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ABSTRACT

Transport and Structural Studies of the T herm oelectric M aterial, Big Teg

by

Matthew K. Jacobsen

Dr. Andrew Cornelius, Examination Committee Chair 
Associate Professor of Physics 

University of Nevada, Las Vegas

Thermoelectric materials have long been investigated for the possible use as a power source.

This application was recently put to use in the Voyager space program to power the deep

space probes on their journey. However, the research done in this area has yet to completely

study the properties of these special materials. As a result, this research aims to investigate

the high pressure structure and transport properties of these materials in a effort to better

understand why they behave as they do. To this end, various techniques have been performed

revealing the high pressure properties of these matierals.
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CHAPTER 1  

INTRODUCTION

Solid state physics is rife with various effects caused by the unusual properties of materi­

als. With properties ranging from the generation of light to special properties when exposed 

to a magnetic field, it would not seem too unlikely tha t there are materials that are capable 

of generating electricity under the right conditions. The difference is tha t these particular 

materials use heat flow to generate electricity. This complex phenomenon is termed the See­

beck effect. Alternately, the Peltier effect is the reverse of this, using electricity to generate 

heat flow.

Despite their seeming usefulness, thermoelectric materials have suffered due to poor tim­

ing in their discovery, coupled with many other flashy discoveries that occurred during their 

development. Discovered in 1823 by Seebeck, the property referred to as the Seebeck effect 

describes the ability of a material to convert heat flow to electricity. This property was 

discovered when a closed loop made of two different metals was used. Seebeck found that 

if you heated one of the junctions, the loop would cause a deflection in a compass needle. 

Although he initially thought tha t this was due to the earth’s magnetic field, he had initiated 

the field of thermoelectric materials.

Despite this, thermoelectricity would be lost for a time due to the excitement over work 

on electro dynamics. W ith the increase of interest in thermodynamics research in the late 

1830’s, thermoelectric materials would again be pulled into the limelight and, with the help 

of Peltier and Lenz, Seebeck’s work would begin to evolve. However, history has been cruel 

to thermoelectrics, as they would continue to rise and fall in popularity throughout history. 

Regardless of the change in interest, there was still a decent amount of progress made in the 

understanding of this unusual phenomenon.

Some of the greatest contributions to this field occurred in the late 1800’s and early 

1900’s. In 1885, Rayleigh was the first to consider the potential of these materials for

1
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electrical generation. In 1909, Altenkirch provided the first acceptable theories regarding 

thermoelectricity. In addition, he contributed the fundamental measure of the applicability 

of a given material, which will be discussed later. The culmination of all of these ideas 

occurred in 1947, with the advent of the first thermoelectric generator. This device was 

shown to have a practical operating efficiency of around 5 percent.

Properties of Thermoelectrics

The Seebeck effect is a specific application of the general thermogalvanomagnetic inter­

actions shown in figure 1 .̂ In this figure, the Seebeck effect is the same as the Nernst effect 

with no magnetic field present. By causing a temperature gradient across a thermoelectric, 

heat flows from one surface to another. In doing so, this causes the material to generate an 

electrical current. W ith this idea in mind, the Seebeck coefficient is defined as the ratio of 

the generated electric field to the temperature gradient across the sample.

a  — dr
dx

(1 .1)

where Ex is the transverse electric field and ^  is the longitudinal temperature gradient.

Elect:ic field

Electric current hot

Electric field

I  Heat flow

Hall

hot

Nernst

<81
Magnetic field

Temp:nature gradient 

Electric current hot

hot

Temperature graifieot 

Heat flow

cold
Ettingshausen

cidd 
Righi-Leduc

cold

cold

Figure 1 Thermogalvanomagnetic Interations [34]

^figure reproduced with permission of Publisher, Springer Verlag
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Since the Seebeck effect depends strongly upon current and heat flow through the sample, 

it is useful to define their relation parameters as well. They are

P = -  (1.2)
'̂ X

A =  ^  (1.3)
dx

where is the current flowing and Wx is the rate of heat flow per unit area. These two 

equations define the electrical resistivity p and the thermal conductivity A. Earlier, it was 

mentioned that Altenkirch derived the most useful parameter in describing thermoelectric 

materials. This parameter is called the figure of merit, Z, and is defined in terms of the 

previous three parameters as

^  =  ;)A

where Z has units of K“ .̂ Although this parameter is useful, it is rather inconvenient in 

practice. Since the goal is to find materials useful at room temperature, a more practical 

parameter is the dimensionless figure of merit ZT, with Z multiplied by the temperature at 

which it was measured. This ZT parameter is directly related to the thermoelectric engine

efficiency. A full derivation of the Z parameter is given in [34]. The ZT parameter typically

ranges between 0 and 1.5, depending on the material, with values reported as large as 2 to 

3.

The purpose of any thermoelectrics research is to learn enough about the materials and 

what causes their properties to aid in the search for more desireable materials. This can be 

remarkably difficult for many reasons. It is necessary to improve the individual parameters of 

ZT to maximize the performance of the material itself. Looking at each individual parameter, 

it is obvious that, short of doping the material, there is very little that can be done to improve 

the Seebeck coefficient a.

As such, it now makes sense to shift attention to the electrical and thermal parameters. 

Beginning with the thermal conductivity, an understanding is needed about how heat is 

conducted through the lattice. Fortunately, this theory has existed for quite some time. The 

theory of crystalline thermal transport, as presented in Kittel [21], is shown to be based on
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two sources, the lattice and the charged carriers. The overall thermal conductivity is a sum 

of these two components

A =  A/, +  Ae (1 .5 )

with Ai from the lattice and A« from the carriers.

The latter of these is highly dependent upon temperature and the concentration of carriers 

present. The explaination comes from electronic band theory. Using the concept of a free 

electron Fermi gas, it is easy to show, as done in [21], that electrons at absolute zero occupy all 

energy levels up to the Fermi level. As soon as the temperature is raised above absolute zero, 

some of the electrons become thermally excited and begin to move throughout the material as 

carriers. Since each electron can carry a finite amount of energy from the thermal excitation, 

the magnitude of the heat transported through the lattice by this method depends on the 

temperature and the number of electons able to freely move in the lattice. Despite this, the 

thermal excitation energy at room temperature remains small, as accounted for by Fermi- 

Dirac statistics. Therefore, this contribution remains manageable in thermoelecric devices 

under ambient conditions.

The more im portant contribution to the thermal conductivity is from the lattice. This 

contribution is more complicated due to the fact that lattice heat transport requires the use 

of a quasiparticle, the phonon. By using phonons, a theory can be developed regarding the 

heat capacity of a lattice [21]. Applying the density of phonon states in the material and 

using the Debye approximation (constant sound velocity in the medium), the following form 

for the heat capacity results.

C« =  9VA:6(— ) = ^  (1.6)

with 6o (üJd) being the Debye temperature (frequency) and being defined as Xd —

An example of a heat capacity curve is shown in figure 2

The heat capacity is useful, on the basis that an optimized material should support a 

large temperature gradient, but also respond quickly. As a result, the material should have

2figure reproduced with permission of Publisher, John Wiley and Sons
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Figure 2 Theoretical Heat Capacity Curve [21]

a low thermal conductivity, which can be achieved through phonon scattering mechanisms. 

However, it should also have a low response time. This response time would be directly linked 

to the heat capacity of the lattice. The larger the heat capacity, the slower the response 

time in the material. As such, a mechanism to cause phonons to scatter in the material, 

without significantly affecting its heat capacity, needs to be investigated. Unfortunately, 

there is really nothing that can be done about the electronic contribution to the thermal 

conductivity, since it is directly tied to the charge carriers (both holes and electrons). Any 

effect on them will cause a change in the electrical conductivity of the material, which may 

not be desirable at all.

From all of the previous information, it becomes obvious why this particular field can 

prove very challenging for basic research. It is remarkably difficult to identify what elements 

might work well just as basis materials, let alone what to dope them with and how much to 

achieve the desired effects. So, the goal of this research is to utilize the technique of pressure 

tuning to learn more about the fundamental structure and abilities of the well established 

thermoelectric. Big Teg.

To this end, the project will be presented in the following manner. Chapter 2 will deal 

with the experimental details and procedure for the experiments. Chapter 3 will present 

the collected data and compare with previously published results. Finally, Chapter 4 will
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summarize the work and results, present some conclusions about the work, and mention 

some potential future improvements and studies.
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CHAPTER 2

EXPERIMENTAL BACKGROUND

The purpose of this chapter is to describe the measurements performed on BigTeg. This 

begins with an overview of what pressure tuning is and how it is achieved in the laboratory. 

To provide a broad view of the techniques used, a brief description of chemical substitu­

tion studies will also be presented. Following this, a detailed description of the various 

experiments is presented. These include x-ray diffraction studies, thermal conductivity and 

Seebeck coefficient studies, electrical resistivity studies, and heat capacity measurements.

Experimental Techniques

The A chievem ent of Pressure Tuning The concept of using pressure to tune the pa­

rameters of a structure is fairly straightforward and is hardly new. Although there are many 

different methods for achieving these pressures, the focus for this work is on two of them. 

These are the Bridgman opposed anvil cell and the diamond anvil cell (DAG).

The basic operating principle is the definition of pressure

(2 .1 )

where F  is the applied force and A  is the area it is applied over. Since the maximum 

possible force is determined by the mechanical properties of the material being used, it 

becomes necessary to tailor the method to allow a large value for the maximum pressure. 

This requires tha t the application area remain small relative to the device used to apply it.

The Bridgman opposed anvil cell consists of two relatively incompressible materials with 

polished faces (culets) opposing each other. In this application, these anvils are made of 

tungsten carbide and supported by heat-treated steel binding rings. The sample is contained
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within a pressure retaining gasket and placed between the anvils. The pressure is applied 

by compressing the anvils together.

For this application, the gasket is made of two pieces (Split Gasket Method). The outer 

annular region is composed of two pyrophyllite annuli (Grade A Silicate Lava, Maryland 

Lava Company) with an outer diameter of 6  mm, inner diameter of 2 mm, and a thickness of 

0.25 mm each. The inner region of each disk has been replaced by the softer mineral steatite 

(Grade M Silicate Lava, Maryland Lava Company). Two different materials are used due to 

the fact that pyrophyllite is a stiffer material and better for retaining pressure. However, to 

minimize shear forces, the sample should be in.a quasihydrostatic environment. A diagram 

of the Bridgman anvil cell is shown in figure 3.

Diamond anvil cells (DAC’s) are similar in operation to the Bridgman anvil cell. The 

anvils, however, are diamonds and the gasket is typically made of a metal, since metals 

extrude and can retain much higher pressures. In addition, the metallic gaskets are usually 

filled with a liquid or liquefied gas to provide the desired hydrostaticity and the sample is 

significantly smaller. A picture of a pair of DAC’s is presented in figure 4.

i
Figure 3 Tungsten Carbide Bridgman Cell
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Figure 4 Merrill Bassett Diamond Anvil Cell

Calibration o f Pressure in the Bridgm an Cell Although the measurements in a 

large volume Bridgman cell are much easier to do, the typical method of calibrating the 

internal pressure (ruby fluorescence) cannot be used in this application due to lack of optical 

access to the sealed pressure chamber. As a result, the pressure inside the Bridgman cell 

is calibrated using an internal resistive standard. This process will produce data clearly 

showing the high pressure resistive phase changes as dramatic shifts in the resistance. An 

example of this is shown in figure 5.

For this study, the internal standards used to calibrate the internal pressure were ele­

mental Bismuth, Tin, and Lead. From NIST measurements of these defined fixed points, 

measurements of these three metals show resistive phase transitions at 2.55 (Bi I-II), 2.7 

(Bi II-III), 7.67 (Bi III-IV), 9.4 (Sn I-II), and 13.4 (Pb I-II) CPa, for the transitions in 

parenthesis. By preparing the cell in the same method used for the sample, the resistivity 

vs. pressure can be measured and this data used to calibrate the internal pressure. This 

produced the calibration data shown in figure 6 . As can be seen, the internal pressure of the 

cell remains fairly linear over the entire region of interest.
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In addition, a relation between the measured error at each transition pressure and the 

pressure it was measured at was determined by inspecting the broadness of each transition 

and computing the pressure range it corresponded to. Since resistive transitions are typically 

very sharp, the broadness of the measured transition point gives information about the 

pressure gradient across the sample. From this, error bars are obtained for each pressure 

point.

Chem ical Substitu tion  The most common method for attempting to improve thermo­

electric materials is through the application of chemical substitution. In general, this involves 

replacing some of one of the elemental constituents with a neighbor in the periodic table. 

As a brief example of how this works, there has been much effort on studying Bi2 ^a,Sba,Te3 . 

Applying chemical substitution, the experimenter causes changes in the structure (i.e. cell 

volume, bond lengths, and possibly structure symmetry) depending upon how much of an 

element is substituted.

In general, drastic changes in the sample structure can result in the experimenter com­

pletely overlooking what was desired. This is caused by the lack of control over the output 

from a chemical substitution. The target of the above example might be to have x  =  .677 

and could result in something less or greater than that. However, it almost never results in 

the exact stoichiometry tha t was originally desired. These drastic changes in the structure 

can, and often do, result in drastic changes in the properties of the material. Whether elec­

trical, thermal, or optical, the properties of the material used may be significantly different 

from what was intended to be measured as a result of chemical substitutions.

In addition, homogeneity of the sample is a significant issue to address. In chemical 

substitution experiments, one of the common methods for preparing a sample is to mix the 

required amounts of raw elements or compounds together and either mill them or melt them 

together to form the mixture. This commonly results in a very inhomogeneous mixture of 

the materials. As a result, the experiment performed is not revealing results of the originally 

intended material, but some inhomogeneous mixture of materials.

It is for this reason tha t pressure tuning is the technique used in this investigation. 

Pressure tuning provides more control over the structure of the material under study. In

11
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addition, the changes that are caused to the structure tend to be far less drastic than those 

resulting from chemical substitution. As a result of this, it becomes much easier to better 

understand the nature of thermoelectric materials.

Basic Measurements

For a given sample, the typical dimensions in the Bridgman cell are 1.5 x 0.75 x 0.2 

mm. The sample used in a DAC is powdered and has a mass of approximately 0.5 /ig. The 

Bridgman cell was used for all the electrical and thermal measurements. All optical measure­

ments were performed using the DAC. Heat capacity studies were performed under ambient 

pressure in a Quantum Design Physical Property Measurement System (QD PPMS). The 

applied pressure is determined through the resistance calibration above for the Bridgman cell 

and the ruby fluorescence method for the DAC. Due to the fact that structural correlations 

are important to our understanding, x-ray diffraction will be the first topic discussed.

X-Ray Diffraction

Structural studies are important indicators of changes in the properties of a system. For 

example, the electrical conduction properties depend strongly on the shape of the Fermi 

surface of a material. This in turn depends upon the shape of the unit cell of the material. 

As a result, any structural changes alter the shape of the unit cell, thus causing a change in 

the material properties.

Based upon this, the first set of experiments done regarding BigTeg are structural x-ray 

diffraction measurements. The governing relation for any x-ray diffraction experiment is 

Bragg’s law,

A =  2d 8m (g) (2.2)

where X is the incident wavelength, d is the crystal lattice spacing, and 6 is the diffracted

angle.

For x-ray diffraction studies, there are two methods for obtaining data. Through the 

use of Bragg’s law, the possibilities are to fix the incident wavelength and measure varied

angles (Angle Dispersive X-Ray Diffraction) or fix the measured angle and allow varied

12
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wavelengths/ energies through (Energy Dispersive X-Ray Diffraction). Both of these studies 

were performed in an effort to learn as much as possible about the structure of the material. 

The basic procedure for these experiments is as follows.

The sample was loaded into one of the previously described DAC’s along with a ruby 

chip and a small amount of a pressurization media. The sample was then placed in the 

beam path of a focused x-ray source and diffracted to create a Lane ring pattern. Through 

use of the computer program Fit2D [16], this ring pattern is angularly integrated to give 

an intensity versus diffraction angle pattern for the sample. Once the pattern is integrated, 

it can be loaded into a structural analysis program, such as MDI’s Jade [32], to analyze 

the structure and obtain the cell parameters and volume. The pressure in the cell would 

then be increased and the process done again. These measurements are performed using the 

synchrotron x-ray source and high pressure diffraction facilities at HPCAT, Sector 16 of the 

Advanced Photon Source at Argonne National Laboratory, shown in figures 7 and 8 . After 

determination of the cell volumes and lattice parameters, the bulk modulus and pressure 

derivative are obtained through EOSFit [2], a DOS program for fitting equations of state.

«m m

m

Figure 7 16 BM-D: EDXRD Figure 8  16 ID-B: ADXRD

Electrical Resistivity

The electrical resistivity of a material depends strongly on the conduction of the electrical 

carriers. Again, referring to the concept of chemical substitution, electrical resistivity is one

13
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of the more common properties modified using small amounts of various elements added to 

a structure. This type of substitution, termed doping, is quite commonly used to alter the 

resistivity of a materai.

For the pressure tuning side of this, the goal is more on attempting to alter the band 

structure of the material subtely by small changes in interatomic spacing and more drasti­

cally through phase changes. By altering the band structure, the experimenter can cause 

electronically allowed levels in the material to migrate towards the Fermi level mentioned in 

the introduction. In doing this, the the electronic properties are altered and the effect on 

transport properties can be assertained.

The typical setup for measuring this type of property is a four wire resistance probe. 

This setup requires the sample to be placed inside the tungsten carbide cell with four leads 

present to allow for conduction through the sample. The idea is that two of the probes are 

used for input current, one positive and one negative. Then, the remaining two probes are 

placed further in along the sample and used for potential difference measurements, again 

one positive and one negative, as shown in figure 9 .̂

v+
V -

Figure 9 Diagram of Resistivity Measurements [34]

In addition, the polarity of the current leads is switched in an AC fasion to remove any 

residual resistance effects. This polarity switching is required to eliminate effects, such as the 

Hall effect or thermal voltages, from causing anomalous resistance readings. Also, by adding 

the two leads, contact resistances can be removed, as long as all four leads are connected in

^figure reproduced with permission of Publisher, Springer Verlag
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the same manner.

After completion of the calibrant samples, mentioned earlier, two Bi2 Te3 samples were 

prepared with sample dimensions of approximately 1.50 mm x 0.37 mm x 0.10 mm. These 

samples were placed in a carved recess in the lower steatite gasket and four copper leads 

were laid across the sample in grooves carved in the pyrophyllite gasket. W ith this setup, 

the data was collected through a Lakeshore Model 370 resistance bridge with an excitation 

current of 10 mA. The device was set in constant current mode and computes the resistance 

through use of the relationship P  = P  / R. The data was collected in a range from % 1 

GPa to 18 GPa, with pressure computed from a transducer voltage using the calibration 

previously determined.

Thermal Conductivity and Seebeck Coefficient

As discussed earlier, the main method of heat transport in a non-metallic lattice is 

through phonons. The ability of a phonon to conduct heat is determined, in part, by the 

number of energy quanta it carries and the mean free path for phonons in the structure. Al­

though little can be done regarding the contained energy, the mean free path can be greatly 

changed. This path length is the average distance a phonon can travel without colliding with 

something(a defect, boundary, or other scattering center). The obvious idea is to minimize 

the path length by scattering the phonons often.

To begin with, the traditional method for measuring the ambient pressure thermal con­

ductivity is to place the sample between two pieces of material with known good thermal 

conductivity. One of these is used as the heat source and the other as the heat sink. The 

material under study is then exposed to a temperature gradient. The thermal conductiv­

ity is measured by varying the temperature gradient and measuring how much heat passes 

through the sample from the source to the sink, as shown in figure 1 0 .̂

This method for measuring thermal conductivity is also remarkably useful for performing 

Seebeck coefficient measurements. Since the Seebeck coefficient also depends on a temper­

ature gradient, by simply welding or fixing the thermocouples used for measuring the tem­

perature difference to the sample, a potential drop can be measured between the leads of

^figure reproduced with permission of Publisher, Springer Verlag
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Figure 10 Diagram of Thermal Conductivity Measurements [34]

the two thermocouples. This allows the determination of the thermal conductivity and the 

Seebeck coefficient simultaneously.

The process used for measuring these properties at high pressure is similar to the method 

used for the electrical resistivity measurements. The samples were cut to size and placed in 

a carved recess in the lower steatite gasket. Then, a matched pair of thermocouples (Type 

K: Alumel-Chromel) were laid across the sample ends with a manganin heater wire laid in 

a groove at one end of the sample. The thermocouples were fixed to the sample using gold 

paste to ensure conduction through the sample and a more accurate thermal measurement. 

The loading looked similar to tha t shown in figure 1 1 .

m

4 %

Figure 1 1  Thermal Conductivity and Seebeck Coefficient Setup

This type of setup requires a different method of measurement depending on the samples 

ambient thermal conductivity. For samples with a thermal conductivity much larger than
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the thermal conductivity of the gasket material {Xsampie »  ^gasket), it conforms with a 

method called the short hot wire method. In this method, the heat coupled into the sam­

ple is conducted directly along the sample and very little is radiated perpendicular to the 

propagation direction due to the large differences in thermal conductivities. This results in 

lower errors, but tends to be less applicable at high pressures. For samples with thermal 

conductivities on the order of the gasket thermal conductivity {Xsampie ~  Xgasket), this setup 

produces a guarded hot wire style technique, which occurs when the sample radial heat loss 

is low due to the material around it having a similar temperature profile. This setup tends 

to have larger errors due to a larger radial heat loss. However, it tends at be applicable to 

much higher pressures.

In addition to the different types of measurement methods that the designed setup applies, 

there are two other typical methods for measuring the thermal conductivity. The first method 

is called the transient or 3w method. This method applies an AC heat source to the sample 

and measures the decay time of a temperature pulse to compute the thermal conductivity 

of the sample. The other method, used for these measurements, is the steady state heat 

flow method. The temperature gradient is increased and held steady at the maximum 

temperature to measure the thermal conductivity. These regions of interest are shown below 

in figure 12. The steady state method was chosen because it is easier to setup and provides 

more data points for determination of the thermal conductivity.

The measurements were taken by pressurizing the cell to a particular pressure, typically 

one GPa steps. At each pressure point, current through the heater wire was increased, 

dissipating approximately four watts of power across its length. After two minutes with the 

heater on, it was slowly turned off and the system allowed to cool. Then, this process was 

repeated two more times before increasing to the next pressure point.

By knowing the output power, the amount of emitted radiation coupled directly into the 

sample can be calculated from the geometry of the situation and its experimental specifics. 

Also, knowing the sample dimensions and measuring the temperature drop across the sample.

17
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Figure 12 Thermal Conductivity Measurement Method Regions

the thermal conductivity can be calculated using

^ V I  Sx

where A is the thermal conductivity, 7  is the coupling factor (more detail in paragraph below), 

V  is the potential drop across the heater, I  is the current through the heater, A  is the sample 

area perpendicular to the flow of heat, Sx is the distance between the thermocouple junctions, 

and ST  is the temperature difference between the thermocouples.

Since the thermocouples are fixed to the sample at two locations, the Seebeck coefficient 

is measured by determining the potential drop between the two chromel wires of the indi­

vidual thermocouples. Several papers mention different methods for measuring the Seebeck 

coefficient. [5], [48] However, after much consideration, it seemed that the easiest way was 

by a direct measurement of the potential drop. By using the two chromel wires, any contact 

Seebeck effect between the thermocouple wires and the sample will be undone, since it is 

safe to assume similar contact conditions. Thus, the Seebeck coefficient is determined in the 

manner presented in chapter 2 ,

(2 4)a  =
ST
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C alculation o f 7  For ease of experiment and calculation, the heater wire was placed 

against one end of the sample. From this, assuming that the heat is emitted uniformly in all 

directions, only the emitted radiation components that are along the length of the sample will 

be coupled and flow in the manner needed to be measured. From this, the overall resistance 

of the heater wire is measured, and with the resistivity of the heater material known, the 

resistance of the segment directly coupled to the sample can be calculated.

For these experiments, the ratio of the sample heater resistance to the overall heater 

resistance is on the order of .0001. Furthermore, only about |  to |  of the emitted radiation 

is coupled into the sample surface at all, and only about |  of that is along the sample 

transmission direction. As a result, 7  is typically on the order of 10“®.

Although this coupled power seems small, the ideal situation for thermal conductivity 

measurements is to have as little measureable change in the overall temperature of the 

sample as possible. This way, our uncertainty in the temperature of the measured thermal 

conductivity is minimal. However, it is also desireable to have a large temperature gradient 

across the sample. As a result, there are several tradeoffs required to ensure that the thermal 

conductivity measured is accurate and at the temperature desired.

Heat Capacity

Although heat capacity is not a required parameter for the determination of anything 

thermoelectric about the material, as was discussed in the introduction, it can effect the 

response time of the thermoelectric material. The higher the heat capacity is, the longer it 

takes for the sample to “feel” the temperature gradient across it. As a result, it takes far 

longer for the Seebeck effect to take hold and begin to generate useful current.

In addition to this, heat capacity is often a quantity used to verify phase transitions 

in the structure of a material or for information regarding the thermal conductivity. Due 

to this, it was included for the potential use in these areas and to ensure that all possible 

thermal characterizations available are performed on the sample. Also, there are several 

useful quantities related to the heat capacity tha t can be derived from this data. For example, 

the enthalpy of the material can be obtained by doing a simple integral over temperature of
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the measured heat capacity.

A i /  =  j  C p d T  (2.5)

For this work, the heat capacity was measured under ambient pressure and varying 

temperature to get an idea of how responsive Bi2 Te3 is as a thermoelectric. This measurement 

was done using the Physical Property Measurement System (PPMS), developed by Quantum 

Design. The basic idea of this measurement is as follows.

Figure 13 PPMS Heat Capacity Puck

A small pellet of the sample material is made and set aside. The PPMS system is 

equipped with small sample pucks designed for specific measurements. In this case, the heat 

capacity puck, as shown in figure 13, is composed of the outer housing, four pairs of electrical 

leads, and a sample pad. The sample pad is first covered with a thin layer of thermal grease, 

either Apiezon© Brand N or H grease. Then, a temperature range identical to the desired 

measurement region is measured using just the sample stage and grease, with no sample 

present, to produce an addendum. Subtraction of the addendum allows a determination of 

the sample’s heat capacity. Following this run, the sample is inserted into the system and 

the data is collected. Now tha t the measurement processes have been described, the results 

of this study can be presented, as they are in the next chapter.
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CHAPTER 3

RESULTS AND DISCUSSION

The goal of this chapter is to present the data collected on Bi2 Tc3 and to provide compar­

isons with results from previously published work. The format will be similar to the previous 

chapter, discussing the results of each individual experiment.

Structure Results

The high pressure x-ray diffraction performed on this compound yielded some unexpected 

results regarding the structure of Bi2 Te3 . Previous work on this material using resistivity 

studies under pressure [46] displayed the possibility for two phase transitions in the physical 

structure between ambient pressure and 10 gigapascals (GPa) L These phase transitions 

were reported to occur at approximately 6 . 8  GPa and 8.2 GPa at ambient temperature. The 

ambient crystal structure of Bi2 Tea is shown in figure 14.

The initial structure of Bi2 Tes is in the rhombohedral R3m structure with parameters as 

shown in table 1. Through the measurements made at HPCAT, it was found that Bi2 Tc3 

undergoes two phase transitions in the pressure region between ambient and approximately 

23 GPa. A selection of the diffraction patterns is presented in figures 15 and 16. In the 

diffraction patterns, the bottom pattern has x-ray fluorescence peaks for the individual 

elements marked. These peaks were excluded during the data analysis.

U GPa =  10 Kbar
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Figure 14 Crystal Structure of Bi2 Te,3

The first transition was found to begin around 7.2 GPa and complete around 9.7 GPa. 

This transition was a structural change from the ambient rhombohedral group to the or- 

thorhombic space group 1222, whose parameters are also shown in table 1. This transition is 

of particular interest due to the fact that the pressure region where the phase transition oc­

curs corresponds well with the electrical resistivity data previously collected on this material.

[46]

Table 1 Derived Cell Parameters

P aram eter R3m 1222
a(À) 4.386 (1) 11.66(1)
b(A) 4.386 (1) 4.819 (1)
c(Â) 30.46 (1) 7.467 (1)
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Figure 15 Compression Patterns
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Figure 16 Decompression Patterns
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Following this, the structure remains in the 1222 space group up until approximately 16 

GPa, when it undergoes a transition to another orthorhombic space group, Iba2. This phase 

transition is accompanied by a change in the molecules per unit cell from three to one. A 

graph of the volume versus pressure is presented in figure 17. It should be noted in this 

graph that the volume of the third phase (Iba2) has been multiplied by three to make it 

comparable to the volumes of the previous two phases and there was evidence of this phase 

appearing around 14 GPa. However, there was not a sufficient number of distinct peaks to 

determine a cell volume for this phase until 16 GPa.

The information in table 2 entailed fitting the data to a third order Burch-Murnaghan 

equation of state. These fits are the lines in figure 17. This equation of state has the form

■ V
(3.1)

2 I ' y

with the derived cell data presented in table 2 below. In this equation, V  is the measured 

volume at pressure P, Vq is the ambient pressure volume, and B q is the ambient pressure 

bulk modulus.

o Collected Data 
R-3m EOS 

- ■ 1222 EOS

10 15 20 25

Pressure (GPa)

Figure 17 Bi2 Tes Compression P vs. V
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Figure 18 BigTeg Decompression P vs. V for four experiments

Table 2 Derived Cell Data

P aram eter R3m 1222
T/o

Bo (GPa)
507.5(1) 445(2) 
2T(3)  6

In addition to the compression data, the sample was exposed to x-rays during the de­

compression process. This demostrated that the sample reverted to its original state under 

release of pressure. A plot of the volume versus pressure for the decompression cycle is 

presented in figure 18.

In the decompression plot, it should be noted tha t the data do not show the same 

consistency as they do during compression. This effect has been studied by several groups 

and is due to the different pressure media used for the experiments. Recent research by Shen 

et.al. [44] and Ragan et.al. [40] shows that over the pressure range from zero to eight and 

16-F GPa, silicone fluid shows behavior that is more favorable for application as a pressure 

medium over the methanohethanol mixture. In contrast, silicone fluid has been shown, by 

similar comparisons, to not be as desireable in the region from 8-16 GPa. For comparison 

with the previously mentioned resistivity data, it was determined that the next step should
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be to test the electrical resistivity of the sample under pressure.

Electrical Resistivity

As was mentioned in the previous section, the electrical resistivity of Bi^Teg was previ­

ously measured up to 8.5 GPa by Vereshchagin et. al. [46] In their results, they demonstrated 

that the resistivity shows dramatic decreases around 7-8 GPa. From this information, it was 

expected that our sample would show similar behaviour. This also correlates well with the 

previously measured x-ray diffraction data. The collected data is shown in figure 19.

In the beginning, there is a sharp rise in the electrical resistance up to 3 GPa. Following 

this, the resistance decreases and shows reproducible, sudden drops in the sample resistance 

occurring between 6-6.5 GPa, 13-14 GPa, and 15.5 GPa. These three transitions match well 

with the structural data collected earlier for the Big Teg I-II, beginning of II-III, and end of 

II-III transitions.

60

40

C l

0 2 6 8 10 12 14 16 184

Pressure (GPa)

Figure 19 BigTeg Resistivity vs. Pressure

Of additional interest is the drop in the resistance tha t occurs around 4.5 GPa. This drop 

was also reported previously in Vereschchagin et. al. ’s work. At the time, they attributed this 

particular drop to a phase transition in the structure of the material. However, as was seen
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in the x-ray work presented here, this does not seem to be the case. A possible explaination 

for this will be discussed in the final section of this chapter.

Thermal Conductiviy and Seebeck Coefficient

Seebeck coeflScient: The Seebeck coefficient of Bi^Teg has been previously measured at

ambient conditions by several researchers including Goldsmid[1 2 ], Charles[6 ], and Mansfield[29]. 

Unfortunately, these values tend to vary significantly depending upon contact and surface 

conditions. However, the typical ambient range reported in literature for the Seebeck coef­

ficient Q lies in the range from 65-200 ^  and depends strongly on impurity concentrations.

Using the setup described in the previous chapter, the Seebeck coefficient was measured 

by using thermocouples to determine the absolute temperature at two points on the sample 

and measuring the potential drop between the chromel wires of these two thermocouples. 

Through this method, the data collected is shown in figure 20.

90

75

60

45

30

15

0
0 2 8 104 6

Pressure (GPa)

Figure 20 BUT% Seebeck Coefficient vs. Pressure

As can be seen in this data, the Seebeck coefficient of Bi2 Tes is dramatically reduced 

through the application of pressure. Extrapolation of the curve to ambient conditions pro­

duces a value for the ambient seebeck coefficient of approximately 175 which lies well 

within the previously reported range for the material at ambient pressure and agrees well 

with our measured value under ambient conditions. The trend under pressure seems to follow
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a similar trend to the resistivity, discussed in the previous section. It should be noted that 

the Seebeck coefficient displays no evidence of the phase transition found to occur around 

8  GPa. In addition to this, there is a small shoulder that appears in the data around 4.5 

GPa that should be noted by the reader. This will be discussed in the final section of this 

chapter.

In general, this corresponds well with previous knowledge for this type of measurement. 

One would expect that as pressure is applied to the rhombohedral structure of Big Teg, the 

Seebeck coefficient would decrease. In work done by Larson et.a l, the calculated density 

of states for the material shows a large density of states near the Fermi surface with some 

states actually touching the Fermi surface of the material at ambient pressure. As pressure 

is applied to this material, one would expect the states touching the Fermi surface to begin 

to shift above it, as shown by Jar os et.a l [19] and Bartkowiak et.a l [4]. This shift would 

allow more electrons into the conduction band and reduce the overall potential drop across 

the material significantly. In addition, the measured change in the thermal conductivity, as 

shown in the next section, does not change enough to significantly affect the thermal gradient 

across the sample. As a result the change in potential drop across the sample falls and the 

Seebeck coefficient falls in direct proportion to this parameter.

Therm al Conductivity: The thermal conductivity of Bi2 Tes was also measured by

Goldsmid[12] at ambient pressure, with a value of A =  2 .4 4 ^ .  For this experiment, the 

sample preparation was performed in the same manner as the Seebeck coefficient measure­

ments. This experiment yielded the results shown in figure 21.
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Figure 21 BÎ2 Te3 Thermal Conductivity vs. Pressure

In this figure, it should be noted that the thermal conductivity of the sample increases 

with pressure. This correlates well with what would be expected to occur. If the Fermi 

surface were to increase in size rapidly, as would occur with the compression of the material, 

increasing the phonon frequencies allowed to propagate in the lattice. This will result in a 

larger heat transport through the lattice. It should also be noted that in the 7-8 GPa range, 

the sample shows a stabilization of the thermal conductivity. As the Fermi surface levels off, 

as might occur through a reorientation or restrucutring of the unit cell, the increase in the 

phonon frequencies will stop as well. This will require that no more frequencies be added 

to the phonon modes in the lattice and the thermal conductivity through the lattice will 

level off. Using a similar explaination, it is possible tha t the initial decrease in the thermal 

conductivity is due to the destruction of phonon modes from the initial compression of the 

material.

Heat Capacity

In order to make a more complete set of thermodynamic measurements, the heat capacity 

of Bi2Te3 was measured over the temperature range from 1.8 K to 350 K. Before going on, 

it should be noted that the Debye model used for fitting the data is computing a constant
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volume heat capacity C„. In contrast, the PPMS heat capacity measurements are done at 

constant pressure, Cp. As a result, there is a necessary conversion between these two heat 

capacities using the equation [47]

TV a  ̂
Pt

Cp —  Cy (3.2)

with T being temperature, V being volume, a  being the volumetric thermal expansion, 

and P being the isothermal compressibility. For this conversion, the temperature is mea­

sured, and P is determined by inverting the zero pressure bulk modulus obtained from x-ray 

diffraction. The volume is dependent upon a  and, as such, is calculated at each temperature 

using the a  values obtained from literature.[10],[31]
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Figure 22 BigTes Heat Capacity

From this fit, presented in figure 22, it was determined that the Debye model does not 

account for the entirety of the measured heat capacity values. In an effort to account for 

this, several possibilities for the discrepancy were investigated. First, it was found that by 

considering the internal vibrations to be accounted for using an Einstein approximation, a 

decent fit to the data was obtained. This only occured for the combination mode from all
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of the possible infrared and raman modes, with a total wavenumber of 563 cm~b [22]

Another possibility to explain this is that there is a high temperature electron contribu­

tion to the heat capacity that is not accounted for in the Debye model. This contribution 

could be included by doing a low temperature fit to the data of the form Cp îowT =  7 T  -h /3T^. 

This yielded a reasonable fit, with 7  =  0.021^;^^ and P = 0061 ̂ ^ 4 . In this form, the 7  

term would account for the electronic contribution to the heat capacity. By adding this term 

back on, it was found tha t a decent fit was obtained for the presented data. This demon­

strates that there is some electronic part of the heat capacity for this material, as 7  would 

be zero if there were no heat capacity in the electrons. For these three setups, the Debye 

temperature @d was found to have the values 137.3 K, 138.3 K, and 140.2 for the Debye 

model alone and with both Einstein and electronic corrections, respectively. In addition, 

previous reported results from Gorbachuk et.al. [13], shown below in figure 25, compares 

well with our measured data for the region between 75 and 300 K.
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Figure 23 Einstein Correction
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Figure 25 Gorbachuk Heat Capacity vs. Our Data
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Electronic Topological Transition?

One of the more common phenomena tha t occur in materials with special properties, 

such as superconductivity and thermoelectricity, is the occurance of an electronic topological 

transition (ETT). This type of transition is actually a restructuring of the Fermi surface of 

the material and can be induced through low temperatures, magnetic fields, or pressure. 

In most reported occurances of this type of transition [11],[35],[39] the evidence presented 

clearly shows tha t it happened. This has been theorized by Larson et.al. [25] and reportedly 

measured by Itskevich et.al. [18] to occur in BigTcg under pressure. The report presented by 

Itskevich studies p-doped BigTeg under pressure and shows dramatic evidence in support of 

an ETT in the doped system. However, aside from theoretical evidence from Larson, there 

has not been any report of a measurement of an ETT in the pure undoped material under 

pressure.

Looking back at the data presented in the previous sections, the Seebeck coefficient shows 

a small shoulder occuring around 4.5 GPa and the resistivity shows a corresponding drop in 

the resistance. As such, it is possible that the measured data presented hear demonstrates 

some evidence of the reported ETT for BigTeg. To further bolster this argument, the work 

presented by Novikov et.al. [35] suggests that that this type of transition would also show 

evidence through a phonon softening in the material. This would show up in the thermal 

conductivity as a levelling off or decrease in the measured value as the transition occured. 

As such, there seems to be some evidence of this type of transition present in the measured 

data.
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CHAPTER 4 

C O N C L U SIO N S

The data presented here helps to better understand the properties of BigTeg and what 

causes changes in them. From the structural information, it has been determined that this 

material undergoes two phase transitions around 7 CPa and 16 GPa. In addition, these tran­

sitions are observable in the resistance data, showing tha t the materials electrical properties 

change quite drastically along with the structure. Furthermore, the studies under pressure 

show an increase in the thermal conductivity and a decrease in the Seebeck coefficient. From 

this data, a calculation of the ZT parameter has been performed. This information is pre­

sented below in figure 26. The first data point is the computed value from ambient pressure 

measurements. In this diagram, the zero pressure value for ZT was .0404. This value lies 

well within the range reported previously for Bi2Tes. From Goldsmid’s data [1 2 ], a range 

from .12 to .013 was typical for various slight dopings and undoped forms of Bi2 Tea.

Through the use of pressure tuning of the structure of Bi2 Tc3 , this study has determined 

that the overall thermoelectric potential of this material drastically decreases with the ap­

plication of pressure. However, it does not seem that the changes in the thermal related 

properties are affected by the previously mentioned phase transitions. This is not intuitive 

from references on similar compounds. For example, work done on As2 Tes by Scheidemantel 

et. al. [43] shows that there is a structural transition in the material occuring around 8  GPa 

to the Bi2 Tes structure. This structural transition also corresponds well with a significant 

measured deviation in the Seebeck coefficient.

Although this study did not succeed in improving the thermoelectric figure of merit of 

Bi2 Te3 , it did provide several useful pieces of information. First, the lattice structure of the 

this material strongly determines the electrical properties. As was presented, Bi2 Tes began in 

a rhombohedral space group and transformed to an orthorhombic space group with pressure
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Figure 26 ZT vs. Pressure for BÎ2 Te3

application. The thermal properties, on the other hand, give evidence showing no correlation 

with the structure. The thermal conductivity seemed to increase with application of pressure 

and plateaued just before the phase transition. The continuous drop of the Seebeck coefficient 

is, however, expected for this material. There is evidence in the measured data supporting 

the reported electronic topological transition in Bi2 Tes under pressure, reported by Larson 

et.al [25]. However, this evidence is not conclusive and more studies need to be done to 

determine if what was seen is truly an ETT.

Overall, it can be concluded tha t a negative pressure effect on the structure of Bi2Tc3 

might positively effect the thermal properties and might be of interest. This would require 

a more open structure than the starting structure, or use of larger atoms in place of the 

constituents of Bi2 Te3 . One could also begin to dope tfie material sliglitly to improve the 

resistivity of the material and the thermal properties somewhat.
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Further Work

The next step in this type of study would be to investigate the other typical constituents 

of room temperature thermoelectric materials, Sb2 Te3 and BigSes, as well as solid solutions 

of the three. In addition, further development of the thermal measurements at high pressure 

is planned including the possibility of changing the inner pressure medium to something with 

a much lower thermal conductivity to improve data quality. This could be accomplished by 

switching to a Silica Aerogel or something with a similar conductivity. Also, attem pts to 

use a conductive epoxy on the samples for resistive measurements would potentially improve 

this data quality.

In addition to the room temperature work, it would be beneficial to develop techniques 

for measuring these parameters under pressure as a function of temperature as well. This is 

also suggested in the work mentioned earlier by Polvani et.a l [39]. They mention in their 

results that there is a measured sharp maximum in the Seebeck coefficient of doped BigTeg 

around liquid helium temperatures. This type of measurement would help to reveal any 

ETT’s that may occur.

While only intended as an overview of future work, studies on other thermoelectric ma­

terials would be of significant interest. This would expand the realm of materials into the 

more recent skutterudite and clathrate materials, as well as superlattice structures. In ad­

dition, it would be of great interest to attem pt to dope BigTeg to stretch the lattice and see 

what effect tha t has on the thermoelectric properties. Current interest in these materials, 

combined with the measurements performed here, could begin to give us new insights into 

the workings of thermoelectric materials.
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