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ASTRACT
On the Coefficients of Ternary Cyclotomic Polynomials
by
Thomas Joseph Flanagan
Dr. Grennady Bachmann, Examination Committee Chair
Professor of Mathematics

University of Nevada, Las Vegas

In this paper we investigate the coefficients of ternary cyclotomic polynomials.

27k
That is, we investigate the coefficients polynomials given by, ©, (z) = H ( z—e " ),
1sksn
(n,k)=1

where n is the product of three distinct odd primes (» = pgr ).

First we show the coefficients of @ (z)are loosely connected to the residue of »
modulo pgq. In particular we show that if r, =r, mod pq and 7 <r,, then the set of
coefficients of @, (z) is a subset of the set of coefficients of @, (z); if in addition,

pq <r,, we show these two sets are identical.

Second we establish a new upperbound for the absolute value of the coefficients

of ternary cyclotomic polynomials. To illustrate the result let ¢ =7 mod pq, and write

o(pgr)
@, (z)= kZ=(; a,(pgr)z*. We show that Osg&)p(qr)[ak (pgr)| <2c+2.

1il
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In our third result we extend the family of flat ternary cyclotomic polynomials
that was established by Bachman. (Note. Flat polynomials are polynomials with

coefficients of only 1 or 0.) We show that if » =+1 mod pg and ¢ =+*1 mod p, then

@, (2) is flat.

iv
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CHAPTER 1

INTRODUCTION

For every n e N the n-th cyclotomic polynomial is given by,

D, (z)= H (z—ezm%).

1<ksn
(n,k)=1

The study of cyclotomic polynomials forms a significant branch of mathematics.
Cyclotomic polynomials have been extensively studied over the centuries by many
prominent mathematicians. If fact, Gauss was the first to show they are irreducible over
the integers.

Below we compute @, (z) for n=1,2,3,and 8§,

2rik, .
@)= ] (s-¢™) = z=¢"= 21
1k <1
(1,k)=1

2rik, .
D,(2)= H (z—e A)= z—e"=z+],
1<k<2
(2,k)=1
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2rik
D,(z)= H (z—e A)=
1<k<3
(3.5)=1

(z—ezm%)= (z—ezn%)(z—e“”%): Z° +z+1,

k=1,2

2k

DOy (2)= H (z—e A)=

1<k<8
(8,k)=1

(z—em%)= z* +1.

k=1,3,5,7

The first thing we notice about the coefficients of these four cyclotomic
polynomials is that in each case all of the coefficients are integers. This may be
surprising considering ®@,(z) 1s defined in terms of complex numbers. Nonetheless, one
might speculate whether this is the case for all cyclotomic polynomials. In fact, this turns

out to be true. That is, for every ne N, @ (z) has integral coefficients. This interesting

result can be shown to follow from the equation, z" —1= H ®,(z) (see lemma 2.1), and
din

induction on 7.

The next observation one could make concerning the four above cyclotomic
polynomials is that each has coefficients of only +1 or 0. Thus again one might
speculate that this is the case for all cyclotomic polynomials. Actually, the study of the
coefficients of cyclotomic polynomials began with this conjecture [1]. We call such
polynomials flat. That is, a polynomial is called flat if it has coefficients of only +1 or

0. However, this conjecture turns out to be false. In fact, ®,,s(z) is the first cyclotomic

polynomial which is not flat [5]. An actual computation shows that the coefficient of z’

in® (z) is —2. We provide an explanation for this curious fact below.

The following well known result, which we prove in Lemma 2.2, shows that

®,(z), where p is a prime, is flat:
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(1.1 Q,(2)=1+z+2"+..+2".

It is also a well known result (this can be found in [5]) that for p a prime,

(1.2) ® . (2)=D,(z").

Therefore one can combine (1.1) and (1.2) to establish that for n= p?, p a prime, CI)Pz (z)

is flat. In fact (1.1) and (1.2) give:
(1.3) D .(2) = D,(z") = 1427 +27 4otz 4 27
The next case to consider, when # is the product of two distinct primes, was tackled by

Migotti. In 1883 he proved that @, (z) is flat for p and g prime [5].

Next we turn to integers which are the product of three primes, that is, » € N such that

‘n=pgqr, with p, g, and r primes. Below is another well known formula, which can be
found in [5].

(1.4) @ (z)= CI)p2 (z%)

One may combine (1.3) and (1.4) to show that CDp3 (z) is flat:

(1.5) ®,(z) =@, (z") = 1427 +27 4 427 427
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Consider the below known formula, which can be found in [5]:

(1.6) (Dpzq(z) =@, (z°)
It is clear that (1.6) and Migotti’s result combine to show that (D,,z,, (z) is flat.

Furthermore it is clear that one may combine the below known formula (which can be

found in [5]), (1.7), with Migotti’s result to show that @, (z) is also flat (for p,q #2).

2pg

(1.7 @,, (2)= D, (~2).

Thus we have shown that @, (z) is flat for n € N where n is of the form,

p. . P, pq, P’q, 2pq. Hence we have show that @, (z) is flat for all »<105. Note

this is because 1035 is the smallest natural number which does not have one of the above

six forms; it is the smallest natural number which is the product of three distinct odd
primes (105=3-5-7) Hence we see now that @, (z)is flat for » <105.

Nonetheless, this does not answer every question one might ask concerning flat

cyclotomic polynomials. To illustrate a few examples, let p,, p,, p;,..., p, be distinct

odd primes. First, while it is not true that every cyclotomic polynomial of the form

@, .., (2)isflat (D,,(2) being an example), one might ask whether there exist infinite

families of flat cyclotomic polynomials of the form @ (z). Secondly, one might

PiP2Ps
further ask whether for every i € N there exist infinite families of flat cyclotomic

polynomials of the form @ (z). While the latter question remains open, the former

PP pi
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question has recently been answered by Bachman [1]. He proved the following theorem

which can be found in [1].

Theorem. Let p, g, and r be primes with 5< p<g<r. If r=1 mod pq and

g =-1 mod p, then @, (z) is flat.

One of the main aims of this thesis is to generalize this theorem. In Chapter 5 we will

prove the following theorem, which we call Theorem 3,

Theorem 3. Let p, g, and r be primes with 5< p<g<r. If r=+£1 mod pq and

g =%l mod p, then @, (z) is flat.

Another direction the study of cyclotomic polynomials has taken is an
investigation into questions concerning possible bounds for their coefficients. To

illustrate a few know results, let ¢(») be the Euler totient function. We can then write,

o(n)

(1.8) D,(2)= D a,(m)z",

and define,

A(n) = max ,ak(n)].

(1.9 A rgg‘iw('glax a (n)]
: (n) —Osksw(n)l kAT
5
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It is natural to ask whether the coefficients of cyclotomic polynomials can be
arbitrarily large or small. It was Schur who first answered this question by proving that

A(n) is unbounded [1]. That is, Schur proved that for every m € N there exists some
ne N such that @, (z) has a coefficient larger in absolute value than m.
For ne N let d(n)denote the number of divisors of n. P.T. Batman has

established the following upperbound for A(»), which holds for arbitrary ne N,
(1.10) A(n)<exp(%d(n)logn).

R.C. Vaughan has established that this is the best possible upperbound for A(#) for

arbitrary ne N. These two results can be found in [4].

In this thesis we investigate bounds for A(n) for n € N where 7 is the product of
three distinct odd primes. That is, we assume n= pqr, 2 < p <q <r, with p,q,r prime.
In this case @, ,(z) is called a ternary cyclotomic polynomial. Coefficients of ternary

cyclotomic polynomials have been studied by several authors. A classic result of A.S.

Bang gives the bound [1],
(1.11) A(pgr)< p-1.
We note that this upperbound is independent of ¢ and r. Perhaps the most interesting

open problem concerning the coefficients of ternary cyclotomic polynomials is the

following conjecture, due to M. Beiter [2].
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Conjecture. We have,
(1.12) A(pqr)S£2+—l.

H. Moller has shown that, if true, (1.12) is the best possible upperbound for A(pgqr) [2].

He gave a construction for a ternary cyclotomic polynomial, ®__(z), for every p, with a

par

p+l [2]. The closest result to (1.12) is due to Bachman

prescribed coefficient equal to

[21,

(1.13) A(pqr)Sp—[%].

Note that we use I—ﬂ denote the ceiling function of x.

One of the main aims of this thesis is to establish a new sort of upperbound for

A(pgr). We will show that not only are the coefficients of the ternary cyclotomic

polynomials, @, ,(z), bounded above by a function which is independent of g and r, but
that they are also bounded above by a function which is only dependent on the residue of

rmod pq. To illustrate, let c =r mod pg. In Chapter 4 we will prove the following

theorem, which we call Theorem 2,

Theorem 2. We have,

(1.14) A(pgr) <2c+2,
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where ¢ =r mod pq. In particular, if » =1 mod pq, then A(pqr)<4.

We remark that given ¢ and any pair of primes p and g, the existence of infinitely many
primes r satisfying r = ¢ mod pq is guaranteed by Dirichlet's theorem on primes in
arithmetic progressions [6].

Another aim of this thesis is to show that the dependence of the coefficients of

®,,,(2) is loosely restricted to the residue of r mod pg. To illustrate this result we

denote the set of coefficients of ®, (z) by Q,,. We will prove the following theorem,

re

which we call Theorem 1, in Chapter 1,

Theorem 1. If r, =r,mod pg and 1, <r,, then Q< Q, . Moreover, if pg<r then

Q. =Q

pan pan
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CHAPTER 2

REVIEW OF RELATED LITERATURE

Fix primes 2 < p <q <r and let k£ be a nonnegative integer. Define x,, y,, and

z, by:

2.1 k =x,qr mod p,
2.2) k=y pr modg,
(2.3) k=z pq modr,

where 0<x, <p, 0<y, <g, and 0<z, <r. Forexample,let p=5, g=7, r =11, and

k =100. Then we have,

100 = x,,, 77 mod}5,

100 = y,,,55 mod 7,

100 = z,,,35 mod11,
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and therefore, x,p0 =0, y0 =3, and z,, =6.

Next define a function, ¥, on the nonnegative integers by,

1o By ko
(2.4) x(k)= P q pgr.
0 otherwise

For example, againlet p=5, ¢g=7, r =11, and £ =100. Then we have,

K Yo 5 100 K

p g 1 38 pgr

and therefore, »(100)=0.

Recall by (1.8) that we denote the pgr-th cyclotomic polynomial by,

o(pgr)

(qur(z)= ak(pqr)zk'

k=

[~

We claim that the following formula gives the coefficients of @, (z):
(2.5) a(pgr)= Y, x(m)—x(m—q)— z(m—r)+ g(m—q-r).

k—p<msk

10
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We note that this formula can be found in [1]. We establish this claim through eight

lemmas.

Lemma 2.1 For ne N, we have z" -1=][®,(2).

din

Proof. Let f(z)=2z"-1and g(z)= H @, (z). We establish this lemma by showing

dn

f(z) and g(z) have the same zeros, all with multiplicity one. Assume f(w)=0. Then

since 2" —1= H (z—ezm%), we have w=e”" for some k €{0,1,2,..,n~1}. Now if

0</<n-1
ged(n, k) =t, then n=dt and k = k't for some d,k’' e N, where gcd(d,k’)=1.

2mik(n

Therefore, w=e"™/" =¢*™*/? Since gcd(d, k") =1, we have @ (w) =0 and thus

g(w)=0. Now assume g(w)=0. Then w= ezﬂ% where

ke{0,1,2,....d -1}, ged(d,k) =1, and n=dt, for some ¢ € N. Thus we have,

w=e Y4 =¢"" Since k < d, we have kt <dt = n and therefore kf €{0,1,2,..,n-1}.
Hence f(w)=0.

It is clear that all the zeros of f(z) have multiplicity one. Let d, |n and d, |n
where d, # d,. To show that all the zeros of g(z) have multiplicity one, it suffices to

show we can not have ©, (w)=0and © 4, (W) =0 with d, #d,. Thus assume

2zikydy ~ 27ikyd]
D, (w)=0, d, W)=0, and d, #d,. Then as above w=¢ = " where
d, dy 1 2

2rikydy » 27rik2d%

ged(d,,k) =1, and n=dd|. We also have w=e 2 = where

ged(d,,k,) =1, and n=d,d,. Thisimplies kd| = k,d, , which gives kd, = k,d,.

11
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Since ged(d,, k) =1, we have k,|k,. Likewise since ged(d,,k,)=1, we have £, Ik,

Therefore k, =k, and hence d, =d,. This is a contradiction.

z? -1

z-1

Lemma 2.2 For p a prime, we have @ ,(z) =

Proof. Applying Lemma 2.1 with n=p gives z" -1=®,(2)®,(2) = (z -D®,(z), and

the result follows.

(" -1)(z-1)
(z7 -1z -1)

Lemma 2.3 For p, g prime, we have @, (z) =

Proof. Applying Lemma 2.1 with n= pg gives:

(" =D -D)P,(2)

z—1

z7 -1=, (Z)(D,, (2)®, (z)(I)pq (z2)=

2

and the result follows.

@ =" -D(2" -1)(z" -1)
" =D -D(" ~1)(z-1)

Lemma 2.4 Forp, g, r prime, we have ®, (z)=

Proof. Applying Lemma 2.1 with »= pgr gives:

M -1=0,(2)?,(2)®, ()P, (2)D,, (2)®,(2)D,,(2)

12
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_ (" =DE" -DE" -D)D,,,(2)
(22 =D -1)(z" -1)

B

and the result follows.

Lemma 2.5 Forp, g, r prime, we have:

q)pqr (Z) = (1 —z9_ 4 Zq+r) ZI Ziqr ijr kaq mod Z¢(pqr)+1

Proof. For |z| <1 we have:

A-z")1-z")A-z)1~-z%)

P )= a2

par r 1 ’qr Jpr q
R R I I W

=(1-z"")1-z")(1-27 )S z'i z""i z””i .
=0 =0  j=0 ko

Truncating terms with degree larger than ¢(pqr) gives for [z] <1:

p-1 p-1 q-1 r-1

®, (2)=(1-2"-2"+z"") z' 27N 27N 2% mod z#PH
i=0 k=

[
I}
(=]
I
o
~.
[e=1
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Lemma 2.6 Every natural number has a unique representation of the form:

n=x,qr+y,pr+z,pq—9,pqr,

where 0<x, <p, 05y, <q, 0<z, <r, & €Z. Moreover, if 0<n<¢@(pqr), then

&, €{0,1,2}. Furthermore these values of x,, y,, and z, coincide with the values given
by (2.1) - (2.3).

Proof. First we establish existence. Since ged(gr, pr, pq) =1, there exists x,y,z € Z
such that n = xqr + ypr + zpq. If x [0, p), then there exists @ € Z such that
(wp+x)e[0,p). Wethenhave n=(x+wp)qr+ ypr+zpqg—wpgr. Likewise there
exists ®',@" € Z such that (w'q + y) €[0,q), and (@"r +z) €[0,r). Now we have,
n=(x+op)qr+(y+o'q)pr+(z+a'r)pg—(o+ o'+ ") pgr. Existence then follows

with x, =wp+x, y,=0'q+y, z,=0"r+2, 6, =0+’ +o". To establish uniqueness,

assume there also exist x,, ¥, , z,, 6, , suchthat n=xqr+y, pr+2z'pq-35, pqr.

Then, x,q7 = x, qr mod p which implies x, =x, mod p. Since x,,x, €[0, p) we have
x,=x, . Likewise y =y and z, =z, .

n

Now let 0<n<¢(pgr)=(p-1)(g-1)(r ~1). Firstassume &, <0. Then,

n=x,qr+y,pr+z,pq+06,pqr 2 X,qr+y,pr+z,pq+ pqr = pqgr

>(p=D(g-D(r-D.

14
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This is a contradiction. Hence we must have 6, >0. Second assume &, >2. Then,

n=xgqr+y,pr+z,pq—0,pqr <x,qr +y,pr +z,pq—3pqr

<(p-lgr+(g-Dpr+(r-1)pg-3pgr =—qr— pr—-pq <0.

This is a contradiction. Hence we must have J, <2.
The last part of the lemma is established by noting that n=x,gr mod p and 0<x, < p.

Likewise for y, and z,.

Lemma 2.7 For 0 <n<g@(pqr), we have y(n) =1 if and only if J, =0.

Proof. Assume y(n)=1. Then, o Ync ' This gives x,qr +y,qr <n, or
p q pgr '

0<z,pq-6,pqr, which implies 6, <z,. Since 6, €{0,1,2} and 0<z, <7, we must
have 6, =0.
Now assume 6, =0. Then n=xgr+y, pr+z,pq. This implies,

Ty Fn 2 __n_’ from which 22 + 2 < " follows. Hence z(n)=1.

p q r pgr p q pgr

Lemma 2.8 For p, g, r prime, we have

a(pgr)= Y. xm)—x(m-q)-y(m—-r)+ y(m—q-r).

k—p<msk

15
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Proof. By lemma 2.6 we have

plopl gl ol
®, (2)=(1-z"-z"+ z"”)z ZIZ z""Z 27y 2% mod /P,

I=0  i=0 j=0 k=0

It follows from this that for z™ to have a nonzero coefficient in ® oo (2), there must exist

i,j,and k, with 0<i< p, 0<j<gq, and 0<k <r, such that

igr+ jpr+kpg=m—y or

igr+ jpr +kpg=m—q -y or,

igr+ jpr+kpg=m—-r—y or,

iqr+ jpr+kpg=m—-q-r—y,

for some y €{0,1,..., p—1}. That is, there we be a nonzero coefficient if y(n) =1,

x(n-q)=1, y(n—-r)=1,0r y(n—q—-r)=1 for some ne{m—p+1,...,m}. Moreover,

a,,(2)= Y xm+ Y xn-@+ Y, xn-r)+ . xn—q-r).

m-p<n<m m—p<n<m m-p<n<m m-p<n<m

16
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CHAPTER 3

THEOREM 1 AND PROOF

Fix p and g prime with p <g. Denote the set of coefficients of ® or(2) by Q,, withr
prime and g <r.

Theorem 1. If , =7, mod pgand 1 <r,, then Q, cQ, . Moreover, if pg <r, then

Q, =Q,.
#(pgn) #(pgr)
Proof. Let @, ()= Z(:) a,z" and @, (z)= Z b,z". Let m=kn, +t, where
m= n=0

keZ and 0<t<r. We intend to show that if we choose n = kr, +¢, we will have

a, =b,. By (2.5) we have,

a,= D 1@ -pnGx-9)-x5Gx-n)+px-r-q)

m—p<x<m

1 if Zmydm M
where, y,(m) = P 49 pg
0 otherwise.
By (2.5) we also have:
17
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bn = Z /Zz(x)_Zz(x_q)_lz(x_rz)_lz(x_q_rz)

n-p<x<n
where,

; X n
if —”+&S

1
X,(n)= P 9 pgn
0 otherwise

For our choices of m and »n, we claim x, =x, and y, =y,. First we have,

kr+t=m=x,qr, (mod p). Now since r, =dpq +#» for some d € N, we have:

kr,+t=n=x,4qr,=k(dpg+n)+t=hkr,+t=m=x gr, (mod p).

Thus, x,gr, =x,qr, mod p. Hence we have x, =x,. Inexactly the same manner we can

conclude y, =y, .

Ift:Owehave,i= b =£= ry __"
bgn pgnn P9 pgr, pgr,

Hence in this case y,(m) = y,(n).
Assume (>0. Weclaim y,(n)=1= y,(m)=1. To establish this claim,

assume y,(n)=1. We then have:

18
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Ty Yu _Fw Fa M _kntt_k 0kt gt m

v 9 P 49 P9, P9, P9 P9, P9h quz_qul pan qul,

which implies y,(m) =1.
We claim it is impossible to have both y,(n) =0 and y,(m)=1. To establish this
claim assume both y,(n) =0 and y,(m)=1. Then,

ket X Y X Yu o Mk

pq pgr, pg, P q P q par pqg pgr

Multiplying through by pg and then subtracting through by & gives,

I 4
—<Xx,4+y,p—k<—.
f! h

However this is impossible becausex,,g+y,p—-k€Z, 0< L ,and LD T: follows
6! h

that y(m) = y(n).

We next claim that for our choices of m and » we have y,(m~-x) = y,(n-x),
when x €[0, p) Recall we have let m = kr, +t where 0 <t <r,, we have chosen
n=kr,+t. Thus for any given x €[0, p) we have m—x =k, +1—x and

n-x=kr,+1—x, where |t —x|<r,.
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If 0 <t-x, then we may apply the same argument as above to conclude
Xi(m—x) = y,(n—x). The only difference is we must replace # by ¢ —x.
If t-x<0, weclaim y(m-x)=1= y,(n—x)=1. To establish this claim

assume y,(m—x)=1. We then have:

X

Xps  Ynox _ ,,,,X+y,,,_x$m—x=kr1+t—x=_k_ 1—x _ kr, +t—x< kr, +t—x:n—x

p q p q pan pan pq  pgn  pan,  pgr pgr,  pqr,  par,

which implies y,(n-x) =1.
We claim it is impossible to have both y,(m-x)=0 and y,(n-x)=1. To

establish this claim assume both y;(m—x)=0 and y,(n—x)=1. Then,

k I-x m-x

n—x_i f—x
pPq pgn pgh p q p q pbgqr, pq pqr,

xm—x ym—x — xn-x yn-x
< + = + <

Multiplying through by pgq and then subtracting through by £ gives:

t—x -
—— <X, 4+, p-k<

h r

I—x

- . I—x t
However this is impossible becausex g +y, p—-keZ, -1<——,and —<0.
h h
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Thus we have y,(m—x) = y,(n—x), and therefore Z nx)= Z X (%).

m—p<x<m n—p<x<n

Similarly we can conclude,

Y nG-9= > pnE-9),

m—-p<x<m n—p<xsn

> anG-n)= > px-n),

m—p<x<m n—p<x<n

Z H(x—q-n)= Z X (x—q—r).

m—p<xsm n—p<x<n

Hence a, =b,. This establishes Q, c Q, .
Now assume pg <r,. Let n=kr, +t, where 0<¢<r,. If t <r, we may let

m = kr, +t and have a, =b,. (This is what we have established above.) If 1 > 7, we let
ny =kr, +1,, where t =wpq+t, and 0<1, < pg. We want to show b, =5, . We have
x, =x, and y, =y, . Since n, <n, we have y,(n)=1= y,(n)=1 and
Z,(n)=0= x,(n,) =0. We claim it is impossible to have both y,(n) =1 and g, (n,) =0.
Assume y,(n)=1 and y,(n,)=0. Then,

k I n, n k t

X
L NS FRL1p L.

pg pgqr, pgr p g pqr pq par,
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Multiplying through by pg and then subtracting through by k gives,

f t
L<x gty p-k<—.
r )

.. . t
However this is impossible because, x,g+y,p—keZ, 0<%, and L <1. Thus we have
h h

X, (n) = x,(n,). Now we may show y,(n, —x) = y,(n—x) in exactly the same manner as
above. Thus we may conclude b, =b, . Now since # > pg >1,, we may let m = kr, +1,

ny

and have b, =b, =a,,.

22
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CHAPTER 4

THEOREM 2 AND PROOF
Theorem 2. A(pgr)<2c+2, where r =c mod pgq. In particular, if » =1 mod pg we

have A(pgqr)<4.

Proof. Let r = Apg+c, where AeZ and 0<c<r. Let n=wr +t, where w € Z and
0<t<r. For me[n—p+1n], let m=w,r+t,, where 0<r_ <r. Note that for all

m e [n— p+1,n] we must have either ® =w,, or @ —-1=0,. We claim that if
x(m—r+c)=1, then y(m)=1. To establish this claim assume y(m-r+c)=1. Since
m—r+c=m mod p, we have x =x,. Likewise, since m—~r+c=m modgq, we

m-=r+c m

have y,_,.. =y, This gives,

m-r+c _ m
B ,

P q p q par pgr

&_4_&”_ _— xm—r+c + ym—r+c —<—

or y(m)=1.
We next claim that there can be at most two m € [n— p +1, 1] such that
y(m—-r+c)=0 and y(m)=1. To establish this claim, assume there exists

me[n—p+1,n] suchthat y(m—-r+c)=0 and y(m)=1. This gives,
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Mmorte Xy Yy M

pgr P q  pgr

or,
[ +c {
-1+*—<x,9+y,p—0, <.
r r
Si Z, 0<2*C and o th -
ince (x,9+y,p—a,)€Z, <=, and <1, we must have x,+y,p=,.

Now assume there exists another v e[n— p+1,n] with y(v-r+¢)=0 and y(v)=1. As

before we must have x,q+y, p=o,. Without loss of generality we may assume, v <m.
Then we must have either o, =, or w, —1=wo,. We claim that we can not have
o,=0, fw,=0,then x g+y, p=x4qg+y, p, which implies
(x,,—x,)g=(y,—y,)p- Since p and g are prime, this implies g |( Y, = Y.) Since
0<y,,y,<q, wemusthave y =y . It follows that m=v modq. Hence m-v >gq.
This however is impossible because m,v € [n— p +1,n] implies m—v < p <q. Therefore
we can only have @, —1=w,. If there were another x € [n— p+1,n] with
x(u-r+c)=0 and y(u)=1, we must have either o, =@, or , =w,. As above,

o, =, leads to the contradiction ¢ > p>m—-u24q. And 0, =, leads to the
contradiction ¢ > p >v — u >¢q. Therefore there can be at most two numbers in the
interval [n— p+1,n] suchthat y(m—r+c)=0 and y(m)=1. Hence with the exception

of at most two number in the interval [n— p+1,n] we have y(m—r+c)= y(m).

Now consider the difference of the two sums:
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4.1) Y xm—= D x(n-r)

m-p<n<im m—p<n<m

In (4.1), with at most possibly two exceptions the first p—c—1 terms in the first sum will
cancel with the last p—c—1 terms in the second sum. If there are one/two exceptions

it/they will contribute positive one/two to (4.1). Therefore,

4.2) —c< Y gm- . x(n-r) s c+2.

m—p<n<m m-p<nsm
p

Next consider the difference of the two sums:

(4.3) > xn—q-r)- > x(n-gq).

m—p<nsm m—p<nsm

Likewise, with at most possibly two exceptions the last p—c—1 terms in the first sum

will cancel with the first p—c~1 terms in the second sum. If there are one/two

exceptions it/they will contribute negative one/two to (4.3). Therefore,

—-c-2< z y(n—q-r)- Z y(n—q) < c.

m—p<n<m m—p<n<m

Hence we have A(pgr)<2c+2.

25
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CHAPTER 5

THEOREM 5 AND PROOF
Throughout this chapter we will use the notion x =, y to denote x=y mod» and

assume that p, g, and r are primes with 5 < p < g <r. We will require the following 17

lemmas.

(p(pqr), then y(m)=0 unless both x,, <§ and y, <4

2

Lemma 5.1 If m<

x,,,zf-. Then 2Cﬂ+&zl+h21. We also have
2 p 9 2 ¢

Proof. Assume m S@ and

m_ o(par) _(p=D(g=(r=D <L This implies 2+ 22 5 ™ and therefore

pqr - 2pgr 2pgr 2 p 49 pgr

x(m)=0. Likewiseif y, 2 % we must have y(m)=0.

Lemma 5.2 We have x,,, = x,+x, and y,., =, ¥, +,.

Proof. By (2.1) and (2.2) we have n=, x,gr and m=, x,qr. Thus we have

ni

n+mzp anr+xmqr Ep ()Cn +x

m

)qr. Wealso have n+m=, x,,,qr. Since

ged(p,gr) =1 we must have x,

1+m

=, x,+x,. Likewise wehave y, = y, +y,.

26
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Lemma 5.3 Assume r =xpg—1and g=7p+1. Then

(5.1) x,=p-1 V=T
(5.2) x,=0 y,=q-1
(53) x, = p-1 3, =0
(5.4) x, =1 Y, =q-7

Proof. These results follow by direct calculation. We have 1=, x,gr =, —x,. Hence
x,=p-1. Wehave 1= ypr= -yp. Thisimplies 7= -zpy. Since —tp=_ 1, we
have y, =7r. Wehave 0=, p=, x,gr =, ~x,. Hence x,=0. Wehave p=_y pr,
which implies 1=, -y,. Hence y,=g—1. Wehave g =, x _gr, which implies

I=, x,r=,-x,. Hence x, = p—1. Wehave 0= ¢g=, y pr=_ -y, p, which implies

¥, =0 Wehave r=, x,gr, whichimplies 1=, x g=, x . Hence x, =1. We have

r =, y,pr, which implies 1=, y, p. Thus we have 7= y,rp. Since 7p=_ -1, we have
Y, =q-T.

Lemma 5.4 Assume r =xpg—1and g=7p+1. Ifms@ and y(m)=1, then:

(5.5) x(m+q)=1 [x, > 0],

(3.6) x(m+r)=1 [V 2 7],

5.7 y(m-r)=1 [x, >0].
27
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Proof. Assume y(m)=1. By Lemma 4.1 we must have x,, < P and ¥, < g- Note

that since ¢ =7 p+1, we have LI Lo x,, >0, by (5.3) and Lemma 4.2 we have

p q pqr

Xpirg =%, —1and y, =y,. Thus,

m

xm+q+ym+q=x_m+2’i__l_s m _lsm'f'q.
P 4 p 9 p pr p par

Therefore y(m+q) =1. This establishes (5.5).
If y, 27, by (5.4) and Lemma 5.2 we have y,,, =y, —7. Since x, <§ by (5.4) and

Lemma 5.2 we have x,,,, =x, +1. Thus,

m+r

M+M=x_m_+y_m+_l._1< m+r

P 4 p 49 p q pgr

Therefore y(m+r)=1. This establishes (5.6).

If x,, >0 by (5.4) and Lemma 5.2 we have x, , =x, —1. We must have 7 < 4 because

qp

7>~ implies g=7p+12 5 +1> g, which is a contradiction. Since y, < % and

NN

T< %, by Lemma 5.1 and (5.4) we have y,_, =y, +7. Therefore,
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xm_, +ym—r =£{7L+&_l+z< m_r,

P 49 p 9 p q pgr

Therefore y(m—r)=1. This establishes (5.7).
We introduce two functions on the nonnegative integers:

(5.8) O(m)=x(m)— x(m+q)—y(m+r)+ y(m+q+r);
(5.9) R(m) = y(m)— y(m+q)— y(m—r)+ x(m+q-r).

Lemma 5.5 Assume m < ﬂ;‘zﬂ Then,

(5.10) O(m) <1 [x, =0],

(5.11) O(m) <0 [x >0].

Proof. Observe that by (5.3) and (5.4) we have x,,, .. =x, and y, . = y, —7. First

assume y, <7. Then since 7 < %, we have y, .. > % and therefore by Lemma 5.1

x(m+g+r)=0. From this and (5.8), (5.10) follows. Now (5.11) follows from (5.5).
Next assume y,, > 7. Then by (5.6) we have y(m+r) = y(m). Thus (5.10) follows from
>0. Therefore we can apply (5.7)

(5.8). If x, >0 then since x =x, we have x

m+q+r m+g+r

29
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with m replaced by m+gq+r This gives y(m+q) > y(m+q+r). Now (5.11) follows

from (5.8).

Lemma 5.6 For m< qo(%d

satisfying x, >1 and y, <g—7 we have:

(5-12) R(m)<0.
Furthermore if y(m) =0, we have:

(5.13) R(m)<—y(m-—r).
Proof. Assume x, >1 and y, <g—7. We claim that,
(5.14) x(m+qg-r)< y(m+gq).

To establish this, note that by Lemma 5.2, (5.3), (5.4), and by assumptionon y,, we

have:
(5.15) Vorgr =Ym tT2T.

Now by (5.15) we may apply (5.6) with m replaced by m+q—r. This gives (5.14).

Now (5.12) and (5.13) follow from (5.7), (5.9), and (5.14).

30
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Lemma 5.7 ®©, (z) isflatif » =-1 mod pg and g=1 mod p.

Proof. By (2.5) and (5.8), we have a,(pgr) = Z QO(m). By Lemma 5.2 and

k-p—q-r<msk-g-r
(5.1), as m runs through the interval (k -p—-q-rk—q- r], x, runs through the interval

0<x, < p. Inparticular, x, takes on the value 0 exactly once. Thus by Lemma 5.5 we

get the required upper bound. That is, g, (pgr)<1.

Now we establish the lower bound. First note that by (2.5) and (5.9) we have:

(5.16) —a,(pgr)= Y, R(m).

k—p—q<ms<k-q

For ie{O,l},let m; e[k—p—q+1,k—q] be such that

(5.17) X, =i.

By Lemma 5.2 and (5.1), this is well defined. By Lemma 5.2 and (5.1), there can be at

most one me [k -p—-q+Lk- q] such that y, >g—7. Ifthere is such an m, let it be

denoted by m'. We claim that,

(5.18) —a,(pgr) < x(my)+ y(m)— y(m +q)— x(m ~r)+ y(m' +q—r).

To establish this, note that by Lemma 5.6 we have:
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(5.19) —a,(pgr) < R(m,)+ R(m)+ R(m' +q—r).

Now, since y_, = q~7>%, by Lemma 4.1 we have y(m')=0. By Lemma 5.2, (5.3),

=p-2>% (since p>4)and x = p—1>#4. Thus by

my+g—r

and (5.4) we have x

Mo +q-r
Lemma 5.1 we have y(m,+q—r)= y(m +q—r)=0. Now (5.18) follows from (5.9)
and (5.19).

Now assume y(m,) = y(m,). Then (5.5), (5.7), and (5.18) give
-a,, (pgr) < x(m' +q—r). Therefore ~a,(pgr)<1.

Now assume y(m;)=0 and y(m,)=1. By Lemma 5.2 and (5.1), there are two
possibilities: either m, =m, ~1 or m; =m, —1+ p. Firstassume m =m,-1.If y, 27,

then by Lemma 5.2, (5.1), and (5.3) we have x,, ., =0 and y, . =¥, ., =¥, —7. Thus

m+q

we have:

x,,,l+q+yml+q=ymo_£ m, T _m 1+1_m0—qr+r<mo+q—1=m1+q

<0 2 _ 70 -4 -

p q 9 q pgr g9 pgr p pq pqr pgr par

Hence y(m +q)=1. Thusby (5.18) we have —a,(pgr)< y(m'+q-r)<1. If y, <7

then y, =g+, —7>q—7. Therefore in this case we have m, = m'. So

X, X =p—l>p/2 and therefore by Lemma 5.1 we have ;((m’+q—r)=0.

n+g+r = m+q-r
Hence have —a, (pgr) < y(m,)<1.
Now assume m, =m;—1+ p. Then we have by Lemma 5.2, (5.3), and (5.17)

Xpig=0and y, . =y, —-7-1. If y, >7+1 wehave y, =y, —7—1. Thisimplies:
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Sweg  Ymea _Ymy T_1_my 1 1 1 _mtr(l-p-q) m+q

p g g g9 9 pgr p q pq pgr par

Therefore we have y(m, +g)=1 and thus by (5.18), —a,(pgr) < y(m'+q-r)<1. If
Vg <T+1 then Y =4+, —T-L If Y, >1 then Y, >q—7 and therefore we have
m, =m'. Therefore in this case we have m; =m’. So x,,,.,=x, ., =p-1> % and
therefore by Lemma 5.1 we have Z(m' +q —r) =0. Thus by (4.18),

—a,(pqr)< x(my)<1. If y, <1then y, <q-7 forall me [mo,ml]. Thus m' does not
exists. Hence by (4.18), —a, (pgr) < y(m,) <1.

Thus we have shown that for every case we have, —a,(pgr) <1. Hence we have

established the lower bound.

Lemma 5.8 Assume r =xpg+1 and g=7p+1. Then,

(5.20) x, =1 »n=q-7
(5.21) x,=0 y,=1
(5.22) x, =1 y,=0
(5.23) x, =1 Y,=q-7

Proof. These results follow by direct calculations. We use (2.1) and (2.20). We have

1=, x,qr =, x,;, which implies x, =1. We have 1= y,pr =, py,. This gives

—-r= -7py,. Since —tp=_1, wehave ~r=_ y,, or y, =g—7. We have
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0=, p=,x,qr=,x, Hence x,=0. Wehave p=_y pr, whichimplies 1=_y,.
Hence y, =1. Wehave q =, x,gr, whichimplies 1=, x,r =, x,. Hence x, =1. We
have 0= g=, y pr=_ y, p, which implies ¥, =0. Wehave r = xgr, which gives
1=, x,g =, x,, whichimplies x, =1. Wehave r =, y, pr, which implies 1= y p.

Therefore we have —7 =, ~y,7p. Since -zp=, 1, we have —r =, y,, and thus

Y, =q~1.

M%Q and y(m)=1 then,

Lemma 5.9 Assume r=xpg+1 and g=7p+1. If m<

(5.24) x(m—q)=1 [x, > 0],
(5.25) y(m+r)=1 v, >7],
(5.26) y(m-r)=1 [x, >0].

Proof. Assume y(m)=1. By Lemma 4.1 we must have x,, <—§ and y, < % Note

that since g =7p+1 we have 1.z =L I x, >0 by (5.22) and Lemma 5.2 we have
p q pgr

X, ,=%,~land y, =y, Thus,

m—-q

Yo  Frg Xy Yu L om 1 _m g _m g

P 4 P q p pgr p pgr pq  pqr pqr

Therefore y(m—q)=1. This establishes (5.24).
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If y, 27 by(5.23) and Lemma 5.2 we have y, .=y, —7. Since x, < g <gq-1by

(5.23) and Lemma 4.2 we have x,, =x, +1. Thus,

m+r

T _m+r
<

x"'i*.h:f’l.*_:)i_l_l < R
p q P 9 pPp 9 pqr

Therefore y(m+r)=1. This establishes (5.25).

Assume x, >0. By (5.23) and Lemma 5.2 we have x, , =x, —1. We must have

Yo, =Y, +7. Thisis because 7,y < % This gives

Fng (Iowg Xy Yo 1,z . m 1 m-r

p q p 49 p q pgr pgr  pgr

Therefore y(m—r)=1. This establishes (5.26). This completes the proof.

We introduce two functions on the nonnegative integers,

(5.27) S(m)=x(m)— y(m-q)— x(m-r)+y(m—q-r);
(5.28) T(m)=xy(m)—y(m—-q)— x(m+r)+ x(m—q+r).
Lemma 5.10 For m< _¢(1;_qr), we have
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(5.29) T(m)<1 [x, =0],
(5.30) T(m)<0 [x > 0].

Proof. If x, =0 by Lemma 5.2, (5.22), and (5.23) we have x

m-q+r

=x, and

Vigir =V —7. Assume y, <7. Then y,_ >% and therefore by Lemma 5.1, we have

g+r
x(m—-q+r)=0. Now (5.29) follows immediately while (5.30) follows from (5.24).
Next assume that y, >7. Then (5.25) gives y(m+r)= y(m). From this (5.29) follows.

Moreover, if x,, >0 then by Lemma 5.2, (5.22), and (5.23) so is x

m—q+r*°

Thus we may
apply (5.26) with mreplaced by m—q +r. This gives, y(m—q) > y(m—q+r). Now

(5.30) follows.

Lemma 5.11 For m < g)(_p;q_r)

satisfying x,, >1 and y, <q—7 we have,

(5.31) S(m)<0.
Furthermore if y(m) =0 we have,

(5.32) S(m)<—y(m-r).
Proof. Assume x, >1 and y, <g—7. By (4.26) we have y(m—r)=1. Hence both

(5.31) and (5.32) follow from the inequality,

(3.33) x(m=q)= x(m—q-r).
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To establish (5.33) note that by assumption on y, we have y,_, , =y, +72>7. Thus we

may apply (5.25) with mreplaced by m—¢q —r. This gives (5.33).
LemmaS5.12 @, (z) isflatif r =1 mod pg and ¢ =1 mod p.

Proof. By (5.28) and (2.5) we have —a,(pqr) = z T(m). Now by Lemma 5.2

k—r—p<msk-r
and (5.20) as m runs through the interval [k —-r—p+Lk —r] x,, takes on the value 0
exactly once. Thus —a,(pgr) <1 follows from Lemma 5.10. Now we establish the

upperbound.

By (2.5) and (5.27) we have a,(pgr)= Y. S(m). For i{0,1}let m, e[k—p+1k] be

k-p<msk
such that x, =i. By Lemma 5.2 and (5.20) there can be at most one me [k - p+1,k]

such that y, =g —7. If there is such an m let it be denoted by m’. We claim that
(5.34) a,(pqr) < x(mo)+ x(m) = g (m —q)~ y(m —r)+ x(m' —q —r).

By Lemma 5.11 we have a,(pgr) < S(m,)+S(m,)+S(m’). By Lemma 5.1 we have
7(m')=0 since y,, 2g—7>%. Thus by Lemma 5.1 we have ;((m') =0. By Lemma
= p-1>%4. Hence by

52,(5.22),and (5.23) we have x, __ =p-2>7 and x

q- my—q-r

Lemma 5.1 we have y(m, ~q—r)= y(m —q—r)=0. Thus (5.34) follows by (5.27).
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First assume y(m,) > y(m,). Then (4.24) and (4.26) give a,(pqr) < y(m'—q—-r)<1
Alternatively assume y(m,)=1 and y(m,)=0. By Lemma 5.2 and (5.20) there are two
possibilities, either m, =m,+1 or m =m, — p+1. First assume m, =m, +1. Then by
Lemma 5.2, (5.20), and (5.22) we have x,,_, =x, , ,=0and y, =y, , =y, -7 If
Y., 2T we have,

Ymg  Fmeg _Yw T My T _ My 1+L=m°_qr(l_%)gm"_q(l_%):m‘_q

p q 9 9 pgr 9 pgr p pq pgr pqr pqr

Therefore in this case we have y(m —q)=1. Thus by (5.27) a,(pgr) < y(m'—q—r) <1.
If y, <7 then y, =y, ~t+q2q-7 sothat m =m". Sox,, . =x, =p-1 >%
and therefore by Lemma 5.1 we have y(m'—g—r)=0. Hence have

~a, (pqr) < x(my) <1.
Next assume m, =m, — p+1. Then by Lemma 5.2, (5.20), (5.21), and (5.22) we have

X =X

meg = Xm-pr-g =0and y, =y, ., =y, -1-7. Thusif y, 21+7 we have,

xmx—q+ym1“] =y”'0_1_T< mO 1 1+_1‘=m°+r(l-p_q)_<_m0+l_p_q=’nl_q'

p q q pgr g9 p pPq pgr pgr pgr

Therefore y(m,—q) =1 and thus by (5.27) a,(pgr)< y(m'-q-r)<1. If Vo, <1+7

then y, ,=q+y, —-1-7. If y, >0 then y, =y, —1-7+g>qg—7. Thus m =m'

=X =p-1> % and therefore by Lemma 4.1 we have y(m'-q-r)=0.

m-q-r m—q-r

So x
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Hence have g, (pgr) < x(m,)<1. If Vn, >0 then y, <g—7 forall me [mo,ml].

Thus m’ does not exists. Hence —a,(pgr) < y(m,) <1.

Lemma 5.13 Assume r =xpg—1 and g=7vp—1. Then,

(5.35) x =1 n=gq-t
(5.36) x,=0 y,=9-1
(5.37) x,=p-1 y,=0
(5.38) x,=p-1 Y, =T

Proof. These results follow by direct calculation. We have, 1=, x,gr =, x,. Hence
x,=1. Wehave 1=, y,pr =, —y,p. This implies —7py, =, —7. Since zp=_1, we have
»=q-7. Wehave 0=, p=, xgr=, x,. Hence x,=0. Wehave p=_y, pr, which
implies 1=, —y,. Hence y,=q-1. Wehave g=, x gr, which implies

I=, x,r=,-x, . Hence x, = p-1. Wehave 0= ¢q=, y pr=, —py,, whichimplies

¥, =0. Wehave r =, x,gr, which implies 1=, x g=, —x,. Hence x, = p—1. We have

q

r =, y,pr, whichimplies 1=, y,p. Thus we have 7=, y,7p. Since 7p=_1, we have

yr =T

Lemma 5.14 Assume r=xpg+1 and g=7p-1. If ms(p(%’2 and y(m)=1 then,
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(5.39) y(m+qg)=1 [x, >0],
(5.40) x(m—-r)=1 .27},

(541 y(m+r)=1 [x, >0].

Proof. Assume y(m)=1. By Lemma 5.1 we must have x,, <§ and y, < gz— Note

. 1
that since g =7p—1 we have LA

p 9 p9r

If x, >0 by (5.37) and Lemma 4.2 we have x Thus,

m+q

='xm—1 arld ym+q=y

m*

x"’i_,__y_ﬂ:fﬂ.,_)l_l< m _lsm-‘-q.

P 49 P 49 p pgr p pgr

Therefore y(m+q) =1. This establishes (5.39).

If y,>7 by(5.38) and Lemma 5.2 we have y, , =y, —7. Since x, <§ by (5.38) and

Lemma 5.2 we have x,_, =x, +1. Thus,

Xo_r m-r

+——y""’=ﬁ+ﬁ+l—£s X
p q P g9 p g9 pgr

Therefore y(m—r)=1. This establishes (5.40).
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If x, >0 by (5.38) and Lemma 5.2 we have x

m+r

=x, —1. We must have 7 < % because

gp q q

7= implies g=7p+12 7-&—1 > g, which is a contradiction. Since y,, < 5 and 7 < 5

NSNS

we have y, . =y, +7. Therefore,

Ywer  mer _Xn  Iu 1 T _mAr

L,z
P 49 p q p q pgr

Therefore y(m+r)=1. This establishes (5.41).
We introduce two functions on the nonnegative integers,

(5.42) F(m)= y(m)— y(m+q)— y(m-r)+ y(m+q—r);

(5.43) G(m)=y(m)—y(m+q)— y(m+r)+ y(m+q+r).
Lemma 5.15 For m< ﬂpzqﬁ , we have

(5.44) F(m)<1 [x, = 0],

(5.45) F(m)<0 [x, >0].

Proof. If x, =0 by Lemma 5.2, (5.37), and (5.38) we have x

m+g-r

=x, and

Vmiger =V — 7. Assume y, <7. Then y, ., > % and therefore by Lemma 5.1, we have
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x(m+q—r)=0. Now (5.45) follows immediately while (5.46) follows from (5.39).
Next assume that y, >7. Then (5.40) gives y(m—r)= y(m). From this (5.45) follows.
Moreover, if x,, >0 then by Lemma 5.2, (5.37), and (5.38) so is x,,_,,,. Thus we may

apply (5.41) with m replaced by m+q —r. This gives y(m+q)> y(m+qg—r). From

this (5.46) follows.
Lemma 5.16 For m< _¢_(_1;q_r) satisfying x,, >1 and y, <q-7 we have,
(5.46) G(m) <0.

Furthermore if y(m)=0 we have,

(5.47) G(m)<—y(m+r).

Proof. Assume x, >1 and y, <g—7. By (4.41) we have y(m+r)> y(m). Hence both

(5.46) and (5.47) follow from the inequality,

(5.48) x(m+qg)z y(m+q+r).

To establish (5.48) note that by assumption on y, we have y, . =y, +7>7. Thus we

may apply (5.40) with m replaced by m+g+r. This gives (5.48).

Lemma 5.17 @, (z) isflatif r =-1 mod pg and ¢ =-1 mod p.

par
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Proof. By (2.5) and (5.42) we have —a,(pqr) = Z F(m). Now by Lemma 5.2

k-g-p<m<k-q
and (5.35) as m runs through the interval [k—g~ p+1,k— q] x,, takes on the value 0
exactly once. Thus —a,(pgr) <1 follows from Lemma 5.15. Now we establish the

upperbound

By (2.5) and (5.43) we have q, (pgr) = Z G(m), where c=k—-r—qg—p+1 and

cimed
d=k-r—q. For i€{0,1}let m; €[c,d] be such that x, =i. By Lemma 5.2 and (5.35)
there can be at one me[c,d] such that y, >g—7. If there is such an m let it be denoted
by m'.
We claim that

(5.49) a,(pqr) < x(my)+ y(m)— x(m +q)— y(m +r)+ y(m' +q+r).

To establish this claim note that by Lemma 5.11 we have

a,(pgr)<S(my)+S(m,)+S(m"). Now by Lemma 5.1 we have y(m') =0 since
Yw >% . ByLemma 5.2, (5.37), and (5.38) we have x,, .. =p—2>% and
x =p-1>%. Hence by Lemma 5.1 we have y(m,—q—r)= y(m —q—-r)=0.

mrqr
Thus (5.49) follows.

Now assume y(m,) = y(m,). Then (5.39) and (5.41) give a,(pgr) < y(m'+q+r)<1.
Alternatively assume y(m,)=1 and y(m,)=0. By Lemma 5.2 and (5.35) there are two

possibilities, either m, =m, +1 or m; =m, — p+1. First assume m, =m,+1. Then by
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Lemma 5.2, (5.35), and (5.36) we have x

m+q

xmo+1+q = 0 and yml+q = ymo+1+q = ym0 + 1 -7

If Vu 2T —1 we have,

x”'1+—q+——ym1+q=ﬂ+l ‘ mo +1 1 L=m0+pq—pr—r<ml+q'

p q 9 9 9 pPg¥ 9 P Pq pqar par

Therefore in this case we have y(m, +q)=1 and thus a,(pgr)< y(m'—q-r)<1. If
Vm, <7 then y, =y, ~7+g2qg-7 sothat m; =m’. Sox,  =x,  =p-1> %
and therefore by Lemma 5.1 we have y(m'—g—r)=0. Hence have

—a,(pgr) < y(m,)<1.
Next assume m, =m, — p+1. Then by Lemma 5.2, (5.35), (5.36), and (5.37) we have

X,

X my—-p+l+q

m+q

=0 and y, ., =V, _pisg = Vs T1-7. Thusif y, =71 we have,

xmlﬂu_y,mq=ym0—1—2'< m 1 1 1 _m l+L=m°“q”(l—%)gmo—q(l_%)z’"1-

p q q par 4 p pg pgr p pq par pgr pe

Therefore y(m, +g)=1 and thus a,(pgr) < y(m' —q-r)<1.

If y, <r—1then y, =q+7r-1. Then y, =q-12q~-7. Thus m =m'. So

X =p—1>% and therefore by Lemma 5.1 we have ;((m’—q—r)=0.

m'-q-r — xml -g-r

Hence have —a, (pgr) < y(m,)<1. Hence —a,(pqr) < y(m,) <1.

Theorem 3. Let p, g, and r be primes with S<p<g<r. If r =21 mod pg and

q =%1 mod p, then ®,_(z) is flat.

pgr
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Proof. This follows from Bachman’s Theorem, Lemma 5.7, Lemma 5.12, and Lemma

5.17.
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