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ABSTRACT 

Seed Fates oi Arctomecon californica

by

Laura Megill

Dr. Lawrence R. Walker, Examination Committee Chair 
Professor of Life Sciences 

University of Nevada, Las Vegas

Seed fates were investigated for Arctomecon californica a Critically Endangered plant 

in the State of Nevada. This species is a short-lived rare perennial plant endemic to the 

Mojave Desert. Conservation plans for the species would benefit by understanding the 

fate of A. californica seeds from seed production, dispersal, and granivory to 

incorporation within the seed bank. Each year, 18% of the capsules suffered predispersal 

loss. The average number of seeds per capsule ranged from 87 to 99 seeds. Seed 

viability ranged from 87.5% to 100% per plant. Seed production was highly dependent 

on the number of mature capsules per plant and was used to predict seed output per plant. 

Dispersal from the capsule mainly by the ejection of seeds triggered by wind tended to 

disperse seeds away from parent plants. Once seeds reached the soil surface, ants were 

the main agents responsible for seed removal. The role of rodents appeared to be 

minimal in A. californica seed removal experiments. Examination of the potential role of 

seed elaiosomes in dispersal elicited variable responses from ants. The seed bank of this 

species was spatially heterogeneous with most seeds found either close to the surface 

(34%) or deep within the soil column (26%). The proportion of viable seeds tended to be 

highest within the 6-15 cm depth increment, suggesting the presence of a long-lived seed 

bank. The distribution of seeds within the seed bank with respect to viability indicated

111
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10.5% were viable seeds while 35.6% consisted of seed fragments or decayed seeds and 

the rest, 53.9% were filled but non-viable seeds.
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CHAPTER 1

INTRODUCTION 

Seed fates determine the future regeneration and persistence of most plant 

populations. The interaction between seeds and the environment influence the temporal 

and spatial patterns of plant species (Harper et al. 1970, Harper and White 1974). Thus, 

knowledge of the links between seeds and the factors that influence successful 

propagation of the species are important for successful conservation and restoration.

Arctomecon californica Torrey and Fremont is a short-lived perennial plant endemic 

to the Mojave Desert and is listed as a Critically Endangered plant by the State of 

Nevada. The species is a member of the Papaveraceae, or poppy family, and one of three 

members of the genus Arctomecon limited in distribution to Southern Nevada and 

Northern Arizona. The other two species represented in the genus Arctomecon include 

the endangered Arctomecon humilis, confined to southwestern Utah (Harper and Van 

Buren 2004), and Arctomecon merriamii, restricted to southern Nevada and southeastern 

California (MacMahon 1985). The genus Arctomecon is derived from Arctos (bear), and 

mecon, (poppy) resulting in several vernacular names including the Las Vegas 

bearpoppy, golden bear-claw poppy, golden bear poppy, yellow bear-claw poppy, 

yellow-flowered desert poppy, California bearpoppy, and California bearclaw poppy 

(Phillips and Phillips 1988, Mistretta et al. 1996, Sheldon-Thompson and Smith 1997). 

The accepted common name is the Las Vegas bearpoppy.

1
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The habitat of A. californica eonsists mainly of gypsum (ealeium sulfate dehydrate) 

outcrops but also inhabits claybeds, high-boron shales (Meyer 1986), alluvium (Drohan 

and Buck 2006), desert pavement and “gravelly slopes” (Mistretta et al. 1996). The 

gypsum substrates are referred to as “gypsum barrens” (Swearingen 1981) ranging from 

18-69% gypsum within the soils (Myers 1986) that form edaphic habitats intermixed 

within the Larrea tridentata and Atriplex canescens communities of the Mojave Desert 

(Thorne 1976). In addition to A. californica, these barrens support other “gypsum- 

tolerant species” including Atriplex confertiflora, Atriplex hymenelytra, Anulocaulis 

leiosolenus, Camissonia multijuga, Enceliopsis argophylla, Ephedra torreyana, 

Eriogonum corymbosum, Eriogonum inflatum, Eriogonum insigne, Lepidium fremontii, 

Mentzelia pterosperma, Petalonyx parryi, Phacelia palmeri, Phacelia pulchella, 

Psorothamnus fremontii, Psathyrotes pilifera and Tiquilia latior (Meyer 1986, Phillips 

and Phillips 1988, Mistretta et al. 1996, Powell 1999).

By 1994, all surveys documenting historical and current A. californica populations 

were considered complete and revealed a total of 108 populations. In Nevada, habitat 

destruction in the western portion of the species range from the rapid expansion of the 

Las Vegas Valley caused the extirpation of 13 A. californica populations. The status of 

four additional A. californica populations was unknown but considered lost. This left 91 

surviving populations in Nevada estimated at 580,000 plants covering approximately 

8,498 heetares between 320-960 m above sea level (asl). However, Mistretta et al. (1996) 

identified an additional 13 populations in the Las Vegas Valley that were threatened with 

extirpation in the foreseeable future due to growth. An additional 29 populations have 

appeared to or will soon experience significant impacts from growth, off-road vehicle
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use, mining and mineral exploration, animal grazing, and trampling by feral burros and 

horses. The other 49 Nevada A. californica populations located in the eastern half of the 

species range are under the Federal management of the National Park Service (NFS) and 

the Bureau of Land Management (BLM) suggesting extinction of the species as a whole 

appears unlikely (Mistretta et al. 1996, Phillips and Phillips 1988).

Arctomecon californica is an herbaceous perennial plant composed of a mosaic of 

live and dead rosettes ascending from a taproot. A single stalk arises from each rosette 

bearing multiple yellow flowers. Plants flower yearly from March to June generally 

within 1 to 2 years of establishment. They are commonly self-incompatible plants 

requiring cross-pollination of the flowers for seed set (Sheldon 1994). There is no 

vegetative reproduction (Meyer 1987, Mistretta et al. 1996). Flowers are pollinated by 

bees, wasps, beetles and ants. The most important pollinators are the rare Mojave bee 

(Perdita meconis) and the Adrenid Bee (Megandrena enceliae\ Hickerson 1998).

This species is considered to have a high reproductive output with 91.3 + 3.5 seeds 

per mature fruit (Meyer 1987). Seeds appear to be dispersed by strong winds indicative 

of the Mojave Desert from May to June (Mistretta et al. 1996). Once seeds are shed from 

the parent plant they tend to disappear. Germination occurs during the late winter months 

indicating seeds may require cold stratification for dormancy release (Meyer 1987). 

Meyer (1987) and Sheldon (1994) both found that the seedling stage suffered the highest 

mortality rate. Plants that survived to flower, tended to live an average of 4 to 5 years 

(Meyer 1987). The combination of a short life span coupled with infrequent germination 

events resulting from insufficient rainfall are the primary causes for the extreme year-to- 

year fluctuations observed in A. californica population densities (Meyer 1987).
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In the past, areas that had once supported A, californica plants but no longer appeared 

to have any live plants were no longer considered habitat for the species. This led to the 

development or uses other than conservation for these unoccupied areas resulting in the 

loss of A. californica habitat over time. Following the death of the live plants, the 

population may persist for many years as seed bank with a return of live plants following 

cold winter rains that stimulate germination (Meyer 1987, Powell 1993). This suggests a 

long-lived seed bank (Meyer 1987, Mistretta et al. 1996). However, preliminary soil seed 

bank analyses conducted by Science Applications International Corporation (2001) at 

Bearpoppy Hill, located near the intersection of Lake Mead Boulevard and PabCo Tram 

road in the Sunrise Management area of Clark County, Nevada (east of Las Vegas, 

Nevada) concluded that the soil was “depauperate” of A. californica seeds. Another A. 

californica seed bank study considered the most intensive to date was conducted by 

Megill et al. (2007). This study near Eglington Preserve in North Las Vegas, Nevada, 

found 1.44 seeds per m^ in an area occupied sporadically by live A. californica plants 

over the past several years (Megill et al. 2007).

Although the existence of a long-lived soil seed bank explains the disappearance and 

re-appearance of A. californica plants on certain sites over time, concern over a decline of 

A. californica populations for the past several years in the Las Vegas Valley due to 

urbanization has escalated (E. Powell pers. comm.). There has been limited success with 

transplanting A. californica plants (Winkle 2004) and germination of the species had 

been extremely difficult as well (Powell and Walker 2003). The concern over the decline 

in A. californica populations is even more pronounced in years with limited germination 

events which cause proponents to push for endangered species status. Then in those
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years in which germination events due occur, there is the perception that the species may 

not be rare at all and does not warrant designation as an endangered species. However, 

extirpation of A. californica populations due to urbanization in the Las Vegas Valley has 

caused a decline in the number of populations of this species. Other factors that may 

contribute to this decline include intrinsic biological attributes that constrict plant 

distribution such as life history traits, limited seed dispersion (Meyer 1987) lack of 

genetic variability (Hickerson and W olf 1998), pathogens (Mistretta et al. 1996, Meyer 

1996), seed predators (Pantone et al. 1995), or lack of pollinators (Hickerson and W olf 

1998).

Overall, there is a general lack of knowledge regarding the fate of A. californica 

seeds. The unknown fate of A. californica seeds provides an information gap in 

conservation management plans that is critical to the preservation of the species (Powell 

and Walker 2003). It appears that the species survives as a seed bank for part of its life 

cycle and understanding this is necessary for preservation of habitat where live plants 

have disappeared and survive only as a seed bank. Also, once seeds are shed from the 

parent plant they tend to disappear suggesting possible predation by ants and rodents or 

possible dispersal off-site. Current mitigation measures consist of soil salvaging, an 

expensive measure to aid in re-colonization of the disturbed area. If removal of A. 

californica seeds off-sites by processes not yet understood occurs then current mitigation 

measures would be seriously undermined. Therefore, the objective of this research was 

to determine the seed fates of A. californica from seed production, seed dispersal, and 

granivory to incorporation within the soil seed bank. The following questions were 

addressed in this research study: (1) Are there physical attributes of A. californica plants
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that can predict seed production? (2) What are the dispersal patterns of the seeds? (3)

Do elaiosomes on the seeds promote dispersal by ants? (4) Is there a seed bank of A. 

californica seeds; are those buried seeds viable and what is the vertical distribution of the 

seeds?
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CHAPTER 2 

METHODS

Study Sites

The study sites were located throughout the natural range of A. californica in the 

northeastern portion of the Mojave Desert along the western edge of Lake Mead National 

Recreation Area (LMNRA) and the Frenchman Mountains, near Las Vegas, Nevada (Fig. 

1). Sites 1-3 (Rainbow Gardens) were gypsum evaporite deposits, or badlands, at an 

elevation of 585 m above sea level (asl) in the Frenchman Mountains and were at least 

100 m apart. Sites 4-5 (Stewarts Point) were characterized by exposed rocky gypsum 

outcrops covered in alluvial gravel at 373 m asl (Powell 2003). These were at least 500 

m from each other and 97 km from Sites 1-3. All the gypsum outcrops are located within 

the southern Basin and Range Providence and derived from the Muddy Creek geologic 

formation (Phillips and Phillips 1988) deposited during the Permian to Quaternary age 

(Meyer 1986). The average annual temperature is 20° C with extreme temperatures 

ranging from -1 3 °C to 4 7 °C . Precipitation varies from 14 mm to 272 mm with an 

annual average of 114 mm (National Weather Service 2006).

In April 2004, at each of the five sites, I established one 100 x 20 m plot that had at 

least 15 flowering A. californica plants and was minimally disturbed by off-road vehicle 

traffic or human activities. All data were collected within these plots. I measured seed 

production, seed dispersal, and granivory at Sites 1-4 from March-September 2004 and
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2005 and seed bank at Sites 1-5 from January-March 2005. Site 5 was added for the seed 

bank study to increase statistical power.

Seed Production

I sampled seed production from March-July in both 2004 and 2005. Five different 

reproducing A. californica plants were randomly chosen per site each year. All mature 

capsules were removed from the parent plant prior to dispersal (methods from 

Myerscough and Marshall 1973) and the following capsule measurements were recorded 

for each capsule in cm: the length, diameter (greatest width across each capsule), volume 

and the number of seeds per capsule. Estimated capsule volume was based on the 

capsule shape and calculated using each of the following volume equations: cone =

VsTir̂ h, cylinder = jrr^h and sphere = %;rr^. The following plant characteristics were 

recorded for each reproductive A. californica plant within each plot during May-June 

2004-2006: the number of flowers, capsules, stalks, and rosettes per plant, plant diameter 

(avg. two perpendicular measurements) and plant size based on the area of a circle (nr^).

Seed production samples from 2005 were stored at room temperature in coin 

envelopes for six months in a closet. Viability was tested on a subset of seeds with 2, 3,

5-triphenyl tétrazolium chloride solution following ten hours of soaking in distilled water 

(AOSA 2000). After soaking, seeds with pink-stained embryos were considered viable. 

Preliminary viability testing of seeds encased in capsules with obvious fungal infection 

resulted in 90% mortality of infected seeds therefore, those capsules were discarded from 

the data set due to bias.

Seed Dispersal

I measured plant-based seed dispersal using seed traps placed around five different
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randomly chosen plants that differed from those used for seed production at Sites 1-4 

(methods from Chambers and MacMahon 1994). In spring 2004,1 trapped seeds using 

10x10 cm squares of cardboard coated with Tanglefoot®, a sticky adhesive substance. 

Each sticky trap was placed randomly within four equal-sized quadrats designated by 

their center point as North (0°), South (180°), East (90°) and West (270°) in three 

concentric rings (20 cm, 40 cm, and 60 cm radius) from the edge of the plant (Fig. 2). To 

obtain proportional sampling of area amongst rings, four traps were placed in the smallest 

ring (0-20 cm), 12 in the middle ring (20-40 cm) and 20 in the outer ring (40-60 cm).

The total area sampled by plot-level sticky traps was 1.8 m^ or 0.09 % of each plot.

In spring of 2005,1 repeated this study but added an additional two concentric rings 

that extended the design out to a radius of 100 cm from the edge of each plant to increase 

the chances of capturing the tail-end of the primary seed dispersal curve (Fig. 2). This 

resulted in 100 traps instead of 36 traps around each of the five targeted plants and 2.5% 

of each plot covered with traps. Additionally, the five study plants were dissected once 

natural dispersal concluded to determine the average number of seeds trapped within 

plants during seed dispersal. The seeds within the plants were not used in any analyses 

because I was unable to determine if the seeds were from the current year or an 

accumulation of past years. These seeds likely accumulated over past years because 

numerous seeds were lodged in decayed rosettes. Also, seeds from nearby plants may 

have inflated the number of seeds trapped around seed dispersal study plants during 

2004; therefore I removed all capsules from all plants within 200 cm of the 2005 seed 

dispersal plants to try an minimize any potential bias.

The plot-level seed dispersal design consisted of 180 sticky traps placed randomly
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within the plots at Sites 1-3 from March-April 2004 and 2005 (methods from Chambers 

and MacMahon 1994; Fig. 3). The total area sampled was 1.8 m^ or 0.09% of each plot. 

The captured seeds were counted and their trap locations plotted on x, y grids along with 

the distance to the closest reproducing A. californica plant.

Granivory

Exclusion experiments consisted of a two-way factorial experiment with four 

treatments (excluding ants, rodents, both or neither) at Sites 1-4 conducted 1-2 months 

after natural dispersal. The granivory experiment consisted of five separate trials 

conducted in 2004 and 2005: Trial 1: 20-25 July 2004, Trial 2: 27 July-1 August 2004, 

Trial 3: 13-20 July 2005, Trial 4: 28 August-2 September 2005 and Trial 5: 2-9 

September 2005. Each replicate consisted of four petri dishes assigned to each of the 

four treatments containing 30 seeds each (Fig. 4), and five replications of each treatment 

per site. Groups of replicates for each treatment were placed randomly throughout the 

plots at Sites 1-4, irrespective of plants. Several pebbles were placed in each dish to 

mimic the natural environment. Cages consisting of 10x8x5 cm boxes of wire mesh with 

an aperture size of 5x5 mm were used to exclude rodents from the seeds. To exclude 

ants, Tanglefoot® sticky adhesive was applied as a circular moat around cage-free petri 

dishes containing A. californica seeds. To exclude both rodents and ants, rodent 

exclosures and Tanglefoot® circular moats were placed around the petri dishes. Controls 

that excluded neither rodents nor ants consisted of petri dishes with seeds placed in the 

open without cages or moats.

Elaiosome

During preliminary analyses, I noted that many of the A. californica seeds had white.

10
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fleshy appendages located along the hilum (point of attachment of the seed to the ovary 

tissue) edge of the seed (Harper and Van Buren 2004). These appendages resembled 

Beattie and Culver’s (1981) definition of an elaiosome i.e. “the general presence of a 

white or eream-colored, glistening tissue present as a discrete external body...” (Fig. 5). 

Elaiosomes are an “energy rich” food source made up of proteins, lipids and 

carbohydrates utilized to promote collection and dispersal by ants (Marshall et al. 1979, 

Beattie and Culver 1981, Hanzawa et al. 1985, Brew et al. 1989). However, not all 

tissues on seed coats are adaptations for ant dispersal (Roth 1977). The morphological 

and functional roles of these appendages on A. californica seeds are unknown. To 

determine how common these putative elaiosomes were, I examined 18,453 A. 

californica seeds taken from Sites 1-4 in 2004 and 2005 that were used in granivory 

experiments. An additional colleetion of 4,800 seeds eolleeted from the population at the 

North Las Vegas Airport, Nevada approximately 40 km NW of Sites 1-3 was provided by 

the Bureau of Land Management and only included in the elaiosome survey.

1 conducted several elaiosome experiments to determine if ants would selectively 

choose A. californica seeds with elaiosomes over seeds without elaiosomes, as suggested 

by numerous studies (O’Dowd and Hay 1980, Brew et al. 1989, Oostermeijer 1989, 

Handel and Beattie 1990, Hughes and Westoby 1992). All experiments were eondueted 

after natural dispersal with each treatment placed in separate polyurethane dishes covered 

with sereen to prevent rodent removal and allow air circulation. The first elaiosome 

experiment consisted of two trials: 14-20 July 2005 and 20-21 July 2005, testing seeds 

with an elaiosome versus seeds without elaiosomes. The design included five replicates 

of two treatments per site (n = 4) with 10 seeds per treatment. The seeond experiment

11
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included two trials: 28 August-2 September 2005 and 2-7 September 2005 that differed 

from the first experiment by nicking the seed coat of all seeds. This nicking accounted 

for any preferential choice that may result from the accidental nicking of the seed coat 

when removing the elaiosome. Additionally, special care was taken when removing the 

elaiosomes to ensure no fragments were left behind. The design consisted of five 

replications of two treatments (both nicked but with and without elaiosomes) per site (n = 

4) with 10 seeds per treatment. A third experiment was conducted for five consecutive 

days from 23-28 September 2005. The design included ten replications of three 

treatments per site (n = 4) with 10 seeds per treatment. Each replication pooled all 

treatments into a single screen-covered polyurethane dish to increase chances of detecting 

preferential selection by ants. The three treatments consisted of: (1) intact seeds plus 

elaiosomes; (2) seeds with elaiosomes removed; and (3) intact seeds with elaiosomes plus 

nicked seed coat (methods from Brew et al. 1989).

Seed Bank

At Sites 1-5,1 analyzed the seed bank in 2005 by collecting soil cores within a 20 x 

20 m grid subjectively placed within the area of maximum A. californica density. At 

each of 200 randomly located points within each grid, I removed 954.3 cm^ soil eores (9 

cm diameter, 15 cm height, vol. of cylinder) at four depth increments (0-2 cm, 2-4 cm, 4- 

6 cm and 6-15 cm). The total number of soil cores removed per site was 200 (200 cores * 

4 depths = 800 samples) with the total area sampled 1.27 m^ or 0.32% of each grid 

surface. The number of seeds were counted for each depth increment and assigned to 

either one of the following categories based on seed condition: seed fragment (decayed 

seed), filled seed (firm and plump) or viable seed (tétrazolium test). The total number of

12
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seeds found per site within each grid was determined by averaging the four pooled depths 

for each site 4-1.27 m^ (area sampled per grid) equals the average number of seeds per 

m^. The average number of seeds per m^ within each depth increment was calculated by 

averaging the five pooled sites for each depth increment 4-1.27 m^ (area sampled per 

grid). The 6-15 cm depth increment was divided by 4.5 to adjust for volume differences 

between depths to calculate mean seeds per cm^.

Seed Fate Model

The A. californica seed fate model is based on data collected over the two-year study 

period and presented as pereentages. The number of adults and seedlings (< 2 cm) were 

based on the average of each over two years. Seedling mortality was determined using 

the proportion of seedling deaths divided by total seedlings * 100 for each site from 2004 

to 2005 and averaged. Estimated seed production per plant was determined by applying 

the seed production predicator equation: No. Seeds = 41.07*(No. mature cap/plant) 

and averaging the estimated number of seeds produced over two years. Predispersal was 

the average number of aborted capsules divided by mean number of capsules produced 

per plant * 100. The percentage of seeds that fell within plants was based on the average 

number of seeds found within plants divided by the total estimated seeds produced per 

plant * 100. The percentage of seeds trapped during plant-base dispersal studies was 

calculated as the total number of seeds trapped per plant 4- estimated seed production and 

then extrapolated out to the plot-level. Plot-based dispersal was calculated as seeds 

trapped per m^ and as a percentage to determine the approximate number of seeds trapped 

during seed dispersal based on estimated plot-level seed production. The percentage of 

A. californica seeds lost to granivory was calculated from the proportion of seeds

13
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removed from treatments that excluded rodents and no exclusion (control) averaged 

across Trials 1-5 * 100.

Statistical Analvses

Differences in seed output per plant among years and sites were analyzed using a 

mixed-model ANOVA. The fixed effects of site, year, and site*year and the random 

effect of plant (site) were tested. Seed production per plant was derived using regression 

analysis with total seeds per plant as the response variable and the number of mature 

capsules per plant as the predicator variable. Within each year, the seed production 

predictor equations were analyzed for slope differences using analysis of covariance 

(ANCOVA) with the number of mature capsules per plant as the covariate (Sokal and 

Rohlf 1981). Where there were no significant effects of year*capsules, data were 

combined for years to determine a single predictive equation for seed output per plant.

The relationship between seed production per plant versus plant attributes (capsule 

attributes and plant characteristics) were tested using correlation and regression analysis. 

Each capsule attribute and some plant characteristics were slightly different variations of 

one another that were based on the same measurement, which resulted in inter-correlation 

among variables. To deal with this problem, I selected the variables with the strongest 

relationships with seed output per plant and when required performed step-wise multiple 

regression analysis to ensure spurious conclusions were not made.

Plant-based seed dispersal data for both years were analyzed independently due to a 

design change in 2005. Variables were logio transformed (x'= Logio(x + 1>; Zar 1984)). 

Each year was analyzed using a mixed-model ANOVA with fixed effects of site, ring.
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direction, and site*ring, site*direction, site *ring * direction and the random effect of 

plant(site). Bonferroni adjustments were made when studying pairwise differences.

Treatment differenees for exclusion and elaiosome experiments were tested using a 

mixed-model ANOVA with fixed effeets of site, treatment, and their interaction on the 

number of seeds removed. Replicate group within each site was included as a random 

effeet. Prior to analysis, the dependent variable was Logio(x+i) (Trial 1 and Trial 3) or 

Sqrt(x+ 3/8) (Trial 4) transformed for exclusion trials to meet assumptions of normal 

residuals and equal variance (Sokal and Rohlf 1981, Zar 1984). If transformation was not 

possible, then non-parametric two-factor analysis and extension of the Kruskal-Wallis 

test was performed (Granivory Seetion: Trial 2 and Trial 5) with multiple comparison 

testing (Zar 1984). Elaiosome data was non-normal, therefore all data was transformed 

using Sqrt(x+3/8) except for Experiment 1 which was Logio(x+i) transformed. Bonferroni 

adjustments were made when studying pairwise differences.

Seed bank analysis yielded data that did not fit known theoretical distributions; 

therefore an empirical distribution was created using bootstrapping, artificial re-sampling 

of data 1,000 times (Zar 1984). The total number of seeds found within the seed bank 

was analyzed using a mixed-model ANOVA with fixed effects of site, depth and 

site*depth and the random effeet of soil eore(site). Bonferroni adjustments were made 

when studying pairwise differences. The proportions of filled and viable seeds per depth 

versus the total number of seeds found were pooled among sites to test for differences 

between depths. Multiple comparisons were made using a test analogous to Tukey post- 

hoc with angular transformations for each proportion (Zar 1984). SPSS was the primary
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statistical software used for all analyses except for the seed bank analysis in which R 

software was used. Significance was determined at P < 0.05.
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CHAPTER 3 

RESULTS

Seed Production

Arctomecon californica populations exhibited year-to-year variation in seed 

production (Fi,g = 29.628, P < 0.0001; Fig. 6). There was approximately a seven-fold 

increase in the average number of seeds produced from 2004 (429 + 102.2 seeds) to 2005 

(3,374 + 595.9 seeds) and a five-fold increase in the average number of flowers (20 + 

2.30 to 95 + 9.29) and capsules (17 + 1.9 to 82+7.7) per plant. Also, the mean number 

of seeds per capsule slightly increased from 2004 (87 + 3 seeds; n = 79 capsules) to 2005 

(99 +1.5 seeds; n = 634 capsules). In addition to the increase in reproductive structures 

among years, a random sample of plants (n = 48 plants) which survived both years 

showed an 85% average increase in plant size. Predispersal loss, the average number of 

aborted capsules per plant increased more than 4 times from 2004 (3 + 0.58) to 2005 (14 

+ 2.64) which is approximately 18% predispersal loss per plant. Even though differences 

between years was detected, seed production did not significantly vary between sites 

(Fa, 15 = 0.782, P = 0.521) or with the combination of site and year (Fg,? = 0.972, P = 

0.456).

In 2005, seed viability was tested on a subset of seeds gathered from seed production 

studies that were stored for 6 months under normal conditions. Overall, 94 + 0.84% of
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the seeds tested across Sites 1-4 were viable. Seed viability ranged from 87.5% to 100% 

per plant within sites (n = 19 plants; Table 1).

Several plant characteristics were analyzed to determine whether any of the variables 

were capable of providing a reliable estimate for seed output per A. californica plant. In 

2004, the results of the Pearson correlation analysis indicated that the number of mature 

capsules per plant (r = 0.962, P = < 0.0001; n = 16 plants) and the number of flowers per 

plant (r = 0.540, P = 0.031; n = 16 plants) were significantly correlated with seed 

production at the plant-level compared to any other plant characteristics (Table 2). All 

variables were Logio(x+i) transformed except for the number of flowers per plant to meet 

normality assumptions. The predicator variables, the number of mature capsules and the 

number of flowers per plant along with the response variable, number of seeds produced 

were analyzed in a multiple regression analysis. Multicollinearity was an issue therefore, 

step-wise multiple regression analysis was performed. This analysis indicated a highly 

significant model (F = 355.414, P = <0.0001) with an r  ̂= 0.959. The regression 

coefficient was b = no. mature cap/plant = 95.084, P = <0.0001 and the y-intercept = - 

40.100, P = 0.235. The regression linear model for 2004 seed production was: No. seeds 

= 95.084 * No. mature cap/plant (Fig. 7).

The second year results supported those of 2004, the number of mature capsules per 

plant had the strongest relationship with seed output per plant (r = 0.955, P = < 0.0001 ; 

n = 20 plants). Pearson correlation analysis also detected a significant relationship 

between seed production per plant and plant diameter (r = 0.788, P = <0.0001), plant size 

(r = 0.770, P = <0.0001) and the number of stalks per plant (r = 0.547, P = 0.013) in the 

second year, which was not discernible in the first year (Table 2). Also, the strength of
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the relationship between seed output and the number of flowers per plant slightly 

increased in 2005 (r = 0.614, P = 0.004). The predicator variables, the number of mature 

capsules, flowers, and stalks per plant, plant diameter and plant size along with the 

response variable, the number of seeds produced were analyzed in a multiple regression 

analysis. Again, multicollinearity was an issue in the model therefore, step-wise multiple 

regression analysis was performed. The results of the step-wise multiple regression 

analysis indicated a highly significant model (F = 269.721, P = <0.0001) with an r  ̂= 

0.934. The regression coefficient was b = no. mature cap/plant = 109.738, P = <0.0001 

and the y-intercept = -353.332, P = 0.185. The resultant linear model for 2005 seed 

production was: No. seeds = 109.738 * No. mature cap/plant (Fig. 7).

The relationship between the number of mature capsules per plant and the number of 

seeds per plant was used to estimate seed output per A. californica plant for 2004 and 

2005. The resultant regression equations for each year in Figure 7 were compared to 

determine if the two lines might be estimating the same population regression coefficient; 

therefore, I tested the assumption of homogeneity of 6 (slope). An analysis of covariance 

(ANCOVA) was performed modeling year as a fixed effect, the number of mature 

capsules as the covariate and the number of seeds per plant as the dependent variable. 

Even though I observed some heteroscedasticity in the data, there were no significant 

differences among the slopes (Fi = 0.234, P = 0.632; Table 3). For that reason, both 

years of data Logio(x+i) transformed were combined into a single predictive equation to 

estimate seed production per plant. The overall model was highly significant (Fi,3 4  = 

819.793, P < 0.0001) with r  ̂= 0.963. The resultant equation was: Logio(x+i)(No. seeds) =
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1.232 * Logio(x+i)(No. mature cap/plant) + 1.624. The final model in original form was: 

No. seeds = 41.07*(No. mature c a p / p l a n t ) ( F i g .  8).

At the population level, I estimated realized seed production (potential output minus 

aborted capsules) per plant (n = 4 sites) using the number of mature capsules per plant 

and the derived seed output equation: No. of seeds = 41.07*(No. mature cap/plant) 

(Table 4). In 2004, the estimated seed output per plant ranged from 510 to 1,406 seeds 

with an average of 1,171 + 187.06 seeds per plant. At the site-level, seed production 

ranged from 3,572 to 41,894 seeds with an average seed production of 443,799 seeds per 

site. An increase in seed production occurred in the second year, the estimated seed 

output per plant ranged from 3,931 to 13,4890 seeds with an average of 8,998 + 1,089.35 

seeds per plant. At the site-level, seed production ranged from 154,455 to 1,254,609 

seeds with an average seed production of 443,799 seeds per site. On average across 

years, 234,288 seeds were produced per site. The most dramatic increase in seed output 

among populations occurred at Site 4 (Stewarts Point) in 2005, where an estimated 1.2 

million seeds were produced (Table 4).

I investigated whether or not capsule attributes have unique contributions to 

predicting seed output within a capsule as well. Spearman rank correlation analysis was 

performed on 2004 (n = 79 capsules) and 2005 (n = 634 capsules) data because data 

failed Shapiro-Wilk normality tests and several transformations were unsuccessful. Both 

years were affected by multicollinearity issues given that most of the capsule 

measurements were slight variations of one another resulting in redundancy. All capsule 

attributes were significantly correlated with the number of seeds per capsule in 2004 but
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none were significant in the second year (Table 5). In 2004, the length of the capsule 

(cm) had the strongest relationship with the number of seeds per capsule (r = 0.548, P = 

<0.0001) compared to the other variables.

Seed Dispersal

In 2004, plot-level seed dispersal studies indicated the seed dispersal curve for A. 

californica was leptokurtic (high peak) with a long right-tail. The seed dispersal curve 

peaked at 100 cm with the tail-end of the curve extending up to 400 cm away from the 

closest source plant (Fig. 9). The average distance seeds were trapped away from the 

assumed closest source plant was 213 + 44.1 cm. Out of 180 plot-level sticky traps 

placed randomly within each site (n = 3), approximately 2.0 ±  0.2% of the traps caught 

seeds. The mean number of seeds per trap and per m^ among sites was Site 1: 0.02 + 

0.014 seeds per trap (2 seeds m^). Site 2; 0.06 + 0.056 seeds per trap (6 seeds m^) and 

Site 3: 0.02 + 0.014 seeds per trap (2 seeds m^). Due to the minimal number of sticky 

traps that caught seeds among sites, 8 traps in all, the interpretation of the seed dispersal 

curve and seeds per square meter are preliminary at best.

The second year plot-level dispersal data captured a better representation of the 

overall seed dispersal curve for A. californica plants than previous year data. The 

distribution was leptokurtic with the peak of the seed dispersal curve 100 cm away from 

the closest potential source plant followed by a decrease in the number of seeds with 

increasing distance (Fig. 10). Arctomecon californica seeds were found at distances up to 

800 cm from a potential source plant. The average distance seeds were trapped away 

from the closest adult plant was 210 + 22 cm. The frequency distribution illustrates that 

33% of the traps that caught seeds were at distances greater than 200 cm from the source
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whereas 67% were less than 200 cm (Fig. 11). Approximately, 9.0 + 0.3% of the plot- 

level sticky traps caught seeds at each site (n = 180 traps) which was almost a five-fold 

increase from 2004. The mean number of seeds per trap and per m^ among sites was Site 

1: 0.63 + 0.240 seeds per trap (63 seeds m^). Site 2: 0.19 + 0.060 seeds per trap (19 seeds 

m^) and Site 3: 0.33 + 0.161 seeds per trap (33 seeds m^).

The analysis of 2004 plant-based dispersal data indicated there was a significant 

interaction between site and ring (F6 ,b 2 = 2.468, P = 0.027; Table 6 ). At Site 2, seeds 

tended to be deposited away from the parent plant (Fig. 12). There were significantly 

higher numbers of seeds trapped in the 20-40 cm ring (mean = 12 + 4.4 seeds) as 

compared to the 0-20 cm ring (mean = 3 + 1.4 seeds). Seed deposition tended to decrease 

from the 20-40 cm ring to the 40-60 cm ring (mean = 8  + 3.4 seeds). Site 1 exhibited the 

same trend as Site 2, except that no significant differences in the number of seeds trapped 

were detected between rings. At Site 3, seed deposition tended to increase with 

increasing distance away from the source plant. Site 4 appeared to have seeds deposited 

closer to the parent plant with a tendency of fewer trapped seeds in the 20-40 cm ring 

followed by an apparent increase in the number of seeds trapped in the 40-60 cm ring. 

Seed deposition was significantly affected by cardinal direction (F3 J 3 2  = 12.705, P < 

0.0001; Table 6 ) with more seeds trapped to the North of plants within sites (mean = 6  + 

1.7; Fig. 13).

The percentage of seeds trapped per plant ranged from 1% to 56% (Table 7). There 

were no significant differences detected in the number of seeds trapped between sites 

(X^o.0 5 , 2  = 3.906, P = 0.142). Among populations (n = 4 sites), 16 + 3.6 % of the total
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number of seeds dispersed were captured. However, the population at Site 4 suffered 

extreme herbivory therefore the estimated seed output for the two plants may be biased.

In 2005, plant-based dispersal studies indicated the preliminary shapes of the seed 

dispersal curves for each site were high peaked (kurtosis > 0.52 ) with long-right tails 

(skewness < -0.11; Fig. 14). A clear pattern within each site provides a good deal of 

confidence that most A. californica seeds are deposited away from the parent plant, seed 

deposition tends to increase at distances equal to or greater than 20 cm from the source 

plant and seeds can disperse up to 100 cm with the potential for further dispersal likely.

The second year plant-based dispersal results indicate all fixed effects were 

significant (Table 8). There was a significant shearing interaction (F6 ,is4 = 1.7981, P = 

0.049; Fig. 15). At Sites 1 and 4, significantly fewer seeds were trapped in the 0-20 cm 

ring compared to the 20-40 cm ring where a significant increase in the number of seeds 

trapped occurred. The numbers of seeds deposited in the 40-60, 60-80 and 80-100 cm 

rings were not significantly different from each other and were comparable in the 

numbers of seeds trapped in the 20-40 cm ring. No significant differences were detected 

between the number of seeds trapped and the distance they were trapped from the source 

at Sites 2 and 3. Within Sites 1, 2 and 4 the seed dispersal curve appeared to peak 60 to 

80 cm away from the parent plant compared to Site 3 which tended to be within 20-40 cm 

of the source plant.

There was a significant interaction between site and the cardinal direction seeds were 

dispersed (P = 0.001; Table 8). Seeds tended to disperse and collect in greater numbers 

to the north of plants at Sites 1, 3 and 4 (Fig. 16). At Site 2, significantly more seeds 

were trapped to the North and East of plants, which were comparable in the numbers of
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seeds trapped. Even though there was some variation in seed deposition with respect to 

cardinal direction, it was relatively minor compared to the total number of seeds 

deposited to the North of plants.

In 2005, the percentage of seeds trapped per plant ranged from 3% to 34% (Table 9). 

There were no significant differences in the number of seeds trapped between sites during 

plant-based dispersal studies (X \o 5 , 2  = 0.594, P = 0.743). Among populations (n = 4 

sites), 19 + 2.2% of the total number of seeds dispersed were trapped. Another 1% of 

seeds were trapped within A. californica plants upon dispersal. The number of seeds 

trapped within the plants ranged from 0 to 215 seeds with a mean of 35.4 + 10.7 seeds 

(Fig. 17). The percentage of viable seeds that were ensnared within the plants ranged 

from 0-96%.

Granivory

The results of the mixed-model ANOVA analysis testing the effect of time despite 

failing normality, suggested all fixed effects of site, treatment, time and all possible 

interactions were significant for 2004 and 2005 (Table 10). Therefore, each granivory 

trial was analyzed separately. The results indicated strong treatment effects occurred 

most of the time (Table 11) although, two of the five trials had significant site*treatment 

effect suggesting a variable response on seed removal (Table 12).

Significant treatment effects were captured in the following trials: Trial 1: 27 July-1 

August 2004, Trial 2: 13-20 July 2005, and Trial 3: 2-7 September 2005 (Fig. 18). The 

results of Trial 1 and Trial 3 were the same; even though each trial was conducted during 

a different month and time of year. Significantly more seeds were removed from 

treatments that either excluded rodents or had no exclusion while fewer seeds were
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removed from the treatments that excluded either ants or both ants and rodents.

Excluding rodents in both trails significantly increased the number of seeds removed 

(meauxriai i = 2.0 + 0.5 seeds, mean Thai 2 = 3.0 + 0.9 seeds) compared to the treatment that 

excluded ants (meanxhai 1 = 0.4 + 0.4 seeds, mean Thai 2  = 0 seeds), which suggests that 

seed removal by ants was likely. Unlike the preceding trials, excluding rodents did not 

significantly impact seed removal in Trial 2. Instead, significantly more seeds were 

removed from the treatment that had no exclusion compared to the other treatments that 

excluded either ants, rodents or both ants and rodents. Therefore, the results of Trial 2 

indicate that seed removal may be the result of ants or a combination of both ants and 

rodents because both species had access to the control (no exclusion) treatment.

All fixed effects including the interaction of site*treatment were significant in Trial 4 

(20-25 July 2004) and Trial 5 (28 August-2 September 2005; Table 12). In Trial 4, 

significantly more seeds were removed from treatments that either excluded rodents or 

had no exclusion than treatments that excluded ants or both ants and rodents at Sites 2, 3 

and 4 (Fig. 19). Site I had significantly more seeds removed from the control treatment 

and fewer seeds removed from the treatment that excluded ants with no significant 

impact on seed removal detected in either of the treatments that excluded rodents or both 

ants and rodents. In the subsequent year (2005), the results of Trial 5 suggested that 

excluding rodents significantly increased seed removal while excluding ants significantly 

decreased seed removal at Sites 1, 2 and 3. No significant differences were detected 

between any of the four treatments at Site 4 (Fig. 19).

Elaiosome

The results of the A. californica elaiosome survey revealed that the white elaiosome
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located along the hilum edge of the seeds was observed across five different populations 

over two years. Sites 1-4 were sampled in 2004 and out of 13,653 A. californica seeds 

examined, only 15 seeds lacked an elaiosome. In 2005, a total of 4,800 seeds were 

analyzed across Sites 1-4 with an additional 4,800 seeds from the North Las Vegas 

Airport, Nevada population. Out of a total of 9,600 seeds only 8 seeds lacked 

elaiosomes. Therefore, over 99% of the total number of A. californica seeds examined 

(23,253 seeds) possessed elaiosomes (Table 13).

In the first elaiosome experiment, no effect of time (Fi,48 = 3.742, P = 0.059) was 

observed so data were combined. 1 observed a significant treatment effect (Fi,4 g = 15.502, 

P = < 0.0001), where seeds without elaiosomes (mean = 2.4 + .47 seeds) were removed 

more than seeds with elaiosomes (mean = .78 + .35 seeds; Fig. 20). No other fixed 

effects were significant (Table 14).

The second experiment yielded a significant effect of time (Fgjis = 66.983, P =

< 0.001) therefore. Trial 1 and Trial 2 were analyzed separately. There was no significant 

treatment effect in either Trial 1: 28 August-2 September 2005 (Fi,i6 = 4.146) or Trial 2: 

2-7 September 2005 (Fije = 1.691, P = 0.212; Fig. 21). However, in both trials, the 

treatments with nicked seeds with elaiosomes ( meanjriai i = 7 ±  0.84, meanTnai 2 = 6 + 

1.02) had more seeds removed than the treatments with nicked seeds without elaiosomes 

(meauxriai i = 5 + 0.80, meauxnai 2 = 5 + 0.94). These results indicate a trend in ant 

preference for seeds with elaiosomes compared to seeds without elaiosomes when 

nicking was held constant. There was a significant site effect (F3 J 6 = 8.001, P < 0.002) 

in Trial 1 but no site effect was detected in Trial 2: 2-7 September 2005 (F3 J 6  = 0.921,
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p = 0.453; Table 15). In Trial 1, Sites 2 and 3 had significantly higher seed removal 

compared to Site 4. There was no interaction captured in either Trial 1 or 2 (Fig. 22).

In the third experiment (23-28 September 2005), a significant treatment (Fijo = 

28.714, P = < 0.0001) and site effect (Fs,;^ = 4.511, P = 0.009) was observed. The 

treatment with nicked seeds and elaiosomes experienced twice the removal in the number 

of seeds compared to the treatments that had un-nicked seeds with elaiosomes and seeds 

without elaiosomes (Fig. 23). These results suggest that nicking the seed coat tends to 

attract ants. Site 2 had the highest number of seeds removed (mean = 9.0 + 0.3 seeds) but 

was only significantly different from Site 3 (mean = 3.0 + 0.2 seeds; Fig. 24). There was 

no site*treatment interaction captured in this experiment (F6,?o = 1.591, P = 0.163; Table 

16).

A review of seed removal by replication within sites revealed that in Experiment 3 

(23 August-8 September 2005), Site 1 had two instances where all the seeds from the 

three treatments were removed. Site 2 had five instances. Site 3 had none and Site 4 had 

only one instance where all the seeds were removed. To determine if Site 2 may have 

biased the results, 1 re-ran the mixed-model ANOVA without Site 2 (p2 ,5 4  = 28.029, P < 

0.0001). The results were the same as when Site 2 was included (F^jo = 28.714, P = < 

0.0001), indicating removal of all seeds from the treatments did not bias the outcome of 

Experiment 3 by minimizing treatment effects. Therefore, even with 50% of the 

replications at Site 2 experiencing removal of all seeds from the three treatments, there 

was still evidence for strong selection by ants.

Alternatively, lack of removal could bias the results as well by inflating treatment 

effects. Site 3 was the only site to experience no seed removal from all 3 treatments in 2
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of the 10 replications. Omitting the undetected replications from the analysis did not 

change the conclusions nor did removing both potential bias factors. Therefore, the 

evidence indicates ants selectively chose nicked seeds with elaiosomes over the other 

treatments.

Seed Bank

Overall, I found 2, 973 A. californica seeds out of a total of 1,004 soil cores (4,016 

soil samples) from 5 sites which translates into 116 seeds m'^ in a 400 m^ area. On 

average, 10.5 % of the seeds found were viable. Most seeds tended to be found either 

close to the surface or deep within the seeds bank. Seed distribution between soil depth 

increments were 0-2 cm 34%, 2-4 cm 21.9%, 4-6 cm 17.7% and 6-15 cm 26.4%. There 

were no significant differences between the proportion of viable seeds and depth 

however, a slight increase was seen within the 6-15 cm depth increment suggesting A. 

californica seeds may be long-lived.

Using the ground surface area associated with each core, the number of seeds was 

estimated at 116+ 12.4 seeds/m^ per sampling area (400 m^) and an estimated 2.32 x 10  ̂

seeds per site (2,000 m^). Seed bank sampling within the five sites revealed Site 5 had 

the average lowest number of seeds per m^ (65 + 19.78 seeds) compared to Site 1 (108 + 

9.83 seeds). Site 2 (167 + 16.20 seeds). Site 3 (127 + 31.47 seeds) and Site 4(116 + 

36.32 seeds). The vertical distribution of seeds by depth per m^ was: 0-2 cm (158 + 

25.99 seeds), 2-4 cm (102 +18.19 seeds), 4-6 cm (83 + 15.90 seeds) and 6-15 cm (123 + 

37.59 seeds).

Seed density was affected by depth within the soil column (P < 0.0001; Table 17). 

This depth effect varied with site, as was indicated by the significant interaction between
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site and depth (P = 0.0350). An obvious trend within sites indicated that seed density 

tended to decrease with increased depth within the seed bank (Fig. 25). On average, 

about 10.5% (311 viable + 2,973 total seeds) of the seeds found were viable. The 

proportion of viable seeds per depth, pooled across sites, is shown in Figure 26. The 

percent distribution of seeds according to their assigned category based on condition 

(fragment, filled but non-viable, or viable) by site and depth are illustrated in Figure 27. 

The lowest percentage of seeds within each site and depth was composed of viable seeds, 

which did not exceed > 20% at any one site or depth. As expected, the highest 

concentration of seed fragments, 47.4% were found in the upper portion of the soil 

column out of 1,010 seeds at that depth. There was a negative trend across sites, where 

the percentage of seed fragments decreased with increased depth within the seed bank 

down to 31.9%. Compared to other sites, site 4 had the lowest percentage of seed 

fragments among depths with zero fragments represented in the 4-6 cm and 6-15 cm 

increments. Overall across sites and depths, seeds within the seed bank were distributed 

among the following seed categories: 10.5% (viable seeds), 35.6% (seed fragments), and 

53.9% (filled but non-viable seeds).

Seed Fate Model

Seeds are the future progeny of most plant species and the processes, both abiotic and 

biotic, that act on those seeds influences the patterns of plant species in both time and 

space (Harper et al. 1970, Harper and White 1974). Seed fate pathways include seed 

production, dispersal, and incorporation within the seed bank with losses along the way 

through predispersal loss, seed predation, decay and germination (Harper 1977). Figure 

28 illustrates the fate of A. californica seeds at various ecological stages and the
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processes that influence them. The percentages in the model are the average of both 

years of data. On average, approximately 40% of the adult plants suffered mortality 

among sites. Before dispersal, 18% of all seeds produced suffered predispersal loss 

therefore, 82% of the seeds remained on the plant. As a fraction of the initial total seed 

production, 1% of the seeds was dispersed within the plants (fell into the plant and were 

trapped), 17% was dispersed away from the parent plants (average of plant-based and 

plot-based dispersal) while 64% was subjected to an unknown fate. Again, of the original 

82% of the seeds left on the plant after pre-dispersal loss, 17% of the seeds reached the 

surface whereby 7% of the seeds were secondarily removed by ants and rodents (average 

removal from granivory trials). The fate of the other 10% of the seeds on the surface was 

unknown.

1 assumed that the seed bank started over at 100% therefore, the total number of seeds 

found within the seed bank pooled across sites was broken down into the following 

categories; 10.5% were viable, 53.9% were filled but non-viable and the rest of the 

seeds, 35.6%, consisted of seed fragments. On average, 209 seedlings germinated from a 

2000 m^ area with approximately 72% suffering mortality which left 150 seedlings to 

progress on toward adulthood. Anywhere along the seed fate pathway, seeds maybe 

subjected to mortality, predation, incorporation within the seed bank, loss, germination or 

suffer an unknown fate.
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CHAPTER 4 

DISCUSSION

Seed Production

There is often large variation in seed production among plant populations (Leverich 

and Levin 1979, Schaal 1980, Campbell and Clarke 2006), and A. californica is no 

exception. During the 2-year study period (2004 and 2005), A. californica experienced a 

five-fold increase in the number of flowers and capsules per plant and seven-fold increase 

in seed production. Also, an 85% average increase in plant size occurred among plants 

that survived over the two-year study. During July 2004-April 2005, the Mojave Desert 

experienced 259 mm of precipitation, more than twice the annual average of 114 mm 

(National Weather Service 2006). Year-to-year variation in seed output is partially due to 

weather conditions (Nathan and Muller-Landau 2000) and typically explains the seed 

output differences in tropical trees (Wright 1999). Also, years with above-average 

rainfall during winter/spring months which are typical germination periods for the 

species, have coincided with prior A. californica recruitment episodes during the past 

(Meyers 1987, Mistretta et al. 1996). Therefore, the combined increases in reproductive 

structures, vegetative size and year-to-year variation in seed production among 

populations are probably the result of wetter than normal conditions during the 2004- 

2005 winter seasons.
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The variation in seed production among capsules that can be explained by the plant 

size, plant diameter, the number of flowers or stalks per plant is minimal compared to the 

number of capsules a plant produces. The objective of the seed production model was to 

determine a realistic estimate of A. californica population production and provide a tool 

for conservation managers. However, there are several limitations associated with the 

seed production equation: No. seeds = (No. cap/plant)'^^^ *41.07. First, the equation is 

based on data limited to the range of the observed values during this study for the number 

of mature capsules per plant in the sites studied and may not provide a useful estimate 

outside of these data bounds. Sub-sampling is recommended if the seed production 

equation is to be used for populations other than those ones in the study to help account 

for variation among A. californica populations. This tool provides an approximate idea 

of seed production per plant therefore, it is at best a rough estimate. Last, the equation is 

based on data gathered on a per plant basis, if used incorrectly there is the potential for an 

artificial inflation of estimated seed production. This can occur if the total number of 

mature capsules per area or population is inputted rather than on a per plant basis.

As expected, the number of seeds per plant was correlated with the number of flowers 

per plant and the number of capsules per plant each year (Table 2 and 3). However, seed 

production was significantly correlated to plant diameter (r = 0.682, P = 0.002) and plant 

size (r = 0.695, P = 0.001) only in the second year (2005). Plant size (mean2oo4  = 339.3 + 

121.9, variance = 237,784.6; mean2 oo5 = 412.8 + 45.0, variance = 36,467.6) and plant 

diameter (mean2 0 0 4  =18.29 + 2.56, variance = 104.54; mean2oo5 = 22 + 1.11, variance = 

22.353) differences across years were not due to lower variance in 2004. The correlation 

between seed output per plant and plant size or plant diameter may change due to the
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availability of resources. Such plastic responses are generally influenced by 

environmental conditions which likely explains the correlation between seed output per 

plant with plant size and plant diameter during the wetter second season. Meyer (1987) 

found similar reproductive output results suggesting widely plastic expressions within 

and between five A. californica populations.

In 2004, all capsule attributes were highly significant (P < 0.0001) with the number 

of seeds per capsule but none were even remotely significant in the second year (Table 

3). The lack of significance in the second year may have partially been attributed the 

eight-fold increase in sample size that occurred between years. Also, plants are 

extremely plastic in their responses to environmental conditions and strategies for 

surviving versus reproducing (Bloom et al. 1985). As a result, it would be expected that 

the number of seeds per capsule and even the size of the capsule would be plastic in time 

and place- based on resources. Therefore, these results suggest that the A. californica 

capsule attributes may not maintain a reliable relationship with seeds per capsule across 

years of varying environmental conditions therefore, they may not be reliable predictors 

of seed output per plant.

Meyer (1987) also found the volume of a capsule (cone) to be correlated with A. 

californica seed output with a sample size of n = 100 capsules, r = 0.766. In this study, 

when the sample size increased from n2oo4 = 79 capsules to U2oo5 = 634 capsules the 

relationship between the number of seeds per capsules and capsule volume fell apart (P = 

0.656). The significant increase in sample size likely allowed for the partitioning of the 

strength of the effect of each predictor, which could not be done in the prior year due to
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the small sample size. These results suggest that capsule volume was not a good 

predictor of seed output.

Seed Dispersal

At the site level, the seed dispersal curve for A. californica was leptokurtic with a 

high peak and long right-tail. There was an obvious trend of seed deposition away from 

the parent plant rather than the immediate surrounding area. On a smaller spatial scale, 

plant-based dispersal studies indicated a similar seed dispersal trend.

The general seed dispersal pattern for this species tends to be an accumulation of 

seeds away from the parent plant in a northerly direction. I found that A. californica 

seeds can be found up to 800 cm from the closest reproducing adult plant, suggesting that 

A. californica seeds disperse further than previously believed (Meyer 1987, Sheldon 

1994). Such dispersal distances may be a combination of wind and/or dispersal vectors.

Typically, seeds move only a short distance from the source (Levin 1981), however, 

this does not seem to be the case with A. californica seeds. Dispersal of seeds away from 

the parent plant appears to avoid processes that tend to increase density-dependent 

mortality resulting from close proximity to the parent plant (Janzen 1970, Howe and 

Smallwood 1982). Janzen (1970) found that seed predators tend to search for food within 

the immediate area of the source and generally ignore seeds a short distance away. If 

rodents in this study did the same, ants, wind and other abiotic vectors may be moving 

seeds to safe sites. Another possibility is the “Directed Dispersal Hypothesis” which 

assumes selection favors adaptations and/or dispersal agents that allow seeds to reach 

suitable locations for germination (Hanzawa et al. 1988, Willson and Traveset 2000).

Van de Pijl (1982) found that the jacitation capsule is triggered by wind and results in
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seeds being broadcast further from the source than gravity in the family Papaveraceae, 

which appears to occur with A. californica capsules. This is considered primary 

dispersal, the movement of seeds from the parent to the surface (Chambers and 

MacMahon 1994). The presence of elaiosomes suggests that seeds are moved away from 

the parent plant once they reach the soil surface by ants to potential sites suitable for 

germination (Culver and Beattie 1980, Beattie and Culver 1981). Because A. californica 

seeds have elaiosomes and A. Merriam, a sister species does as well and the function 

appears to be dispersal by ants I assume the same is true for this species.

According to Vander Wall and Longland (2004), dispersal that includes two or more 

dispersal agents, may have become a favored adaptation because of the dual benefit of 

dispersal and the potential for reduced seed mortality. Plant species with this type of 

multiple dispersal agents are called diplochory species (Vander Wall and Longland 

2004). Each dispersal syndrome by itself does not provide the ‘ideal dispersal system’ 

(see Howe and Smallwood 1982). For example, wind dispersal provides the opportunity 

for colonization of new areas; however, seeds tend to be disseminated across the ground 

randomly with regard to establishment sites less than 5 m from the parent plant (Vander 

Wall and Longland 2004). Myrmecochory, dispersal by ants, tends to provide escape and 

relocation of seeds to favorable microsites (Hanzawa et al. 1988). However, colonization 

of new areas is unlikely because ants generally do not transport seeds farther than an 

additional 0.5-3.5 m from initial dissemination (Vander Wall and Longland 2004). 

However, I have observed removal of A. californica seeds by ants within Site 2 which 

proceeded to move seeds to their ant nests 30-100 m away from the original seed location
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on the surface. Obviously, more research is required before it can be determined if seed 

dispersal of A. californica results in a net benefit or loss to the species.

The stalks of A. californica are on average 22 + 0.74 cm in height and are slender. 

These characteristics seem to facilitate movement by wind which promotes dispersal of 

seeds away from the parent plant and partially explains the seed deposition patterns of the 

species. The directionality effect of A. californica seeds was also found by Sheldon- 

Thompson and Smith (1997). Northerly deposition in my study was most likely a result 

of wind blowing from the south due to the north-south oriented U-shaped valley 

sandwiched between two ridges at Sites 1-3 (Longwell et al. 1965, Meyer 1986). At Site 

4, the winds tended to blow from the south up along the coast of Overton Arm of Lake 

Mead (The Virgin River Valley) of Lake Mead National Recreational Area.

Wind is likely the most important agent for primary dispersal of A. californica seeds 

away from the plant and may account for seeds found up to distances of 800 cm away 

from a source plant. However, secondary dispersal, the redistribution of seeds across the 

surface after initial dispersal (Chambers and MacMahon 1994) by wind may account for 

the distribution of A. californica seeds across the landscape as well. Even though 

minimal numbers of seeds were trapped in the plot-based studies, extrapolation out to the 

site-level suggests high numbers of A. californica seeds may be available for 

redistribution across the surface.

The minimal number of seeds trapped during plot-based studies may be the result of 

not enough sticky traps placed within each site to adequately capture dispersal by wind 

across the surface. Also, the desert is a highly heterogeneous environment created by 

sparse and clumped patches of vegetation cover (Reichman 1984, Aguiar and Sala 1997).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The interspaces between the mosaic vegetation patterns are characterized by numerous 

patches of bare ground (Aguiar and Sala 1999). The low percent cover causes wind 

velocities to be up to four times greater in the interspaces than shrubs. The interspaces 

provide pathways for “seed transport” which increase the chance seeds will be retained in 

soil cracks, crevices, litter and under shrubs (Nelson and Chew 1977, Reichman 1984, 

Eckert et al. 1986, Johnson and Fryer 1992). The high percentage of surface rock cover 

characteristic of A. californica habitat provides numerous microsites (Saxena 2005). The 

small size of A. californica seeds, approximately 2 mm in size, suggests these seeds 

would be easily ensnared in the highly heterogeneous environment typical of deserts. 

Chambers et al. (1991) found a strong relationship between seed size and soil particle 

size suggesting that small seeds tended to be trapped at small particle sizes ranging from 

0.5-1.0 and 1.0-2.0 mm. Saxena (2005) found A. californica plants tended to reside on 

sites characterized as either loam or sandy loam soil which falls into Chambers et al. 

(1991) categories of small particle size.

I suggest that wind facilitates entrapment of A. californica seeds within the surface 

upon initial arrival or shortly after seeds reach the surface due to the spatially 

heterogeneous nature of the desert and removal by ants partially explains the lack of 

seeds trapped during plot-level studies. The implication of this study suggests that seeds 

may be retained on-site. A. californica seeds probably do not move off-sites where they 

have occurred in the past and are highly likely to reappear on those sites or near those 

sites because most seeds tend to be dispersed within 200 cm of reproducing plants. 

Additional research using radio-active labeling of seeds has provided the ability to track 

seeds during secondary dispersal in other studies which ‘maps’ possible seed fate
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pathways (Vander Wall 1994). The use of this technique may be able to further define 

the seed dispersal distribution for this species and seed fate pathways especially whether 

long-distance dispersal of the seeds between preferred habitat areas is possible or not.

Meyer (1987) suggested that many of the seeds fall within the parent plant which may 

prevent further dispersal of the seeds. I found that seed traps placed close to or slightly 

under the rosettes of the plants were unlikely to trap seeds from previous years that were 

lodged within the plants. On average, 35 + 10.7 seeds were trapped within each study 

plant (n = 20 plants) ranging in viability from 33-96%. There is the possibility that seed 

removal did occur from within the plants by ants because numerous visual observations 

found ants crawling on the rosettes. Crist (1990) and Crist and MacMahon (1992) have 

found that foraging ants remove approximately 5% of the seeds produced from the actual 

plant itself in a shrub-steppe ecosystem. Further research is necessary before we can 

determine any potential impact ants may have on A. californica seeds, seedling 

recruitment and dispersal potential.

Granivory

In arid environments, granivores can impact seed survivorship and seedling 

recruitment (Crist and MacMahon 1992) by consuming considerable proportions of seeds 

from some plant species (Reichman 1979, Crist and MacMahon 1992). Several studies 

have reported varying percentages of post-dispersal seed predation by ants, rodents, and 

mammals ranging from 0% to 100% (Chew and Chew 1970, Soholt 1973, Hay and Fuller 

1981, Boyd and Brum 1983; for a complete list refer to Crawley in Fenner 1992). The 

impact on rare plants can be quite severe if most of the seed crop is lost to predators. 

Exclusion trials can aid in identifying secondary seed dispersers and predators by
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excluding some species and allowing others (Bohning-Gaese et al. 1999). Powell (2003) 

proposed that A. californica seeds may be consumed and/or dispersed by ants and 

rodents. My intent was to identify possible secondary dispersers so future work could 

tease out the relationship between seed dispersers and seed predators.

In general, I observed strong treatment effects in the exclusion trials and 

heterogeneity among sites, which was probably a result of spatial heterogeneity in ant 

populations. Powell (2003; see also Figure 29) observed removal of A. californica seeds 

by ants. She found piles of seeds next to an ant mound at Stewart’s Point. I discovered 

an A. californica seed in the top 2 cm of a Myrmecocystus pyramicus (honey pot ant) 

mound. Both of these observations suggest that ants collect, move and deposit A. 

californica seeds to new locales.

The occasional lack of significant differences between treatments that excluded 

rodents compared to those treatments that excluded ants may indicate potential removal 

by rodents. It is also possible that rodents were actively deterred by the Tangelfoot® 

treatment meant to exclude only ants. In this case, rodents could be more important 

dispersal agents or predators on A. californica seeds than indicated by these tests. 

However, there were no obvious signs of rodent activity detected around the exclusion 

trials or any of the other experiments, i.e. tracks, feces, up-turned exclosures, soil 

disturbance or visual observations. Possible explanations for this apparent lack of rodent 

activity may be due to (1) the time period during which these experiments occurred 

which was after natural dispersal of the species; (2) seasonality of rodent foraging 

patterns which are determined by a combination of temperature, light (time of day), 

humidity, food availability and competition (Whitford 1978, Kotler and Brown 1988); (3)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the small size of seeds (2 mm) may not meet the caloric requirements needed to 

overcome foraging efforts by rodents as suggested by Reichman (1979); or (4) the 

elaiosomes on A. californica seeds may serve a dual- purpose, attractant for ants and 

repellent of rodents, as did the elaiosomes of Corydalis aurea suggested by Hanzawa et 

al. (1985). Further research studying the potential interaction between rodents and A. 

californica seeds is required before their impact on A. californica populations and 

structure are understood. Nonetheless, a clear pattern across exclusion trials and visual 

observations provides a strong suggestion that ants remove A. californica seeds and are 

probably important in secondary dispersal, the redistribution of seeds across the surface. 

Elaiosome

My results show that elaiosomes are a typical structure of A. californica seeds. 

Within the family of Papaveraceae alone, an unusually high percentage of the genera 

possess elaiosomes on their seeds including species in the genera of: Arctomecon, 

Bocconia, Cathcartia, Chelidonium, Corydalis, Dendromecon, Dicentra, Fumaria, 

Hylomecon, Meconopsis, Sanguinaria and Stylophorum (Fedde 1936 as cited in Berg 

1966). The association of the genus Arctomecon with elaiosomes seems to have been 

either overlooked or downplayed in recent studies. Harper and Van Buren (2004) 

mention briefly that Arctomecon humilis possesses an elongated aril of white tissue near 

the hilum which appears to attract ants as the primary dispersal agent. However, no 

mention could be found regarding any type of elaiosome or aril associated with 

Arctomecon merriamii, the third member of the genus Arctomecon. Nevertheless, the 

mounting evidence suggests that this typical structure of A. californica is an elaiosome 

and not simply an attachment structure.
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Myrmecochory, or seed dispersal by ants, has been shown to impact future 

recruitment and plant community structure in several ways. Generally, seeds are 

transported away from the parent plant to ant nests which potentially decrease seed 

predator mortality (Culver and Beattie 1978, Vander Wall and Longland 2004). Once 

seeds reach the ant nest, the elaiosomes, food bodies, are removed and the seeds are 

discarded unharmed into either underground “old galleries” (Fenner 1985) and waste 

midden piles (Culver and Beattie 1978, 1980) or surface midden piles outside ant nests 

(Fig. 29). Seeds discarded in underground waste midden piles tend to have higher 

germination rates and greater chances of reaching the seedling stage and flowering the 

next year (Culver and Beattie 1978, 1980) but see O’Dowd and Hay (1980) and Horvitz 

and Schemske (1986). The increased germination rates may be due to higher levels of 

nitrogen and phosphorous, increased aeration and water holding capacity in the soil than 

the surrounding areas (Culver and Beattie 1978, O ’Dowd and Hay 1980, Hanzawa et al. 

1988) plus the relative protection against seed predators (Vander Wall and Longland 

2004). The seeds discarded outside ant nests in surface midden piles are likely subject to 

different environmental influences than those discarded under ground. Out in the open, 

the seeds are subjected to abiotic processes such as wind and water which can redistribute 

the seeds across the surface and biotic influences such as rodents which can consume the 

seeds or cache them (Reichman 1984, Chambers and MacMahon 1994). Both seed 

disposal scenarios potentially increase the chances for colonization of habitat patches 

away from parent plants (Vander Wall and Longland 2004).

Before any of the above impacts of ant dispersal on A. californica recruitment and 

population structure can be studied, one has to determine whether or not the elaiosome on
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A. californica seeds promotes dispersal by ants. Figure 29 clearly shows A. californica 

seeds discarded in a surface midden pile, which suggests that ants collected the seeds and 

removed the elaiosomes. The motivation behind ant collection likely had to do with the 

elaiosome attached to A. californica seeds. However, the results of the elaiosome 

experiments elicited varied responses from the ants.

The results of the first elaiosome experiment clearly indicated that ants were more 

attracted to seeds without elaiosomes than with elaiosomes. However, when controlling 

for the ‘nick effect’ as in elaiosome Experiment 2, there was an obvious trend of ant 

selection for nicked seeds with elaiosomes compared to nicked seeds without elaiosomes. 

Therefore, the differing results suggest that the outcome of Experiment 1 may be 

attributed to: (1) the storage time of seeds after maturity (several days) may alter 

compounds normally discharged from the elaiosomes upon dispersal (Berg 1966, Mesler 

and Lu 1983, Kjellsson 1985); (2) when I removed the elaiosome, the seed coat was 

inadvertently nicked causing ants to be abnormally attracted to the seed; (3) complete 

removal of the elaiosome did not occur which thereby released the behavior enticing 

compounds (Mesler and Lu 1983), or (4) placement of the treatments in separate covered 

dishes may have biased removal by either causing disproportionately more seeds 

removed due to detection of the treatment or the lack of detection resulted in no removal.

To address potential bias, all treatments were pooled into a single covered dish in 

Experiment 3. The significant selection of nicked seeds with elaiosomes over un-nicked 

seeds with elaiosomes or seeds without elaiosomes suggests that nicking the seed coat 

somehow attracted the ants. Possible explanations may include: (1) the diminished 

capacity of the elaiosomes behavior altering compounds (Brew et al. 1989; (2) the
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temporal pressures of limited food availability due to the onset of winter may have forced 

the ants to be less selective in food sources (Brew et al. 1989); (3) seasonality may have 

affected the foraging behavior of ants (Whitford 1978); (4) ants exploited the discovered 

replications within each site or a combination of 1 and 2; or (5) a significant number of 

replications remained undetected by the ants and skewed the analysis.

The selection of less than ideal food sources resulting from temporal pressures or 

exploiting chance discovery of the replications may explain why several replications had 

all the seeds removed from the treatments. However, further analysis indicated that the 

treatments where all seeds were removed and those where no seeds were removed did not 

influence the overall conclusion, which was that ants preferentially selected nicked seeds 

with elaiosomes.

Due to the variable responses of the ants to the three different elaiosome experiments, 

I recommend further studies investigating elaiosome removal experiments using fresh 

seeds. Also, seasonality may affect foraging behavior of ants. Therefore, experiments 

should be conducted during natural dispersal of A. californica to minimize potential bias. 

Additionally, the chemical analysis of the elaiosome would conclusively categorize the 

appendage, determine its chemical make-up and allow comparison to other seed bearing 

elaiosomes and may elucidate links to foraging behavior of granivores.

Seed Bank

A soil seed bank is defined as a reserve of seeds within the soil column that remain 

dormant and viable until the right conditions occur to initiate germination (Fenner 1985). 

The survival of many desert plants relies on seed banks to buffer years of no or sparse 

recmitment due to dry environmental conditions that can last up to several years (Kemp
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1989, Cabin and Marshall 2000). Without long-lived, persistent, and viable seed banks, 

plant species typical of these unpredictable environments would likely be at a higher risk 

for extinction (Parker et al. 1989).

I found that A. californica maintains a highly spatially heterogeneous seed bank, 

which is typical of seed distributions in the Mojave Desert (Nelson and Chew 1977, 

Reichman 1984, Rundel and Gibson 1996). This was evident by the numerous 0-2 cm 

soil samples ranging from 101-163 samples per site that had no seeds found within them. 

Out of 4,016 soil samples, I found seeds in 906 samples which roughly equates to 23% or 

a slightly better than a 1 in 5 chance of finding a seed within a soil sample.

Whether the seed bank is transient or persistent was not addressed in this study. 

However, there are at least four lines of evidence to support the suggestion that the seed 

bank persists in nature. First, the proportion of viable seeds was higher deep within the 

soil column (6-15 cm), suggesting that A. californica seeds may retain viability for a long 

time. Generally, small seeds like A. californica are indicative of species with persistent 

seed banks that occupy unpredictable environments (Thompson and Grime 1979, Fenner 

1985). Second, A. californica has been observed to re-colonize previously occupied sites 

after the disappearance of plants for up to 15 years (Powell and Walker 1993, Meyer 

1996). Preliminary seed retrieval studies by Meyer (1996) indicate long-term viability is 

likely as well, which Fenner (1985) suggests is an important feature of persistent seed 

bank. Third, several other studies have found evidence suggesting that deeply buried 

seeds tend to be older than those seeds closer to the surface because seed movement in 

soil tends to be slow (Bekker et al. 1998, Grandin and Rydin 1998, Bekker et al. 1999, 

Thompson 2000). Last, Harper and Van Buren (2004) noted that A. californica seeds

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exhibit immature embryos upon seed dispersal. This is a dormancy mechanism used to 

delay germination until more favorable conditions occur whicb is a typical feature of 

seeds in a persistent seed bank (Fenner 1985).

Arctomecon californica appears to disperse non-dormant seeds which may require 

several years within the seed bank for dormancy to break (Meyer 1996). However, seeds 

used in viability testing from 2005 seed production were store at room temperature in 

plastic bags for 6 months. Several capsules suffered from a fungus infection but the 

sample of seeds tested ranged in viability from 87.5 - 100%. These results suggest cold 

stratification may not be a requirement for dormancy release in a laboratory setting. 

Additionally, there were a high percentage of filled seeds that were deemed not viable 

due to their lack of tétrazolium staining. However, there is the possibility that these seeds 

may have been in a deep dormant state which may not stain at all due to low respiration 

levels thereby creating a False negative result (ASOA 2000). If this was the case, then 

the proportion of viable seeds within the seed bank would increase to 64.4% compared to 

10.5%.

Most Arctomecon californica seeds within the seed bank were found either close to 

the surface or deep within the seed bank. These results are contrary to other studies that 

have demonstrated that 80-90% of most desert seeds are found in the upper 2 cm of the 

soil (Reichman 1979, Kemp 1989; but see Guo et al. 1998). The high amounts of clast 

cover likely provide numerous microsites available for entrapment of seeds as they are 

dispersed by wind (Saxena 2005), overland flows (Reichman 1984), or down-slope in 

steep terrain (Westelaken and Maun 1985). Additionally, large particle size soils 

regardless of seed size act as sieves trapping seeds within the soil column as well
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(Chambers et al. 1991). Plus, small seeds have a higher probability of being entrapped in 

the soil surface after initial contact than large seeds (Chambers et al. 1991) suggesting 

that seed size in itself may secure incorporation within the soil seed bank (Harper et al. 

1970, Bekker et al. 1998).

The penetration of A. californica seeds deeper into the soil column may be the result 

of microtopography trapping seeds and over land flows causing rapid burial of the seeds 

(Meyer 1987). Also Chambers et al. (1991) found that large particle sizes and rocks in 

the upper 2 cm of the soil creating large pore spaces may increase infiltration and 

downward movement of small seeds and soil fines deep within the seed bank. Saxena 

(2005) and Megill et al. (2007) tended to find similar soil structure at most of the A. 

californica sites that fit the description discussed by Chambers et al. (1991) above. Other 

processes that influence the rate of seed burial are precipitation (van Tooren 1988, 

Chambers and MacMahon 1994), animal and ant activity including digging, burrowing, 

disposal and re-caching of seeds(Parker et al. 1989), over land flows (Meyer 1987), 

gravity and seed size (Bekker et al. 1998). Additionally, several studies by Chambers 

(1991) and Chambers and MacMahon (1994) found that as small seeds travel deeper 

within the soil column and soil particle size decreases, high numbers of small seeds reach 

depths > 5 cm. This conceptual model for vertieal seed movement provides several 

explanations for the likely distribution of A. californica seeds deep within the soil 

column.

The implications of the distribution pattern of seeds throughout the differing depths 

are speculative. First, the small size of the A. californica seeds may increase the chance 

of predator avoidance as Janzen (1971) hypothesizes for small seeds in general.
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Reichman (1979) showed that seed predators do not forage below 7 cm, which suggests 

that any further within the seed bank may provide a safe-haven for seeds. However,

Freas and Kemp (1983) found that desert annuals are unable to germinate from depths 

greater than 1 cm while desert shrub seeds are limited to 4cm and above (Williams et al. 

1974). Cabin and Marshall (2000) state most species are unable to emerge from below 2 

cm in the soil column. Because germination of plants is limited to the upper 4 cm of the 

soil column, Guo et al. (1998) suggested any seeds deeper than 7 cm can be considered 

lost to the seed bank because germination was unlikely to occur. However, A. californica 

seeds persist at depths greater than 7 cm within the soil column and tend show higher 

rates of viability deeper within the soil column versus closer to the surface (Fig. 25). It is 

possible that the deeper depths in the seed bank may be an advantage for the persistent 

nature of this species by providing protection against predators and a safe-haven until 

disturbance redistributes the seeds closer to the surface where the right conditions may 

prevail and germination takes place.

Seed Fates Model

An overview of A. californica seed fate pathways provided as percentages based on 

initial seed production and seed bank estimates is shown in Figure 28. This is a simple 

model to aid understanding in the different ecological fates of A. californica seeds. The 

model was based on the average of two years of data collected for seed production, 

dispersal, and granivory except for the seed bank estimates. There are several gaps that 

exist within the model. For example, out of the 82% of seeds left on the plants, I 

captured 17% during plant-based dispersal and could not account for the other 64%. It is 

possible that the unaccounted for seeds (64%) were dispersed between the traps, the seeds
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dispersed further than 100 cm from the source, the outer limit of my dispersal design or 

seeds were removed directly from the plant by seed predators/dispersal vectors. Once the 

seeds reached the surface (17%), I was unable to account for 10% of the seeds while 

removal of the other 7% was attributed to granivory. Those seeds may have been 

aborted, lost to herbivory, dispersed by ants or incorporated within the seed bank. I 

suggest that many seeds entered the seed bank because of the heterogeneous environment 

that facilitated entrapment of the seeds. Future research is required before these gaps in 

the model can be addressed.

Management Recommendations

Natural migration of many rare species seems unlikely due to limited source 

populations to draw from, specific habitat requirements, possible dispersal limitations, 

low fecundity or a combination of the above factors (Rabinowitz and Rapp 1981, 

Rabinowitz et al. 1986). Restrictive geographic distribution of the species presents 

further obstacles for seed dispersal (Clark 1998, Higgins and Richardson 1999, Pakeman 

2001). For such reasons, if a species is unable to migrate because the current locale is 

unsuitable (Peters and Darling 1985, McDonald and Brown 1992), then rare plants are 

extremely vulnerable to extinction.

The preservation of previous and current occupied areas and potential habitat is 

paramount for the future survival of this species especially when plants “disappear” from 

sites during the lull in their demographic pattern. Hickerson and Wolf (1998) found 

evidence of reduced genetic diversity in A. californica fragmented populations in the Las 

Vegas Valley coupled with significant reductions in the diversity and abundance of 

pollinators. Over time, lack of genetic variation may impact population fitness and
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impair the species ability to deal with climate changes or other environmental pressures. 

Also, Meyer (1987) suggested that A. californica plants are dispersal-limited mostly due 

to the island-like gypsum habitats this species tends to occupy. This may not be the case 

because Drohan and Buck (2006) have shown that A. californica plants can establish on 

soils other than gypsum. I have found A. californica seeds can disperse up to distances of 

8 m from the closet reproducing adult however, this appears to be the exception rather 

than the norm. Regardless, it only takes one seed to survive, germinate, reproduce and 

set seed to promote the future regeneration and persistence of the species. Additionally, 

ant dispersal may or may not limit dispersal of the species given its unique habitat niche. 

Therefore, I suggest A. californica seeds tend to remain on-site but are patchy in time and 

space.

The reservoir of viable seeds deep within the seed bank suggests A. californica seeds 

may be long-lived. However, habitat disturbance caused by off-road vehicle traffic, 

mining, and feral burros disrupt the seed bank resulting in buried seeds being brought 

close to the surface where they can germinate (E. Powell, per s. comm.) thereby 

eliminating the persistent seed bank that would have buffered the species during 

unfavorable or natural disturbance events. The continued loss of habitat resulting from 

growth and other stressors are causing a decline in the number of A. californica 

populations in the Las Vegas Valley and the ecological impact of this decline on the 

environment may be great. Already, there are reduced numbers of pollinators found in 

the fragmented populations in Las Vegas Valley (Hickerson and W olf 1993) which may 

partially explain the lack of reproductive success in these A. californica populations.
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My management and future research recommendations for A. californica consist of 

(1) Preserve intact, undisturbed habitat, both currently occupied and potential habitat; by 

use of fencing, closures, grazing limitation, reduction of mining and exploration of the 

areas and/or signing; (2) Preserve dispersal vectors and pollinators; (3) Perform radio­

active labeling to track the fate of A. californica seeds through dispersal to germination to 

determine the influences on the temporal and spatial patterns of the specie; (4) Examine 

the chemical makeup of the elaiosome and its role in dispersal; (5) Investigate the impact 

granivores have on A. californica seedling recruitment and population structure and (6) 

Conduct in situ seed bank monitoring of A. californica seeds to determine average length 

of time seeds remain viable in the natural environment; (7) Resource allocation studies 

will provide a deeper understanding of the life history of the species; and (8) A model 

incorporating the demography of the species.

I recommend the following mitigation measures should be implemented if A. 

californica habitat should be disturbed: (1) Collect all mature capsules from the current 

site prior to disturbance, so that seeds can be sown on a new site. My results indicated 

that on average, 92.5% of the seeds collected from plants were viable; (2) Salvage soil up 

to 2 cm in depth in highly populated A. californica areas that have shown previous 

reproduction in the past year or years. This may maximize the chance of locating the 

seed bank; and (3) Salvage dead plants and remnants. The dead plants may provide 

additional sources of viable seeds trapped within the multitude of rosettes.
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APPENDIX I

FIGURES
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Figure 1. Map of the Las Vegas, Nevada, area depicting locations of the five 
study sites. Rainbow Gardens (Sites 1-3) and Stewarts Point (Sites 4-5). Adopted 
from Meyer (1986).
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Figure 2. Schematic diagram of the plant-based seed dispersal design. Solid rings =
2004 design with 3 rings with a radius of 60 cm and combination of solid and dashed =
2005 design that consisted of 5 rings with radius of 100 cm.
( •  = A. californica plant and x  = sticky trap).
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Figure 3. Typical schematic diagram of the secondary seed dispersal design with 
180 randomly placed seed traps within the plot at Site 3 located in Rainbow Gardens 
near Las Vegas, Nevada. * Not to scale.
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Figure 4. Pictorial of the exclusion design depicting all four treatments.

Elaiosome

Figure 5. Pictorial of an elaiosome attached 
to the hilum edge of an A. californica seed. 
Photo courtesy of Elizabeth Powell.
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across sites. The linear equations and r  ̂values are shown along with 
the 95% confidence interval (n = 36 plants).
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Figure 8. The relationship between the number of mature capsules and the 
number of seeds per plant pooled across sites and years. The linear equation 
and r  ̂value along with the 95% confidence interval (n = 36 plants).
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Figure 9. The distribution of the number of seeds trapped in relation to the 
nearest potential source plant, pooled across sites, in 2004 plot-based seed 
dispersal experiments (n = 8 seed traps).
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Figure 10. The distribution of seeds trapped in relation to the distance closest 
to the potential source plant, pooled across sites, in 2005 plot-based seed 
dispersal experiments (n = 51 seed traps).
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Figure 11. Frequency distribution for 2005 plot- 
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closest reproducing adult plant (n = 51 traps).
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Figure 12. Least-squares means and SE for tbe number of seeds trapped by 
ring*site in 2004 for plant-based seed dispersal experiments (n = 16 plants). 
Columns witb tbe same letters are not significantly different witbin sites 
(P > 0.05).
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Figure 13. The mean and SE for the number of seeds trapped per cardinal 
direction during 2004 seed dispersal experiments (n = 16 plants). Columns 
with the same letters are not significantly different (P > 0.05).
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Figure 14. The mean number of seeds trapped per distance category for 
2005 plant-based dispersal experiments illustrating the seed dispersal curve 
up to 100 cm from the plant. Dotted lines indicate categorical data 
(n = 15 plants).
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Figure 15. The mean and SB for the number of seeds trapped per A. californica 
plant per ring within sites during 2005 plant-based seed dispersal experiments. 
Columns with the same letters are not significantly different within sites 
(P > 0.05; n = 15 plants).
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Figure 16. The mean and SE for the number of seeds trapped per A. californica 
plant per cardinal direction in 2005 across sites for plant-based seed dispersal 
experiments. Columns with the same letters are not significantly different within 
sites (P > 0.05, n = 15 plants).
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Figure 17. The mean and SE for the number of seeds that were 
found within plants in 2005 between sites (n = 20 plants). Columns 
with the same letters are not significantly different (P > 0.05).
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Figure 18. The mean and SE for the number of seeds removed per 
treatment in exclusion experiments (a) Trial 1: 27 July-1 August 2004; 
(b) Trial 2: 13 July-20 July 2005; and (c) Trial 3: 2 September-7 
September 2005. Columns with the same letter are not significantly 
different within trials (P > 0.05, n = 4 sites).
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Figure 19. The mean and SE for the number of seeds removed per treatment within 
sites for exclusion experiments (a) Trial 4; 20 July-25 July 2004 and (b) Trial 5: 28 

August-2 September 2005. Columns with the same letter are not significantly different 
within sites (P > 0.05, n = 4 sites).
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Figure 20. Means and SE for the number of seeds removed per treatment 
in Elaiosome Experiment 1 pooled across trials. Columns with different 
letters are significantly different (P < 0.05, n = 4 sites).
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Figure 21. Means and SE for the number of seeds removed per nicked 
treatment in Elaiosome Experiment 2. Trial 1 = 2 8  August-2 September 
2005 and Trial 2 = 2-7 September 2005. Columns with the same letter are 
not significantly different within sites (P > 0.10, ni and n2 = 4 sites).

□ Site 1

□ Site 2

S  Site 3
Site 4

Tria 1 Trial 2

Figure 22. Means and SE for the number of seeds removed per site in 
Elaiosome Experiment 2. Trial 1 = 28 August- 2 September 2005 and 
Trial 2 = 2-7 September 2005. Columns with the same letter are not 
significantly different within sites (P > 0.05, n% and n i=  4 sites).
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Figure 23. Means and SE for the number of seeds removed per treatment 
in 2005 Elaiosome Experiment 3. Columns with the same letter are not 
significantly different (P > 0.05, n = 4 sites).
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Figure 24. Means and SE for the number of seeds removed per site in 
2005 Elaiosome Experiment 3. Columns with the same letter are not 
significantly different between sites (P > 0.05, n = 4 sites).
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Figure 25. The mean and SE for the total number of A. califomica seeds 
found within the seed bank by depth and site in 2005. Columns with the 
same letter are not significantly different within sites (P > 0.05, n = 5 sites).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



</>

d)

i ? ,

;

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0-2 cm 2-4 cm 4-6 cm 6-15 cm

Figure 26. The proportion of viable seeds per depth pooled across sites 
for the 2005 seed bank study. Columns with the same letter are not 
significantly different between depths (P > 0.05, n = 5 sites).
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Figure 27. The percent distribution of each seed category 
(fragment, filled but non-viable or viable) for the total 
number of seeds found within sites and depths (0-2 cm, 
2-4 cm, 4-6 cm and 6-15 cm) in 2005 seed bank study 
(n = 5 sites).
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Figure 29. Ant midden pile of Arctomecon californica seeds outside of 
the ant nest at Stewarts Point, Lake Mead National Recreational Area. 
Inset picture illustrates an ant with an Arctomecon californica seed in 
its possession. Photos courtesy of Elizabeth Powell.
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APPENDIX II

TABLES

Table 1. The percent viable seeds per plant based on a sample of 
pooled mature capsules per plant collected during 2005 seed 
production measurements (n = 19 plants).

Site Plant Total
Seeds

Seeds
Tested

Number of 
Viable Seeds

Percent 
Viable t

1 1 174 174 163 93.7
2 85 85 84 9&8
3 114 100 90 90.0
4 40 40 35 87.5
5 473 457 400 87.5

2 3 208 100 92 92.0
4 517 140 132 94.3
5 666 210 194 92.4
9 149 100 91 91.0

3 1 28 28 27 96.4
3 224 224 215 96.0
4 116 100 97 97.0
6 80 80 76 95.0
9 1133 100 88 88.0

4 1 11 11 11 100.0
2 232 100 214 92.0
4 185 100 97 97.0
9 331 331 308 93.1
12 105 100 95 95.0

t  Percent viable calculated as seeds tested 4 number viable.
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Table 2. The results of Pearson correlation analysis between the numbers of 
seeds per plant and plant characteristics for 2004 (n = 16 plants) and 2005 
(n = 20 plants). All factors were affected by multicollinearity in the model.

Year Variables Coefficient P-value
Plant Size ( X 0.151 0.5780

2004 Plant Diameter (cm) 0.151 0.5780
Number of Flowers/plant 0.417 0.1080
Number of Stalks/plant 10.233 0.3840
Number of Rosettes/plant 0332 0.2080
Number of Mature Cap/plant 0.956 <0.0001

Plant Size ( X 0.752 <0.0001
Plant Diameter (cm) 0.735 <0.0001

2005 Number of Flowers/plant 0.507 0.0230
Number of Stalks/plant 0.340 0.1430
Number of Rosettes/plant 0.315 0.1760
Number of Mature Cap/plant 0.945 <0.0001

Table 3. Results of the ANCOVA modeling the fixed effect of year, 
the number of mature capsules as the covariate and the number of seeds 
per plant as the dependent variable for 2004 and 2005 seed production 
studies (n = 36 plants).

Source df MS F P-value
Year 1 315198.757 1.325 0.2580
Capsules 1 10887722.720 45.777 <0.0001
Year*Capsules 1 55731.551 0.234 0.6320
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Table 4. The estimated number of seeds produced per site and average per A. 
californica plant over the two-year study period. Seed output per reproducing plant 
was derived using the seed production equation: No. seeds = 41.07* (No. mature 
capsules) per plant.

Year Site No. of Plants Average Estimated Seeds Estimated Seeds
per Site per Plant +/- SE per Site

2004 1 21 768 ± 240.3 16,122
2004 2 30 1,396 ±  351.4 41,894
2004 3 27 1,406 ±  387.8 37,972
2004 4 7 510 ± 225.9 3372
2005 1 42 3,931 ± 706.4 161,157
2005 2 33 6,132 ±  1,094.7 202,373
2005 3 30 5,149 ± 915.7 154,455
2005 4 97 13,490 ±2,130.5 1,254,609

Table 5. The results of the Spearman rank correlation analysis between
the numbers of seeds per capsule and capsule attributes for 2004 (n = 79
capsules) and 2005 (n = 634 capsules). All factors were affected by
multicollinearity in the model.

Year Variables Coefficient P-value
Capsule Radius (cm) 0.474 < 0.0001
Capsule Diameter (cm) 0.474 < 0.0001

2004 Capsule Length (cm) 0.548 < 0.0001
Volume of Cone (cm̂) 0.474 < 0.0001
Volume of Sphere (cm̂ ) 0.474 < 0.0001
Volume of Cylinder (cm̂) 0.474 < 0.0001

Capsule Radius (cm) -0.042 0.293
Capsule Diameter (cm) -0.042 0393

2005 Capsule Length (cm) 0.049 0.227
Volume of Cone (cm̂ ) -0.018 0.656
Volume of Sphere (cm̂ ) -0.042 0.293
Volume of Cylinder ^m^ -0.018 0.656
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Table 6. Results of the mixed model ANOVA modeling the main effects of site, 
ring, direction and the random effect of plant(site) on the number of seeds trapped 
from the edge of the plant (dependent variable ) in 2004 seed dispersal studies. 
The dependent variable was Logio(x+i) transformed (n = 16 plants).

Source Numerator
Df

Denominator
Df

F P-value

Site 3 12.010 3.460 0.113
Ring 2 132.021 6.788 0.002
Direetion 3 132.062 12.705 0.000
Site*Ring 6 132.023 2.468 0.027
Site*Direction 9 132.075 1.216 0.290
Ring*Direction 6 132.061 0.749 0.611
Site*Ring*Direction 18 132.074 0.748 0.756

Table 7. Results for mean pereent of seeds trapped during plant-based seed 
dispersal in 2004 (n = 16 plants; mean % + SE).

Site Plant Est. Seeds No. of Seeds % Seeds Site Mean
Produced Tranced Trappedt Percent t

1 1 701 218 31
1 2 615 68 11 18 ±4.5
1 3 452 57 13
1 5 452 72 16
2 1 10,499 766 7
2 2 968 189 20 15 ± 3.6
2 3 532 42 8
2 4 1,061 279 26
2 5 227 35 15
3 1 2,824 42 1
3 2 1,060 60 6 9 ± 5 .4
3 3 227 69 30
3 4 1,250 44 4
3 5 701 29 4
4 2 41 23 56
4 3 373 15 4 30 ±26.2

t  Number of seeds trapped 4 estimates of seeds produced 
$ Number of % seeds trapped per site 4 number of plants per site
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Table 8. Results of the mixed model ANOVA modeling the number of seeds 
trapped as the dependent variable and the main effects of site, ring, direction and 
the random effeet of plant(site) for 2005 seed dispersal studies. The dependent 
variable was Logio(x+i) transformed (n = 15 plants).

Source Numerator
Df

Denominator
Df

F P-value

Site 3 12.010 1.643 0.2320
Ring 4 228.000 22.902 <0.0001
Direction 3 228.000 91.333 <0.0001
Site*Ring 12 228.000 1.798 0.0490
Site*Direction 9 228.000 3.340 0.0010
Ring*Direction 12 228.000 3.376 <0.0001
Site*Ring*Direction 36 228.000 1.153 0.2650

Table 9. Results for the mean pereent of seeds trapped during plant-based seed 
dispersal in 2005 (n = 15 plants; mean % + SE).

Site Plant Est. Seeds Number of Seeds % Seeds Site Mean
Produced Trapped Trapped t % ±

1 1 12,546 2,727 22
1 2 877 83 9
1 3 12,695 2,206 17 22 + 4.2
1 4 8,112 2,187 27
1 5 7,839 2,646 34
2 1 13,897 1,011 7
2 2 14,505 2,828 19 18 ±5 .8
2 3 5,468 1,502 27
3 3 10,787 374 3
3 4 3,866 1,119 29 16 ±7.5
3 5 13,293 2,144 16
4 1 3,747 516 14
4 2 5,981 1,198 20 20 ± 1.9
4 3 1,061 246 23
4 4 17,777 3,650 21

t  Number of seeds trapped 4 estimates of seeds produced 
$ Number of % seeds trapped per site 4 number of plants per site
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Table 10. Results of the mixed-model ANOVA modeling the main effects 
of site, treatment, time, all interactions and random effect of replicate(site) 
on the number of seeds removed in exclusion experiments as the dependent 
variable pooling Trials 1-5 (n = 4 sites).

Source Num.
Df

Denom.
Df

F P-value

Site 3 268.00 2.716 0.0450
Trt 3 268.00 132.018 <0.0001
Time 4 268.00 15.228 <0.0001
Site*Trt 9 268.00 2.037 0.0360
Site*Time 11 268.00 3.737 <0.0001
Time*Trt 12 268.00 4.006 <0.0001
Site*Trt*Time 33 268.00 2.231 <0.0001
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Table 11. Results of the two factor non-parametric ANOVA adjusted for 
ties modeling the main effects of site, trt, site*trt with the number of seeds 
removed in exclusion experiments as the dependent variable.
Trial 1: 27 July-1 August 2004 (n = 4 sites). Also shown are the results of 
the mixed model ANOVA modeling the main effects of site, 
treatment, site*treatment and the random effect of replicate(site) with the 
number of seeds removed in the exclusion experiments as the dependent 
variable. Trial 2: 13 July-20 July 2005 (Logio(x+i)) and Trial 3:
2 September-7 September 2005 (n = 4 sites).

Trial Source Df SS HaHj P-value

Site 2 14.66 0.075 0.25
1 Trt 3 4315.80 22.020 0.001

Site*Trt 6 624.92 3.188 0.10

Trial Source Num.
Df

Denom.
Df

F P-value

Site 3 40.00 1.042 0.3840
2 Trt 3 40.00 11.953 <0.0001

Site*Trt 9 40.00 0.974 0.4760

Site 3 15.00 1.071 0.391
3 Trt 3 45.00 18.662 <0.001

Site*Trt 9 45.00 0.939 0.501
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Table 12. Results of the mixed model ANOVA modeling the main effects of site, 
treatment, site*treatment and the random effect of replicate(site) for the number 
of seeds removed in the exclusion experiments. Trial 4: 20 July-25 July 2004 
(Logio(x+i) and Trial 5: 28 August-2 September 2005 (Sqrt(x+,3 7 5); n = 4 sites).

Trial Source Numerator
Df

Denominator
Df

F P-value

Site 3 60.0 4.999 0.004
4 Trt 3 60.0 65.435 <0.0001

Site*Trt 9 60.0 4.528 <0.0001

Site 3 14.0 16.099 <0.0001
5 Trt 3 42.0 101.910 <0.0001

Site*Trt 9 42.0 10.029 <0.0001

Table 13. Elaiosome presence versus absence survey among five different
A. californica populations over a two-year period.

Year Site Seeds w/o Seeds w/ Number of Percent w/
Elaiosomes Elaiosomes Seeds Elaiosomes

2004 1 6 3,664 3,670 99
2004 2 5 3,660 3,665 99
2004 3 2 3,663 3,665 99
2004 4 2 2,651 2,653 99
2005 1 1 1,199 1,200 99
2005 2 0 1,200 1,200 100
2005 3 1 1,199 1,200 99
2005 4 1 1,199 1,200 99
2005 NLV Airport 5 4,795 4,800 99
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Table 14. Results of the of the mixed model ANOVA modeling the main
effects of site, trt, site*trt and replicate(site) as a random effect on the 
number of seeds removed in the elaiosome Experiment 1 pooled across 
sites. Trial 1: 14-25 July 2005 (n = 4 sites).

Source Numerator Denominator F P-value
Df Df

Site 3 48.0 3.298 0.058
Trt 1 48.0 15.502 <0.0001
Time 1 48.0 3.742 0.059
Site*Trt 3 48.0 0.828 0.485
Site*Time 3 48.0 2.689 0.057
Trt*Time 1 48.0 0.217 0.644
Site*Trt*Time 3 48.0 0.099 0.960

Table 15. Results of the of the mixed model ANOVA modeling the main effects 
of site, trt, site*trt with replicate nested within site as a random factor for the 
number of seeds removed in the elaiosome Experiment 2. Trial 1: 28 August-2 
September 2005 (n = 4 sites) and Trial 2; 2-7 September 2005 (n = 4 sites).

Trial Source Numerator
Df

Denominator
Df

F P-value

Site 3 16.0 8.001 0.002
1 Trt 1 16.0 4.415 0.059

Site*Trt 9 16.0 1.461 0.263

Site 3 16.0 0.921 0.453
2 Trt 1 16.0 1.691 0.212

Site*Trt 3 16.0 0.416 0.416
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Table 16. Results of the mixed model ANOVA modeling the main effects 
of site, trt, site*trt with replicate nested within site as a random factor for 
the number of seeds removed in the elaiosome Experiment 3.
Trial 1: 23-28 September 2005(n = 4 sites).

Source Num. Denominator F P-value
Df Df

Site 3 35.0 4.511 0.009
Trt 2 70.0 28.714 <0.0001
Site*Trt 6 70.0 1.591 0.163

Table 17. Results of the mixed model ANOVA modeling the main effects of site.
depth, site*depth with soil core as a random factor for the total number of seeds
found bootstrapped in the seedbank study (n = 5 sites).

Source Numerator Denominator F-value P-value
Df Df

Site 4 984 51.690 0.4610
Depth 3 2952 5.768 0.0001
Site*Depth 12 2952 1.898 0.0350
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