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ABSTRACT

Determination of Transformation Function for Predictor Variables in Multiple
Linear Regression

by

Vimatha Ravi

Rohan Dalpatadu, Ph D., P.E., Examination Committee Chair 
Associate Professor, Department of Mathematical Sciences 

University of Nevada, Las Vegas

In multiple linear regression involving several predictor variables, finding a suitable non­

linear transformation of the predictors might be helpful to present the model in a simple 

functional form which is linear in the transformed variables. In this thesis, a computer 

code in C++ is developed to automate the process of finding a suitable transformation for 

the predictors. This is done by finding the transformation that yields the maximum 

correlation between the response and the transformed predictor. Several simulated 

examples are included to illustrate the method. A prime concern in calculating the 

correlation between two data sets is statistical accuracy. Correlation coefficients reveal 

the degree of correlation between two data sets. They are valued from -1 to 1. A positive 

value indicates correlation and negative values indicate anti-correlation.

Ill
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CHAPTER 1

INTRODUCTION 

The Regression Model 

Multiple linear regression analysis is widely used to describe statistical 

relationships between a response variable and two or more predictor variables. The 

purposes of regression analysis can be thought of as: (I) description, (2) control, and (3) 

prediction. The general first-order multiple linear regression model with p -\predictor 

variables is shown below (Kutner, Nachtsheim, Neter; 2004):

Y i  =  P o  +  + ^ 2 ^ i ,2  +  "  '  +  P  i , p - i  ( 1 - 1 )

where:

Yj = the value of the response variable in the trial 

, j8,, • • •, Pp_̂  are the parameters

" , are the predictor variables 

£ j is a random error term with mean 0 and variance cr ̂

To define a model from Equation 1.1 and to define a statistical relation between 

the response variable 7, and the predictor variables 2Ts, two basic steps need to be 

followed.
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The first step is to identify the relevant predietor variables from a large group of 

independent variables which can explain the behavior of the response variable and the 

next step is to obtain a statistical relationship between them.

Research Objective

Simple transformations of variables (response variable Y, predictor variable X, or 

both) are sufficient to make the linear regression model represented by Equation 1.1 more 

appropriate. The convenient and well known transformation is for a response variable. 

Transformation of a response variable is expected to stabilize the variance of error terms 

or to reduce the model to linearity. Frequently the assumption of normality o f error terms 

is not in question and in such a case, transformation of one or more predictor variables 

can be attempted to reduce the model to a simple functional form. This method could be 

of more use when the true form of the model is unknown. The objective of this research 

is to obtain a simple functional form which is linear in the transformed scale by finding 

transformation functions of the predictor variables. The transformation function is 

obtained by looking at the degree of statistical dependency between the response variable 

and the predictor variable considered. The direction of dependency is ignored when 

taking the statistical dependency between the response and predictor variables into 

consideration. The variables in the model represented by Equation 1.1 are replaced with 

certain transformed functions of the predictor variables. The measure of dependency is 

given by the linear correlation coefficient calculated using the data of the response and 

the predictor variables. In this regression model, the higher the magnitude of the 

correlation is the higher is the degree of dependency. Therefore a transformation with a
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high degree of dependency is selected with regard to a particular predictor variable. In 

other words, the transformations of the predictor variables were selected by maximal 

correlation theory.

Literature Review

Correlation can be defined as the tendency towards concomitant variation and the 

correlation coefficient is simply a measure of such tendency. Correlation coefficient 

quantifies the direction and magnitude of linear association between two quantitative 

variables X  Sc Y.

The range of correlation coefficient p  between any two variables is -1  < p  < 1. 

When p  = -1 , the two variables vary perfectly in the opposite direction. When p  = 1, the 

two variables vary perfectly and positively in the same direction. Finally, when p  = 0 (or 

a value near zero) it can be said that there is no correlation between the two variables. In 

other words, the two variables are independent and they vary separately. This is better 

illustrated in the Figure 1.

The squared correlation coefficient p^ can be interpreted for the degree of 

dependency instead of correlation coefficient p . This is because the correlation 

coefficient misleads by suggesting a higher degree of co-variation than the existing co­

variation. This problem gets worse as the correlation approaches zero. Moreover, the 

squared correlation gives the proportion of common variance between the two variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1: Range of correlation coefficient
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Regression analysis is generally performed to fit a model that is adequate for the 

purpose intended. A transformation function of the predictor variable is obtained by 

looking at the correlation coefficient between the response variable and the transformed 

predictor variable. The transformation function of the predictor variable will have 

maximum squared correlation coefficient, which is used as a general measure of 

dependency (Breiman, Friedman 1985).The maximal correlation coefficient has the 

following properties:
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2. p„,3x 7) = 0 if and only if X  and 7  are independent.

3. If there exists a relation of the form w(%) = v (7 ), where u and v are Borel- 

measurable functions with var[«(%)] > 0, then (X,Y)  = 1.

Organization of the Thesis 

This thesis includes four chapters. Chapter 1 gives the introduction to the objective of the 

research study. The methodology of determining the transformation function for a 

predictor variable is presented in Chapter 2. Chapter 3 presents the results obtained from 

several simulated examples. Chapter 4 summarizes the conclusion and provides some 

recommendations of the thesis.
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CHAPTER 2

METHODOLOGY 

Transformation of the Predictor Variable 

Transformation of either a response variable or a predictor variable sometimes 

gives a more appropriate regression model instead of a model with the original variables. 

In this thesis, transformation of the predictor variables in regression is considered. The 

transformation function is obtained by comparing the squared correlations. An automated 

program in C++ is developed to find the transformation function with the maximum 

squared correlation among the transformation functions considered.

The method of determining the transformation function of the predictor variable involves:

1. transforming the predictor variable and obtaining the transformed data.

2. calculating the squared linear correlation coefficient, p^, for all the 

transformations of the predictor variables considered.

3. selecting the transformation function which gives the maximum squared 

correlation, p^.

To perform these steps, an automated computer program is developed using the 

programming language C++.

Transformation of a predictor variable sometimes helps us to better understand 

the statistical relationship between the response variable and the predictor variable. By
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transforming the predictor variable the dependency between the two variables can be 

explained.

Transformation function for the predictor variable is obtained by maximal correlation 

theory. In this thesis, to demonstrate the method following transformation funetions are 

considered:

1. g( X)  = l ogX

2. g( X)  = X \  p  = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 2, 3, 4

The data might have several predictor variables. A matrix plot of all the variables 

is studied to identify the predietors that require a transformation. The predietors which 

need a transformation are considered one at a time. Transformed data for all the 

transformation functions considered is obtained. Now, the squared correlation coefficient 

is calculated and compared.

Once the data for X  is read and transformed, the next step is calculating the 

squared correlation coefficient, . So now there are two sets of data, one is the Y  data, 

which is stored in an array, and the other one is g(X) =X’, the transformed data. The 

squared correlation eoefficient is ealeulated to measure the degree of statistical 

dependency between these two variables.

The estimate of squared eorrelation coefficient is given by:

where:

X, is the value of X  in the fth trial, 

is the value of Y  in the zth trial.
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The mean of X  values, x  = ——
n

t y .
The mean of Y values, y  = ——

n

While calculating for Tand g(X), X is replaced by g(X) in the above formula.

A function in C++ is defined to calculate the squared correlation. So when we 

pass the X  (or g(X)) data, the Y  data, and the size o f the data as arguments to this 

correlation function, the function calculates and returns value. Another function is 

defined to calculate the means of X  (or g(X)) and Y  data. This mean function takes the 

data and size of the data as arguments, ealculates the mean and returns the mean value.

The squared correlation is calculated for each g(X) and Y. Each squared 

correlation is compared with the squared correlation between X  and Y and also with the 

other squared correlations. The maximal squared eorrelation is obtained by these 

comparisons and the transformation which yields this maximal correlation is considered 

to be fit into the regression model instead of X.

The measure R^ is called the coefficient of multiple determination. R^ may be 

interpreted as the proportionate reduction of the total variation of the response variable, Y 

associated with the use of the set of predictor variables. The limiting values are 0 and 1. 

The closer it is to 1, the greater is the degree of linear association between the response 

and the predictor variables.

The measure of SSE can be interpreted as the variation in the response variable, Y 

that is present when the predictor variable is taken into account. It denotes the error sum 

of squares. The greater the variation of the Y observations arotmd the fitted regression

8
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line, the larger is the SSE. Lower values of SSE are expeeted for a better regression 

model.

One can always increase by adding more predictors as with more X variables 

SSE can never be larger. For this reason, it is often suggested to use the adjusted 

eoefficient of multiple determination, . The formula to ealculate R^ ĵ is given below:

n - \
SSTO 

where,

n = No. of data points 

p = No. of P ’s

Regression analysis with the original and the transformed predictors is compared. 

The R^jj values and the residual error (SSE) terms are compared. If there is an inerease in

the R^jj values and a decrease in the residual error terms then, the model with the

transformed predictors is considered to be a better model. Later, the residual plots are 

also compared to support the previous argument.

Residual Plots

The residual plots are used to examine the following:

1. Linearity of the regression model.

2. Constant variance of the error terms.

3. Outliers.

4. Normality of error terms.

5. Independence of error terms.
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Figure 2: Prototype of Residual Plots

e

0

X

(a) (b)

(c) (d)

Figure 2(a) shows a prototype of the residual plot against the predictor variable, 

X, when a linear regression model is appropriate satisfying all the basic assumptions. The 

residuals are with in a horizontal band centered about 0, and do not display any 

systematic tendencies to be positive or negative. Figure 2(b) shows a prototype where 

there is a departure from the linearity of the model. It indicates the need for a curvilinear 

model. Figure 2(c) shows a prototype where the error variance is not constant. Figure 

2(d) shows a prototype where there is a correlation between the error terms. Negative 

residuals are associated with the early trials and the positive residuals are associated with 

the later trials.

10
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Data

This section provides the documentation for the data used in this thesis. The 

methodology is demonstrated on three different data sets. The highway data and the 

dwaste data are obtained from the book Applied Linear Regression, 3^  ̂ edition by 

Sanford Weisberg. Crop Yield data is taken from Applied Linear Regression Models, 4**' 

edition by Michael H. Kutner, Christopher J. Nachtshiem & John Neter.

The highway data relates the automobile accident rate, in accidents per million 

vehicle miles to several potential terms. The response variable is the rate. The predictors 

are length of the highway segment in miles (XI), average daily traffic count in thousands 

(X2), truck volume as a percent of the total volume (X3), speed limit in 1973 (X4), width 

in feet of outer shoulder on the roadway (X5), and number of signalized interchanges per 

mile (X6).

The crop yield data is concerned with the effects of moisture and temperature on 

the yield of a hybrid tomato. The response variable is the yield of tomato. The predictor 

variables are moisture (XI) and temperature (X2).

The dwaste data is from an experiment conducted to study difference in the 

measurement of the oxygen uptake in milligrams of oxygen per minute, using five 

different chemical measurements. The response variable is the oxygen uptake 

measurement. The predictor variables are biological oxygen demand (XI), total kjeldahl 

nitrogen (X2), total solids (X3), Total volatile solids (X4), and chemical oxygen demand 

(X5).

11
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CHAPTER 3 

RESULTS

This chapter presents the results. Sections one to three present the results for 

various data sets. Section four summarizes the results for all the data sets. Summary 

tables are provided in section four.

Results for Highway data

A matrix plot is obtained for the data to identify the predictors that need a 

transformation. The plot is presented in Figure 3.

After observing the plot, one might want to find a transformation fimction for X I, 

X2, X3, and X6. By transforming these variables, we can obtain a simple linear model in 

the transformed variables. To obtain the transformation function for these variables, C++ 

code is used. The C++ output is shown in Figure 4.

The program suggests using a Log transformation on X I, power transformations 

on the rest of the variables selected. The transformed variables are obtained and 

regression analysis is performed. The regression models before and after the 

transformations are obtained and compared.

12
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Figure 3: Matrix Plot for Highway Data
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Figure 4: C++ Ouput for Highway Data
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Regression Analysis: y versus x l, x2, x3, x4, x5, x6 

The regression equation is
y -  14.4 _ 0.0620 xl + 0.0002 x2 - 0.136 x3 - 0.152 x4 - 0.048 x5 + 0.694 x6

Predictor Coef SE Coef T P
Constant 14.418 2.699 5.34 0.000 
x l -0.06201 0.03309 -1.87 0.070
x2 0.00022 0.01316 0.02 0.987
x3 -0.1364 0.1103 -1.24 0.225
x4 -0.15208 0.05711 -2.66 0.012
x5 -0.0481 0.1074 -0.45 0.657
x6 0.6939 0.3989 1.74 0.092

8 = 1.27715 R-Sq = 65.2% R-Sq(adj) = 58.6%

Analysis of Variance

Source DF SS MS F P 
Regression 6 97.690 16.282 9.98 0.000 
Residual Error 32 52.196 1.631 
Total 38 149.886

Figure 5: Normal Probability Plot

Normal Probability Plot of the Residuals
(response is y)

Residual

Regression Analysis: y versus Log x l, x2^3, x3^3, x4, x5, x6^0.5 

The regression equation is
y = 13.4 - 1.17 Log xl + 0.000001 x2^3 - 0.000301 x3^3 - 0.109 x4 - 0.121 x5 

+ 1.06x6^0.5

Predictor Coef SE Coef T P

14
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Constant 13.367 2.761 4.84 0.000
Logxl -1.1700 0.3920 -2.98 0.005
x2^3 0.00000123 0.00000244 0.51 0.617
x3^3 -0.0003006 0.0002938 -1.02 0.314
x4 -0.10910 0.05900 -1.85 0.074
x5 -0.1209 0.1040 -1.16 0.254
x6^0.5 1.0603 0.5074 2.09 0.045

8 =  1.21239 R-Sq = 68.6% R-Sq(adj) = 62.7%

Analysis of Variance

Source DF S S MS F P
Regression 6 102.850 17.142 11.66 0.000
Residual Error 32 47.036 1.470 
Total 38 149.886

Figure 6: Normal Probability Plot

Normal Probability Plot of the Residuals
(response is y)

Residual

Adjusted coefficient of multiple determination, is compared from both the 

models. Clearly, there is an increase in the RI ĵ value which suggests an improvement in

the fit. Residual error, SSE values are also compared. SSE also decreased suggesting an 

improvement in the fit. For a better understanding, the residual plots are also compared. 

Residual plots also show an improvement, which suggests a better fit to the data. They 

are presented below.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7: Residual Plots for Highway Data
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Results of Crop Yield Data 

A matrix plot is obtained for the data to identify the predictors that need a 

transformation. The plot is presented below.

Figure 8: Matrix Plot for Crop Yield Data
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The non linearity of the variable XI is evident from the matrix plot. By 

transforming XI, we can achieve a linear function in the transformed XI. The 

transformation function for the variable XI is obtained from the C-H- code. The C-i-4- 

output is shown below.
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Figure 9: C++ Output for Crop Yield Data

c: Z;\TC\BIN\TC.EXE
Pi'îë BÎÏ1

l i f t e d 33
O u t I o n s

O u t p u t
~ W u i d o w

=3=[ Î ]=n

Scfuared  c o r r e l a t i o n  f o r  <V,X> i a  0 . 4 8 1 0 6 9

n a x i n u n  s q u a r e d  c o r r e l a t i o n  among a l l  t h e  t r a n s f o r m â t  i on  f u n c t i o n s  c o n s i d e r e d  
; f o r  t h e  pow er  = 4 . 0 0 0 0 0 0 ,  and  th e  s q u a r e d  c o r r e l a t i o n  = 0 . 7 2 4 4 5 2

The program suggests using a power transformation on XI. The transformed 

variable is obtained and regression analysis is performed. The regression models, before 

and after the transformation, are obtained and compared.

Regression Analysis: y versus x l, x2

The regression equation is 
y = 67.0 - 0.762 xl - 0.530 x2

Predictor Coef SE Coef T P 
Constant 67.044 7.188 9.33 0.000 
xl -0.7620 0.1590 -4.79 0.000
x2 -0.5300 0.3180 -1.67 0.110

S = 2.24847 R-Sq = 53.9% R-Sq(adj) = 49.7%
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Analysis of Variance

Source DF SS MS F P
Regression 2 130.174 65.087 12.87 0.000
Residual Error 22 111.224 5.056 
Total 24 241.398

Figure 10: Normal Probability Plot

Normal Probability Plot of the Residuals
(respcmse is y)

- 5.0 -2.5 0.0 2.5 5.0

Regression Analysis: y versus xl^4, x2

The regression equation is 
y = 62.3 - 0.000196 x lM  - 0.530 x2

Predictor Coef SE Coef T P
Constant 62.342 4.827 12.92 0.000
xlM  -0.00019574 0.00002286 -8.56 0.000 
x2 -0.5300 0.2184 -2.43 0.024

S =  1.54437 R-Sq = 78.3% R-Sq(adj) = 76.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 188.926 94.463 39.61 0.000
Residual Error 22 52.472 2.385 
Total 24 241.398
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Figure 11 : Normal Probability Plot

Normal Probability Plot of the Residuals
(response is y)

Residual

Adjusted coefficient of multiple determination, , is compared from both the 

models. Clearly, there is an increase in the value which suggests an improvement in

the fit. Residual error, SSE values are also compared. SSE also decreased suggesting an 

improvement in the fit. For a better understanding, the residual plots are also compared. 

They are presented below.

Figure 12: Residual Plots for Crop Yield Data

Residuals Versus x l
(response is y)

x l

Residuals Versus x l^ 4
(response Is y)

20000 30000xl̂ 4
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Results for Dwaste Data 

A matrix plot is obtained for the data to identify the predictors that need a 

transformation. The plot is presented below.

Figure 13: Matrix Plot for Dwaste Data

Matrix Plot of y, x l ,  x2, x3, x4, x5
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4 0 0 0 - jbm
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After observing the plot, one might want to find a transformation function for X3 

and X4. To obtain the transformation function for this variable, C++ code is used. The 

C++ output is shown below. The program suggests using a power transformation for both 

the variables considered. The transformed variables are obtained and regression analysis 

is performed. The regression models, before and after the transformation, are obtained 

and compared.
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Figure 14: C++ Output for Dwaste Data

Z:\TaBIN\TCEXE  _________________________________   a
Pi Ip fcd it Setirch  Run CiinDilc Drhun P ro ie n c  O ucions Window H oln

= [  ] ] ---------: .......... .. . ' .............O u C p U t

S q u a red  c o r r e l a t i o n  f o r  (Y ,X )  i s  0 . 2 5 2 8 1 9

- 3 = [  ;  ]==ii

maximum s q u a r e d  c o r r e l a t i o n  among a l l  t h e  t r a n s f o r m a t i o n  f u n c t i o n s  c o n s i d e r e d  
5 f o r  t h e  power = 2 . 0 0 0 0 8 0 ,  and th e  s q u a r e d  c o r r e l a t i o n  = 0 . 2 5 4 1 5 2

S q u a red  c o r r e l a t i o n  f o r  (Y ,X )  i s  0 .2 0 3 0 5 3

maximum s q u a r e d  c o r r e l a t i o n  among a l l  th e  t r a n s f o r m a t i o n  f u n c t i o n s  c o n s i d e r e d  
} f o r  t h e  p ow er  = 4 . 0 0 0 0 0 0 ,  and t h e  sq u a r e d  c o r r e l a t i o n  = 0 .2 7 9 7 1 1

PI Help Ti« ► Scroll

Regression Analysis: y versus x l, x2, x3, x4, x5 

The regression equation is
y = -21.5 - 0.0043 xl + 0.0194 x2 + 0.00019 x3 + 0.060 x4 + 0.00345 x5

Predictor Coef SE Coef T P
Constant -21.50 23.77 -0.90 0.381
xl -0.00431 0.01349 -0.32 0.754 
x2 0.01937 0.03288 0.59 0.565 
x3 0.000189 0.002001 0.09 0.926
x4 0.0599 0.3643 0.16 0.872 
x5 0.003455 0.001919 1.80 0.093

S = 6.81277 R-Sq = 45.5% R-Sq(adj) = 26.1%

Analysis of Variance

Source DF SS MS F P 
Regression 5 543.40 108.68 2.34 0.096 
Residual Error 14 649.79 46.41 
Total 19 1193.19
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Figure 15: Normal Probability Plot

Normal Probability Plot of the Residuals
(response is y)

-15 -10 20
Residual

Regression Analysis: y versus x l, x2, x3^2, x4M, x4, x5 

The regression equation is
y = 246 - 0.0073 xl + 0.0210 x2 - 0.000001 x3^2 + 0.000004 x4M - 4.94 x4 

+ 0.00200 x5

Predictor Coef SE Coef T P
Constant 245.6 128.1 1.92 0.078
xl -0.00728 0.01144 -0.64 0.536
x2 0.02100 0.03054 0.69 0.504
x3/"2 -0.00000050 0.00000029 -1.76 0.103
x4"^4 0.00000387 0.00000183 2.11 0.055
x4 -4.943 2.390 -2.07 0.059
x5 0.001996 0.001852 1.08 0.301

S = 6.09888 R-Sq = 59.5% R-Sq(adj) = 40.8%

Analysis of Variance

Source DF SS MS F P 
Regression 6 709.64 118.27 3.18 0.038 
Residual Error 13 483.55 37.20 
Total 19 1193.19
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Figure 16: NomiEil Probability Plot

Normal Probability Plot of the
(response is y)

Residual

Adjusted coefficient of multiple determination, RI ĵ , is compared from both the 

models. Clearly, there is an increase in the RIjj value which suggests an improvement in

the fit. Residual error, SSE values are also compared. SSE also decreased suggesting an 

improvement in the fit. For a better understanding, the residual plots are also compared. 

They are presented below.
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Figure 17: Residual Plots for Dwaste Data
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Summary

Summary tables for ail the data sets are presented below.

Table 1 : Summary Table for Highway Data

Before Transformation After Transformation
Sq.Corr(Y,Xl) 0.216494 0.32021
Sq.Corr(Y,X2) 0.000816234 0.00926623
Sq.Corr(Y,X3) 0.262679 0.303944
Sq.Corr(Y,X6) 0.318637 0.339898

Adjusted Coefficient of 
multiple determination, 58.6% 62.7%

Residual Error, SSE 52.196 47.036
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Table 2: Summary Table for Crop Yield Data

Before Transformation After Transformation
Sq.Corr(Y,Xl) 0.481069 0.724452

Adjusted Coefficient of 
multiple determination, 49.7% 76.3%

Residual Error, SSE 111.224 52.472

Table 3: Summary Table for Dwaste Data

Before Transformation After Transformation
Sq.Corr(Y,X3) 0.252819 0.254152
Sq.Corr(Y,X4) 0.203053 0.279711

Adjusted Coefficient of 
multiple determination, Rl^j 26.1% 40.8%

Residual Error, SSE 649.79 483.55
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS 

The objective of this thesis is to obtain a transformation function for a predictor 

variable based on maximal correlation theory. A transformation function of the predictor 

will be able to provide a better fit and also might be able to reduce the model to linearity 

in the transformed variables. As we know, an appropriate regression model is obtained by 

understanding the relationship between the response variable and the predictor variables. 

This relationship between the variables is given by correlation coefficient. Hence, 

obtaining the transformation function of a predictor variable based on maximal 

correlation theory will be appropriate and helpful in obtaining a better regression model. 

In this thesis, a code in C++ is developed to automate the process of obtaining the 

transformation function that provides a better fit. The C++ code developed will transform 

the predictor variables and compares the squared correlation coefficient between the 

response variable and the transformation functions of a predictor variable. To 

demonstrate the method a set o f transformation functions are considered here. This set 

does not include negative powers, but, while modeling, including the negative powers 

might be more appropriate. The transformation function with the highest squared 

correlation is then selected. Later, regression analysis is performed with the 

transformation functions of the predictors. The results showed a significant improvement 

in the regression model. This concludes that, correlation can be helpful in identifying a
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transformation function for a predictor variable and there by obtaining a better fitted 

model.

Obtaining a confidence interval for the range of transformation functions used 

will be more helpM in identifying the transformation function for each variable. Also, 

apart from the criteria, some other criteria like AIC should be used to be able to justify 

the transformation function and the model.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

1. Michael H. Kutner, Christopher J. Nachtsheim & John Neter, Applied Regression 
Models (Fourth Edition! McGraw Hill 2003.

2. Leo Breiman, Jerome H. Friedman, Estimating Optimal Transformations for 
Multiple regression and Correlation. Journal of the American Statistical 
Association, Vol. 80, No. 391. (Sep., 1985), pp. 580 -  598.

3. R. J. Rummel, Understanding Correlation. Honolulu; Department of Political 
Sciences, University of Hawaii, 1976.

4. G. E. P. Box and Paul W. Tidwell, Transformation of the Independent Variables. 
Technometrics 1962, Vol. 4, No. 4, Pages 531 -  550.

5. Sanford Weisberg, Applied Linear Regression (Third Edition). Wiley Series 2005.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX

C++ code for the transformation function:

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
/♦FUNCTION FOR CALC MEAN:*/ 
long double mean(long double data[],int s)
{

inti;
long double datamean; 
long double sum=0;

for(i=0;i<s;i++)
{

sum=sum+data[i] ;
}
datamean=sum/s; 
return (datamean);

}

/♦FUNCTION FOR CALC CORRELATION:*/ 
long double correlation(long double dataX[],long double dataY[],int s) 
{

inti;
long double ditfsumXY=0; 
long double sqdiffsumY=0; 
long double sqdiffsvunX=0; 
long double a,b,r,r2; 
a=mean(dataX,s); 
b=mean(dataY,s); 
for(i=0;i<s;i++)
{

diffsumX Y=diffsumX Y+((dataX [i] -a) * (data Y [i] -b)) ;
sqdiffsumY=sqdiffsumY+(pow((dataY[i]-b),2));
sqdiffsumX=sqdiffsumX+(pow((dataX[i]-a),2));

}
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r=(difîsumX Y/ (sqrt(sqdiffsumX* sqdiffsum Y))) ;
r2=pow(r,2);
return (r2);

}

typedef struct 
{

long double vall,val2,val3,val4,val5,val6,val7,val8,val9,vall0; 
} value;

int main(void)
{

float p[]={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2,3,4} ;
long double sqcorr=0,c=0,x=0;
float power=0;
int i=0,j=0,k=0,n=0,count;

FILE *fp; 
value v;
char headStr[200];
char headV al [ 100] [200] ;
long double values[200][10], Y[200], X[200];
long double g[200];
fp=fopen("Prob#70.csv","r");
if(fscanf(J^, "%s ",headStr) ! =EOF)
{

while(headStr[i] !='\0')
{

if(headStr[i]=V)
{

i++;
headV al[j] [k]='\0’;
j++;
k=0;
continue;

}
headVal [j ] [k++]=headStr [i-H-] ;

}
headVal[j][k]-'\0';

}
else
{

printf("\n There is no data in the input file"); 
printf("\n Hence exiting the program.."); 
exit(O);

}

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i=0;
while(fscanf(^,"%Lg,%Lg,%Lg",«&v.val 1 ,&v. val2,&v.val3) !=EOF) 
{

values[i] [0]=v.val 1 ; 
values[i][ 1 ]=v. val2; 
values [i] [2]=v, val3 ;
i++;

}
k=i;
i=0;
for(count=l ;count<3 ;count++)
{
for(i=0;i<k;i++)
{

Y[i]=values[i][0];
X[i]=values[i] [count] ; 
n=k;

fclose(Q));
}
for(i=0;i<n;i++)
{
if(X[i]!=0)
{

g[i]=log(X[i]);
}
else
{

g[i]=X[i];
}

}
sqcorr=correlation(g,Y,n);
for(i=0;i<13;i++)
{

for(i=0;j<n;j++)
{

g[j]=pow(X[j],p[i]);
}
c=correlation(g,Y,n); 
if(p[i]— 1)
{

x=c;
}
if(sqcorr<c)
{

sqcorr=c;
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power=p[i];
}

}
printf("\n Squared correlation for (Y,X) is %Lg\n",x); 
if(power=0)
{

printf("\n maximum squared correlation = %Lg for the Log function\n",sqcorr);
}
else
{

printf("\n maximum squared correlation among all the transformation functions 
considered is for the power = %f, and the squared correlation = %Lg\n",power,sqcorr);

}
}
retum(O);

}
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