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ASTRACT

On the Coefficients of Ternary Cyclotomie Polynomials

by

Thomas Joseph Flanagan

Dr. Grennady Bachmann, Examination Committee Chair 
Professor o f Mathematics 

University o f Nevada, Las Vegas

In this paper we investigate the coefficients o f ternary cyclotomic polynomials. 

That is, we investigate the coefficients polynomials given by, (z ) = J~[ | z -  e ^  j,
l</r<n '  /

(n,A)=l

where n is the product o f three distinct odd primes («  = pqr ).

First we show the coefficients o f 0^^,.(z) are loosely connected to the residue o f r  

m odulopq. In particular we show that i f  r, s  modpq  and r, < then the set o f 

coefficients o f (z) is a subset o f the set o f coefficients o f 0 ^̂ ,̂  (z); i f  in  addition, 

pq <r^, we show these two sets are identical.

Second we establish a new upperbound for the absolute value o f the coefficients 

o f ternary cyclotomic polynomials. To illustrate the result let c = r  mod pq, and write

. '■)

^pqr{^ )~  X  We show that max \a^{pqr)\<2c + 2.
0<k<ç>(pqr)

111
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In our third result we extend the fam ily o f fla t ternary cyclotomic polynomials 

that was established by Bachman. (Note. Flat polynomials are polynomials w ith 

coefficients o f only ±1 or 0.) We show that i f  r s ± l  mod pq and q = ± l  mod p, then 

is flat.

IV
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CHAPTER 1

INTRODUCTION 

For every « € N the »-th cyclotomic polynomial is given by,

4 ..(z )=  n
\<k<n \ /\<k<n

(n,*)=I

The study o f cyclotomic polynomials forms a significant branch o f mathematics. 

Cyclotomic polynomials have been extensively studied over the centuries by many 

prominent mathematicians. I f  fact. Gauss was the firs t to show they are irreducible over 

the integers.

Below we compute 0 „(z ) for n - 1,2,3, and 8 ,

0 ,(z )=  i z - e  =  z -e ^ ” = z -1 ,
KKl \ /1S*<1

(l,Ar)=l

\<k<2
(2,1)=1

0 2 (^)=  n  '^ )= z - e ” = z + l.
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(3,i)=l

^ 8(^ )=  n  n  f z - / '^ j = z " + i .
l^*^8 i  '  k=\,3,5,7^ '
(8,A)=1

The firs t thing we notice about the coefficients o f these four cyclotomic 

polynomials is that in each case a ll o f the coefficients are integers. This may be 

surprising considering 0 „(z ) is defined in terms o f complex numbers. Nonetheless, one 

might speculate whether this is the case for all cyclotomic polynomials. In fact, this turns 

out to be true. That is, fo r every « e N, 0 „(z ) has integral coefficients. This interesting

result can be shown to fo llow  from  the equation, z” - 1 = jQ  (z) (see lemma 2 .1), and
d\n

induction on n.

The next observation one could make concerning the four above cyclotomic 

polynomials is that each has coefficients o f only ±1 or 0. Thus again one might 

speculate that this is the case fo r a ll cyclotomic polynomials. Actually, the study o f the 

coefficients o f cyclotomic polynomials began w ith this conjecture [1]. We call such 

polynomials f lat. That is, a polynomial is called f la t  i f  it  has coefficients o f only ±1 or 

0. However, this conjecture turns out to be false. In fact, 0 ,g ;(z) is the first cyclotomic

polynomial which is not fla t [5]. An actual computation shows that the coefficient o f z ’ 

in (z ) is -2 . We provide an explanation for this curious fact below.

The follow ing w ell known result, which we prove in Lemma 2.2, shows that 

Op (z), where p  'lsa. prime, is flat:
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( 1 .1) Op(z) = l + z + z^+ ... + z^-'p'

It is also a well known result (this can be found in [5]) that fo rp  a prime.

Therefore one can combine (1 .1 ) and (1.2) to establish that for n = p^, p a  prime, 0^^ (z) 

is flat. In  fact (1.1) and (1.2) give:

(1.3) 0 y (z )  = 0 p (z^) = l + z^+ z^^+ ... + z^ ’ + z ^ .

The next case to consider, when n is the product o f two distinct primes, was tackled by 

M igotti. In 1883 he proved that 0p^(z) is fla t for p  and q prime [5].

Next we turn to integers which are the product o f three primes, that is, « g N such that 

n = pqr, w ith p, q, and r  primes. Below is another well known formula, which can be 

found in  [5].

(1.4) 0 ^ (z )  = 0^ ,(zO

One may combine (1.3) and (1.4) to show that 0 ^ 3  (z) is flat:

(1.5) 0  ,(z ) = 0  2 (z^) = 1 + z^ +z^^ +... + z^  ̂+z^
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Consider the below known formula, which can be found in [5]:

( 1 .6 ) 0 ^ / z )  = 0 p,(zO

It is clear that (1.6) and M igo tti's  result combine to show that (z) is flat.

Furthermore it is clear that one may combine the below known formula (which can be 

found in [5]), (1.7), w ith M igo tti’ s result to show that 0^pg(z) is also fla t (for p ,q i^2 ) .

(1.7) ^2pq(z) = ^pq(-Z)-

Thus we have shown that 0 „(z ) is fla t for « e N where n is o f the form,

p, p^, p^, pq, p^q, 2pq. Hence we have show that 0 „(z ) is fla t for all « < 105. Note

this is because 105 is the smallest natural number which does not have one o f the above 

six forms; it is the smallest natural number which is the product o f three distinct odd 

primes ( 105 = 3 ■ 5 ■ 7 ) Hence we see now that 0 „  (z) is fla t fo r «<105.

Nonetheless, this does not answer every question one might ask concerning fla t 

cyclotomic polynomials. To illustrate a few examples, let p^, p j ,  p^,..., Pj be distinct 

odd primes. First, while it  is not true that every cyclotomic polynomial o f the form

(^) fla t ( 0 2  ; j( z )  being an example), one might ask whether there exist infin ite

families o f fla t cyclotomic polynomials o f the form 0 ^  ̂  (z). Secondly, one might

further ask whether for every i e N there exist in fin ite  families o f fla t cyclotomic 

polynomials o f the form 0^^^,,^ (z). While the latter question remains open, the former
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question has recently been answered by Bachman [1]. He proved the follow ing theorem 

which can be found in [ 1 ].

Theorem. Let p, q, and r  be primes w ith 5 < p  < q  < r .  I f r s l  mod pq  and 

q = - \  modp, then ^pg fz )  is flat.

One o f the main aims o f this thesis is to generalize this theorem. In Chapter 5 we w ill 

prove the fo llow ing theorem, which we call Theorem 3,

Theorem 3. Let p, q, and r  be primes w ith 5 < p  < q  < r .  I f r s ± l  mod pq  and 

q = ± l  mod p, then <î>^fz) is flat.

Another direction the study o f cyclotomic polynomials has taken is an 

investigation into questions concerning possible bounds for their coefficients. To 

illustrate a few know results, let <p(n) be the Euler totient function. We can then write.

q>(n)

( 1 .8 ) 0 „(z ) = ^ a ^ ( « ) z \
i= 0

and define.

0<k<<p{n) I
(1.9) A{n)=  max \a^{n)\.

A{n)=  max \a,(n)\. 
: max I

0<k<(p(n)
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It is natural to ask whether the coefficients o f cyclotomic polynomials can be 

arbitrarily large or small. It was Schur who firs t answered this question by proving that 

A(n) is unbounded [I ] .  That is, Schur proved that fo r every w e N there exists some 

« 6  N such that 0 „(z ) has a coefficient larger in  absolute value than m.

For « G N let d{n) denote the number o f divisors o f n. P.T. Batman has 

established the follow ing upperbound for A{n) , which holds for arbitrary « g  N,

( \  1(1.10) A(n)<exp —d{n)\ogn  .
v 2  y

R.C. Vaughan has established that this is the best possible upperbound fo r^ (« ) for 

arbitrary n g  N. These two results can be found in [4].

In this thesis we investigate bounds foxA{n) for « g  N where n is the product o f 

three distinct odd primes. That is, we assume n = pqr, 2 < p < q < r ,  w ith p ,q , r  prime. 

In this case is called a ternary cyclotomic polynomial. Coefficients o f ternary

cyclotomic polynomials have been studied by several authors. A  classic result o f A.S. 

Bang gives the bound [1],

(1.11) A { p q r ) < p - \ .

We note that this upperbound is independent o f q and r. Perhaps the most interesting 

open problem concerning the coefficients o f ternary cyclotomic polynomials is the 

follow ing conjecture, due to M . Beiter [2].
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Conjecture. We have.

(1.12)

H. M oller has shown that, i f  true, (1.12) is the best possible upperbound for A(pqr)  [2]. 

He gave a construction for a ternary cyclotomic polynomial, 0p^,.(z), fo r every p, w ith a

prescribed coefficient equal to [2]. The closest result to (1.12) is due to Bachman 

[2],

(1.13) A {p q r )< p - P_
4

Note that we use |"x~\ denote the ceiling function o f x.

One o f the main aims o f this thesis is to establish a new sort o f upperbound for 

A{pqr). We w ill show that not only are the coefficients o f the ternary cyclotomic

polynomials, bounded above by a function which is independent o f q and r, but

that they are also bounded above by a function which is only dependent on the residue o f 

r  mod pq. To illustrate, let c = r  mod pq. In Chapter 4 we w ill prove the follow ing 

theorem, which we call Theorem 2,

Theorem 2. We have,

(1.14) A {p q r )<2 c  + 2,
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where c = r  mod pq. In particular, i f  r  s  1 mod pq, then A(pqr) < 4.

We remark that given c and any pair o f primes p  and q, the existence o f in fin ite ly  many 

primes r  satisfying r  = c mod pq  is guaranteed by D irichlet's theorem on primes in 

arithmetic progressions [6 ].

Another aim o f this thesis is to show that the dependence o f the coefficients o f 

^pqÀ^) is loosely restricted to the residue o f r  mod pq. To illustrate this result we

denote the set o f coefficients o f by We w ill prove the follow ing theorem,

which we call Theorem 1, in Chapter I,

Theorem 1. I f  mod pq  and <r ,̂ then ç  . Moreover, i f  pq < r, then

^pqr, = ^pqr, '
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CHAPTER 2

REVIEW  OF RELATED LITERATURE 

Fix primes 2 <  p  < q  < r  and let k he a nonnegative integer. Define x^, and

4  by:

(2 .1) k = x^qr mod p,

(2 .2 ) k = y^pr mod^,

(2.3) k = z^pq modx,

where h < x ^ <  p, Q < y ^ < q ,  and 0 < <r.  For example, let p  = 5, ^ = 7, r  = 11, and

A: = 100. Then we have,

100 = XiQo77 mods.

100 = 00 55 mod 7,

100 = z,0035 m odi 1,
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and therefore, x,oq = 0, = 5, and z,oq = 6 .

Next define a function, %, on the nonnegative integers by.

(2.4) x i k )  = p  q p q r . 
otherwise

For example, again let p  = 5, q = l ,  r  = \ \ ,  and ^ = 100. Then we have,

x  ̂ y. 5 100 k-  + — = - >  =  ,
p  q 1 385 pqr

and therefore, %(1 0 0 ) = 0 .

Recall by (1.8) that we denote the pqr-fh cyclotomic polynomial by.

(p(pqr)

^pqX^)=  Z  ^k(pqr)z‘‘ -
k=0

We claim that the follow ing formula gives the coefficients o f 0 ^ ( z )  :

(2.5) a^{pqr)=  ^  % { m ) - z i m - q ) - x i m - r )  + x ( . m - q - r ) .
k-p<m<k

10
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We note that this formula can be found in [1], We establish this claim through eight 

lemmas.

Lemma 2.1 For « e N, we have z" -1  = ]^ 0 ^ (z ) .
d\n

Proof. Let / ( z )  = z" -1  and = ]~ [ 0 ^  (z). We establish this lemma by showing
d\n

f  (z) and g(z) have the same zeros, a ll w ith m ultip lic ity one. Assume f { w )  = 0. Then 

since z" -1  = [ z - e  I  we have w = for some A: e |0 , l,2 , . . . ,« - l|.  Now i f

gcd(rt. A:) = t, then n - d t  and k -  k't fo r some d ,k ’ e N, where gcû{d,k') = 1 .

Therefore, w = Since gcd(<i,A^') = 1, we have 0 ,,(w ) = O and thus

I n ik /
g(w ) = 0. Now assume g(w ) = 0. Then w = e where 

k G {0,1,2,...,i/ -1 } , gcd(J, A:) = 1, and n = dt, for some t g  N. Thus we have,

I x ik t /
w  = e =  e Since k < d ,  we have kt < d t  = n and therefore Aï g  {0,1,2,. . . ,« -1}. 

Hence / (w) = 0.

It is clear that all the zeros o f / (z) have m ultip lic ity one. Let d̂  \n and 

where d ^ ^ d ^ .  To show that a ll the zeros o f g(z) have m ultip lic ity one, it suffices to 

show we can not have 0 ^  (w) -  0 and 0^^ (w) = 0 w ith d^^d.^. Thus assume

lK ik y { /
0,/^ (w) =  0, 0^^ (w )  -  0, and d̂  ^  d^. Then as above w - e  ^  ' = g  where

2 m k2 d i/ Ircik-yd'-
• 2 " 2 /

gcd(r/j,A:,) = 1, and n = d^d[. We also have w = e  ̂  ̂ =e  where 

gcd{d2 ,kf) = 1, and n = d^d[. This implies k^d[ = , which gives k̂ d.̂  = k̂ d̂ .

11
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Since gcd(cf,, A, ) = 1, we have AJAj. Likewise since gcd(c?2, Aj ) = 1, we have Â  |A,. 

Therefore A, = Â  and hence This is a contradiction.

-1
Lemma 2.2 For p  a prime, we have 0  (z) = -------- .

z - 1

Proof. Applying Lemma 2.1 w ith p  gives z” - \  = 0 ,(z )0 ^ (z ) = (z - l)0 ^ (z ) , and 

the result follows.

Lemma 2.3 For p, q prime, we have 0 ^ (z )  =

Proof. Applying Lemma 2.1 w ith n = pq gives:

z'^' - 1  = 0 ,(z )0 / z ) 0 ,(z )0 ^ (z )  =
z — 1

and the result follows.

Lemma 2.4 For/?, ^, r  prime, we have 0  (z) -  —---------------------------------------.
( z '^ ^ - lX z ^ - lX z ^ - lX z - l)

Proof. Applying Lemma 2.1 w ith n = pqr  gives:

- l  = 0 i(z )0 ^(z)0 ,(z )0 ^ {z)^pr (z)0 y  (z)0 ^ ( z )

12
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( z ^ '- lX z ^ - lX z '- l)

and the result follows.

Lemma 2.5 Forp, q, r  prime, we have:

0 ^ ( z )  = (1 - z" - z" + 2 +̂3 ^ z ' ^ m o d
/=0 /=0 7=0 t =0

Proof. For |z| < 1 we have:

^  ( i- z ^ ’̂ X i- z K i- z ^ X i- z Q  
( i - z ^ X i- z ^ 3 ( i- z '0 0 - z )

= ( l - z ' ’» ^ X l-z l( l-Z ^ )  ^  2 """ J  z ^ ^ Z * ^
(1 ~ (=0 J=0 i =0

= (1 -  z^ 3(l -  z')(l -  z^ )^  z ' g  z^^g z^^'^ z ^ .
/=0 /=0 7=0 A=0

Truncating terms w ith degree larger than <p{pqr) gives for Izl <1 :

0 ^ ( z ) e ( l - z " - z '  + z " " )^ z '^ z '^ ^ z ^ ^ g z '^  mod
/=0  /=0 7=0 k=0

13
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Lemma 2.6 Every natural number has a unique representation o f the form:

n = x„qr + y„pr  + z„pq -  S„pqr,

where 0 < x„ < /?, 0 < y „ < q ,  0 < z„ < r, e Z. Moreover, i f  0 < « < ç{pqr),  then 

{0,1,2}. Furthermore these values o f x„, and z„ coincide w ith the values given 

by (2.1)-(2.3).

Proof. First we establish existence. Since gcd{qr,pr ,pq}  = \, there exists x, y , z e Z 

such that n = xqr + ypr + zpq. I f  x g [0, p), then there exists (U e Z such that 

{cop + x)&  [0, p). We then have n = {x + cop)qr + ypr + zpq -  copqr. Likewise there 

exists ü)',a>" e Z  such that {co'q + y )e [0 ,q ) ,  and (ryV +  z) e [0 ,r). Now we have,

« = (x + (op)qr + (y  + co'q)pr + (z  + co"r)pq-{co + co' + co")pqr. Existence then follows 

w ith x„ -  COp + x, = co'q +  y, z„ = co"r + z, = ry + ûj' + co". To establish uniqueness,

assume there also exist x„', y f ,  z f ,  ô f ,  svLchihat n = x^qr + y ^ p r  + z fp q - ô ^ p q r .

Then, x^qr = x fq r  modp  which implies x„ = x f  mod p. Since x„,x „' e [0 ,/)) we have

x„ = x„'. Likewise = y„' and z„ = z„'.

Now let 0 < n <  cp{pqr) = { p -  l)(q -  l) ( r  -1 ). First assume < 0. Then,

n = x„qr + y„p r  + z„pq + S„pqr > x^qr + y^pr  + z,^pq + pqr > pqr

14
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This is a contradiction. Hence we must have > 0. Second assume > 2. Then, 

n = x„qr + y„pr  + z„pq -  S^pqr < x„qr + y „p r  + z„pq -  3pqr

< { p -  \)qr + { q - \ ) p r - y { r - \ ) p q - 3  pqr -  - q r  -  p r  -  pq <0.

This is a contradiction. Hence we must have S„<2.

The last part o f the lemma is established by noting that n = x^qr mod p  and 0 < x „ <  p. 

Likewise for y^ and z„.

Lemma 2.7 For 0 < n <  ç{pqr),  we have %(«) = 1 i f  and only i f  = 0.

Proof. Assume %(«) = 1. Then, — + — Thi s gives x„qr + y^qr<n,  or
p  q pqr

0 < z„/>^ -  S„pqr, which implies S j  < z„. Since ô„ e {0,1,2} and 0 < z„ < r, we must 

have (5’„ = 0 .

Now assume = 0. Then n = x^qr + y^pr + z„pq. This implies,

—  + —  + — = —̂ , from which —  + ̂  < follows. Hence %(«) = 1. 
p  q r pqr p  q pqr

Lemma 2.8 For p, q, r  prime, we have

ak ipqr)=  Z  Z ( f n ) - z ( f n - q ) - z ( f n - r )  + x ( m - q - r ) .
k-p< m ^k

15
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Proof. By lemma 2.6 we have

.  (I -  z ' -  z- + z '« - )g  z ' ̂  z *  g  mod z
1=0 i=0 J=0 i=0

ç>[pgr)+\

It follows from  this that fo r z " to have a nonzero coefficient in  0 ^ ,.(z ), there must exist 

i , j ,  and k, w ith 0 < i < p ,  0 < j < q ,  and 0 < k  < r ,  such that

iqr + j p r  + kpq = m - y  or

iqr + j p r  + kpq = m - q - y  or,

iqr + j p r  + kpq - m - r - y  or.

iqr + j p r  + kpq = m - q - r - y ,

fo r some y & [ 0 , \ , . . . , p - \ ] . That is, there we be a nonzero coefficient i f  / (« )  = !,  

X { n - q )  = \ ,  %(«- r )  = I , or x ( r i - q - r )  = \ for some « e { / w - p  + l,...,w }. Moreover,

Z Z Z(n-q)+ Z %("-̂ )+ Z
m-p<n<m m~p<n<m m-p<n<m m-p<n<m

16
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CHAPTER 3

THEOREM 1 AND PROOF 

Fix p  and q prime w ith p  <q. Denote the set o f coefficients o f by w ith r

prime and q < r .

Theorem 1. I f  r, = Tj mod pq and r, <r^, then ç  . Moreover, i f  pq <r^, then

( (̂W)
Proof. Let 0^ ^ (z) = Z  W  = Z  Tet m = kr^+t, where

m=Q M=0

A g Z  and 0 < t < r,. We intend to show that i f  we choose n = k r j+ t ,  we w ill have 

=b„. By (2.5) we have,

^m= Z  Z i i x ) - z f x - q ) - Z i { x - r ^ )  + x f x - r ^ - q )
m-p<x<m

where, % ,(^) = p  q pqr^ 
otherwise.

By (2.5) we also have:

17
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n ~ p < x < n

where,

%2(%) =
1 #

;7 ^
0  otherwise

For our choices o f m and n, we claim and = y^. First we have,

kr^+t = m = x^qr^ ( mod p). Now since = dpq + r, fo r some e N, we have;

JcTj + 1 = n = x^qrj, = k(dpq+ r^) + t = kr̂  + t = m = x„ q̂r  ̂ (modp).

Thus, x„qr^ = x̂ ,qr  ̂ mod p. Hence we have x  ̂ -  x„,. In  exactly the same manner we can 

conclude y„ -y „ ,.

Tjr. rv 1- m kr, k kr  ̂ n I f  t -  0 we have, -------= — — = —  = — ^  = ------
pqr, pqr^ pq pqr^ pqr^

Hence in this case %, (w ) = X2 (” )•

Assume t > 0. We claim X2 («) = 1 X\ ( ^ )  = T To establish this claim,

assume (M) = 1. We then have :

18
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X.  ̂ yn,  ̂ y„ ^  n ^ kr^+t _ k  ̂ t ^  kr,  ̂ t ^  ^   ̂ t m 

p  q p  q pqh pqr^ pq  pqr^ pqr^ pqr^ pqr^ pqr^ pqr^

which implies %, {m) = 1 .

We claim it is impossible to have both Xi  (” ) = 0 and %, {rri) = 1. To establish this 

claim assume both%2(M) -  0 and %, (w ) -1 . Then,

A + _ ; -  = - 5 - < S + i  = 5 L + i L < _ ^  = ±  + _ L .
pq pqr^ pqr^ P q P q Pqr  ̂ pq pqr^

M ultip lying through by pq and then subtracting through by k gives.

'*2 n

However this is impossible because x„,q + -  A: e Z , 0 < —, and — < 1. I f  follows

that%(m) = % (»).

We next claim that for our choices o f m and n we have X\ ( m - x )  = Xj  ( "  -  %), 

when X e  [0, p) Recall we have let m - k r ^ + t  where 0 < t < r,, we have chosen 

n = kr^+t. Thus for any given x e [0, p)  we have m - x  = k r ^ + t - x  and 

n - x  = k r ^ + t - x ,  where It -  x| < r,.

19
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I f  0 < t -  X, then we may apply the same argument as above to conclude 

Xx { m - x )  = X2 (M -  x). The only difference is we must replace t by t - x .

I f  t - x  <0,  we claim (/w -  x) = 1 ^  (n -  x) = 1. To establish this claim 

assume (2» -  x) = 1. We then have:

I ^  , yn,-x ^ m - x  _ k r , + t - x  ^  k  ̂ t - x  _ kr  ̂ ^ t - x  ^  kr,  ̂ t - x  ^  n - x
p  q p  q pqrx pqr̂  pq pqr̂  pqr  ̂ pqr̂  ~ pqr^ pqr^ pqr^ ''

which implies ;jf2 (n -  x) = 1 .

We claim it is impossible to have both (/M -  x) = 0 and = I - To

establish this claim  assume both ( 02 -  x) = 0 and (« ~ ̂ ) = T Then,

k ^ t - x  ^ m - x  ^x^_^  ̂ ^  ^  n - x  ^  k  ̂ t - x

pq pqfi pqrx P q P q pqrj pq pqrj

M ultip lying through by pq  and then subtracting through by A: gives:

t - x  , t - x
 <  -  ^  <  — -

n ^2

t — X t
However this is impossible because x^q + y^^p -  A: e Z , -1 < ------ , and — < 0.

2 0
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Thus we have %,(/?7-x) = %2 (M-x), and therefore ^  %,(x) = ZiM-
m-p<x<m n-p< x^n

Similarly we can conclude,

Z Z Xiiy-q\
m-p<x<m n-p<x<n

m-p<x<m n-p<x<n

m-p<x<m n~p<x<n

Hence . This establishes c  .

Now assume pq < r,. Let n = kr^-^t, where 0 < t < . I f  t < r,, we may let 

m = krx+t and have a„, = b„. (This is what we have established above.) I f  t > r,, we let 

Mg = +tg, where t = apq  + t  ̂ and 0<t( ,<  pq. We want to show b^=b^.  We have 

and y „ ^ y ^ .  Since < n, we have = 1 ^ ; | f 2 (n) = 1 and

%2(») = 0 => Zii^o) -  0. We claim it is impossible to have both%2(M) = 1 and%2(Mo) -  0. 

Assume Zi  (») = 1 and %2(Mo) = 0- Then,

.+_fs_ = < i +z. < _2_ ,  ± +_L
pq pqr^ pqr p  q pqr pq pqr^

21
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M ultip lying through by pq and then subtracting through by k gives,

However this is impossible because, x^q + y^p - k s Z ,  0 < — , and — < 1. Thus we have
ri r,

X i (") ^  %2 ("o)• Now we may show X i (/% ~ ^)  = exactly the same manner as

above. Thus we may conclude = 6  . Now since > pq> t^ ,  we may let m-kr^+tf^ 

and have =a„,.

22
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CHAPTER 4

THEOREM 2 AND PROOF 

Theorem 2. A{pqr) <2c + 2, where r  = c mod pq. In particular, i f  r = 1 mod pq  we 

have A{pqr)<A.

Proof. Let r  = Àpq + c, where À & Z  and 0 < c < r .  Let n = œr + t, where o e Z  and 

0 < t  < r .  For m e { n -  p  + \,n], let m = (o^r + ,  where 0 < < r. Note that fo r all

m e [ n -  p  + \,ri\ we must have either (o = cô  or ( o - \ -  . We claim that i f

X{m - r  + c) = \, then %(m) = 1. To establish this claim assume - r  + c) = 1. Since

m - r  + c = m m odp,  we have . Likewise, since m - r  + c = m modq, we

have =y«,. This gives.

X.. , y .  __ ^n,-r.c . ym-r.c ^ m - V  + C ^ M
p  q p  q pqr pqr

or x im)  = \.

We next claim that there can be at most two r r iG [n -  p  + \,n] such that 

Xijn -  r  + c) = 0 and %(m) = 1. To establish this claim, assume there exists 

m e [ n -  p  + \,n\ such that %(/» -  r  + c) = 0 and %(m) = 1. This gives,

23
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pqr p  q pqr

or.

-1 + < x,„q + y„,p -  ry„, < ̂ .
r  r

Since (x^^q +y„^p- (o „ , )eZ ,  0 < ^ s ^ ,  and ^ < 1 ,  we must have x„,q + y„,p = o)„,.
r  r

Now assume there exists another v s \ n -  p  + \,ri\ w ith %(v -  r  + c) = 0 and %(v) = 1. As 

before we must have x^q + y^p -  cô . W ithout loss o f generality we may assume, v <m. 

Then we must have either a>̂  = cô  or co^^-\ = cô . We claim that we can not have 

I f  then x^q + y„,p = x^q + y^p, which implies

( x „ , -x , )q  = ( y ^ - y j p .  Since;? and ^ are prime, this implies Since

0 < y^,y^ <q,  we must have . It fo llow s that m = v modq. Hence m - v > q .

This however is impossible because m,v & { n -  p  + \,n] implies m - v  < p  <q.  Therefore 

we can only have co^- \  = cô . I f  there were another p & [ n -  p  + \,n\ w ith 

X { p - r  + c) = 0 and % (//) = 1, we must have either cô  = cô  or co^^co^. As above,

= (ô  leads to the contradiction q >  p > m - p > q .  And (ù  ̂ = (ô  leads to the 

contradiction q > p  > v  -  p > q .  Therefore there can be at most two numbers in the 

interval [ n - p  + \,n]  such that %(/M - r  + c) = 0 and %(/») = 1. Hence w ith the exception 

o f at most two number in  the interval [ n -  p  + \,ri\ we have - r  + c ) -  

Now consider the difference o f the two sums:

24
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(4-1) Z %(»)- Z z ( n - r ) .
m-p<n^m m-p<n<m

In (4.1), w ith at most possibly two exceptions the firs t p - c - \  terms in the firs t sum w ill 

cancel w ith  the last p - c - \  terms in the second sum. I f  there are one/two exceptions 

it/they w ill contribute positive one/two to (4.1). Therefore,

(4.2) - c <  Y, X(n)~  Z  X ( n - r )  < c + 2.
m-p<n<m m-p<n<m

Next consider the difference o f the two sums:

(4.3) Z  X i n - q - r ) -  Y  X i ^ -q ) -
m-p<n<m m-p<n^m

Likewise, w ith at most possibly two exceptions the last p - c - \  terms in the firs t sum 

w ill cancel w ith the firs t p - c - \  terms in the second sum. I f  there are one/two 

exceptions it/they w ill contribute negative one/two to (4.3). Therefore,

- c - 2 <  Y  X i n - q - r ) -  Y  X i ^ - q )  ^  c.
m~p<n<m m-p<n<m

Hence we have A{pqr) <2c + 2.

25
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CHAPTER 5

THEOREM 5 AND PROOF 

Throughout this chapter we w ill use the notion x = „  y  to denote x = y  mod n and 

assume that p, q, and r  are primes w ith 5 < p  < q  < r .  We w ill require the fo llow ing 17 

lemmas.

Lemma 5.1 I f  m < ^ \  then y(m) = 0 unless both x„, < — and y„, < —.2  /u V y w 2  2

Proof. Assume m <  ̂ and . Then —  + —  > — + —  We also have
2  " 2  ; ? ^ 2 ^ 2

= T h isim p lies^  + 2 k > ^ a n d th e r e fo r e
pqr  2 pqr  2 pqr  2 P q pqr

X{m)  = 0. Likewise i f  y^ > ^  we must have %(m) -  0.

Lemma 5.2 We have x „,„ x„ +x„, and +L„,-

Proof. By (2.1) and (2.2) we have n x„qr and m x^^qr. Thus we have 

n + m=p x^qr + x^^qr = p { x „+  x„, ) qr. We also have n + m=^  Since

gcd(;? ,^r) = 1 we must have x„^„, x„ +x,„. Likewise we have y„^„, y„ +y„,

26
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Lemma 5.3 Assume r  = K p q - \  and q = r p  + \. Then

(5.1) X, = p - 1 y ,  = T

(5.2) Xp=0 = ^ -1

(5.3) x , = p - 1 y, = 0

(5.4) x^=I

Proof. These results fo llow  by direct calculation. We have 1 x^qr - X j .  Hence 

X, =  jP -1 . We have 1 y^pr -y^P- This implies r  - r j o y , .  Since - r p  1, we 

have ŷ  = r. We have 0=^ p = ^  x^qr -x ,. Hence x^ = 0. We have p  y^pr, 

which implies 1 -y^.  Hence = g -1 . We have q x^qr, which implies

1 =p X /  =p -x^ . Hence x ^ = p - \ .  We have 0 = ^q = ^  y^pr -y^p,  which implies 

y^ = 0 We have r  x^qr, which implies 1 x^q x . Hence x,. = 1. We have 

r  y^pr, which implies 1 y^p. Thus we have r  y j p -  Since r p = ^ - \ ,  we have 

y , ^ q - T .

Lemma 5.4 Assume r  = K p q - \  and q =  r p  + \. I f  m <  ̂ and ^ (w ) = l,th e n :

(5.5) %(/» + ̂ ) = l K > O L

(5.6) x{m + r)  = \ [y« > r ],

(5.7) %(m-r) = I [x„, >0].

27
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Proof. Assume = By Lemma 4.1 we must have x„, < y  and Note

I t  r
that since q = r p  + \, we have  =  . I f  x,„ > 0, by (5.3) and Lemma 4.2 we have

p  q pqr

= x ^ - \  and y„,̂ ^ = y,„. Thus,

X

P q P q P pqr P pqr 

Therefore %(/M + 9 ) = 1. This establishes (5.5).

I f  y„, > T, by (5.4) and Lemma 5.2 we have y„,^^ = y„, - r. Since x„, < ^  by (5.4) and 

Lemma 5.2 we have x ,. _ = x„ +1. Thus,

;?  ̂ p q p q pqr

Therefore%(/» + r)  = I. This establishes (5.6 ).

I f  x^ >0 by (5.4) and Lemma 5.2 we have x„,_̂  = x„, -1 . We must have r  < ^  because 

T > ^  implies ^ = r;? + l > ^  + l > ^ ,  which is a contradiction. Since y^ < ^  and 

T < ^ ,  by Lemma 5.1 and (5.4) we have y„,_,. = y„, + t . Therefore,

28
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i t L + = i - + 2k  _ i + 1  < ,

p  q p  q p  q p q r

Therefore x im  -  r )  = 1. This establishes (5.7).

We introduce two functions on the nonnegative integers:

(5.8) Q{m) = %(/») -  x{m + q )~  + r)  + %(m + ̂  + r);

(5.9) R{m) = %(/») -  %(/M + q )~  %(m -  r) + %(m + ̂  -  r).

Lemma 5.5 Assume m < . Then,

(5.10) 6(7») <1 K = 0 ] ,

(5.11) 6 (/» )^ o  K > 0 ] .

Proof. Observe that by (5.3) and (5.4) we have = x,„ and y „ , - r .  First

assume < r. Then since r  < ^ ,  we have ^  and therefore by Lemma 5.1

X{m + q + r )  = 0. From this and (5.8), (5.10) follows. Now (5.11) follows from (5.5). 

Next assume y^ > r. Then by (5.6) we have x(p i  + r )  ^  %(/»). Thus (5.10) follows from

(5.8). I f  x^ > 0 then since = x„, we have > 0. Therefore we can apply (5.7)

29
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w ith m replaced by m + q + r  This gives %(/M + ̂ ) > + ̂  + r). Now (5.11) follows

from (5.8).

Lemma 5.6 For m < satisfying >1 and v < q - T  we have:

(5.12) R{m)<0.

Furthermore i f  %(m) -  0, we have:

(5.13) R ( m ) < - x { m - r ) .

Proof. Assume x„, > 1 and y „ , < q -  r. We claim that,

(5.14) x{m + q - r ) <  x{m + q).

To establish this, note that by Lemma 5.2, (5.3), (5.4), and by assumption on y^, we 

have:

(5.15)

Now by (5.15) we may apply (5.6) w ith m replaced by m + q - r .  This gives (5.14). 

Now (5.12) and (5.13) fo llow  from (5.7), (5.9), and (5.14).

30
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Lemma 5,7 O^^(z) is flat if r  s  -1 mod pq and q = \ mod p.

Proof, By (2.5) and (5.8), we have = Y  Qi^)-  By Lemma 5.2 and
k -p -q ~ r< m ^ k -q -r

(5.1), as m runs through the interval { k - p - q - r , k - q - r ^ ,  runs through the interval 

0 < < p. In particular, x„, takes on the value 0 exactly once. Thus by Lemma 5.5 we

get the required upper bound. That is, (pqr^ < 1.

Now we establish the lower bound. First note that by (2.5) and (5.9) we have:

(5.16) -a k (pq r )=  Y
k-p-q< m < k-q

For / G {0 ,1}, let w, e [A: -  ^  +1, A: -  g] be such that

(5.17) x „ = i .

By Lemma 5.2 and (5.1), this is well defined. By Lemma 5.2 and (5.1), there can be at 

most one m & \k -  p  -  q + \ ,k -  q\ such that y „ _ > q -  r. I f  there is such an m, let it  be 

denoted by m'. We claim that,

(5.18) -a , , (pqr)<z imo) + zi f^i)-%(f>h + q )~ X i» \  - r )  + z{m' + q - r ) .

To establish this, note that by Lemma 5.6 we have:
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(5.19) -a^{pqr)  < R{m^) + R{m{) + R{m! + q - r ) .

Now, since y^, > g - r  > %̂ , by Lemma 4.1 we have %(/»') = 0. By Lemma 5.2, (5.3), 

and (5.4) we have = j ? - 2 > ^  (since j? > 4 ) and = j ? - l > % .  Thus by

Lemma 5.1 we have x i ^ o  + ^ - ^ )  = %(/», + ̂ - r )  = 0. Now (5.18) follows from (5.9) 

and (5.19).

Now assume %(m,) > Then (5.5), (5.7), and (5.18) give

- a ^ [ p q r ) <  x{m' -t- q - r ) .  Therefore -a ^ {p q r )< \ .

Now assume x i ^ )  = 0 and xirf^o) = 1- By Lemma 5.2 and (5.1), there are two 

possibilities: either m, = w,, -1  or w, = Wq -1  + /?. First assume w, = Wp -1 . I f  y  > r, 

then by Lemma 5.2, (5.1), and (5.3) we have x^+, = 0  and y,„_̂  ̂= y^_,+, = y ^  - r .  Thus 

we have:

X,> , , + 9  , y » . , + 9  y » . o  r  T / Mp  1 1  m ^ - q r  +  r  ^ r r i Q + q - l  m , + q

q q pqr q pqr p  pq pqr pqr pqr

Hence %(/», + 9 ) = 1. Thus by (5.18 ) we have -a^(pqr) < %(m' + ̂  -  r )  < 1. I f  y^  ̂ < r  

then y  =^q + > q -  r. Therefore in  this case we have w, = m'. So

Xm'+q+r ~ x„„+g-r ~ f -1  > uud therefore by Lemma 5.1 we have x i ’n '+  q ~ r )  = 0. 

Hence have -a^ (pqr)  < x i ^ o )  - 1 •

Now assume m, = Wp -1  + /?. Then we have by Lemma 5.2, (5.3), and (5.17)

= 0 and y„_+, = y,„̂  - r -1 .  I f  y„,̂  > r  +1 we have y,^+, = y ^ - r - L  This implies:
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îni+q y»i|+g _ y»'o r  1 itIq 1 1 1 _ ^ 0  + p  q^ m^+ q
p q q q q pqr p  q pq pqr " pqr

Therefore we have %(/», + ̂ ) = 1 and thus by (5.18), -a^ {pqr) < x{m' + q - r ) < \ .  I f  

y  < r  +1 then y^ = g + y„, - r -1 .  I f  y ^  > I then y  > q - r  and therefore we have

m, = /»'. Therefore in  this case we have w, = m'. So =: /? -1  > ^  and

therefore by Lemma 5.1 we have x {m '  + q - r )  = 0. Thus by (4.18),

~^k {pqr) -% { f^o) -^ -  I f  y»i„ - 1 then y ^ < q - r  for a ll w e [ Wp, Wi ]. Thus m' does not 

exists. Hence by (4.18), -a ^(;? ^r)<  j (W p )< l .

Thus we have shown that fo r every case we have, -a^ {pqr) < 1. Hence we have 

established the lower bound.

Lemma 5.8 Assume r  = Kpq + l  and q = r p  + \. Then,

(5.20) X j= i  y i = q - r

(5.21) Xp —0 ŷ , = I

(5.22) ~ I y , — 0

(5.23) x ^ = l  y r = q - r

Proof. These results fo llow  by direct calculations. We use (2.1) and (2.20). We have 

1 x^qr X], which implies x, -1 . We have 1 y^pr py^. This gives

- r  = -rpy^.  Since - r p  = 1, we have - r  = y,, or y, -  ^ - r. We have
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Q=^ p = ^  x^qr Xp. Hence x^ = 0. We have p  ypPr, which implies 1 = , y^- 

Hence y^ = 1. We have q x^qr, which implies 1 x^r x^. Hence x ^ -  I. We 

have 0=^ q=^ y^pr y^p, which implies y^ = 0. We have r  x^qr, which gives 

1 x^q =p x^, which implies = 1. We have r  y^pr, which implies 1 y^p. 

Therefore we have - r  -Xr^P- Since - r p  1, we have - r  y^, and thus

y, = q -T .

Lemma 5.9 Assume r  =  K p q  + l  and q =  r p  + \. I f  m <  and % ( m )  - 1 then.

(5.24) % (/» -? ) = 1 K , >0],

(5.25) %(m + r) = l [y „ ^  r ],

(5.26) x ( m - r )  = l [ x „> 0 ] .

Proof. Assume = 1. By Lemma 4.1 we must have x^ < ^  and y„, < ^ .  Note

\  T f
that since q - r p  + \ we have  =  . I f  x„, > 0  by (5.22) and Lemma 5.2 we have

p q pqr

x„,-q = x,„ -1  and y„,_  ̂= y„,. Thus,

'̂ n-q y»-q _ X „  y„, I m 1 m q ^  m q

P q P q P pqr P pqr pq pqr pqr

Therefore%(m - q )  = \. This establishes (5.24).
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I f  y ^ > r  by (5.23) and Lemma 5.2 we have = y„, -  r. Since < ^  < q' -1  by

(5.23) and Lemma 4.2 we have +1. Thus,

I ^  , y . I I T ^ m  + r
p q p q p q pqr

Therefore%(/» + r)  = 1. This establishes (5.25).

Assume x „ > 0. By (5.23) and Lemma 5.2 we have = x„, -1 . We must have

y  m-r = ym+r.  This is because r,y „, < This gives

p  q p  q p  q pqr pqr pqr

Therefore % (m - r )  = 1. This establishes (5.26). This completes the proof. 

We introduce two functions on the nonnegative integers,

(5.27) Sim) = %(m) -  %(/M - q ) -  %(m - r )  + z(m - q - r ) ;

(5.28) T im) = %(/») -  %(/M - q ) -  x{m  + r )  + %(?M -  ̂  + r).

Lemma 5.10 For m < , we have
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(5.29) T(m )<l [x ,= 0 ],

(5.30) T(/M)<0 K > 0 ] .

Proof. I f  x „ -  0 by Lemma 5.2, (5.22), and (5.23) we have = x„, and

y»,-9+r -  y», ~r .  Assume y„, < r. Then and therefore by Lemma 5.1, we have

Xim - q  + r )  = Q. Now (5.29) follows immediately while (5.30) follows from (5.24).

Next assume that > r. Then (5.25) gives %(m + r)  > %(m). From this (5.29) follows. 

Moreover, i f  x „ > 0 then by Lemma 5.2, (5.22), and (5.23) so is Thus we may

apply (5.26) w ith m replaced by m - q  + r. This gives, j( m - q ) >  %(/M- q  + r). Now

(5.30) follows.

Lemma 5.11 For satisfying x,„ >1 and y „ , < q - r  we have,

(5.31) ^(m )<0.

Furthermore i f  %(?») = 0 we have,

(5.32) S { m ) < - x { m - r ) .

Proof. Assume x„, > 1 and y „ , < q - r .  By (4.26) we have %(/M- r)  = 1. Hence both 

(5.31) and (5.32) fo llow  from the inequality,

(5.33) x i r n - q ) >  x { m - q - r ) .
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To establish (5.33) note that by assumption on we have = y„, + r  > r. Thus we 

may apply (5.25) w ith  m replaced by m - q - r .  This gives (5.33).

Lemma 5.12 0 ^^ (z ) is fla t i f  r  s  1 mod pq  and q -----1 mod p.

Proof. By (5.28) and (2.5) we h a ve -a ^(p ^ r) = Y  T(m). Now by Lemma 5.2
k -r-p < m < k-r

and (5.20) as m runs through the interval \ k - r  - p  + \ , k - r \  takes on the value 0 

exactly once. Thus-a ;^(/7̂ r) < 1 follows from Lemma 5.10. Now we establish the 

upperbound.

By (2.5) and (5.27) we have a,^{pqr) = Y  S(m). For z e {0,1} let e [ k - p  + l , k ]  be
k-p<m<k

such that x„, = i. By Lemma 5.2 and (5.20) there can be at most one m s \ k - p  + \,k^ 

such that y „ ^ > q -  t. I f  there is such an m let it be denoted by m'. We claim that

(5.34) a*(pqr) < %(/»„) + %(/»,) - %(m, - q ) - y(m, - r )  + %(m'- q - r ) .

By Lemma 5.11 we have a^(pqr)<S(mQ) + S(m^) + S(m’). By Lemma 5.1 we have 

X(m') = 0 since > ^ - r  > ^ .  Thus by Lemma 5.1 we have %(zzz') = 0. By Lemma 

5.2, (5.22), and (5.23) we have p - 2  > % and = p - l > ^ .  Hence by

Lemma 5.1 we h a v e y ( m p - ^ - r )  = y ( z w , - ^ - r )  = 0. Thus (5.34) follows by (5.27).
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First assume Then (4.24) and (4.26) give (pqr) < - q - r ) < \

Alternatively assume x(^o )  = 1 and xiP^\) = 0. By Lemma 5.2 and (5.20) there are two 

possibilities, either /Wj = Wp +1 or p  + \. First assume m^=m^+\ .  Then by

Lemma 5.2, (5.20), and (5.22) we have - 0  and = y„^ - r .  I f

y „ > r  we have.

X m ,-q  I T m ,-g  T  ^  W p___ T   1  ̂ 1 _  ~  qrjl ~  ) / )  ^ tTî  ~  q j \ - / g )  ^  m ,  ~  q

P q q q pqr q pqr p  pq pqr pqr pqr

Therefore in this case we have %(/», - q )  = \. Thus by (5.27) a* (pqr) < x(m' - q - r ) < \ .  

I f  y„„ < 7  then y„_ = -  r  + ^ > 9  -  r  so that m, = m'. So = /? -1  > ^

and therefore by Lemma 5.1 we have x { f ^ ' ~ q ~ r )  = 0. Hence have 

-a k {p q r ) ^ % {m o )< l .

Next assume m̂  = - p  + l .  Then by Lemma 5.2, (5.20), (5.21), and (5.22) we have 

Xm,-q = = 0 and y„,_, = y„,„_^,i_, = y ^  - \ ~ r .  Thus i f  y„^ > 1 + r  we have.

' m , - q  P m , - q  _ y ^  1 1 1  _ 1̂̂  + r [ \ - p ~ q )  ^ Mq+ \ ~ p  ~q

P q q pqr q P pq pqr pqr pqr

Therefore %(/», ~q) = \ and thus by (5.27) (pqr) < x i jn ’ - q - r ) < \ .  I f  y„, < 1 + r  

then y^_, = q  + y„,  ̂ -1  -  r. I f  y ^  > 0 then y„,̂  -  y„^ -1  -  r  + ̂  > ^ -  r. Thus w, = m'.

So = p - l >  ^ ^ 2  and therefore by Lemma 4.1 we have x { ^ ' - q ~ r )  = 0-
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Hence have -a^ {pqr)  < x (^o )  - 1- If y,„„ > 0 then y,„ < q - r  for all me  [oto,ot,].

Thus m' does not exists. Hence (pqr) < x(mg ) < 1.

Lemma 5.13 Assume r  = K p q - \  and q = t p - \ .  Then,

(5.35) X, =1 y, = g - T

(5.36) Xp=o y p —q~^

(5.37) x ^ = p - \  y , =0

(5.38) x ^ = p - \  y, =T

Proof. These results follow by direct calculation. We have, 1 x^qr x,. Hence 

X] = 1. We have 1 y.^pr -y,/>. This implies -rpy^ -r . Since r p = ^ \ ,  we have 

y ^ = q - T .  We have 0=^ p = ^  x^qr Xy Hence x̂  - 0. We have p  ypPr, which 

implies 1 -y^ .  Hence y  ̂=  ̂-1 . We have q x^qr, which implies

I -p X /  =p -Xg. Hence x̂  = p - 1 .  We have 0 = ^ q = ^  y^pr -py^,  which implies 

ŷ  = 0. We have r  x^qr, which implies 1 x^q -x^. Hence x̂  = ;?- ! .  We have 

r  y^pr, which implies 1 y^p. Thus we have r y^rp- Since r;? 1, we have

y r = r .

Lemma 5.14 Assume r - K p q  + \ and q - r p - \ .  If m <  ̂ and y ( w )  = l then.
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(5.39) y (w  + ç) = l > 0],

(5.40) y ( m - r )  = l  [ y „ , ^ r ] ,

(5.41) %(/» + /-) = 1 k ,  >0].

Proof. Assume % (/») = l .  By Lemma 5.1 we must have < y  and < ^ . Note

I t  r  
that since q = r p - l  we have  + — =

p  q pqr

I f  x „ > 0 by (5.37) and Lemma 4.2 we have ^ x ^ - \  and y„,̂ ^ = y„,. Thus,

P  q P  q P  p q r  P ~  p q r  '

Therefore%(/» + ̂ ) = 1. This establishes (5.39).

I f  y„, > r  by (5.38) and Lemma 5.2 we have y,„_  ̂= y,„ -  r. Since x„, < y  by (5.38) and 

Lemma 5.2 we have +1. Thus,

p  q p  q p  q pqr

Therefore%(»? - r)  = 1. This establishes (5.40).
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If > 0  by (5.38) and Lemma 5.2 we have -1 . We must have r  because

T > ^  implies g = r;? + l > ^  + l > g ,  which is a contradiction. Since y„, < ^  and r  < ^  

we have = y„, + r. Therefore,

p  q p  q p  q p q r

Therefore y ( w + r )  = l . This establishes (5.41).

We introduce two functions on the nonnegative integers,

(5.42) F{m) = %(m) -  %(m + ̂ ) -  %(/» -  r )  + %(m + 9  -  r);

(5.43) G{m) = x(m) -  x{m + q ) ~  %(m + r )  + %(m + q + r).

Lemma 5.15 For m < , we have

(5.44) F(m) < 1 [x„, = 0],

(5.45) F (m )< 0  k > 0 ] .

Proof. I f  x„, = 0 by Lemma 5.2, (5.37), and (5.38) we have = x„, and 

y m+q-r -  y», Assume y,„ < r. Then ^  and therefore by Lemma 5.1, we have
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x i jn  + q - r ) - Q .  Now (5.45) follows immediately while (5.46) follows from (5.39). 

Next assume that > r. Then (5.40) gives %(zM-r) > %(/»). From this (5.45) follows. 

Moreover, i f  > 0 then by Lemma 5.2, (5.37), and (5.38) so is x^ . Thus we may 

apply (5.41) w ith OT replaced by w + ̂ - r .  This gWQsx{m + q )>  x{m + q - r ) .  From 

this (5.46) follows.

Lemma 5.16 For tn < — satisfying x,„ >1 and < q - r  we have.

(5.46) G(m)<0.

Furthermore i f  %(;») = 0 we have,

(5.47) G ( m )< -x (m  + r).

Proof. Assume x„, >1 and y^ < q - r .  By (4.41) we have x{rn + r ) >  x{m). Hence both

(5.46) and (5.47) fo llow  from the inequality,

(5.48) %(m + g)>%(m + g + r).

To establish (5.48) note that by assumption on y„, we have ŷ _̂  = y^ + t > r. Thus we

may apply (5.40) w ith m replaced by m + q + r. This gives (5.48).

Lemma 5.17 (z) is fla t i f  r  = - \  mod pq and q = - \  mod p.
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Proof. By (2.5) and (5.42) we have {pqr) = ^  F{m). Now by Lemma 5.2
k-q-p< m <k~q

and (5.35) as m runs through the interval \ k - q - p  + \ , k - q ^  x„, takes on the value 0

exactly once. T h u s ( / ? ^ r )  < 1 follows from  Lemma 5.15. Now we establish the 

upperbound

By (2.5) and (5.43) we have a^{pqr)~  ^  G(m), where c = k - r - q - p  + l  and
c<m<d

d = k - r - q .  For i € {O ,l} let m. e [c ,i/] be such that x = i. By Lemma 5.2 and (5.35) 

there can be at one m e \c ,d \  such that y ^ ^ > q -  t . I f  there is such an m let it be denoted 

by m'.

We claim that

(5.49) a*ipq r )  <%(/Mo) + %(m,)-%(/M, + O')-% (/») + r )  + %(m' + ̂  + r).

To establish this claim  note that by Lemma 5.11 we have 

a,^{pqr)<S{mQ) + S{m^) + S{m'). Now by Lemma 5.1 we have %(m') = 0 since 

By Lemma 5.2, (5.37), and (5.38) we have = p - 2  and 

= P - ^ > ‘’A -  Hence by Lemma 5.1 we have%(/Mg - q - r )  = %(m, - q - r )  = 0.

Thus (5.49) follows.

Now assume %(/»,) >%(/Mo). Then (5.39) arid (5.41) give a,^(pqr)< ;^(m '+ q + r ) < l .  

A lternatively assume z i ^ o )  = 1 and %(m,) = 0. By Lemma 5.2 and (5.35) there are two 

possibilities, either w, = w2q +1 or w, = Wg -  /> +1. First assume = Wp +1. Then by
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Lemma 5.2, (5.35), and (5.36) we have = 0  and = L„,„ +1 - r.

I f  > r  -1  we have,

L,„„ , 1 r  /Mp 1 1 1 n i f ^ + p q - p r - r  nu+q

P 9 q q q pqr q p  pq pqr pqr

Therefore in this case we have %(m, + q ) -  \ and thus {pqr) < z { m ' - q - r ) < \ .  I f  

Tm, < ^ then -  r  + qr > ^ -  r  so that tw, = m'. So = ;? -1  > ^

and therefore by Lemma 5.1 we have z { ^ '  ~ q ~ r )  -  0. Hence have 

-ak{P<ir)<Z(fno)<'^.

Next assume m, = /Wp -  jt? + l.  Then by Lemma 5.2, (5.35), (5.36), and (5.37) we have 

= 0 and ^  L„,„ +1-T .  Thus i f  > r - l  we have,

I 'Mp 1 1 ___1 ^  OTp 1 ^ 1  ^  /Mp - ^ r ( l - % )  ^  TMp - g ( l - % )  ^  7M, -

P q q pqr q P p q ~  pqr p  pq pqr  ~ pqr pq

Therefore %(m, +q)  = \ and thus a*{pqr) < %(m' - q - r ) < \ .

I f  Tm„ < ^ - 1  then = ^  + T - l .  Then y„, = ^ - 1  > ^ - r .  Thus = m'. So

1 > ^  and therefore by Lemma 5.1 we have z { m ' - q - r ) ^ 0 .

Hence have -a ^ {p q r )  < %(mp) <1. Hence -a^{pqr)  < %(mp) <1.

Theorem 3. Let p, q, and r  be primes w ith 5 < p  <q  < r .  l f r  = ± l mod pq and 

q = ± \  mod/7, then 0 ^ ( z )  is flat.
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Proof. This follows from Bachman’s Theorem, Lemma 5.7, Lemma 5.12, and Lemma 

5.17.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

1. G. Bachman, ‘Flat Cyclotomie Polynomials o f Order Three’ , Bull. London Math. 
Soc. 38 (2005) 1-8

2. G. Bachman, ‘Ternary Cyclotomie Polynomials w ith an Optim ally Large Set o f 
Coefficients’ , Pro. Amer. Math. Soc. 132(2004) 1943-1950.

3. P. T. Bateman, C. Pomerance and R. C. Vaughan, ‘On the Size o f the Coefficients 
o f the Cyclotomie Polynomial’ , Topics in classical number theory I, 77 ed. G. 
Halasz, Coll. Math. Soc. Janos Boyai 34 (North-Holland, Amsterdam, 1984) 171- 
202.

4. R. C. Vaughan, ‘Bounds for the Coefficients o f Cyclotomie Polynomials’ , 
Michigan Math. J. 21, iss. 4 (1975), 289-295.

5. Weisstein, Eric W, ‘Cyclotomie Polynomial,’ From Mathword—A  W olfram Web 
Resource. http://mathworld.wolfram.com/CvclotomicPolvnomial.html

6. H. Davenport, Multiplicative Number Theory, 2"** ed (Springer, New York, 1980)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://mathworld.wolfram.com/CvclotomicPolvnomial.html


V IT A

Graduate College 
University o f Nevada, Las Vegas

Thomas Joseph Flanagan

Local Address:
8384 Pearl Beach Court 
Las Vegas, N V  89139

Degree:
Bachelor o f Science, Mathematics, 2001 
State University o f New York at Stony Brook

Thesis T itle: On the Coefficients o f Cyclotomie Polynomials

Thesis Committee:
Chairman, Dr. Gennady Bachman, Ph. D.
Committee Member, Dr. Ebrahim Salehi, Ph. D.
Committee Member, Dr. Derrick DeBose, Ph. D.
Graduate Faculty Representative, Dr. Ashok Singh, Ph. D

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	On the coefficients of ternary cyclotomic polynomials
	Repository Citation

	tmp.1534462568.pdf.ccghf

