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ABSTRACT

Design, Implementation and Analysis of a Dynamic Cryptography Algorithm
with Applications

by

Sourabh Ghose

Dr. Yoohwan Kim, Examination Committee Chair 
Assistant Professor of Computer Science Department 

University o f Nevada, Las Vegas

Cryptographers need to provide the world with a new encryption standard. DES, 

the major encryption algorithm for the past fifteen years, is nearing the end of its useful 

life. Its 56-bit key size is vulnerable to a brute-force attack on powerful microprocessors 

and recent advances in linear cryptanalysis and differential cryptanalysis indicate that 

DES is vulnerable to other attacks as well. A more recent attack called XSL, proposes a 

new attack against AES and Serpent. The attaek depends much more critieally on the 

complexity of the nonlinear components than on the number o f rounds. Ciphers with 

small S-boxes and simple structures are particularly vulnerable. Serpent has small S- 

boxes and a simple structure. AES has larger S-boxes, but a very simple algebraic 

description. If the attack is proven to be correct, cryptographers predict it to break AES 

with a 2^80 complexity, over the coming years.

Many o f the other unbroken algorithms -Khufu, REDOC II, and IDEA-are 

protected by patents. RC2 is broken. The U.S. government has declassified the Skipjaek 

algorithm in the Clipper and Capstone chips.

iii
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If the world is to have a secure, unpatented, and freely- available encryption 

algorithm, we need to develop several candidate encryption algorithms now. These 

algorithms can then be subjected to years of public scrutiny and cryptanalysis. The 

purpose o f the thesis is to discuss the requirements for a standard encryption algorithm.

DCA (Dynamic Cryptography Algorithm), a new private-key block cipher, is 

proposed. The block size is user defined, and the key can be of infinite length. The 

algorithm is a first o f its kind dynamic algorithm in which almost all components change 

depending of the password itself used to generate a key or encrypt a file. The “Key 

dependency” has been pushed to the extreme with dynamically linked eomponents like 

number of rounds, operation used on each bits, shift window, direction of each operation 

(Left or Right), size o f the key buffer when encrypting a file, size of the block shuffle and 

working file block.

The aetual encryption o f data is performed in two modules. Key generation and 

File encryption and is very efficient on all microprocessors. Key generation is a complex 

procedure of Key Padding, Concatenating bits, initial scrambling, key encryption and 

final scrambling. File encryption consists of complex steps of initialization, seeding and 

shuffling. All default settings can also be changed by the user, which means the 

knowledge required to decrypt/reproduce a key gets extended to the environment settings 

as well as the password itself.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT.................................................................................................................................. iii

LIST OF FIGURES .................................................................................................................... vi

ACKNOWLEDGEMENTS ...................................................................................................... vii

CHAPTER I INTRODUCTION ...........................................................................................1
LI Term inology......................................................................................................................2
1.2 Algorithm Types ..............................................................................................................2
1.3 Cryptography Standards..................................................................................................3
1.4 Possible Applications...................................................................................................... 5
1.5 Common Cryptography Attacks ....................................................................................6

CHAPTER 2 LITERATURE REVIEW .............................................................................. 9
2.1 Message Digest A lgorithm s........................................................................................... 9
2.2 Message Authentication code Algorithms ................................................................. 12
2.3 Symmetric Key Algorithms ......................................................................................... 14
2.4 Block Cipher A lgorithm s..............................................................................................17
2.5 Asymmetric Key A lgorithm s....................................................................................... 19

CHAPTER 3 ALGORITHM DESCRIPTION .................................................................. 21
3.1 Introduction .....................................................................................................................21
3.2 Key Generator Overview ..............................................................................................23
3.3 Key Generator D etails................................................................................................... 26
3.4 File Encryption Overview ............................................................................................ 42
3.5 File Encryption Details .................................................................................................45

CHAPTER 4 ALGORITHM APPLICATIONS ................................................................58

CHAPTER 5 ALGORITHM ANALYSIS..........................................................................61
5.1 Linear Cryptanalysis ..................................................................................................... 61
5.2 Differential Cryptanalysis ............................................................................................ 66
5.3 Performance Analysis ................................................................................................... 69

CHAPTER 6 CONCLUSION ............................................................................................ 75

CHAPTER 7 REFERENCES ............................................................................................ 78

VITA .............................................................................................................................................87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 3.1 Key Padding ............................................................................................................26
Figure 3.2 Bits Concatenation..................................................................................................27
Figure 3.3 Initial Scrambling ...................................................................................................27

Figure 3.3a Add()-Random Number Generation ................................................ 28
Figure 3.3b Add() - Pass_code Generation .......................................................... 29

Figure 3.4 Key Encryption....................................................................................................... 30
Figure 3.4a Swap( ) -  Init .......................................................................................31
Figure 3.4b Swap( ) - Modulo Generation ........................................................... 32
Figure 3.4c Swap( ) -  D irection............................................................................. 33
Figure 3.4d Swap( ) -  O peration............................................................................34

Figure 3.5 Final Scrambling ....................................................................................................35
Figure 3.6 Long Key Generation ............................................................................................ 38
Figure 3.7 Bits Sw apping......................................................................................................... 40
Figure 3.8 Initialization of file encryption ............................................................................ 45

Figure 3.8a file_crypt() -  In i t ................................................................................. 45
Figure 3.8b file_crypt() -Seed() - Random Generation ..................................... 46

Figure 3.9 Seeding ......................................................................................................................47
Figure 3.10 Shuffling ................................................................................................................. 48

Figure 3.10a file_crypt() -  Shuffle() -  Initialization ..........................................48
Figure 3.10b file_crypt() -  Shuffle() - Position & Operation ........................... 49
Figure 3.10c file_crypt() -  ShuffleQ -L ast 2 blocks ..........................................50
Figure 3. lOd Alternative Block Crypt size .........................................................51

Figure 3.11 File Encryption and Key Generation .................................................................53
Figure 3.12a Plot of Request per second against user load, data = 4 KB .......................... 70
Figure 3.12b Plot of Response time against user load, data = 4 KB .................................. 71
Figure 3.13a Plot of Request per second against user load, data = 100..KB ..................... 72
Figure 3.13b Plot of Response time against user load, data = 100 KB ..................... 72
Figure 3.14a Plot of Request per second against user load, data = 500..KB ..................... 74
Figure 3.14b Plot of Response time against user load, data = 500 KB................................ 74

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGMENTS 

I am deeply indebted to my parents for their constant guidance and 

encouragement. My family has always supported me through my toughest times and it is 

their belief in me that has brought me this far.

I am very grateful to Dr. Yoohwan Kim, my thesis advisor, teacher and guide for 

giving me an opportunity to work with him. He has been very patient with me and I owe 

it to him for all that I have learnt working on this thesis.

I am grateful to Dr. Ajoy Datta, Dr. Laxmi Gewali and Dr. Shahram Latifi for 

kindly consenting to be a part of my thesis committee.

I have had an excellent work environment right through my two years at UNLV. 

It has been an enjoyable time working with my peers and the staff of the Computer 

Science department.

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I 

INTRODUCTION

Privacy is a sensitive subject that affects everyone. Common techniques to safe 

guard privacy are:

- When writing a confidential letter an envelope is used to send it.

- When using a credit card a secret code number is used.

- Speaking to someone in private.

In case of computers, sensitive data is common (e.g. assessment grades, financial 

accounts, etc). With the Internet, the computer can be used like a telephone or like a post 

office, with the disadvantage that everybody connected to the network could have access 

to the data. This is why, especially with computers, privacy is important. Different levels 

of security (computer security, network security, etc) have to be considered.

Cryptography can be compared to an electronic safe where private data is hidden. 

The cryptographer must always think about the intruder. Cryptography can be compared 

to a chess game, in that we must think not only of our own tactics, but also of our 

opponents. Cryptography usually uses a lot of mathematieal formulae and logieal 

functions. The science is quite new for the public, this is why it is a very difficult subject, 

but now more people are interested in it and a lot of book dealing with the subject have 

been written and it is now easy to find good cryptography information. It seems that the
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strongest cryptography algorithms are now available to the public even if it is very 

difficult to understand them. Indeed, the best way to know if a cryptography algorithm is 

strong is to make its source code and documentation available to the public. If no one can 

break it then it is safe to use it.

l .I  Terminology

To make the thesis easier to understand, here are definitions of terms used in the text. 

Clear text: An understandable message, usually the original.

Cipher text: An incomprehensible message, usually the result.

Password: A secret string of characters.

Encrypt: Transform a clear text into a cipher text, usually with a password.

Decrypt: Transform a cipher text into a clear text, usually with a password.

Key: Some data that will be used into the message encrypt process. It can also be used 

like a password, the difference is in this case that it is a long string of characters and 

numbers one cannot remember as is very long and complex. A key could be compared to 

a cipher password.

Private Key: This key is personal and only known by one person.

Public Key: This key is available to everybody, it is now secret.

1.2 Algorithms Types 

Here is a general overview of these two cryptography standards.

Private Key algorithm:
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A private key algorithm uses one password (or one private key) to encrypt a 

message, to decrypt it the same password is used. The same algorithm or a different one 

can be used to crypt and decrypt.

Public key algorithm:

A publie key algorithm consists of a public key (B) used to encrypt a message and 

a private key (A) used to decrypt the message, for one public key there is one private key 

(A l, B l) and only the private key that belongs to the public key can decrypt a message 

encrypted by the public key.

Due to this, everyone can use the public key, if  someone wants to send message, 

they encrypt the message with the receiver’s public key, and only the receiver, who 

knows the private key, can decrypt this message.

This algorithm can also be used to sign a message to prove that it is really the 

sender who is sending a message, to do so the sender encrypts the message with his 

private key that can be decrypted only with the public key.

1.3 Cryptography Standards

Introduction

A lot o f cryptography algorithms have been created, it is not the aim of this report 

to go into great detail about cryptography, so only two of the most famous and used 

cryptography algorithms are going to be quickly explained to give a general idea of how 

to encrypt a message.

DES
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DES stands for "Data Encryption Standard" and is at the moment the most used 

algorithm in the world, being used by the American government to secure their sensitive 

data. It has been created by IBM (International Business Machines Corporation) in 1977 

and is a private key algorithm.

It is a block cipher algorithm that crypts data by 64 bits length block, that means 

that the clear text is divided into 64 bits length block and each block is encrypted by 16 

complex operations. The entire 64-bit length encrypted block constitutes the final cipher 

text. The decryption algorithm is nearly the same as the encryption algorithm, the same 

key (the private key) is used to encrypt and to decrypt a message; the bigger the private 

key is the safer it is.

RSA

RSA is the initial of the name of its creator: Ron RIVEST, Adi SHAMIR and 

Leonard ADLEMAN. It is one o f the first public key algorithms and was created in 1978. 

In fact there are two algorithms, one to generate the keys and one to encrypt/decrypt the 

message; the pair of keys, one public and one private, are based on big first numbers and 

are the result of some calculations (modulo, Euclid’s algorithm, etc). The algorithm that 

encrypts/decrypts a message is a block cipher algorithm that is simpler than the DES 

algorithm but is much slower.

The security of this algorithm is based on mathematical theories (big numbers 

factorization), even if no real proof has been given to demonstrate that these 

mathematical theories are not easily "breakable", they have not been broken for 20 years.

These two algorithms have different concepts, but neither o f them is better than 

the other, they have their own advantages. A good idea is to use both of them choosing
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which one depending on its suitability to a specific job. It is why DES is usually used to 

encrypt the message, and RSA is used to communicate only the DES private key used to 

encrypt the message.

The reason for this choice is because DES is faster than RSA and more difficult to 

break. However, to communicate the DES private key a secure solution has to be found. 

RSA has a good level o f security and the user does not have to send his private key to the 

recipient, only the publie key is to be transmitted. This is why RSA is used to encrypt the 

DES private key, followed by the message and then sent to the reeipient.

1.4 Possible Applications 

The aim of this seetion is to give concrete examples o f professional eryptography 

used, which will help the reader to appreciate more the work done on the project.

1] Login password; Here the password typed by the user is encrypted and eompared to 

with the user's enerypted password stored in the password database. If the user did not 

make any mistakes while typing his password then the two cipher texts will be identical 

and the user is allowed to log onto the system.

2] Pretty good Privaey; This is a famous application for encrypting personal data such as 

letters, emails, a file or anything else found on a computer; because it is very powerful 

and has been developed on almost all existing computers (PC, Macintosh, Amiga, etc). In 

fact, it is the first application that has been developed for public as a pose to military use. 

It is maybe why PGP is becoming a standard application on computers. The only problem 

is the lack o f a good Graphical User Interface (GUI).
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1.5 Common Cryptography Attacks

Introduction

There are different ways to attack a cryptography algorithm. If the algorithm 

security is only based on its secret, once someone finds the algorithm source code it will 

be very easy to break it.

Algorithm attacks

Sometimes a cryptography algorithm can have weak points, for example, with 

algorithms that just consist of adding the same number to all the password letters they are 

easier to break. This is because it is simple; all that is to be done it to find the number 

used. This attack needs strong cryptography knowledge and understanding. It is only used 

for bad cryptography algorithms, but as with everything relating to computer science; it is 

very difficult to totally avoid making errors, so this attack is always the first one 

attempted. If no weak points are found the only attack that can be done is the "brute 

force" attack. Some advanced techniques used are Linear and Differential cryptanalysis 

which will be discussed later in the thesis.

Brute force attack

This attack is based on the cipher text generated by a cryptography algorithm. If 

the attacker can get into the password database, and even if  all the passwords in it are 

encrypted, software exists that simply try every possible passwords, encrypts them and 

compares the cipher text generated with the one held in the password database. O f course, 

it would take too long to try all the possible passwords, present computers are not fast 

enough and there are too many possibilities.
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Keeping these in mind, Cryptographers need to provide the world with a new 

encryption standard. Many o f the unbroken are protected by patents. If the world is to 

have a secure, unpatented, and freely- available eneryption algorithm, we need to develop 

several candidate encryption algorithms now. These algorithms can then be subjected to 

years of public scrutiny and cryptanalysis. Then, the hope is that one or more eandidate 

algorithms will survive this proeess, and can eventually become a new standard. The 

purpose o f the thesis is to discuss the requirements for a standard encryption algorithm. 

While it may not be possible to satisfy all requirements with a single algorithm, it may be 

possible to satisfy them with a family of algorithms based on the same cryptographic 

principles. It introduees a new cryptographie algorithm and goes on to discuss how the 

algorithm overcomes known attacks like Linear and Differential eryptanalysis. It 

identifies a potential weakness in the algorithm and goes on to describe how the 

algorithm overcomes it.

DCA (Dynamic Cryptography Algorithm), a new private-key block cipher, is 

proposed. The block size is user defined, and the key can be of infinite length. The 

algorithm is a first o f its kind dynamic algorithm in which almost all components change 

depending of the password itself used to generate a key or encrypt a file. The “Key 

dependency” has been pushed to the extreme with dynamically linked components like 

number of rounds, operation used on eaeh bits, shift window, direetion of each operation 

(Left or Right), size o f the key buffer when encrypting a file, size o f the block shuffle and 

working file block.

The actual encryption of data is performed in two modules. Key generation and 

File encryption and is very effieient on all microprocessors. Key generation requires a
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seed as input, whose size is N/2 for key size N. Key generation is a complex procedure of 

Key Padding, Concatenating bits, initial scrambling, key encryption and final scrambling. 

File encryption consists of complex steps of initialization, seeding and shuffling. All 

default settings can also be changed by the user, which means the knowledge required to 

decrypt/reproduce a key gets extended to the environment settings as well as the 

password itself.
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CHAPTER II

LITERATURE REVIEW 

Several Cryptography algorithms have been designed in the past. Discussing all of 

them is beyond the scope o f this project. However the major ones have been listed 

according to their type.

2.1 Message Digest Algorithms 

As an Internet standard (RFC 1321), message digest algorithms have been 

employed in a wide variety o f security applications, and is also commonly used to check 

the integrity o f files. A message digest hash is typically a 32-character hexadecimal 

number. Recently, a number of projects have created message digest "rainbow tables" 

which are easily accessible online, and can be used to reverse many hashes into strings 

that collide with the original input.

MD5:

Designer:

Ron Rivest 

References:

[16], [17], [18], [19], [20]

Digest length:
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16 bytes.

Block size:

64 bytes.

Max. final bloek size:

55 bytes.

State size:

16 bytes.

Comments:

• A transcription error was found in the original MD5 draft RFC. The 

corrected algorithm should be called MD5a, though some people refer to it 

as MD5.

This is wrong; the corrected algorithm should be called MD5, and is in 

practice never referred to as MD5a.

• MD5 is big-bit-endian, little-byte-endian, and left-justified.

Security comment:

Hans Dobbertin has found a method of generating collisions for MD5's 

compression function. Quoting from RSA Laboratories Security Bulletin #4: 

“Given the surprising speed with which techniques on MD4 were extended to 

MD5 we feel that it is only prudent to draw a cautious conclusion and to expect 

that collisions for the entire hash function might soon be found. In addition, the 

128-bit output is arguably not long enough to make generating collisions using a 

birthday attack infeasible.”

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ripemed-320:

Designers:

Hans Dobbertin, Antoon Bosselaers, Bart Preneel 

Published:

April 1996

Alias:

"RIPEMD320"

References:

[21], [22], [23], [24]

Digest length:

40 bytes.

Block size:

64 bytes.

Max. final block size:

55 bytes.

State size;

20 bytes.

Comment:

RIPEMD-320 is big-bit-endian, little-byte-endian, and left-justified.

Security comment:

This message digest is not claimed to provide a security level higher than 

RIPEMD-160. SHA-384, SHA-512 or Whirlpool is used instead.

1 1
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SHA-512:

Designers:

U.S. National Security Agency 

Published:

October 2000

Referenees:

[25]

Digest length:

64 bytes.

Block size:

128 bytes.

Max. final block size;

111 bytes.

State size:

64 bytes.

Comment:

SHA-{256,384,512} are big-bit-endian, big-byte-endian, and left-justified. 

When the compression function is used directly, it is considered to inelude 

the chaining variable addition (as opposed to being separate as shown in 

the specification).

2.2 Message Authentication Code Algorithms

12
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A cryptographic message authentication code (MAC) is a short piece of information used 

to authenticate a message. A MAC algorithm accepts as input a seeret key and an 

arbitrary-length message to be authenticated, and outputs a MAC (sometimes known as a 

tag). The MAC value protects both a message's integrity as well as its authenticity, by 

allowing verifiers (who also possess the secret key) to detect any changes to the message 

content. A Message Integrity Code (MIC) is another name for a MAC.

HMAC (Digest);

Designers;

Mihir Bellare, Ran Canetti, Hugo Krawczyk, Adi Shamir 

Published:

June 1996 

Aliases:

"HmacMDS" is an alias to HMAC(MD5) [JDK compatibility] 

"HmacSHAl" is an alias to HMAC(SHA-l) [JDK compatibility]

"1.3.6.1.5.5.8.1.1 " is an alias to HMAC(MD5)

"1.3.6.1.5.5.8.1.2" is an alias to HMAC(SHA-l)

"1.3.6.1.5.5.8.1.3" is an alias to HMAC(Tiger)

"1.3.6.1.5.5.8.1.4" is an alias to HMAC(R1PEMD-160)

(source for OlDs from

iso.org.dod.internet.seeurity.meehanisms.ipsec.isakmpOakley tree)

• "http://www.w3.Org/2000/02/xmldsig#hmac-shal " is an alias to 

HMAC(SHA-l)

References:

13
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[26], [27], [28], [29], [30]

Parameters:

• String digest [creation/read, no default] - the name of the Block 

MessageDigest on which this MAC is to be based.

Key length:

Any multiple o f 8 bits that does not cause the maximum input length for the 

MessageDigest to be exceeeded. Default 128 bits.

Output length:

Minimum 32 bits, maximum equal to the message digest output length. The 

default is equal to the message digest output length.

2.3 Symmetric Key Algorithms 

Symmetric-key algorithms are a class of algorithms for cryptography that use 

trivially related cryptographic keys for both decryption and encryption.

The encryption key is trivially related to the decryption key, in that they may be 

identical or there is a simple transform to go between the two keys. The keys, in practice, 

represent a shared secret between two or more parties that can be used to maintain a 

private information link.

Other terms for symmetric-key encryption are single-key, one-key and private- 

key encryption. Use of the latter term can sometimes conflict with the term private key in 

public key cryptography.

AES256 (Advanced Encryption Standard):

14
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Designers:

Joan Daemen, Vincent Rijmen

Alias:

"OpenPGP.Cipher.9"

Description:

AES256 is defined as Rijndael with a 128-bit block size and 14 rounds. 

References:

[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]

Key length:

256 bits.

Block size:

16 bytes.

Security Comment:

• There are claims that the XSL (Extended Sparse Linearization) [42] attack can 

break the AES. Since AES is already widely used in commerce and government 

for the transmission of secret information, finding a teehnique that can shorten 

the amount o f time it takes to retrieve the secret message without having the key 

would have wide implications. Opinions differ on whether the attack works 

because the method is heuristic and very teehnical, and so it has proved difficult 

to evaluate its complexity. In addition, the method is expected to have a high 

work-factor, which unless lessened, means the technique would not reduee the 

effort to break AES very much in comparison to an exhaustive search. 

Therefore, even if the attack has been analyzed correctly, it is unlikely to affect

15
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the real-world security of block ciphers in the near future. Nonetheless, the 

attack has caused some experts to express greater unease at the algebraic 

simplicity o f the current AES.

DES (Data Eneryption Standard):

Designers:

Don Coppersmith, Horst Feistel, Walt Tuchmann, U.S. National Security Agency 

Published:

1976

References:

[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56]

Key length:

64 bits as encoded; 56 bits excluding parity bits.

Block size:

8 bytes.

Comment:

Implementations MUST ignore (i.e. not check) the parity bits o f keys. 

KeyGenerators for DES MUST, however, output keys with correct parity.

Security comment:

The fixed 56-bit effective key length is too short to prevent brute-foree attacks [2] 

DES is also vulnerable to Differential and linear eryptanalysis.

RC4:

Designer:

Ron Rivest

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Published:

September 1994

Alias:

"ARCFOUR"

References:

[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], 

[72], [73]

Key length:

Minimum 8, maximum 2048, multiple of 8 bits; default 128 bits.

Security comments:

• There are small biases at the start of the RC4 key stream.

• The RC4 keystream is distinguishable from random given about 2 Gbytes 

o f the stream.

• RC4 is vulnerable to related-key attacks, and therefore it should only be 

used with keys that are generated by a strong RNG, or by a source of bits 

that are sufficiently uncorrelated (such as the output of a hash function).

2.4 Block Cipher algorithms 

In cryptography, a block cipher is a symmetric key cipher which operates on 

fixed-length groups o f bits, termed blocks, with an unvarying transformation. When 

encrypting, a block cipher might take a (for example) 128-bit block of plaintext as input, 

and output a corresponding 128-bit block of cipher text. The exact transformation is 

controlled using a second input —  the secret key. Decryption is similar: the decryption

17
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algorithm takes, in this example, a 128-bit block of cipher text together with the secret 

key, and yields the original 128-bit block of plaintext.

ECB (Electronic Codebook):

Description:

Electronic Codebook Mode, as defined in NBS FIPS PUB 81.

References:

[74], [75]

Comment:

If a padding scheme is not specified (i.e. the algorithm name is given in the form 

''cipherNamelV.C'Q"), then NoPadding MUST be assumed (note that this is 

intentionally different to CBC and PCBC modes, for which PKCSPadding would 

be used). The standard name always specifies which padding method is used, i.e. 

it always has three components.

Security comment:

ECB mode will always encrypt identical plaintext blocks to identical ciphertexts. 

This can be a weakness when the plaintext is not random, uniformly distributed, 

and a multiple of the block size. If these conditions are not satisfied, a different 

mode should probably be used.

CBC (Cipher Block Chaining):

Description:

Cipher Block Chaining Mode, as defined in NBS FIPS PUB 81.

References:

[76], [77], [78]
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Comment:

If a padding scheme is not specified (i.e. the algorithm name is given in the form 

"cipherName/CBC"), then PKCSPadding MUST be assumed. The standard name 

always specifies which padding method is used, i.e. it always has three 

components.

2.5 Asymmetric Key algorithms

RSA:

Designers:

Ron Rivest, Adi Shamir, Leonard Adelman 

Aliases:

"RSAES", "1.2.840.113549.1.1.1", "2.5.8.1.1"

References:

[79], [80], [81], [82], [83], [84]

Comment:

It is recommended that implementations make no practical restriction on 

the lengths of the key parameters n and e (in particular, values of n up to at least 

4096 bits SHOULD be supported).

Security Comments:

• The most damaging would be for an attacker to discover the private key 

corresponding to a given public key; this would enable the attacker both to 

read all messages encrypted with the public key and to forge signatures. The 

obvious way to do this attack is to factor the public modulus, n, into its two
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



prime factors, p and q. From p, q, and e, the public exponent, the attacker 

can easily get d, the private exponent. The hard part is factoring n; the 

security o f RSA depends on factoring being difficult. In fact, the task of 

recovering the private key is equivalent to the task o f factoring the modulus: 

use d to factor n, as well as use the factorization of n to find d.

Patent status:

RSA is patented in the United States and Canada (see references); the patent is 

licensed by RSA Data Security, Inc.

20
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CHAPTER III

ALGORITHM DESCRIPTION

3.1 Introduction

The Dynamic Cryptography algorithm has the following features: 

-Private Key Algorithm 

-Dynamic Cryptography Algorithm

-Source code can be public without making the algorithm weak 

-Multiplatform application

-Infinite key length (as big as the integer type being used)

-Bilateral bits swapping with variable windows

-Bilateral Pseudo randomly binary operations

-Dynamic Variables changing in functions of the password, such as:

-Round, Block Shuffle, etc

-Key buffering against key dependency attacks

-Addition of a random number to the key

-Random Number Generator (RNG) using the ISAAC Algorithm 

-Possibility to specify own RNG seed

-5 different crypt's level (allowing to choose between efficiency 

and speed)

-Seed and shuffle functions
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-Seed and shuffle functions

-A clear text can be encrypted using its own data

-Two methods of execution: direct disk access or memory cache

-Strong Key generator

The DCA has been made as dynamie as possible; this means almost all of its 

components will change depending of the password itself used to generate a key or 

enerypt a file. This is called “Key Dependency” (KD) and has been pushed to the 

extreme in the DCA with dynamically linked components such as:

The number of rounds

The operation used on each bits

The shift window

The direction of each operation (Left or Right)

The size of the key buffer when encrypting a file 

The size o f the block shuffle and working file block.

The algorithm behaviour changes to great extent when used with different passwords.

All default settings can also be changed by the user, which means the knowledge required 

to decrypt/reproduce a key gets extended to the environment settings as well as the 

password itself.

Algorithm Overview:

The algorithm is made of a number of modules and sub-modules.

The Key Generator module 

The File Encryption module
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The “file decryption” module has been left out in purpose as it is nothing more than 

running the “file encryption” module backwards.

3.2 Key Generator Overview

Pre-requisites

There are a number of pre-requisites to this module:

Seed source:

The Seed can be a password, a key, or the result o f a random algorithm (ISAAC, 

time/date based, or user customised).

- Keylength Output:

The minimum keylength that can be generated is 128bits. Larger keys will be a 

multiple o f 128. There is no upper limit to the size of key.

- Keylength Input:

The seed must be at least of size N/2 when generating a key o f size N. In other 

words, when generating a 128bits key and using a password, the user must enter a 

password of at least 8 characters (8*8bits = 64bits).

Terminology

KD -  Key Dependant -  a value which is “Key Dependant” will be different each time a 

different key is used.

P R N -  Pseudo Random Number -  In general, all references to Random Number in this 

document should be taken as a reference to a Pseudo Random Number.
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LO  -  Logical Operation -  This can be also referenced as a XO R, AND, NOR, NAND, etc

LFSR  - Linear Feedback Shift Register -  Algorithm used to generate /W V  with the least 

repetition possible for its output numbers.

Integer Size is 32 bits -  The use of a 32 bits hardware platform is assumed.

ISA A C  -T h is  is a fast cryptography random generator ereated by Bob Jenkins and used 

in the DCA. The details o f the ISA A C  Algorithm will not be discussed in this document.

Below is a description of the different Key Generator steps:

- STEP 1 : Key Padding

If the initial seed used to generate the key is not equal to the size o f the keylength 

to be generated some Pseudo-Random numbers (KD) will be inserted at a position 

with is KD.

- STEP 2: Bits Concatenation

The seeds bits will be stored into one long string of bits. An Integer array will be 

used for this purpose and the size of each element will be dependant of the 

hardware platform used: 64, 32 or 16 bits, (or even 128, 256, etc when available).

- STEP 3: Initial Scrambling
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The different seed bits will be combined together to generate a Pseudo Random 

Number (which is therefore KD). This PRN will then be added to the each seed 

element. Eaeh time the PRN is added it will change (KD).

STEP 4: Key Encryption

The seeds will now be referenced as the key. Each of its bits will be treated 

individually and will be subject to some Logical Operations (LO). This is called 

“a round”. In each round the following happens: 

o A bit swap or a LO

o The distance between 2 bits (Shift Window) is KD 

o The nature o f the operation (a swap or LO) is KD 

o The number of round is KD 

o The direction of the round is KD (left or right)

For each key generated the minimum number o f rounds is two, this will ensure 

that all bits have been swapped at least once AND have had a LO.

The number o f rounds is also KD.

STEP 5: Final Scrambling

A PRN is generated if no random seed is provided and will be added to each 

element o f the Key. Each time the PRN is added it is changed using a Linear 

Feedback Shift Register (LFSR)
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3.3 Key Generator Details

Length = L Saving password 
into Pass_clear[]

Nb o f Char to 
add =  NB ADD

Na Nb Nc Nd

YesPOS> L  ?

No

Stop

YesNb of Char
<  NB ADD ?

No

Stop Figure 3.1 Key Padding

Nc +  Nd = POS

H|E|L|L|0|W |0|R|L|D

Na = Na +  1 
Nb = N b +  1 
POS -  POS +1

INSERT New Char in Pass clear]POS]

IndexA Pass clear] Na| % Li 
IndexB = Pass clear]Nb] % Ll

New C har = Pass clear]lndexa] & Pass clear]lndexb]

Nc = P O S / 10 
Nd = P O S - ( N a *  10)
i.e.: if  POS = 25 then Nc = 2 and Nd = 5
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72 I 69 I 76 I 76 I 79 I 87 I 45 I 34 1 103 | 23 | 12 | 10 | 79 | 82 | 76 | 68
------------------------------------------------------------------------------  Password in clearT

01001000

01000101 Conversion in bits and concatenation

01001000010001011010 . .
If using 16 bits integer

Figure 3.2 Bits 
Concatenation

Figure 3.3 Initial Scrambling

See Figure 3.3a - Add() - Random Generation

and Figure 3.3b - Add() - Pass code Generation
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If using a 
128 bit KEY, 
with 16 bits 
integer

XOR

XOR

0110100010000001
---------------- Pseudo-Random

010001101100110

0100100001000101

0100100001000100

0000111010001001

0100100001000100

0100100001000101101000110110011011 0 1 1 1 1 1 0 . . .

number PRN-i

Figure 3.3a - Add() - Random 
Generation
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Q 0100100001000101 10100011011001101 I o il  .I

0100100001000101 G
If using 16 bits integer

0000000000000101
Shift window SWa

0110100010000001
Pseudo-Random 
number PRN-i

Circular shift o f  PRN-i using the SW  
window
I.e.; if  SWa = 0101 = 5
Then 5 bits will be shifted from the
left to the right.

0001000000101101
------------------ N ew P R N -i+I

G G

Using new PRIN-i+1
Same process as

G > . n j ©

0100100001000101

If using a 
128
bits KEY, 
with 16 bits 
integer. 
Pass clear

0101100001101000 0001010010011000 1 11.. 1 1  I  I I
New string generated. 
Pass code

Figure 3.3b - AddQ - Pass code 
Generation
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The following diagram describes an overview of this process:

Figure .3.4c - Swap( )

Figure 3.4a - 
Swao( ) - Init

Figure 3.4d - Swap( ) - 
Operation

Figure 3.4b - Swap( ) - Modulo 
Generation

PH A SE 1: Repeat until all bits have 
been through either a SW AP or 
OPERATION

PH ASE 2 Repeat PHASE 1 until the 
number of ROUND is finished 
(default Round = 2)

Figure 3.4 - Swap( ) 
Overview

The following 4 diagrams describe the detailed process:

Figure 3.4a - Swap( ) - Init

Figure 3.4b - Swap( ) - Modulo Generation

Figure 3.4c - Swap( ) - Direction

Figure 3.4d - Swap( ) - Operation
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M odulo_Big = K EY LEN G TH  -  2 
M odulo Small = M odulo Big / 2 
i =  0

In itia l is a tio n

0101100001101000 I 0001010010011000 I 11.. I .. 
1101110101001011

Pass code I 3Pass code) fl Pass code| 1 | Pass code| 2

Vo (Round +1)
XORXOR XOR

Additional Rounds AH'

Round + AR

New Dynamic round DRound. (max 
value is 2x original nb of round)

Operation
(either 0 or 1)

Direction 
(either 0 or 1)

Modulo 
(either 0 or 1)

Yes
m odulo sw ap = 
m odulo big

Modulo
=  0?

No

modulo swap= 
modulo small

Figure 3.4a - 
Swap( ) - Init

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pass code

OlOllOOOOllOIOOO I  0001010010011000 I  11.. I  .. . . .  1 . 01  11 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1

P a ssc o d e l i | 

(  XOR 1

Pass codel i+1

modulo swap
until
i=KEYLENGTH

modulo session

modulo session

Shift window S W i

Figure 3.4c - Swap( ) - 
Direction

Figure 3.4b - Swap( ) - Modulo 
Generation
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Figure 3.4b - Swap( ) - Modulo 
Generation

Direction

XOR
LEFT D irection

Pass code

11011101010010110101100001101000

Yes

=  0 ? SVV6

j  Bit B = pass_codc( i+SWI>i-l ji  Bit A = pass codel i )No

RIGHT Direction

Pass code

11011101010010110101100001101000

Bit A = pass code| KEYLENGTH -1 - i

Figure 3.4d - Swap( ) 
- Operation

Figure 3.4c - Swap( ) - 
Direction
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Figure 3.4c - Swap( ) - 
Direction

Yes

SW APOperation

=  0 ? BitBBit A

No

Opération Choice = pass codel i + I ] %5Opération Choice = pass code| i j %5

Bit A BitB

CHANGING 
Bit A and B

Choice 0 = Bit A *XOR* Bit B

Choice 1 = 1 *XOR* (Bit A *OR* Bit B)

Choice 2 = Bit A *OR* Bit B

Choice 3 = Bit A *AND* Bit B

Choice 4=1 *XOR* (Bit A *AND* Bit B)

New Bit A New Bit B

Yes
Modulo Swap 
= Modulo Big Modulo Swap = Modulo Small

No

Modulo Swap = Modulo Bi;

Figure 3.4b - Swap( ) - Modulo 
Generation ----------------Operation = Operation *XOR* 1

Figure 3.4d - Swap( ) - 
Operation
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Initialisation
i = 0

Pass code

If using 16 bits integer

R andom key

New Random key

Yes
i o  Index 1

No

i =  i+ 1

Figure 3.5 Final 
Scrambling

Index I

0001000111100011 1001000101010110

LINEAR FEEDBACK SHIFT REGISTER (LFSR) 
(W ith  a d if fe re n t p rim itiv e  po lynom ial w hen using  6 4 ,3 2  o r  16 bits

Pass code|i]

Pass rodeji

XOR
New Random key

If no random number is already provided in the function parameter, then: 
Generate Random key either with the ISAAC algorithm or with the system  
time.

Pass code|lndex 11

Pass code|lndex 1]

XOR
Random key
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The important functions are discussed below with and example for 512 bits key 
generation.

Key generator

The key lengths that are generated are powers o f two (e.g. 2^x, 128 bits, 256, 512, 

1024, etc). To generate a key there are two different methods: randomly or pseudo- 

randomly. For the random method, 16 random characters are generated and stored in the 

memory. For the pseudo-random method, the user is asked to type some characters that 

are then stored in the memory, the maximum number of characters that can be entered is 

16. 16 characters correspond to a key length of 128 bits, this is because one character is 

represented by 8 bits on a computer, therefore 16 characters represent 128 bits (16 * 8 = 

128), 32 characters represent 256 bits (32 * 8 = 256) and so on. Then several functions 

are used to generate a key, using these characters which are stored in the memory like a 

password, this string o f characters is called: "pass clear".

The number o f different combinations is higher with the Random method (2**128) than 

with the Pseudo-Random method (72**16 i.e. approximately 2**99). This is because the 

user has to type some characters and there are only around 72 symbols readily available 

on a standard keyboard. If only un-shifted alphanumeric characters are used then the 

round falls to around 2**83 combinations.

Test length function

It is important that the key's length is always the same, so if the length of the 

"pass clear" string is inferior to the key's length, some characters are then added to the 

string. The number of characters the user has to type must be at least half the number of 

characters in the key. Each new added characters is the result of an AND logical 

operation between two characters randomly picked up in the "pass clear" string of
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characters. Now, if the key to be generated is 128 bits (which correspond to 16 

characters) the new "pass clear" length is 16 characters.

When generating a key of more than 128 bits, first a 128 bit key length is 

generated and used to generate a 256 bit key length, and so on. This is possible because

the first key has got the minimum number of characters required to generate the

following key (128 bits = 16 characters, 256 bits = 32 characters, 512 bits -  64 

characters, etc). The key generated then becomes the password for the following key. The 

different steps during a 512 bits key length generation are:

•The user types 16 characters as a password.

•If  less than 16 characters are typed; some new characters are generated to reach the 16 

characters needed.

•A key (A l) o f 128 bits is generated from the password typed at the step 1.

•The key (A l) is used to generate another key.

•The key (A2) of 256 bits is then generated from the Key (A l).

•Because the key (A l) is twice inferior to the key (A2), the same process used at the step 

2 has to be done, but this time, we check if there are at least 32 characters (256 bits) in 

(Al).

•The key (A2) is used to generate another key.

•W e repeat step 6 but this time with (A2).

•The final key (A3) is a 512 key length.
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Password OH Random generation flag by Soiembh

Key
Generator O

Kigtlitosy 
karfh^

YES

NO

1 r

K«5r2" K*yl
1

K>ey2= K*y3

K*y2 ; NO

K ey ■ A m
Generator 'C ^ ^ p

KjÿhJsey
Jenjth?

YES

C & Z I

Figure 3.6 Long key generation 

Transcription function

The string o f character "pass clear" is converted into a string of numbers called 

"pass code", these numbers are the ASCII code of each character contained in the 

"pass clear" string.

Additional function

It is better not to directly manipulate the ASCII code contained in the "pass code" 

string. This is why a number will be added to each number contained in this string by an 

Exclusive OR operation. This number is generated in function of the password itself. To
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make it safer, each time the number is added it is different we do this by using a circular 

bit shifting.

Swapping function

This is the main part of the algorithm, all the numbers contained in the pass code" 

string are considered to be only one long string of bits. First, the bits are swapped with 

each other; each swap takes place between two bits that have a distance o f X bits.

The cipher password is a long string of integer, each integer o f this string will be assigned 

to X. Because while doing this bit swapping process the cipher password will be 

consistently changing so will the string of integer and therefore the value of X. X should 

never have the same value. The swap starts from the bit B i at the position 0 with the bit 

at the position B l + X I. After, from the bit B2 at the end o f the string with the bit at the 

position B2 - X2. This continues with the second bit o f the string B3 and the bit B3 + X3, 

and with the next to last bit B4 with the bit B4 - X4, and so on. In fact, as shown in, the 

following rule is respected;

Swap bit I with bit I + X 1

Swap bit 'endofstring' - 1 with bit 'endofstring' - X2

This starts again with 1 = 1 + 1 and a different X from the "swap length" array.
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Sotgaàh Ghost
Swap 1 S w ^  2

KEY = 0 1
4

1 1 0 0 0 1 0 1 ..
4

. 1 0 1 0 0 1 0 0 1 1 1 0  1 A

-  1 Î Î Î J
Swap 3 Swap 4

After S w ^  1 :

KEY = 0  1 1 1 0 0 0 1 0 1 , . 1 0 1 0 0 1 0 0 I 1 1 0  1

J
After Swap 2 ;

'■

KEY = 0 1 1 1 0 0 0 1 0 1 . . 1 1 1 0 0 1 0 0 1 1 1 0  0

After Swap 3 ;

KEY = 0 0 1 1 0  0 1 1 0  1 - , . 1 1 1 0  0 1 0  0 1 1 1 0  0

After Swap 4 :

KEY = 0 0 1 1 0  0 1 1 0  1 .. 0 1 1 0 0 1 0 0 1 1 1 1 0

Figure 3.7 Bit swapping 

This is called bilateral bit swapping, with this function all the bits will be swapped

around.

The second part o f this swapping function is the same process, but this time 

instead o f swapping bits around, a pseudo-random binary operation, function of the 

password itself, will be generated. There are 5 different types of binary operations; 

Exclusive OR, NAND, NOR, OR, AND.
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The way the algorithm works is that it alternates a swap and a logical operation 

each time. The algorithm does this in a loop until all the bits have been used (in a swap or 

a logical operation), the user can change the "round" of this loop with a parameter: it is 

the number o f loops the user wants the algorithm to perform. By default it is 2 (which is 

also the minimum) as with this value we are sure that ALL the bits have been used in a 

swap AND a logical operation.

By changing the value of the round the user is changing the result generated.

Also, the algorithm will:

- Start from the right or the left o f the bits string

- Start by a swap or a logical operation.

When this is finished there is a new “pass code” string, which contains numbers 

totally different from the start.

Coding function

To make this encryption algorithm more efficient, a final part has been created. A 

random number is added to each number of the "pass code" string. This random number 

is initialized at the beginning o f the function. Each time this random number is added, its 

bits are shifted to the left, the value of this shift is a number generated in function of the 

character contained in the "pass clear" string. Therefore, each time the random number is 

added, it is different. Due to the random number, even if the user types the same 

password to generate the key, he can have 2^31 different keys (if we use a long random 

number = 4 bytes = 32 bits).

The random number will be hidden in the key at a position that will depend on the 

cipher string, because when a user types his password again we need to recover it. The
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key generation will then follow the same process as the first time it was done. To recover 

this random number, if  the password is right the algorithm will know its position. 

Otherwise, the position will be wrong as will the random number used in the coding 

function and the key generated will be different.

The user can choose 2 ways to generate a random number: using the standard C 

function or use the ISAAC algorithm created by Bob Jenkins. The default RNG is 

ISAAC. The initial seed will be initialized by the /dev/random or /dev/urandom device if 

present on the system, otherwise it would be the result of “time() + cloekQ”. We are 

aware that the second method hasn’t got a big entropy for the pool o f numbers, therefore 

the user can overwrite the seed value in his application really easily (for example: after 

the binit() call just add the line: varinit->SEED = 666, to set the SEED to 666).

3.4 File Encryption Overview

Process

Below is a brief description of the different File Encryption steps 

STEP 1 : Initialization

o The file is mapped into a virtual array and spit into blocks. The length of 

the block is KD. 

o Several keys are generated from the password or keyfile 

o Only one key will be generated with a random number, encrypted and 

inserted into the encrypted file. The insertion position is KD. 

o That random key will be used to generate a PRN.
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STEP 2: Seeding

o A number o f keys (KD) will be generated and stored into a Key Buffer 

using a derivation of the initial key generated and the PRN previously 

generated as the random seed, 

o From that key buffer 2 keys will be selected (KD) and an AN D  will be 

conducted. The result is an Encryption Key. 

o A block will be selected from the file virtual array (KD) and an XO R  will 

be conducted with the Encryption Key. 

o A New key will be derived from one o f the 2 keys used in creating the 

Encryption key and replace one of the 2 keys, 

o The process repeats again at STEP 2 until all the blocks have been 

encrypted (seeded).

STEP 3: Shuffling

o The same virtual array used in STEP 1 will be used again, 

o Two blocks will be selected (KD).

o One out of three possible LO  will be conducted (KD) on those two blocks.

The result is an Encryption block, 

o A third block will be selected (KD) as the block to be encrypted and an 

XO R  will be conducted with the Encryption Block, 

o One of the two blocks used to generate the Encryption block will then be 

selected to be the next block to be encrypted (KD).
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o The process start again at STEP 3 until all the blocks, but the last two, 

have been encrypted (shuffled), 

o The last 2 blocks will be encrypted using an XO R  with 2 new keys 

generated. Not shuffling the last 2 blocks is required for the decryption 

process.
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3.5 File Encryption Details

Figure 3.8a -  file_crypt() -  Init and Figure 3.8b -  file_crypt() -SeedQ - Random 
Generation

C lear Text File

Hello World,
This is a test file in clear text which we are about to 
encrypt. First we are going to “split” that file into a 
number of blocks.

Length = Bloek shuffle

Block
1

8 10

Red Square = Single Bloek crypt

11

Tab Seed 
and

7  Tab Shuffle

Password O R Key File

Key Generator
N o t  using random 

number
( OnMl )

Key Buffer = Key_Buffer + IV Keyl 0 | 
(Max 2x original Key buffer value) IV Key

Initialisation
i =  Pass_code| 1 |
Dynam ic shuffle =  IV_Key[ 11 % 32 ( if  using 32 bits integer) 
Block shuffle =  Dynam ic shuffle +  Block shuffle 
Block crypt =  File length in bytes

Block shuffle is define with the following rules:
a) It must be a multiple o f  4 bytes ( if  using 32 bits integer)
b) Block crypt / block shuffle >= 6

Figure 3 .8 a -  
file_crypt() -  Init
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Initialization
Key Buffer = 1 6  (Can be changed by user)
NB index =  K EY LEN G TH  / 32 (when using 32 bits integer)

IV KEY

Key Generator
Not using random 

number
( Cod» ) )

Key Generator
With random 

number

PasscodeB Codc_key

, Code_key[ 0 ]
X O R

No

i = i +1 
i > NB Index ?

Yes

Figure 3.8b -  file_crypt() -SeedQ - Random Generation

RN

RNXOR

XOR

First RN

New RN

RN = First RN RN = New RN

Pos key = Pass_codeB| 0 ) % block_crypt 
Tab seed|Pos key| -  1 (not to be used again)

In sert “encrypted” random key into file  at 
postion  “Pos K ey ”
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Key Generator
With RN as a random number. 

Because of LSFR RN will 
change each round

Store Key i into 
KeybufTer a rray .

Pass code»

Pass codeB = Key i

Nb ot Key 
generated 

Key buffer?

Keybuffer_array|indexB|

Tab Seed|Pos| 
I ? Pos = Pos + 1

Pass codeC

Yes

indexA = Pass_codeB| 0 | 
indexB = PasscodeB! 1 ] 
Pos = Pass codeBI i |

Keybuffer arraylindexA]

New IndexA and IndexB 
must be different from 

previous IndexA

— I ------------------

Block at 
Position Pos

hde to S

Crypted Block PasscodeB = 
key bn f fe ra  rray [ I ndcx B|

Replace tile clear text block with the 
crypted block Tab_Seed|pos| = I

Figure 3 .1 0 a - 
file_crypt() -  
ShuffleO - 
Initialization

All file cleartext 
^  ^  blocks seeded'’

Kcyi
Replace Keybuffer array! IndexAj 

with Key i

Figure 3.9 Seeding
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Figure 3.10 Shuffling

See Figure 3.10a -  file cryptQ -  Shuffle() - Initialization

And Figure 3.10b -  file cryptQ -  ShuffleQ - Position & Operation

And Figure 3.10e -  file cryptQ -  ShuffleQ -Last 2 bloeks

Initialization
index = IV _K ey|0]
PosA = IV K ey (Index]
PosB = IV Key [Index + 1 1 
Random seed =  IV Key [Index + 2]
Pos cry p i =  “ last block” (this is because the last block may have a variable size)
Length shuffle = Length file /  Block shuffle (number o f  shuffle block in the file to crypt)

Figure 3.10b -  file cryptQ -  ShuffleQ 
Position & Operation

Figure 3.1 Oa -  file cryptQ -  ShuffleQ - Initialization
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Figure 3.10a -  file_crypt() -  Shuffle() - Initialization

Yes Till) shiifflclI’osAI =

No

Yes Tiib_sliiinic|PosA] =

No

File to Shiiflle
Block at
Position “I’osA”

Position
“PosB”

i k

Figure 3.10b -  
file_erypt() -  
ShuffleO - Position

Yes All block file 
shufflecl7

No

Yes
Pos_crypt is an 
Odd number?

No

Sliiimed BLOCKS

Pos_cr}|it = PosA

Cry pted BLOCK

XOR

PosA = PosA + 1

PosB = PosB + I

Opération Choice = (PosA + PosB + Pos crypt i % 3

Replace file block with the crypted 
block Tab Shufllel Pos crypt] = 1

RN = LFSR(Random Seed) 
PosA -  RN % Length_Shiiine

RN = LFSR(Random Seed) 
PosB = RN % Length Shiifne

Choice 2 = NOT ( Block]PosA] AND Block]PosB] )

Choice 0 = Block]PosA] OR Block]PosB]

Choice 1 = NOT ( Block]PosA] OR Block]PosB) )

Figure 3.10b -  file_crypt() -  ShuffleO - Position & Operation
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Figure 3.10c -  file cryptQ -  ShuffleQ -Last 2 blocks

STOP

IV Key

Key G enerator
Not using random 

number 
( C ijtlc l' ) )

XORKey 1

Key G enerator
Not using random 

number 
( Codef ) )

XORKey 2

Block Lastl

Block Last2

Last 2 block files:
Block Lastl and Block Last2
They cannot be shuffled. Instead, they are 
each encrypted as follow.

Figure 3.10c -  file cryptQ -  ShuffleQ -Last 2 blocks

All the KD highlighted in the above steps can be changed to static values, enable 

or disable. The same is true for the size of the "block crypt" as shown Figure 3.10d
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Alternative Block Crypt size. This means that all the above steps can either be conducted 

across the entire file or within smaller “working blocks”.

Red Squares = Multiple block erypi

Block

Figure 3.10d -  Alternative Block Crypt size

The encryption algorithm provides two methods to encrypt files: 

Encrypting a file from a password typed by the user that will be transformed into a key, 

or from a key that has already been generated with the Key generator function, described 

earlier. If the user wants to use a very long key length, such as 2048 bits, as it is not really 

possible to remember a long password, he will have to generate a key and store it in a 

secure area; this key will become the password. The user can also choose to encrypt a file 

without a password or a key generated with the key generator function. He can simply 

choose an existing file, and the key will be some of the data in this file (most of the time 

in the middle o f the file). This could be really useful if the user does not want to store a 

key file.
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There are 5 different power levels to encrypt a file.

Seed function

First, a "file array" is defined, if the user uses a 128 bit key length, the algorithm 

will calculate how many blocks of 128 bits there are in the file that is going to be 

encrypted. The "file array" will have as many indexes as there are blocks o f 128 bits in 

the file. Each block will match one of the indexes of the "file array". There are only two 

values that can be found in this array, 'O' when the block has not already been encrypted, 

and ']' when the block has been encrypted.

There is a new feature in the new algorithm:

Many keys will be generated and stored in a buffer. By default, 16 keys are 

generated. Then the 2 keys will be pseudo randomly selected, mixed together. The key 

will be used as a filter by doing an Exclusive OR between the data contained in the file 

and the key. The position o f the block file's data (where the filter will be added) is a 

function o f the "pass clear" string. This is why when we encrypt a file the blocks 

sequence and the blocks length that is going to be encrypted depends on the password 

used to encrypt the file. Each time a filter is added, the "file array" is updated to be sure 

that a filter will not be added twice at the same position.

When a filter is used, a new key is generated. As a result, the key used as a filter 

is always different and always a function of the previous key that has been generated.

To decrypt a file, since an Exclusive OR has been used to encrypt the file, we 

simply encrypt the cipher file with the same password again to remove the filters.
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Something important is that when the keys are generated it is not possible to add a 

random number, because it is not possible to find it again, once the key has been added to 

some data.

This is why with this algorithm, with one password, or key, the user has only one 

cipher text.

Password
OR

Key File

Key generator

i
Key

Logical OR «ith the block's file

Figure 3.11 File encryption and key generation

Random Seed function

The idea was to be able to have more than one cipher text when the same clear 

text was encrypted with the same password. This can be achieved by using a random 

number in the key generation process. This algorithm is nearly the same as the standard 

one, but this time ONE random number is generated and encrypted using the same
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password used to encrypt the clear text. It is then inserted in the cipher text, still at a 

position function o f the "pass clear" string. After, this random number is used in the key 

generation. Therefore, with this algorithm for ONE password and ONE clear text there 

are MANY cipher texts.

To decrypt the cipher text, the random number is extracted from the cipher text 

first and the cipher text is encrypted again with the password typed by the user and this 

random number. If it is the right password, the right random number will be extracted, the 

right keys will be then generated and the algorithm will generate the right clear text.

This algorithm is very strong, indeed if someone tries to decrypt a cipher file, he 

will never be sure that he has found the right clear file.

Shuffle function

As for the file seed function we divide the file into blocks (by default block's 

length = Default integer width = 4 bytes on Linux)

From the last cipher password generated we are going to extract pseudo-random numbers 

to find 3 file locations:

- position to crypt (pos crypt) (we always start with the last block)

- position A used in the crypting process (posa)

- position B used in the crypting process (posb)

The algorithm takes the blocks at the position A and B and does a logical operation 

between them (as a function o f the cipher password): OR, NOR, NAND.

Then it adds the result (MASK) with an Exclusive OR to the block at the position 

poscrypt.
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Then, one o f the blocks used to encrypt (A or B) will become the new position to encrypt. 

The choice between A and B is done by checking if  the position that has just been 

encrypted (pos crypt) is an odd number or not. If it is then the new encrypt position will 

be pos A otherwise it will be pos B.

This is done to prevent 2 blocks to be used together more than once to encrypt another 

block.

Now there are 2 blocks in plain text (in fact they've been "seeded" before) so 2 new 

cipher passwords are generates, from the one sent as a parameter to this funetion and is 

added to the block with an Exclusive OR.

This function is initiated by encrypting the last block of the file. This is because of the 

way we divide the file into blocks; If the key's length is 128 bits and the file's length is 

260 bits then we have got 3 blocks of 128 bits, but the last block only has 4 bits from the 

file. If we were using this block in the "shuffle" process this would be weak.

Therefore the algorithm does not use it and encrypts it at the start of this function.

The way the algorithm decides which block is going to be encrypted and which blocks 

are going to be used to generate the MASK is function of the password itself. It uses the 

value o f the password (A) in a LINEAR FEEDBACK SHIFT REGISTER FUNCTION 

(LFSR). This enables the algorithm to generate many different numbers (B) from (A). An 

LFSR is really useful to generate a sequence of pseudo random numbers that are always 

the same if generated from the same initial number.

This function has been taken from the book from Bruce Schneier Applied cryptography 

Second Edition. The algorithm initializes the LFSR with the password itself. It also uses a 

different primitive polynomial modulo 2 in function of the length o f the "shift register"
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the user is using (16, 32 or 64 bits).

This part is really important as the file is then encrypted with its own content.

If we use the seed and shuffle function to encrypt a file, to decrypt we first need to 

"unshuffle" and then "unseed" the encrypted file.

“UNShuffle” function

The algorithm repeats the process as in the file shuffle function except that it does 

not make any changes on the file at first. We store the different erypt positions and bloeks 

that are used to create the masks.

We then have 3 arrays:

position^ = position o f the block which will be encrypted 

crypta[], cryptb[] = position of the 2 blocks used to create the mask

For example: 

position[5] = 500 

crypta[5] = 232 

cryptb[5] = 1300

This means that the 6th bloek to be encrypted was the bloek number 500 using the blocks 

232 and 1300 to generate the mask.

When the algorithm has filled up these 3 arrays, it then decrypts the last 2 blocks and 

starts from the end o f the array to the beginning to un-shuffle the file.
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We can compare that to a "cards castle" once we have done the castle if we want to 

remove the cards without breaking the castle we need to take out the last card (on the top) 

and then the next one, etc in a reverse order.

Dynamic Variables

This is one of the prominent features of the algorithm.

The following variables:

•ROUND

• BLOCK SHUFFLE

• BUFFER KEY (used in the seed function, tells the algorithm how many keys to be 

stored in the buffer).

• MODULO SWAP (which is used in the swap functions and tells the algorithm how big 

or small can the bits swap process should be.) These variables can be set to be dynamic or 

static (default = yes).

If set to dynamic, the algorithm will change its value as a function of the password 

entered. The minimum value is the default value entered for these parameters, and the 

maximum is double the default value.

For example:

if ROUND = 2, then with the dynamic option ROUND could be a value between 2 and 4. 

If ROUND was equal to 10, then it could be a value between 10 and 20.

The MODULO SWAP changes at each round.

All the other Dynamic variables change as block is encrypted.

By default we encrypt a file as one big block, so these values will change only once.
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CHAPTER IV

ALGORITHM APPLICATIONS 

Two applications using the cryptography algorithm were first created for UNIX 

(such as Linux, SunOS, Silicon Graphics, HPUX, etc.). The reasons for this choice were 

because this system is the most used in the computer world. Also, because no graphical 

user interface needed to be created, these applications could be created faster.

These applications have been created using the C language. They all use a library 

which contains all the cryptography functions created for this project and only consist of 

a user interface for the use of this library. Particular attention has been given to the error 

check in these applications. Even if they are badly used, an understandable error message 

is displayed. The following applications have been designed:

Encrypt/Decrypt file application:

This application is used to encrypt or decrypt a file. Some parameters have to be 

set by the user: the password, the file to encrypt/decrypt, the destination file, the length of 

the key, the encrypting power method, the round of the key generator used. The user can 

even specify a custom crypt's block length and a custom shuffle's block length. There is 

also an interactive mode where the application is prompting you for each parameter 

required. This is a security enhancement if the user does not want someone doing a 'ps' 

looking at his parameters

Secure chat, similar to the 'talk' UNIX command:
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Secure chat, similar to the 'talk' UNIX command;

This application can be used to have a secure conversation over a network 

(Internet for instance). It uses a stream encryption method.

Key generator application:

This application is used to generate a key which will be stored in a file. Some 

parameters have to be set by the user: the password or the random generation flag, the 

destination file and the key length to be generated.

Login application similar to the UNIX system:

This application, is used when a user wants to log onto the system. Parameters 

must be set by the user, such as his password and the location o f the password database 

which contains his cipher password.

Password management application:

This application is quite similar to the key generator application but the key 

generated is stored into a password database with the user login name. Some parameters 

have to be set by the user such as the user name and his new password. If the user already 

has a cipher password stored into the password database, he will have to re-type his old 

password to be able to change it with the new one.

Hide/Extract engine application:

This application is used to hide a file in another file or to extract a previously 

hidden file. The user can choose to hide a file at the beginning or at the end o f another 

file. This is a completely separate part o f the cryptography called steganography. It will 

be too long to create a strong steganography algorithm so this is why it is only a simple 

algorithm (Added to the beginning or at the end of a file). This part will be done, because
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even if the algorithm is simple, it could be useful. This is because, with this algorithm, if 

the user wants to hide a file into a picture, video or sound file, it becomes invisible.
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CHAPTER V

ALGORITHM ANALYSIS 

This section evaluates how the DCA successfully evades two powerful symmetric-key 

block cipher cryptanalysis techniques: Linear Cryptanalysis [3] and Differential 

Cryptanalysis [4].

5.1 Linear Cryptanalysis

Introduction

Linear Cryptanalysis tries to take advantage of high probability occurrences of 

linear expressions involving plaintext bits, "ciphertext" bits (actually we use bits from the 

2nd last round output), and subkey bits. It is a known plaintext attack: that is, it is 

premised on the attacker having information on a set of plaintexts and the corresponding 

ciphertexts. However, the attacker has no way to select which plaintexts (and 

corresponding ciphertexts) are available. In many applications and scenarios it is 

reasonable to assume that the attacker has knowledge of a random set of plaintexts and 

the corresponding ciphertexts.

The idea is that, for each candidate subkey, we partially decrypt the cipher and check if 

the relation holds. If the relation holds then increment its corresponding counter. At the 

end, the candidate key that counts furthest from Vi is the most likely subkey.

The Piling up Lemma:
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Suppose X I, X2,... are independent random variables from {0,1}. And

Pr[A, = 0] = p , , i = 1,2,... Hence,

P r [ A , = l ] - l - p , ,  1 = 1,2,...

The independence o f Xi, Xj implies

Pr[A; = 0 , y — 0] — PiPj

P r[A ,= Q ,A ^= l] = p , ( l - p , )

P r[A ,= l,A ^ = 0 ] = ( l-p ,)p ^

P r [A ,= l,A ^ = l]  = ( l - p , ) ( l - p , )

Let ,,2 denote the bias of A, © • • • © X
k

k  -  I
Then  = 2 0 ' ^ . ,  ■

./ = I
Analysis o f DCA

Consider a function f  that takes an 8-bit input (x) and an 8-bit subkey (k) as input 

and produces an 8 bit output (y). We can write this as y = f(x, k) (mod 2). Imagine that 

DCA had been designed in such a way that we could write the function f  as a linear 

combination o f x and k modulo 2. That is, what if the function f  were designed as y = f(x, 

k) = Mx + Dk (mod 2) where M and D are constant 8 x 8  matrices. The function f  would 

look like this:
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To do this we would only have to change the seeding and shuffling functions to 

linear functions. All XOR’s are already linear functions. For example, and XOR can be 

written like z = i(x, y):

^0 Xq ^ 0

^3

%

(mod 2)

So if  the seeding and shuffling functions were linear equations we could easily 

find a linear function y = f(x, k) (mod 2).

Assume the seeding and shuffling functions are linear function, which we can write as y 

= g(x) = Ex where E is a constant 8x8 matrix;
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> o ‘ 0 0 0 0 1 0 0 o ' ’Z(J

0 0 0 0 0 1 0 0 X l

7 a 0 0 0 0 0 0 1 0 ^ 2

0 0 0 0 0 0 0 1

y * 1 0 0 0 0 0 0 0 ^ 4

y ^ 0 1 0 0 0 0 0 0

y 6 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 ^ 7

(mod 2)

DCA has two rounds of the function f  (one for each o f two keys generated from the key 

buffer K1 and K2). So if P is the plaintext and C is the ciphertext, then:

C = f(g(f(P ,K l)),K 2)
=M xg(f(P ,K l)) + DxK2 
=ExMxf(P, K l) + DxK2 
=ExMx(MxP + D X K l) + DxK2 
=ExM^xP + ExM xDxKl + DxK2 (mod 2)

Now define three new constant 8x8 matrices: R= ExM^, S= ExMxD, and T=D.

Even if we use independent subkeys for Kl and K2, we cannot have a linear equation.

If in wcrst case, bit 0 o f the ciphertext is equal to bit 3 o f the plaintext XORed

with bit 4 o f the plaintext XORed with bit 5 of the plaintext XORed with bit 0 o f K l, etc.

We would have similar equations for bits 1 through 7 of the ciphertext. So for a known

ciphertext attack with one plaintext-ciphertext pair we would have 8 equations and 32

unknowns, which does not do much good.

But with 4 plaintext-ciphertext pairs you would have 32 equations and 32

unkowns. Using Gaussian elimination or Cramer’s rule it is easy to see that we could

solve this system with something on the order o f 32 calculations which is no good again.

Steps for performing linear cryptanalysis on DCA
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1] We need several good linear approximations for each linear function. They should 

hold for more than 50% of the possible inputs. Each equation is just XOR’s modulo 2 

(equivalent to XORing them all together) to get an answer of either 0 or 1.

2] We need about 100 plaintext/ciphertext pairs. They don’t have to be chosen plaintext, 

this is a known plaintext attack.

3] Do step 4 for every possible subkey

4] For each plaintext/ciphertext pair that we have

4.1] Find Q, the output of the seeding.

4.2] Find S, the output of shuffling.

4.3] See if  each o f the linear approximations hold for S as input and Q as 

output. We don’t really care what the first key is because any bit in the second key has a 

50% chance o f being a 0 and not touching anything. If it were a 1 then it would change 

one of our S bits but we wouldn’t really care because our linear approximations are still 

biased away from 50%. If S was chosen well then we would expect S and Q to show bias 

with the linear approximations. If S is not anything like the input that was really used 

when the ciphertext/plaintext pair was generated then we’re just plugging in random bits 

for S and Q and we would expect our linear approximations to hold about 50% of the 

time. The subkey that we guess that shows the highest deviation away from 50% is the 

one most likely to be the real key. The level of effort to break the cipher then comes from 

the size o f the subkey and not the key size.

Linear cryptanalysis won’t produce such dramatic results on DCA, because DCA 

does not have many linear functions like S-F networks. The level o f effort to do linear
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cryptanalysis on DCA is still dependent on the size of the subkey, but we need a lot of 

plaintext/ciphertext pairs which makes it pretty much infeasible.

5.2 Differential Cryptanalysis

Introduction

Differential cryptanalysis exploits the high probability o f certain occurrences of 

plaintext differences and differences into the last round o f the cipher. For example, 

consider a system with input A  = [ X \ X 2  . . .  X n ]  and output Y =  [Fi Y i . . .  Y n \ .  Let two inputs 

to the system be X  and X '  with the corresponding outputs T  and Y ' ,  respectively. The 

input difference is given by X X  =  X  @  X '  where "©" represents a bit-wise exclusive-OR 

of the M-bit vectors and, hence,

A A  =  [AAi AA2.. . AAn]

The main difference from linear attack is that differential attack involves 

comparing the XOR of two inputs to the XOR of the corresponding outputs. Differential 

attack is a chosen-plaintext attack. We consider inputs x and x* having a specified XOR 

value. We decrypt y and y* using all possible key and determine if their XOR has a 

eertain value. Whenever it does, increment the corresponding counter. At the end, we 

expect the largest one is the most likely subkey.

In order to use differential cryptanalysis on DCA the attacker would require large 

amounts of plaintexts. The number o f chosen plaintexts needed is dependent on the 

ability o f XOR differences to propagate through a block cipher algorithm (and therefore 

partly dependent on the number rounds) and the computational effort comes from the size
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of the subkey used for each round. The search space o f differential cryptanalysis is the 

subkey o f the last round and not the encryption key.

Steps for performing Differential Cryptanalysis on DCA

1] Choose an XOR difference for the plaintext pairs

Let us go ahead and use an XOR difference o f “ 10000000.” This means that each 

of our plaintext pairs will differ in only the first bit. For example “00000000” will be 

paired with “ 10000000”, “00000001” will be paired with “10000001”, ..., “01100100” 

will be paired with “ 11100100”, ..., and “01111111” will be paired with “ 11111111”.

2] Generate ciphertext pairs for some plaintext pairs

Differential cryptanalysis is a chosen plaintext attack, so we will need access to 

the encryption equipment with the key installed. This doesn’t mean we can see the key, 

though we just need to have access to the equipment.

Now we are going to encrypt 25 randomly chosen plaintext pairs from our 

plaintext pairs above, for a total of 50 encryptions. If our cipher had more rounds we 

would have to do a lot more work.

When we do these 50 encryptions we get 25 ciphertext pairs, paired by the fact 

that both ciphertexts in a pair came from one of the plaintexts o f a plaintext pair.

Plaintext -> Ciphertext 

One pair;

O llllO O l -> 11111001 

11111001 ->11111110 

Another pair:
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01000100 - >  10101100 

11000100 - >  10011001 

A third pair:

00000011 ->01000010 

10000011 - >  10110111 

etc.

3] Get 2 pieces o f information out o f each ciphertext pair

3.1] The first piece o f information we want out o f each ciphertext pair is the input 

to seeding function.

3.2] The second piece of information we need is not so trivial. We are going to 

have to find out what the expected XOR difference that came out o f the shuffling 

function.

4] Try all possible values for the subkey, which is extremely hard with larger keys.

For every subkey, what we have to do is recreate seeding, the 8-bit XOR after 

seeding, and the shuffling for each ciphertext pair. The reason we have to use 25 

ciphertext pairs instead of just one is that there is a chance a false input might get lucky 

and produce the right output, but this won’t happen 25 times. The number 25 has nothing 

to do with the key size or block size so it does not add to our measure of complexity.

Each step has extremely large complexity due to which differential cryptanalysis 

does not produce dramatic results against the DCA.
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5.3 Performance Analysis 

Here are speed benchmarks for some of the most common cryptography 

algorithms compared to the DCA. The test was run on a Pentium 4 2.1 GHz processor on 

Windows XP professional platform. As shown, the DCA is considerably faster than its 

peers.

Algorithm Megabytes(2^20 

bytes) Processed

Time Taken MB/Seconds

DCA 256 3.841 66.649

MD5 1.02e+003 4.726 216.674

Ripemd-160 256 4.867 52.599

SHA-512 64 5.618 11.392

HMAC 1.02C+003 4J26 216.674

AES(256) 256 5J08 48.229

DES 128 5.998 21.340

RC4 512 4.517 113.350

Table 5.1 Speed Comparison of Cryptography Algorithms

Analysis of DCA, AES, 3DES and RC2

For the tests, the Microsoft Application Center Test (ACT) was used, which is 

designed to stress test. Application Center Test can simulate a large group of users by 

opening multiple connections to the server and rapidly sending HTTP requests. It also 

allows us to build realistic test scenarios where we can call the same method with a
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allows us to build realistic test scenarios where we can call the same method with a 

randomized set o f parameter values. This is an important feature, whereby users are not 

expected to call the same method with the same parameter values over and over again. 

The other useful feature is that Application Center Test records test results that provide 

the most important information about the performance o f the Web application.

The algorithms were used to encrypt and decrypt data. Tests were performed with 

a data size o f 4 KB, 100 KB, and 500 KB to see how the size o f data impacts 

performance.

Figure 3.12a Plot o f Request per second against user load, data -  4 KB

Request/Second vs. User Load 
Data size = 4 KB

User Load

RC2
3DES
AES
DCA
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Figure 3.12b Plot o f Response time against user load, data = 4 KB

Response Time vs. User Load

U ser Load

DCA
AES
3DES
RC2

With small data, we find that the DCA is the fastest of all the methods. A key 

length o f 256 bits was chosen.

Next was the AES (Advanced Encryption standard). It has a variable block length 

and key length, which may be chosen to be any of 128, 192, or 256 bits. It also has a 

variable number o f rounds to produce the cipher text, which depends on the key length 

and the block length.

Next was the Triple DES (3DES) was invented to improve the security of DES by 

applying DES encryption three times using three different keys (note that encrypting data 

three times with the same key does not offer any value). It is simply another mode of 

DES, but it is highly secure and therefore slower in performance. It takes a 192-bit key, 

which is broken into three 64-bit subkeys to be used in the encryption procedure. The 

procedure is exactly like DES, but it is repeated three times, making it much more secure. 

The data is encrypted with the first subkey, decrypted with the second subkey, and 

encrypted again with the third subkey.
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RC2 turns out to be the slowest method when the data being encrypted is small. It 

has an expensive computation up front to build a key-dependent table, which apparently 

is high compared to the cost o f encrypting small data.

Figure 3.13a Plot o f Request per second against user load, data = 100 KB

Requests/Second vs. User Load 
Data =100 KB

U ser L oad

-A ES
3D ES
DCA
RC2

Figure 3.13b Plot o f Response time against user load, data =100 KB

R esp o n se  Time vs. User Load  
Data Size = 100 KB

R esp o n se  T im e
1600

-RC2
DCA
30E S

-AES

IN ^r Load
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By increasing the size of data being encrypted and decrypted, we see an entirely 

different picture to what we saw in the previous test. RC2 is the fastest, followed by 

DCA, which is around 20% faster than 3DES. Note that the expensive computation in 

RC2 to build the key-dependent table is amortized over more data. AES in this case is the 

slowest; 25% slower than 3DES. Note that we are using a 256-bit key for AES 

encryption, which makes it stronger than the other methods (though there has been some 

press about possible attacks against AES, which might be better than brute force attack) 

and for the same reason the slowest of all. Similarly, we used a 192-bit key in case of 

3DES. Using a same-length key does not necessarily mean that different algorithms will 

have the same strength. Different algorithms have different characteristics and hence they 

may not provide the same strength.

There is always a tradeoff between security and performance. We need to 

understand the value o f sensitive data, the deployment cost, and usability/performance 

tradeoffs before you can begin choosing a right algorithm for securing data. If the cost of 

data that is being protected is high, then we must consider taking a performance hit to 

secure the data. Otherwise, we may be better off using a less secure algorithm.
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Figure 3.14a Plot o f  Request per second against user load, data = 500 KB

R eq u e s t/S e c o n d  vs. U ser Load 
D ata = 500 KB

10 15

U se r L oad

-* -A E S  
3DES 
DCA 

< RC4

Figure 3.14b Plot of Response time against user load, data = 500 KB

R e sp o n se  Time vs. U ser Load 
D ata = 500 KB

U se r Load

E 2000

1000

RC2 
DCA 
3DES 
AES

With the increasing size of data being encrypted and decrypted, we see the same 

trend prevailed in this test too.
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CHAPTER VI 

CONCLUSION

The main problem in this algorithm concept was that it was necessary to always have in 

mind the following words: security, efficiency and portability. Everything has been done 

to respect these keywords.

To conclude, here is a summary of the algorithm specifications originally. All 

initial design goals were met successfully.

- Private Key algorithm

- The source code can be public without making the algorithm weak

- Dynamic Algorithm

- Pseudo Random numbers generated using a Linear Feedback Shift Register and ISAAC 

Algorithm

- Direct disk access or Memory buffer method in order to run on low specification 

computer and Palm devices

- Stream encryption option

- Block encryption option

- Key generator: Bits manipulations, bilateral bits swapping and logical bits operations, 

random generator.

- Encrypt file (using the key generator): Variable length cipher block algorithm.

- 5 Power levels: Seed, Random Seed, Shuffle, Seed + Shuffle, Random Seed + Shuffle.
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- Key length unlimited (as big as your integer type can take).

The algorithm was successfully able to evade two of the most powerful 

cryptanalysis techniques: Linear and Differential Cryptanalysis.

As proposed, the following applications we designed too, highlighting some of 

the applications o f the cryptography suite:

•  Encrypt/Decrypt file application

• Secure chat

•  Key generator application

• Login application

• Password management application

• Hide/Extract engine.

The project applications were tested on many different operating systems (OS): 

Windows 9x, Windows NT, UNIX (Linux, HPUX, Silicon Graphics, and Solaris). 

Because each operating system is different (memory management, permission rights, 

variable management, etc) these tests were very important. For example, a problem 

regarding the way the password was stored in the memory occurred once. No errors were 

generated when the application was running on Linux, but on the Silicon graphics OS an 

error was generated. This was because on Linux the memory management is less strict 

than on Silicon Graphics (or at least at the time on the Linux OS there were not as many 

users as there were on SGI). Therefore, sometimes the application worked fine on the 

Silicon graphics and Windows but not on the SunOS because these first two OS were 

more compliant in certain areas. These tests helped in eliminating several bugs.
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The algorithm has reached its maturity after several iterations and careful 

cryptanalysis. Future work includes designing attack cased against the algorithm.
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