
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2014 

A Survey of Tabu Search in Combinatorial Optimization A Survey of Tabu Search in Combinatorial Optimization 

Lemasri Piniganti 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Piniganti, Lemasri, "A Survey of Tabu Search in Combinatorial Optimization" (2014). UNLV Theses, 
Dissertations, Professional Papers, and Capstones. 2132. 
http://dx.doi.org/10.34917/5836151 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/5836151
mailto:digitalscholarship@unlv.edu


 

 

 

A SURVEY OF TABU SEARCH IN COMBINATORIAL OPTIMIZATION  

 

By 

 

Lemasri Piniganti 

 

Bachelor of Technology, Information Technology 

Jawaharlal Nehru Technological University, India 

2011 

 

 

A thesis submitted in partial fulfillment  

of the requirements for the 

 

Master of Science - Computer Science 

 

 

Department of Computer Science 

Howard R. Hughes College of Engineering 

The Graduate College 

 

University of Nevada, Las Vegas 

May 2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

© Lemasri Piniganti, 2014 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

 
THE GRADUATE COLLEGE 

We recommend the thesis prepared under our supervision by  

Lemasri Piniganti 

entitled  

A Survey of Tabu Search in Combinatorial Optimization 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Computer Science 

Department of Computer Science  

 

Wolfgang Bein, Ph.D., Committee Chair 

Ajoy K. Datta, Ph.D., Committee Member 

Juyeon Jo, Ph.D., Committee Member 

Venkatesan Muthukumar, Ph.D., Graduate College Representative 

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College 

 

May 2014 

 

 



iii 

 

ABSTRACT 

A Survey of Tabu Search in Combinatorial Optimization 

by 

Lemasri Piniganti 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor of Computer Science 

University of Nevada, Las Vegas 

 

Tabu search is a Meta heuristic loosely connected to evolutionary computing. It has been 

used to tackle hard problems, especially combinatorial optimization problems. Tabu 

search is designed to overcome difficult regions of a search space by imposing 

restrictions. Various methods for diversification and intensification are applied depending 

on the particular problem type and on what type of solutions (within the set of good 

solutions) are sought. Tabu search uses memory – short term, long term and intermediate 

– to achieve diversification and intensification. Furthermore, aspiration criteria may be 

used to tune the optimization process. 

Thus the Tabu search Meta heuristic is very general. Different variants of the Tabu search 

Meta heuristic are presented in the context of combinatorial optimization. Problems 

discussed include the travelling salesman problem, various graph problems, and 

scheduling. 
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CHAPTER 1 

  INTRODUCTION 

In the present day to day life, technology and information are increasing rapidly giving 

rise to the complexity of finding an optimal solution. To find a solution to a discrete 

problem with the presence of constraints or decision variables is called combinatorial 

optimization. This problem has been researched from the past 50 to 60 years. In order to 

solve this problem, meta-heuristic concept is introduced. In this thesis, a meta-heuristic 

called Tabu Search is introduced, and discusses the features of the tabu search algorithm. 

This is one of the most efficient heuristic in finding ‘quality solutions’ in relatively short 

running time. The principal characteristic of tabu search is based on using a mechanism 

which is inspired by the human memory [1] i.e., to use the information that is stored in 

the memory to guide and restrict the future search in a way to obtain quality solutions and 

to overcome the local optimality [5]. This research provides insight about the algorithm 

or procedure of the working of tabu search algorithm on combinatorial optimization 

problems like Travelling salesman problem, Job shop scheduling problem. 

1.1 OUTLINE  

 

Chapter 2 discusses the definitions of combinatorial optimization. It also provides the 

information about P and NP classes and also discusses about NP complete problems. It 

provides the information of the origin of tabu search and its definition. It also describes 

the heuristics and meta-heuristics. In chapter 3, the features of the tabu search are 

discussed. It provides the information about different aspects used in tabu search for 

achieving desired outcome based on the requirements of the problem. Different strategies 
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for intensification and diversification of the search are discussed in this chapter.  Chapter 

4 shows how the basic tabu search algorithm works, and it also gives the flow chart of the 

algorithm. Chapter 5 provides the applications of tabu search. In this research, graph 

problem, travelling salesman problem and job shop scheduling problem are used as 

examples to explain the tabu search algorithm. Chapter 6 presents the conclusion and its 

importance in the present field and the scope for improvements in the future.     
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CHAPTER 2 

BACKGROUND AND LITERATURE 

This chapter gives an insight about combinatorial optimization, meta-heuristics; Tabu 

search, its description and background of tabu search. 

2.1 Optimization Problems 

Optimization problem is often expressed as the problem to be solved and it is often 

supplemented by the information of constraints [4]. Optimizing can be defined as finding 

the maximum or minimum for an objective function defined on some domain. Finding 

optimal solutions depend on the objective function and constraints. If the objective 

function is too wild, the constraints too complicated or the problem size is too large, 

finding optimal solution is impossible [3]. This is the main concept for the theory of NP-

Completeness.  

Optimization problems can be distinguished into two types depending on the type of 

variables of the problem. They are problems with ‘discrete’ variables and problems with 

‘continuous’ variables [2]. Travelling salesman problem is one of the problems that can 

be discussed among the discrete problems. An example for a continuous problem is that 

of the search for the values to be assigned to the parameters of a digital model of the 

process, so that this model reproduces the real behavior observed, as accurately as 

possible [3]. In practical, the problem can be comprised of both discrete variables and 

continuous variables.  

Many researches are carried out for a long time to solve these two types of problems and 

found significant methods but these methods are effective only to a particular structural 
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property or specific to a given problem. ‘Meta-heuristics’ is a method that can be adapted 

to both kinds of optimizations.  

2.1.1 Combinatorial Optimization 

‘Combinatorics’ is a branch of mathematics studying the enumeration, combination, and 

permutation of sets of elements and the mathematical relations that characterize their 

properties. This definition is taken from Mathworld. Combinatorial optimization deals 

with the methods for optimizing the problems with ‘discrete variables’. The initial 

problems that are categorized as combinatorial optimization is the planning and 

management of operations and the efficient use of resources [3]. However at present there 

are so many combinatorial optimizations like, scheduling of production, sequencing of 

machines, transportation planning, design of unbreakable codes, etc. Combinatorial 

optimization is applied for a wide range of fields like in areas of sports, psychology, 

archeology, etc. [3]. Some of the problems in these areas are solved within a polynomial 

time, and some problems are difficult to get solutions in a considerable amount of time 

[6].     

2.1.2 P and NP 

A search problem is defined as there are different types of search problems in this world 

in which some of them can be solved efficiently, while others seem to be hard. So these 

problems can be differentiated as hard problems (NP Complete) and easy problems (P). 

The problem can be defined as both hard problem and easy problem by depending on its 

range of information.  
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The defining characteristic of a search problem is that, for any proposed solution, the 

correctness of the solution can be checked in a short interval of time. If the answer to the 

problem is defined as yes/no, based on the values of input parameters then that problem is 

known as a decision problem. 

2.1.2.1 Class P 

P stands for ‘polynomial’, so the collections of all problems that can be solved in 

polynomial time are listed into class P [7]. The mathematical way of defining this is, the 

given problem is in class P if there exist an exponent k and an algorithm for the problem 

that runs in time Ο(n
k
) where n is the length of the input [9]. In general class P contains 

practically solvable problems. Class P contains all decision problems that can be solved 

efficiently by using polynomial time algorithms.  

Some of the problems which are classified into P class are,  

2SAT, HORN SAT 

MINIMUM SPANNING TREE 

BIPARTITE MATCHING 

SHORTEST PATH 

UNARY KNAPSACK 

LINEAR PROGRAMMING 

EULER PATH 
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2.1.2.2 Class NP 

NP stands for ‘nondeterministic polynomial’. The problem is classified into class NP, if 

the problem is solved in polynomial time by a nondeterministic Turing machine [9]. 

Class NP contains all the problems in which ‘verifying’ the solution of the problem is 

quick, but finding the solution for the problem is difficult. P is a subset of NP. 

Some of the problems which are classified into NP class are, 

3SAT 

TRAVELLING SALESMAN PROBLEM 

3D MATCHING 

LONGEST PATH 

KNAPSACK 

INTEGER LINEAR PROGRAMMING 

RUDRATA PATH 

The major unsolved problem in Computer Science is P versus NP problem.  

2.1.2.3 NP Hard 

According to computational complexity theory, NP Hard (Non-deterministic Polynomial-

time hard) is a class of problems that are at least as hard as the hardest problems in NP 

[7]. In a lot of cases, the problem can be solved by reducing it into a different problem. 

i.e., if there is a solution to problem A, then constructing the solution to problem B is 

easier [4]. 



7 

 

If the problem is NP hard, then any problem in NP class can be reduced to that problem. 

So it means if that problem is solved, then any problem that are described in NP class can 

be solved easily. 

Problems in NP hard do not have to be decision problems or in NP class. 

The widely discussed and researched problem P = NP can be proved if there is a 

polynomial algorithm for any NP Hard problem. 

Some examples of NP Hard Problem are Subset Sum problem, Halting problem, 

Travelling Salesman Problem, Graph isomorphism problem.    

2.1.2.4 NP Complete 

NP Completeness concept was presented by Stephen Cook in 1971 in a paper entitled 

The Complexity of Theorem-Proving Procedures. This paper was presented in a 

computer science conference for the proceedings of the 3rd annual ACM Symposium on 

Theory of Computing [9]. NP Complete is a specific case of NP class. The problem is 

said to be classified as NP Complete if it satisfies two conditions.  

 The problem should be in the set of NP class. 

 The problem should be NP hard. 

NP Complete is a class of decision problems. There is no efficient way to find a solution 

for NP Complete problems but verifying a solution to this problem is comparatively easy. 

If the problem size is increased, then finding a solution with the present algorithms 

increases linearly with respect to the size of the problem, i.e., if the problem is even of 

moderate size the computational time increases to billion or trillion of years. So at present 
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most of the NP Complete problems are often dealt with approximation algorithms. NP 

Complete is a subset of NP class and all NP Complete problems are NP hard, but not all 

NP hard problems are NP Complete.  

Some of the examples of NP Complete problems are 3-SAT, Sub graph isomorphism 

problem, Travelling Salesman Problem, Knapsack problem. 

2.2 Heuristics 

The term heuristic is derived from the Greek ‘Heuriskein’ meaning to find or discover. In 

the context of combinatorial optimization, the term heuristics is used as a contrast to 

methods that guaranteed to find a global optimum. A heuristic is a technique which seeks 

good solutions at a reasonable computational cost without being able to guarantee either 

feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is [2][6]. Heuristic is a procedure for finding optimal solutions 

but does not guarantee to find an optimal solution or quality of the solution even if one 

exists. Heuristics should be developed to deal with large problems and mostly a well-

developed heuristic can at least give near optimal solutions.  

Many researches are carried out on heuristic methods for solving the combinatorial 

problems, but most of these heuristics are problem-specific, so that a process that works 

for one problem cannot be used to solve a different one. So the hybrid methods, which 

endeavors to benefit from the specific advantages of different approaches by combining 

them are emerged, which can be applied far more generally.  
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2.2.1 Meta-heuristics 

The word ‘Meta-heuristics’ is first used in the paper where the term tabu search is 

introduced (Glover, 1986). It is the general framework of heuristics in providing general 

structure and strategy guidelines to fit a particular problem. One main aspect of the meta-

heuristic is to escape the local optima.  

A meta-heuristic is a master strategy for guiding, modifying and controlling other 

heuristics to provide solutions beyond the usually generated solutions by some local 

heuristics. The meta-heuristics that use special procedures in order to not get trapped in 

local optima are one of the meta-heuristics. This meta-heuristic performs single search in 

the neighborhood. Tabu search is an example for this kind of meta-heuristic. The other 

kind of meta-heuristic performs multiple searches at different levels of decision points. 

This type of meta-heuristic is called hyper-heuristic. It uses different heuristics at various 

decision points for optimization problems. Meta-heuristics is of various forms depending 

on the interpretation of what constitutes ‘intelligent’ search. Meta-heuristics is classified 

into different types based on the features of the basic design of the meta-heuristics. The 

three basic design elements: (1) the use of adaptive memory, (2) the type of 

neighborhood exploration used and (3) the number of current solutions carried from one 

iteration to the next. In this research, we use ‘Tabu Search’ a meta-heuristic method to 

solve different combinatorial optimization problems. 

2.3 Neighborhood 

Neighborhood is one of the important aspects of heuristics. By defining the neighborhood 

function, the solution can be varied. So the neighborhood function is defined according to 
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the requirements of a given problem. Neighborhood function is defined by using the 

operations of moving, swapping and replacing. 

 According to Mathworld, Neighborhood is defined as to move the point that is in 

the set to some distance without leaving the set. For a solution neighborhood is 

defined as the new solutions obtained when a pairwise exchange of any two nodes 

or replacing the node in the solution with another node is done. So the 

neighborhood of a feasible solution is always feasible (i.e., does not form any sub-

tour). The neighborhood solution obtained by performing swapping or replacing 

or moving will have a different route from the solution but the number of nodes 

remains same. The node with the best objective value is selected from the 

neighborhood to perform the swap or exchange in the heuristic. The concept of 

neighborhood used in the tabu search is different from that of the local search 

algorithms.  Depending on the type of the move the neighborhood is classified 

into Constructive neighborhood and destructive neighborhood. If the move 

applied on the solution results in constructive process then the neighborhood is 

called constructive neighborhood. Similarly if the move results in destructive then 

the neighborhood is defined as destructive neighborhood. In tabu search we use 

dynamic ways to define the neighborhoods. To avoid cycling in the search space 

we use recency based memory (short term). By using recency based memory we 

can eliminate the recently visited solutions by making assigning them the status of 

a tabu. We can also use frequency based memory (long term) to expand the 

neighborhood and examine the unvisited regions. 
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2.4 Tabu Search   

2.4.1 History of TS 

Tabu search was first proposed by Fred W. Glover in an article published in 1986, 

although it borrowed many ideas suggested before during the sixties, and it was 

formalized in 1989. The two articles simply entitled ‘Tabu Search’ [Glover, 1989, 

Glover, 1990] proposed the majority of tabu search principles which are currently known. 

This search method was initially introduced to overcome the local optima which are 

produced during the local search methods or traditional algorithms. The articles by 

Glover on Tabu search were not well understood in the early nineties and restricted the 

domain of the principles of the technique. However, tabu search is popular due to the 

pioneering works by the team of D. de Werra at the Swiss Federal Institute of 

Technology, Lausanne.    

The word Tabu or Taboo comes from Tongan, a language of Polynesia, where it was 

used by the aborigines of Tonga Island to indicate things that cannot be touched because 

they are sacred [13]. According to the Webster’s dictionary, the word tabu or taboo is 

defined as ‘set apart as charged with dangerous supernatural power and forbidden to 

profane use or contact…’ or ‘banned on grounds of morality or taste or as constituting a 

risk…’. This word is associated with the meaning of guiding the search process to the 

difficult regions with using restrictions [11]. 
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2.4.2 Problem Definition 

For the past, few decades tabu search have been researched and applied to a wide variety 

of practical optimization problems. The applications are ranging from scheduling to 

telecommunications and from character recognition to neural networks and are successful 

in obtaining optimal or near optimal solutions. 

According to Fred Glover, the mathematical notation for describing a broad class of 

problems to be solved by using tabu search is defined as below.  

A function f(x) to be optimized (minimizing or maximizing) when subject to x ϵ X, 

Where f(x) may be linear or nonlinear and the set X summarizes the constraints on the 

vector of the decision variable x. The constraints may include linear or nonlinear 

inequalities, and may compel all or some components of x to receive discrete values. For 

different types of decision problems tabu search can be applied directly without 

transforming the problem into mathematical formulations [5]. 
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CHAPTER 3 

TABU SEARCH FRAMEWORK 

In this chapter, we will discuss the basic concepts of tabu search. It also gives 

information about different strategies for intensification and diversification of the search 

that are used in tabu search. 

3.1 OVERVIEW 
 

Originally Tabu search was proposed by Fred Glover in 1986 to overcome the local 

optima that are faced by the local search algorithms. Most of the basic important features 

are proposed by Fred Glover, but most of these features were not used in the initial period 

of the research of the tabu search.  In this chapter, we will discuss the principles of the 

tabu search that are described by Fred Glover [11] [12] [14]. Tabu search algorithm is 

used to explore the new areas of the search space. Tabu search uses ‘intelligence’ to 

direct the iterative search in a prospective and good direction. So the effectiveness of tabu 

search in the problem solving, depends on the way how adaptive memory is used and 

responsive exploration.  

3.2 BASIC CONCEPTS 

Tabu search algorithm has been improved by many researchers over the past decade to 

get a preferable solution for a given problem. The main concept of the tabu search 

algorithm remains the same even though it has been improvised. Tabu search is widely 

popular because of its use of memory and responsive exploration. These two features are 
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the most important factors of tabu search in directing the search process of a given 

problem and finding the solutions apt to the given problem [11].    

3.2.1 ADAPTIVE MEMORY 

To perform an intelligent search on a problem, the first requirement is to have the data of 

the past moves of the process. So Tabu search incorporates memory to store the history of 

the past actions performed at the time of search process. It uses flexible memory structure 

to store the history. By using memory in Tabu search algorithm to store history faces the 

challenge regarding the storage space.   

3.2.1.1 Explicit and Attributive Memory 

The memory which stores the records of complete solutions, especially records consisting 

of the elite solutions obtained during the search and records the highly attractive but 

unexplored neighbors of elite solutions. Hence this memory is called explicit memory. 

This memory can be used to define or extend the neighborhood for the tabu search. It 

intensifies the search process.   

The memory which stores the record of information about solution attributes that change 

in moving from one solution to another. Hence this memory is called attributive memory. 

In general sense, the attributes refer to the values of variables or functions. Attributes can 

also be combined strategically to obtain other attributes by using hash functions etc. 

which can be used in the memory. This memory reduces the size of the neighborhood by 

forbidding some moves in the search.  

In tabu search algorithm we use both explicit and attributive memory. 
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3.2.1.2 Types of memory structures 

Depending on the required outcome the tabu search algorithm uses its memory structure.  

There are two types of memory structures: short term memory and long term memory. 

Each type of memory has its own special strategies and gives different solutions. The use 

of these memory structures is to modify the neighborhood of the current solution to 

obtain a new solution. The modified neighborhood is obtained by maintaining a selective 

history depending on the type of the memory structure used at different states of iteration 

in the tabu search process. 

The memory structures are functioned by referring to four principal dimension based 

memory: Recency, Frequency, Quality, and Influence.  

The Quality based memory is used for the ability to differentiate the merit of solutions 

visited during the search.  

The Influence based memory is used to impact the choices made during the search. It 

focuses on quality as well as structure.  

Recency based memory is used for keeping the track record of the solution attributes that 

are recently changed. Short term memory uses the recency based memory.  

Frequency based memory is used to keep track of solutions that are very commonly used 

in the past. The Recency and Frequency dimensions complement each other.  
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3.2.2 Responsive Exploration 

Tabu search process should use the stored history in an efficient way. To make an 

intelligent search responsive exploration is an important decision of the search process. 

Tabu search should use strategic restraints and inducements on the neighborhood of the 

current solution by using tabu conditions and aspiration levels. 

The main idea of this responsive exploration is to direct the search in a more promising 

way to find a good solution. The search process should be focused on the good regions 

and good solution features by using intensification process. By using diversification 

process the search process is extended to exploring the promising new regions. 

Strategic oscillation and path relinking process are also features of the responsive 

exploration. By using these processes on the search space results in new solutions. Path 

relinking generates new solutions by exploring the neighborhood path of the elite 

solutions by integrating the intensification and diversification strategies. 

3.3 Move mechanism 

In tabu search new solutions are generated by applying move mechanism on the current 

solution and the neighborhood of the current solution. Move is defined as replacing the 

edge with a new edge in the neighborhood or swapping the edges. All the moves that are 

applied to the current solution are stored in the candidate list. Each move can generate a 

new solution. We need to select a move which gives a better solution or moves the search 

in a new direction.  
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Swap move mechanism is used to replace the edge in the current solution with an edge in 

the neighborhood of the current solution. There are some restrictions in selecting the edge 

like if the search process is for a tree then the selected edge should not result in any 

cycles. The selected edge should satisfy some requirements based on the type of the 

problem. There are two types of edge swaps, static edge swap and dynamic edge swap. 

In static edge swap the nodes of the current solution remain same. In dynamic edge swap 

the edge is swapped by using a new node. The following figure shows the edge swaps. 

Fig: 1 Swap move mechanism 
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In Fig. 3.3.1 the dotted lines represent the deleted edge and the heavy line represent the 

added edge. 

Two edge exchange move mechanism is used to connect the two selected edges in the 

current solution in a different way. Select two edges from the current solution that are to 

be exchanged and connect the edges in such a way that the obtained solution does not 

lead to a cycle. 

Fig: 2 2-Edge swap move mechanism 
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These are some move mechanisms used in the tabu search. Determine all the move edges 

and store them in the candidate list. Then select the best move from the candidate list and 

apply it on the current solution to obtain a new solution. For every step in the search 

process we should determine all the moves applied on the current solution of the 

iteration. 

3.4 Tabus 

How an edge or a node in the solution becomes a restricted element for the next search 

iteration is defined by defining the tabus. In tabu search Tabus are one of the distinctive 

elements. Tabus are used to prevent cycling when applying move mechanism on the 

neighborhood of the current solution. The important point is that in situations like local 

optima, we need to prevent the search from tracing back its steps to where it came from. 

This is achieved by declaring the recent moves applied on the solution as tabu. Tabus are 

stored in a short-term memory of the search called tabu list (list of possible moves that 

cannot be performed on the solution)  

In tabu list only a fixed and limited quantity of information is recorded. We can record 

complete solutions but it requires a lot of storage memory and makes it expensive to 

check whether a move is tabu or not. We can define the length of the tabu list. The edges 

in the list can be removed by an FIFO (first come first serve) technique. The most 

commonly used Tabus record the last few transformations performed on the current 

solution and prohibit reverse transformations. By applying moves on the initial solution 

we can obtain a list of Tabus. These moves could be swap operations (as in TSP) or 
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subtractions and additions (Add/Drop) moves in case of dealing with numeric 

optimization problems.   

3.5 Aspiration criteria 

Tabus sometimes may prohibit attractive moves, even when there is no danger of cycling, 

or they may lead to an overall stagnation of the searching process. So it is necessary to 

use some conditions to cancel Tabus. These conditions are called aspiration criteria. It is 

a sensitive key factor in tabu search because this defines the flexibility of the tabu search 

algorithm. The simplest and most commonly used aspiration criterion consists in 

allowing a move, even if it is tabu, if it results in a solution with a better solution than 

that of the current best-known solution.  Aspiration criteria allow a tabu move to be 

selected based on certain constraints. For example, the move allows a new global best 

solution, therefore the move is accepted, and its tabu tenure (tabu length) is renewed. 

After iteration of the algorithm the tabu tenure is decremented. Only when the tabu tenure 

of a certain move is 0, can the move be performed and accepted. There are mainly two 

types of aspirations: move aspiration and attribute aspiration. Attribute aspiration criteria 

are used to revoke the active tabu status of the attributes. Move aspiration criteria are 

used to revoke the solution’s tabu classification.  

By default the aspiration criterion is to select least tabu one if all the available moves are 

in tabu list. One category of aspiration criteria is if the direction suggested by using an 

attribute improves the solution then revoke the tabu status of that attribute. Aspiration 

criteria can be based on influence of the solution such as the measure of the degree of 

change in solution structure, quality or feasibility. 
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3.6 Intensification  

In order to find best solutions we should search more thoroughly the parts of the search 

space that seem promising. For more effective search we use additional components of 

tabu search like intensification and diversification strategies. Intensification is a form of 

exploitation. Intensification strategy is based on improving the choice rules. 

Intensification is based on intermediate-term memory, such as recency memory, in which 

more move combinations are applied on the initial solutions or best solutions considered 

from the traditional algorithms without interruption. It generates neighbors by either 

using grafting or by using evaluation strategies of good solution. Intensification is used in 

many tabu search implementations, but it is not always necessary because in many 

situations the normal search process performed is already thorough enough. So there is no 

need to examine more carefully on the parts of the search space that have already been 

visited. 

 Even with the use of tabus, the tabu search is still tending to be local, i.e., they tend to 

spend most, if not all, of their time in a limited portion of the search space. The negative 

consequence of this fact is that, although we achieve good solutions, but we fail to 

explore the other interesting parts of the search space and thus end up with solutions that 

are still pretty far from the optimal ones. Diversification strategy is used to address this 

problem by forcing the search into previously unexplored areas of the search space.  
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3.7 Diversification 

Diversification strategy is based on long-term memory of the search, such as frequency 

memory. Diversification is a form of exploration. Diversification means extending the 

search to a new direction. It records the total number of iterations from the beginning of 

the search that are produced in the current solution and also the moves that have been 

performed on the initial solution. The diversification strategy is the most critical issue in 

the design of tabu search heuristic. It should be handled with extreme care from the initial 

step and it should be revised if the obtained results are not up to expectations. By using 

diversification strategies the search process is used in directing the search to new regions 

of the search space. In tabu search, intensification and diversification are not entirely 

separated. If the algorithm is restricted to a particular search space and is difficult to 

guide the search to different search regions then we mostly restart tabu search algorithm 

with different initial solution. Instead of randomly choosing this initial solution for 

restarting, it is efficient to use systematic diversification.  

Some mechanisms used to implement intensification and diversification strategies are: 

path relinking, strategic oscillation, reinforcement by restriction, solutions evaluated but 

not visited, creating new attributes etc. 
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CHAPTER 4 

TABU SEARCH ALGORITHM 

This chapter gives the insight of the general steps of implementing the basic level of tabu 

search algorithm. The generalized algorithm in this chapter is obtained by surveying 

papers published by Fred Glover and also with the reference of the book written by Fred 

Glover and Manuel Laguna [11] [12] [13] [14]. 

4.1 OVERVIEW 

Tabu search is a local search based algorithm with three primary ideas. The first idea is 

the use of flexible memory structures to search and evaluate the information of the past 

moves performed on the solution. The second idea is to control the moves to be applied 

on the solution at the time of search process. The third primary idea is to use memory 

functions of different time spans like short term memory and long term and can also 

perform different strategies on intensifying and diversifying the search. The following 

chapter shows how these ideas form the basic structure of the tabu search algorithm. 

4.2 Find the trial/initial solution 

To perform a Meta heuristic Tabu search algorithm first we need to have an initial or trial 

solution from one of the traditional algorithms or other heuristic search methods or it can 

be randomly generated. While using tabu search algorithm for NP-hard or NP-complete 

problems, selecting the initial feasible solution is one of the important step for obtaining a 

good solution. Tabu search algorithm depends on the selection of the initial solution. The 

tabu search moves in the direction of the selected original solution since we consider the 

neighborhood of the initial solution to continue the search. This solution can be from 
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other meta heuristic algorithms like simulated annealing, genetic algorithm or even from 

tabu search.  

4.3 Creating a candidate list 

After obtaining the initial solution find all the possible moves from the neighborhood of 

the current solution that can be applied on the initial solution. Before selecting the moves 

define the neighborhood of the solution. 

 In this implementation we are considering the tabu search short-term memory 

component. Each move applied on the current solution results in a new solution. For 

every iterative step generate a candidate list and select the best possible move. The best 

possible move is selected based on two types. First, select the move if it reduces the 

overall weight or length of the current solution. Secondly, if there is no move that can 

reduce the overall weight of the current solution then select the best move in which the 

overall weight is slightly greater than the current solution. By doing this the search 

process will be extended to different regions.   

The moves created in the tabu search algorithm are an iterative process. This iterative 

process consists of the following steps. 

1. Identify the set of moves applied for the current solution. The selected move should 

satisfy the following two criteria. 

A. The selected edges are either not on the tabu list or they are able to override the tabu 

status. 

B. The selected edges which would produce the largest decrease in the tour length are 

selected as the best. If no improving moves exists, then select the one which would 

produce the smallest increase in the tour length. 
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2. Perform the move mechanism with the edge identified from the previous step. This 

will result in a new slightly different tour than the previous tour. 

3. Update the tabu list and aspiration list to save the information of the edges that are 

applied in the previous step. 

4. If this tour length is better than the previous best tour length found in the search until 

now then update the best tour information. 

The above process should be repeated until the stopping criterion is satisfied. If it 

satisfies, the search is terminated and the information about the best tour found by the 

search will be one of the best solutions for the problem. 

 The basic tabu search algorithm can be described in the following way. 

algorithm tabu search 

begin 

  tabu_list:= []; 

  S:= initial solution; 

  S*:= S; 

  Repeat 

     find the best admissible solution S1 belongs to Neighborhood of S 

     if f( S1) > f(S*) then S*:= S1; 

     S:= S1; 

     Update Tabu list tabu_list; 

  Until stopping criterion; 

End; 

 

4.3.1 Tabu list and Aspiration levels 

To prevent the reverse of an exchange in a short period, we use tabu list. In tabu list, we 

store the selected attributes of the edges performed in the algorithm. The goal of using 

this list is to prevent the situation where the search identifies the same sequence of tours 

over and over again, this situation is called cycling. The tabu list should be implemented 
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in a way that, the search should not be overly restricted in its ability to look for better 

solutions. The two factors that are used in relieving the status of the edge in the tabu list 

are finite length of the tabu list and the aspiration criterion.  

The tabu list length can be defined according to one’s requirement of releasing the status 

of the edges from tabu. Initial number of exchanges is stored in the tabu list. Once the 

exchanged edges in the list are equal to the length of the tabu list, the edges in the list 

removed by a method called FIFO (first come first serve).The exchanged edges will 

replace the oldest edges in the tabu list. In this way the oldest edges which are being 

replaced in the tabu list loose the status as tabu. The occurring of a cycle is greatest, right 

after the exchange is made and decreases when more and more exchanges are made. So 

removing the edge from a tabu list after more exchanges are made leads to less occurring 

of the cycles. The tabu list corresponds to the sufficient number of exchanges that will 

prevent cycling but will not excessively reduce the pool of candidate exchange. The finite 

length of the tabu list makes it to act as a short term memory. 

By using aspiration criterion the tabu status of the edge in the tabu list is overridden. The 

tabu status of the nodes or edges is not fixed, it can be overruled if certain conditions ae 

met, which are expressed in the form of aspiration levels. So if the move satisfies the 

aspiration level then, it can be admissible even if the move is in the tabu list. These 

criteria are designed to override the tabu status if a move is sufficiently limiting to the 

goal of preventing the solution process from cycling. Generally used or most simple form 

of an aspiration-level check is to permit tabu status to be overridden if the solution 

produced would be better than the current best solution. Another approach is to define an 
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aspiration level. If the search is moving in a new and promising direction, then this 

criterion will allow the tabu restriction to be relaxed.    

 

4.3.2 Tabudrop and Tabuadd 

One of the important aspects is to determine which edge or node is to be placed in the 

tabu list. The edges to be placed in the tabu list after an exchange is determined by the 

two parameters namely tabuadd and tabudrop. We can have three possible combinations 

of edges from an exchange to be classified as tabu: added edges only, dropped edges 

only, both added and dropped edges. We can use any combination to keep an edge in the 

tabu list. Depending on the problem requirement we can use one of these combinations.   

If tabudrop is assigned 1, then the added edges of the 2-edge exchange are placed on a 

tabu list to prevent them from being dropped from the tour by a subsequent exchange. If 

tabudrop is assigned 0, then the added edges are not placed on a tabu list.  

If tabuadd is assigned 1, then the dropped edges of the 2-edge exchange are placed on a 

tabu list to prevent them from being added back into the tour by another exchange. If 

tabuadd is assigned 0, then the dropped edges of the exchange are not placed on a tabu 

list. 

 

4.4 Stopping criterion 

Stopping criterion is used to determine the end of the tabu search. The stopping criterion 

can be the number of specified iterations to occur at the time of tabu search. Initially we 

can define for how many iterations the search process should repeat. It counts the total 
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number of iterations occurred and if it is equal to the defined number of iterations then 

the tabu search process terminates and outputs the best solution until now. 

The stopping criterion can be a fixed number of iterations occurred after finding the best 

solution. Let the process repeat for n number of iterations after the best solution found 

from the process. The stopping criterion can be defined according to the requirements of 

the problem and the type of solution required.  

We can describe the above tabu search algorithm with a flow chart. The following flow 

chart is the generalized version of the tabu search algorithm. In the flow chart, at move 

mechanism for iteration of the tabu search algorithm there will be a list of candidate 

moves. To apply a move, initially we need to consider all the possible moves on the 

current solution and create a candidate list. From the candidate list we will consider the 

best move and finally that move will be applied on the current solution. If the obtained 

solution is better than the current solution then update the best solution variable to the 

present solution performed. For the next iteration the candidate list should be updated 

with the next set of moves possible on the current solution. 

Flow chart of the tabu search algorithm can be described as follows. 
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Fig: 3 Flow chart for tabu search algorithm 
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CHAPTER 5 

APPLICATIONS OF TABU SEARCH 

5.1 OVERVIEW 

In this chapter we will perform tabu search meta heuristic algorithm to three different 

problems and the improvements and back drops of implementing tabu search on these 

examples. The examples that are explained in this chapter are one of the most studied and 

experimented problems of the combinatorial optimization problems. 

5.2 Minimum K-Tree Problem Example 

5.2.1 Problem Definition 

A tree which consists of k edges in a graph with minimum sum of the weights of these 

edges is called as minimum K-tree problem. A tree is defined as a set of edges that 

contains no cycles. A cycle is defined as set of edges connected from one node to 

different nodes and end with a node in the previously connected nodes. Consider the 

following figure Fig.5.2.1, where nodes are shown as numbered circles and edges are 

shown as lines that join pairs of nodes. Edge weights are shown as numbers on the edge 

lines. 
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Fig: 4 Weighted undirected graph 

 

 

 

 

5.2.2 Tabu search 

5.2.2.1 Initial Solution  

Implement greedy algorithm on the given graph to find the initial solution. Greedy 

algorithm starts by choosing an edge (i, j) with the smallest weight in the graph, where i 

and j are the indexes of the nodes that are the endpoints of the edge. Then the next 

smallest edge is selected which is connected with one of the previous edges and continue 

the process similarly but select it in a manner that at any particular point there should not 

be any cycles in the graph. Below is the Greedy construction table for k= 4 edges. After 
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performing greedy algorithm on the above figure for 4 edges we got the initial solution. 

So in this particular case the initial solution has a total weight of 28. 

 

Table 1 Greedy construction 

Step Candidates     Selection Total 

Weight 

1 (1,4) (1,4) 4 

2 (1,2), (4,3), (4,6), (4,7) (4,7) 12 

3 (1,2), (4,3), (4,6), (7,6), (7,8) (7,6) 18 

4 (1,2), (4,3), (4,6), (7,8), (6,8) (1,2) 28 

 

5.2.2.2 Candidate list of moves 

Apply move mechanism to the initial solution. For this example, move mechanism can be 

defined by edge-swapping. Edge swapping is defined as replacing the current edge in the 

solution with the edge in the neighborhood in resulting a new solution with the same 

number of edges. Each move applied on the initial solution would generate a new 

solution. Create a list to store all the solutions generated by applying the move 

mechanism. 

Perform swap move mechanism on the sub graph which is obtained from greedy 

construction in 5.2.2.1. In this mechanism, replace an edge in the current tree (i.e. the sub 

graph we obtained above) by another edge in the neighborhood of the graph in such a 

way that the resulting sub graph is also a tree. There are two types of edge swaps, one the 

current nodes of the tree are unchanged (Static) and the other that results in replacing a 

node of the tree by a new node (Dynamic). The following figure shows the first swap 
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move mechanism applied on an instance of the graph. In the figure below the heavy line 

is the added edge and dotted line is the deleted edge. 

 

Fig: 5 Move mechanism applied on initial solution 
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weight is increased. Here the best solution is taken as the objective function value. Since 
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attributes to settle on that particular design. In this example since the moves are defined 

by adding and deleting edges, these edges can be used as the attributes. After identifying 

the key attributes now we need to choose the tabu classifications. Tabu classifications are 

not specifically symmetric, so the tabu structure can be designed by treating added and 

dropped edges differently.  

In the above figure edge (4,7) is deleted and edge (4,6) is added. So let us assign the tabu 

status for both of these edges. Since tabu search is very flexible we have different 

possibilities. One of the possibilities is to make these two edges as tabu-active for the 

same number of iterations. The tabu-active status has different meanings depending on 

whether the edge is added or dropped. For the added edge, the tabu-active means that this 

edge is not to be dropped from the current tree for the specified number iterations during 

its tabu tenure. The number of iterations an edge can take is called the tabu tenure of the 

edge. For the deleted edge, the tabu active means the edge is not allowed to be added or 

included in the current solution during its tabu tenure. Since there are many edges outside 

the graph it is efficient to use dropped edges so that the search can be expanded to outside 

the graph. So we will keep the recently dropped edge tabu-active for a longer period of 

time than a recently added edge. If the tabu solution after moves gives a better solution 

than the initial solution then the current solution is considered and the initial solution is 

overridden. This is called improved-best aspiration criterion. 
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Table 2 Iterations of a first level TS procedure 

Iteration Tabu-active net tenure Add Drop Move 

value 

Weight 

1 2 

1   (4,6) (4,7) 7 35 

2 (4,6) (4,7) (6,9) (6,7) 10 45 

3 (6,9), (4,7) (6,7) (8,9) (1,2) -3 42 

4 (8,9), (6,7) (1,2) (9,12) (1,4) 8 50 

5 (9,12), (1,2) (1,4)     (11,12) (4,6) -14 36 

6 (11,12),(1,4) (4,6) (5,12) (6,9) -12 24 

7 (5,12), (4,6) (6,9) (3,5) (8,9) -1 23 

 

By surveying many papers on solving K-tree problems with tabu search [5] [15] [16], it is 

one of the better solutions to get better solutions. 

We can improve this basic tabu search algorithm by making small changes and get a 

better solution. For example, by using the restarting procedure we can search the nodes of 

the graph that are not examined before. By doing this we might get better solutions than 

the above obtained results. In this method, select a new edge which is not in the sub 

graph and create a new solution. Restrict the edges in the sub graph from not using them 

in the new solution. By doing this we can search a new region and find solutions in the 

graph. 

   

5.3 TRAVELLING SALESMAN PROBLEM 

The travelling salesman problem (TSP) is a classic problem in combinatorial 

optimization research, because it is relatively easy to describe but extremely difficult to 

find an optimal solution. Travelling salesman problem is an NP-hard problem, so it is 

hard to solve all TSP instances to optimality within a reasonable execution time. As we 
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discussed in the above chapter the method to perform tabu search algorithm, we will use 

the method on TSP. 

5.3.1 PROBLEM DEFINITION 

Travelling salesman problem is defined as finding a minimum cost route in an undirected 

graph from an initial starting point and covering all the points in the graph exactly once 

and coming to a stop at the started initial point. 

Travelling salesman problems may be symmetric or asymmetric. In symmetric problems 

the cost of an edge is independent of the direction of travel (i.e., the cost of travelling 

from city A to city B is always same as from travelling from city B to city A). In 

asymmetric problems the cost of an edge may be dependent on the direction of travel 

(i.e., the cost of travelling from city A to city B may be different from the cost of 

travelling from city B to city A). In this example we will discuss with the problems 

concerning only symmetric TSP problems. 

Below in Fig.6 it shows a graph of travelling salesman problem with 10 nodes. It is a 

symmetric graph of travelling salesman problem. The numbers on the lines are the 

weights of the edges that are connected from one node to another. 
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Fig: 6 Symmetric Graph of TSP 

 

5.3.2 Initial Solution 

In this graph we will consider the initial/starting point as node 1. So for the travelling 

salesman problem we should travel from node1 through all the nodes exactly once in the 
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1 so that tabu search can be explained for this example. To get the initial solution we can 
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solution the effect of finding the optimum solution for travelling salesman problem 
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The trial or partial solution obtained from greedy algorithm is   

Fig. 7 Initial solution for Symmetric TSP  
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two new added edges. In the example the best candidates for exchange are (1,2) and 

(4,5). These two edges are deleted and (1,4) and (2,5) are added. The new tour length 

after dropping and adding edges is 77.  

Fig: 8 Graphical Representation of TS iteration 1 
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Fig: 9 TS iteration 2 
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Fig: 10 TS iteration 3  

 

Table 3 Iterations of first level TS procedure for TSP 
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Repeat the iterations until the stopping criterion is satisfied. One of the stopping 

criterions can be a fixed number of iterations specified before the process is started. 

There aren’t any back drops by using this method. But we need to identify a good number 

to get a better solution. Until now the best solution obtained for the graph of travelling 

salesman problem that we have considered is 77.  

5.3.4 Outcomes for TSP 

Many researches have been done until now on solving travelling salesman problem with 

tabu search heuristic. With small modifications in the basic tabu search algorithm can 

produce different outcomes for the travelling salesman problem. By surveying many 

papers [13] [17] [18] [20], using tabu search gives some of the best results for travelling 

salesman problem. Knox implemented tabu search on TSP in 1989. The quality of the 

best solution obtained by tabu search depends on the length of the each search and 

number of searches. For large test problems of TSP, the tabu search gives effective 

solutions. Many new methods have been applied on TSP while using tabu search, some 

of them are angle based tabu search, parallel adaptive tabu search, multi point tabu search 

[23] [24] [25]. The speed of attaining an optimal solution depends on the initial solution. 

If the initial solution is far away from the optimal solution then the computational time of 

tabu search increases. So by introducing a multiple structure we can improve this 

problem. Consider multiple initial solutions and perform the tabu search, after the 

iteration compare the solutions and assign the best solution obtained by them as the 

current solution and continue with the tabu search process. By considering the small 

changes in tabu search algorithm we can improve the performance of tabu search on 
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travelling salesman problem. Genetic algorithms and simulated annealing can be used in 

the tabu search for better outcome. 

Many papers were written on tabu search with varying factors like tabu tenure, memory 

structures, aspiration criteria. For example, I surveyed about 30 papers in which 16 

papers deal with fixed tabu tenures and the rest of the papers deal with tabu tenures that 

vary with the iterations of the tabu search or the instance size. Some researchers tried to 

find optimal tabu tenures for different size of problems but not able to come up with any 

optimal tabu tenure. 

I have researched around 10 papers where long term memory is used to diversify the 

search to new regions. These papers provide long term memory structures to achieve 

diversification strategy. 

 

5.4 JOB SHOP SCHEDULING PROBLEM 

Job shop scheduling is one of the more difficult combinatorial optimization problems. It 

has been studied for a long time and is known as NP-hard problem. It is an extremely 

hard problem because it requires a large search space and it should maintain a precedence 

order for the machines. 

 

5.4.1 PROBLEM DEFINITION 

Scheduling is defined as allocating one or more machines for a job at one or more time 

intervals [26]. The classical Job shop scheduling problem consists of n jobs which are to 

be processed on m machines. Each job consists of a sequence of different operations. 

Each operation should be performed on a given machine without any interruptions. Job 
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shop scheduling problem can be described using three field classification introduced in 

Graham et al. [27] as follows. 

A set M of m machines and a set J of n jobs, where ith job consists of a chain of mi 

operations from set O = {1,…., N}, with N = ∑   
 
    . These operations had to be 

processed on machine for ti consecutive time instants. The problem is to assign the 

operations to time intervals by considering the following constraints: 

 There is no job precedence 

 Precedence of the order of the operations is considered. 

 No two jobs are processed on the same machine at same time. 

 The makespan of all the operations should be minimized. 

Consider the following instance with three jobs and four machines to show the work of 

basic tabu search algorithm on solving the job shop scheduling problem. 

Table 4 Jobs 3 Machines 3 

Jobs Machine Sequence Processing Times 

1 1, 3, 4, 2 p11= 3, p13=8, p14=9, p12=4 

2 2, 1, 3 p22=6, p21=3, p23=5 

3 3, 4, 2, 1  p33=8, p34=5, p32=7, p31=1 

 

To represent the job shop scheduling problem, Disjunctive graph is one of the most 

popular models. The following graph is the disjunctive graph representation of the above 

job shop problem instance. The conjunctive edges in the graph reflect the precedence 

constraints of the operations of a job. These edges should not be altered in any process of 

the tabu search.   
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By changing the direction of the disjunctive arcs in the following graph by considering 

the constraints we can minimize the makespan of the operations. The constraints to be 

considered are: 

 The resulting graph should be acyclic 

 The disjunctive undirected edges are converted into directed conjunctive edges. 

 The resulting new path in the graph should consist of minimal processing time. 

By aligning the disjunctive lines in the following graph provides the solution to the job 

shop scheduling problem. 

 

Fig. 11 Disjunctive graph  

 

Representation: 

Conjunctive arc:  

Disjunctive arc:     

                              

0 

1, 1 1, 3 1, 4 1, 2 

2, 2 
2, 1 2, 3 

3, 3 
3, 4 3, 2 3, 1 

* 

J1 

J2 

J3 
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5.4.2 Initial solution            

The initial solution for job shop scheduling can be obtained from branch and bound 

algorithm. Find the feasible initial solution to start the tabu search algorithm. By selecting 

the best admissible initial solution results in a good optimal solution. We use gantt chart 

representation to get the initial solution to the given problem. Gantt chart is a simple 

graphical representation and it does not have any rules in assigning the operation to a 

machine. 

Fig 12 Gantt chart 

M1 J1 (10)  J2(3)  J3(1)  

M2 J2 (6)  J3 (7)  J1 (4) 

M3  J3(5)  J1(8) J2(9)  

M4 J3(2)  J1 (6)  

 

Total makespan of the above gantt chart is 28. 

The above graph can be represented in a graph. The graph is machine oriented. 

In the following graph, the machines are connected according to the sequence of the 

operations performed on the machines. 

This machine sequence will be the initial solution for the tabu search. The disjunctive 

edges in the figure 11 are replaced with conjunctive edges of the machine sequence.  
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Fig: 13 Initial Solution for JSP 

 

5.4.3 Tabu search algorithm 

Next step is to define the neighborhood and collect all the moves applied on the current 

solution. The move mechanism can be swap move mechanism and also the direction of 

the edge can be reversed. The constraints of this graph are the sequence of the operations 

of a job should not be altered. Only the disjunctive edges represented in the figure 5.4.1 

can be changed or altered. The other constraint is that the disjunctive edges should be 

particular to that machine. Only the edges of similar machines can be swapped or the 

direction of an edge can be reversed. The neighborhood defined in this algorithm is opt- 

connected. Connectivity is the desired property of tabu search. By using connected 

neighborhood we can achieve better solutions. Define the aspiration criteria for the 

problem, so that the tabu status of a move can be cancelled. Now select an edge and 

reverse its direction to see the change of the solution. 

0 

1, 1 1, 3 1, 4 1, 2 

2, 2 
2, 1 2, 3 

3, 4 3, 3 3, 2 3, 1 

* 

J1 

J2 

J3 
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Consider edge between job 2 and job 3 for machine 2, change the direction of this edge. 

By doing this the makespan of problem is increased. The total makespan for the graph is 

32. 

By performing the move mechanism on the initial solution the obtained makespan is 

increased. But still we will consider this solution and perform the move mechanism. 

Later if we perform move mechanism on this solution the makespan can be reduced than 

the initial solution. By performing this move mechanism we won’t be stuck in the local 

optima and can explore the search region more diligently     

 

 

Fig: 14 Graph representation of iteration 1  

 

 

 

0 

1, 1 1, 3 1, 4 1, 2 

2, 2 
2, 1 2, 3 

3, 4 3, 3 3, 2 3, 1 

* 

J1 

J2 

J3 



49 

 

Fig: 15 Gantt chart for iteration 1   

M1 J1 (10)   J3(1)       J2(3)  

M2   J3 (7) J2(6)  J1(4) 

M3  J3(5)  J1 (8)  J2(9) 

M4 J3 (2)  J1 (6)  

 

We can get different solutions by applying moves on the current solution. If there is a 

minimum makespan than the current solution, then update the current solution to the 

solution obtained.  

 

5.4.4 Observations of Tabu search on JSP 

Job shop scheduling problem has excellent practical applications. This problem has been 

researched for a long time. Many papers were published on Job shop scheduling with 

tabu search algorithm. In 1989 Eck used tabu search for solving job shop scheduling 

problem. 

By researching papers on job shop scheduling problem [31] [32], it is noticed that with 

the increase of the size of the problem, the neighborhood for the solution increases 

rapidly. So to find the admissible moves in the neighborhood becomes difficult and also 

computational time increases. Researches are focusing on reducing the size of the 

neighborhood without decreasing the quality of the search (Jain Et. Al, 2000).  

By combining tabu search with simulated annealing or genetic algorithms a hybrid 

algorithm is produced which gives better solutions for the NP complete problems. 
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CHAPTER 6 

CONCLUSION AND FUTUREWORK 

Tabu search algorithm is applicable for problems in different fields of the technology, 

Communication. This algorithm is able to provide better solutions to many combinatorial 

optimization problems. The efficiency of the solutions obtained by tabu search is mostly 

depended on the initial solution and neighborhood structure. The future scope of this 

algorithm is to find an algorithm which is less dependable o initial solution and decrease 

the size of the neighborhood with the increase of the problem size. Even with the first 

level of tabu search it provided better solutions to some of the bench mark problems. By 

combining the intensification and diversification strategies the search is more directed to 

the different regions of the search space there by providing much better solutions. With 

the tabu constraints and aspiration levels on the search leads to effective solutions. There 

are so many areas in which research can be developed like strategies for intensification 

and diversification.  

In present life, the applications of tabu search are increasing rapidly. This alone suggests 

the potential approach of the algorithm and its principles. It is an art to develop the tabu 

search algorithm for particular type of problems.  
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