^m

p = 862.7 f f / f f  = 2830 m W  
Fin area/total area = 0.705
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A.8 Entrance and Exit Losses

1-Parallel Passages Entrance and Exit

LAMINAR
fits

2WDCK)
5JOOO

lo p o o

ZjOoa
LAMtiAR

k)C)()d (12 O 3 (14 Ck5 CHS 417 (%8 CK9 IJO

Entrance and Exit Pressure-loss Coefficients for a Multiple Square-Tube Heat 

Exchanger Core with Abrupt Contraction Entrance and Abrupt Expansion Exit 

(Kays and London, 1984, Figure 5.4)
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2-Triangular Passages Entrance and Exit

LAMMAR
R ^ 2 f O O  

3.000

He* *9

poo
LAMWAR“0.4 -1

QJZ {15 Ok* Ck5 (16 C17 ()8 (]<*

Entrance and Exit Pressure-loss Coefficients for a Multiple Angular-Tube Heat 

Exchanger Core with Abrupt Contraction Entrance and Abrupt Expansion Exit (Kays and 

London, 1984, Figure 5.5)
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A.9 Effectiveness Curve

W

%
wz
w
>

o
w
u.
b

Cm#/Cm#'

() I :» 3
NO, ()F  T l t A N S F t R  LWtlTS, Xu mm

Heat Transfer Effectiveness as a Function of Number o f Transfer Units 
and Capacity Rate Ratios for Crossflow Exchanger with Fluids 

Unmixed (Kays and London, 1984, Figure 2-16)
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APPENDIX B -  MATHCAD CODE

B. 1 Sizing of Surface 11.94 T Plain

Sizing of Compact heat exchanger 

Surface 11.94T Plain

Given
T ci := 500 T hi ;= 700 T c o :=  620 Pci := 50010

APc := 5 10

T ci +  T co

A Ph := 4 10^ Phi := 10010^

T cref := me := 20 mh := 20

T cref = 560 T h re f := 700

C p c :=  1.041 C p h :=  1.075 

Cc := mc Cpc

+

Cc := mc Cpc

Cc = 20.82

Ch := mhCph

Ch = 21.5

C l ,  2 1
C h

C l = 0.968
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s :=
T co  -  T ci 

T h i -  T ci

5 =  0.6

T ho  := T ci +  (l -  C l s) (T h i -  Tci)

T ho  = 583.795

T h re f :=
T h i +  T ho

T h re f = 641.898

C p h  := 1.061

C h := m h C ph

C h = 21.22

C l : = ^
C h

C l = 0.981

5  :=
T co  -  Tci 

T h i -  T ci

B = 0.6

T ho  := T ci +  (l -  C l s) (T h i -  Tci)

T ho  = 583.795

T h re f  :
T h i +  T ho

T h re f = 641.898

C p h  := 1.061
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Ch := mh Cph

C h = 21.22

C l := —  
C h

C l = 0.981

e  :=
T co  -  T ci 

T h i -  T ci

s  = 0.6

T ho  := T ci +  (l -  C l s) (T h i -  Tci) 

T ho  = 582.262

NTU := 1.811

UA ;= NTU Cc

U A  =  37 .705

pjc := 28 .95  10
- 6

p h  := 31 .67  10

k c  := 4 .32  1 0 " ^

P rc  := 0 .698

P r h : =  0 .699  

p c i  := 3 .4 8 4

p h i  := 0 .498

p c o  := 2 .782

p h o  := 0 .572

- 6

p e r n  := 0.5- +
p c i  p c o

- 1

p c m  = 3 .0 9 4
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phm := 0.5 I —  +  —  
ph i p h o  J_

-  1

phm  = 0.532

N T U l := 2  NTU

N T U l = 3.622

NTU2 := C l N TU l

NTU2 = 3.554

Matching Geometric Criteria

Selection of Plain fin surface 11.94T

n f  := 470

b := 6.325 1 0 "^

D h  := 2.87-10“ ^

5 ;= 0.152 10 

p := 1289 

a :=  2 1 0 “

- 3
r]oc := 0.9 r |o h  := 0.9

S := 0.28640^

Gc : (SD
APc 2 pcm  r|oc Pci 

N T U l P rc“ “

0.5

Gc = 52.833

G h:=
A Ph 2 phm  n o h  Phi 

(S ) -------------  !----------

NTU2.Prh°-''

-,0.5

G h = 19.782

Rec :=
G c D h

F
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Rec = 5.238 x 10

R eh  :=
G h-D h

ph

R e h =  1.793 x 10

jc  := 3.228 10
- 3

jh  := 3.497 10 

fc := 0.012

fh :=  8.472-lO "^

— = 0.269 
fc

—  = 0.413 
fh

Gc := [ f - 1 -

Gc = 51.202

G h:=
[ f - 1 -

G h = 23.749

0.5

N T U l Prc°

N TU 2-Pfh
0.66

0.5

Rec :=
Gc-D h

pc

Rec = 5.076 x 10 '

R eh  :
G h-D h

ph

R eh  = 2.152 x  10

jc  := 3.229-10
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fc:=  8.532-10
- 3

jh  := 3.272-10 

fh :=  0.011

- 3

— = 0.378 
fc

—  = 0.297
fh

Gc :=
j c )  APc 2 pcm  T)oc Pci 

NTU1-Prc°-̂ ^

,0.5

Gc = 60.732

G h =
j h )  A Ph 2 phm  r |o h  Phi 

f h j  P h i 0.66

0-5

N TU 2-Prh

G h = 20.16

Rec :=
G c-D h

pc

Rec = 6.021 X 10

R eh  :=
G h-D h

ph

R e h =  1.827 x  10 

jc := 3.219 1 0 "^

jh  := 3.463-10 

fc :=  8.182-10' 

fh :=  0.012

- 3

— = 0.393 
fc

—  = 0.289 
fh
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Tw :=
T cref + Thref

T w  = 600.949

n  := 0.3 -  log
— i T ' 'T c r e f ;  y

n  = -0 .118

jcc  := JC
T w

T cre f

+

jcc  = 3.192 X 10

jhc  := jh
T w

T h re f

jhc  = 3.463 X 10
, - 3

fee := fc-
T w

T cre f

0.1

fee = 8.124 X 10
,- 3

fhc := fh-
f  T w  

I T h re f

0.81

fhc = 0.011

Prc
0.66666

he = 256.483

to,jhc-2!l2EL.,o3
Prh

0.66666

h h  = 94.046
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le := ------ 6
2

le = 3.01 X 10
- 3

2 he 

k ô +
me = 129.899

k here is the thermal conductivity of fin Material

tan h (m c lc )
r|fc :=

m c lc

tjfc = 0.952

Ih : = -------5
2

lc=lh for the same geometry only 

lh  = 3.01 X 10“ ^

m h :=
2 h h  

k-5

m h = 78.659

Tjfh :=
ta n h (m h th )  

m h Ih

x]fh= 0.982

A rc := 0.769 

rjoc := 1 -  ( l  -  rife) A rc

r|oc  = 0.963

T]oh:= 1 -  ( l -  r|fh) A rc

T]oh = 0.986
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u  :=
1 1 

+
r |o c h c  r |o h h h

-  1

U = 67.417

20 C pc N TU , 3
A c := -------  10

U

A c = 559.284

A h  := 559.28^

20
A o c  := —  

Gc

Aoc is the free flow area in the cold side 
Aoh is the free flow area on the hot side 

20
A o c  := —

Gc

A o c  = 0.329

. 20 
A o h  := —  

G h

A o h  = 0.992

b p D h

8(b  +  a)

ac = 0.351

ah := 0.351

A frc :=
A o c

a c

A frc = 0.937

A frh  :
A o h

a h

A frh  = 2.826
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Le :=
D h-A c 

4  A o c

L c =  1.219

Lh:=
D h -A h  

4 A o h

L h = 0.404

L stack  :
A frc

L h

L stack  = 2 .317

. D h 
fh  := —  

4

Pressure Drop Calculation

K ec := 0.45 K cc := 0.51 K ch  := 1.22 K eh  := 0.2

Pc
Gc

( l -  o ?  K cc) +  fcc i l E î i  +  2 . ( j e É  _  l )  _  ( l  _  o c ^  -  K .c )  f â '
2 Pci pc i [  fh  pcm  \  p co  /  pco

Pc = 0.018 

APac := Pc Pci

APac = 8.944 x  10

P h  :=
Gh

2 Phi p h i
( l  -  a h ^  +  K ch) +  f h c - ^ ^ ^  +  2 

fh  phm ph o  J  p h o _

P h  = 0.03 

A Pah := P h  Phi

A Pah = 2.957 x 10
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The hot side satisfied the pressure drop constraints but the cold side did not satisfy 
the pressure drop constraints 5 kpa
we will recalculate Gc and recalculate the j  colburn factor due to diffrent Re

Gc :=
[(2  Pci-pci) 0 .01] '

0.5

(1 - 4. KcJ 4. 4  2.f ̂  - ll - (1 - - Kccl -S2
fh  pcm  v p c o  J pco

0.5

Gc = 45.41

G h:=
[(2  Phi-phi) 0 .04] '

0.5

(1 -  oh’  4. K ch) 4  f h c . i i Æ .  4  2.f .  1)  .  (1 -  oh’  -  K4h) f 2 i
fh- phm  \  p h o  J p h o  _

0.5

G h = 23.446

Rec :=
G c-D h

F

Rec = 4.502 x  10

R eh :=
G h-D h

p h

R eh  = 2.125 X 10

jc f is the final value jh f  is the final value for hot fluid

jc f  ;= 3.265 10 

jh f  := 3.275 10
- 3

fc f  ;= 8.704-10
- 3

fh f  ;= 0 .011

^  = 0.375 
fc f

—  = 0.298 
fh f
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Rh :=
1

f |o h h h A h

R h =  1.928 X 10
- 5

Rc
1

r |o h h c A c

Rc = 7.071 X 10

T w f :=

R h
T h re f +  | —  | T c re f 

Rc

1 + ^  
Rc

T w f =581.973

n  := 0.3 -  lo g

n  = -0 .06

jcfc = 3.258 X 10
- 3

m := -0.1

fcfc := fc f
T w f V

T c re f ,

fcfc = 8.671 X 10

fhfc := fh f
T w f \

T h re f J
0.81

fhfc = 0.01
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hc,jcfc--2îa^.io’
Prc

0.66666

+
h c  = 195.696

G h = 23.446

h h :=  j h f — 10^

Pr h
0.66666

h h  = 103.437

le : = -------5
2

le = 3.01 X 10

me :=
2 h c

k-5

k := 200

me = 113.467

k here is the thermal conductivity of fin Material 

tanh(m c-lc)
r|fc :=

m c lc

r|fc = 0.963 lc=lh for the same geometry only

th := ------ 5
2

lh =  3.01 X  10
- 3

m h :=
2 h h

k-6

m h = 82.493

nfh := tanh(m h-lh)

m h-lh

f|fh  = 0.98
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Arc := 0.769

r|oc  := 1 -  ( l -  r)fc)-A rc

Tjoc = 0.971

r |o h  := 1 -  ( l -  r|fh) A rc

r |o h  = 0.985

U :=
1 1 

+
riochc Tiohhh

U = 66.315

20 C pc N TU , 8
A c : = --------------------- 10

U

A c = 568.572

A h  := 568.572

20
A o c := —  

Gc

A o c = 0.44

A u 20A o h  := —  
Gh

G h = 23.446

A o h  = 0.853

h p D h 

8(b  +  a)

+

a c  = 0.351
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crh := 0.351

A frc
A oc

a c

A frc = 1.254

A frh  :=
A o h

a h

A frh  = 2.43

Lc
D h-A c

4 A o c

Lc = 0.926

L h ;=
D h A h  

4  A o h

L h = 0.478

L stack  :=
A frc

Lh

L stack  = 2.621

Pressure drop Check

K ec := 0.38 K cc := 0.5 K ch  := 0.52 K eh  := 0.35

Pc
Gc

2 P ci pci fh  pcm  V p co
-  1 a c  -  Kec.

p co _

Pc = 8.206 X  10 

APac := Pc Pci

- 3

APac = 4.103 X 10
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P h  :=
Gh

2 Phi- p h i
(l-ah ^  + K j  + f h f c - : ^ + 2 - f - P ^

fh  phm  ph o
-  ( l  - a h ^ - K e h )

p h o .

P h  = 0.039

P h  = 0.039 

A Pah := P h  Phi

lAPah = 3.871 x 10

V f := Lc-L h-L stack

V f = 1.161

Pcc :=
APac-me 

pcm

Pcc = 1.505 X  10

P h h  :=
A Pah-m h

phm

IPhh = 5.998 X 10

Very Good Geometry
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