
UNLV Retrospective Theses & Dissertations

1-1-2007

Design implementation and analysis of a dynamic cryptography Design implementation and analysis of a dynamic cryptography

algorithm with applications algorithm with applications

Sourabh Ghose
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Ghose, Sourabh, "Design implementation and analysis of a dynamic cryptography algorithm with
applications" (2007). UNLV Retrospective Theses & Dissertations. 2107.
http://dx.doi.org/10.25669/uzaq-mrm3

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/uzaq-mrm3
mailto:digitalscholarship@unlv.edu

DESIGN IMPLEMENTATION AND ANALYSIS OF A DYNAMIC

CRYPTOGRAPHY ALGORITHM WITH APPLICATIONS

by

Sourabh Ghose

Bachelor of Engineering
University o f Bombay, India

2005

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1443755

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1443755

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T Thesis Approval
The G rad u a te College
U niversity of N evada, Las Vegas

APRIL 16TH 20 0 7

T he Thesis p repared by

SOURABH GHOSE

E ntitled

DESIG N, IMPLEMENTATION AND ANALYSIS OF A DYNAMIC

CRYPTOGRAPHY ALGORITHM WITH APPLICATIONS

is ap p ro v ed in partia l fulfillm ent of the requ irem ents for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Examination Committee Member

Exanmifition Copimittee M ember

/ /a
/ \ J V V : V V , / \ 7

Graduate College Faculty Repitseiitative

-1

t g a m 'ination C om m ittee Chair

Dean o f the Graduate College

1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Design, Implementation and Analysis of a Dynamic Cryptography Algorithm
with Applications

by

Sourabh Ghose

Dr. Yoohwan Kim, Examination Committee Chair
Assistant Professor of Computer Science Department

University o f Nevada, Las Vegas

Cryptographers need to provide the world with a new encryption standard. DES,

the major encryption algorithm for the past fifteen years, is nearing the end of its useful

life. Its 56-bit key size is vulnerable to a brute-force attack on powerful microprocessors

and recent advances in linear cryptanalysis and differential cryptanalysis indicate that

DES is vulnerable to other attacks as well. A more recent attack called XSL, proposes a

new attack against AES and Serpent. The attaek depends much more critieally on the

complexity of the nonlinear components than on the number o f rounds. Ciphers with

small S-boxes and simple structures are particularly vulnerable. Serpent has small S-

boxes and a simple structure. AES has larger S-boxes, but a very simple algebraic

description. If the attack is proven to be correct, cryptographers predict it to break AES

with a 2^80 complexity, over the coming years.

Many o f the other unbroken algorithms -Khufu, REDOC II, and IDEA-are

protected by patents. RC2 is broken. The U.S. government has declassified the Skipjaek

algorithm in the Clipper and Capstone chips.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the world is to have a secure, unpatented, and freely- available encryption

algorithm, we need to develop several candidate encryption algorithms now. These

algorithms can then be subjected to years of public scrutiny and cryptanalysis. The

purpose o f the thesis is to discuss the requirements for a standard encryption algorithm.

DCA (Dynamic Cryptography Algorithm), a new private-key block cipher, is

proposed. The block size is user defined, and the key can be of infinite length. The

algorithm is a first o f its kind dynamic algorithm in which almost all components change

depending of the password itself used to generate a key or encrypt a file. The “Key

dependency” has been pushed to the extreme with dynamically linked eomponents like

number of rounds, operation used on each bits, shift window, direction of each operation

(Left or Right), size o f the key buffer when encrypting a file, size of the block shuffle and

working file block.

The aetual encryption o f data is performed in two modules. Key generation and

File encryption and is very efficient on all microprocessors. Key generation is a complex

procedure of Key Padding, Concatenating bits, initial scrambling, key encryption and

final scrambling. File encryption consists of complex steps of initialization, seeding and

shuffling. All default settings can also be changed by the user, which means the

knowledge required to decrypt/reproduce a key gets extended to the environment settings

as well as the password itself.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF FIGURES .. vi

ACKNOWLEDGEMENTS .. vii

CHAPTER I INTRODUCTION ...1
LI Term inology..2
1.2 Algorithm Types ..2
1.3 Cryptography Standards..3
1.4 Possible Applications.. 5
1.5 Common Cryptography Attacks ..6

CHAPTER 2 LITERATURE REVIEW .. 9
2.1 Message Digest A lgorithm s... 9
2.2 Message Authentication code Algorithms ... 12
2.3 Symmetric Key Algorithms ... 14
2.4 Block Cipher A lgorithm s..17
2.5 Asymmetric Key A lgorithm s... 19

CHAPTER 3 ALGORITHM DESCRIPTION .. 21
3.1 Introduction ...21
3.2 Key Generator Overview ..23
3.3 Key Generator D etails... 26
3.4 File Encryption Overview .. 42
3.5 File Encryption Details ...45

CHAPTER 4 ALGORITHM APPLICATIONS ..58

CHAPTER 5 ALGORITHM ANALYSIS..61
5.1 Linear Cryptanalysis ... 61
5.2 Differential Cryptanalysis .. 66
5.3 Performance Analysis ... 69

CHAPTER 6 CONCLUSION .. 75

CHAPTER 7 REFERENCES .. 78

VITA ...87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 3.1 Key Padding ..26
Figure 3.2 Bits Concatenation..27
Figure 3.3 Initial Scrambling ...27

Figure 3.3a Add()-Random Number Generation .. 28
Figure 3.3b Add() - Pass_code Generation .. 29

Figure 3.4 Key Encryption... 30
Figure 3.4a Swap() - Init ...31
Figure 3.4b Swap() - Modulo Generation ... 32
Figure 3.4c Swap() - D irection... 33
Figure 3.4d Swap() - O peration..34

Figure 3.5 Final Scrambling ..35
Figure 3.6 Long Key Generation .. 38
Figure 3.7 Bits Sw apping... 40
Figure 3.8 Initialization of file encryption .. 45

Figure 3.8a file_crypt() - In i t ... 45
Figure 3.8b file_crypt() -Seed() - Random Generation 46

Figure 3.9 Seeding ..47
Figure 3.10 Shuffling ... 48

Figure 3.10a file_crypt() - Shuffle() - Initialization ..48
Figure 3.10b file_crypt() - Shuffle() - Position & Operation 49
Figure 3.10c file_crypt() - ShuffleQ -L ast 2 blocks ..50
Figure 3. lOd Alternative Block Crypt size ...51

Figure 3.11 File Encryption and Key Generation ...53
Figure 3.12a Plot of Request per second against user load, data = 4 KB 70
Figure 3.12b Plot of Response time against user load, data = 4 KB 71
Figure 3.13a Plot of Request per second against user load, data = 100..KB 72
Figure 3.13b Plot of Response time against user load, data = 100 KB 72
Figure 3.14a Plot of Request per second against user load, data = 500..KB 74
Figure 3.14b Plot of Response time against user load, data = 500 KB................................ 74

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I am deeply indebted to my parents for their constant guidance and

encouragement. My family has always supported me through my toughest times and it is

their belief in me that has brought me this far.

I am very grateful to Dr. Yoohwan Kim, my thesis advisor, teacher and guide for

giving me an opportunity to work with him. He has been very patient with me and I owe

it to him for all that I have learnt working on this thesis.

I am grateful to Dr. Ajoy Datta, Dr. Laxmi Gewali and Dr. Shahram Latifi for

kindly consenting to be a part of my thesis committee.

I have had an excellent work environment right through my two years at UNLV.

It has been an enjoyable time working with my peers and the staff of the Computer

Science department.

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Privacy is a sensitive subject that affects everyone. Common techniques to safe

guard privacy are:

- When writing a confidential letter an envelope is used to send it.

- When using a credit card a secret code number is used.

- Speaking to someone in private.

In case of computers, sensitive data is common (e.g. assessment grades, financial

accounts, etc). With the Internet, the computer can be used like a telephone or like a post

office, with the disadvantage that everybody connected to the network could have access

to the data. This is why, especially with computers, privacy is important. Different levels

of security (computer security, network security, etc) have to be considered.

Cryptography can be compared to an electronic safe where private data is hidden.

The cryptographer must always think about the intruder. Cryptography can be compared

to a chess game, in that we must think not only of our own tactics, but also of our

opponents. Cryptography usually uses a lot of mathematieal formulae and logieal

functions. The science is quite new for the public, this is why it is a very difficult subject,

but now more people are interested in it and a lot of book dealing with the subject have

been written and it is now easy to find good cryptography information. It seems that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strongest cryptography algorithms are now available to the public even if it is very

difficult to understand them. Indeed, the best way to know if a cryptography algorithm is

strong is to make its source code and documentation available to the public. If no one can

break it then it is safe to use it.

l .I Terminology

To make the thesis easier to understand, here are definitions of terms used in the text.

Clear text: An understandable message, usually the original.

Cipher text: An incomprehensible message, usually the result.

Password: A secret string of characters.

Encrypt: Transform a clear text into a cipher text, usually with a password.

Decrypt: Transform a cipher text into a clear text, usually with a password.

Key: Some data that will be used into the message encrypt process. It can also be used

like a password, the difference is in this case that it is a long string of characters and

numbers one cannot remember as is very long and complex. A key could be compared to

a cipher password.

Private Key: This key is personal and only known by one person.

Public Key: This key is available to everybody, it is now secret.

1.2 Algorithms Types

Here is a general overview of these two cryptography standards.

Private Key algorithm:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A private key algorithm uses one password (or one private key) to encrypt a

message, to decrypt it the same password is used. The same algorithm or a different one

can be used to crypt and decrypt.

Public key algorithm:

A publie key algorithm consists of a public key (B) used to encrypt a message and

a private key (A) used to decrypt the message, for one public key there is one private key

(A l, B l) and only the private key that belongs to the public key can decrypt a message

encrypted by the public key.

Due to this, everyone can use the public key, if someone wants to send message,

they encrypt the message with the receiver’s public key, and only the receiver, who

knows the private key, can decrypt this message.

This algorithm can also be used to sign a message to prove that it is really the

sender who is sending a message, to do so the sender encrypts the message with his

private key that can be decrypted only with the public key.

1.3 Cryptography Standards

Introduction

A lot o f cryptography algorithms have been created, it is not the aim of this report

to go into great detail about cryptography, so only two of the most famous and used

cryptography algorithms are going to be quickly explained to give a general idea of how

to encrypt a message.

DES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DES stands for "Data Encryption Standard" and is at the moment the most used

algorithm in the world, being used by the American government to secure their sensitive

data. It has been created by IBM (International Business Machines Corporation) in 1977

and is a private key algorithm.

It is a block cipher algorithm that crypts data by 64 bits length block, that means

that the clear text is divided into 64 bits length block and each block is encrypted by 16

complex operations. The entire 64-bit length encrypted block constitutes the final cipher

text. The decryption algorithm is nearly the same as the encryption algorithm, the same

key (the private key) is used to encrypt and to decrypt a message; the bigger the private

key is the safer it is.

RSA

RSA is the initial of the name of its creator: Ron RIVEST, Adi SHAMIR and

Leonard ADLEMAN. It is one o f the first public key algorithms and was created in 1978.

In fact there are two algorithms, one to generate the keys and one to encrypt/decrypt the

message; the pair of keys, one public and one private, are based on big first numbers and

are the result of some calculations (modulo, Euclid’s algorithm, etc). The algorithm that

encrypts/decrypts a message is a block cipher algorithm that is simpler than the DES

algorithm but is much slower.

The security of this algorithm is based on mathematical theories (big numbers

factorization), even if no real proof has been given to demonstrate that these

mathematical theories are not easily "breakable", they have not been broken for 20 years.

These two algorithms have different concepts, but neither o f them is better than

the other, they have their own advantages. A good idea is to use both of them choosing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which one depending on its suitability to a specific job. It is why DES is usually used to

encrypt the message, and RSA is used to communicate only the DES private key used to

encrypt the message.

The reason for this choice is because DES is faster than RSA and more difficult to

break. However, to communicate the DES private key a secure solution has to be found.

RSA has a good level o f security and the user does not have to send his private key to the

recipient, only the publie key is to be transmitted. This is why RSA is used to encrypt the

DES private key, followed by the message and then sent to the reeipient.

1.4 Possible Applications

The aim of this seetion is to give concrete examples o f professional eryptography

used, which will help the reader to appreciate more the work done on the project.

1] Login password; Here the password typed by the user is encrypted and eompared to

with the user's enerypted password stored in the password database. If the user did not

make any mistakes while typing his password then the two cipher texts will be identical

and the user is allowed to log onto the system.

2] Pretty good Privaey; This is a famous application for encrypting personal data such as

letters, emails, a file or anything else found on a computer; because it is very powerful

and has been developed on almost all existing computers (PC, Macintosh, Amiga, etc). In

fact, it is the first application that has been developed for public as a pose to military use.

It is maybe why PGP is becoming a standard application on computers. The only problem

is the lack o f a good Graphical User Interface (GUI).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Common Cryptography Attacks

Introduction

There are different ways to attack a cryptography algorithm. If the algorithm

security is only based on its secret, once someone finds the algorithm source code it will

be very easy to break it.

Algorithm attacks

Sometimes a cryptography algorithm can have weak points, for example, with

algorithms that just consist of adding the same number to all the password letters they are

easier to break. This is because it is simple; all that is to be done it to find the number

used. This attack needs strong cryptography knowledge and understanding. It is only used

for bad cryptography algorithms, but as with everything relating to computer science; it is

very difficult to totally avoid making errors, so this attack is always the first one

attempted. If no weak points are found the only attack that can be done is the "brute

force" attack. Some advanced techniques used are Linear and Differential cryptanalysis

which will be discussed later in the thesis.

Brute force attack

This attack is based on the cipher text generated by a cryptography algorithm. If

the attacker can get into the password database, and even if all the passwords in it are

encrypted, software exists that simply try every possible passwords, encrypts them and

compares the cipher text generated with the one held in the password database. O f course,

it would take too long to try all the possible passwords, present computers are not fast

enough and there are too many possibilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Keeping these in mind, Cryptographers need to provide the world with a new

encryption standard. Many o f the unbroken are protected by patents. If the world is to

have a secure, unpatented, and freely- available eneryption algorithm, we need to develop

several candidate encryption algorithms now. These algorithms can then be subjected to

years of public scrutiny and cryptanalysis. Then, the hope is that one or more eandidate

algorithms will survive this proeess, and can eventually become a new standard. The

purpose o f the thesis is to discuss the requirements for a standard encryption algorithm.

While it may not be possible to satisfy all requirements with a single algorithm, it may be

possible to satisfy them with a family of algorithms based on the same cryptographic

principles. It introduees a new cryptographie algorithm and goes on to discuss how the

algorithm overcomes known attacks like Linear and Differential eryptanalysis. It

identifies a potential weakness in the algorithm and goes on to describe how the

algorithm overcomes it.

DCA (Dynamic Cryptography Algorithm), a new private-key block cipher, is

proposed. The block size is user defined, and the key can be of infinite length. The

algorithm is a first o f its kind dynamic algorithm in which almost all components change

depending of the password itself used to generate a key or encrypt a file. The “Key

dependency” has been pushed to the extreme with dynamically linked components like

number of rounds, operation used on eaeh bits, shift window, direetion of each operation

(Left or Right), size o f the key buffer when encrypting a file, size o f the block shuffle and

working file block.

The actual encryption of data is performed in two modules. Key generation and

File encryption and is very effieient on all microprocessors. Key generation requires a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

seed as input, whose size is N/2 for key size N. Key generation is a complex procedure of

Key Padding, Concatenating bits, initial scrambling, key encryption and final scrambling.

File encryption consists of complex steps of initialization, seeding and shuffling. All

default settings can also be changed by the user, which means the knowledge required to

decrypt/reproduce a key gets extended to the environment settings as well as the

password itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

LITERATURE REVIEW

Several Cryptography algorithms have been designed in the past. Discussing all of

them is beyond the scope o f this project. However the major ones have been listed

according to their type.

2.1 Message Digest Algorithms

As an Internet standard (RFC 1321), message digest algorithms have been

employed in a wide variety o f security applications, and is also commonly used to check

the integrity o f files. A message digest hash is typically a 32-character hexadecimal

number. Recently, a number of projects have created message digest "rainbow tables"

which are easily accessible online, and can be used to reverse many hashes into strings

that collide with the original input.

MD5:

Designer:

Ron Rivest

References:

[16], [17], [18], [19], [20]

Digest length:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 bytes.

Block size:

64 bytes.

Max. final bloek size:

55 bytes.

State size:

16 bytes.

Comments:

• A transcription error was found in the original MD5 draft RFC. The

corrected algorithm should be called MD5a, though some people refer to it

as MD5.

This is wrong; the corrected algorithm should be called MD5, and is in

practice never referred to as MD5a.

• MD5 is big-bit-endian, little-byte-endian, and left-justified.

Security comment:

Hans Dobbertin has found a method of generating collisions for MD5's

compression function. Quoting from RSA Laboratories Security Bulletin #4:

“Given the surprising speed with which techniques on MD4 were extended to

MD5 we feel that it is only prudent to draw a cautious conclusion and to expect

that collisions for the entire hash function might soon be found. In addition, the

128-bit output is arguably not long enough to make generating collisions using a

birthday attack infeasible.”

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ripemed-320:

Designers:

Hans Dobbertin, Antoon Bosselaers, Bart Preneel

Published:

April 1996

Alias:

"RIPEMD320"

References:

[21], [22], [23], [24]

Digest length:

40 bytes.

Block size:

64 bytes.

Max. final block size:

55 bytes.

State size;

20 bytes.

Comment:

RIPEMD-320 is big-bit-endian, little-byte-endian, and left-justified.

Security comment:

This message digest is not claimed to provide a security level higher than

RIPEMD-160. SHA-384, SHA-512 or Whirlpool is used instead.

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SHA-512:

Designers:

U.S. National Security Agency

Published:

October 2000

Referenees:

[25]

Digest length:

64 bytes.

Block size:

128 bytes.

Max. final block size;

111 bytes.

State size:

64 bytes.

Comment:

SHA-{256,384,512} are big-bit-endian, big-byte-endian, and left-justified.

When the compression function is used directly, it is considered to inelude

the chaining variable addition (as opposed to being separate as shown in

the specification).

2.2 Message Authentication Code Algorithms

12

Reproduced witti permission of ttie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

A cryptographic message authentication code (MAC) is a short piece of information used

to authenticate a message. A MAC algorithm accepts as input a seeret key and an

arbitrary-length message to be authenticated, and outputs a MAC (sometimes known as a

tag). The MAC value protects both a message's integrity as well as its authenticity, by

allowing verifiers (who also possess the secret key) to detect any changes to the message

content. A Message Integrity Code (MIC) is another name for a MAC.

HMAC (Digest);

Designers;

Mihir Bellare, Ran Canetti, Hugo Krawczyk, Adi Shamir

Published:

June 1996

Aliases:

"HmacMDS" is an alias to HMAC(MD5) [JDK compatibility]

"HmacSHAl" is an alias to HMAC(SHA-l) [JDK compatibility]

"1.3.6.1.5.5.8.1.1 " is an alias to HMAC(MD5)

"1.3.6.1.5.5.8.1.2" is an alias to HMAC(SHA-l)

"1.3.6.1.5.5.8.1.3" is an alias to HMAC(Tiger)

"1.3.6.1.5.5.8.1.4" is an alias to HMAC(R1PEMD-160)

(source for OlDs from

iso.org.dod.internet.seeurity.meehanisms.ipsec.isakmpOakley tree)

• "http://www.w3.Org/2000/02/xmldsig#hmac-shal " is an alias to

HMAC(SHA-l)

References:

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.Org/2000/02/xmldsig%23hmac-shal

[26], [27], [28], [29], [30]

Parameters:

• String digest [creation/read, no default] - the name of the Block

MessageDigest on which this MAC is to be based.

Key length:

Any multiple o f 8 bits that does not cause the maximum input length for the

MessageDigest to be exceeeded. Default 128 bits.

Output length:

Minimum 32 bits, maximum equal to the message digest output length. The

default is equal to the message digest output length.

2.3 Symmetric Key Algorithms

Symmetric-key algorithms are a class of algorithms for cryptography that use

trivially related cryptographic keys for both decryption and encryption.

The encryption key is trivially related to the decryption key, in that they may be

identical or there is a simple transform to go between the two keys. The keys, in practice,

represent a shared secret between two or more parties that can be used to maintain a

private information link.

Other terms for symmetric-key encryption are single-key, one-key and private-

key encryption. Use of the latter term can sometimes conflict with the term private key in

public key cryptography.

AES256 (Advanced Encryption Standard):

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Designers:

Joan Daemen, Vincent Rijmen

Alias:

"OpenPGP.Cipher.9"

Description:

AES256 is defined as Rijndael with a 128-bit block size and 14 rounds.

References:

[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]

Key length:

256 bits.

Block size:

16 bytes.

Security Comment:

• There are claims that the XSL (Extended Sparse Linearization) [42] attack can

break the AES. Since AES is already widely used in commerce and government

for the transmission of secret information, finding a teehnique that can shorten

the amount o f time it takes to retrieve the secret message without having the key

would have wide implications. Opinions differ on whether the attack works

because the method is heuristic and very teehnical, and so it has proved difficult

to evaluate its complexity. In addition, the method is expected to have a high

work-factor, which unless lessened, means the technique would not reduee the

effort to break AES very much in comparison to an exhaustive search.

Therefore, even if the attack has been analyzed correctly, it is unlikely to affect

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the real-world security of block ciphers in the near future. Nonetheless, the

attack has caused some experts to express greater unease at the algebraic

simplicity o f the current AES.

DES (Data Eneryption Standard):

Designers:

Don Coppersmith, Horst Feistel, Walt Tuchmann, U.S. National Security Agency

Published:

1976

References:

[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56]

Key length:

64 bits as encoded; 56 bits excluding parity bits.

Block size:

8 bytes.

Comment:

Implementations MUST ignore (i.e. not check) the parity bits o f keys.

KeyGenerators for DES MUST, however, output keys with correct parity.

Security comment:

The fixed 56-bit effective key length is too short to prevent brute-foree attacks [2]

DES is also vulnerable to Differential and linear eryptanalysis.

RC4:

Designer:

Ron Rivest

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Published:

September 1994

Alias:

"ARCFOUR"

References:

[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],

[72], [73]

Key length:

Minimum 8, maximum 2048, multiple of 8 bits; default 128 bits.

Security comments:

• There are small biases at the start of the RC4 key stream.

• The RC4 keystream is distinguishable from random given about 2 Gbytes

o f the stream.

• RC4 is vulnerable to related-key attacks, and therefore it should only be

used with keys that are generated by a strong RNG, or by a source of bits

that are sufficiently uncorrelated (such as the output of a hash function).

2.4 Block Cipher algorithms

In cryptography, a block cipher is a symmetric key cipher which operates on

fixed-length groups o f bits, termed blocks, with an unvarying transformation. When

encrypting, a block cipher might take a (for example) 128-bit block of plaintext as input,

and output a corresponding 128-bit block of cipher text. The exact transformation is

controlled using a second input — the secret key. Decryption is similar: the decryption

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm takes, in this example, a 128-bit block of cipher text together with the secret

key, and yields the original 128-bit block of plaintext.

ECB (Electronic Codebook):

Description:

Electronic Codebook Mode, as defined in NBS FIPS PUB 81.

References:

[74], [75]

Comment:

If a padding scheme is not specified (i.e. the algorithm name is given in the form

''cipherNamelV.C'Q"), then NoPadding MUST be assumed (note that this is

intentionally different to CBC and PCBC modes, for which PKCSPadding would

be used). The standard name always specifies which padding method is used, i.e.

it always has three components.

Security comment:

ECB mode will always encrypt identical plaintext blocks to identical ciphertexts.

This can be a weakness when the plaintext is not random, uniformly distributed,

and a multiple of the block size. If these conditions are not satisfied, a different

mode should probably be used.

CBC (Cipher Block Chaining):

Description:

Cipher Block Chaining Mode, as defined in NBS FIPS PUB 81.

References:

[76], [77], [78]

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comment:

If a padding scheme is not specified (i.e. the algorithm name is given in the form

"cipherName/CBC"), then PKCSPadding MUST be assumed. The standard name

always specifies which padding method is used, i.e. it always has three

components.

2.5 Asymmetric Key algorithms

RSA:

Designers:

Ron Rivest, Adi Shamir, Leonard Adelman

Aliases:

"RSAES", "1.2.840.113549.1.1.1", "2.5.8.1.1"

References:

[79], [80], [81], [82], [83], [84]

Comment:

It is recommended that implementations make no practical restriction on

the lengths of the key parameters n and e (in particular, values of n up to at least

4096 bits SHOULD be supported).

Security Comments:

• The most damaging would be for an attacker to discover the private key

corresponding to a given public key; this would enable the attacker both to

read all messages encrypted with the public key and to forge signatures. The

obvious way to do this attack is to factor the public modulus, n, into its two

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prime factors, p and q. From p, q, and e, the public exponent, the attacker

can easily get d, the private exponent. The hard part is factoring n; the

security o f RSA depends on factoring being difficult. In fact, the task of

recovering the private key is equivalent to the task o f factoring the modulus:

use d to factor n, as well as use the factorization of n to find d.

Patent status:

RSA is patented in the United States and Canada (see references); the patent is

licensed by RSA Data Security, Inc.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

ALGORITHM DESCRIPTION

3.1 Introduction

The Dynamic Cryptography algorithm has the following features:

-Private Key Algorithm

-Dynamic Cryptography Algorithm

-Source code can be public without making the algorithm weak

-Multiplatform application

-Infinite key length (as big as the integer type being used)

-Bilateral bits swapping with variable windows

-Bilateral Pseudo randomly binary operations

-Dynamic Variables changing in functions of the password, such as:

-Round, Block Shuffle, etc

-Key buffering against key dependency attacks

-Addition of a random number to the key

-Random Number Generator (RNG) using the ISAAC Algorithm

-Possibility to specify own RNG seed

-5 different crypt's level (allowing to choose between efficiency

and speed)

-Seed and shuffle functions

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-Seed and shuffle functions

-A clear text can be encrypted using its own data

-Two methods of execution: direct disk access or memory cache

-Strong Key generator

The DCA has been made as dynamie as possible; this means almost all of its

components will change depending of the password itself used to generate a key or

enerypt a file. This is called “Key Dependency” (KD) and has been pushed to the

extreme in the DCA with dynamically linked components such as:

The number of rounds

The operation used on each bits

The shift window

The direction of each operation (Left or Right)

The size of the key buffer when encrypting a file

The size o f the block shuffle and working file block.

The algorithm behaviour changes to great extent when used with different passwords.

All default settings can also be changed by the user, which means the knowledge required

to decrypt/reproduce a key gets extended to the environment settings as well as the

password itself.

Algorithm Overview:

The algorithm is made of a number of modules and sub-modules.

The Key Generator module

The File Encryption module

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The “file decryption” module has been left out in purpose as it is nothing more than

running the “file encryption” module backwards.

3.2 Key Generator Overview

Pre-requisites

There are a number of pre-requisites to this module:

Seed source:

The Seed can be a password, a key, or the result o f a random algorithm (ISAAC,

time/date based, or user customised).

- Keylength Output:

The minimum keylength that can be generated is 128bits. Larger keys will be a

multiple o f 128. There is no upper limit to the size of key.

- Keylength Input:

The seed must be at least of size N/2 when generating a key o f size N. In other

words, when generating a 128bits key and using a password, the user must enter a

password of at least 8 characters (8*8bits = 64bits).

Terminology

KD - Key Dependant - a value which is “Key Dependant” will be different each time a

different key is used.

P R N - Pseudo Random Number - In general, all references to Random Number in this

document should be taken as a reference to a Pseudo Random Number.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LO - Logical Operation - This can be also referenced as a XO R, AND, NOR, NAND, etc

LFSR - Linear Feedback Shift Register - Algorithm used to generate /W V with the least

repetition possible for its output numbers.

Integer Size is 32 bits - The use of a 32 bits hardware platform is assumed.

ISA A C -T h is is a fast cryptography random generator ereated by Bob Jenkins and used

in the DCA. The details o f the ISA A C Algorithm will not be discussed in this document.

Below is a description of the different Key Generator steps:

- STEP 1 : Key Padding

If the initial seed used to generate the key is not equal to the size o f the keylength

to be generated some Pseudo-Random numbers (KD) will be inserted at a position

with is KD.

- STEP 2: Bits Concatenation

The seeds bits will be stored into one long string of bits. An Integer array will be

used for this purpose and the size of each element will be dependant of the

hardware platform used: 64, 32 or 16 bits, (or even 128, 256, etc when available).

- STEP 3: Initial Scrambling

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The different seed bits will be combined together to generate a Pseudo Random

Number (which is therefore KD). This PRN will then be added to the each seed

element. Eaeh time the PRN is added it will change (KD).

STEP 4: Key Encryption

The seeds will now be referenced as the key. Each of its bits will be treated

individually and will be subject to some Logical Operations (LO). This is called

“a round”. In each round the following happens:

o A bit swap or a LO

o The distance between 2 bits (Shift Window) is KD

o The nature o f the operation (a swap or LO) is KD

o The number of round is KD

o The direction of the round is KD (left or right)

For each key generated the minimum number o f rounds is two, this will ensure

that all bits have been swapped at least once AND have had a LO.

The number o f rounds is also KD.

STEP 5: Final Scrambling

A PRN is generated if no random seed is provided and will be added to each

element o f the Key. Each time the PRN is added it is changed using a Linear

Feedback Shift Register (LFSR)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Key Generator Details

Length = L Saving password
into Pass_clear[]

Nb o f Char to
add = NB ADD

Na Nb Nc Nd

YesPOS> L ?

No

Stop

YesNb of Char
< NB ADD ?

No

Stop Figure 3.1 Key Padding

Nc + Nd = POS

H|E|L|L|0|W |0|R|L|D

Na = Na + 1
Nb = N b + 1
POS - POS +1

INSERT New Char in Pass clear]POS]

IndexA Pass clear] Na| % Li
IndexB = Pass clear]Nb] % Ll

New C har = Pass clear]lndexa] & Pass clear]lndexb]

Nc = P O S / 10
Nd = P O S - (N a * 10)
i.e.: if POS = 25 then Nc = 2 and Nd = 5

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72 I 69 I 76 I 76 I 79 I 87 I 45 I 34 1 103 | 23 | 12 | 10 | 79 | 82 | 76 | 68
-- Password in clearT

01001000

01000101 Conversion in bits and concatenation

01001000010001011010 . .
If using 16 bits integer

Figure 3.2 Bits
Concatenation

Figure 3.3 Initial Scrambling

See Figure 3.3a - Add() - Random Generation

and Figure 3.3b - Add() - Pass code Generation

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If using a
128 bit KEY,
with 16 bits
integer

XOR

XOR

0110100010000001
---------------- Pseudo-Random

010001101100110

0100100001000101

0100100001000100

0000111010001001

0100100001000100

0100100001000101101000110110011011 0 1 1 1 1 1 0 . . .

number PRN-i

Figure 3.3a - Add() - Random
Generation

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q 0100100001000101 10100011011001101 I o il .I

0100100001000101 G
If using 16 bits integer

0000000000000101
Shift window SWa

0110100010000001
Pseudo-Random
number PRN-i

Circular shift o f PRN-i using the SW
window
I.e.; if SWa = 0101 = 5
Then 5 bits will be shifted from the
left to the right.

0001000000101101
------------------ N ew P R N -i+I

G G

Using new PRIN-i+1
Same process as

G > . n j ©

0100100001000101

If using a
128
bits KEY,
with 16 bits
integer.
Pass clear

0101100001101000 0001010010011000 1 11.. 1 1 I I I
New string generated.
Pass code

Figure 3.3b - AddQ - Pass code
Generation

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following diagram describes an overview of this process:

Figure .3.4c - Swap()

Figure 3.4a -
Swao() - Init

Figure 3.4d - Swap() -
Operation

Figure 3.4b - Swap() - Modulo
Generation

PH A SE 1: Repeat until all bits have
been through either a SW AP or
OPERATION

PH ASE 2 Repeat PHASE 1 until the
number of ROUND is finished
(default Round = 2)

Figure 3.4 - Swap()
Overview

The following 4 diagrams describe the detailed process:

Figure 3.4a - Swap() - Init

Figure 3.4b - Swap() - Modulo Generation

Figure 3.4c - Swap() - Direction

Figure 3.4d - Swap() - Operation

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M odulo_Big = K EY LEN G TH - 2
M odulo Small = M odulo Big / 2
i = 0

In itia l is a tio n

0101100001101000 I 0001010010011000 I 11.. I ..
1101110101001011

Pass code I 3Pass code) fl Pass code| 1 | Pass code| 2

Vo (Round +1)
XORXOR XOR

Additional Rounds AH'

Round + AR

New Dynamic round DRound. (max
value is 2x original nb of round)

Operation
(either 0 or 1)

Direction
(either 0 or 1)

Modulo
(either 0 or 1)

Yes
m odulo sw ap =
m odulo big

Modulo
= 0?

No

modulo swap=
modulo small

Figure 3.4a -
Swap() - Init

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pass code

OlOllOOOOllOIOOO I 0001010010011000 I 11.. I 1 . 01 11 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1

P a ssc o d e l i |

(XOR 1

Pass codel i+1

modulo swap
until
i=KEYLENGTH

modulo session

modulo session

Shift window S W i

Figure 3.4c - Swap() -
Direction

Figure 3.4b - Swap() - Modulo
Generation

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4b - Swap() - Modulo
Generation

Direction

XOR
LEFT D irection

Pass code

11011101010010110101100001101000

Yes

= 0 ? SVV6

j Bit B = pass_codc(i+SWI>i-l ji Bit A = pass codel i)No

RIGHT Direction

Pass code

11011101010010110101100001101000

Bit A = pass code| KEYLENGTH -1 - i

Figure 3.4d - Swap()
- Operation

Figure 3.4c - Swap() -
Direction

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4c - Swap() -
Direction

Yes

SW APOperation

= 0 ? BitBBit A

No

Opération Choice = pass codel i + I] %5Opération Choice = pass code| i j %5

Bit A BitB

CHANGING
Bit A and B

Choice 0 = Bit A *XOR* Bit B

Choice 1 = 1 *XOR* (Bit A *OR* Bit B)

Choice 2 = Bit A *OR* Bit B

Choice 3 = Bit A *AND* Bit B

Choice 4=1 *XOR* (Bit A *AND* Bit B)

New Bit A New Bit B

Yes
Modulo Swap
= Modulo Big Modulo Swap = Modulo Small

No

Modulo Swap = Modulo Bi;

Figure 3.4b - Swap() - Modulo
Generation ----------------Operation = Operation *XOR* 1

Figure 3.4d - Swap() -
Operation

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialisation
i = 0

Pass code

If using 16 bits integer

R andom key

New Random key

Yes
i o Index 1

No

i = i+ 1

Figure 3.5 Final
Scrambling

Index I

0001000111100011 1001000101010110

LINEAR FEEDBACK SHIFT REGISTER (LFSR)
(W ith a d if fe re n t p rim itiv e po lynom ial w hen using 6 4 ,3 2 o r 16 bits

Pass code|i]

Pass rodeji

XOR
New Random key

If no random number is already provided in the function parameter, then:
Generate Random key either with the ISAAC algorithm or with the system
time.

Pass code|lndex 11

Pass code|lndex 1]

XOR
Random key

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The important functions are discussed below with and example for 512 bits key
generation.

Key generator

The key lengths that are generated are powers o f two (e.g. 2^x, 128 bits, 256, 512,

1024, etc). To generate a key there are two different methods: randomly or pseudo-

randomly. For the random method, 16 random characters are generated and stored in the

memory. For the pseudo-random method, the user is asked to type some characters that

are then stored in the memory, the maximum number of characters that can be entered is

16. 16 characters correspond to a key length of 128 bits, this is because one character is

represented by 8 bits on a computer, therefore 16 characters represent 128 bits (16 * 8 =

128), 32 characters represent 256 bits (32 * 8 = 256) and so on. Then several functions

are used to generate a key, using these characters which are stored in the memory like a

password, this string o f characters is called: "pass clear".

The number o f different combinations is higher with the Random method (2**128) than

with the Pseudo-Random method (72**16 i.e. approximately 2**99). This is because the

user has to type some characters and there are only around 72 symbols readily available

on a standard keyboard. If only un-shifted alphanumeric characters are used then the

round falls to around 2**83 combinations.

Test length function

It is important that the key's length is always the same, so if the length of the

"pass clear" string is inferior to the key's length, some characters are then added to the

string. The number of characters the user has to type must be at least half the number of

characters in the key. Each new added characters is the result of an AND logical

operation between two characters randomly picked up in the "pass clear" string of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characters. Now, if the key to be generated is 128 bits (which correspond to 16

characters) the new "pass clear" length is 16 characters.

When generating a key of more than 128 bits, first a 128 bit key length is

generated and used to generate a 256 bit key length, and so on. This is possible because

the first key has got the minimum number of characters required to generate the

following key (128 bits = 16 characters, 256 bits = 32 characters, 512 bits - 64

characters, etc). The key generated then becomes the password for the following key. The

different steps during a 512 bits key length generation are:

•The user types 16 characters as a password.

•If less than 16 characters are typed; some new characters are generated to reach the 16

characters needed.

•A key (A l) o f 128 bits is generated from the password typed at the step 1.

•The key (A l) is used to generate another key.

•The key (A2) of 256 bits is then generated from the Key (A l).

•Because the key (A l) is twice inferior to the key (A2), the same process used at the step

2 has to be done, but this time, we check if there are at least 32 characters (256 bits) in

(Al).

•The key (A2) is used to generate another key.

•W e repeat step 6 but this time with (A2).

•The final key (A3) is a 512 key length.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Password OH Random generation flag by Soiembh

Key
Generator O

Kigtlitosy
karfh^

YES

NO

1 r

K«5r2" K*yl
1

K>ey2= K*y3

K*y2 ; NO

K ey ■ A m
Generator 'C ^ ^ p

KjÿhJsey
Jenjth?

YES

C & Z I

Figure 3.6 Long key generation

Transcription function

The string o f character "pass clear" is converted into a string of numbers called

"pass code", these numbers are the ASCII code of each character contained in the

"pass clear" string.

Additional function

It is better not to directly manipulate the ASCII code contained in the "pass code"

string. This is why a number will be added to each number contained in this string by an

Exclusive OR operation. This number is generated in function of the password itself. To

38

Reproduced witti permission of ttie copyrigfit owner. Furtfier reproduction profiibited witfiout permission.

make it safer, each time the number is added it is different we do this by using a circular

bit shifting.

Swapping function

This is the main part of the algorithm, all the numbers contained in the pass code"

string are considered to be only one long string of bits. First, the bits are swapped with

each other; each swap takes place between two bits that have a distance o f X bits.

The cipher password is a long string of integer, each integer o f this string will be assigned

to X. Because while doing this bit swapping process the cipher password will be

consistently changing so will the string of integer and therefore the value of X. X should

never have the same value. The swap starts from the bit B i at the position 0 with the bit

at the position B l + X I. After, from the bit B2 at the end o f the string with the bit at the

position B2 - X2. This continues with the second bit o f the string B3 and the bit B3 + X3,

and with the next to last bit B4 with the bit B4 - X4, and so on. In fact, as shown in, the

following rule is respected;

Swap bit I with bit I + X 1

Swap bit 'endofstring' - 1 with bit 'endofstring' - X2

This starts again with 1 = 1 + 1 and a different X from the "swap length" array.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sotgaàh Ghost
Swap 1 S w ^ 2

KEY = 0 1
4

1 1 0 0 0 1 0 1 ..
4

. 1 0 1 0 0 1 0 0 1 1 1 0 1 A

- 1 Î Î Î J
Swap 3 Swap 4

After S w ^ 1 :

KEY = 0 1 1 1 0 0 0 1 0 1 , . 1 0 1 0 0 1 0 0 I 1 1 0 1

J
After Swap 2 ;

'■

KEY = 0 1 1 1 0 0 0 1 0 1 . . 1 1 1 0 0 1 0 0 1 1 1 0 0

After Swap 3 ;

KEY = 0 0 1 1 0 0 1 1 0 1 - , . 1 1 1 0 0 1 0 0 1 1 1 0 0

After Swap 4 :

KEY = 0 0 1 1 0 0 1 1 0 1 .. 0 1 1 0 0 1 0 0 1 1 1 1 0

Figure 3.7 Bit swapping

This is called bilateral bit swapping, with this function all the bits will be swapped

around.

The second part o f this swapping function is the same process, but this time

instead o f swapping bits around, a pseudo-random binary operation, function of the

password itself, will be generated. There are 5 different types of binary operations;

Exclusive OR, NAND, NOR, OR, AND.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The way the algorithm works is that it alternates a swap and a logical operation

each time. The algorithm does this in a loop until all the bits have been used (in a swap or

a logical operation), the user can change the "round" of this loop with a parameter: it is

the number o f loops the user wants the algorithm to perform. By default it is 2 (which is

also the minimum) as with this value we are sure that ALL the bits have been used in a

swap AND a logical operation.

By changing the value of the round the user is changing the result generated.

Also, the algorithm will:

- Start from the right or the left o f the bits string

- Start by a swap or a logical operation.

When this is finished there is a new “pass code” string, which contains numbers

totally different from the start.

Coding function

To make this encryption algorithm more efficient, a final part has been created. A

random number is added to each number of the "pass code" string. This random number

is initialized at the beginning o f the function. Each time this random number is added, its

bits are shifted to the left, the value of this shift is a number generated in function of the

character contained in the "pass clear" string. Therefore, each time the random number is

added, it is different. Due to the random number, even if the user types the same

password to generate the key, he can have 2^31 different keys (if we use a long random

number = 4 bytes = 32 bits).

The random number will be hidden in the key at a position that will depend on the

cipher string, because when a user types his password again we need to recover it. The

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

key generation will then follow the same process as the first time it was done. To recover

this random number, if the password is right the algorithm will know its position.

Otherwise, the position will be wrong as will the random number used in the coding

function and the key generated will be different.

The user can choose 2 ways to generate a random number: using the standard C

function or use the ISAAC algorithm created by Bob Jenkins. The default RNG is

ISAAC. The initial seed will be initialized by the /dev/random or /dev/urandom device if

present on the system, otherwise it would be the result of “time() + cloekQ”. We are

aware that the second method hasn’t got a big entropy for the pool o f numbers, therefore

the user can overwrite the seed value in his application really easily (for example: after

the binit() call just add the line: varinit->SEED = 666, to set the SEED to 666).

3.4 File Encryption Overview

Process

Below is a brief description of the different File Encryption steps

STEP 1 : Initialization

o The file is mapped into a virtual array and spit into blocks. The length of

the block is KD.

o Several keys are generated from the password or keyfile

o Only one key will be generated with a random number, encrypted and

inserted into the encrypted file. The insertion position is KD.

o That random key will be used to generate a PRN.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STEP 2: Seeding

o A number o f keys (KD) will be generated and stored into a Key Buffer

using a derivation of the initial key generated and the PRN previously

generated as the random seed,

o From that key buffer 2 keys will be selected (KD) and an AN D will be

conducted. The result is an Encryption Key.

o A block will be selected from the file virtual array (KD) and an XO R will

be conducted with the Encryption Key.

o A New key will be derived from one o f the 2 keys used in creating the

Encryption key and replace one of the 2 keys,

o The process repeats again at STEP 2 until all the blocks have been

encrypted (seeded).

STEP 3: Shuffling

o The same virtual array used in STEP 1 will be used again,

o Two blocks will be selected (KD).

o One out of three possible LO will be conducted (KD) on those two blocks.

The result is an Encryption block,

o A third block will be selected (KD) as the block to be encrypted and an

XO R will be conducted with the Encryption Block,

o One of the two blocks used to generate the Encryption block will then be

selected to be the next block to be encrypted (KD).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o The process start again at STEP 3 until all the blocks, but the last two,

have been encrypted (shuffled),

o The last 2 blocks will be encrypted using an XO R with 2 new keys

generated. Not shuffling the last 2 blocks is required for the decryption

process.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 File Encryption Details

Figure 3.8a - file_crypt() - Init and Figure 3.8b - file_crypt() -SeedQ - Random
Generation

C lear Text File

Hello World,
This is a test file in clear text which we are about to
encrypt. First we are going to “split” that file into a
number of blocks.

Length = Bloek shuffle

Block
1

8 10

Red Square = Single Bloek crypt

11

Tab Seed
and

7 Tab Shuffle

Password O R Key File

Key Generator
N o t using random

number
(OnMl)

Key Buffer = Key_Buffer + IV Keyl 0 |
(Max 2x original Key buffer value) IV Key

Initialisation
i = Pass_code| 1 |
Dynam ic shuffle = IV_Key[11 % 32 (if using 32 bits integer)
Block shuffle = Dynam ic shuffle + Block shuffle
Block crypt = File length in bytes

Block shuffle is define with the following rules:
a) It must be a multiple o f 4 bytes (if using 32 bits integer)
b) Block crypt / block shuffle >= 6

Figure 3 .8 a -
file_crypt() - Init

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization
Key Buffer = 1 6 (Can be changed by user)
NB index = K EY LEN G TH / 32 (when using 32 bits integer)

IV KEY

Key Generator
Not using random

number
(Cod»))

Key Generator
With random

number

PasscodeB Codc_key

, Code_key[0]
X O R

No

i = i +1
i > NB Index ?

Yes

Figure 3.8b - file_crypt() -SeedQ - Random Generation

RN

RNXOR

XOR

First RN

New RN

RN = First RN RN = New RN

Pos key = Pass_codeB| 0) % block_crypt
Tab seed|Pos key| - 1 (not to be used again)

In sert “encrypted” random key into file at
postion “Pos K ey ”

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Key Generator
With RN as a random number.

Because of LSFR RN will
change each round

Store Key i into
KeybufTer a rray .

Pass code»

Pass codeB = Key i

Nb ot Key
generated

Key buffer?

Keybuffer_array|indexB|

Tab Seed|Pos|
I ? Pos = Pos + 1

Pass codeC

Yes

indexA = Pass_codeB| 0 |
indexB = PasscodeB! 1]
Pos = Pass codeBI i |

Keybuffer arraylindexA]

New IndexA and IndexB
must be different from

previous IndexA

— I ------------------

Block at
Position Pos

hde to S

Crypted Block PasscodeB =
key bn f fe ra rray [I ndcx B|

Replace tile clear text block with the
crypted block Tab_Seed|pos| = I

Figure 3 .1 0 a -
file_crypt() -
ShuffleO -
Initialization

All file cleartext
^ ^ blocks seeded'’

Kcyi
Replace Keybuffer array! IndexAj

with Key i

Figure 3.9 Seeding

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.10 Shuffling

See Figure 3.10a - file cryptQ - Shuffle() - Initialization

And Figure 3.10b - file cryptQ - ShuffleQ - Position & Operation

And Figure 3.10e - file cryptQ - ShuffleQ -Last 2 bloeks

Initialization
index = IV _K ey|0]
PosA = IV K ey (Index]
PosB = IV Key [Index + 1 1
Random seed = IV Key [Index + 2]
Pos cry p i = “ last block” (this is because the last block may have a variable size)
Length shuffle = Length file / Block shuffle (number o f shuffle block in the file to crypt)

Figure 3.10b - file cryptQ - ShuffleQ
Position & Operation

Figure 3.1 Oa - file cryptQ - ShuffleQ - Initialization

48

Reproduced witti permission of ttie copy rig tit owner. Furttier reproduction protiibited wittiout permission.

Figure 3.10a - file_crypt() - Shuffle() - Initialization

Yes Till) shiifflclI’osAI =

No

Yes Tiib_sliiinic|PosA] =

No

File to Shiiflle
Block at
Position “I’osA”

Position
“PosB”

i k

Figure 3.10b -
file_erypt() -
ShuffleO - Position

Yes All block file
shufflecl7

No

Yes
Pos_crypt is an
Odd number?

No

Sliiimed BLOCKS

Pos_cr}|it = PosA

Cry pted BLOCK

XOR

PosA = PosA + 1

PosB = PosB + I

Opération Choice = (PosA + PosB + Pos crypt i % 3

Replace file block with the crypted
block Tab Shufllel Pos crypt] = 1

RN = LFSR(Random Seed)
PosA - RN % Length_Shiiine

RN = LFSR(Random Seed)
PosB = RN % Length Shiifne

Choice 2 = NOT (Block]PosA] AND Block]PosB])

Choice 0 = Block]PosA] OR Block]PosB]

Choice 1 = NOT (Block]PosA] OR Block]PosB))

Figure 3.10b - file_crypt() - ShuffleO - Position & Operation

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.10c - file cryptQ - ShuffleQ -Last 2 blocks

STOP

IV Key

Key G enerator
Not using random

number
(C ijtlc l'))

XORKey 1

Key G enerator
Not using random

number
(Codef))

XORKey 2

Block Lastl

Block Last2

Last 2 block files:
Block Lastl and Block Last2
They cannot be shuffled. Instead, they are
each encrypted as follow.

Figure 3.10c - file cryptQ - ShuffleQ -Last 2 blocks

All the KD highlighted in the above steps can be changed to static values, enable

or disable. The same is true for the size of the "block crypt" as shown Figure 3.10d

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alternative Block Crypt size. This means that all the above steps can either be conducted

across the entire file or within smaller “working blocks”.

Red Squares = Multiple block erypi

Block

Figure 3.10d - Alternative Block Crypt size

The encryption algorithm provides two methods to encrypt files:

Encrypting a file from a password typed by the user that will be transformed into a key,

or from a key that has already been generated with the Key generator function, described

earlier. If the user wants to use a very long key length, such as 2048 bits, as it is not really

possible to remember a long password, he will have to generate a key and store it in a

secure area; this key will become the password. The user can also choose to encrypt a file

without a password or a key generated with the key generator function. He can simply

choose an existing file, and the key will be some of the data in this file (most of the time

in the middle o f the file). This could be really useful if the user does not want to store a

key file.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are 5 different power levels to encrypt a file.

Seed function

First, a "file array" is defined, if the user uses a 128 bit key length, the algorithm

will calculate how many blocks of 128 bits there are in the file that is going to be

encrypted. The "file array" will have as many indexes as there are blocks o f 128 bits in

the file. Each block will match one of the indexes of the "file array". There are only two

values that can be found in this array, 'O' when the block has not already been encrypted,

and ']' when the block has been encrypted.

There is a new feature in the new algorithm:

Many keys will be generated and stored in a buffer. By default, 16 keys are

generated. Then the 2 keys will be pseudo randomly selected, mixed together. The key

will be used as a filter by doing an Exclusive OR between the data contained in the file

and the key. The position o f the block file's data (where the filter will be added) is a

function o f the "pass clear" string. This is why when we encrypt a file the blocks

sequence and the blocks length that is going to be encrypted depends on the password

used to encrypt the file. Each time a filter is added, the "file array" is updated to be sure

that a filter will not be added twice at the same position.

When a filter is used, a new key is generated. As a result, the key used as a filter

is always different and always a function of the previous key that has been generated.

To decrypt a file, since an Exclusive OR has been used to encrypt the file, we

simply encrypt the cipher file with the same password again to remove the filters.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Something important is that when the keys are generated it is not possible to add a

random number, because it is not possible to find it again, once the key has been added to

some data.

This is why with this algorithm, with one password, or key, the user has only one

cipher text.

Password
OR

Key File

Key generator

i
Key

Logical OR «ith the block's file

Figure 3.11 File encryption and key generation

Random Seed function

The idea was to be able to have more than one cipher text when the same clear

text was encrypted with the same password. This can be achieved by using a random

number in the key generation process. This algorithm is nearly the same as the standard

one, but this time ONE random number is generated and encrypted using the same

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

password used to encrypt the clear text. It is then inserted in the cipher text, still at a

position function o f the "pass clear" string. After, this random number is used in the key

generation. Therefore, with this algorithm for ONE password and ONE clear text there

are MANY cipher texts.

To decrypt the cipher text, the random number is extracted from the cipher text

first and the cipher text is encrypted again with the password typed by the user and this

random number. If it is the right password, the right random number will be extracted, the

right keys will be then generated and the algorithm will generate the right clear text.

This algorithm is very strong, indeed if someone tries to decrypt a cipher file, he

will never be sure that he has found the right clear file.

Shuffle function

As for the file seed function we divide the file into blocks (by default block's

length = Default integer width = 4 bytes on Linux)

From the last cipher password generated we are going to extract pseudo-random numbers

to find 3 file locations:

- position to crypt (pos crypt) (we always start with the last block)

- position A used in the crypting process (posa)

- position B used in the crypting process (posb)

The algorithm takes the blocks at the position A and B and does a logical operation

between them (as a function o f the cipher password): OR, NOR, NAND.

Then it adds the result (MASK) with an Exclusive OR to the block at the position

poscrypt.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then, one o f the blocks used to encrypt (A or B) will become the new position to encrypt.

The choice between A and B is done by checking if the position that has just been

encrypted (pos crypt) is an odd number or not. If it is then the new encrypt position will

be pos A otherwise it will be pos B.

This is done to prevent 2 blocks to be used together more than once to encrypt another

block.

Now there are 2 blocks in plain text (in fact they've been "seeded" before) so 2 new

cipher passwords are generates, from the one sent as a parameter to this funetion and is

added to the block with an Exclusive OR.

This function is initiated by encrypting the last block of the file. This is because of the

way we divide the file into blocks; If the key's length is 128 bits and the file's length is

260 bits then we have got 3 blocks of 128 bits, but the last block only has 4 bits from the

file. If we were using this block in the "shuffle" process this would be weak.

Therefore the algorithm does not use it and encrypts it at the start of this function.

The way the algorithm decides which block is going to be encrypted and which blocks

are going to be used to generate the MASK is function of the password itself. It uses the

value o f the password (A) in a LINEAR FEEDBACK SHIFT REGISTER FUNCTION

(LFSR). This enables the algorithm to generate many different numbers (B) from (A). An

LFSR is really useful to generate a sequence of pseudo random numbers that are always

the same if generated from the same initial number.

This function has been taken from the book from Bruce Schneier Applied cryptography

Second Edition. The algorithm initializes the LFSR with the password itself. It also uses a

different primitive polynomial modulo 2 in function of the length o f the "shift register"

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the user is using (16, 32 or 64 bits).

This part is really important as the file is then encrypted with its own content.

If we use the seed and shuffle function to encrypt a file, to decrypt we first need to

"unshuffle" and then "unseed" the encrypted file.

“UNShuffle” function

The algorithm repeats the process as in the file shuffle function except that it does

not make any changes on the file at first. We store the different erypt positions and bloeks

that are used to create the masks.

We then have 3 arrays:

position^ = position o f the block which will be encrypted

crypta[], cryptb[] = position of the 2 blocks used to create the mask

For example:

position[5] = 500

crypta[5] = 232

cryptb[5] = 1300

This means that the 6th bloek to be encrypted was the bloek number 500 using the blocks

232 and 1300 to generate the mask.

When the algorithm has filled up these 3 arrays, it then decrypts the last 2 blocks and

starts from the end o f the array to the beginning to un-shuffle the file.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can compare that to a "cards castle" once we have done the castle if we want to

remove the cards without breaking the castle we need to take out the last card (on the top)

and then the next one, etc in a reverse order.

Dynamic Variables

This is one of the prominent features of the algorithm.

The following variables:

•ROUND

• BLOCK SHUFFLE

• BUFFER KEY (used in the seed function, tells the algorithm how many keys to be

stored in the buffer).

• MODULO SWAP (which is used in the swap functions and tells the algorithm how big

or small can the bits swap process should be.) These variables can be set to be dynamic or

static (default = yes).

If set to dynamic, the algorithm will change its value as a function of the password

entered. The minimum value is the default value entered for these parameters, and the

maximum is double the default value.

For example:

if ROUND = 2, then with the dynamic option ROUND could be a value between 2 and 4.

If ROUND was equal to 10, then it could be a value between 10 and 20.

The MODULO SWAP changes at each round.

All the other Dynamic variables change as block is encrypted.

By default we encrypt a file as one big block, so these values will change only once.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

ALGORITHM APPLICATIONS

Two applications using the cryptography algorithm were first created for UNIX

(such as Linux, SunOS, Silicon Graphics, HPUX, etc.). The reasons for this choice were

because this system is the most used in the computer world. Also, because no graphical

user interface needed to be created, these applications could be created faster.

These applications have been created using the C language. They all use a library

which contains all the cryptography functions created for this project and only consist of

a user interface for the use of this library. Particular attention has been given to the error

check in these applications. Even if they are badly used, an understandable error message

is displayed. The following applications have been designed:

Encrypt/Decrypt file application:

This application is used to encrypt or decrypt a file. Some parameters have to be

set by the user: the password, the file to encrypt/decrypt, the destination file, the length of

the key, the encrypting power method, the round of the key generator used. The user can

even specify a custom crypt's block length and a custom shuffle's block length. There is

also an interactive mode where the application is prompting you for each parameter

required. This is a security enhancement if the user does not want someone doing a 'ps'

looking at his parameters

Secure chat, similar to the 'talk' UNIX command:

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Secure chat, similar to the 'talk' UNIX command;

This application can be used to have a secure conversation over a network

(Internet for instance). It uses a stream encryption method.

Key generator application:

This application is used to generate a key which will be stored in a file. Some

parameters have to be set by the user: the password or the random generation flag, the

destination file and the key length to be generated.

Login application similar to the UNIX system:

This application, is used when a user wants to log onto the system. Parameters

must be set by the user, such as his password and the location o f the password database

which contains his cipher password.

Password management application:

This application is quite similar to the key generator application but the key

generated is stored into a password database with the user login name. Some parameters

have to be set by the user such as the user name and his new password. If the user already

has a cipher password stored into the password database, he will have to re-type his old

password to be able to change it with the new one.

Hide/Extract engine application:

This application is used to hide a file in another file or to extract a previously

hidden file. The user can choose to hide a file at the beginning or at the end o f another

file. This is a completely separate part o f the cryptography called steganography. It will

be too long to create a strong steganography algorithm so this is why it is only a simple

algorithm (Added to the beginning or at the end of a file). This part will be done, because

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

even if the algorithm is simple, it could be useful. This is because, with this algorithm, if

the user wants to hide a file into a picture, video or sound file, it becomes invisible.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

ALGORITHM ANALYSIS

This section evaluates how the DCA successfully evades two powerful symmetric-key

block cipher cryptanalysis techniques: Linear Cryptanalysis [3] and Differential

Cryptanalysis [4].

5.1 Linear Cryptanalysis

Introduction

Linear Cryptanalysis tries to take advantage of high probability occurrences of

linear expressions involving plaintext bits, "ciphertext" bits (actually we use bits from the

2nd last round output), and subkey bits. It is a known plaintext attack: that is, it is

premised on the attacker having information on a set of plaintexts and the corresponding

ciphertexts. However, the attacker has no way to select which plaintexts (and

corresponding ciphertexts) are available. In many applications and scenarios it is

reasonable to assume that the attacker has knowledge of a random set of plaintexts and

the corresponding ciphertexts.

The idea is that, for each candidate subkey, we partially decrypt the cipher and check if

the relation holds. If the relation holds then increment its corresponding counter. At the

end, the candidate key that counts furthest from Vi is the most likely subkey.

The Piling up Lemma:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose X I, X2,... are independent random variables from {0,1}. And

Pr[A, = 0] = p , , i = 1,2,... Hence,

P r [A , = l] - l - p , , 1 = 1,2,...

The independence o f Xi, Xj implies

Pr[A; = 0 , y — 0] — PiPj

P r[A ,= Q ,A ^= l] = p , (l - p ,)

P r[A ,= l,A ^ = 0] = (l-p ,)p ^

P r [A ,= l,A ^ = l] = (l - p ,) (l - p ,)

Let ,,2 denote the bias of A, © • • • © X
k

k - I
Then = 2 0 ' ^ . , ■

./ = I
Analysis o f DCA

Consider a function f that takes an 8-bit input (x) and an 8-bit subkey (k) as input

and produces an 8 bit output (y). We can write this as y = f(x, k) (mod 2). Imagine that

DCA had been designed in such a way that we could write the function f as a linear

combination o f x and k modulo 2. That is, what if the function f were designed as y = f(x,

k) = Mx + Dk (mod 2) where M and D are constant 8 x 8 matrices. The function f would

look like this:

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> 0 '

y x

>'2

y ^ —

y *

y s

■^0,0

h i LO

M ,

M ,

AT

2.0

3JB

M

* ■ »

5.0

M ,6J0

M .7JJ
Ao.o Ao,i
Alo Al,
Aa,o Aj.,
Ajjo A33
A.,0 A43
A37, A33
Atf.o A«_i
A70 A7.1

iWo.i
M l ,

Ma ,

M ,_ ,

^ . 2

^ 1 o

Z5-2.2

Z),

A 4.2

£)s_2

Z^«,2

^ . 2

Mg, a

M
Af

2.2

M ,

M ,

M ,

0.3A
A 3
Ẑ 23
■̂ 3.3
A 3

A 6-3
•̂ T3

■Mq 3
M l3
M .

ikf,

3.2 A f

5 3

«.2

0,4

23

3.3

M :_ .

M g .

A f

M . a M . 3 M . .

53M
M « j

M , ^

A o ..

A l «

A2.4

Aï.4
A . 4

A5 4

A .4

A.4

M

M ,
M ,

5.4

6.4

'0.5A
A 3

Aa.î
A3.5

A,5
A ,5.5

A 6 .S

A 7 3

M ^

M , ^

M gj
M , ^

M , j

M , ^

M ^

M^_5

A .«

A l«

Aa_g
Aj.tf

A._o

A a ..

Ao.6
A ï,6

M o,«

M l.

M g ^

M 3 .

M . ^

M ^ ^

M . , .

M ,_ .

M ,

M
M .

M

M .

M

M .

A f

0.7

L7

2.7

3.7

4.7

5.7

7.7

Aci.7
A l7
Aa,7
A3.7

A . 7

A , . ,

A .,7

A7 3

A '
A
A
A
A
A
A
A _

^2
X j

^4

(m o d 2)

To do this we would only have to change the seeding and shuffling functions to

linear functions. All XOR’s are already linear functions. For example, and XOR can be

written like z = i(x, y):

^0 Xq ^ 0

^3

%

(mod 2)

So if the seeding and shuffling functions were linear equations we could easily

find a linear function y = f(x, k) (mod 2).

Assume the seeding and shuffling functions are linear function, which we can write as y

= g(x) = Ex where E is a constant 8x8 matrix;

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> o ‘ 0 0 0 0 1 0 0 o ' ’Z(J

0 0 0 0 0 1 0 0 X l

7 a 0 0 0 0 0 0 1 0 ^ 2

0 0 0 0 0 0 0 1

y * 1 0 0 0 0 0 0 0 ^ 4

y ^ 0 1 0 0 0 0 0 0

y 6 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 ^ 7

(mod 2)

DCA has two rounds of the function f (one for each o f two keys generated from the key

buffer K1 and K2). So if P is the plaintext and C is the ciphertext, then:

C = f(g(f(P ,K l)),K 2)
=M xg(f(P ,K l)) + DxK2
=ExMxf(P, K l) + DxK2
=ExMx(MxP + D X K l) + DxK2
=ExM^xP + ExM xDxKl + DxK2 (mod 2)

Now define three new constant 8x8 matrices: R= ExM^, S= ExMxD, and T=D.

Even if we use independent subkeys for Kl and K2, we cannot have a linear equation.

If in wcrst case, bit 0 o f the ciphertext is equal to bit 3 o f the plaintext XORed

with bit 4 o f the plaintext XORed with bit 5 of the plaintext XORed with bit 0 o f K l, etc.

We would have similar equations for bits 1 through 7 of the ciphertext. So for a known

ciphertext attack with one plaintext-ciphertext pair we would have 8 equations and 32

unknowns, which does not do much good.

But with 4 plaintext-ciphertext pairs you would have 32 equations and 32

unkowns. Using Gaussian elimination or Cramer’s rule it is easy to see that we could

solve this system with something on the order o f 32 calculations which is no good again.

Steps for performing linear cryptanalysis on DCA

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1] We need several good linear approximations for each linear function. They should

hold for more than 50% of the possible inputs. Each equation is just XOR’s modulo 2

(equivalent to XORing them all together) to get an answer of either 0 or 1.

2] We need about 100 plaintext/ciphertext pairs. They don’t have to be chosen plaintext,

this is a known plaintext attack.

3] Do step 4 for every possible subkey

4] For each plaintext/ciphertext pair that we have

4.1] Find Q, the output of the seeding.

4.2] Find S, the output of shuffling.

4.3] See if each o f the linear approximations hold for S as input and Q as

output. We don’t really care what the first key is because any bit in the second key has a

50% chance o f being a 0 and not touching anything. If it were a 1 then it would change

one of our S bits but we wouldn’t really care because our linear approximations are still

biased away from 50%. If S was chosen well then we would expect S and Q to show bias

with the linear approximations. If S is not anything like the input that was really used

when the ciphertext/plaintext pair was generated then we’re just plugging in random bits

for S and Q and we would expect our linear approximations to hold about 50% of the

time. The subkey that we guess that shows the highest deviation away from 50% is the

one most likely to be the real key. The level of effort to break the cipher then comes from

the size o f the subkey and not the key size.

Linear cryptanalysis won’t produce such dramatic results on DCA, because DCA

does not have many linear functions like S-F networks. The level o f effort to do linear

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cryptanalysis on DCA is still dependent on the size of the subkey, but we need a lot of

plaintext/ciphertext pairs which makes it pretty much infeasible.

5.2 Differential Cryptanalysis

Introduction

Differential cryptanalysis exploits the high probability o f certain occurrences of

plaintext differences and differences into the last round o f the cipher. For example,

consider a system with input A = [X \ X 2 . . . X n] and output Y = [Fi Y i . . . Y n \ . Let two inputs

to the system be X and X ' with the corresponding outputs T and Y ' , respectively. The

input difference is given by X X = X @ X ' where "©" represents a bit-wise exclusive-OR

of the M-bit vectors and, hence,

A A = [AAi AA2.. . AAn]

The main difference from linear attack is that differential attack involves

comparing the XOR of two inputs to the XOR of the corresponding outputs. Differential

attack is a chosen-plaintext attack. We consider inputs x and x* having a specified XOR

value. We decrypt y and y* using all possible key and determine if their XOR has a

eertain value. Whenever it does, increment the corresponding counter. At the end, we

expect the largest one is the most likely subkey.

In order to use differential cryptanalysis on DCA the attacker would require large

amounts of plaintexts. The number o f chosen plaintexts needed is dependent on the

ability o f XOR differences to propagate through a block cipher algorithm (and therefore

partly dependent on the number rounds) and the computational effort comes from the size

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the subkey used for each round. The search space o f differential cryptanalysis is the

subkey o f the last round and not the encryption key.

Steps for performing Differential Cryptanalysis on DCA

1] Choose an XOR difference for the plaintext pairs

Let us go ahead and use an XOR difference o f “ 10000000.” This means that each

of our plaintext pairs will differ in only the first bit. For example “00000000” will be

paired with “ 10000000”, “00000001” will be paired with “10000001”, ..., “01100100”

will be paired with “ 11100100”, ..., and “01111111” will be paired with “ 11111111”.

2] Generate ciphertext pairs for some plaintext pairs

Differential cryptanalysis is a chosen plaintext attack, so we will need access to

the encryption equipment with the key installed. This doesn’t mean we can see the key,

though we just need to have access to the equipment.

Now we are going to encrypt 25 randomly chosen plaintext pairs from our

plaintext pairs above, for a total of 50 encryptions. If our cipher had more rounds we

would have to do a lot more work.

When we do these 50 encryptions we get 25 ciphertext pairs, paired by the fact

that both ciphertexts in a pair came from one of the plaintexts o f a plaintext pair.

Plaintext -> Ciphertext

One pair;

O llllO O l -> 11111001

11111001 ->11111110

Another pair:

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01000100 - > 10101100

11000100 - > 10011001

A third pair:

00000011 ->01000010

10000011 - > 10110111

etc.

3] Get 2 pieces o f information out o f each ciphertext pair

3.1] The first piece o f information we want out o f each ciphertext pair is the input

to seeding function.

3.2] The second piece of information we need is not so trivial. We are going to

have to find out what the expected XOR difference that came out o f the shuffling

function.

4] Try all possible values for the subkey, which is extremely hard with larger keys.

For every subkey, what we have to do is recreate seeding, the 8-bit XOR after

seeding, and the shuffling for each ciphertext pair. The reason we have to use 25

ciphertext pairs instead of just one is that there is a chance a false input might get lucky

and produce the right output, but this won’t happen 25 times. The number 25 has nothing

to do with the key size or block size so it does not add to our measure of complexity.

Each step has extremely large complexity due to which differential cryptanalysis

does not produce dramatic results against the DCA.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Performance Analysis

Here are speed benchmarks for some of the most common cryptography

algorithms compared to the DCA. The test was run on a Pentium 4 2.1 GHz processor on

Windows XP professional platform. As shown, the DCA is considerably faster than its

peers.

Algorithm Megabytes(2^20

bytes) Processed

Time Taken MB/Seconds

DCA 256 3.841 66.649

MD5 1.02e+003 4.726 216.674

Ripemd-160 256 4.867 52.599

SHA-512 64 5.618 11.392

HMAC 1.02C+003 4J26 216.674

AES(256) 256 5J08 48.229

DES 128 5.998 21.340

RC4 512 4.517 113.350

Table 5.1 Speed Comparison of Cryptography Algorithms

Analysis of DCA, AES, 3DES and RC2

For the tests, the Microsoft Application Center Test (ACT) was used, which is

designed to stress test. Application Center Test can simulate a large group of users by

opening multiple connections to the server and rapidly sending HTTP requests. It also

allows us to build realistic test scenarios where we can call the same method with a

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allows us to build realistic test scenarios where we can call the same method with a

randomized set o f parameter values. This is an important feature, whereby users are not

expected to call the same method with the same parameter values over and over again.

The other useful feature is that Application Center Test records test results that provide

the most important information about the performance o f the Web application.

The algorithms were used to encrypt and decrypt data. Tests were performed with

a data size o f 4 KB, 100 KB, and 500 KB to see how the size o f data impacts

performance.

Figure 3.12a Plot o f Request per second against user load, data - 4 KB

Request/Second vs. User Load
Data size = 4 KB

User Load

RC2
3DES
AES
DCA

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.12b Plot o f Response time against user load, data = 4 KB

Response Time vs. User Load

U ser Load

DCA
AES
3DES
RC2

With small data, we find that the DCA is the fastest of all the methods. A key

length o f 256 bits was chosen.

Next was the AES (Advanced Encryption standard). It has a variable block length

and key length, which may be chosen to be any of 128, 192, or 256 bits. It also has a

variable number o f rounds to produce the cipher text, which depends on the key length

and the block length.

Next was the Triple DES (3DES) was invented to improve the security of DES by

applying DES encryption three times using three different keys (note that encrypting data

three times with the same key does not offer any value). It is simply another mode of

DES, but it is highly secure and therefore slower in performance. It takes a 192-bit key,

which is broken into three 64-bit subkeys to be used in the encryption procedure. The

procedure is exactly like DES, but it is repeated three times, making it much more secure.

The data is encrypted with the first subkey, decrypted with the second subkey, and

encrypted again with the third subkey.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RC2 turns out to be the slowest method when the data being encrypted is small. It

has an expensive computation up front to build a key-dependent table, which apparently

is high compared to the cost o f encrypting small data.

Figure 3.13a Plot o f Request per second against user load, data = 100 KB

Requests/Second vs. User Load
Data =100 KB

U ser L oad

-A ES
3D ES
DCA
RC2

Figure 3.13b Plot o f Response time against user load, data =100 KB

R esp o n se Time vs. User Load
Data Size = 100 KB

R esp o n se T im e
1600

-RC2
DCA
30E S

-AES

IN ^r Load

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By increasing the size of data being encrypted and decrypted, we see an entirely

different picture to what we saw in the previous test. RC2 is the fastest, followed by

DCA, which is around 20% faster than 3DES. Note that the expensive computation in

RC2 to build the key-dependent table is amortized over more data. AES in this case is the

slowest; 25% slower than 3DES. Note that we are using a 256-bit key for AES

encryption, which makes it stronger than the other methods (though there has been some

press about possible attacks against AES, which might be better than brute force attack)

and for the same reason the slowest of all. Similarly, we used a 192-bit key in case of

3DES. Using a same-length key does not necessarily mean that different algorithms will

have the same strength. Different algorithms have different characteristics and hence they

may not provide the same strength.

There is always a tradeoff between security and performance. We need to

understand the value o f sensitive data, the deployment cost, and usability/performance

tradeoffs before you can begin choosing a right algorithm for securing data. If the cost of

data that is being protected is high, then we must consider taking a performance hit to

secure the data. Otherwise, we may be better off using a less secure algorithm.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.14a Plot o f Request per second against user load, data = 500 KB

R eq u e s t/S e c o n d vs. U ser Load
D ata = 500 KB

10 15

U se r L oad

-* -A E S
3DES
DCA

< RC4

Figure 3.14b Plot of Response time against user load, data = 500 KB

R e sp o n se Time vs. U ser Load
D ata = 500 KB

U se r Load

E 2000

1000

RC2
DCA
3DES
AES

With the increasing size of data being encrypted and decrypted, we see the same

trend prevailed in this test too.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

CONCLUSION

The main problem in this algorithm concept was that it was necessary to always have in

mind the following words: security, efficiency and portability. Everything has been done

to respect these keywords.

To conclude, here is a summary of the algorithm specifications originally. All

initial design goals were met successfully.

- Private Key algorithm

- The source code can be public without making the algorithm weak

- Dynamic Algorithm

- Pseudo Random numbers generated using a Linear Feedback Shift Register and ISAAC

Algorithm

- Direct disk access or Memory buffer method in order to run on low specification

computer and Palm devices

- Stream encryption option

- Block encryption option

- Key generator: Bits manipulations, bilateral bits swapping and logical bits operations,

random generator.

- Encrypt file (using the key generator): Variable length cipher block algorithm.

- 5 Power levels: Seed, Random Seed, Shuffle, Seed + Shuffle, Random Seed + Shuffle.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Key length unlimited (as big as your integer type can take).

The algorithm was successfully able to evade two of the most powerful

cryptanalysis techniques: Linear and Differential Cryptanalysis.

As proposed, the following applications we designed too, highlighting some of

the applications o f the cryptography suite:

• Encrypt/Decrypt file application

• Secure chat

• Key generator application

• Login application

• Password management application

• Hide/Extract engine.

The project applications were tested on many different operating systems (OS):

Windows 9x, Windows NT, UNIX (Linux, HPUX, Silicon Graphics, and Solaris).

Because each operating system is different (memory management, permission rights,

variable management, etc) these tests were very important. For example, a problem

regarding the way the password was stored in the memory occurred once. No errors were

generated when the application was running on Linux, but on the Silicon graphics OS an

error was generated. This was because on Linux the memory management is less strict

than on Silicon Graphics (or at least at the time on the Linux OS there were not as many

users as there were on SGI). Therefore, sometimes the application worked fine on the

Silicon graphics and Windows but not on the SunOS because these first two OS were

more compliant in certain areas. These tests helped in eliminating several bugs.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithm has reached its maturity after several iterations and careful

cryptanalysis. Future work includes designing attack cased against the algorithm.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1. National Bureau of Standards, Data Encryption Standard, U.S. Department of

Commerce, FIPS Publication 46, Jan 1977.

2. M.J. Weiner, "Efficient DES Key Search," Advances in Cryptology—CRYPTO '93

Proceedings, Springer-Verlag, in preparation.

3. M. Matsui, "Linear Cryptanalysis Method for DES Cipher," Advanees in Cryptology—

CRYPTO '93 Proceedings, Springer- Verlag, 1994, in preparation.

4. E. Biham and A. Shamir, Differential Cryptanalysis o f the Data Encryption Standard,

Springer-Verlag, 1993.

5. R.C. Merkle, "Fast Software Encryption Functions," Advances in Cryptology—

CRYPTO '90 Proceedings, Springer-Verlag, 1991, pp. 476-501.

6. R.C. Merkle, "Method and Apparatus for Data Encryption," U.S. Patent 5,003,597, 26

Mar 1991.

7. T.W. Cusick and M.C. Wood, "The REDOC-II Cryptosystem," Advances in

Cryptology—CRYPTO '90 Proceedings, Springer- Verlag, 1991, pp. 545-563.

8. M.C. Wood, "Method of Cryptographically Transforming Electronic Digital Data from

One Form to Another," U.S. Patent 5,003,596, 26 Mar 1991.

9. B. Schneier, Applied Cryptography, John Wiley & Sons, New York, 1994.

10. X. Lai, J. Massey, and S. Murphy, "Markov Ciphers and Differential Cryptanalysis,"

Advances in Cryptology—EUROCRYPT '91 Proceedings, Springer-Verlag, 1991, pp.

17-38.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11. J.L. Massey and X. Lai, "Device for Converting a Digital Block and the Use

Thereof," International Patent PCT/CH91/00117, 16 May 1991.

12. J.L. Massey and X. Lai, "Device for the Conversion of a Digital Block and Use of

Same," U.S. Patent 5,214,703, 25 May 1993.

13. RSA Laboratories, Answers to Frequently Asked Questions About Today's

Cryptography, Revision 2.0, RSA Data Security Inc., 5 Oct 1993.

14. National Institute o f Standards and Technology, "Clipper Chip Technology," 30 Apr

1993.

15. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis o f Block Ciphers with

Overdefined Systems o f Equations, 9 Nov 2002

16. Ron Rivest, "The MD5 Message-Digest Algorithm," RFC 1321, April 1992.

17. Bruce Schneier, "Section 18.5 MD5," Applied Cryptography, Second Edition, John

Wiley & Sons, 1996.

18. Thomas Berson, "Differential Cryptanalysis Mod 2^ ̂with Applications to MD5,"

Advances in Cryptology - EuroCrypt '92 Proceedings, Volume 658 of Lecture Notes

in Computer Science, Springer-Verlag.

19. RSA Laboratories Security Bulletin #4, ftp://ftp.rsa.com/pub/pdfs/bulletn4.pdf

20. Hans Dobbertin, Cryptanalysis of MD5 Compress, http://www-

cse.ucsd.edu/~bsy/dobbertin.ps

21. Hans Dobbertin, Antoon Bosselaers, Bart Preneel, RlPEMD-160: A Strengthened

Version o f RIPEMD. A joint publication by the German Information Security Agency

(POB 20 03 63, D-53133 Bonn, Germany) and the Katholieke Universiteit Leuven,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.rsa.com/pub/pdfs/bulletn4.pdf
http://www-

ESAT-COSIC (K. Mercierlaan 94, B-3001 Heverlee, Belgium), 18 April 1996.

Available from http://www.esat.kuleuven.ac.be/~bosselae/ripemdl60.html

22. Hans Dobbertin, Antoon Bosselaers, Bart Preneel, The RIPEMD-160 page,

http://www.esat.kuleuven.ac.be/~bosselae/ripemdl60.html

23. A. Menezes, P.C. van Oorschot, S.A. Vanstone, "Algorithm 9.55 RIPEMD-160 hash

function," Handbook of Applied Cryptography, CRC Press, 1997.

http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf, .ps

24. ISO/IEC 10118-3:1998, Information technology — Security techniques — Hash-

functions — Part 3: Dedicated hash-functions.

25. U.S. National Institute o f Standards and Technology, FIPS 180-2, Secure Hash

Standard (SHS). http://csrc.nist.gov/encryption/tkhash.html

26. M. Bellare, R. Canetti, H. Krawczyk, "HMAC: Keyed-Hashing for Message

Authentication," RFC 2104, February 1997.

27. M. Bellare, R. Canetti, H. Krawczyk, "Keying hash functions for message

authentication," Extended abstract in Advances in Cryptology - CRYPTO '96

Proceedings, Volume 1109 of Lecture Notes in Computer Science (N. Koblitz, ed.),

Springer-Verlag, 1996.

28. M. Bellare, R. Canetti, H. Krawczyk, "Message authentication using hash functions:

The HMAC construction," RSA Laboratories' CryptoBytes vol. 2, no. 1, Spring 1996.

29. P. Cheng, R. Glenn, "Test Cases for HMAC-MD5 and HMAC-SHA-1,"

RFC 2202, September 1997.

30. J. Kapp, "Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128,"

RFC 2286, February 1998.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.esat.kuleuven.ac.be/~bosselae/ripemdl60.html
http://www.esat.kuleuven.ac.be/~bosselae/ripemdl60.html
http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf
http://csrc.nist.gov/encryption/tkhash.html

31. NIST, AES Home Page, http://www.nist.gov/aes/

32. AES Round 1 Information, http://csrc.nist.gov/encryption/aes/roundl/roundl.htm

33. AES Round 2 Information, http://csrc.nist.gov/encryption/aes/round2/round2.htm

34. The CAESAR - Candidate AES for Analysis and Reviews project,

http://www.dice.ucl.ac.be/crypto/CAESAR/caesar.html

35. Lars Knudsen, Vincent Rijmen, The Block Cipher Lounge - AES,

http://www.ii.uib.no/~larsr/aes.html

36. John Savard, Towards the 128-bit Era - AES Candidates,

http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/co0408.htm

37. Eli Biham, "A Note on Comparing the AES Candidates," Presented at the 2nd AES

Conference, http://csrc.nist.gov/encryption/aes/roundl/conf2/papers/biham2.pdf

38. Olivier Baudron, Henri Gilbert, Louis Granboulan, Helena Handschuh, Antoine Joux,

Phong Nguyen, Fabrice Noilhan, David Pointcheval, Thomas Pomin, Guillaume

Poupard, Jacques Stem, Serge Vaudenay, "Report on the AES Candidates," Presented

at the 2nd AES Conference.

39. G. Carter, E. Dawson, L. Nielsen, "Key Schedule Classification o f the AES

Candidates," Presented at the 2nd AES Conference.

40. B. Preneel, A. Bosselaers, V. Rijmen, B. Van Rompay, L. Granboulan, J. Stem, S.

Murphy, M. Dichtl, P. Serf, E. Biham, O. Dunkelman, V. Furman, F. Koeune, G.

Piret, J-J. Quisquater, L. Knudsen, H. Raddum, "Comments by the NESSIE Project

on the AES Finalists," Submitted to NIST as an AES comment. May 2000.

4L Thomas S. Messerges, "Securing the AES Finalists Against Power Analysis Attacks,"

Presented at Fast Software Encryption 2000, New York.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.nist.gov/aes/
http://csrc.nist.gov/encryption/aes/roundl/roundl.htm
http://csrc.nist.gov/encryption/aes/round2/round2.htm
http://www.dice.ucl.ac.be/crypto/CAESAR/caesar.html
http://www.ii.uib.no/~larsr/aes.html
http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/co0408.htm
http://csrc.nist.gov/encryption/aes/roundl/conf2/papers/biham2.pdf

42. Nicolas Courtois, Josef Pieprzyk, "Cryptanalysis o f Block Ciphers with Overdefined

Systems o f Equations". pp267-287, ASIACRYPT 2002.

43. U.S. National Institute o f Standards and Technology, NIST FIPS PUB 46-2

(supercedes FIPS PUB 46-1), "Data Encryption Standard", U.S. Department of

Commerce, December 1993.

44. U.S. National Institute of Standards and Technology, NIST FIPS PUB 74,

"Guidelines for Implementing and Using the NBS Data Encryption Standard".

45. Bruce Schneier, "Chapter 12 Data Encryption Standard," Applied Cryptography,

Second Edition, John Wiley & Sons, 1996.

46. A. Menezes, P.C. van Oorschot, S.A. Vanstone, "Section 7.4 DES," Handbook of

Applied Cryptography, CRC Press, 1997.

47. Eli Biham, Adi Shamir, "Differential Cryptanalysis o f the Full 16-Round DES,"

CS 708, Proceedings of CRYPTO '92, Volume 740 of Lecture Notes in Computer

Science, December 1991.

48. Eli Biham, Adi Shamir, "Differential cryptanalysis o f DES-like cryptosystems,"

Technical report CS90-16, Weizmann Institute o f Science. Advances in Cryptology -

CRYPTO '90 Proceedings and Journal of Cryptology, Vol. 4, No. 1, pp. 3-72, 1991.

49. Eli Biham, Adi Shamir, Differential Cryptanalysis o f the Data Encryption Standard,

Springer-Verlag, 1993.

50. M. Matsui, "Linear cryptanalysis method for DES cipher," Advances in Cryptology -

EUROCRYPT '93 Proceedings, Volume 765 o f Lecture Notes in Computer Science

(T. Helleseth, ed.), pp. 386-397. Springer-Verlag, 1994.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51. M. Matsui, "The First Experimental Cryptanalysis of the Data Encryption Standard,"

Advances in Cryptology - CRYPTO '94 Proceedings, Volume 839 o f Lecture Notes

in Computer Science, Springer-Verlag, 1994.

52. M. Matsui, "On Correlation Between the Order o f S-boxes and the Strength of DES,"

Advances in Cryptology - EUROCRYPT '94 Proceedings, Volume 950 o f Lecture

Notes in Computer Science, Springer-Verlag, 1995.

53. Eli Biham, A. Biryukov, "An Improvement of Davies' Attack on DES, " CS 817,

EUROCRYPT '94 Proceedings (May 1994), Volume 950 o f Lecture Notes in

Computer Science (A. De Santis, ed.). Springer Verlag, 1995, and Journal of

Cryptology, Vol. 10, No. 3, pp. 195-206, 1997.

54. Lars Knudsen, "New potentially weak keys for DES and LOKl," Advances in

Cryptology - EUROCRYPT '94 Proceedings, Volume 950 o f Lecture Notes in

Computer Science (A. De Santis, ed.), pp. 419-424. Springer Verlag, 1995.

55. Lars Knudsen, John Erik Mathiassen, "A Chosen-Plaintext Linear Attack on DES,"

Proceedings o f Fast Software Encryption 2000, Volume 1978 o f Lecture Notes in

Computer Science. Springer-Verlag, 2001.

56. U.S. National Institute o f Science and Technology, NIST Special Publication 800-17,

pp. 124 et seq.

57. Bruce Schneier, "Section 17.1 RC4," Applied Cryptography, Second Edition, John

Wiley & Sons, 1996.

58. Anonymous, Subject: RC4 Algorithm revealed. Posting to Usenet newsgroups

sci.crypt, alt.security, comp.security.misc, and alt.privacy, September 14 1994

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(reposting of a message to the cipherpunks mailing list). Message-ID:

stemCvKL4B.Hyy@netcom.com

59. Hal Finney, Subject: An RC4 cycle that can't happen. Posting to sci.crypt, 18

September 1994.

60. David Wagner, Subject: Re: Weak Keys in RC4, Posting to sci.crypt, 26 September

1995.

61. Andrew Roos <andrewr@vironix.co.za>, A Class of Weak Keys in the RC4 Stream

Cipher, November 1997.

62. J ohn Kelsey, Bmce Schneier, David Wagner, "Key-Schedule Cryptanalysis of 3-

WAY, IDEA, G-DES, RC4, SAFER, and Triple-DES".

63. Jovan Golic, "Linear Statistical Weakness o f Alleged RC4 Keystream Generator,"

Advances in Cryptology - EUROCRYPT '97 Proceedings, Volume 1233 of Lecture

Notes in Computer Science (W. Fumy, ed.) Springer-Verlag, 1997.

64. Lars Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege,

"Analysis Methods for (Alleged) RC4," Advances in Cryptology - ASIACRYPT '98

Proceedings, Volume 1514 o f Lecture Notes in Computer Science (K. Ohta, D. Pei,

eds.), pp. 327-341. Springer-Verlag, 1998.

65. Serge Mister, "Cryptanalysis o f RC4-like Ciphers," Master's Thesis, Queen's

University, Kingston, Ontario, Canada. May 1998.

66. Serge Mister, Stafford Tavares, "Cryptanalysis o f RC4-like Ciphers,"

Workshop Record of the Workshop on Selected Areas in Cryptography (SAC '98),

August 17-18 1998, pp. 136-148.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:stemCvKL4B.Hyy@netcom.com
mailto:andrewr@vironix.co.za

67. Alexander L. Grosul, Dan S. Wallach, "A Related-Key Cryptanalysis o f RC4,"

Rice University TROO-358, June 2000.

68. Scott Fluhrer, David McGrew, "Statistical Analysis of the Alleged RC4 Keystream

Generator," Presented at Fast Software Encryption 2000, New York.

69. Itsik Mantin, Adi Shamir, "A Practical Attack on Broadcast RC4," Presented at Fast

Software Encryption 2001.

70. Scott Fluhrer, Itsik Mantin, Adi Shamir, "Weaknesses in the Key Scheduling

Algorithm o f RC4," In Proceedings of SAC 2001, Eighth Annual Workshop on

Selected Areas in Cryptography (Toronto, Ontario, Canada, August 2001), pp. 1-24.

71. Itsik Mantin, "Analysis of the stream cipher RC4," Master's Thesis, Weizmann

Insitute, Israel, 2001.

72. G. Durfee, "Distinguishers for the RC4 stream cipher," Manuscript, 2001.

73. Ilya Mironov, "(Not So) Random Shuffles of RC4 (full version)," lACR e-print

2002/067.

74. U.S. National Bureau of Standards (now NIST), "DES Modes o f Operation,"

NBS FIPS PUB 81, U.S. Department of Commerce, December 1980.

75. Bruce Schneier, "Section 9.1 Electronic Codebook Mode," Applied Cryptography,

Second Edition, John Wiley & Sons, 1996.

76. U.S. National Bureau of Standards (now NIST), "DES Modes o f Operation,"

NBS FIPS PUB 81, U.S. Department of Commerce, December 1980.

77. Bruce Schneier, "Section 9.3 Cipher Block Chaining Mode,"

78. M. Bellare, A. Desai, E. Jokipii, P. Rogaway, "A Concrete Security Treatment of

Symmetric Encryption: Analysis of the DES Modes o f Operation,"

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79. Ron Rivest, Adi Shamir, Leonard Adelman, "A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems," MIT Laboratory for Computer Science

and Department o f Mathematics. Communications of the ACM, February 1978,

Volume 21, Number 2, pp. 120-126.

80. PKCS #1: RSA Encryption Standard, An RSA Laboratories Technical Note, Version

1.5. Revised November 1, 1993.

81. Bruce Schneier, "Section 19.3 RSA," Applied Cryptography, Second Edition, John

Wiley & Sons, 1996.

82. R. Rivest, A. Shamir, L.M. Adelman, "Cryptographic Communications System and

Method," U.S. Patent 4,405,829, filed December 14 1977, issued September 20 1983.

83. Don Coppersmith, Matthew K. Franklin, Jacques Patarin, Michael K. Reiter,

"Low-Exponent RSA with Related Messages," Advances in Cryptology -

EUROCRYPT '96 Proceedings, Volume 1070 o f Lecture Notes in Computer Science

(U. Maurer, ed.), pp. 1-9. Springer-Verlag, 1996.

84. Dan Boneh, "Twenty Years o f Attacks on the RSA Cryptosystem," Notices o f the

American Mathematical Society (AMS), Vol. 46, No. 2, pp. 203-213,1999.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University of Nevada, Las Vegas

Sourabh Ghose
Local Address:

4213 Chatham Circle Apt#l
Las Vegas, NV 89119

Degrees:
Bachelor o f Engineering in Computer Engineering, 2005
University of Bombay, India

Thesis Title: Design, Implementation and Analysis of a Dynamic Cryptography
Algorithm with Applications.

Thesis Examination Committee:
Chairperson, Dr. Yoohwan Kim, Ph. D.
Committee Member, Dr. Ajoy Datta, Ph. D.
Committee Member, Dr. Laxmi Gewali, Ph. D.
Graduate Faculty Representative, Dr. Shahram Latifi, Ph. D.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Design implementation and analysis of a dynamic cryptography algorithm with applications
	Repository Citation

	tmp.1534462568.pdf.4RBO3

