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ABSTRACT 

Adaptive Design of Delta Sigma Modulators 

by

Gregory Kenneth Lull

Dr. Peter Stubberud, Examination Committee Chair 
Professor of Electrical Engineering 
University of Nevada, Las Vegas

In this thesis, a genetic algorithm based on differential evolution (DE) is used to 

generate delta sigma modulator (DSM) noise transfer functions (NTFs). These NTFs 

outperform those generated by an iterative approach described by Schreier and 

implemented in the delsig Matlab toolbox. Several lowpass and bandpass DSMs, as well 

as DSM’s designed specifically for and very low intermediate frequency (VLIF) 

receivers are designed using the algorithm developed in this thesis and compared to 

designs made using the delsig toolbox. The NTFs designed using the DE algorithm 

always have a higher dynamic range and signal to noise ratio than those designed using 

the delsig toolbox.
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CHAPTER 1 

INTRODUCTION

Digital radios which use digital signals to transmit information have 

revolutionized radio communications by eliminating most of the noise added to 

information signals during their transmission and reception. Digital radios are often 

implemented with software defined radio which uses software to modulate and 

demodulate transmitted signals. As a result, software defined digital radios can switch 

between different modulation protocols on the fly, and thus, these types of radios can use 

the same hardware to transmit and receive many different types of transmissions.

Digital radio receiver architectures such as the zero intermediate frequency (IF) 

(ZIF) receiver and the very low IF (VLIF) receivers use analog to digital converters 

(ADCs) to convert transmitted signals into digital signals which can be demodulated 

using a software defined radio. Unlike superheterodyne architectures that perform 

channel filtering and automatic gain control (AGC) after the first down conversion and 

digitize the received signal after a second down conversion, ZIF and VLIF architectures 

digitize the received signal after a single down conversion and perform AGC and channel 

filtering digitally. In ZIF and VLIF architectures, the ADCs, which digitize the receiver’s 

ZIF and VLIF signals, must have a larger dynamic range and better linearity than ADCs 

in superheterodyne receivers. Also, because ZIF and VLIF receiver architectures
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typically provide little or no filtering in front of their ADCs, their ADCs need to provide 

their own anti-aliasing filters, and therefore, typically sample at higher rates than ADCs 

in superheterodyne receivers. Because delta sigma modulators (DSMs) can be designed 

to have large dynamic ranges, sample at very high rates, provide inherent anti-aliasing 

filtering, and are smaller and consume less power than many other ADC architectures 

with similar specifications, DSMs are a natural choice for ADCs in ZIF and VLIF 

receivers.

A DSM can be described by its signal transfer function (STF) and noise transfer 

function (NTF). A DSM’s STF is the transfer function between the DSM ’s input and 

output. A DSM’s STF is often designed to be an anti-aliasing filter that passes in-band 

signals and attenuates signals that can alias into in-band signals. The DSM’s NTF is the 

transfer function between the DSM’s quantizer and the DSM’s output, and it shapes the 

DSM’s quantization noise so that it is minimal in the signal band. Figure 1 shows an 

example of a STF and a NTF for a 2"*̂  order lowpass DSM where STF(z) = and 

NTF(z)  = (1 -  z~^Ÿ ■ As shown in Figure 1, the STF passes low in-band frequencies and 

attenuates higher frequencies whereas the NTF attenuates the quantization noise at the 

low inband frequencies.

DSM’s NTFs are typically designed using traditional highpass filters such as 

Butterworth and Chebychev filters. However, for VLIF receiver architectures, a DSM ’s 

NTF is only required to suppress quantization noise within the signal band, which is 

centered at the low IF frequency. Although a traditional notch filter could be used, a 

notch filter is not necessarily an optimal choice for a DSM ’s NTF because a notch filter 

would pass the out of band frequencies about DC, whereas the DSM NTF exhibits no
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particular requirements for the out of band frequencies about DC. As a result, using a 

notch filter for the NTF of a DSM in a VLIF receiver can lead to a suboptimal design.

-40
NTF
STF

-50

0.15 0.25 0.350 0.05 0.1 0.2 0.3 0.4 0.45
Normalized Frequency 

Figure 1: NTF and STF for Typical Second Order DSM

In this thesis, a genetic algorithm is used to generate DSM NTFs that outperform 

those generated by traditional filter techniques. This algorithm is based on a differential 

evolution algorithm [1], and unlike previous techniques, this algorithm does not make 

assumptions about the filter’s passband shape or pole-zero placements. The resulting 

NTFs are compared to baseline designs provided by the delsig toolkit in Matlab [2]. 

Theses NTFs are then used to design several DSMs which are simulated extensively to 

compare stability, signal to quantization noise ratio (SQNR), and dynamic range (DR).
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CHAPTER 2

REVIEW OF RELATED LITERATURE 

Radio technology has driven innovation since the first demonstration of wireless 

radio communication in 1893 by Nikola Tesla. The race to develop more reliable 

communications lead to the tuned radio frequency receiver and then the superhetrodyne 

receiver, which dominated the radio market until software defined radio architectures 

were developed in the 1990’s [3]. In the later part of the 20* century, digital 

communications increased in popularity due to their robust error correction, noise 

suppression, cost, and power efficiency. To reduce the cost of software designed radio, 

they are often implemented using direct conversion receivers such as ZIF and VLIF 

receivers. These receivers typically require higher performance ADCs and digital to 

analog converters (DACs). Delta sigma modulators (DSMs) are a natural choice for 

digital radio receiver ADCs because of their small size, low power consumption and 

inherent antialias filtering. Additionally, bandpass DSMs (BPDSMs) are a natural choice 

for very low intermediate frequency (VLIF) receivers because their NTF’s stopband can 

be tuned about the VLIF.

Traditional techniques for designing DSMs generally use analog filter design 

techniques, which have been optimized for band select filters but not NTFs. Genetic 

Algorithms (GA), however, can be optimized to generate NTFs and have been
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successfully used to design HR filters [4] with constraints such as constant group delay, 

linear phase, and arbitrary magnitude constraints [5]. Another advantage of GAs is their 

ability to optimize many parameters at once. Because GAs can optimize many 

parameters at once, they can often determine solutions that are superior to those 

determined using traditional approaches. As a result, GAs are well suited for designing 

DSM NTFs. A specific GA, called Differential Evolution (DE), has been shown to be 

particularly well suited for filter design [4].

2.1 Tuned Radio Erequency Receiver

In 1916, the Swedish-American Ernst Alexanderson patented the Tuned Radio 

Erequency Receiver (TRE). Figure 2 shows a block diagram of the basic TRF 

architecture. In this architecture, the circuits for the radio frequency (RF) amplifier and 

Tuned Filter stages are separately and manually tuned to the frequency of interest. 

Manually tuning each stage separately has several difficulties, such as oscillations 

between the tuned circuits.

Antenna

Tuned Filter Audio Amplifier
Tuned 

RF amplifier

Figure 2: Tuned Radio Receiver Architecture
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2.1.2 Super Heterodyne Receiver

The Super Heterodyne (superhet) receiver resolves many of the problems 

associated with the TRF architecture. Figure 3 shows a simple block diagram of a typical 

superhet receiver. As shown in Figure 3, the signal from the antenna is amplified by a 

tuned RF amplifier. Much like the TRF architecture, the RF amplifier selects a desired 

frequency, cOc, using a manually tuned circuit. The resulting signal is mixed with a local 

oscillator (LO), which is tuned simultaneously with the RF amplifier to the frequency a>c 

+ wiF, where co/f is the Intermediate Frequency (IF). Because a superhet receiver tunes 

the RF amplifier and LO together, superhet receivers generate a fixed IF. As a result, a 

fixed filter, fixed tuned amplifier and fixed demodulator can be used to demodulate the 

signal. For example, in a typical Amplitude Modulation (AM) receiver, the IF is usually 

chosen to be 455 kHz. Therefore, for a tuned frequency, coc, of 800 kHz the LO would be 

tuned to cu, + 455kHz, or 1255 kHz. This LO signal is mixed with the output of the RF 

amplifier to produce a signal with a carrier frequency of 455 kHz. This IF signal is 

filtered by a fixed filter and then amplified with a fixed IF amplifier. The resulting signal 

is then demodulated and sent to an audio amplifier. Because the LO and RF amplifiers 

are tuned together and because the IF is fixed, the superhet receiver is a much simpler 

and robust architecture than the TRF receiver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Local Oscillator 
tunable to

Antenna

RF amplifier with 
bandpass filters 

tunable to desired w,

Fixed
FilterFrequency Mixer

IF Amplifier Demodulator Audio Amplifier

Figure 3: Typical Super Heterodyne Receiver

2.1.3 Zero Intermediate Frequency (ZIF) and Very Low Intermediate Frequency (VLIF)

Unlike a superhet receiver that mixes the RF signal to an IF before mixing it to 

DC and demodulating it, a zero IF (ZIF) receiver directly mixes the RF signal to DC. A 

ZIF receiver is so called because its IF is at DC (or zero frequency). Because the IF is at 

DC, the demodulator circuitry operates at lower frequencies than superhet demodulators. 

While ZIF demodulators are often cheaper and consume less power than their superhet 

counterparts, ZIF circuits are adversely affected by distortion effects and low-frequency 

noise, such as flicker noise.

Unlike ZIF receivers that mix their IF signals directly to DC, very low IF (VLIF) 

receiver architectures mix the reeeived signal to a low IF just above the flicker noise. 

Circumventing this low frequency noise effect can increase the overall signal to noise 

ratio of the system compared to a ZIF receiver. The use of a VLIF introduces a greater
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level of design complexity to the receiver, but because the VLIF is still very close to DC, 

VLIF demodulators operate at frequencies similar to ZIF architectures and have costs and 

power consumption similar to ZIF demodulators.

2.1.4 Complex IF Receivers and Quadrature Signals

Complex IF Receivers use a quadrature mixer to create a quadrature signal which 

consists of a real, or in phase (I), signal and an imaginary, or quadrature (Q), signal. 

Quadrature signals are used in many applications, including digital communication 

systems, radar systems, and antenna beamforming [6]. A system that uses quadrature 

signals can operate at half the sampling rate that would be required for a system that uses 

just real signals. Additionally, in systems that use quadrature signals, the information 

about the phase of the signal is maintained and easily accessible.

Figure 4 shows a block diagram of a quadrature system. The I and Q signals are 

generated by mixing the RF signal low noise amplifier (LNA) with the complex signal 

(or equivalently the signals sin(2;^.t) and cos(2;r/0) [6]. For example, if x(t) is 

mixed with , then

= x ( t ) c o s (2 ^ j )  + j  ■ x(t)sm(27tfj) 

where x ( t ) c o s (2 ^ j ) i s  the real, or in phase, signal and x(t)5m (27fj)  is the imaginary, or 

quadrature, signal. The signals processed by the quadrature mixers are then passed 

through an anti-aliasing lowpass filter and then converted into digital I and Q signals. The 

signals can be then be demodulated digitally [6].

In superhet architectures, the channel filters act as anti-aliasing filters. In the 

VLIF architectures, the LPFs after the mixers act as anti-aliasing filters. As a result, high 

order filters are required which can be expensive and difficult to fabricate.
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X,(t)

‘received

Quadrature
Mixer

q(n)

90°

LPF 
and 

AA Filter
A/D

LNA

LPF 
and 

AA Fiiter
A/D

Figure 4: Typical block diagram of a quadrature system

2.2 Analog to Digital Converters

As previously stated, modem receivers have multiple design requirements that are 

met by converting the signal to digital as soon as possible. Digital signal processing has 

the advantage of being programmable, cheap, and more quickly designed than 

comparable analog systems. However, in many receiver systems, the ADC is a 

significant source of noise [7]. Thus, improving the signal to noise ratio (SNR) of the 

receiver’s ADCs can improve the receiver’s SNR. Many different ADC architectures are 

available.

2.2.1 Parallel ADCs

A Parallel (or flash) ADC converts an analog signal to a digital signal by 

comparing the analog signal to a set of references. For example, in an 8-bit architecture, 

2 * - l  comparators compare the incoming analog voltage signal with 2 ^ -1  reference 

voltages which are generated using a resistor string. For example. Figure 5 shows a 3 bit 

flash converter that has been designed to convert the analog voltages ranging from 0 to 8 

volts. The resistor string in Figure 5 sets the reference voltages 1 volt apart. When the
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analog input voltage v, is less than 0.5 volts, all the comparators are low. As the voltage 

increases, more comparators switch high. The encoding logic encodes the digital outputs 

from the comparators into an appropriate digital code. The flash ADC is classified as a 

Nyquist converter because it can sample analog signals at their Nyquist frequency. In 

practice, flash converters usually sample at a rate slightly higher than the Nyquist rate. 

Flash converters are also used as building blocks for other architectures.

Although the flash converter uses a fast and simple method to digitize analog 

signals, their performance is limited by the precision of the components used to make 

them. For example, resistor mismatch is a continuing problem in current CMOS 

processes. Also, comparators in this architecture must be able to accurately switch on 

voltages within half of the least significant bit (LSB). Process variations in doping 

density, resistance, capacitance, and carrier mobility limit the accuracy of comparators. 

Currently, CMOS technology limits this precision to about 0.02% [7].

To illustrate how this limits a flash converter, consider an A-bit flash converter 

that has 2^ comparators. Each comparator’s threshold is separated by {dynamic range) * 

2'^ volts. Because CMOS processes limit a comparator’s precision to 0.02%, the voltage 

between each voltage reference cannot change by more than 0.02%. 2^ resistors will 

produce 2'^ voltage reference increments. Setting 2‘̂  -  0.0002 implies that A ~ 12, 

which is largest number of bits that can be used before the reference voltages generated 

will be less than 0.02%. This upper limit is referred to as the effective number of bits 

(ENOB); that is, the digital circuitry  will not be capable of resolving m ore than a 12 bit 

flash converter.

10
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Figure 5: Block Diagram of a Simple Flash Decoder
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Even though CMOS processes are becoming more accurate, other concerns make 

the flash converter problematic for use in modern systems. An N-h\t converter requires 

2^ comparators and 2^ resistors. As a result, the size and power consumption of the flash 

ADC grows exponentially with the number of bits. This exponential growth limits their 

use to applications that require 8 bits or less.

2.2.2 Delta Sigma Modulator

The delta sigma modulator (DSM) is an ADC which can attain a high ENOB by 

using a flash converter with a smaller number of bits, but at the cost of increased 

sampling frequency [8]. Implementations in the continuous-time domain are referred to 

as continuous time DSMs and use integrators. Implementations in the discrete-time 

domain are often referred to as discrete-time DSMs and use an accumulator instead of an 

integrator. Figure 6 shows a first order continuous-time DSM and Figure 7 shows a first 

order discrete-time DSM. The difference (the delta) of the DSM ’s input and DSM ’s 

output feedback through the DAC is integrated, or accumulated, (the sigma) and fed 

through an ADC. Often a DSM’s ADC is a one bit converter which can be implemented 

using a clocked comparator. A DSM is classified as an oversampled converter it

samples at a frequency that is much higher than the Nyquist rate. The oversampling ratio 

(GSR) is the ratio of a DSM’s sampling frequency to the signal’s Nyquist frequency. The 

GSR for a DSM is typically between 8 and 1024.

12
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ADC

DAC

Figure 6: Continuous Time DSM

Accumulator ADC

DAC

Figure 7: A Discrete-Time DSM

Because ADCs are nonlinear components, DSMs are nonlinear systems. 

Furthermore, the memory elements inherent in ADCs cause DSMs to be dynamic, time 

varying systems. These properties make mathematical analysis of DSMs difficult. 

Analysis of DSMs in the time domain is a useful exercise to help understand the basic

13
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Figure 8: Ideal DSM input and Output

mechanics of a DSM, but more insight can often be gained by using a linearized model 

and examining the DSM ’s STF and NTF.

2.2.1 Time Domain Analysis of the DSM

To illustrate some of the properties of the DSM, consider the bitstream produced 

by the first order DSM shown in Figure 7 where the DSM’s input is the sine wave shown 

in Figure 8. The first few samples of the sine wave are 0.033, 0.067, and 0.1. Assuming 

the output of the DAC is initialized to -1, the first accumulator output is simply 1.033. 

Because 1.033> 0, the ADC output (which is the DSM’s output) is 1, which is fedback 

and subtracted from the next input sample 0.067. Now, the input to the accumulator is 

0.067 -1, or -0.933. This is added to the previous accumulator value of 1.033. This yields

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.0100 which causes the ADC output to be 1. Continuing these steps, the results in Table 

1 are obtained.

In general, the average of the comparator’s output tracks the average of the input 

signal [8]. This shows a correlation between the modulator output and input, but a more 

useful model for analysis is developed in the frequency domain.

Comparison of Signal Means in a DSM

0.4

0.35

0.3
Average of Sine wave input 
A verage of DSM output

>  0.25

0)"O

CL
E  0.15

0.05

20 40 60 80 100 120 140 160 1800
Time Unit

Figure 9: The Mean of the Input and Output signals
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Iteration Input Diff. Acc. Out Input
Average

Output
Average

Error

0 0 0 0 -1 0 -1 -

1 0.033 1.033 1.033 1 0.017 0.000 100.0%
2 0.067 -0.933 0.100 1 0.033 0.333 -900.6%
3 0.100 -0.900 -0.800 -1 0.050 0.000 100.0%
4 0.133 1.133 0.333 1 0.067 0.200 -200.6%
5 0.166 -0.834 -0.501 -1 11083 0.000 100.0%
6 0.199 1.199 0.697 1 0.100 0.143 -43.4%
7 0.231 -0.769 -0.071 -1 0.116 0.000 100.0%

143 -0.999 0.001 -1.129 -1 0.194 0.194 -0.5%
144 -0.996 0.004 -1.126 -1 0T85 0.186 -0.5%
145 -0.993 0.007 -1.118 -1 0.177 0.178 -0.5%
146 -0 988 0.012 -1.106 -1 0.169 0.170 -0.4%
147 4)982 0.018 -1.089 -1 11162 0.162 -0.4%
148 -0.976 0.024 -1.065 -1 0.154 0.154 -0.3%

Table 1: Values of a 1 bit DSM in operation

2.22.2 Linear Model of DSM

Because of the complexity associated with the analysis of the nonlinear quantizer, 

DSMs are often analyzed using a linearized model. Figure 10 shows an example of a 1st 

order discrete time DSM where z ' represents a delay. In this linear model, the quantizer 

is modeled as an additive noise source. To analyze this DSM note that

V(z) = y(z) + E(z) (2.1)

and

y(z) = z-'y(z)+D(z)-z-'v(z). (2 2 )

16
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E(z)

Y(z) V(z)U(z)

Figure 10: Linearized First Order DSM Model

Substituting (2.2) into (2.1) yields

V(z) = z-'y(z) + (/(z) -  z -V (z)  + E(z) 

= [/(z) + E(z)-z-\V(z)-y(z))
= U{z)  + E{z)  -  z ''E (z )

= [/(z) + ( l -z - ' )E (z ) (23)

Because the DSM’s STF is the transfer function from the DSM’s input to the DSM ’s 

output and because the DSM ’s NTF is the transfer function from the DSM ’s additive 

noise source to the DSM’s output, (2.3) can be written as

V(z) = STF(z) f /(z )  + NTF(z) - E(z)

where

and

(z) = 1

NTF(z) = ( l - z ' ' ) .

17
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Because STF(z) = 1, all 'input signals are passed unfiltered. Figure 11 shows the 

frequency response of NTF(z). This plot shows that the quantization noise is suppressed 

at frequencies near DC.

3.5

•o0)
CÔ3
CT
œ

0.5

0.05 0.1 0.2 0.25 0.3
Normalized Frequency

0.15 0.35 0.4 0.45 0.5

Figure 11: Squared Magnitude Response for NTF Predicted by Linear Model

Increasing the performance of a DSM can be accomplished in a number of 

different ways. One method is to choose a band of interest closer to DC. As discussed 

earlier, this may allow the signal to operate in a region where the NTF is lower; however, 

in many applications the band of interest cannot be chosen lower. Another method is to 

increase the GSR. This has the same effect as lowering the band of interest frequency; 

however, increasing the GSR requires faster (and more expensive) circuitry. Another
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method is to shape the NTF so that its magnitude response is lower within the signal band. 

This requires a higher order DSM.

2.2.2J  Higher Order DSM

Although increasing a order DSM’s GSR can improve its performance, a first 

order DSM is not always a feasible design choice. For example, some applications may 

require such a high GSR that the required sampling rate of the quantizer is above 

technological (or economical) limits. In such cases, a higher order DSM can be used. 

Figure 12 shows a linearized model of a second order DSM where the ADC has been 

modeled as an additive noise source. To determine the 2"  ̂ order DSM’s output, note that 

by inspection of Figure 12

E(z)

U(z)
Y1(z) Y2(z) V(z)

Figure 12: Second Grder Discrete Time Delta-Sigma Modulator

and

y (z) = y2(z)+ E (z)

y :(z) = z - 'y ,(z )+ y ,(z ) -z -V (z )

y ,( z ) - z - 'y , ( z )+ ( / ( z ) - z '';^ ( z )

Solving (2.6) for y,(z) and (2.5) for V2 (z) yields

(2.4)

(2.5)

(2 .6)
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and

y,(z) = z y(z) (2.7)
1 -  z

y,(z) = . (2.8)
1- z

Substituting (2.7) into (2.8) yields

[ / ( z ) - z " Y ( z )  z - 'y (z )
yz(z) =

a - z ^ ) :  i - z "

[/(z) (2 z - '-z -" )y (z )
(1 - z-')2 (1 - Z -'):

Substituting (2.9) into (2.4) yields

Therefore,

which implies that

Substituting (2.10) for V(z),

y(z) = [/(z) + ( l - z - ' ) ' E ( z ) .  

Therefore, the output of the 2"  ̂order DSM can be written as 

y (z)  = (z)[/(z) + NTF(z)E(z)
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where

and

S T F (z)= \.

Figure 13 shows a plot of the magnitude response for both the first and second order 

DSMs’ NTFs. Note that the second order DSM’s NTF provides a lower response close to 

DC, but this is traded for higher overall noise in the NTF.

4.5
1st O rder DSM NTF 
2nd O rder DSM NTF

3.5

O)

0.5

-0.5

0 0.05 0.15 0.2 0.250.1
Normalized Frequency 

Figure 13: Squared Magnitude Response for 1st and 2nd Order DSM NTFs
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2.2.2.4 Realizability

Because discrete systems cannot be implemented with delay free loops, the 

feedback loop of a DSM must contain at least one delay. As a result, a DT DSM’s 

impulse response, h{n), at the time zero is one; that is, h(0) = 1. To illustrate, consider 

the DSM shown in Figure 10. The output from Figure 10, v{n), can be written as

v(«) = yin) + e{n) .

Assuming thaty (-l) -  0 and g (- l)= l,

v (- l)  = y ( - l)  + g (-l)  = 0 + 1 = 1

Therefore, if u{n) = ô{n)

v(0) = y(0) + y ( - l)  + g(0) = 0 + 0 + l = l ,  (2.11)

and thus h(0) = 1. Therefore,

lim lim ^
H ( z ) -  V z  "/i(n) = h(0) = 1

This constraint due to the feedback loop delay limits a designer’s flexibility when 

designing NTFs.

2.2.2.5 Zero Optimization

In [2], a design technique is described that generates DSM NTFs that attenuate the 

quantization noise across the band of interest. This technique determines optimal NTF 

zeroes by minimizing the quantization noise power over the band of interest. In 

particular, the technique sets the first derivative of the in-band power spectral density 

(PSD) to zero and solves fo r the optim al zeroes. After determ ining the optim al zeroes, 

the NTF’s poles are optimized using an iterative approach. The results of this procedure 

for a DSM with an OSR of 32 are reprinted in Table 2. All the zero locations have been
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normalized so that OSR multiplied by the passband bandwidth, cob, is 1. (Ob is expressed 

in radians / sample.

N Zero Locations, Normalized to ojb SQNR Improvement

1 0 0

2 ±1/(V3) 3.5 dB

3 0,±V3/5) 8dB

4
± ( ^ 3 /7 ± ^ ( 3 /7 ) " - 3 /3 5 )

13 dB

5 0 ,± (^ 5 /9 ± V (5 /9 )" -5 /2 1 ) 18 dB

6 ± 0.23862,±0.66121,±0.93247 23 dB

7 0,±0.40585,±0.74153,±094911 28 dB

8 ±0.18343,±0.52553,±0.79667,±0.96029 34 dB

Table 2; Optimized Zeros Found by Schreier for an OSR of 32

2.2.2.Ô Pole Optimization

Higher order DSMs are often difficult to stabilize. Additional feedback loops are 

often used to stabilize higher order DSMs. For example, consider the first order DSM in 

Figure 7. The added feedback loop introduces another pole into the system which is 

often used to give the system greater stability and a better NTF at low frequencies. By 

inspection of the block diagram in Figure 10,

T(z) = z-'T(z) + H(z) -o ,z -'y  (z) (2T2)

and
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V (z) Y (z) + E (z )-a ^z  ’V(z), (2.13)

(2.12) implies that

F(z) =

and (2.13) implies that

y (z )

[/(z )-o ,z -V (z )
1 -z " '

F(z) + l^(z)
l + a ,z  '

(2.14)

(2.15)

E(z)

Y(z)U(z) V(z)

3 2

Figure 14; Generalized First Order DSM Topology

Substituting (2.14) into (2.15) yields

^ (z )-a ,Z "V (z )  I E(z)
(1 - z  ')(l + a,z ') l + OnZ"

Solving (2.16) for V(z) yields

(2.16)
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y(z)
(1 — Z ' )(1 +  ̂) + a, z (/(z) , E(z)

' -r -

( l - z - ' ) ( l  + a,z"') ( l - z - 'X l  + azZ"') l + ẑZ"

or equivalently,

where

and

V(z) =

v(z) = s rF (z )[ /(z )  + A n r(z )E (z )

1

l + (—l + « j + 02)2 ' — ajZ ^

7VTF(z) d - z ' )
1 + (—1 + a, + <32)z âjZ

C2.17)

Notice that the aj term in (2.17) increases the order of the NTF but not the number of 

inband zeros. In many applications, the ü2 feedback is not needed and in such cases is set 

to zero. Assuming <22 is zero, (2.17) can be written as

(1 - 7  ')
NTF(z) = ----  ̂ ^

l + ( - l  + o,)z-'
(2 .18)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The NTF in (2.18) has its zero at z = 1 and its pole at z = (1 -  fl, ). The NTF can then be 

optimized by selecting a gain a\ such that the in-band noise is minimized. The NTF gain 

determines its stability and realizability [9].

As discussed in section 2.2.2.4, a DSM must have NTF(oo) = 1. Also, some rules 

of thumb exist that limit the maximum NTF gain to be < 1.5 for the DSM to be stable 

[10].

2.2.3 Bandpass DSM

For VLIF receivers, a bandpass DSM can outperform a lowpass DSM because the 

NTF is designed to minimize the SQNR around the VLIF. Bandpass DSMs (BPDSM) 

are often used in narrowband applications where they can achieve a high SQNR with a 

relatively low OSR and DSM order. Figure 15 shows an example of a NTF and STF for 

a BPDSM.

Bandpass DSM (BPDSM) NTFs are often designed by transforming a lowpass 

DSM using transformations such as the n-path or Z transforms. Transformation 

techniques are advantageous because the resulting BPDSM NTF has many of the same 

properties as its lowpass equivalent, and little work needs to be done to analyze the new 

NTF.
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Figure 15: Typical Magnitude response for a BPDSM with fo = 0.125

2.2.4 DSM Design

The first step in designing a DSM is to determine a STF and NTF that can meet 

the desired requirements. The STF is typically designed to have a constant gain over the 

frequency band of interest. The NTF is designed to suppress noise as much as possible in 

the frequency band of interest. After determining the STF and NTF, an implementation 

topology is chosen. The literature describes several different topologies, each of which 

has distinct advantages and disadvantages [5] [11] [12] [13] [14] [15].

2.2.4.1 Stability
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Because a DSM ’s quantizer always generates a bounded output of ±1, a DSM is 

always stable in the classic Bounded-Input Bounded-Output (BIBO) stability sense. 

Nevertheless, even though the output is bounded, the DSM can enter a limit cycle which 

causes the DSM ’s SNR to decrease significantly. The stability of a DSM is thus a 

viewed as the ability for the DSM to follow the predictions provided by the linear model.

Several methods such as root locus, Nyquist, and statistical gain modeling can be 

used to predict the stability of a DSM; however, these methods are only valid for linear 

systems, and therefore extensive simulations are needed to verify a DSM’s stability.

2.3 Adaptive Algorithms

An adaptive algorithm is an algorithm that changes a system to perform according 

to some well defined criterion [16]. Adaptive algorithms have been used in many 

applications including modeling, estimation, optimization, and prediction. Many 

adaptive algorithms use an objective function (also called a cost function) to adjust 

parameters. For some such algorithms, conditions such as convergence, time out or stall 

are used to stop an algorithm. Convergence occurs if the objective function value is lower 

than some predetermined value. An algorithm is timed out if the iteration is greater than 

some specified value. Also, the algorithm may be stopped if no better value has been 

found for some number of iterations. This is termed a stall conditioned.

2.3.1 Learning Curves and Convergence

Many adaptive algorithms change the weights (coefficients) of the terms in a 

polynomial or difference equation. As the coefficients change and the adaptive system 

converges, the objective function produces a smaller cost which implies that the system is
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converging to a solution. An adaptive algorithm’s learning curve is defined as the 

objective function value as a function of iteration number. Figure 16 shows an example 

of a learning curve. The curve flattens out as the system converges to a stable value. The 

rate at which the learning curve converges is one figure of merit used when comparing 

adaptive algorithms.

x1 0

8   ̂-2

Iteration

Figure 16: Typical Learning Curve for an Adaptive Algorithm

2.3.2 Errors in Convergence

Adaptive algorithms tradeoff convergence speed for accuracy. When an adaptive 

algorithm changes the weights of the system by a large amount each iteration, the 

algorithm converges quickly. However when the weights change by a large amount each
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iteration, the system can “bounce around” an optimal answer. Also, if too large a factor 

is chosen, the algorithm may become unstable and diverge. On the other hand, an 

algorithm that changes its weights by a smaller amount converges more slowly but can 

converge closer to an optimal answer. Changing the weights by small amounts, however, 

can cause the system to take much longer to converge and waste computation time.

Errors can also be caused by polymodal cost functions. An adaptive algorithm 

with a polymodal cost function can converge to a local and not global minimum. A robust 

algorithm is needed that can disregard local minima and correctly find the global 

minimum. Several tests [1] have been developed to test the robustness of an adaptive 

algorithm’s ability to find global minima.

2.3.3 LMS Adaptation and the Equation Error Method

The least-mean-square (LMS) algorithm is an adaptive algorithm that can be used 

to design filters by use of the Equation Error Method [17]. This method was initially 

considered for the design of BPDSM in this thesis and converged to an optimal solution 

for low order DSMs; however it was unable to converge for higher order DSMs.

2.3.4 Genetic Algorithms

Genetic algorithms (GA) are adaptive algorithms that search a cost function for its 

optimal solution by using a biological paradigm [18]. For GAs, a vector of weights is 

called a population vector, and all the population vectors form the population. For DSM 

design, elements of a population vector could be the coefficients of the NTF’s difference 

equation or the phases and magnitudes of the NTF’s poles and zeros.

A GA compares various population vectors with one another to determine the 

fittest population vectors within the population. The fittest population vectors are those
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that generate the lowest costs. After determining a group of the fittest population vectors, 

these fittest vectors are combined in various ways to create new vectors that are once 

again compared for fitness. Each iteration of generating and comparing population 

vectors is referred to as a new generation. Different types of genetic algorithms differ in 

how many vectors are carried on to the next generation, how new vectors are created and 

how old vectors are treated. However, regardless of the type of GA, all GAs allow the 

fittest vectors with the lowest cost to replicate and form the next generation by some 

method. Other common GA characteristics include the fittest members of a population to 

share some of their elements with other members of the population 

(recombination/crossover), adding random variations to ensure that genetic diversity 

(mutation) is maintained, and allowing two fit individuals to combine into an entirely 

new vector which is a combination of the two (sexual reproduction).

2.3.4.1 Differential Evolution

Differential Evolution (DE) is a GA that was developed by Dr. Rainer Storn [1]. 

Consider a system where all the properties of the system are dependent on real constants. 

The vector P  is the population vector, where

(2-19)

P\, P2 , P3 ... po are real numbers and D is the number of independent parameters. The 

parameters are then are evaluated based on a set of objectives and constraints. An 

objective is a functional metric that maps the vector, P, to a real value such as SNR, the 

in band rms noise, or a weighted sum of the two. Constraints are one or more equalities 

or inequalities that the solution must satisfy. Constraints such as a maximum out of band 

gain or forcing all poles to lie within the unit circle confine the solution space.
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Optimizing the system entails developing an objective function J(x) that incorporates all 

objectives and constraints. This function is then minimized using the DE method 

described below.

In DE, a given generation, G, contains A D  xl population vectors, for k= l,...A ;

that is,

G - [ P , | P 2 | P 3 | . . . | P w ]  

where G is an A x D matrix. For the first generation, G is initialized with random values 

that have a uniform distribution unless some information is known about the solution. In 

such cases, G is initialized such that the solution is within its span. A trial vector, U,- is 

created by setting U, = P„ where P,- is the ith population vector in G. A variation vector V 

is then created by taking the difference of two distinct population vectors and multiplying 

their difference by the differential variation factor /x, and adding this product to another 

distinct population vector. Finally, U adopts some of the parameters from V, depending 

on the crossover probability CR. Thus this process can be described by

for i = 7 to A  

U, = P,

V = P̂  + /X (Pj, - P j where xi^yi^z  

Uij = Vij for j  -  <n>D,  < n + l > D ,  ..., <n+L-l>o 

where < > d  is the modulo function with modulus D ,n \s  a randomly chosen integer 

between 1 and D with equal probability density, and L is a random integer from 1 to D, 

with probability P r(L = v ) = ( C R f . Figure 17 shows an example case for D = 5, n is 3, 

and L = 4.
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The trial vector U; is evaluated and compared to the value of the original vector P,. 

The better of the two is kept as the new This process continues until all population 

vectors have been evaluated against a constructed trial vector and tested for fitness. The 

vector with the lowest cost is saved to keep track of the progress of the algorithm. The 

process continues with a new generation consisting of the winners of the previous 

generation until an exit condition is satisfied.

1

2

3

4

5

1 = 1

Figure 17: Example of Trial Vector being formed via the Crossover Process
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CHAPTER 3

ADAPTIVE DESIGN METHODOLOGY 

In this chapter, a process that uses differential evolution to design delta sigma 

modulators is described. A comparison is then drawn between this method and a 

traditional DSM design method using the del si g Matlab toolbox.

3.1 DSM Design using Differential Evolution

It has been shown that GAs such as DE lend themselves to filter design well. 

Because an NTF is essentially an HR filter, GA techniques can be applied to DSM design. 

Additionally, unlike traditional methods of optimizing NTFs which typically assume a 

specific filter shape, GAs can optimize for complex filter specifications, and as a result 

they can generate DSMs with a lower SQNR for a given order and OSR. As a result, a 

genetic algorithm such as Differential Evolution can find NTFs which could not be 

generated using traditional design techniques.

3.1.1 Population Vector and Cost Function

Checking stability of an NTF is more easily accomplished by using its poles 

rather than the coefficients o f  its describing difference equation. B ecause o f this, a 

population vector consisting of the magnitude and angle for each zero and pole was 

chosen. Assuming that the DSM is a real, system implies that the poles and zeros are
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either real or appear in complex conjugate pairs. Because of the symmetry of the 

complex parameters, only half of a conjugate pair needs to be stored and manipulated. 

Also, since an odd order DSM will have one real pole and one real zero, their angles are 

always zero and do not need to be stored. Therefore a population vector P, for an NTF 

with real coefficients can be described by

P = [az\, az2 , ■ ■. azi, apu ap2 , ... apj, mp^ mpj, ■ ■ ■ mp^, 

where azk is the Ath zero angle, apk is the kth is a pole angle, mpk is the Ath pole 

magnitude, and i is (order / 2) rounded down and j  is (order / 2) rounded up.

To develop a DE cost function for, designing optimal DSMs, the cost function 

must include the NTF’s critical design parameters, which are stability, desired signal to 

quantization ratio (SQNR) over the band of interest and dynamic range over the band of 

interest. In [2], Schreier suggests that reducing the total quantization noise within the 

band of interest leads to a higher SQNR, but only so long as the frequency response’s out 

of band infinity norm is less than 1.5. This criterion is know as Lee’s rule of thumb, and 

is often used as a stability criterion in DSMs [9]. Based on the above criterion, the 

following cost function was developed:

if ( maxpolemag > 1 )

PoleError = maxpolemag* 100000-,

else

P oleE rror  = 0;

end if
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if (||//||oo< maximum allowable \\NTF(^“)\\„,)

J(xk) = IBG + DR*DRFactor +PoleFrror

else

J(xk) = 1000*(100*7fiG + DR*DRFactor+\\NTF(e’“)\\^) + PoleError

end if

where J  is the cost function, Xk is the population vector being evaluated, DR is the 

dynamic range in the band of interest, IBG  is the inband gain of the NTF, DRFactor is an 

optimization factor used to place emphasis on high DR designs, and ||V7’F(e'")||oo is the 

infinity norm of the NTF’s frequency response. The term maxpolemag is the largest pole 

magnitude. It is weighted heavily when its value is greater than one to ensure that an 

unstable pole is not selected as an optimal solution. If ||V7F(F")||oo <1.5 which is Lee’s 

rule of thumb for stability, then the cost function minimizes the IBG, subject to the 

constraint that all poles lie within the unit circle. If ||V7’F(F")||oo > 1.5, the cost function 

minimizes the weighted in-band gain, DR*DRFactor, and the infinity norm subject to the 

constraint that all poles lie within the unit circle. The factor of 100 weights the IBG so 

that its weight in the cost function is similar to the weight of ||lVTF(F^)||ao. Note that if 

||7/||oo is within the maximum value for stability and the poles are all within the unit circle, 

then the cost function is simply the IBG + DR*DRFactor .

3.2 Delsig Designs

In [2], Schreier suggests a method for generating DSM NTFs that are optimal in 

the SQNR sense. The NTF’s optimal zeros are determined by minimizing the NTF’s 

power over the frequencies of interest with respect to the NTF’s zeros. The poles are then
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found iteratively. The resulting solution is optimal only if the effect that the poles have on 

the NTF is negligible and if the quantization noise is white[19]. Schreier also provides a 

delta sigma design toolkit for Matlab [2], which uses this method for generating 

optimized DSMs. The toolbox uses a lookup table, the same as Table 2, and divides this 

result by the OSR. Once the zero positions have been set via the table, the toolbox finds 

the poles using an iterative approach. This process only finds maximally flat all-pole 

transfer functions, which may not be the optimal. Also, the zeros may not be optimal 

when a value of | | H | | o o  near 1 is desired [1].

3.2.1 Optimal Bandpass Designs

The design toolkit can create BPDSMs. It does this by first designing a lowpass 

DSM NTF and then performing the pseudo A-path transform z -  -z^. Assuming the 

lowpass NTF is, causal, linear, and time invariant, the resulting NTF has the same 

stability and gain properties as the original NTF but is compressed and shifted in the 

frequency domain. For bandpass DSMs, this design method creates a notch filter NTF 

shape, which is often unnecessarily restrictive.
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CHAPTER 4

TEST PROCEDURES AND RESULTS 

In this chapter, the performance of several simulated single-bit DSMs that were 

designed using DE and the delsig toolbox are compared with respect to the DSMs’ 

SQNRs and DRs. In particular, the types of DSMs that are compared are LP, VEIL and 

BP of orders 2-8 and with GSRs of 32, 64, and 128. Several graphs summarize the 

resultant SQNRs and DRs.

4.1 Design and Test Procedures

Typically, DSMs are designed to a set of specifications such as bandwidth, clock 

frequency, SQNR, DR and power consumption. These constraints will, in turn, help 

determine the needed order and OSR needed to satisfy these specifications. In order to 

maintain generality in this thesis, however, the reverse approach is taken. The DSM 

order and OSR are chosen at the start of a design. The NTF is then designed to yield the 

highest SQNR and DR for the given parameters.

Once the NTF is designed, a DSM is constructed by incorporating the NTF into the 

Boser-Wooley Modulator architecture [20] which has a unity STF magnitude response 

within the passband. Each DSM is simulated several times in the time domain using the 

input of a single sine wave of amplitude 0.5 and of various frequencies within the
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passband. The results are then windowed using a Chebyshev window. A Fast Fourier 

Transform (FFT) is then used to produce the spectral information.

The spectra resulting from the FFT is used to determine the DSM ’s SQNR, DR and 

stability. The SQNR is determined by finding the ratio of the average signal power to 

the average noise power of the DSM. The dynamic range is defined as the ratio of the 

largest to smallest signals that a DSM can resolve within the passband. The simulated 

power spectral density (PSD) is also used to determine the stability of a DSM. The PSD 

of a stable DSM will closely match the prediction of its linear model. Furthermore, if a 

DSM is unstable, the time domain simulations will show SQNRs and DRs that are 

significantly worse than those predicted by the linear model.

The remaining sections of this chapter compare the results of several DSMs designed 

using the DE algorithm with the results of comparable DSMs designed using the delsig 

toolbox. These results are organized by the DSM’s passband requirements i.e., lowpass, 

bandpass, and very low IF. For each of these cases, a comparison of the linear models for 

two of the DSMs is presented, as well as a comparison of the PSD of the time domain 

simulation and the corresponding linear model prediction. Since the STF is always unity 

in the passband, only the DSM NTFs are shown. Following these examples are graphs 

comparing the time simulated DR and SQNR for 2"  ̂ through 8̂ '’ order DSMs that were 

designed using DE and the delsig toolbox.

4.2 Low Pass DSM Results

Lowpass DSMs include the zero frequency in their passband. All NTFs were 

designed by first selecting the order and OSR, and then optimizing for the lowest SQNR
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and DR. All frequencies shown are normalized to 2n radians / sample = 1. Because of 

this, all passband bandwidths are a function of the OSR and can be calculated as 0.5 / 

OSR radians (rad) per sample.

An exhaustive set of spectra plots for all the DSMs simulated in this section 

would be too numerous to include, so only the spectrum plots for the 2nd order LPDSM 

with an OSR 128 and the 8th order LPDSM with an OSR of 32 are shown. Concluding 

this section are three plots that summarize the time domain simulation results for 2"  ̂

through 8'*’ order LPDSMs that have OSRs of 32, 64, and 128 and were designed using 

DE and the delsig toolbox.

4.2.1 Results for Second Order LPDSM

Figure 18 shows two linearly modeled 2"  ̂ order DSM NTFs over the DSMs’ 

passbands. The DSMs were designed with an OSR of 128 which yields a normalized 

bandwidth of 0.003971 rad/sample. The solid line is the NTF generated by delsig, while 

the dashed line is the NTF found using differential evolution. As shown in Figure 18, the 

NTF determined using DE has more noise suppression than the NTF found using delsig.

Figure 19 compares the linearly modeled NTF and the PSD of the 2"  ̂ order 

lowpass DSM designed using DE. The figure shows that the noise spectrum closely 

matches the linear model, and that the DSM is stable.
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Figure 18: 2"  ̂order lowpass DSM NTFs generated using DE and the delsig toolbox. 
The NTFs were designed for a LPDSM that has an OSR of 128 

and a passband of 0.004ti rad/sample.
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Figure 19; PSD simulation of 2"  ̂order DSM NTF generated using DE. 
The NTF was designed for a LPDSM that has an OSR of 128 

and a passband of 0.00471 rad/sample.

4.2.2 Results for an Eight Order LPDSM

Figure 20 shows two order DSM NTFs over the DSMs’ passbands. The DSMs 

were designed with an OSR of 32 which yields a normalized bandwidth of 0.016tx 

rad/sample. The solid line is the NTF generated by delsig, while the dashed line is the 

NTF found using differential evolution. As shown in Figure 20, the NTF determined 

using DE has more noise suppression than the NTF found using delsig.
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Figure 20: 8*'’order lowpass DSM NTFs generated using DE and the delsig toolbox. 
The NTFs were designed for a LPDSM that has an OSR of 32 

and a passband of 0.01671 rad/sample.
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Figure 21 : PSD Simulation of 8‘̂  order NTF Generated using DE. 
The NTF was designed for a LPDSM that has an OSR of 32 

and a passband of O.Olbir rad/sample.

Figure 21 compares the linearly modeled NTF and the PSD of the 8‘̂  order 

lowpass DSM designed using DE. The figure shows that the noise spectrum closely 

matches the linear model, and that the DSM is stable. The out of band gain for this DSM 

is above the threshold suggested for Lee’s rule. This high Q pole reduces the noise in the 

passband with no effect on the stability of the DSM.

4.2.3 C om parison o f  D R  and SQ N R  for D elsig  and D E LPD SM  N TFs

Figure 22, Figure 23 and Figure 24 compare the SQNRs and DRs for 2"  ̂ through 

8"" order lowpass DSMs with an OSR of 32, 64, and 128, respectively. As shown in the
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figures, the DE generated DSMs have higher SQNRs and DRs than the DSMs designed 

using delsig. In the figures, if can be seen that the order DSMs often performed worse 

than the l'^  order DSMs. This degradation in performance is to due higher order DSMs 

requiring a lower infinity norm of 1.4 to remain stable. This lower infinity norm caused a 

decrease in performance relative to the 7'"’ order DSM. This is especially apparent in the 

delsig designed DSMs.
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Figure 22: SQNR and DR results for lowpass DSMs with OSR = 32,/o = 0 and a
bandwidth of O.OIôti rad/sample.
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Figure 23: SQNR and DR results for lowpass DSMs with OSR = 64,/o = 0, and a
bandwidth of .008% rad/sample.
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Figure 24: SQNR and DR results for lowpass DSMs with OSR = 128,/o = 0, and a
bandwidth of 0.004tc rad / sample.

4.3 VLIF DSM Results

VLIF DSMs have a center frequency very close to zero. All VLIF DSM NTFs 

were designed by first selecting the order and OSR, and then optimizing for the lowest 

SQNR and DR. All frequencies shown are normalized to 2ti radians / sample = 1. 

Because of this, all passband bandwidths are a function of the OSR and can be calculated 

as 0.5 / OSR radians per sample. A normalized center frequency of 0.02 radians / sample 

was chosen as the center frequency. An exhaustive set of spectra plots for all the DSMs 

simulated in this section would be too numerous to include, so only spectrum plots for the 

2"“ order VLIF DSM with an OSR 128 and the 4* order VLIF DSM with an OSR of 64
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are shown. Concluding this section are three plots that summarize the time domain 

simulation results for VLIF DSMs with even orders 2 through 8 that have OSRs of 32, 64, 

and 128 and were designed using DE and the delsig toolbox.

4.3.1 Analysis of Second order VLIF DSM

-20

-25

-30

-35

-40

-45

-50

—  Delsig NTF
- - DE NTF-55
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0.005 0.01 0.015 0.02 0.025 0.03

Normalized frequency (1-> f )

Figure 25: 2"‘* order NTFs generated using DE and the delsig toolbox. 
The NTFs were designed for a VLIF DSM that has an OSR of 128, 

an/o of 0.02ti rad/sample, and a passband of O.OOdir rad/sample.

Figure 25 shows two linearly modeled 2"** order DSM NTFs over the DSMs’ 

passbands. The DSMs were designed with an OSR of 128 which yields a normalized 

bandwidth of 0.00471 rad/sample. The solid line is the NTF generated by delsig, while the
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dashed line is the NTF found using differential evolution. As shown in Figure 25, the 

NTF determined using DE has more noise suppression than the NTF found using delsig.

Figure 26 compares the linearly modeled NTF and the PSD of the 2"'̂  order VLIF 

DSM designed using DE. The figure shows that the noise spectrum closely matches the 

linear model, and that the DSM is stable.

Figure 26: PSD simulation of 2"‘‘ order NTF generated using DE. 
The NTE was designed for a VLIF DSM that has an OSR of 128, 
an /o  of 0.02TC rad/sample and a passband of 0.0047t rad/sample.
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4.3.2 C om parison o f fourth order V L IF  DSM

Figure 27 shows two linearly modeled 4“̂  order DSM NTFs over the DSMs’ 

passbands. The DSMs were designed with an OSR of 64 which yields a normalized
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bandwidth of O.OOSti rad/sample. The solid line is the NTF generated by delsig, while the 

dashed line is the NTF found using differential evolution. As shown in Figure 27, the 

NTF determined using DE has more noise suppression than the NTF found using delsig. 

This is due to, in part, the ability of DE to design an NTF with a steeper response in the 

out of band signal.
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Figure 27: 4'*’order NTFs generated using DE and the delsig toolbox. 
The NTFs were designed for a VLIF DSM that has an OSR of 64, 

a fo of 0.02ti rad/sample, and a passband of O.OOSti rad/sample.
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Figure 28 shows that this increase in out of band gain does not affect the stability 

of the system because the noise suppression within the passband closely matches the PSD 

predicted by the linear model.
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Figure 28: PSD Simulation of 4'"̂  order NTF generated using DE. The NTF was 
designed for a VLIF DSM that has an OSR of 64, an/o of 0.02ti rad/sample, 

and a passband of O.OOSti rad/sample.

4.3.3 Comparison of DR and SQNR for Delsig and DE VLIF DSM NTFs

Figure 29, Figure 30, and Figure 31 compare of the SQNR and DR for VLIF 

DSMs with OSRs of 32, 64 and 128 respectively. Even orders of 2 through 8 are 

simulated with a normalized center frequency of 0.02ti radians. The DSMs designed 

using DL always has better SQNRs and DRs than the corresponding DSMs designed

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



using delsig. The DE DSMs did especially well in comparison to the 8"̂  order delsig 

DSMs.
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Figure 29: SQNR and DR results for VLIF DSMs with OSR = 32,/o -  0.02it rad/ 
sample, and a bandwidth of O.OIôti rad / sample.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

,  - o
160

140
'S '

00"O

100

- -Q DE Dynamic Range 
—G— Delsig Dynamic Range 
o  DESQNR 
—e— Delsig SQNR_______

80

60

order

Figure 30: SQNR and DR results for VLIF DSMs with OSR = 64,/o = 0.027t rad/ 
sample, and a bandwidth of O.OOSti rad / sample.
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Figure 31 : SQNR and DR results for VLIF DSMs with OSR = 128,/o = 0.02a: rad/ 
sample, and a bandwidth of 0.004a rad / sample.

4.4 Bandpass DSMs

Bandpass DSMs have a center frequency well above zero. All bandpass NTFs 

were designed by first selecting the order and OSR, and then optimizing for the lowest 

SQNR and DR. All frequencies shown are normalized to 2a radians / sample = 1. 

Because of this, all passband bandwidths are a function of the OSR and can be calculated 

as 0.5 / OSR radians per sample. A normalized center frequency of 0.125a radians / 

sample was chosen as the center frequency.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An exhaustive set of spectra plots for all the DSMs simulated in this section 

would be too numerous to include, so only a 4* order bandpass DSM of OSR 32 is 

shown. Concluding this section are three plots that summarize the time domain 

simulation results for 2" ,̂ 4**̂ , 6*, and 8̂ '’ order bandpass DSMs that have OSRs of 32, 64, 

and 128 were designed using both DE and the delsig toolbox.

4.4.1 Comparison of Fourth Order BPDSM

Figure 32 shows two linearly modeled 4‘*' order DSM NTFs over the DSMs’ 

passbands.
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Figure 32: 4̂  ̂order NTFs generated using DF and the delsig toolbox. The NTFs were 
designed for a bandpass DSM that has an OSR of 32, an/o 

of 0.125ti rad/sample, and a passband of O.Olbit rad/sample.
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The DSMs were designed with an OSR of 32 which yields a normalized bandwidth of 

0.016;t rad/sample. The solid line is the NTF generated by delsig, while the dashed line is 

the NTF found using differential evolution. As shown in Figure 32, the NTF determined 

using DE has more noise suppression than the NTF found using delsig. Figure 33 shows 

that the time domain simulated PSD closely matches the PSD predicted by the linear 

model within the passband.
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Figure 33: PSD simulation of 4* order NTF generated using DE. The NTF was 
designed for a VLIF DSM that has an OSR of 64, an /o of 0.125ti rad/sample, 

and a passband of 0.016a: rad/sample.
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4.4.2 Comparison of DR and SQNR for Delsig and DE BPDSM NTFs

Figure 34, Figure 35, and Figure 36 eompare the SQNRs and DRs o f 2"^, 4‘*’, 6'*’ 

and 8'*’ order bandpass DSMs with OSRs of 32, 64 and 128 respectively. All DSM s were 

simulated with a normalized center frequency of 0.125ti radians, and the DSMs designed 

using DE always had better SQNRs and DRs than the corresponding DSM s designed 

using delsig.
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Figure 34: SQNR and DR results for bandpass DSMs with OSR = 32,/o = 0.125ti rad / 
sample, and a bandwidth of 0.004ti rad / sample.
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Figure 35: SQNR and DR results for bandpass DSMs with OSR = 64,/o -  0.12571 
rad/sample, and a bandwidth of 0.00871 rad / sample.
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Figure 36: SQNR and DR results for bandpass DSMs with OSR = 128,/o = 0.12571 rad 
/ sample, and a bandwidth of O .O Iôti rad / sample.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

DSMs are widely used in modem communications systems. They are high 

performance ADCs that are capable of very high dynamic range DRs and SQNRs; 

however, designing DSMs is difficult because they are non-linear and require several 

assumptions and estimates to design using analytic techniques. In this thesis, a GA based 

on DE is used to generate DSM NTFs. The NTFs were then used to design DSMs and 

compared to DSMs designed using the delsig matlab toolbox.

The design method developed in thesis is based on a GA called DE, which was 

developed by Rainer Storn. The algorithm is flexible and allows for optimization of 

complex objective functions. In the author’s experience, it always converged and 

typically produced a linearized model that outperformed one designed using the delsig 

toolbox. For the work in this thesis, DE proved to be an effective method for designing 

DSMs. The method is easy to use and lends itself to modification for specific 

requirements. Additionally, the DE algorithm used in this thesis relaxed the NTF out of 

band gain requirements with no loss in stability. Further research on this effect could 

prove useful.

The main disadvantage of this method is common to all DSM methods; there isn’t 

a quick and reliable calculation to determine the stability of a DSM. This makes
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optimization for stability impossible, which in turn requires designs to be conservative in 

their out of band gain requirements. Additionally, DE typically converges relatively 

slowly when compared to other techniques. The algorithm developed in this thesis, 

however, can be seeded with variations around an already “near optimal” NTF. This can 

greatly reduce computation time by reducing the solution space.

Not only did the linear models of the DE designed NTFs predict better noise 

suppression than those designed using delsig, but time domain simulation confirmed that 

DSMs designed using DE typically produced DSMs with 1%~10% better SQNRs and 

DRs than those found using the delsig toolbox. Moreover, higher order DSMs typically 

benefited more from the DE because it becomes more important to optimize the poles and 

zeros at the same time, which the iterative approach used by delsig does not do. Thus DE 

can design lowpass, bandpass, and very low intermediate frequency DSMs that have 

better performance metrics than currently used design techniques.
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