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ABSTRACT

Laboratory Studies to Examine the Impacts of 
Polyacrylamide (PAM) on Soil 

Hydraulic Conductivity.

By

Emesto A. Moran

Dr. Zhongbo Yu, Examination Committee Chair 
Professor o f Hydrogeology 

University o f Nevada, Las Vegas

Polyacrylamide (PAM) is being suggested as a new technology to reduce seepage 

losses in unlined irrigation canals. The goals o f this thesis were to quantify the optimum 

concentrations o f PAM and suspended sediment (SSC) that would reduce Ksat to the 

greatest extent, and to better understand the mechanisms contributing to reduced Ksat- 

Testing was conducted using a constant head method in soil columns (15 cm length, 6.35 

cm diameter). An unbalanced multi-factorial design was used with experimental variables 

including soil type (#70 mesh sand, C33 sand, loam soil), PAM concentration (5, 10, 20, 

40 Ibs/ca), and SSC (0, 150, 300 ppm). Results show that PAM reduced Ksat 40% to 98% 

in sandy soils, but reductions were less in loam. Adding suspended sediment reduced Ksat 

8-11 times versus PAM alone. Mechanisms that reduced Ksat included higher viscosity 

from dissolved PAM, creation o f a separate and distinct PAM layer, and the plugging o f 

larger soil pores. Significance o f these mechanisms was found to be a function of 

experimental conditions.

Ill
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CHAPTER 1 

INTRODUCTION

Water is a precious commodity in the western United States. It has been estimated by 

the U.S. Geological Survey (USGS) (1990) that as much as 50 percent o f the water 

flowing through irrigation canals is lost due to seepage through the bottoms o f the 

unlined canals. In order to help conserve water resources, the U.S. Bureau of 

Reclamation (USBR) is evaluating the use of polyacrylamide (PAM) as a means of 

sealing unlined irrigation canals.

PAM is an ultra-high molecular weight polymer that has been widely used in industry 

for over 50 years. PAM has been used for numerous applications that range from food 

processing to well drilling to wastewater treatment. In agricultural practices, PAM is 

perhaps most commonly used to stabilize irrigation furrows by improving soil aggregate 

structure, which allows more uniform infiltration rates along the furrows. This practice 

has become standardized by the U.S. Natural Resources Conservation Service (NRCS) 

using their Conservation Practice Standards for erosion control (Spofford and Pfeiffer, 

1996).

However, an alternative impact o f adding PAM to soil water is a reduction in 

infiltration rate. Previous laboratory research showed that higher concentrations o f PAM 

will begin to decrease infiltration in soil (Malik and Letey, 1992; Nadler et al., 1994; 

Letey, 1996; Lentz, 2003; and Ajwa and Trout, 2006). Using these results, scientists and
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water users suggested that PAM could be used as a means to reduce water loss due to 

seepage in unlined irrigation canals. If  effective as a tool for reducing water loss, water 

managers and stakeholders would benefit in two key ways. First, irrigation water would 

likely travel greater distances down the canal, supplying a larger number o f users who 

need the water for irrigation. Second, the water conservation would allow canal 

managers to reduce the time interval between water releases to individual water users, 

thus providing more water during the irrigation season. In both cases, PAM as a water 

conservation tool would provide the means for farmers and ranchers to be more 

successful in their endeavors, directly impacting consumers at a regional and/or national 

level.

If PAM is to be widely used as a canal sealant, many questions need to be answered, 

including the benefits o f using PAM as a water conservation tool, as well as possible 

health and environmental concerns associated with the use of PAM. This latter issue 

stems from the presence o f the monomer acrylamide (AMD), which is used to make 

PAM. AMD is a known animal carcinogen and mutagen (i.e., the compound alters DNA 

which is then passed on to offspring). During the polymerization process that creates 

PAM, from 0.025% to 0.05% o f residual AMD remains as part o f the PAM molecule 

(Sojka et al., 1998a). To date, very little is known about the transport characteristics of 

PAM and AMD. It is thus important to understand PAM and AMD transport through soil 

and the factors that affect their movement. Assuming that health and/or environmental 

risks o f PAM usage can be managed properly, leading to approval o f PAM usage by 

USBR, the next goal would be to develop a list o f standards for how PAM should be used 

in field applications. Finding the optimum concentration of PAM needed to achieve the
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desired reduction in seepage losses without using excess PAM is a key consideration in 

this study and the larger PAM research program. With optimization, unnecessary release 

o f PAM and its associated monomer AMD into the environment can be minimized.

To better understand the use o f PAM as a canal sealant, the U.S. Bureau of 

Reclamation (USBR) has sponsored a cooperative research program that includes groups 

within USBR, the Desert Research Institute (DRI), the University o f Nevada, Las Vegas 

(UNLV), and the University o f Nevada, Reno (UNR). The study is quite broad, including 

numerous laboratory and field experiments to understand how to maximize effectiveness 

o f PAM, and an environmental risk characterization that considers both ecological and 

human toxicological risks.

For the research conducted in this study, the hypothesis is that PAM can be used to 

decrease saturated hydraulic conductivity o f soil material, thus decreasing water loss due 

to infiltration. The main objectives in this study are to (1) evaluate to what extent PAM 

effects hydraulic conductivity and infiltration rates o f a soil and (2) better understand the 

physical mechanisms that are leading to the decrease in infiltration. For this second goal, 

this study considers three possible physical mechanisms that reduce seepage, including 

(1) PAM-treated water is more viscous than untreated water, thus reducing the infiltration 

rate; (2) PAM physically plugs large soil pores, especially in coarser grained canal 

sediments; and (3) PAM itself becomes a low-conductivity layer when treating finer- 

grained soils. The information gained from this research will be vital for predicting the 

effectiveness o f PAM application in unlined canals, when field conditions (suspended 

sediment concentration, soil type and PAM concentration) are known, and for developing 

the standards needed for PAM use as a sealant.
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This thesis is divided into chapters that present different aspects o f the study. Chapter 

2 is a literature review that discusses past work related to PAM use. Chapter 3 describes 

in detail the methods and techniques used for the experiments in this study. Chapter 4 

provides the results from the testing, and Chapter 5 presents final conclusions and future 

recommendations.
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CHAPTER 2

LITERATURE REVIEW 

The study and use o f PAM has changed and broadened greatly over time. A literature 

search for PAM will most likely bring up articles related to electrophoresis and DNA 

research. Although PAM has had such varied uses, as related to this study, PAM research 

has focused on three main themes: (1) soil erosion control, (2) increasing infiltration in 

soil, and (3) decreasing infiltration in soil. While these studies are closely related to the 

work conducted in this study and provide a foundation for the work presented here, none 

have clearly hit upon the goals o f this study.

The precursor to PAM was polyacrylonitrile developed by the Monsanto Chemical 

Company in the early 1950s. It was marketed as a soil conditioner under the trade name 

Krilium. Krilium was used the same way as modem day PAM; specifically, it was used 

for decreasing furrow erosion and increasing aggregate stability. The benefits of Krilium 

use on crop yield were published by Bear (1952). Although Krilium was effective, about 

200 pounds per acre was needed for soil conditioning, or approximately two orders o f 

magnitude more than the amount o f modem day PAM needed for the same purpose. The 

product was marketed in 1953, but due to its cost o f $2.00 per pound (equivalent to 

$15.00 in 2006, inflationdata.com) and the high amounts required, the product had 

limited success.
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2.1 Soil Erosion Control

In 1988, Helalia and Letey used cationic PAM in laboratory tests to increase soil 

structure and permeability under simulated rain fall events. They also found in these tests 

that inter-rill erosion was decreased. Lentz et al. (1992) hypothesized that PAM could be 

used to increase the cohesiveness o f soil at the surface and therefore be used to decrease 

erosion. Several studies focused on the ability o f the compound to decrease erosion in 

irrigation furrows (Lentz et al., 1992; Lentz and Sojka, 1994; Sojka et al., 1998b). These 

studies were, for the most part, field-based tests performed in irrigation furrows, where 

irrigation water was treated with anionic PAM prior to release into the furrows. The 

variables in these experiments included the concentrations o f PAM, the number o f 

applications, and whether the applications were continuous or intermittent.

The results from the studies showed PAM to be very successful at decreasing erosion 

as well as being cost effective. A concentration o f 10 ppm was found to be ideal for 

reducing erosion. From the results o f these studies, the use o f PAM as an erosion control 

agent in furrow irrigation became an NRCS interim conservation practice standard in 

1995 and later in 2001 the interim status was removed to become a true standard (NRCS, 

2001). As will be described in the next section, in addition to decreasing erosion, these 

investigators found that low concentrations o f PAM could also increase infiltration rates 

within the furrows.
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2.2 Increasing Infiltration in Soils

The previous work, as well as research by Sojka et al. (1998c) showed that 

concentrations between 5 and 10 ppm o f PAM will actually increase infiltration rates and 

hydraulic conductivity in soil. In furrow irrigation environments, the mechanism for 

PAM increasing infiltration is due to the maintenance o f soil structure. PAM has cohesive 

properties that binds soil particle together. This cohesiveness helps maintain aggregate 

stability. The addition o f water with PAM concentrations below 10 ppm increases the soil 

structure by maintaining aggregate stability and keeping soil pores from collapsing. 

Without the addition o f PAM, flowing water disturbs soil structure, causing the 

aggregates to slake, thus collapsing the larger pores through which water would 

preferentially flow.

Because flow through capillaries is proportional to the pore radius to the fourth 

power, keeping open the larger pores can greatly increase the potential for water to flow 

through a porous media.

2.3 Decreasing Infiltration in Soils

Numerous papers have been written that suggest that increases in viscosity from PAM 

addition explain the decrease in infiltration/conductivity in soil. Even very small amounts 

o f  PAM can have significant impact on viscosity, and in turn the ability o f fluids to move 

through soil. Used at concentrations above 10 ppm, PAM has been shown to lead to 

decreased infiltration and conductivity (Malik and Letey, 1992; Nadler et al., 1994;

Letey, 1996). Letey (1996) described quite simply the mechanism for the decrease in 

infiltration/conductivity in soil, when PAM solutions exceeding 10 ppm concentrations
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are applied. He described viscosity (fj) as a governing factor in the equation for hydraulic 

conductivity (K) that could he influenced by PAM:

where, /cis the intrinsic permeability (L^) o f the soil, p  is the fluid density (M/L^), g  is the 

gravitational constant (L/T^), and it] is the kinematic viscosity o f the fluid (L^/T). The 

parameters k  and g are unaffected by PAM addition In theory, the fluid density (p) will 

be affected by the addition o f PAM by a very slight amount and thus is considered 

negligible. The only parameter in the equation that PAM does affect significantly is the 

kinematic viscosity o f the solution. Increasing the dynamic viscosity will reduce the 

ability of the solution to flow through the porous media, and therefore reduce the 

hydraulic conductivity. The increase in infiltration due to the maintenance of pore 

structure is opposed by the increase in viscosity as PAM concentration increases. A finite 

point exists where the benefits o f maintaining pore structure are outweighed by the 

increased viscosity of the PAM solution. Although pore structure is maintained, the 

increased viscosity o f the fluid will begin to decrease infiltration/conductivity.

A study by Lentz (2003) showed not only that PAM could decrease infiltration, but 

how this application could be used. He discussed how PAM could be used to decrease the 

rate o f infiltration at the inflow end o f a furrow, relative to the outflow end. In furrow 

irrigation, water on the inflow side has more time to infiltrate than water on the outflow 

side. By decreasing the infiltration rate at the inflow side it is possible to get a more 

uniform infiltration rate throughout a furrow. Lentz (2003) even mentions how PAM 

might be used to reduce seepage in unlined irrigation canals.
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One of the tests conducted by Lentz (2003) showed how PAM could be used in a 

ponded environment such as an irrigation pond or canal. Lentz discusses that adding 

enough PAM to treat the amount o f water needed to fill a canal would be cost prohibitive. 

He instead suggests lining the canal surface prior to filling the canal with water as an 

alternative. Lentz (2003) tested this idea by applying 20 ml of a 1000 ppm PAM solution 

to a 12.6 cm^ surface area soil column and then allowing the solution to dry. With this 

method, 0.020 g o f PAM was applied to 12.6 cm^, or 0.0016 g/cm^. The results from this 

test showed that PAM could decrease conductivity by 60% in silt loam soils and > 90% 

in clay loam soils.

Although this application method is shown to be affective at decreasing infiltration in 

a canal environment without using an exorbitant amount o f PAM, this method may not be 

cost effective in terms o f the logistics needed to apply PAM in this manner to lO’s or 

even lOOO’s o f miles o f  canals. The amount o f PAM used by Lentz (2003) (0.0016 

g/cm^) is 3.5 times higher than the highest concentrations used in our study (0.00045 

g/cm^ or 40 Ib/ca). The real importance o f Lentz’s 2003 study is that it shows that PAM 

can be used to decrease infiltration rates and hydraulic conductivity without relying on 

the change in water viscosity to achieve the reduction. As used by Lentz (2003), the PAM 

was basically creating a seal at the soil water interface, decreasing the ability o f water to 

infiltrate. The specific mechanisms for the reduction are not fully explained, but two 

possibilities include, (1) the hydrated PAM molecule penetrated some small distance into 

the soil causing the pores to be clogged, or (2) the hydrated PAM created a less 

permeable layer directly on top of the soil. The magnitude and importance of these two 

mechanisms may depend on the soil texture.
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2.4 PAM Formulation

PAM polymers can be categorized into three distinct types: cationic, non-ionic, and 

anionic.

Several different studies (e.g., Deng et al., 2006) have shown that cationic PAM is 

very effective at causing flocculation o f sediment. Fine particles o f sediment such as 

clays generally posses a negative charge due to the broken edges o f the crystal lattice 

(Hillel, 1998, p. 75-78). Cationic PAM with a positive charge thus attracts the negatively 

charged sediment. This attraction between the positively-charged PAM and the 

negatively-charged particles causes the particle to accumulate into larger tloccs that 

eventually become too heavy to remain suspended in the water column and settle.

A major drawback o f cationic PAM is that the molecule adheres to negatively 

charged fish gills. When excessive amounts o f cationic PAM build up on the gills, the 

fish eventually dies o f asphyxiation (Mason et al., 2005).

Nonionic PAM has neither a positive nor negative charge. A recent study done by 

Deng et al. (2006) showed that anionic PAM has flocculation/dispersion an effect 

somewhere between that o f anionic and cationic forms o f PAM.

Anionic PAM, with its negative charge, has not been shown to be harmful to fish 

because the negative charge does not adhere to the fish gills. Depending on the chemistry 

o f the water where PAM is used, anionic PAM can cause flocculation or can cause 

sediment to be repulsed and held in suspension longer. In the experiment by Deng et al. 

(2006) using distilled water, PAM was shown to disperse the sediment, holding it in 

suspension longer. Anionic PAM cannot cause flocculation o f sediment unless cations 

such as Ca^^ or Mĝ "̂  are present in the water. Lu et al. (2002) stated that the presence of

10
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divalent cations in the water phase shrinks the electrical double layer and bridges the 

negatively-charged sites o f soil and PAM. The Ca^^ or Mĝ "̂  thus act as a bridge between 

the negatively-charged PAM and negatively-charged particles. Without the presence of 

bridging cations, the anionic PAM will not flocculate the sediments. Fortunately water 

found in natural environments tends to contain the cations needed for anionic PAM to 

cause flocculation.

2.5 PAM as a Flocculation Agent

Because o f logistical ease, adding dry PAM to a flowing canal seems to be a more 

commonly used application method. A problem with this method is that, in theory, 

adding dry PAM to water flowing in an operational canal will just create a weak PAM 

solution. The key to this application method is understanding how PAM settles from the 

solution to the bottom o f the canal. Numerous manuscripts have been published that show 

PAM to be a strong flocculation agent; for this reason, PAM has been used extensively in 

wastewater treatment for decades. PAM works when charged, hydrated PAM molecules 

attract suspended sediment present in the water column, creating larger particles or 

“floccs.” These floccs eventually becomes too heavy to remain suspended in the water 

column and fall to the bottom. The presence and or addition o f sediment or other 

particulate matter could thus greatly increase the effectiveness o f PAM.

It is hypothesized in our study that flocculation o f PAM and sediment on the soil 

surface can decrease infiltration rates and hydraulic conductivity by creating a lower- 

conductivity layer on top o f the soil. This process would be analogous to physical crusts 

that form on soil surfaces, sealing the surface against water infiltration (Hillel, 1998, p.
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227-228). By sealing the surface and decreasing infiltration at the interface, the effective 

conductivity o f the entire soil system is decreased.

In contrast to the explanation that relies on the increase in viscosity to reduce 

infiltration, the flocculation mechanism does not require higher concentrations (i.e., 

greater than 10 ppm), nor does it require any changes in viscosity in the water column. In 

fact, when flocculation does occur, it is expected that both the sediment and the PAM are 

removed from the water column, thereby maintaining viscosity levels similar to water. 

Given the large volume o f water in the canal, and that PAM can begin to flocculate 

sediment at concentrations below even one ppm, the flocculation mechanism for 

decreasing seepage in the canals seems to be a more reasonable as well as possibly a 

more efficient mechanism.

12
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CHAPTER 3

METHODOLOGY AND DATA DESCRIPTION 

Several different types o f tests were conducted to answer the questions in this study, 

increasing in complexity from simple mixing studies to soil column Ksat testing. Chapter 

3 is an overview o f the experimental standards used for the experiments as well as a 

discription of the purpose and design for each type of experiment.

3.1 Experimental Standards 

The experimental standards chapter describes the specific type o f PAM, test solution, 

and sediment used for all experiments, as well as the types o f soil used for the soil 

column testing.

3 .1.1 PAM Formulation Used in Experiments 

The specific PAM polymer used for these experiments is TACK Dry distributed by 

Precision Polymer Corporation o f Greeley, Colorado. It is an anionic, straight-chain, non­

cross linked polymer with a molecular weight o f approximately 18 Mg/mole.

3.1.2 Composition of Test Solution 

Recent studies (i.e., Wallace and Wallace, 1996; Lu et al., 2002; Deng et. al., 2006) 

and preliminary test results have shown that cations need to be present in the test solution 

for the anionic PAM to flocculate sediment. Therefore, for all o f the PAM experiments 

conducted for this study, we used a 0.005 M CaS04  test solution augmented with 0.3g/L

13
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thymol as an anti-microbial agent. This standard test solution is described by Klute and 

Dirksen (1986, p.692-693). When converted to the mass o f individual ions, 0.005 M 

CaS04  equals 200 ppm Ca^^, which corresponds well to values attained from 

measurements taken in several canals in the Grand Junction area, where PAM field scale 

testing (unrelated to this study) was conducted over the summer of 2006 (Susfalk et al, 

2006). Those results showed that canal samples contained 71, 196, and 234 ppm of Ca^^. 

In addition to Ca"̂  ̂ the canal samples also contained 22, 89, and 128 ppm of Mg^^, and 

38, 189, and 294 ppm o f Na^. Lu et al. (2002) stated that divalent cations are 28 times 

more effective at enhancing PAM sorption than monovalent cations. Although divalent 

cations are more effective than monovalent cations. Lu et al. (2002) also stated that “the 

amount PAM sorption increased significantly as the total dissolved salts (TDS) 

increased.” Testing with various cation concentrations could be a consideration for future 

testing.

3.1.3 Suspended Sediment

Suspended sediment was used in most o f the laboratory experiments to more closely 

replicate conditions in operational canals. The amount of sediment held in suspension is 

termed the suspended sediment concentration (SSC), and is calculated as the mass in 

grams of sediment contained in one liter o f water. The SSC will vary in the canals due to 

the slope and parent material o f the canal, as well as the amount of water passing through 

the canal. The SSC usually changes with the seasons and storm events.

Another common measurement related to the presence of sediment in water is 

referred to as turbidity. Turbidity is not a concentration o f mass, but rather is related to 

the clarity o f the water. Turbidity is measured using a turbidimeter and is given in
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Nephelimetric Turbidity Units (NTU). A turbidimeter measures the opacity o f the water 

to light. A turbidity measurement can he affected by the amount, color, and size o f the 

sediment present in a sample, as well as the presence o f coloring agents such as iron 

oxide and organic acids. Because o f these interferences, a direct relationship between 

SSC and turbidity often does not exist. Nonetheless, it is possible to correlate SSC to 

NTU for a given set o f water samples, hut this correlation is not exact and may not hold 

true for water samples from different sites with different characteristics. Due to the more 

labor intensive nature o f  an SSC measurement, turbidity can he a useful tool for 

estimating SSC, as long as a reasonable correlation has already been established.

Two sources o f sediment were used for the laboratory experiments. The first source 

was derived from soil collected in Grand Junction, Colorado, and the second was 

kaolinitic material purchased from a vendor in Georgia. Sediments derived from soil 

were obtained by mechanically sieving dry soil from Grand Junction through 120- and 

45-micron sieves. The 45-micron sieve was chosen because fines were needed in the silt 

and clay ranges (i.e., < 50 micron). Two five-gallon buckets o f soil produced 

approximately 120 g o f fine sediment in the silt and clay size ranges. Particle size 

analyses of the sediment gave us a ratio o f approximately 80% silt size particles and 20% 

clay size particles.

Discussion with other project scientists raised concerns about the use o f the sediment 

from Grand Junction. Specifically, it was felt that the 80% silt content in the sediment 

was too high, leading to a low charge density and relatively low reactivity with PAM. 

Based on suggestions and discussions with Drs. Frank Mangravite (Public Works 

Management, Inc., Morris Plains, NJ) and Rick Lentz (USDA-ARS, Kimberly, ID), both
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of whom are on an external PAM Peer Review Panel organized by DRI, it was decided 

that a more reactive material with uniform grain size should be used. Thus, for future 

experiments, we chose to use a kaolinite clay for our experiments. Kaolinite was chosen 

because it has the lowest charge density o f the clays, providing a conservative reactive 

material for PAM experiments. Also, kaolinite has been in recent PAM experiments 

(Deng et al., 2006), All kaolinite (type Huber 80 kaolinite) was purchased from the J.M. 

Huber Corporation, Macon, Georgia. Laboratory experiments (Ksat testing, and 

flocculation ja r tests) were carried out using the Huber 80 kaolinite clay.

3.1.4 Description o f Soil Material

Three different soils were chosen to test PAM efficiency at decreasing infiltration 

these inelude; (1) an engineered #70 mesh washed silica sand (obtained from a local 

home improvement store) used as a control, (2) a natural C33 sand collected from Grand 

Junction, Colorado, and (3) a loam collected from Grand Junetion, Colorado. Material 

was treated by spreading and air drying, sieving through a screen with 2 mm openings to 

remove larger stones and other material, and then homogenizing the material with a small 

shovel. Soil was then packed into 20-L buckets with lids for storage and future usage. 

Beeause the engineered (#70 mesh) sand was already homogenized at time o f purchase, 

no additional treatment was done.

Soil physical and hydraulic properties were also determined on all three soil 

materials. Soil samples were analyzed for particle size using the Laser Light Scattering 

technique (Digisizer, Micromeritics, Norcross, GA) at the Soil Characterization and 

Quaternary Pedology Laboratory at the Desert Research Institute in Reno, NV. Tables 

3.1a-c are the particle size distributions for the soils used in the experiments.
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Table 3.1a: Particle size analysis for #70 mesh sand.

Cumulative Cumulative
Aperture Volume Volume Volume

Sieve Size Passed Frequency STD
Name

(pm) (Percent) (Percent) (6 tests)

No. 25 710.0 100.0 0.0 0.0
No. 50 300.0 7&8 20.2 1.2
No. 120 125.0 11.2 68.6 0.3
No. 270 53.0 2.0 9.2 0.1
No. 635 20.0 1.2 0.7 0.0

>: Particle size analysis for C33 sand.

Cumulative Cumulative
Aperture Volume Volume Volume

Sieve Size Passed Frequency STD
Name

(pm) (Percent) (Percent) (4 tests)

No. 12 1700.0 75.5 0.0 0.0
No. 25 710.0 6 8 j 7.0 1.5
No. 50 300.0 2 2 J 46.3 1.2
No. 120 125.0 5.2 17.0 0.4
No. 270 53.0 3.2 2.0 0.3
No. 635 20.0 2.5 0.7 0.3

:: Particle size analysis for Loam soil.

Cumulative Cumulative
Aperture Volume Volume Volume

Sieve Size Passed Frequency STD
Name

(pm) (Percent) (Percent) (5 tests)

No. 25 710.0 100.0 0.0 0.0
No. 50 300.0 8 8 J 11.3 1.0
No. 120 125.0 52.1 36.7 1.6
No. 270 53.0 33.4 18.7 0.9
No. 635 20.0 25.4 8.0 0.7
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3.1.5 Establishing PAM Concentration per 

Surface Area or Volume 

An interesting and difficult part o f the PAM project has been to determine the PAM 

concentrations used for the experiments. The difficulty lies in how PAM concentrations 

are expressed in the field, which is done by areal coverage o f the canal (i.e., pounds PAM 

per canal acre, or Ib/ca), not in mass o f PAM per volume of water (i.e., mg/L or ppm). 

Areal coverage may be an awkward way of describing a concentration, but for this 

purpose, mass per surface area is more appropriate method. Using a volume based 

concentration can result in significant differences in the mass o f PAM that actually settles 

to the surface o f the canal. For example, assuming that PAM will flocculate and settle to 

the bottom, if  a target PAM concentration o f 10 ppm is needed in tbe canal, but the 

volume is increased 10 times, the fluid concentration would remain the same, but the 

areal coverage at the bottom of the canal would be 10 times higher. Using a mass per 

surface area concentration, the amount o f PAM reaching the bottom of the canal is 

independent o f the volume o f water in the canal.

Typical PAM usage in the field will likely be done by farmers, ranchers and other 

non-scientists. Field applications have traditionally used the English units o f pound per 

canal acre (Ib/ca), which is defined as the product o f the wetted perimeter o f the canal 

and the length o f the canal required equal one acre o f surface area. For the Ksat 

experiments conducted in this study, the unit o f Ib/ca was converted to metric system 

units o f g/cm^, where the conversion o f 1 Ib/ca equal 1.121 x 10'^ g/cm^. The surface area 

of the soil columns used in laboratory experiments is 31.67cm^. Therefore, multiplying 

this area by 1.121 x 10'^ g yields am ass o f PAM of 3.55x10'"'g, equivalent to 1 Ib/ca.
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This value is then multiplied by the number o f Ibs/ca needed for the experiment (i.e., 5, 

10, 20, 40, etc.). Thus, the mass o f PAM is known, as well as the surface area coverage. 

Depending on the height o f the water column used in the experiment (described below), 

the PAM concentration in ppm can be calculated. For our soil column tests, we have a 

surface area o f 31.67 cm^ and a water column height o f 15 cm, yielding a volume o f 

0.475 L. The mass o f PAM used to achieve 5, 10, 20, and 40 Ibs/ca is thus equivalent to 

4, 8, 16, and 32 ppm PAM. The concentration in ppm from the soil column tests was used 

as the basis for the Flocculation Jar Testing described in section 3.3.

3.2 Experiment 1: PAM Application Test

Tests were performed to find out if  application methods o f polyacrylamide (PAM) 

make a difference in its ability to flocculate suspended sediments from turbid water. The 

experimental variable in this test was the manner in which PAM was added to the test 

columns. These test data were not quantifiable, but the empirical information gained was 

very informative as to how PAM works, and was important to the experimental design of 

subsequent laboratory experiments. Attempts were made to quantify the flocculation tests 

using a hydrometer; unfortunately, the PAM interfered with the hydrometer and rendered 

the unusable.

Five 1-L graduated cylinders were used for the experiment. Each cylinder contained 

equal amounts o f fines and PAM, but varied in the way the PAM was applied to the 

cylinder. A stock solution o f PAM was made by adding 1 gram o f PAM to one liter o f 

D.I. water. The stock was mixed with a magnetic stirrer for approximately 20 minutes. 

After a few minutes, when the solution became too viscous to maintain a vortex, solution
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was then moved and stirred with a propeller type mixer at 300 rpm for approximately 15 

minutes, after which the PAM appeared to be completely in solution (PAM lumps or 

powder were not evident).

Suspended sediment concentration was kept at 3g/L for each column, with fine­

grained material added to the water column separately. Fines were obtained as described 

above.

PAM was added to the column as described below:

Cylinder 1 -1 0 0  mL o f lOOOppm stock solution was added to 900 mL o f D.I. water. The 

cylinder was then vigorously stirred again to make a weaker 100 ppm solution. 

Cylinder 2 - Similar to Cylinder 1, 100 mL of stock solution was added to 900 mL o f D.I. 

water, but the stock solution was not mixed into the water. Rather, the 100 mL of 

PAM solution was allowed to remain a gelatinous mass within the 900 mL of turbid 

water.

Cylinder 3 -0 .1  g o f dry PAM crystals was applied to 1 liter o f water in the cylinder. 

Cylinder 4 -0 .1  g o f dry PAM crystals was hydrated with 10 mL of D.I. water for 5 

minutes, and then added to 990 mL o f water in the cylinder.

Cylinder 5 - used as a control with equal mass o f fines, but no PAM added.

3.3 Experiment 2: Flocculation Jar Test 

Flocculation tests were conducted to observe, and quantify if  possible, the reactivity 

of PAM and suspended sediment under different experimental conditions. The variables 

for the flocculation/jar test included PAM concentration in ppm and sediment
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concentration in ppm/NTU. PAM concentrations were 0 .5 ,1 ,2 ,4 , 8, 16, and 32 ppm. 

Sediment concentrations were 0, 20, 60, 110, 203 and 368 ppm (25, 75, 150, 300, and 

600 NTU).

Courtesy of Dr. Jaci Batista (UNLV, Department o f Civil and Environmental 

Engineering), a Flocculation Apparatus (Phipps and Bird PB-700 Series), also known as a 

jar tester, was used to uniformly stir dry granular PAM into solution. The jar tester is 

used in many wastewater treatment applications to find the optimum flocculating dose for 

waste water treatments. In 1 L o f test solution with suspended sediments mixed in, dry 

PAM granules were added while the apparatus stirred at 100 RPM for 5 minutes. This 

stirring period allowed the PAM to fully hydrate. The apparatus was then slowed down to 

30 RPM and allowed to stir for 15 minutes so that the PAM flocculates could grow and 

settle.

After the stirring was complete, a pipette was used to vigorously stir the beaker back 

into a homogenous mixture, and for collecting the sample for analysis. The end o f the 

pipette was cut to have about a 7-mm opening, preventing exclusion of the flocculates. 

Approximately five pipette loads were needed to fill a 15-mL cell (Hach Chemical Co., 

Loveland, CO)

Turbidity measurements were performed in attempts to quantify the ability of PAM to 

flocculate sediments from a water column under the given experimental conditions. For 

each turbidity analysis, the Hach cell was shaken by hand to suspend the flocculates prior 

to placement into the turbidimeter (Model 21 OOP). The first reading (used as the initial 

time) was immediately taken after the cell was in place. Turbidity readings were taken 

from the same cell over time until equilibrium was reached. Laboratory observations
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showed that the larger flocculates fell quickly, thereby changing turbidity rapidly early in 

the experiment, but that turbidity changes tended to taper toward the end. Thus, turbidity 

measurements were taken every 30 seconds after the initial reading for the first three 

minutes, every minute up to six minutes, and then every two minutes until equilibrium 

was reach. For most tests equilibrium was reached at approximately 20 minutes.

3.4 Experiment 3: Hydraulic Conductivity Testing 

The purpose o f the Ksat testing is to quantify how the application o f PAM will affect 

the ability o f water to infiltrate through the soil surface. From the results o f these 

experiments, it is possible to find the most efficient use o f PAM, or the optimum ratio of 

percent reduction divided by the mass o f PAM used. The experiments were conducted 

using a constant head setup, based on designs by Klute and Dirksen (1986, p. 694-700). 

The factors for the soil column testing include PAM concentration (5, 10, 20, and 40 

Ibs/ca), suspended sediment concentration (0,150, 300 ppm), and soil types (engineered 

(#70 mesh) sand, C33 sand, and loam soil). As described in section 3.1.5, using the 

known dimensions o f our water column 5, 10, 20, and 40 Ibs/ca is equivalent to 4, 8, 16, 

and 32 ppm PAM.
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The experimental setup (Figure 3.1) for these experiments consisted o f six main parts:

15cm

15cm

Figure 3.1: Schematic diagram showing parts o f Ksat experimental setup.

Column (1) - The column is made o f two parts; a soil column and a water column.

The use o f columns makes volume calculation easy. For these experiments, 7.62 cm 

outside diameter pressure cells were used (Soil Measurement Systems, Tucson, AZ.). The 

column material used in the pressure cell is made o f non reactive cast acrylic (6.35 cm 

inside diameter by 15 cm long). Using these dimensions yielded a column volume o f 475 

cm^.
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Marriotte (2) - The Marriotte system is a simple but very important part o f the setup. 

Using gravity and a siphon tube, it maintains a constant head in the water column.

Collector (3) -  Acrylic tubing o f 3.18 cm inside diameter was used to collect outflow 

during the experiment. At the base o f the collector, a 1 psi pressure transducer 

(Honeywell Microswitch PX26-001GV) was inserted through a stopper to record water 

height with time. Using the water height measurement and known inside diameter, the 

outflow volume was calculated.

Datalogger (4) and pressure transducers (5) - A datalogging system with calibrated 

pressure transducers was used to collect and store data for these experiments. A Campbell 

Scientific 21x Datalogger (Ogden, UT) was used for the data collection. The datalogger 

was programmed to take measurements from the three replicate columns every 10 

seconds. The data collected on the datalogger was downloaded to a personal computer for 

further processing using a Microsoft Excel spreadsheet. The transducers were calibrated 

by correlating pressure transducer responses in volts to known values of hydrostatic head. 

All transducers used were calibrated with an > 0.99997.

Agitator (6 ) -T o  simulate water moving in the channel a stirring system was 

incorporated into the design.

3.4.1 Soil Column Preparation 

To determine how much soil is needed to fill the soil column, a target bulk density 

was chosen that might be expected to be found in an undisturbed natural environment. 

Though density varies from location and soil type, the C33 soil at the Grand Junction 

field area is known to have a field bulk density o f 1.7 g/cm^, which we used for the target
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density o f both the C33 and the engineered (#70 mesh) sand for our columns. Due to its 

finer texture and higher porosity, the loam was packed at a bulk density of 1.5 g/cm^.

To obtain soil water content, an arbitrary amount o f soil is weighed, and then placed 

in an oven at 105°C for 24 hours to drive off moisture. The soil is then weighed again to 

determine the amount o f  moisture in the original sample. Gravimetric water content is 

then calculated as:

(mass moist soil -  mass oven dry soil)/(mass oven dry soil)

The air dried engineered (#70 mesh) sand, C33 sand, and loam soil were found to 

have gravimetric water contents of, respectively, 0.0015, 0.0027, and 0.0087. The known 

water contents were then factored in as a percent o f the total mass o f oven dry soil needed 

for the soil columns. For the engineered (#70 mesh) and C33 sands packed to a bulk 

density o f 1.7 g/cm^, 807.6 g o f oven dry soil is needed, and 712.58 g is needed for the 

loam soil given a bulk density o f 1.5 g/cm^. To account for the moisture that exists in the 

air dry soil, an additional 0.15%, 0.27%, and 0. 87% of the oven dry mass needs to be 

added for the materials being tested.

Preliminary tests were conducted by packing columns using a hydraulic press. One of 

the most important, but often over looked parts o f laboratory soil column testing is how 

soil columns are packed. Lebron and Robinson (2003) reported that more variability in 

experimental results can come from differences in soil packing then from the variable 

being tested. To increase the consistency of bulk densities between cores, we first opted 

to use a hydraulic press. Instead o f adding small amounts of soil to the column and hand 

packing until the required volume was filled, the column could be filled with the
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predetermined mass o f soil, and then compressed in a single Tift’ using the hydraulic 

press until the given volume was filled. Compressing the soil to the correct density all at 

once left no layering and provided a more consistent distribution o f density throughout 

the column. This method is substantially better than traditional hand packing in terms of 

speed, ease, and, most importantly, consistency. Unfortunately, uniformly packing dry 

soil into columns does not always translate into consistent saturated water contents, as 

will be discussed below.

All column experiments were done on saturated soil material. Soils were saturated 

using the method described by Klute and Dirksen (1986). Although all procedures were 

followed, inconsistencies were observed in the level o f saturation between the replicate 

columns. For example, for soil with a bulk density o f 1.7 g/cm^, a fully saturated column 

should have a volumetric water content o f 0.36. However, our columns recorded 

volumetric water contents o f between 0.30 and 0.35. This small difference in volumetric 

water content caused large differences in the Ksat measurements between replicates, 

where higher water contents corresponded to higher Ksat and vice versa. Because the 

relationship between water content and Ksat is a nonlinear, normalizing the data for water 

content was difficult. Therefore, we chose an alternative means o f packing soils columns 

for subsequent tests.

The new method o f packing the soil column was done while the column and soil were 

placed under water. The “waterpacking” was done by using the same method as the dry 

packing. A tubing and funnel apparatus (Figure 3.2), with a predetermined amount of 

soil, was used to swirl the soil into the column.
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Figure 3.2: Funnel setup used to pack soil columns.

Approximately 2 cm of water was added to the column and soil was swirled in until 

an insufficient amount o f  water covered the soil surface. At this point, water was again 

added the process was repeated. Approximately four to five repetitions o f this process 

was needed to fill each column.

Unlike dry packing the water already present in the column helped the particles settle 

more tightly together and thus it was not necessary to compact the column using a press. 

A simple tap on the side o f the column was usually enough to reach the desired bulk 

density. No apparent particle size segregation occurred from packing, and the method 

was more time efficient because the packing and saturation were completed 

simultaneously.
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3.4.2 Calculation o f Hydraulic Conductivity 

Pressure transducer output was transferred to Excel spreadsheet format, and was then 

converted from voltage output to height o f water, using the transducer-respective 

calibration equations. Knowing the area (Ac) of the collector column and the height o f the 

water within the collector column (he), outflow volume (V) could be easily calculated 

over time (t). Results o f discharge (Q) were then divided by the cross-sectional area o f 

the soil core, yielding the Darcy velocity (q) or flux:

q — —K

where K is hydraulic conductivity, H is total head, and z is the length o f the region of 

interest (Figure 3.3). In this application, K is the unknown parameter we seek to quantify.

Calculation o f hydraulic gradient

# 2

15cm

. . .  1

z P H

0 15 15

15 15 3 0

2 - H 30 -15
Z2 -  z, 15 -0

A // 15 ,
Az 15

Gradient = 1

Figure 3.3: Diagram and calculations o f hydraulic gradient for soil column testing.
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3.4.3 Application o f PAM to Water Column 

Some time was spent developing the most appropriate method o f applying the dry 

PAM to the water column. The goal was to develop a method that most closely replicated 

the natural environment in a flowing canal. An early method was to stir the dry PAM in 

an orbital shaker, with 100 ml o f test solution to dissolve the PAM crystals. The PAM 

solution was then applied to the 375 ml o f test solution already present in the water 

column and the Ksat was started.

Two different variations o f this method were tested in terms o f turbidity: (1) PAM 

solution was added to water column containing turbidity, (2) turbidity was added to 

beaker and shaken in the orbital shaker while the PAM crystals dissolved.

Both methods o f PAM turbidity interaction had drawbacks in terms o f realism. 

Method 1 did not appear to flocculate the suspended sediment. Once the PAM solution 

was added to the water column, the suspended sediment would not sufficiently contact 

the PAM and react with it. Using method 2, the suspended sediment completely 

flocculated within the beaker, but when the mixture was added to the water column, the 

PAM flocculates did not evenly cover the surface o f the soil column. The PAM 

flocculates were very large and, instead o f creating a continuous layer, the flocculates 

were sparsely distributed as individual clumps.

To get the most realistic flocculation, it was decided that the dry PAM should be 

added directly to the water column and stirred in-situ to allow dissolution and 

flocculation to happen gradually. We hypothesized that using this method would create 

smaller floccs that would be more evenly distributed on top o f the soil column. A stirring 

device was designed and fabricated to stir three replicate columns at the same rotational
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speed (Figure 3.4). Dye tests were performed to qualitatively identify the revolutions per 

minute that would replicate the threshold between turbulent and non-turbulent flow. The 

results indicated that 130 rpm most closely replicated conditions in a flowing canal.

9

Figure 3.4: Stirring device used for soil column testing.

3.4.4 Viscosity Measurements 

To identify the significance of each mechanism to reduce hydraulic conductivity, 

samples o f the test solution remaining in the columns after the Ksat experiments were 

tested for viscosity. Viscosity measurements were performed using a viscometer 

(Cannon-Fenske Routine Type Viscometer #50 for Transparent Liquids) as shown in

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.5. The viscometer operates by measuring the time in seconds for the meniscus of 

a specific amount o f fluid to move from a higher etched line on the apparatus to a lower 

etched line. The time is then multiplied by the calibrated viscometer constant. The value 

attained is the kinematic viscosity in centistokes (cSt) or mm^/s.

I

Figure 3.5: Canon-Fenske Routine type Viscometer used for viscosity measurements.

The viscosity o f fluids is very temperature dependant and the change in viscosity with 

temperature is a non-linear function. The calibration constant o f the viscometer varies 

slightly with temperature; this effect is minimal and is accounted for. To account for the 

measurement variability due to temperature for each experiment, the viscosity o f the 

PAM solutions were compared relative to deionized water of the same temperature.
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3.5 Experiment 4: Filter Material Testing

The fourth set o f lab experiments were conducted using water columns and silk filter 

mesh. Filter media tests were carried out in to verify how much impact PAM alone, with 

no soil interaction, has on reducing Ksat- The filter material tests were carried out using 

the same procedures and the same PAM and sediment concentrations as the soil column 

tests.

Nitex Bolting Cloth from Wildco (Buffalo, NY) was chosen as the filter material 

used. Nitex Bolting Cloth is a woven nylon material with consistent aperture size. From 

an empirical test, a cloth with a 20-micron aperture was chosen for the filter material 

experiments.

To calculate Ksat for the filter material test an arbitrary thickness o f 1 mm is assumed 

for the PAM and filter mesh together. The filter mesh material had such a high flow rate 

that the hydraulic head level had to be decreased from 15 cm to 5 cm for the Marriotte 

system to maintain a constant head level. Figure 3.6 shows the schematic and calculation 

o f gradient used for the filter media experiments.
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Figure 3.6: Diagram and calculations o f hydraulic gradient for PAM filter media 

testing.

3.6 Statistical Methods 

Statistical methods were applied to the soil column data to verify if  significant 

differences existed between treatments. Triplicate Ksat measurements using the same soil 

type and same SSC, but varying PAM concentration were compared to one another using 

a comparison wise test. The data was run through Statistical Analysis Systems (SAS) 

software (Cary, NC) using the general linear model (GLM) procedure and Duncan’s 

Multiple Range Test. The test compares all pairs o f means, including within and between 

treatments. The test is initiated by first comparing the largest and the smallest mean
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within a treatment (e.g., largest and smallest Ksat for different PAM application rates 

using #70 mesh sand and 150 ppm SSC) and uses a studentized range statistic to 

determine significance (Montgomery, 2001). The test then compares the largest mean 

and the second-smallest mean, and so on, until all comparisons are completed.
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CHAPTER 4

DATA ANALYSIS

4.1 Experiment 1: PAM Application Test 

When the PAM application test was initially run, flocculation with sediment did not 

occur. It appeared that the columns containing PAM were in fact holding sediment in 

suspension longer than the control. It was discovered by chance why PAM was not 

having any effect on flocculation. The lack o f flocculation was due to the use o f distilled 

water in the experiments. After running another PAM/sediment column with tap water 

instead of distilled water, flocculation o f sediment occurred immediately. In hindsight 

this made sense, the difference between the distilled water and the tap water is the 

calcium carbonate present in the tap water. In the distilled water the negatively charged 

PAlM and negatively charged sediment repulsed each other causing dispersion, whereas 

calcium in the tap water acted as a bridging cation

When tests were performed again using tap water all columns containing PAM 

flocculated sediment. The pre-hydrated PAM and PAM solution worked faster, but once 

the PAM in all cylinders had the chance to hydrate all application methods worked 

equally well.
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4.2 Experiment 2: Flocculation Jar Test 

As indicated in Section 3, all suspended sediment was composed o f kaolinite clay.

To approximate the turbidity found in full scale canals, we sought a relationship between 

NTU and SSC for the kaolinite clay. Though no direct conversion between NTU and SSC 

is typically available, especially in natural waters where colloids and other coloration can 

influence the turbidity. Figure 4.1 shows a good relationship between kaolinite clay 

concentration and turbidity when clay is mixed in test solution.
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Figure 4.1 : Correlation o f suspended sediment concentration (SSC) to turbidity 

(NTU). Symbols are the data and the line represents the regression equation.
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Once this relationship was established, the jar testing was initiated. Figures 4.2a-c 

show the results o f the ja r tests for PAM concentrations ranging from 0 - 3 2  ppm (0.5, 1, 

2, 4, 8, 16, and 32 ppm) for suspended sediment concentrations o f 20, 60, 110, 203 and 

368 ppm (25, 75, 150, 300, and 600 NTU), and how the turbidity changed as a function 

o f time. Note that NTU values were slightly lower, though consistent from test to test, 

when PAM was added to the solution.

3H
Z

2!q

No PAM
0.5 ppm

16 ppm
32 ppm

10 15
T im e  (m ln )

20 25

Figure 4.2a: Results o f mixing tests for 110 ppm SSC (corresponding to 150 NTU) as 

a function o f time and PAM concentration. Note different scales on the y-axes for other 

graphs in Figure 4.2
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Figure 4.2b: Results of mixing tests for 203 ppm SSC (corresponding to 300 NTU) as 

a function o f time and PAM concentration. Note different scales on the y-axes for other 

graphs in Figure 4.2.

800
-♦—No PAM 
* —0.5 ppm700

600
3h-
Z 500

4*—4 ppm 
*—8 ppm 
-4— 16 ppm 
 32 ppm

È  400 2
1  300
3 
I-

200

100

10 15 200 5

Time (min)

Figure 4.2c: Results o f mixing tests for 368 ppm SSC (corresponding to 600 NTU) as 

a function o f time and PAM concentration. Note different scales on the y-axes for other 

graphs in Figure 4.2.
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Figure 4.2 shows the significant reactivity o f PAM and kaolinite, as seen hy the rapid 

reduction in turhidity. In each case without PAM added to the water column, very slight 

reductions in turhidity were seen, indicating that the kaolinite remained suspended in 

solution. The clay was acting as a colloid and not settling to the bottom o f the column, as 

would heavier particles. Even small amounts o f PAM, as low as 0.5 ppm, resulted in 

almost immediate settling o f kaolinite as flocculates. We noted that flocculates were 

visibly seen falling through the water column within the first 30 seconds.

In terms o f ability to flocculate kaolinite, using a higher concentration o f PAM was 

not necessarily more effective. In all experiments, it appeared that the 2 and 4 ppm 

concentration o f PAM flocculated sediment faster than did lower or higher 

concentrations. With lower SSC/turhidity levels, the higher concentrations o f PAM (16 

and 32 ppm) flocculated sediment rather poorly. The effectiveness o f  PAM to flocculate 

sediment declined with increasing levels o f PAM. This result is likely due to the 

increased viscosity o f the fluid in the column, which created additional resistance to 

settling o f the flocculates. As sediment levels were increased, the larger (and heavier) 

flocculates began to settle more quickly, though the PAM solution at 4 ppm concentration 

was still most effective. Even at the low concentrations o f 0.5 and 1.0 ppm PAM, 

sediment flocculation still occurred, although not as effectively as the higher 

concentration (2 and 4 ppm) treatments. When PAM concentrations exceeded 1.0 ppm, 

the turhidity reached approximate equilibrium conditions in the water column within five 

minutes. Final turhidity values settled on approximately 20 NTU for each experiment, 

regardless o f the initial value or the PAM concentration.
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As stated in Section 3, the original intent o f these experiments was to quantify the 

reactivity o f PAM and suspended sediment. However, because the readings for the 

turbidimeter took approximately 12 seconds to complete, flocculates in the treated water 

columns fell too rapidly for the meter to record a true time zero reading. This affected our 

ability to quantify the reactivity rates between PAM and suspended sediment, though 

qualitative observations were possible.

4.3 Experiment 3: Hydraulic Conductivity Testing 

The combinations o f soil type (three textures), PAM concentrations (4 levels plus 

control), suspended sediment (2 levels plus control) and triplicate measurements o f each 

combination yielded a total of 135 experiments (Appendix A). Each experiment resulted 

in a time series o f cumulative flux as a function of time, with the long-term (steady-state) 

flux expressed as a hydraulic conductivity. Rather than showing all individual plots of the 

output here, several representative graphs are included and discussed below. Mean values 

are also discussed below

Figures 4.3a-c are representative graphs from individual tests with the #70 mesh sand, 

C33 sand, and loam soil, using the same treatment o f 40 Ibs/ca PAM and 300 ppm SSC. 

The graphs show both cumulative flux in cm/sec and Ksat in cm/sec with time. Figures 

4.3a and 4.3b, corresponding to the two sandy materials, exhibit very similar 

characteristics (note the difference in the y axis). In both cases, outflow is high at the 

beginning o f the experiment and begins to taper off after approximately 300 seconds or 5 

minutes into the experiments. After five minutes the flux begins to decrease over time 

until a steady state is reached at approximately 60 minutes.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.3c show a more linear cumulative flux, with a slope that changes very little 

with time. Explanation for the change in flux will be discussed in greater detail below.
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Figure 4.3a; Representative sample from the PAM soil column testing. Graph shows 

the cumulative flux and Ksat for the #70 mesh sand with 40 Ibs/ea PAM and 300 ppm 

SSC.
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Figure 4.3b: Representative sample from the PAM soil column testing. Graph shows 

the cumulative flux and Ksat for the C33 sand with 40 Ibs/ca PAM and 300 ppm SSC.
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Figure 4.3c; Representative sample from the PAM soil column testing. Graph shows 

the cumulative flux and Ksat for the loam soil with 40 Ibs/ca PAM and 300 ppm SSC.

Taking the mean o f the steady-state Ksat results from triplicate experiments for each 

treatment combination, and plotting the means as a function o f PAM and suspended 

sediment concentrations allow for a direct comparison o f impact. Figures 4.4a-c show the 

saturated hydraulic conductivity values for the #70 mesh sand, C33 sand, and loam soil, 

respectively, after PAM treatment. Error bars are the range o f data, and letters above the 

bars represent statistical differences between treatments o f PAM concentration for each 

treatment o f SSC (i.e., similar letters above treatments with different SSC are not 

related).
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Figure 4.4a: Comparison o f Ksat for treatments performed on #70 mesh sand.
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Figure 4.4b: Comparison o f Ksat for treatments performed on C33 sand.
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Figure 4.4c: Comparison of Ksat for treatments performed on loam soil.

The results without any treatment (no PAM, no SSC), show wide differences in Ksat 

between the three soils. The C33 sand, typically used for concrete, has the highest Ksat 

and the loam has the lowest Ksat- Values o f Ksat did not change significantly for any soil 

when suspended sediment alone (no PAM) was added to the solution. When PAM was 

added to the solution (no SSC) in increasing concentrations, the results show significant 

decreases in Ksat for the #70 mesh and C33 sands, but only a decreasing trend in Ksat was 

observed for the loam soil.

The reduction o f Ksat for the sandy material when no SSC was added (Figures 4.4a-b) 

is most likely a combination o f increasing viscosity o f the solution, which is described in

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



more detail below, and the settling o f PAM “fish-eyes,” which are the colloquial name 

for hydrated PAM molecules. In this latter case, the molecules were likely carried 

downward to the soil surface during the experiment, where they sorbed to the soil surface 

and/or plugged larger soil pores. With respect to the results o f PAM addition without 

SSC in the loam soil (Figure 4.4c), the results showed a decreasing trend in Ksat, but the 

trend was not statistically significant (p=0.05). The increased viscosity can explain the 

reduction in Ksat, but apparently the smaller pore sizes in the loam soil were not plugged 

by the PAM molecules as they settled onto the soil. Thus, some reduction in Ksat for the 

loam soil was observed through PAM addition, but the treatment was not as effective.

The PAM treatment was observed to be much more effective when PAM and SSC 

were used in combination. When sediment was not present (SSC = 0), the decrease in Ksat 

o f the #70 mesh sand appeared to be more gradual with increasing concentrations of 

PAM (Figure 4.4a). When PAM was applied at 5 Ib/ca, plus the addition o f 300 ppm 

SSC, a decrease in Ksat o f more than 11 times greater than PAM alone (62 versus 726 

cm/day) was observed. This increase in efficiency decreased with the higher PAM 

concentrations used. For example, when using a PAM application o f 40 Ibs/ca with 300 

ppm SSC, Ksat o f the #70 mesh was 9.5 times lower than using PAM alone. This increase 

in efficiency was also observed for the 150 ppm SSC treatment, where an 8 to 10 fold 

reduction in conductivity was observed, versus PAM alone.

With respect to the loam soil. Figure 4.4c shows reductions in Ksat for PAM 

treatments with and without suspended sediment. When suspended sediment is absent, 

though a trend is evident for most treatments, a significant reduction in Ksat was recorded 

only at the maximum rate tested (i.e., 40 Ibs/ca). PAM application with 150 ppm SSC
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produced similar results to PAM alone, only at the highest concentration o f PAM tested 

was there a significant difference fi'om the control. However, when SSC was present at 

the highest level tested (300 ppm), PAM concentrations o f 20 and 40 Ibs/ea resulted in 

statistically significant reductions in Ksat from the control. For all combinations o f PAM 

and SSC, the reductions in Ksat were between 0% and 56% regardless of the presence of 

SSC.

The efficiency o f PAM to reduce Ksat was calculated by dividing the percent 

reduction for the PAiM treatment by the amount of PAM used in lbs per canal acre 

(Figure 4.5a-e). For example, in the #70 mesh sand experiments (Figure 4.5a), 5 Ibs/ca 

o f PAM and test solution with 300 ppm SSC caused a 94% reduction in Ksat- The 94% 

reduction was divided by 5 Ibs/ea o f PAM for an efficiency o f 18.8. When PAM 

concentration was increased to 40 Ibs/ca and 300 ppm SSC a 98% reduction in Ksat was

n 14

300 ppm SSCNo SSC 150 ppm  SSC

□  5 lbs/acre
□  10 lbs/acre
□  20 lbs/acre 
■  40  lbs/acre

Figure 4.5a: Comparison o f effieiency for PAM treatments using #70 mesh sand.
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Figure 4.5b: Comparison o f efficiency for PAM treatments using C33 sand.
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Figure 4.5c: Comparison o f efficiency for PAM treatments using loam soil.
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achieved, yielding an efficieney of 2.45. In the C33 sand, the efficiency values for the 

same treatments were 18.2 and 2.45, respectively. Thus, although the 40 Ibs/ca 

application caused a greater reduction over the 5 Ibs/ca application, the 4% additional 

reduction in Ksat required an eight-fold increase in the amount of PAM. In the loam soil 

(Figure 4.5c), PAM is shown to be inefficient at all concentrations used. The results in 

Table 4.1 highlight the capability o f PAM as a sealant, and also the relatively small 

amount o f PAM needed to effectively reduce Ksat- Therefore, results from the soil column 

Ksat tests support the original hypotheses that (I) PAM can be used to decrease 

infiltration, and (2) the presence o f suspended sediment can increase the efficiency of 

PAM use.

Table 4.1: Average Ksat values, percent reduction from the respective controls, and 

efficiency for all treatments.

Treatment
#70 Mesh Sand

PAM Ksat Red. PAM PAM
C33 Sand

Ksat Red. PAM PAM
Loam Soil 

Ksat Red. PAM
(Ibs/ca) (cm/d) % Eff. (Ibs/ca) (cm/d) % Eff. (Ibs/ca) (cm/d) % Eff.

Test 0 1204 0 N A 0 1767 0 N A 0 148 0 N A

solution 5 726 39J 7.9 5 1304 26 .2 5.2 5 128 13.4 2.7

only 10 471 60 .9 6.1 10 867 50 .9 5.1 10 114 22 .7 2.3

20 306 74.6 3.7 20 711 5&8 3.0 20 100 322 1.6

4 0 2 3 6 80 .4 2.0 4 0 331 81.3 2.0 40 70 52.5 1.3

150 ppm 0 1110 0 N A 0 1384 0 N A 0 148 0 N A

SSC 5 73 93.5 18.7 5 3 3 4 75 .9 15.2 5 154 -3.6 -0 .7

10 55 95 .0 9.5 10 152 89.0 8.9 10 118 20 .6 2.1

20 4 6 95 .9 4.8 20 84 94 .0 4.7 20 99 33 .0 1.7

4 0 39 96.5 2.4 40 82 94.1 2.4 4 0 69 53.3 1.3

300 ppm 0 1136 0 N A 0 1415 0 N A 0 156 0 N A

SSC 5 64 94 .4 18.9 5 119 91 .6 18.3 5 141 9.3 1.9

10 4 0 96.5 9.6 10 70 95.1 9.5 10 134 13.7 1.4

20 28 9%6 4.9 20 51 96 .4 4.8 20 107 31 .0 1.6

4 0 25 97 .8 2.4 4 0 26 9&2 2.5 40 69 55 .9 1.4
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4.3.1 Effect o f Viscosity 

As discussed in Chapter 2, numerous papers (Malik and Letey, 1992; Nadler et al., 

1994; Letey, 1996) have been written suggesting that increases in viscosity from PAM 

addition explain the decrease in infiltration/conductivity in soil. Even very small amounts 

o f PAM can significantly increase viscosity, and in turn affect the ability o f fluids to 

move through soil. In our laboratory experiments when suspended sediment was not 

present, the change in viscosity o f the solution was hypothesized to be primarily 

responsible for the decrease in Ksat- If no sediment is present in the water column for 

flocculation to occur, it is likely that more PAM stays in suspension rather than settling to 

the soil surface where it would be most effective. To examine whether PAM is remaining 

in solution during the tests, an aliquot o f solution was analyzed with a viscometer at 

completion o f the tests. The viscosities o f these aliquots were compared to the viscosity 

o f deionized water o f the same temperature. Figure 4.6 shows, with no sediment present, 

an increase in the relative viscosity as PAM concentration is increased.
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Figure 4.6: Correlation of relative viscosity to PAM concentration for experiments 

using #70 mesh sand and no SSC.
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At the maximum PAM concentration of 40 Ibs/ca, a difference in viscosity o f 7 % 

was recorded. An increase in the viscosity from the addition o f PAM could explain the 

reduction in Ksat, but a 7% increase in viscosity would not be enough to explain the full 

extent of the Ksat reductions seen in the tests. Figure 4.7 shows the effect that the change 

in viscosity alone should have on Ksat.
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T h e o re tic a l K sa t d u e  to  v is c o s i tyA c tu a l re s u l t
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Concentration of PAM (Ibs/ca)

Figure 4.7: The figure shows actual Ksat results from the #70 mesh sand with PAM 

and no sediment, and the theoretical Ksat results for the effects o f viscosity alone.

The theoretical Ksat value attributed to change in viscosity was derived by using the 

relationship attained in the Figure 4.8. The kinematic viscosity o f test solution was 

divided by the viscosity values for the PAM concentrations o f 4, 8, 16, and 32 ppm 

(equivalent to 5, 10, 20, and 40 Ibs/ca). The relative differences in viscosity between test 

solution and PAM solutions were 0.992, 0.855, 0.747, and 0.596, respectively. The actual
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Ksat of the #70 mesh sand was then multiplied by the relative viscosity values, to get the 

change attributed to viscosity alone. This approach is equivalent to correcting the 

hydraulic conductivity for viscosity, as shown:

^sat -  '

where k  is the intrinsic permeability (L^), r is the bulk density of the fluid (M/L^), g is the 

acceleration constant (L/T^) and p is the kinematic viscosity (L^/T).

120
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Eaa y = 52.06X - 49.731 
R2 = 0.9886
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Figure 4.8: Correlation o f viscosity to PAM concentration (ppm) at 25°C.

Figure 4.7 shows that a substantial difference exists between the theoretical Ksat, due 

to viscosity change alone, and the actual Ksat values measured with the column studies. 

With no suspended sediment present, the test results show a difference o f 34, 54, 66, and 

67% from what could be expected from viscosity alone. Although no suspended sediment 

was present to flocculate PAM from the water column, which was continuously stirred in
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the column, PAM would still have contacted the soil surface with the likelihood of 

sorbing and causing the greater reduction in Ksat than could be expected from increased 

viscosity alone. As previously discussed, even without suspended sediment the reduction 

in Ksat can be attributed in some extent to change in viscosity as well as PAM adhering to 

and sealing the soil surface.

In addition to comparing the viscosity o f the test solution remaining after the 

experiments are complete to that o f deionized water, an attempt was also made to predict 

the concentration o f PAM in solution from change in viscosity. This was done by 

establishing a regression curve between viscosity, measured from the viscometer, and the 

PAM mass added to the solution. The correlation was done by measuring viscosity o f 10 

solutions with known PAM concentrations at a standard laboratory temperature o f 25°C 

(Fig. 4.7). The value o f 0.9886 indicated a good fit to the data; however, a standard 

error o f 3.666 ppm PAM concentration means that low, residual concentrations o f PAM 

remaining in the water column may not be quantifiable using this method.

Although a good correlation exists between solution viscosity and PAM 

concentration, two problems were identified with accurately estimating the concentration 

o f PAM left in solution from a viscosity measurement.

(1) Viscosity readings are greatly affected by temperature. Although care was taken 

to accurately measure room temperature during all experiments, temperature variations 

between room temperature and solution temperature were possible.

(2) The regression model for solution viscosity to PAM concentration has a standard 

(predictive) error o f 3.7 ppm; thus, for most cases, the model lacks the precision to 

accurately measure low PAM concentrations.
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During the laboratory experiments, the only sample to exceed the standard 

(predictive) error limit o f 3.7 ppm was the combination o f a PAM application rate o f 40 

Ibs/ca and no SSC, where an estimated PAM concentration o f 4.3 ppm was left in 

solution. Nonetheless, although the correlation lacks the resolution to estimate low 

concentrations, it is still helpful in showing that most o f the PAM has been removed from 

the solution. For the soil column Ksat testing the initial PAM inputs were 4, 8,16, and 32 

ppm (5, 10, 20, and 40 Ibs/ca).

4.3.2 Surface Seal versus Pore Clogging 

In experiments with SSC, for all three soil types, a thin layer o f PAM was 

observed on the soil layer at the completion o f the experiments (Figure 4.9 is an example 

o f the PAM layer).

Figure 4.9: An example o f the PAM/sediment layer on top of the soil at completion of 

the experiments. The layer has been disturbed to show contrast between the 

P AM/sediment layer and the darker C33 sand beneath.
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Though the layer o f  PAM and sediment was seen for all three soils types, the decrease 

in conductivity was more pronounced in the two coarse-grained soils. Moreover, not 

only were the decreases in Ksat greater for the sands than for the loam, compared to their 

respective controls, but the absolute value at the end of the experiments were lower as 

well. Using the highest PAM application rate o f 40 Ibs/ca and the highest SSC of 300 

ppm, the percentage decrease in Ksat was 98%, 98%, and 56% for the #70 mesh sand,

C33 sand, and loam soil, respectively. The final Ksat values for this same treatment were 

25, 26, and 69 cm/day. If the PAM and sediment are sealing the soil like a soil crust, then 

the magnitude o f Ksat for the sands should be no lower than those observed for the loam 

soil. The laboratory results clearly show differences in the magnitude o f the Ksat values 

after PAM treatment. A possible explanation for this phenomenon is that the 

PAM/sediment layer is not only sorbed to the upper soil surface, but it is partially 

penetrating into the larger pores o f the coarser soils. Because the #70 mesh and C33 

sands have larger pores than the loam soil, it is likely that the flocculates are able to 

penetrate and clog pores resulting in a more effective decrease in Ksat- To further examine 

this possibility, a targeted series of experiments were conducted on filter material with a 

uniform pore size distribution in the fine to medium pore range.
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4.4 Filter Material Test

4.4.1 Ksat results

The Ksat results for the PAM and filter material tests are presented in Figure 4.10, 

using the same graphing style as used to show the soil column experiments.
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Figure 4.10: Ksat data for filter media tests.

Unlike the soil column experiments that used a unit gradient for calculation o f Ksat, 

the filter material test used a gradient o f about 50. With such a high gradient, there was 

some concern that movement o f water across the PAM layer would be turbulent, resulting 

in non-Darcian flow. This type o f flow condition would render use o f Darcy’s equation 

invalid, and under estimate Ksat values for our filter material experiments.
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To address this concern, we examined whether the flow conditions in our 

experimental setup exceeded a Reynolds number (Rn> o f 1. The equation (Fetter, 2001, p. 

123-124) and example calculation are shown below:

K  = dqpll^

R, = (20xl0-"mX0.004/M/gXl000%//M")/8.9xl0"'Ag/m a = 0.09

where d  is the pore diameter of the filter material (<7=20 pm), q is discharge velocity, p  is 

density o f fluid, and p is fluid viscosity. The results indicate that Rn is less than one; thus, 

we can infer that we have laminar flow and Darcy’s law is applicable for calculation of

K-sat-

The filter material tests verify that PAM alone can decrease Ksat, with a good linear fit 

representing Ksat as a function o f PAM concentration (r  ̂= 0.840) (Figure 4.11). Similar 

trends were observed from both the soil column and filter material tests; specifically, (1) 

sediment alone has very little effect on decreasing Ksat, (2) increasing PAM concentration 

decreases Ksat, and (3) the addition of sediment increases the effectiveness o f PAM much 

greater than PAM alone.
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Figure 4.11 ; Linear regression o f Ksat results from PAM filter material test without 

suspended sediment. Symbols are the data and the line is the regression model.

4.4.2 Addition o f sediment 

The reduction in Kgat from the PAM and suspended sediment, when mixed together, is 

more evident with the mesh filter media, than when using soil columns. As shown in 

Figure 4.10, it is clear that adding sediment leads to significantly higher seepage 

reduction. Only the tests with no PAM and varying SSC were performed with replicates. 

Using those test results, it was possible to verify that no statistical difference existed 

between the concentrations o f sediment and Ksat reduction, when PAM is not present. 

These results are consistent with the size differences between the silk mesh filter material 

(20 micron openings) and the kaolinite clay (<2 microns in diameter). As a result, the 

clay is not likely to build up on top o f the mesh material to create a less permeable layer.
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Figure 4.10 shows that the addition of sediment and PAM can reduce Ksat between 7 to 

55 times greater than PAM alone, depending on the concentrations of PAM and kaolinite. 

The use o f the filter material provided a unique means to isolate the physical processes of 

crust development and pore clogging. Unlike in soil, which can trap sediment within 

larger pores and eventually reduce flow, particles with diameters smaller than the 

openings o f the filter material will pass through, most likely not affecting the flow. Once 

sediment was added to the PAM solution and allowed to flocculate, very rapid and 

significant reductions in Ksat were observed. The very similar Ksat reductions, regardless 

o f the treatments that contain PAM and sediment, indicate that a threshold size flocculate 

o f PAM and sediment could initiate pore plugging.

4.4.3 Hydration Period

PAM requires some amount of time to hydrate before it can effectively reduce Ksat- 

Knowledge o f hydration period is a key parameter in PAM field application, especially 

given the distance traveled in the canal water before reacting with the sediment and 

settling to the canal bottom. To estimate the hydration period, we examined more closely 

the time series o f outflow from the filter material experiments, to see if  slope breaks 

could signal a change in hydration status o f the PAM flocculate.

Figures 4.12a and b are examples from soil column and filter material tests 

respectively. Both show three distinct phases o f hydration. In Phase I, PAM is not 

hydrated and has no affect on decreasing flux. During Phase II, PAM is hydrating, 

reacting with sediment and is beginning to decrease flux. In Phase III, PAM has been 

completely hydrated and the column outflow rate has reached a state o f dynamic 

equilibrium. The highest amount o f Ksat reduction occurs in this phase.
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Figure 4.12a: Three different phases o f hydration. Test performed on #70 mesh sand 
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Figure 4.12b: Three different phases o f hydration. Test performed on filter media 

with 40 Ib/ca PAM and 300 ppm SSC.
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In many cases, the time needed to complete the experiments was less than 120 

seconds, so that repeated experiments were needed to examine longer hydration periods. 

In these cases, the flow-through rates (i.e., cumulative flux versus time) were essentially 

uniform and the fluxes themselves could be compared on a single graph. However, as the 

PAM and suspended sediment concentrations increased, the time needed to complete the 

experiments took longer than the individual hydration periods being studied. In these 

cases, and using the example shown in Figure 4.12a, first derivatives were calculated at 

times corresponding to the hydration period, using the equation:

slope ; =
f lu x  i ]̂Q s flu x

where f + l Os  and t - 10s are time periods 10 seconds before and after the time o f interest 

(i.e., 20 second regression window). The slopes were then used to plot fluxes as functions 

o f time for different hydration periods and for different treatment combinations o f PAM 

and SSC. The plots in Figures 4.13a-d were generated for PAM concentrations o f 5, 10, 

20, and 40 Ibs/ca with no suspended sediment. In the case o f 5 Ibs/ca, the initial hydration 

periods (0 and 5 minutes) show no difference in slope, which would indicate that 

hydration has not yet affected PAM enough to reduce flux. At the 10 minute period, the 

flux is decreasing, thus indicating the beginning o f when PAM hydration is leading to a 

reduction in flux. By 40 and 60 minute period, the PAM hydration appears to have 

reached a maximum level, at least as it affects seepage reduction. As the PAM 

concentration increased from 5 Ibs/ca to 40 Ibs/ca, the time needed to fully hydrate the 

PAM molecule also increased, as did the seepage reduction. The results show that 

hydration period to fully reach equilibrium can vary from about 10 to 60 minutes 

depending on the amount o f PAM applied.
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Figure 4.13a: The effects o f hydration on 5 Ibs/ca PAM, with no SSC.
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Figure 4.13b: The effects o f hydration on 10 Ibs/ca PAM, with no SSC.
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Figure 4.13c: The effects o f hydration on 20 Ibs/ca PAM, with no SSC.
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Figure 4.13d: The effects o f hydration on 40 Ibs/ca PAM, with no SSC.
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Figures 4.14a-d are time series showing flux as a function o f time for the same PAM 

concentrations as used in Figures 4.13a-d, but experiments used to generate Figures 

4.14a-d were conducted at the highest turbidity level o f 300 SSC. With SSC present most 

columns showed little change with hydration period o f 5 minutes, but in most cases, the 

flow reaehed an abrupt steady state at approximately 7.5 minutes. Although steady state 

in terms o f flux was reached very quickly, the PAM may not be fully hydrated. In these 

cases, sufficient time has been reached for PAM hydration to flocculate enough sediment 

to clog the pores of the filter media, even though the PAM molecule may still be 

hydrating.
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Figure 4.14a: The effects o f hydration on 5 Ibs/ca PAM, with 300 ppm SSC
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions

For the research conducted in this study, our hypothesis was that PAM could be used 

to decrease saturated hydraulic conductivity (Ksat) o f soil material, thus decrease water 

loss due to infiltration. The main objectives o f this thesis were to (1) evaluate the extent 

to which PAM affected hydraulic conductivity o f soil material, and (2) better understand 

the physical mechanisms that lead to the decrease in Ksat-

Laboratory tests, conducted to achieve the goals, relied on the use o f acrylic columns 

and pressure cells. In some experiments, the apparatus included soil columns and in other 

experiments, the apparatus included only the end plates o f the cells; these were done to 

examine water flow through filter media without soil. The results o f the experiments with 

soil columns showed a large range o f PAM effectiveness depending on the PAM 

concentration, suspended sediment concentration, and type of soil.

Results showed that increases in PAM concentration alone (i.e., without any 

suspended sediment) had the ability to decrease conductivity in all the soils tested. For 

example, when PAM was at the maximum level tested (40 Ibs/ca), Ksat reductions o f 

80%, 81%, and 52% were observed for the #70 mesh sand, the C33 sand and the loam 

soil, respectively. The reduction in Ksat with increasing PAM concentration was found to
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be gradual, indicating that part o f the Ksat reduction could be due to increases in viscosity 

alone.

When sediment was added to the solution and allowed to flocculate with PAM, the 

two components together were more efficient than with either component tested alone. 

For example, Ksat values measured for the #70 mesh and C33 sands were found to be 

1,204 and 1,767 cm/day without any treatment. With a treatment o f 5 Ibs/ca o f PAM and 

no sediment Ksat values o f 726 and 1,304 cm/day were attained. These values correspond 

to reductions in Ksat of 40% and 26%. However, when PAM at 5 Ibs/ca was mixed with 

suspended sediment at 300 ppm, the final Ksat values were 62 and 116 cm/day, 

corresponding to reductions o f 94% and 92%. Therefore, PAM mixed with suspended 

sediment led to an 11-fold increase in Ksat reduction versus PAM alone. The results also 

showed that in the #70 mesh and C33 sands, when suspended sediment was present, 

increases in PAM concentration above 5 Ibs/ca had vary little effect on further reducing 

Ksat (94% versus 98% reduction for PAM concentrations o f 5 Ibs/ca and 401bs/ca, 

respectively). The results indicate that less PAM is needed in the presence o f suspended 

sediment to reduce Ksat (i.e., the treatment is more efficient). The results also indicate that 

treatment options reduced Ksat only to a certain degree, and that further addition o f the 

compound did not lead to lower Ksat-

The results showed that application o f PAM to the loam soil was not as effective at 

reducing Ksat, than with the sandy material. Reductions in Ksat ranged from 0 to 56% 

Although PAM did not appear to be as successful on finer textured soil, fine-textured 

soils already have a low Ksat and likely would not be considered a high-enough seepage
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area to warrant treatment with PAM. Therefore, PAM is better suited for coarse-grained 

material where water loss to seepage is already a greater problem.

For the second goal in this study, we examined three possible physical mechanisms 

that reduce seepage, including: (1) increase in the solution viscosity from the addition of 

PAM, (2) PAM/sediment flocculates forming a seal on top of the soil, and (3)

PAM/sediment flocculates partially penetrating and clogging soil pores as well as 

forming seal on top. We hypothesized that each mechanism could be responsible for a 

decrease depending on the experimental conditions.

From viscosity testing (Figure 4.7), increases in PAM concentration were shown to 

correlate to increased solution viscosity, which in turn decreases Ksat- Thus, for a test 

solution o f dissolved PAM but without suspended sediments (i.e., no PAM flocculates), 

reduction o f Ksat would be due to change in viscosity alone. However, just the settling o f 

the hydrated PAM can cause a reduction in Ksat (Figure 4.6), which indicates that Ksat 

reduction could be due to a combination of increased viscosity and flow through the 

PAM layer itself (Figure 4.6). When suspended sediment is present, the combination of 

these processes further reduces the Ksat-

It is evident from the experimental results (see Figure 4.9 for example) that seals can 

form when PAM is combined with suspended sediment. Results discussed in Section

4.3.2 support the theory that PAM can plug larger pores in coarser-grained material, in 

addition to creating a surface seal. The coarser-grained soils showed greater reductions in 

Ksat, as well lower absolute values than the loam soil.

The information gained from this research will be vital for predicting the 

effectiveness o f PAM application in unlined canals, when field conditions (suspended
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sediment concentration, soil type and PAM concentration) are known, and for developing 

the standards needed for PAM use as a sealant. However, as with any laboratory 

experiments, the laboratory conditions do not completely simulate conditions in a full- 

scale canal. For example, the experiments were conducted in column tests that limited 

water movement through the soil/water interface to the vertical direction, though a 

stirring mechanism was used agitate the solution. In a field situation, lateral movement 

would be present that would prevent the vertical settling o f flocculates onto the canal 

bottom. Also, because the Marriotte system of water application replaces only the water 

lost to seepage through the column, the viscosity o f the test solution could be higher than 

in a canal, where water is constantly being flushed through the system. Nonetheless, as 

shown through field experiments (conducted as part o f the larger PAM program), seepage 

reduction can approach 100% when field conditions allow.

5.2 Recommendations 

During the nearly two years o f laboratory experimentation on PAM, many variables 

were tested; unfortunately, questions o f how field conditions affect PAM efficiency still 

need to be answered. For example, though PAM, dissolved divalent cations, and 

suspended sediment are needed for PAM to work most efficiently, any o f the three 

components could be a limiting factor. However the experiments conducted in this study 

held constant the cation concentration o f the test solution. PAM may work to a greater or 

lesser extent depending on the amount and types o f cations that are present in the water, 

or the sodium adsorption ratio (or the relative amounts of univalent to divalent cations
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present in the test solution), since cations act as a bridge between PAM and sediment. 

Without cations present in the water, any addition of PAM could essentially be wasted.

The amount o f PAM needed to seal unlined canals may also depend partially on the 

size o f the sediment present in the canal waters, and the morphology o f the sediment. For 

example, platey (clay) material may have higher charge density than does a similar-sized 

silt particle, and thus would be more reactive with PAM. Also, when PAM reacts with 

larger particles with higher mass, the resulting flocculate would be heavier and 

potentially more likely to settle, than would a flocculate containing finer-grained 

suspended sediment.

Finally, due to limitations o f laboratory-scale testing, it is highly recommended that 

field scale tests be continued.
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