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ABSTRACT

M odel o f Early U niverse w ith  Hj"

by

Tae Song Lee

Dr. Stephen Lepp, Exam ination Com m ittee Chair 
Professor of Physics 

University of Nevada, Las Vegas

The aim of th is thesis is to  improve existing models of the Early Universe by 

adding vibrationally resolved reactions to  a standard  model. Stancil, Lepp, and 

Dalgarno (1996, 1998) have developed a standard  chemical model for molecules in 

the Early Universe. G alii and Palla (1998) have shown th a t vibrational excitation 

may be im portan t in this model by forcing the vibrational level of H j to be either 

v = 0  or v=9. I studied a  consistent model for the vibrational levels including level 

dependent form ation and destruction as well as trasition  between the levels.

Ill
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C H A PTE R  1 

INTRODUCTION

The correct analysis of atomic and molecular processes is necessary to  under­

stand the early universe. A t high redshift m atter was completely ionized by therm al 

radiation. As the universe was expanding and cooling, the  form ation of molecules 

was possible. The form ation of a molecule like Hg was very im portan t because the 

presence of the hydrogen molecule was directly related to  the  cooling properties of 

the  prim odial gas, and the m ost im portan t aspect of Hg is its role in the formation 

of the first star. Saslaw and Zippoy (1967) suggested using H^ as a mechanism to 

create Hg. Therefore, the use of the H j  ion reaction rates based on populations of 

the  rotational-vibrational levels could be im portant.

The purpose of my study is the analysis of vibrational transitions between the 0 

and 19 vibrational level. The Hg ion related reactions are introduced in C hapter 2. 

The rate  calculations of all 190 H j vibrational modes are in C hapter 3. The radiative 

association, dissociation, charge transfer, dissociation recombination, and remaining 

reactions are discussed in C hapter 4. The fittings to  find the ra te  coefficient, Ky, 

are in C hapter 5. The abundancy comparisons between the previous calculation of 

the eleven molecules and molecular ions and this work are presented in C hapter 6 . I 

conclude in C hapter 7.
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CHAPTER 2

TH E EARLY UNIVERSE CHEMICAL REACTIONS W ITH  H j 

Hg was the  first neutral molecule formed in the early universe and became the 

most abundant. Because of the lack of a  dipole moment, molecular hydrogen cannot 

form directly by a radiative process. The most common reaction to  form a hydrogen 

molecule happens on a  grain surface. The minimum requirement is th a t one hydrogen 

atom  is retained a t the surface until a  second hydrogen atom  arrives and bonds w ith 

the first. B ut in the early Universe there was no grain available to  form Hg, so H 

must be found some other way and H^ and H can act as intermediaries. A bubble 

diagram  in figure 1 shows the hydrogen reactions in the early Universe.

e,v

Figure 1 Bubble diagram  of H reactions in the early universe (Lepp et a l ,  2002)
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Hg reactions

The Hg ion can be created by

H +  H"*" — > Hg +  photon.

The reverse reaction is

+  photon — *• H +  H^.

The Hg ion can be created and destroyed by associative and dissociative recombina­

tions,

H+ +  H ' — ^ H + + e “ ,

and

-h e — > H -|- H.

The Hg ion can be converted to  H2 via

H+ -FH —^ H2 +  H+.

There are two possibilities between Hg and H ”

H+ +  Ha +  H,

and

H+ +  H - — > H +  H +  H.

Hg can be created from Hg by the  following reactions

H+ +  Ha —  ̂ H+ +  H,

Hg +  H — > Hg +  photon,

H ^ - t - H " — ^ H j + e " .
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The Helium mechanism to  create and destroy Hg 

HeH"^ can form Hg by the  reaction

HeH+ +  H ^ H e  +  H^,

H2 +  He"*“ — > H^ +  He +  photon, 

or He can destroy Hg by the following reaction

He +  H+ — > HeH+ +  H.

D euterium  and Lithium  related reactions 

The following are the  D euterium  related reactions

H+ +  D <— . HD+ +  H,

Hg +  D — > HaD^ +  photon,

H+ +  D — >Ha +  D+,

H+ + D -  ^ H a D +  +  e - ,

HD +  H+ —^  HaD+ +  H,

HD +  H+ —^  H+ +  D.

There are two Lithium  reactions to  create Hg

L i H + +  H —  ̂ Li +  H+,

LiH +  H+ —  ̂ Li +  H+.
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CHAPTER 3

E t  VIBRATIONAL LEVELS 

The Einstein transition  probability of spontaneous emission coefficients, A,j, for 

vibrational level d a ta  provided by S. Lepp were used to calculate the Einstein transi­

tion probabilities, and the  stim ulated emission, B^, and absorption, Bjj, coefficients. 

The partia l spontaneous emission coefficients given by Lepp are shown in Table 1.

Level i Level j R ate Coefficients(sec
1 0 5.200E-07
2 1 8.600E-07
3 2 l.OOOE-06
4 3 l.lOOE-06
5 4 l.lOOE-06
6 5 l.OOOE-06
7 6 9.200E-07
8 7 7.800E-07
9 8 6.400E-07
1 0 9 4.900E-07
11 1 0 3.600E-07
1 2 11 2.400E-07
13 12 1.500E-07
14 13 8.000E-08
15 14 3.600E-08
16 15 1.200E-08
17 16 2.000E-09
18 17 6.000E-11
19 18 7.900E-15

Table 1 The Hg vibrational A,j
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Calculation of Bj,

The Einstein transition probability of spontaneous emission is related to  the ma­

trix  element of the transition  as follows:

* ,  =

where R^- is the transition moment.

If there are Ni  atom s in the i state. Aij is the fraction of atom s in the i sta te  

carrying out the trasition  to  j  s ta te  per second,

lij —  N I hcuij A i j .

Then the intensity of an emission line w ith respect to  will be the following

leij ~  v̂ j I Rjj I .

The intensity of absorption from the incident beam  is given by

lüij = pijNjBji A xhcvij,

where Nj  is the  number of atom s per cm^ in the  lower state. The factor pijNjBji  

represents the number of transitions per cm^ per second produced by the  incident 

radiation. If pij is expressed in term s of energy per wave num ber, then  Bjj can be 

w ritten as th e  following

If we combine the above equation w ith |R*j|^, then  Bji will be

c3

6
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Calculation of Uij

To complete the  calculation of Bji,  we need to  know the  frequency between level 

i and j .  In order to  calculate, the  frequency we can use the  given energy values and  

the  following relation

I downloaded th e  energies (in Atomic Units) of the  vibrational levels calculated 

by P. Stancil (1994). The first nineteen energy differences were then  converted to  

Joules and are listed in Table 2.

Einstein stim ulated coefficients 

A bsorption

From the Einstein probability coeffients, the to ta l number of induced radiative 

transitions per cm^ per sec from i to  j  is equal to  UjBijU^j. The rij is the num ber 

of particles in the j  s ta te  and U,, is th e  density of radiant energy per cm^ per un it 

frequency interval, t/y is related to  the intensity, ly, by

Uy —- J '  Ii/diO .

If we solve the above eqution, then it will lead us to  the following

4?rWBy(T)
Uy,, -  ^ ,

where W  is called th e  ‘dilution factor’ and By(T) is the P lank function.
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Level i Level j Eij(a.u.) Ejj (Joules)
1 0 9.986304e-03 4.353773e-20
2 1 9.406298e-03 4.100906e-20
3 2 8.845501e-03 3.856412e-20
4 3 8.300997e-03 3.619022e-20
5 4 7.769801e-03 3.387435e-20
6 5 7.249001e-03 3.160379e-20
7 6 6.735798^03 2.936636e-20
8 7 6.227102e-03 2.7148570-20
9 8 5.719900e-03 2.493730e-20
1 0 9 5.210999^03 2.271862e-20
11 10 4.696900e-03 2.047728^20
1 2 11 4.173500e-03 1.819539e-20
13 1 2 3.636830e-03 1.585565e-20
14 13 3.081960e-03 1.343656e-20
15 14 2.503450e-03 1.091440e-20
16 15 1.895570e-03 8.264200e-21
17 16 1.254394e-03 5.468837e-21
18 17 5.950070e-04 2.594078e-21
19 18 1.041290e-04 4.539758^22

Table 2 The energy differences between i and j

By(T) =

By substitu ting  By(T) into U„̂ ■ and assuming a  diluted black body radiation field, 

we can solve for the  energy density

Uuij —
STrWhu^

hy •ekT — 1

I decided to use a  perfect black body radiation field in which the dilution factor, 

W , m ust be 1. Finally, the ra te  coefficient of absorption will be
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_ S j ^  1______

Emission

The num ber of particles making the transition  from i to  j  per sec by absorbing 

radiation, Nji,  is proportional to  N,, the number of atoms in the s ta te  i, and the 

energy density, , by the following

iVji =  BjjNjf/y.^..

The num ber of particles making the transition from j  to i per sec, Nij,  has two 

different parts. The first p a rt has the sum of the number of spontaneous transitions 

per sec, which is independent of f/y.^. The second part consists of the num ber of 

stim ulated transitions per sec, which is proportional to  U„̂■

Nij = AijNj + BijNjU„^j.

Nj is the to ta l number of particles in the s ta te  j ,  A,j is the Einstein coefficient for 

spontaneous emission, and B,j is the Einstein coefficient for stim ulated emission. 

Then the above two equations can be expressed as the  following

Nj _  Ajj +  BijUy^. 
Nj BjiUy..

At therm al equilibrium Nj /Nj  is given by
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By equating the two equations above, we can find the  expression of energy density

Uy, . ,

Bjj6 kT Bjj

As derived earlier, the energy density for Bj, can be expressed as

SttIU hu^ 1

-  1

where the dilution factor is 1. In order for the  above two energy densities to  be equal, 

the Einstein coefficients for stim ulated absorption and emission m ust be indentical. 

fn other words.

Bjj — Bjj.

The partia l calculated values for B^ and Bj, are listed in Table 3

10
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Level i Level j Bij and Bji
1 0 2.965789e+09
2 0 5.296046e+07
3 0 1.589224e+06
4 0 6.054540e+04
5 0 1.893547e+03
6 0 1.077553e-01
7 0 5.734775e+01
8 0 5.498259e+01
9 0 3.933649e+01
10 0 2.512452e+01
11 0 1.765158e+01
12 0 1.231602e+01
13 0 9.181294e+00
14 0 6.624061e+00
15 0 4.510369e+00
16 0 2.874841e+00
17 0 1.570683e+00
18 0 4.626121e-01
19 0 2.520845e-02

Table 3 The first 19 values of and Bjj

11
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CHAPTER 4

CREATION AND D ISTRUCTION MECHANISMS OF H j 

The Hg ion is diatomic, and in the  previous chapter all the ra te  coefficients for 

the bound states of Hg" are calculated. We now m ust determine the am ount of each 

Hg level, taking into account the radiative and collisional association rates of each 

level by changing the  vibrational quantum  numbers, v, the destruction rate  by pho­

todissociation, and charge transfer.

Radiative association 

The radiative association reaction sta rts  w ith an H atom  and H"*" ion

H 4 - H"*" —-*• H J  4- photon.

The ra te  coefficients (from v =  0 to  v =  19) in the  different tem peratures were given 

by P. Stancil and shown in Table 4 on page 18, and the a, b, and c param eters are 

listed in Table 9 on page 25.

R adiative dissociation

The destruction of Hg by photodissociation is the reverse of the association reac­

tion

Hg 4- photon — > H 4- H"*“.

In order to  properly calculate the  dipole radiative dissociation (H irata and Padm an­

abhan 2006), we need to  solve for the  unbound final s ta te  and the cross section from

12
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the bound level w ith energy, E(u, J  =  0). The equation for the cross section is

_ |2

where u is the  photon frequency, v and J  are the  vibrational and ro tational quantum  

numbers respectively, and

/•oo

0 (A ) is the bound wave function, D(R) is the dipole m atrix  element between bound 

and unbound states, and / i  (R)  is the unbound wave function. The radiative dissoci­

ation ra te  of therm al contribution, is given by the following relation

Instead, one can use the detailed balance between H 4- H"*" H j  4- photon and its 

reverse reaction, photodissociation. The calculated values for photoassociation

are listed in the last section. Now, we need to  use Ky^j=o values as a  spontaneous 

emission coefficient for the reverse reaction. The actual technique of the

detailed balance is simular to  m ethod I introduced in C hapter 3, bu t unlike the 

changing of the vibrational levels between i and j  of H j , one m ust consider the 

number(s) of elements created by these two reactions. Photoassociation creates one 

element, Hj", while the  reverse reaction creates H and H"*". The spontaneous coefficient 

is related to  the stim ulalted coefhcent by phase space factors,

i r s t  ( j .  _  G h +H +_____ I ASp

-  1

where G represents the  num ber of quantum  states per unit wavenumber k  per unit 

volume for H 4- H"*" and Hg 4- 7 . G h +h + and Gj^+_^^ are given by

Ankl j_

13
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(2,r)3 '

where = I 'nv jc  is the photon wavenumber, kjj_̂ _j^+ = ^ /2 p E / h  is the relative 

wavenumber of H and H"*", and gL c(=  1/4) is the  nuclear spin-degeneracy factor, and 

p  is the reduced mass.

After pu tting  together all the  term s, becomes

r )  = un  gfcT — 1

Charge transfer

Each vibrational level of Hg can transfer to  Hg and H"*" via the reaction

H+ +  H ^ H 2 +  H+.

To complete the above calculations, one needs to  have the charge transfer reaction rate  

as a  function of the m atte r tem peratu re for each level of Hg . Unfortunately, the  rates 

have not been measured or calculated for all levels yet. H irata and Padm anabhan 

(2006) suggested three different cases. For case (1), one can use the value

Ky^j=o =  6.40 X 10'^"cm ^/sec,

measured by K arpas et al. (1979) for all v ibrational levels. In case (2) one can use 

the  Langevin ra te  coefficient

Ky^j=o =  2.38 X lO^^cm^/sec.

For the last case, the  reaction rates can be calculated by linearly interpolating the 

values of a  (Krstic and Janev 2003) and integrating over the  Maxwellian energy 

distribition.

j=i

14
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where k is Boltzm an constant, is cross section for each vibrational level, and

Vrei is relative velocity. For th is study case (3) has been used for each level.

Dissociative recom bination 

The dissociative recom bination

+  e — >■ H +  H,

is the im portan t reaction th a t destroys Hg and contributes to  a  reduction in the 

abundance of Hg. Schneider et al. (1994) have calculated the  first 78 ra te  coefficients 

out of 423 ro-vibrational levels between 20 and 5,000 Kelvin. There is no published 

paper available, bu t according to  H irata and Padm anabhan (2006) the  im portance of 

Hg +  e~ may not be significant a t lower red shifts (in this study red shifts between z 

=  10 to  z =  365 were covered). Their arguem ent was th a t a t z <  600 the number of 

electrons. Tig, is less th a n  10"^. Therefore in order for dissociative recom bination to 

be accountable, m ust be >  ~  6.00 x 10”̂  ̂ cm^/sec.  In the  previous section, I

considered case (1) which Ky^j=o is 6.40 xlO"^"cm ^/sec, so the ra te  coefficient given 

by the file, ‘ra te s .d a ta ’, was used for all vibrational levels. The actual value of 

can be found in Table 5 on page 20.

The forward reactions of Hg

The following two reactions can be found in Dalgarno and Lepp (1987).

H+ +  H - Hg +  H

H+ +  H - — ^H +  H +  H

They argued th a t the ra te  coefficient of above reactions m ight be on the order of 5 

X 10“ ^ (^ )5 c m ^ /s e c . I got the  ra te  coefficient of 2.89 x lO “ ^cm ^/sec by fitting the

15
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curve created by 5 x lO “ ’̂ (^ )5 c m ^ /se c .

The experim ental associative ionization cross sections and Vrei for following reac­

tion can be found in N aji (1998), b u t the rates have not been measured or calculated 

for all levels (only v  =  0 ,J  =  0)

+  H“ —  ̂ H+ +  e '

The rate  coefficient is obtained by averaging the product of the cross section and Vrei 

over a Maxwellian distribution. The calculated reaction rate  was 1.30 x lO “ ^°cm^/sec, 

and compared w ith the  rate  coefficient of 2.70 cm^/ sec from ‘ra te s .d a ta ’.

Thread and Huntress (1974) have calculated the vibrational reaction rates for the 

following two reactions

He +  H+ — . HeH+ +  H,

and

H+ +  Hg ^  H+ +  H.

For the second reaction, Thread and H untress have stated  only the vibrational rate 

coefficients from u =  0 to  5, so I decided to use the value of 1.90 x 10“®cm ^/sec for 

the rest of levels (from u =  6  to  19).

There is one more reaction related to  Hg ,

H+ +  H — yH+ 7-

According to  G alii and Palla (1998), the above reaction was irrelevant. Unfortunately, 

I wasn’t  able to  find any source for all v ibrational level except for u =  0. I used the 

ra te  coefficient of 1.50 x lO “ ^^cm^/sec from Stancil et al. (1998).

The reaction for charge exchange w ith Deuterium  is

H+ +  D — . Hg +  D+.

16
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The reaction is very simular to  charge exchange between and H. For case (1), I 

decide to  use 6.40 x lO “ ^°cm^/sec as the  ra te  coefficient (Stancil et a l ,  1998), and for 

case (2), th e  charge transfer ra te  coefficients between Hg and H have been applied.

The experimental associative ionization cross sections and Vrei {v — 0, J  — 0) for

the  following reaction can be found in Naji (1998)

H + + D - —^ H s D + T e - .

T he ra te  coefficient is obtained by averaging the  product of the cross section and Vrei 

over a  Maxwellian distribution.

Because of the similarity in the process of dissociation by D,

H+ +  D — > H2D+ +  7 ,

one can use the same rate  coefficient of 1.50 x lG “ ^^cm^/sec for all the reaction levels 

used in Hg dissociation by H. Probably, it m ight be over estim ated ra te  because 

D euterium  to  be heavier th an  Hydrogen, and it will cause the Vrei of Deuterium  

is smaller than  Hydrogen. I compare the result from the ra te  coefficient of 1.50 

X 10"^^^cm^/sec w ith the reaction ra te  of 7.0 x  10“ ^®cm^/sec from Stancil et a l  (1998).

For the following two reactions, the vibrational reaction rates calculated by Thread 

and H untress (1974) have been used and compared w ith the reaction ra te  of 1.05 

x lO “ ®cm^/sec from Stancilef aL (1998)

HD +  H+ ^  H2D+ +  H

HD +  H j  — > H+ +  D.

For the  next reaction, the ra te  coefficient of 1.07 xlO ~^cm ^/sec  determ ined from 

cross section by Linder, Janev, and Botero (Stancil et a l ,  1998) has been used for all 

2 0  levels,

H^ +  D 4— , HD+ +  H.

17
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The form ation reactions

For form ations I have considered the  case in which the reaction only creates Hg 

w ith a  vibrational mode of zero. This m ethod will make the populations of 

in each vibrational level differ from the  detailed calculations from populating all 

available levels w ith their statistical ratios, bu t the to ta l abundances of and others 

(molecules and molecular ions) might be conserved (H irata and Padm anabhan, 2006).

HeH+ +  H — > He +

Ha +  He"  ̂ — > H j +  He +  7  

HD+ +  H ^  H+ +  D 

LiH+ +  H — > Li +  H+

LiH +  H+ — > Li +  H+

The following associative ionization reaction,

H+ + H- — ^ H + + e “ ,

is discussed by Shapiro and Kang (1987). For T  <  10^, the ra te  coefficient is on 

the order of 1.00 x lO “ ^(T )“ °-^cm^/sec for all levels. The values of param eters (a, b, 

and c) are 1.02 x lO ” ®, -0.400, and 0.42 respectively fitting K(^,=o,j=o)(î") =  100  x 

1 0 “ ^(T)'°-^cm ^/sec.

18
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Levels Temps. (Kelvin) R ate  Coefficients (cm^/sec)
0 8.00E+01 2.50837244E-42
0 9.00E+01 6.61330719E-42
0 l.OOE+02 1.82654370E-41
0 2.00E+02 2.02590356E-37
0 3.00E+02 9.87475603E-35
0 4.00E+02 8.17486798E-33
0 5.00E+02 2.43846844E-31
0 6.00E+02 3.75409139E-30
0 7.00E+02 3.63649821E-29
0 8.00E+02 2.50157078E-28
0 9.00E+02 1.32319958E-27
1 8.00E+01 9.13835247E-40
1 9.00E+01 2.33990073E-39
1 l.OOE+02 6.27230119E-39
1 2.00E+02 5.23705277E-35
1 3.00E+02 1.96094664EL32
1 4.00E+02 1.28629637E-30
1 5.00E+02 3.12126341E-29
1 6.00E+02 3.99091816E-28
1 7.00E+02 3.26505646E-27
1 8.00E+02 1.92377272E-26
1 9.00E+02 8.82071908E-26
19 8.00E+01 3.19616417E-26
19 9.00E+01 6.72232888E-26
19 l.OOE+02 1.39287552E-25
19 2.00E+02 3.04755629B-23
19 3.00E+02 6.05605983E-22
19 4.00E+02 4.05872404E-21
19 5.00E+02 1.53254152E-20
19 6.00E+02 4.10022848E-20
19 7.00E+02 8.75986568E-20
19 8.00E+02 1.60152906E-19
19 9.00E+02 2.61602289E-19

Table 4 The partia l values of (T)
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Reactions a  (cm^/sec) b c (Kelvin)
+  e -  — > H +  H 1.20e-08 -0.40e+00 O.OOe+00

H+ +  H - — . H+ +  e - 1.02e-09. -0.40e+00 0.42e+00
HeH+ +  H — . He + 1.04d-09. 0.13d+00 3.31d+04
Ha +  He^ ——> H^ +  He T  7 3.60d-16 O.OOd+00 O.OOd+00
HD+ +  H — . H+ +  D l.OOd-09 O.OOd+00 1.54d+02
LiH+ +  H —  ̂Li +  H+ 9.00d-10 O.OOd+00 6.64d+04
LiH +  H+ — y Li +  H^ l.OOd-09 O.OOd+00 O.OOd+00

Table 5 The dissociative recom bination and formation reactions for H ,

20
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C H A PTE R  5 

FITTIN G

To calculate the ra te  coefficient one m ust know the  values of the A’„,j=o at different 

tem peratures (examples are shown in Table 4). The rate  coefficient fits are given by 

the relation
/  T

a(cm^/gec) =  a j  e ' f .

The bound states of H j

The spontaneous emission coefficient, A^-, does not depend on tem perature so 

it can be used as a rate  coefficient w ithout fitting (Table 6 ). For the stim ulated 

emission and the absorption, one needs to  calculate the  A„,j=o w ith several different 

tem peratures between 450 (400 for photoassociation) and 900 Kelvin and use the 

h tting  equation. The fitting will give a, b, and c param eters and add to  ‘ ra te s .d a ta ’, 

which is used for ‘the early universe code’. The a, b, and c param eters for stim ulated 

emission and absorption are listed in Table 7 and 8  on page 23 and 24. The fitting 

curves are on page 26 and 27. ‘G nuplot’ has been used to  find the  a, b, and c 

param eters for the bound sta tes of Hg .
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Reactions a  (cm^/sec) b c (Kelvin)

(o ,j= o) +  7  ^  H g 5.200^07 O.OOOE+00 O.OOOE+00

H g (o ,j= o) +  7  —  ̂ H g (2 ,j= o ) 6.800e-08 O.OOOE+00 O.OOOE+00

H g (0, j= o )  +  7  (3V =oi 6.300e-09 O.OOOE+00 O.OOOE+00

^ 2  (0,7=0) +  7  H g (4 j,=o) 5.200e-10 O.OOOE+00 O.OOOE+00

(0,7=0) +  7  H g (5 j= o ) 2.900e-ll O.OOOE+00 O.OOOE+00

^ 2  (0,7=0) 4- 7  —  ̂ H g (6,7=0) 2.600e-15 O.OOOE+00 O.OOOE+00

H g (0,7=0) +  7  ^  H g (7 j= o ) 2 .0 0 0 e- 1 2 O.OOOE+00 O.OOOE+00

(0,7=0) +  7  H g (87= 0) 2.600e-12 O.OOOE+00 O.OOOE+00

H g (0,7=0) +  7  ^  H g (9 j= o ) 2.400e-12 O.OOOE+00 O.OOOE+00

(0,7=0) + 7  H g  (107=0) 1.900^12 O.OOOE+00 O.OOOE+00

^ 2  (0,7=0) +  7 ^  (11,7=0) 1.600e-12 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7  H 2 (127=0) 1.300e-12 O.OOOE+00 O.OOOE+00

H g (0,7=0) +  7 H g (137=0) l.lOOe-12 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7  H 2 (14,7=0) 8.800^13 O.OOOE+00 O.OOOE+00

H g (0,7=0) + 7  (15,7=0) 6.500e-13 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7 ^  (16,7=0) 4.400e-13 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7 ^  H g (177=0) 2.500e-13 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7 ^  H 2 (187=0) 7.500e-14 O.OOOE+00 O.OOOE+00

H 2 (0,7=0) +  7  ^  H g (197=0) 4.100e-15 O.OOOE+00 O.OOOE+00

Table 6  The spontaneous emission, Aj

Photoassociation

By use of th e  d a ta  shown in Table 4, the  three param eters a, b, and c, can be 

found for the  reaction H +  H"*" — y Hg +  photon. The param eters are listed in Table 

9 on page 24. ‘X m grace’ was used to  fit the  d a ta  points.
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Reactions a  (cm^/sec) b c (Kelvin)

^2 (1,7=0) +  7  (0,7=0) 0.395hh06 0.185E+00 0.306E+04

^2 (2,7=0) +  7  (0,7=0) 0.670E-07 0.948E-02 0.612E+04

H2 (3,7=0) +  7 H2 (0,7=0) 0.630E-08 0.422E-03 0.892E+04

Hg (4,7=0) +  7 H2 (0,J=0) 0.520E-09 0.697E-04 0.115E+05

^ 2  (5,7 =0) +  7  Hg (0,J=0) 0.290E-10 0.813E-04 0.140E+05

H2 (6,7=0) +  7  ^  Hg (0, J=0) 0.260E-14 0.300E-04 0.163E+05

H2 (7,7=0) +  7 —̂ H2 (0,J=0) 0.200E-11 0.648Eh04 0.184E+05

H2 (8,7=0) +  7  —» H2 (0, J=0) 0.260E-11 -0.883B-04 0.204E+05

^2 (9,7=0) +  7 —̂ H2 (07=0) 0.240E-11 -0.555E-04 0.222E+05

^ 2  (10,7=0) +  7 —̂ H2 (o,j=0) 0.190E-11 0.146E-04 0.238E+05

H2 (11,7=0) +  7 ^  HJ(07=o) 0.160E-11 -0.167E-04 0.253E+05

H2 (12,7=0) +  7 —̂ Hg (0,J=0) 0.130E-11. 0.268E-05 0.266E+05
H2 (13,7=0) +  7  ^  Hg (0,7=0) O.llOE-11 -0.114E-03 0.278E+05

^2 (14,7=0) +  7 ^  (0,7=0) 0.880E-12 -0.818E-04 0.288E+05
^2 (15,7=0)^+ 7  —̂ Hg (o,j=o) 0.650E-12 0.224E-03 0.295E+05

H2 (16,7=0) +  7 ^  (0,7=0) 0.438E-12 0.277E-02 0.301E+05

^2 (17,7=0) +  7 H J  (0,7=0) 0.247E-12 0.613E-02 0.305E+05

^2 (18,7=0) +  7 Hg (07=0) 0.752E-13 -0.152E-02 0.307E+05

^2  (19,7=0) +  7  (0,7=0) 0.487E-14 -0.934E-01 0.308E+05

Table 7 The stim ulated emission, UB,j
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Reactions a  (cm^/sec) b c (Kelvin)

H z (0,7=0) +  7  ^  (1,7=0) 0.395E706 0.185E+00 0.306E+04

H g (0,7=0) +  7  (2,7=0) 0.670E-07 0.948E-02 0.612E+04

H z (0,7=0) +  7  H g (37= 0) 0.630B-08 0.422E-03 0.892E+04

H z (0,7=0) +  7  H g (47= 0) 0.520E-09 0.697E-04 0.115E+05
H g (0,7=0) +  7  H j  (5,7=0) 0.290E-10 0.813E-04 0.140E+05
H z (0,7=0) +  7  ^  H g (6 7= 0) 0.260E-14 0.300E-04 0.163E+05
H g (0,7=0) +  7  H g (77= 0) 0.200E-11 0.648E-04 0.184E+05

H z (0,7=0) +  7  H g (87= 0) 0.260E-11 -0.883E-04 0.204E+05
H z (0,7=0) +  7 —  ̂ Hg (97=0) 0.240E-11 -0.555E-04 0.222E+05
H z (0,7=0) +  7  —  ̂ Hg (10,7=0) 0.190E-11 0.146E-04 0.238E+05
H z (0,7=0) +  7  Hg (1 1 7 = 0) 0.160E-11 -0.167E-04 0.253E+05
H z (0,7=0) +  7  H g (1 2 7 = 0) 0.130E-11 0.268E-05 0.266E+05
H z (0,7=0) +  7 ^  HJ (137=0) O.llOE-11 -0.114E-03 0.278E+05
H z (0,7=0) +  7 ^  H j (14,7=0) 0.880E-12 -0.818EL04 0.288E+05
H z (0,7=0) +  7 ^  H g ( i5  j^ o ) 0.650E-12 0.224E-03 0.295E+05
H z (0,7=0) +  7  —  ̂ Hg (167=0) 0.438E-12 0.277E-02 0.301E+05

Hz (0,7=0) +  7 —̂ H^ (17,7=0) 0.247E-12 0.613E-02 0.305E+05

Hz (0,7=0) +  7  H j (18,7=0) 0.752EL13 -0.152E-D2 0.307E+05

Hz (0,7=0) +  7  Hg (197=0) 0.487E-14 -0.934E-01 0.308E+05

Table 8  The stim ulated absorption, UB
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Levels a (cm^/sec) b c (Kelvin)

H +  H+ y (07=0) +  7- 1.48E-34 8.39E+00 -3.19E+01
H +  H+ y (17=0) +  7- 2.43EL32 8.04E+00 -3.04E+01
H +  — y Hg (27=0) +  7- 1.15E-21 4.09E+00 -1.44E+01

H +  — y (37=0) +  7- 5.01E-21 3.59E+00 -1.24E+01

H +  H+ y (47=0) +  7- 1.61E-20 3.04E+00 -1.03E+01

H +  H+ y (57=0) +  7- 4.08E-20 2.49E+00 -8.24E+00

H +  — y (67=0) +  7- 7.66E-20 1.92E+00 -6.16E+00
H +  H+ — y (7 7=0) +  7- 8.87E-20 1.31E+00 -4.00E+00
H +  — y 7 . 5.88E-20 7.14E-01 -2.08E+00
H +  H+ y (9 7=0) +  7 - 1.48EL20 2.09E-01 -8.43E-01

H +  H+ y (107=0) +  7- 5.69EL22 2.24E-01 -2.05E+00

H +  H+ — y HJ(ii7 =o) +  7- 7.18E-24 4.33E-01 -1.98E+00
H +  H+ y Hj"(127=0) +  7- 1.78E-30 7.70E+00 -2.91E+01

H +  -—y (137=0) +  7- 7.87E-29 7.36E+00 -2.77E+01

H +  y (147=0) +  7- 2.34E-27 7.02E+00 -2.62E+01
H +  H+ y Hg (157=0) +  7- 5.01E-26 6.65E+00 -2.47E+01
H +  H+ y (167=0) +  7- 7.93E-25 6.26E+00 -2.31E+01

H +  H+ — y (177=0) +  7 - 5.86E-24 5.68E+00 -2.08E+01
H +  H+ y (187=0) +  7- 4.53EL23 5.18E+00 -1.87E+01
H +  — y (197=0) +  7- 2.45E-22 4.63E+00 -1.65E+01

Table 9 The a, b, and c param eters for the photoassociation
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C H A PTE R  6 

RESULTS

Figure 4, 5, and 6  show the abundances of all nineteen Hg vibrational levels and 

the  newly calculated Hg molecule. The comparison between the  old calculation and 

th is work of the abundances of the eleven molecules and molecular ions in the early 

Universe a t redshift range 11 <  z <  365 are presented on the following graphs. There 

is no change in the abundances of HeH""", HeD^, Heg , and LiH^.

I found th a t the reactions discussed in C hapter 2 (with all the vibrational levels 

of Hg ) did not heavily contribute to  the  creation and destruction of molecules and 

molecular ions, bu t one can clearly observe certain differences between previous cal­

culations and this study. The differences of their abundances are shown in Figures 6 

to  18.

The comparison between this work and H ira ta  and Padm anabhan (2006) is shown 

on page 35. One can see th a t there is noticable difference in the to ta l abundances of Hg 

between my work and H irata  and Padm anabhan. This work is closer to  the previous 

calculation th an  theirs. Does it mean th a t the contribution from the vibrational 

levels is a  lot less effective th an  from ro tational and vibrational levels all together? In 

fact, there was a  m ajor difference between th is study and H irata and Padm anabhan 

(2006) beside of the additional ro tational quantum  numbers. Their calculation was 

started  from z =  500, so a t the tim e it readies z — 365 the  abundances of all the 

elements (include Hg and Hg ) were not the same as the  initial conditions I used for 

th is calculation.
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Figure 4 The abundances of 20 Hg vibrational levels for the new l
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Figure 5 The abundances of 20 Hg vibrational levels for the new2
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Figure 10 The old and new abundances of HeH 4-
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Figure 12 The old and new abundances of HD^
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Figure 18 The old and new abundances of LiH
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Figure 20 The to ta l abundances of Hg from H irata  and Padm anabhan, 2006
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CH A PTER  7 

CONCLUSIONS

I have discussed the contribution of H j  between 11 <  z <  365. In comparison 

to  previous calculations, I have resolved all 190 vibrational levels of H j  ■ The final 

results show th a t there were noticable bu t not significant changes in the  abundances 

of 11 molecules and molecular ions.

I found th a t w ith all v ibrational levels the photoassociation, photo dissociation, 

and charge transfer contribute the  most for creation and destruction of Hg, Hj", and 

most molecules and molecular ions. As I mentioned earlier, H j definitely can act as 

a  medium to  create and destroy molecules or molecular ions, and vibrational levels 

contribute to  the am ount of their final abundances.

Many p arts  of my present work can be improved. F irst, more precise calculations 

or mesurements of cross sections are needed for all levels. For instance, instead of using 

the rate  coefficients for u — 0 for some of reactions one can resolve for all vibrational 

levels. Second, because Hg is a  molecular ion, there is not only a vibrational quantum  

number bu t a ro tational quantum  num ber as well. In this work I assumed th a t the 

rotational quantum  num ber (J )  is zero, bu t 423 levels of all ro-vibrational modes 

must be considered for be tte r results.
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