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ABSTRACT

An ARIMA-Model-Based Approach with Hazard Area for the Probability of 
Volcanic Disruption of the Proposed High-level Radioactive Waste 

Repository at Yucca Mountain, Nevada, USA

by

XiaoJuan Liu

Dr. Chih-Hsiang Ho, Examination Committee Chair 
Professor o f Mathematical sciences 
University o f Nevada, Las Vegas

An interesting extension o f advanced time-series analysis techniques is introdueed into

the domain of voleanological data exploration. A new and innovative use o f the well-

known ARIMA method for modeling the reeurrenee rate of volcanism ranging from

simple Poissonian voleanoes to those showing cyelie trends is presented. Speeifieally, we

propose a new tool to fingerprint the eruptive behavior of a volcano, which also links

some modeling tools o f two o f the most developed areas in the literature of statistics:

stochastic processes and time series. Valuable modeling and eomputing insights are

discussed using a data set from the volcanic database at Yucca Mountain, Nevada, a

potential site for an underground geologie repository o f high-level radioaetive waste in

the USA.
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CHAPTER 1 

INTRODUCTION

The application of statistical methods to volcanic eruptions is put onto a sound 

analytical footing by Wickman (1966, 1976) in a series of papers that discuss the 

applicability of the methods and the evaluation o f recurrence rates for a number of 

volcanoes. Wiekman observes that for some volcanoes, the recurrence rates are 

independent o f time. Voleanoes o f this type are called “ Simple Poissonian Volcanoes.” 

A simple Poisson process had been state-of-the-art (e.g., Crowe et al. 1982; Seandone et 

al. 1993) until a Power-law process coupled with Bayesian analysis were proposed in a 

number of studies related to the volcanic hazard assessment of the Yucca Mountain high- 

level nuclear waste repository site (Ho, 1990, 1991a, 1991b, 1992). Volcanic risk models 

have advanced along related paths over the last decade. A key parameter for volcanic 

hazard and risk assessments is the recurrence rate. This becomes a motivation of 

developing a discrete time series based on the empirical recurrence rates (ERR), which is 

computed sequentially at equidistant time intervals during an observation period (Ho et 

ah, 2006). It is been demonstrated that the time-plot of the empirical recurrence rates, to 

be referred as the “fingerprint” or the “ERR-plot” offers the possibility o f further insights 

into the data and it can provide a valuable technical basis for model developments in 

volcanic hazard and risk assessment studies.

This thesis, firstly, demonstrates how to build a discrete time series based on the
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empirical recurrence rates. Basie modeling theory for the ERR time series and the 

background information o f application to the volcanism at Yucca Mountain (YM) 

regions, Nevada then follow. Secondly, the three stages of identification, estimation, and 

diagnostics along with several practical modeling techniques are presented with the YM 

volcanic data. Thirdly, hazard area (Ho et at., 2006) and probability o f volcanic 

disruption o f the proposed high-level radioaetive waste repository at Yucca Mountain are 

calculated. General pattem-elassification, the potential impacts of this work, and other 

areas o f application are noted.
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CHAPTER 2

METHOD AND BASIC THEORIES

2.1 Time Series Based on the Empirieal Recurrence Rates 

Let be the time of the n ordered eruptions during an observation

period (tg ,0) from oldest to youngest. Then a discrete time series {z,} is generated 

sequentially at equidistant time intervals t^+h,  ..., t^+ih,  ..., f + N h ( = 0  =

present time). If is adopted as the time-origin and h as the time-step, then z, can be 

regarded as the observation at time, t = t ^+l h ,  for the volcanism to be modeled. A key 

parameter, most sought after by the modelers of volcanic hazard and risk assessments, is 

the recurrence rate of targeted volcanism worldwide. Therefore, a time series of the 

empirieal reeurrenee rates is proposed and is defined as follows:

Zg = rig/ i h  = total number o f eruptions in (tg, + Ih) ! Ih ,

where ^=1, 2, ..., N. Note that evolves over time and it is simply the MLE of the 

mean, if  the underlying process observed in (tg, tg +ih)  is a simple Poisson process. The 

time-plot of the empirieal recurrence rate (ERR-plot) offers the possibility of further 

insights into the data. Also, suppose, starting at time T , that a value Zj.̂ ,̂ A: > I is needed

to be predicted based on the sample observation (z ,,...,z ^ )o f an ERR time series. This 

forecast is said to be made at (forecast) origin T for lead time (or forecast horizon) k . In
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a regression situation, let X  denote the time index, z the response values, and then use 

the fitted regression model to obtain z^^^. However, a regression model assumes that the

observations are independent and this is not a reasonable assumption for a process that 

evolves over time. Thus the ARIMA class of models is introdueed.

2.2 ARIMA Model

Autoregressive integrated moving average (ARIMA) models, proposed by Box and 

Jenkins (1976), are mathematical models of persistence, or autocorrelation, in a time 

series. ARIMA models allow us not only to uncover the hidden patterns in the data but 

also to generate forecasts and they predict a variable’s present values from its past values.

ARIMA modeling involves three stages. The first stage is to identify the model. 

Identification consists o f specifying the appropriate model (AR, MA, or ARMA) and 

order o f model. Identification is sometimes done by looking at plots of the sample 

autocorrelation function (ACF) and sample partial autocorrelation function (PACF). 

Sometimes identification is done by an auto fit procedure -  fitting many different 

possible model structures and orders and using a goodness-of-fit statistic to select the best 

model.

The second stage is to estimate the order o f the model. At this stage, the coefficients 

are estimated so that the sum of squared residuals is minimized.

The third stage is to check the model. This step is also called diagnostic checking. 

One o f the two important elements o f checking is to ensure that the residuals of the model 

are random and normally distributed; the other is to ensure that the estimated parameters 

are statistically significant. The fitting process is usually guided by the principle of
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parsimony, by which the best model is one who has fewest parameters among all models 

that fit the data.

Definition Stationarity and white noise ( Pena et ah, 2001)

The assumption of stationarity has various forms and we state first the weak form, that

1. E(z,) = /i, is constant for all t

2. Var(z, ) = cr̂  is constant for all t

3. Cov(z,_^, zQ = depends only the separation lag k and not on t

The sequence  ̂ is the autoeovariance function o f the series and, dropping the suffix z

for simplicity, = ŷ  / ŷ  is the autocorrelation function. Strict stationarity o f a time

series means that the probability density functions of (z ,..., z,+^) and (z, ,..., z, .̂ )̂

are o f identical forms for any arbitrary choice o f the integers (t, , k). In practice, this is

saying that the overall behavior of the series remains the same over time. Also, a 

stationary time series (mean = 0) for which there is no autocorrelation is known as white 

noise.

ARIMA models can be expressed by a series of equations. One subset o f ARIMA 

models is called autoregressive, or AR models. The name autoregressive refers to the 

regression on self (auto). An AR model describes a time series as a linear function o f its 

past values plus a noise term . The order o f the AR model shows the number of past

values included. The simplest AR model is the first-order autoregressive, or AR (1) 

model. The equation for this model is given by

where t = 1, 2,..., A7,z, is a stationary zero-mean time series. We can see that the AR (1)
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model has the form o f a regression model in whieh is regressed on its previous value, 

and the error term is analogous to the regression residuals and represents a “white

noise” (with mean 0 and variance ) process.

The moving average (MA) model is another form o f ARIMA model in whieh the time 

series is described as a linear function o f its prior errors plus a noise term g ,. The first- 

order moving average, or MA (I), model is given by

z,

where t = 1, 2,..., N  \ z, is a stationary zero-mean time series; g,, are the error terms

at time t and t-1 ; and 6  is the first-order moving average coefficient.

The basic AR (I) and MA (I) models are insufficient to describe the autocorrelation 

structure o f time series in most cases. For the more complex situations, there is a general 

Box-Jenkins ARIMA model, built on the simpler AR (1) and MA (I), may be more 

appropriate for time series data. They are contained in many books and are summarized 

in the Appendix.
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CHAPTER 3

APPLICATION

3.1 Data

In the Nuclear Waste Poliey Aet o f 1982, the US Congress directed the Department 

of Energy (DOE) to investigate potential sites for the location o f an underground 

geologic repository to contain the growing volume of high-level radioaetive waste. In 

1987, Congress amended the Aet, directing DOE to study only Yucca Mountain (YM), 

Nevada, USA. As the first US DOE nuclear program subject to external regulation, the 

YM Site Characterization Project is one o f the most closely reviewed programs ever 

undertaken by the federal government.

The following application is motivated by the recent developments in connection with 

the studies of volcanic risk to the proposed high-level radioaetive waste repository at

YM. We commence the investigation with an YM database containing 33 dates (Smith et

ah, 2002, and references therein). Quaternary events [1.6 Ma, 0) in the YM region 

include:

(1) 0.08 Ma Center: Lathrop Wells

(2 ) 0 .4  M a C enters (2  even ts): S leep in g  B utte C on es

(3) 0.9 Ma Centers (2 events): Little Cone

(4) 1.0 Ma Center: Black Cone
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(5) 1.0 Ma Center: Red Cone

(6) 1.2 Ma Center: Northern Cone

Pliocene voleanic events [5.3 Ma, 1.6 Ma) in the YM region include:

(1) 2.7 Ma Center: Buckboard Mesa

(2) 3.7 Ma Centers (2 events): Pliocene Crater Flat

(3) 3.7 Ma Centers (5 events): Aeromagnetic buried centers

(4) 4.8 Ma Center: Thirsty Mesa 

Post-12-Ma events [12 Ma, 5.3 Ma) in the YM region include:

(1) 6.8 Ma Centers (2 events): Basalt o f Nye Canyon

(2) 7.2 Ma Centers (2 events): Basalt of Nye Canyon

(3) 8.0 Ma Center: Basalt of Rocket Wash

(4) 8.5 Ma Centers (2 events): Basalt of Paiute Ridge

(5) 8.7 Ma Center: Basalt o f Scarp Canyon

(6) 8.8 Ma Center: Basalt o f Pahute Mesa

(7) 9.0 Ma Center: Basalt of Pahute Mesa

(8) 9.1 Ma Center: Basalt of Pahute Mesa

(9) 10.0 Ma Center: Solitario Canyon Dike

(10) 11.0 Ma Center: Jackass Flat basalt

(11) 11.0 Ma Center: SE Crater Flat basalt

(12) 11.2 Ma Center: Jackass Flat basalt

(13) 11.2 Ma Center: SE Crater Flat basalt

A very important issue in the sensitivity analysis is to specify the observation 

period, (tg, 0), in modeling the volcanic history at YM. All the dates were recorded later
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than 12 Ma, which is adopted as time-origin for the following tests analysis. The 

aggregated volcanie eruptive episodes are presented by a dot plot (Figure lA). It is elear 

that the dot plot has limited value in delivering the information behavior presented by the 

data.

•  # m # # # # # #
# # # « # #  # # # # • # # e #  #

12Ma lOMa 8Ma 6 Ma 4Ma 2Ma present

Figure lA  Dot plot of raw data

# # # • • • # # # ### # # # # #

##### # #
### # # # # # #

l2Ma lOMa SMa 6Ma 4Ma 2Ma Present

Figure IB Dot plot of the smoothed raw data

For further development, data smoothing techniques are considered. The most 

common technique is “the moving average smoothing” (Kutner et al., 2004), which uses 

the mean o f the adjacent z values to obtain the smoothed values. This smoothing 

technique, using 3 adjacent z values, was first applied to the raw data and the result is 

displayed in Figure IB. The ERR-plot based on the smoothed raw data is shown in Figure 

1C. Note that: (1) the ERR-plots presented in this thesis are using 12.0 Ma as the time- 

origin and 0.1 m.y. for the time-step (a total of 120 time-steps); (2) we keep the first and 

the last values o f the original data after smoothing. So, the total number o f the time steps
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remains the same; and (3) for the sake of simplicity, the unit of the time series is 

consistently presented as annual rate (number of eruptions per year). In contrast, the 

process was reversed to smooth the time series produced directly from the raw data 

(Figure lA), and the resulting ERR-plot is displayed in Figure ID. Clearly, there is a 

similarity in their patterns. However, the smoothing technique appears to be more 

effective in Figure ID than Figure 1C. Therefore, the data based on the smoothed ERR- 

plot (Figure ID) are used for further model development.

10 Ma 5 Ma Present

3.0E-06- Time

2.5E-06-

2.0E-06-

Lathrop Wells 
(0.08 Ma)

t.OE-06-

5.0E.07-

Time - Series

200 40 60 100 12080

Figure 1C ERR-plot for the smoothed raw data
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10 Ma 5 Ma Present

3.5E-06 - Time

3.0E-06

2.5E-06 -

Lathrop Wells 
(0.08 Ma)

eu

1 .5E -06-

l.O E -06-

5.0E-07 -

O.OE+00 - Time -Series

1200 20 60 80 10040

Figure ID Smoothed ERR-plot using the raw data

3.2 Pattern Classification via ARIMA

3.2.1 Plotting Data

The ERR-plot, exhibited in Figure ID starts with 7 zeros due to the selected time- 

origin, which causes a spike at lag 8. Therefore, a revised time series excluding the first 

seven data points (Fig. 2A, with 113 time-steps) is used for further analyses.

3.2.2 Ljung-Box Test for lack o f fit in time series models 

Ljung-Box Test, proposed by Ljung and Box (1978), is commonly used in ARIMA 

modeling for checking whether the residuals or noise sequence o f a fitted model are 

independent and identically distributed random variables (iid). It is based on the 

autocorrelation plot, and it tests the overall independence based on a number of lags. 

Because o f which, it is often referred to as a portmanteau test. More formally, the Ljung- 

Box test can be defined as follows.

//(, : The sequence data are iid

11
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: The sequence data are not iid

m

The test statistic is Q{r) = n{n + 2 ) ^  (« - 2 
k

k=\

where , the estimated autocorrelation at lag k
/=A +l /  /=1

n -  sample size

m -number o f lags being tested (As a rule o f thumb, the sample ACF and PACF 

are good estimates o f the ACF and PACF of a stationary process for lags up to 

about a third of the sample size.) 

ô],...,â„ are the residuals after a model has been fitted to a series z,,...,z„ ; if  no

model is being fitted, then â, ,...,a„are the “mean corrected” series of

For large n , the distribution of Q{r) is approximately , under the null hypothesis,

where p  + q\s  the number of parameters of the fitted model. The hypothesis of iid is

rejected if  g  > X]-a-.m-p-<i level a  , and therefore, there is dependence among the

sequence data, or the sequenee data do have sample autocorrelations significantly 

different from zero.

The sample value o f the Ljung-Box statistic g  with m = 20 is 282.6 for the series data 

z,,...,z„ based on Figure ID. The corresponding p - v a l u e  displayed by ITSM 

(Brockwell and Davis, 2002) is 0.000 < 0.05. Therefore, the hypothesis of iid is rejected 

at level 5%, which implies that the series are not stationary and there is significant 

evidence that there is autocorrelation among the z. 's .

12
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3.2.3 Differencing

Differencing is a data processing step, which attempts to de-trend to control 

autocorrelation and achieve stationary by subtracting each datum in a series from its 

predecessor. For example, single differencing is used to remove linear trends; double 

differencing is used to remove quadratic trend. Furthermore, the volcanism displayed in 

Figure 2A exhibits seasonal eomponent (or seasonality, a statistical term) with peaks 

occurring at the following time steps: 11, 36, 54, 85, and 113. This distinctive signature, 

marked by systematic peaks and troughs, can be described as cyclical volcanism with a 

gradually stabilizing period o f approximately 25 time-steps or 2.5 m.y. In order to 

remove this seasonal component with a period approximately equal to 25 from the series 

of Figure 2A, {z,}, we generate the transformed series ( differencing at lag 25),

Note that with each degree of differencing, the time series is shortened by one. Figure 2B 

shows the transformed series by differencing at lag 25. Inspection of the graph (Figure 

2B) suggests a further differencing at lag 1 to eliminate the remaining trend. Once the 

apparent deviations from stationarity o f the data have been removed, the sample mean is 

then subtracted from each observation o f the twice-differenced series to generate a 

“mean-corrected” series. The resulting series is now stationary with zero mean and is 

displayed in Figure 2C. Note that a full analysis that allows for changing periodicity is 

beyond the scope of this thesis.

13
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3.0E-06 -

1132.8E-06 -
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2.4E-06 -
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2.0E-06 -

1.8E-06-

1.6E-06-

Time - Step

20 40 60 80 100 120

Figure 2A ERR-plot after dropping zeros

1.2E-06-

l.OE-06-

(.OE-07

2.0E -07-

-2.0E-07 -

-4.0E-07 -

-6.0E-07 -

-8.0E-07 - Time - Step

40 60 100 12080

Figure 2B ERR-plot after differencing at lag 25 (V jjz)
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2.0E-07 -

55 -2 .0 E -0 7 -

-6.0E-07 -

-8 .0 E -0 7 -

Time - Step-l.O E -06-

100 12040 60 80

Figure 2C ERR-plot for the “mean eorrected” and twiee-differenced data ( VV̂ jZ )

3.2.4 Sample ACF and PACF 

After a time series has been stationarized by differencing, the next step in fitting an 

ARIMA model is to determine AR or MA terms, needed to correct any autocorrelation 

that remains in the differenced series. This can be tentatively done by looking at the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of the 

differeneed series. The sample ACF plot is merely a bar chart o f the coefficients of 

correlation between a time series and lags o f itself. The PACF plot is a plot o f the partial 

correlation coefficients between the series and lags of itself. The sample ACF o f the data 

are shown, respectively, in Figures 3A, 3B (after differencing at lag 25), and 3C (after 

differencing twice). A persistently high sample ACF signals the need for differencing. 

Figure 3A supports the above argument and suggests that seasonal differencing with 

period 25 might work. The sample PACF of the data shown in Figures 4A, 4B

15
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(differencing at lag 25), and 4C (after differencing twice) is another convenient tool for 

tentative model specification. A low order moving-average model is suggested by 

sample ACF exhibiting a small number of large values at low lags, and a low order 

autoregressive model is suggested by sample PACF marking a similar “cutting o ff ’ 

pattern.

O
<

rmrTT

Lag

O
<

E - . 2 0 -  
ro  (/)

Figure 3A Sample ACF of the series data z

11
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10 15 20  25 30 35

Figure 3B Sample ACF o f the series data after differencing at lag 25 ( V,5Z )
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Figure 4A Sample PACF of the series data z
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Figure 4C Sample PACE o f the series data after differencing twice ( )
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3.2.5 Entering a Model 

The horizontal lines on the graphs o f the sample ACF and sample PACF are the

bounds ±1.96/ ViV (N = the sample size). If the data constitute a large sample from an 

independent white noise sequence, approximately 95% of the sample autocorrelations 

should lie between these bounds. As a rough guide, if  the sample ACF falls between the 

plotted bounds ± \.9614 n  for lags h > q, then an MA (q) model is suggested, while if 

the sample PACF falls between the plotted bounds ±1.96/V/V for lags h > p, then an 

AR ip) model is suggested. If neither the sample ACF nor sample PACF “cuts o ff’ as 

previously described, a more refined model selection technique is required. Even if the 

sample ACF or sample PACF does cut off at some lag, it is still advisable to explore 

models other than those suggested by the sample ACF and sample PACF.

Figures 3C and 4C show the sample ACF and sample PACF of the time 

series VVjjZ,. These graphs suggest considering an MA model o f order 2 since sample

ACF seems to cut off at 2, or alternatively an AR model of order 3 since sample PACF 

seems to cut off at 3. In other words, these characteristics o f the sample ACF and sample 

PACF suggest models without a seasonal component; the ARIMA 

{p, 1, g) X (0 , 1 , 0 ) 2 5  could be fitted to the time series z , .

3.2.6 AIC, BIC and AlCC Statistics 

The AICC statistic, the bias-corrected version of the AIC statistic (Akaike, 1974), is 

the information criterion used in this thesis to help search for an appropriate model in the 

ITSM package (Brockwell and Davis, 2002). Smallness of AICC value is indication of a 

good model, but it should be used only as rough guide. Final decisions between models 

should he based on maximum likelihood estimation. Model-selection statistics other than
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AICC are also available in ITSM. A Bayesian modification o f the AIC statistic known as 

the BIC statistic (Schwarz, 1978) is evaluated at the same time as the AICC, and it is 

used in the same way as the AICC. Each information statistic is defined as following,

=A /log(T ^+2r  

= # l o g ( T ^  + 2 7 - A r / ( # - r - l )

BICp^ = N \o g ô ]  + r lo g A

where à] is the maximum likelihood estimator of a ] , and r = p  + q + \ is the number of 

parameters estimated in the model, including a constant term. The second term in all 

three equations is a penalty for increasing r; so to minimize the values of these criteria is 

to minimize the number of parameters. Therefore, the best model is the model adequately 

describes data and has fewest parameters.

3.2.7 Model Diagnostics 

Models MA (2), AR (3), and several ARM A{p,q) with 0 < p ,q  < 6 are considered 

here to fit the time series . For each model, AICC value was evaluated and a set of

diagnostic plots (not displayed here) including the residual sample ACF and sample 

PACF were produced by the ITSM package (Brockwell and Davis, 2002). After testing 

these models, we narrow down to two models MA(2) and ARMA(1, 1). For the model 

MA(2), ITSM gives the value AICC = -2512 while model ARMA (1 ,1 ) has AICC = - 

2478. Due to the lower AICC value criterion, the final choice o f the model is MA(2). Its 

residual ACF and PACF plots (Figures 5B and 5C) exhibiting no significant spike. The 

portmanteau goodness-of-fit test (Ljung and Box, 1978) is not significant (/? -value =
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0.97), indicating that the residuals (Fig. 5A) are approximately white noise but it is also 

heteroscedastic (it has changing variance). Therefore the ARIMA (0 , l , 2 )x ( 0 , l , 0 )2; 

model, seems to be an appropriate model fo rz ,, and the estimated (MLE) model is 

= 0.8318f,_, + 0.991 lg,_; + g ,, and = 1.034 x 1 O '"

0 . -

Lag

6040 80 100 120

Figure 5A Time plot o f residuals after fitting MA (2) model

21

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.00 ■

.6 0 -

.40

0  .20 
<
1  .0 0 - ■o<n
CC - 20

I  ■  I J L
r  r  r IT

- .4 0 -

- .6 0 -

- 1.0 0 -

Lag

10 15 20 25 30 35 40

Figure 5B ACF of residuals after fitting MA (2) model
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Figure 5C PACF of residuals after fitting MA (2) model
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3.2.8 Forecasting

An ARIMA model (or other time series model) predicts future values o f the time 

series from past values. The forecast function z, = / ( z , z , )  +a, is minimum mean

square error forecast. The first part o f the above equation / (z^_,..., z, ) is a function of the

past values o f the series and it should be determined by the data while the second part 

Û, is a sequence o f independent and identically distributed (iid) variables. This part is also

called noise part, which is independent from previous values and hence it is unpredictable 

from its past values. In some cases, obtaining the structure of the function /  is the main 

objective of the analysis while in other cases our interest is mostly in getting forecasts.

10 M 5IWa P re s e n t  1 M
4.5E -06 - f

T im e

4.0E -06 -

3.5E-06

C< 2 .5 E -0 6 -

2.0E-06 -
La th ro p  W e 

(0 .08  M a)

1.5E-06 -

l.OE-06 -

T im e  - Step

130908 48

Figure 6  ERR-plot with 10 forecasts appended and 95% confidence bounds
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For the data in this thesis, the one-step-ahead forecast (0.1 m.y. from now) for future 

recurrence rate , is 2.8030x10”̂  per year, which should not be linearly used to

predict longer horizons because the reeurrence rate is not constant in this case. For the 

purpose o f pattern recognition, we produce Figure 6  to depict the YM data with 10 

forecasts and 95% confidence bounds appended. The confidence hounds are necessarily 

wider for predictions with longer horizons. They predict a short-term waning trend, 

concluding the present cycle until a new one (trough to trough) commences at about 1 

m.y. later, while maintaining a similar momentum for the long-term forecasting.

Furthermore, a 95% confidence interval, (LB, UB), can be calculated fbrz^_^^, and it

is 2.60x10“̂  per year to 3.00x10”®per year. That is, at the 95% confidence level, the 

model predicts scenarios o f 0 to 3.33 (= 3 .00x120x0.l-3 3 )n ew  events that may occur 

in the next 0 . 1  m.y., which lays a solid groundwork for the probabilistic estimation o f the 

repository site disruption, to be discussed in the next chapter. Apparently, the predicted 

lower bound (LB = 2.60x10”® per year) is not valid in this case and needs to be adjusted 

because the way the ERR is defined depends, effectively, on the eumulative sum of past 

events. Thus, a meaningful lower bound for every future reeurrence rate should be 

adjusted to reflect the maximum of the following two values: the predicted LB and the 

rate calculated by incorporating zero future events. Table 1 shows 10 forecasts with the 

adjusted 95% confidence prediction bounds generated from ARIMA (0,1,2) x (0 ,1 ,0 ) . 

The estimate future recurrence rates peak at the second time-step and decrease all the way 

to the end from there (2.5536 to 2.8450 eruptions per m.y.). Also, the adjusted 95% 

prediction bounds for the next 1 m.y., ranging from 2.5384 to 4.1968 (eruptions per m.y.) 

will be used to bound the probability o f site disruption in Chapter 4.
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Table 1 Ten ERR predictions (first to tenth-step-ahead forecasts) from 
ARIMA(0,1,2) X (0 ,1 ,0 ) 2 5  • the length of time-step is O.lm.y; the numbers

are annual rate x 1 0 ®

Lead time Prediction 95% prediction Lower 
bound (adjusted)

95% prediction 
Upper bound

1 2.8030 2.7273 3.0023

2 2.8450 2.7049 3.2610

3 2.8068 2.6829 3.5066

4 2.7692 2.6613 3.6671

5 2.7321 2.6400 3.7918

6 2.6954 2.6190 3.8952

7 2.6592 2.5984 3.9844

8 2.6235 2.5781 4.0633

9 2.5883 2.5581 4.1341

1 0 2.5536 2.5384 4.1968

Maximum 2.8450

Minimum 2.5536

Mean 2.7076

Median 2.7138
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CHPATER 4

HAZARD AREA AND PROBABILITY OF VOLCANIC DISRUPTION

4.1 Hazard Area

Models that calculate the probability that a new volcano or a dike from a nearby 

eruption will intersect the footprint of the proposed high-level nuclear waste repository 

are generalized by Ho et al. (2006) based on a conceptual model developed for the space 

transportation industry. The proposed hazard area, defined such that every new eruption 

that occurs there will disrupt the repository, plays a fundamental role in developing 

probability models. This hazard area is used not only to hedge the uncertainties in 

predicting patterns o f future volcanic activity, but also to account for the characteristics 

o f a new eruption during the post-closure performance period o f an underground geologic 

repository.

In space transportation industry, the licensing for the execution of a commercial space 

launch and reentry is directed by the US Federal Aviation Administration (FAA) Office 

o f the Associate Administrator for Commercial Space Transportation. This licensing 

process is established to limit risks to public health, public safety, and the safety of 

property, as well as to ensure national security and foreign policy interests of the United 

States.
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Fragment

Person

Casualty
Area

Figure 7 Casualty area for fragment falling vertieally (FAA 2000, Figure 1) rp= radius of 
person ( 1  ft); rf = radius of the fragment

The coneept o f “casualty area” is involved in one of the factors that will be 

considered hy the US government before approving the licensing o f a commercial launch. 

This “casualty area” for each piece o f vehicle debris is determined by finding the area 

where 1 0 0 % of the exposed population on the ground is a casualty, speeifteally defined 

as any human contact with vehicle debris that can cause injury or any exposure to 

explosive pressure 0.25 kg/em2 or greater. A sample ease for determining the casualty 

area for the simplest scenario is demonstrated in Figure? (FAA 2000, Figure 1). For this 

example, the desired casualty area for a vertically falling inert piece of debris is a circle 

whose radius is the sum of the radius o f a circle enclosing the largest cross sectional area 

o f the piece and the radius o f a human being ( 1 . 0  ft).
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Disruptive Event

Hazard Area

Figure 8  Hazard area for a disruptive event (Ho et al., 2006, Figure 2). Circle A 
represents a minimal eircle enclosing the repository; circle B  quantifies the effective size 
(including the associated dike and lava) o f a disruptive eruption; circle C, with radius the 
sum of those of /i an 5 , is the desired area and is referred as “hazard area” in the text

Great similarities are found between volcanic hazard area and those of licensing 

commercial space missions. Thus, the comprehensiveness of FAA’s approach provides 

an acceptable alternative to worldwide modelers of volcanic hazard and risk studies. 

Therefore, the following two-dimensional transformation from Figure 7 to Figure 8  is 

straightforward:

1. The eircle representing a person is replaced with a minimal circle (A in

Figure 8 ) enclosing the repository. This circle may be generalized to an 

ellipse or another irregular shape depending on geologic structures of 

the target sites or other controlling factors.
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2. The eircle depleting a vertically falling inert piece o f debris becomes a

circle (B in Figure 8 ) quantifying the effective size (including the 

associated dike and lava) o f a disruptive eruption. This area is quite 

flexible in providing likely bounds for uncertainties associated with the 

magnitude o f future eruptions.

3. The largest eircle (C in Figure 8 ), with radius the sum o f those of

circles A and B, is the desired area to be referred as “hazard area” in the 

following development.

Knowing that the casualty area for each piece o f debris is the area within which 100% 

of the unprotected population on the ground is assumed to be a casualty. Analogously, the 

hazard area, in a defined volcanic field, is the area where every new eruption will disrupt 

the repository. Hence, the probability o f a volcanic site disruption is equal to the chance 

that a new eruption occurs within the hazard area. Furthermore, repository failure modes, 

justified by geologically meaningful scenarios of a volcanic disruption (or consequence 

models), will facilitate the definition o f the hazard area.

4.2 Probability of Volcanic Dismption 

Assuming that the compliance period is (0, t) , a simple way to represent the 

probability o f site disruption is:

-  P [site disruption event occurs during (0, t) ]

-  P [at least one volcanic event occurs in (0, t) , which disrupts the repository]

= P [at least one event occurs in (0, t) ] x P [events occur within the hazard area]

= (1)
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In general, evaluations o f and P,, in equation (1) depend on the probability

models fitted to the targeted volcanism. For the following parameter estimates, a 

homogeneous Poisson process (FIPP) is assumed to model future eruptions. Therefore, 

For future YM voleanism, the model assumption of an HPP leads equation (1) to (Ho et 

ah, 1991a, and Smith, 1998):

= P [at least one event occurs in (0, t) ]

= 1 - exp (-/It) (2 )

P,, = P [events occur within the hazard area]

= ; r ( r , (3)

Psd = [1 -  exp(-Tt)] X  [ n { r ^  + r ^ f  !  A] (4)

where,

X = reeurrence rate o f the voleanism 

t = observation period

p  = radius of a circle enclosing the repository 

= radius o f a circle quantifying the size o f the eruption 

A  = area o f the defined volcanic field 

The k-step-ahead forecast (Table 1) for future recurrence rate, , (A: = 1,2, ..., 10),

based on ARIMA (0,1,2) x (0,1,0) , will be used to evaluate P^, and consequently, the

probability of site disruption .
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4.2.1 Estimates o f Future Reeurrence Rates and 

For the following development, we assume that the compliance period is 1 m.y. into 

the future. Therefore, the value of t in equation (2) for P̂  is lO \ The confidence bounds 

concluded from Table 1 will be used to estimate the other parameter, X , for P^. The

values are 2.5384 to 4.1968 (eruptions per m.y.). Therefore, assuming that the future 

eruption follows a simple Poisson process, the estimated probability that at least one 

eruption occurs at the YM region during the next 1 m.y. (=T[) ranges from 0.9210 to 

0.9850.

4.2.2 Estimates of

The area o f the actual repository is currently undetermined but is estimated to be 6 - 8  

km^, which prescribes a circle with a radius, » 1.5 km for the hazard area. The area of 

the defined volcanic field, A = 3,532km^, was obtained (Flo et al., 2006) by setting the 

probability of Crowe et al. (1982) to match the base value, r, = 0 . Although the 

soundness of A = 3,532 km^ remains to be challenged, for the sake of consistency, we 

shall use the same value for the following calculations. In addition, the values of 

equivalence” are calculated by Flo et al. (2006) as 1.85 and 6.0 km, respectively, for

P,, =0.01 (Sheridan, 1992) and 0.05 (Ho, 1992), using the same set o f known parameter 

values. Therefore, we shall use 0, 1.85, and 6.0 km for to evaluate/],.
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4.2.3 Probability o f  Site Disruption:

We now are ready to link equation (4) to the two components, and /],, defined in 

equation (1). And the ealeulated results, incorporating all the parameters previously 

estimated, o f the probability of site disruption, p ^^, are summarized in Table 2.

Table 2 Probability o f site disruption {p^ j , during the next 1 m.y.) summary for 3 sizes of
eruption, r,

=0.921 0.985

0 1.842x10"^ 1.97x10"'

1.85 9.189x10'^ 9.827x10"'

6 4.606x10'^ 4.926x10"'

In conclusion, the probability o f volcanic disruption of the proposed high-level 

radioactive waste repository at YM for the next 1 m.y. is bounded by 1.842x10“̂  and 

4.926 X1 0”̂  for ranging from 0 to 6  km.
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CHAPTER 5 

CONCLUSIONS

In this thesis we showed tremendous merits in building a linking bridge between a 

point process and the classical time series via a sequence of the empirical reeurrence 

rates, calculated sequentially at equidistant time intervals. The distinctive technique, 

generating the unique eruptive pattern o f a volcano or a volcanic field, is demonstrated 

with an empirical recurrence rate plot (ERR-plot), designed to fingerprint the temporal 

pattern of the targeted voleanism.

We also presented a strategy for the evaluation and use of “hazard area” based on a 

model developed for licensing commercial space launch and reentry operations in the 

space transportation industry. We assumed that every new eruption that occurs within the 

hazard area would disrupt the proposed high-level radioactive waste repository. Then the 

probability o f site disruption by volcanic activity is equal to the chance that a new 

eruption will occur in the same area.

Autoregressive Integrated Moving Average models (ARIMA) were presented to find 

the best fitting model to predict the future recurrence rates, which were applied to 

calculate the probability of site disruption. The ehosen model is MA(2), whieh has the 

lowest AICC value (= - 2512), and the residuals of this model are approximately white 

noise. The one-step-ahead forecast is 2.8030x10“̂  per year, and the adjusted 95%
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prediction bounds for the annual reeurrence rate are (2.7273x10 ^ , 3.0023x10 *). Along 

with the other parameters’ ( p and A ) estimates, we conclude that the probability of 

volcanic disruption o f the proposed high-level radioactive waste repository at YM for the 

next 1 m.y. is bounded by 1.842x10“' and 4.926x10“'  for ranging from 0 to 6  km.

In summary, time series modeling are well developed and are largely applied in many 

other fields, whieh will greatly facilitate the needs of volcanologists using the proposed 

methods.

34

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX 

ARIMA MODELS

Notation is first presented for a nonseasonal model, and then extended to include seasonal 

components in the model (Heiberger and Teles, 2002).

Nonseasonal Models

Assume z, follows the autoregressive integrated moving average ARIMA (/?,</, g ) 

model ^ (^ )V z , = ^ (^ )g ,,

where jB is the backshift operator; z, = z,_, is used to indicate lagged observations, that 

is, earlier observations o f the same time series.

= ( l - ^ y  ; V is the differencing operator and d is the order of differencing, for

example, V'z, = (l -  5 )% , = z, -  2 z,_, + z,_̂  ;

(j){B) = (\-(l)^B-...-(l)pB^^ , is the autoregressive operator;

B (5) = (l -  Ô B - . . .  -  0^B‘‘ j , is the moving average operator;

is a white noise process with zero mean and var ) = o ' .

Seasonal Models

When there is a seasonal component in the time series, z, is assumed to follow the more 

general multiplicative seasonal ARIMA(j?, d, D, Q)^ model.
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where 5 is the seasonal period o f the time

series;

V f = (l -   ̂ is the seasonal differeneing operator and D  is the order o f seasonal

differencing;

Op (5  ̂) “  “  Oj.B"' - . . .  -  ̂ , is the seasonal autoregressive operator;

@Q ) = ( 1  “  ©1-̂  ̂- . . .  -  @gB^" ̂ , is the seasonal moving average operator.

For various technical reasons, there are certain restrictions on the values that the roots of 

these polynomials may assume. The roots of the four polynomials 

(< ^ (fi) ,0 (5 ),O p (5 ),a n d  must be outside the unit circle (if not, the model is

not stationary and/or not invertible). The polynomials ^{B)  and 0{B)  must have no

roots in common. Likewise, the polynomials d)p(5^) and ©^(5^)  must have no roots

in common. If the polynomials have common roots, these roots can be factored out. The 

reader interested in a deeper analysis o f the basic concepts in time series should consult 

the books by Box and Jenkins (1976), and Box et al. (1994). The identification steps of 

ARIMA(/), d,  q)x(^P, D, g modeling can be difficult and will be demonstrated in the 

applications.
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