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ABSTRACT

Paleoecology of Pleistocene megafauna in 
southern Nevada, USA: isotopic 

evidence for browsing on 
halophytic plants

by

Lael Vetter

Dr. Stephen M. Rowland, Examination Committee Chair 
Professor of Geoscience 

University of Nevada, Las Vegas

Stable isotopic techniques are emergent as a powerful reconstructive tool in Neogene 

paleoecology. The Las Vegas Valley in southern Nevada contains one of few diverse 

Late Pleistocene fossil assemblages in the Mojave Desert. This study investigates the diet 

of four megafaunal genera {Mammuthus, Equus, Bison, and Camelops) using 6 ^C 

signatures preserved in tooth enamel. Results from serial sampling are also presented as a 

subannual record of dietary variation and seasonality. During the Last Glacial Maximum, 

the three grazing genera {Mammuthus, Equus, and Bison) consumed C3  and C4  grasses in 

the naturally occurring proportion, which consisted primarily of C3  grasses. Camelops 

6 '^C values indicate the highest dietary proportion of C4  plants; I interpret that these 

animals consumed browse material with a high proportion of the halophytic C4  shrub 

Atriplex, a substantial component of modern Mojave Desert vegetation. This study 

provides new insight into stable isotopic applications for reconstruction of arid 

paleoenvironments.

Ill
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CHAPTER 1

INTRODUCTION

Overview

The end of the Pleistocene Epoch (11,500 calendar years before present, or 11.5 ka) 

marked the extinction of a unique “megafauna” of large mammals on almost every 

continent (Barnosky et al., 2004). The precise causes of this extinction have long been 

debated, and are still controversial. Current research suggests that both rapid climate 

change and human hunting may have played a significant role (Barnosky et al., 2004; 

Grayson and Meltzer, 2002, 2003; Martin, 1984; Mosiman and Martin, 1975).

The preferential extinction of large mammals, in concert with rapid climate change 

during deglaciation, suggests that nutritional stress may have had effects on multiple 

trophic levels and possibly played a role in extinction (Guthrie, 1984). Numerous recent 

studies have explored niche partitioning and dietary variation in taxa of extinct 

megafauna using stable isotopic variation (Feranec and MacFadden, 2000; Hoppe et al., 

1999; Koch et al., 1998; MacFadden et al., 1996). Traditional paleontological 

reconstructions of diet rely primarily on dental morphology. In herbivores, grazing and 

browsing habits are delineated by hypsodonty (high-crowned teeth) versus brachydonty 

(low-crowned teeth), and further identified by the shape of the occlusal or chewing 

surface (Webb, 1974). Bison, mammoths, and horses all have hypsodont teeth with
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relatively flat occlusal surfaces, and are interpreted as grazers; mastodons and 

antilocaprids have low-crowned teeth and are interpreted as browsers (Webh, 1974).

Isotopic discrimination between Q  grasses and Q  browse material permits more 

detailed reconstruction of the dietary preferences of herbivores. In some cases, as with 

equids, the evolution of hypsodonty mirrors the expansion of Q  grasslands in the Late 

Miocene, as revealed by stratigraphie isotopic data (Ceding et al., 1989; Quade et al., 

1989; Quade et al., 1992). These studies permit paleoecological reconstructions in 

mammalian diet and behavior at a level of complexity previously unattainable for the 

fossil record.

In low latitudes with sufficient moisture, hrowse plants are almost entirely C, and 

grasses are almost exclusively C 4 , and isotopic values in tooth enamel can be directly 

correlated to dietary preferences. Because of the simplicity of assigning isotopic end- 

members to corresponding dietary end-members, most of these studies focused on low- 

latitude paleoecosystems with abundant rainfall. As a result, little work has produced 

reconstructions of this type in western North America. In the absence of these customary 

isotopic end-members for diet, other paleoecological questions may still be addressed and 

answered using isotopic data.

A diverse assemblage of fossil megafauna was recovered from the Las Vegas Valley 

in southern Nevada, located in the Central Basin and Range. Previous work has been 

primarily descriptive (de Narvaez, 1995; Haynes, 1967; Mawby, 1967), although some 

studies have analyzed species assemblages in an attempt to reconstruct population 

dynamics (de Narvaez, 1995; Vetter et al., 2005).
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Objectives and Predictions

The Late Pleistocene assemblage of megaherbivore teeth recovered from the 

Gilcrease spring mound. Las Vegas Valley, Nevada, provided an opportunity to test 

hypotheses about isotopic reconstruction of diet in different taxa and seasonal variability 

within individual animals. In addition, absolute dating tests provided a means of 

evaluating the taphonomy of the site, and whether the fossils represent a time-averaged 

accumulation or a single mass death event. This project evaluated four genera of extinct 

large herbivores: Mammuthus, Equus, Bison, and Camelops.

This project evaluated the relative proportions of Q  and C4  vegetation in herbivore 

diets using stable carbon isotope values. Modern bison are obligate grazers and consume 

almost no browse material. Bison do not exhibit preference for Q  or C4  grasses and 

consume grass in the naturally occurring C3 /C4  ratio, and are thus passive recorders of the 

relative abundances of C3  and C4  grasses (Hoppe et al., 2006). I measured the carbon 

isotopic values from bison teeth and used these values, in conjunction with independent 

vegetation records, to approximate a baseline abundance of each type of grass. Recent 

evidence suggests that Pleistocene Equus and Mammuthus were both facultative grazers; 

Pleistocene Camelops was putatively a browser. I predicted that the carbon isotopic 

values of these three taxa would differ from values from hi son, indicating differences in 

diet.

I also measured several serial samples along the growth axis of a single tooth for each 

individual. I predicted cyclic variability in both carbon and oxygen isotope values 

measured along the growth axis. These cyclic variations are interpreted as seasonal 

variation in diet. Since vegetation is highly variable on small spatial scales in the Basin
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and Range, I predicted a broader range of intra-species carbon isotopic values between 

individuals than has been demonstrated for other Pleistocene herbivores.

Radiocarbon tests were performed on six Mammuthus molars from six individuals. I 

predicted that the absolute dates obtained from these analyses would span a range of 

values, indicating that these fossils accumulated over several thousand years.

Significance

The modern Mojave Desert is extremely arid and has a low vegetation density; as a 

result, it supports a very low density of modern large animals. The Pleistocene-to- 

Holocene transition in the Mojave Desert was a particularly dramatic climatic shift; the 

mean annual temperature approximately doubled, while the mean annual precipitation 

decreased by about a factor of two (Thompson et al., 1999). Data from the relatively 

small number of Quaternary fossil localities in the Mojave Desert indicate that a diverse 

fauna was present in the Late Pleistocene.

Southwestern North America is the historic location of megafaunal kill sites that 

unequivocally indicate interactions between human Paleoindian hunters and animals that 

are now extinct (Haury, 1953; Haury et al., 1959; Stock and Bode, 1937; Warnica, 1966). 

Recent evidence indicates the presence of humans in the Las Vegas Valley and 

surrounding area during the early Holocene (Heidi Roberts, 2006 personal comm, to S. 

Rowland). Interaction between human hunters and extinct megafauna in the Las Vegas 

Valley has been suggested based on stratigraphie association of archaeological artifacts 

with fossil remains (Harrington, 1933; Haynes, 1967). Although human-megafaunal 

interactions have not been conclusively proven, these interactions could have increased
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the considerable environmental stress that resulted from changing climate and vegetation 

regimes.

In the Late Pleistocene faunal assemblage from the La Brea tar pits in southern 

California, studies have inferred environmental and nutritional stress from dietary shifts, 

indicated by both morphological (Van Valkenburgh and Hertel, 1993) and isotopic data 

(Fox-Dohbs and Koch, 2003). Faunal records from the Las Vegas Valley span the time 

interval from the Last Glacial Maximum to the end-Pleistocene megafaunal extinction, 

and thus record the paleoecology and paleoenvironmental interactions of these animals 

immediately prior to their extinction. In this study, 1 reconstruct resource partitioning and 

seasonal variability in dietary habits of Pleistocene herbivores in the Mojave Desert 

immediately prior to their extinction, and test for potential resource competition and 

environmental sources of nutritional stress.
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CHAPTER 2

PREVIOUS RESEARCH 

Geologic Background 

The Las Vegas Valley is one of several fault-bounded intermontane basins in the 

Basin and Range, a region of continental extension in western North America (Longweli 

et al., 1965). Extension in the Central Basin and Range was initiated in the Eate Miocene, 

and the Neogene sedimentary record extends into the Holocene (Faulds et al., 2001). 

Pleistocene sediments in the Eas Vegas Valley consist primarily of coarse alluvial fans 

and fan remnants adjacent to mountain fronts; areas more distal from range fronts are 

characterized by finer sands and silts (Haynes, 1967). Drainage in the Las Vegas Valley 

runs generally from northwest to southeast, and terminates in Lake Mead and the 

Colorado River (Eigure 1; Eongwell et al., 1965).

The Pleistocene Epoch (-1.8 Ma to 10 ka) was characterized by frequent alternation 

between glacial and interglacial conditions, resulting from cyclical variation in orbital 

patterns (Hays et al., 1976). During glacial stages, pluvial conditions were prevalent in 

the Basin and Range, with considerably more precipitation than in the modern 

interglacial stage (Smith and Street-Perrott, 1983). Many closed intermontane basins 

were filled with lakes during Pleistocene pluvial intervals, and multiple pluvial events are 

recorded in thick lacustrine sedimentary sequences within some basins (Snyder et al., 

1964). Other hydrologically open basins accumulated interbedded coarse and fine
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Figure 1. Map of the Las Vegas Valley, southern Nevada. A = Tule Springs excavation, ★  = Gilcrease property 
and spring mound (modified from USGS, 2007).



deposits that reflect disparate precipitation and weathering between pluvial and 

interpluvial climatic regimes (Mifflin and Wheat, 1979). Pleistocene sediments in the Las 

Vegas Valley consist of interbedded gravels, sands, silt and mudstones, and paleosols 

(Quade, 1983). Reconstructed depositional environments are fluvial during drier intervals 

and paludal or marsh systems during wetter intervals (Quade, 1986).

The Tule Springs excavation, an interagency research effort that took place in 1962- 

63, mechanically exposed Late Pleistocene sediments (Haynes, 1967). Haynes (1967) 

identified and described seven stratigraphie units, labeled A through G, which provide 

context and continuity for Quaternary sediments in the region. Stratigraphie age control 

for these units was determined using radiocarbon dates from a variety of materials, 

including wood, mollusc shells, tufa carbonates, organic-rich tufa deposits, and bone 

material (Table 1; Haynes, 1967). Units A and C are primarily coarse-grained fluvial 

facies. Units B and D consist of greenish calcareous mudstone (Haynes, 1967); these two 

units are interpreted as paludal or marsh facies, deposited during wetter pluvial intervals 

(Quade, 1986). These mudstone units are also characterized by abundant burrows from 

cicada larvae, which in modern environments are linked with wetter conditions and a 

vegetation regime with abundant sagebrush {Artemisia spp.) (Quade, 1986). Unit D, 

which is correlative with the Last Glacial Maximum, is marked by the presence of 

abundant nodules of secondary soil carbonate (Quade, 1986). Subunit E, consists of 

cross-bedded alluvium, organic-rich black mats, and areal 1 y restricted green clays; 

subunit Ej is interpreted as a drier environment consisting of hardpan and occasional 

marshes of limited extent. Units F and G consist primarily of fine-grained deposits and 

are interpreted as aeolian sediments deposited under very arid conditions; within these
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units, black organic-rich mats and green clays are found only in association with modern 

springs (Quade, 1986).

Table 1. Selected stratigraphie units and ages of Quaternary sediments in the Las Vegas 
Valley; units from (Haynes, 1967; Mehringer, 1967; Quade, 1986). Absolute ages are 

inferred from radiocarbon dates of various interbedded materials.

Unit Age range (ka) Description Features
G 1.0 -  present Fine-grained A eolian  deposits
F, 4 .0  -  1.5 Fine-grained A eolian  deposits
F, 5 . 0 - 4 . 0 Fine-grained A eolian  deposits
E, 1 1 .0 - 6 .0 Cross-bedded alluvium Hardpan
F, 1 4 .0 -  11.5 Cross-bedded alluvium Black mats, occasional green clays
D 3 0 .0 - 1 6 .0 Greenish calcareous m udstone Cicada larvae, carbonate nodules
B , > 4 0 Greenish calcareous m udstone Cicada larvae

The Gilcrease Flat and Kyle Canyon alluvial fan are located - 4  km west of the Tule 

Springs excavation (Figure 1). Units C and D extend into the subsurface of the Kyle 

Canyon fan. The surface of the fan is correlative with the upper part of Unit D, and local 

paleosols are believed to be correlative with Unit E (de Narvaez, 1995). Several active 

springs have deposited topographic mounds (-100 to 500 m across and 4 to 15 m in 

height; Haynes, 1967). The Gilcrease and Stilwell alignments are parallel, north-south 

trending traces of a normal fault at the base of the Spring Mountains; these are marked by 

linear occurrence of a series of these spring mounds (Haynes, 1967). Spring discharge 

initiates when fan drainage is interrupted by impermeable, fine-grained fault gouge along 

the active fault (Haynes, 1967). Placement of these springs above local erosional surfaces 

at the top of Unit D, below Unit E,, constrains initiation of movement along these faults 

to 22 ka to 14 ka, when spring discharge began (Haynes, 1967). More detailed 

examination of spring stratigraphy indicates that these springs were vigorously active 

beginning in the Eate Pleistocene (-18 ka) and that discharge declined into the Holocene
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(Quade, 1986). Several of the springs were active into historical time and discharge 

ceased in response to groundwater extraction from urban development in the Las Vegas 

Valley (Quade et al., 1995). The spring mounds measure approximately 30-150 m in 

diameter and 3-7 m in height, and accumulated a high diversity of megafaunal remains 

(Haynes, 1967).

Faunal Records

There is an overall paucity of published Pleistocene vertebrate localities in the 

Mojave Desert region. The modern abundance of large mammals is low due to resource 

limitation, and abundances may have been low in the Pleistocene as well. In addition, 

preservation potential is poor in arid environments, and much of the region is 

undeveloped or used for rangeland. A high diversity of large and small vertebrates and 

invertebrates is preserved at a few sites, but most published faunal records tend to 

describe isolated individual fossils. In contrast to most Pleistocene faunal localities in the 

Mojave Desert, the Las Vegas Valley contains a diverse fossil assemblage (de Narvaez, 

1995; Glowiak, 2007; Mawby, 1967).

The Tule Springs fauna was recovered from the northwestern Las Vegas Valley and 

provides the most complete Pleistocene faunal record for the area (Haynes, 1967). The 

Tule Springs excavation yielded fossil material of invertebrates (primarily molluscs), 

amphibians, reptiles, birds, small mammals, and large carnivores and herbivores. Some 

pollen was also recovered from the Tule Springs excavation (Mehringer, 1967); these 

palynological data are discussed with other vegetation records below. The faunal 

assemblage is composed primarily of large mammals, in part due to large-scale methods

10
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of excavation and inattention to smaller fossil material (Haynes, 1967). Most of these 

large mammals are herbivores, with few representatives of the carnivore guild (Table 2 ; 

Mawby, 1967).

Table 2. Large mammals from the Tule Springs fossil assemblage (Mawby, 1967). 
G = grazer, B = browser, C = carnivore. See Table 1 

for correlation with stratigraphie units.

Family Taxon Common name Diet Stratigraphie
unit

Proboscldea M am muthus co lum bi Columbian
mammoth

G B ,, D , E,

Equidae Equus sp. (large m orph— 
E. occiden ta lis? )

Horse G Bo, E|

E. conversidens Horse G B „ E,

Cam elidae C am elops hesternus Y esterday’s camel B B ,, D , E,

B ovidae Bison antiquus Antique bison G B,

Cervidae O docoileus  sp. Deer B E,

Ovidae O vis C anadensis Mountain sheep B

Antilocapridae T etram eryx  sp. Pronghorn B E,

Xenarthra M egalonyx  sp. Giant ground 
sloth

B Bj, E,

N othro theriops
shastensis

Shasta ground 
sloth

Small predatory

B B,

Carnivora F elis or Lynx cat C B .
Panthera a trox American lion C B ,
Pum a  sp. Puma C E,
C anis la trans C oyote C E,

Additional Pleistocene vertebrate material in the Las Vegas Valley was recovered 

from Gypsum Cave, 22 km east of the Tule Springs locality. Initial excavations yielded 

the remains of several extinct and extant large mammals (Harrington, 1933). Radiocarbon 

analyses of dung samples of the Shasta ground sloth {Not hr other iops shastensis) from
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Gypsum Cave produced a range of ages from 8,400 to 11,700 yr BP (Heizer and Berger, 

1970). Subsequent identification and analysis of the Gypsum Cave assemblage has 

yielded a minimum number of individuals for each taxon (Table 3; Glowiak, 2007), 

consistent with the distribution within the Tule Springs assemblage.

A specimen of Nothrotheriops shastensis was also recovered from a pitfall cave trap 

at Devil Peak in the Spring Mountains, -8 0  km south of the Las Vegas Valley (Gromny, 

2003). Isolated proboscidean and ungulate fossils are also reported from the region. 

Various localities include Mammuthus columbi from Pahrump Valley (NV), Cactus 

Springs (NV), and Valley Wells (CA); Equus sp. and Camelops sp. from Corn Creek Flat 

(NV); Equus sp. from Lathrop Wells (NV) and Kokoweef Cave (CA); and Camelops sp. 

from Sunshine Lake (NV) (Connin et al., 1998).

Table 3. Large mammals from the Gypsum Cave assemblage (Glowiak, 2007).

Order Taxon
Common
Name Status

MNI
(Juvenile/Adult)

Artiodactyla

H em iauchenia  
m acrocephala  
C am elops hesternus 
O vis canadensis  
O docoileus  
hem ionus

Stilt-legged llama 
Yesterday's camel 
Bighorn sheep

M ule deer

Extinct
Extinct
Extant

Extant

1/2
I/I
1/8

1/6

Perlssodactyia
Equus sp. 1 
Equus sp. 2

Horse
Horse

Extinct
Extinct

1/4

Xenarthra
N othro theriops
shastensis

Shasta ground 
sloth Extinct 2 /4

Carnivora
U rocyon
cinereoargen teus  
Vulpes m acrotus

Gray fox  
Kit fox

Extant
Extant

0/1
0 /4

Felidae
(Fam ily) Lynx rufus B obcat Extant I/O
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Vegetation Records

Plants can be categorized by either functional type (e.g., shrubs, herbaceous plants, 

grasses, etc.) or by photosynthetic mechanism. The C3  photosynthetic pathway is utilized 

by most plants, including trees, shrubs, herbaceous plants, and some cool-season bunch 

grasses (e.g., Amphipogon, Festucd). The Q  photosynthetic pathway is utilized by warm- 

season grasses (e.g., Spartina, Sorghum, Bouteloua; Watson and Dallwitz, 2005). The 

presence of C3  or Q  plants is discernible from isotopic analysis of organic matter, soil 

carbonate, and mammalian tooth enamel. Modern vegetation in the Las Vegas Valley 

consists primarily of Q  shrubs and C 3  grasses (Mehringer, 1967; Quade et al., 1987). 

Components of the modern Mojave Desert plant community that utilize the C4  

photosynthetic pathway include occasional warm-season (C4) grasses and Atriplex spp. 

(shadscale or saltbush), one of few C4  shrubs (Quade et al., 1987). Modern vegetation in 

the Las Vegas Valley is composed of approximately 93-95% C3  plants; this is 

corroborated by isotopic measurements of soil carbonate (Quade et al., 1987).

Temperature and moisture regimes in the Basin and Range are delimited by altitude. 

Extreme topographic relief in the Basin and Range results in high variability in plant 

communities on small spatial scales (Vasek and Barbour, 1977). Fluctuations in climatic 

conditions thus result in both altitudinal and latitudinal shifts in vegetation ranges. 

Modern vegetation in the Las Vegas Valley consists in part of taxa that exploit and 

colonize disturbed areas, so pre-disturbance analogs are necessary to evaluate modern 

plant species distributions based on climate variables alone. Reconstruction of plant 

species distribution during the different climatic conditions of the LGM and late glacial 

time is difficult using any single vegetation record or proxy. Multiple vegetation records
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are discussed below; consideration of all of these records provides a more detailed basis 

for evaluation of Pleistocene herbivore diet.

Conventionally preserved plant macrofossils are infrequently recovered from coarse

grained terrestrial sedimentary sequences. However, arid environments contain plant 

macrofossils with a unique mode of preservation. Rodents of the species Neotoma sp. 

(packrats) colonize rocky habitats, acquire plant material from their surroundings, and 

incorporate the material into middens or nests (Finley, 1958).

Material in the middens is desiccated and preserved, and radiocarbon dates may be 

obtained from fecal pellets within the middens (Wells and Jorgensen, 1964). Packrats 

only collect material from a distance of approximately 100 m from their nests. Middens 

thus provide a site-specific record of vegetation that may be precisely dated, although the 

geographic and temporal range of any single midden is limited in scope. However, some 

evidence suggests that midden contents may not accurately represent total floral diversity 

at a given site, and that packrats may exhibit selectivity when collecting material for 

middens (e.g.. Dial and Czaplewski, 1990).

Vegetation reconstructions using packrat middens demonstrate significant change in 

the composition of plant communities in the Basin and Range throughout the Pleistocene 

(Spaulding, 1983; Spaulding and Graumlich, 1986; van Devender and Spaulding, 1979). 

However, because packrats preferentially dwell in upland habitats, midden records are 

not directly applicable to reconstructions of valley floor vegetation in the Las Vegas 

Valley. Climate-induced range shifts were specific to individual plant species, so the 

overall species composition of plant communities fluctuated throughout the Pleistocene. 

The LGM and late glacial plant communities represented by macrofossils are
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fundamentally different from modern communities (van Devender and Spaulding, 1979). 

Midden analyses suggest a minimum downward vertical shift in plant communities of 

1065 m to 1200 m and indicate that a rapid transition to present-day desert scrub 

vegetation was underway by ~14 ka (Spaulding, 1985).

Preservation of pollen is generally poor in sediments deposited in arid environments. 

Some well-preserved Pleistocene palynological records for the Basin and Range exist in 

lacustrine sequences (Mensing, 2001), but palynological data are generally sparse in the 

Mojave Desert. The Tule Springs excavation yielded some pollen records from both 

alluvial and spring deposits, although poor preservation may result in a biased 

representation of Pleistocene vegetation communities (Mehringer, 1967). Pinus spp. 

pollen is overrepresented with respect to absolute abundance in pollen spectra due to the 

preferential long-distance transport of Pinus pollen (Solomon and Silkworth, 1986). The 

pine problem is potentially a confounding factor in determining absolute relative 

abundances of plant taxa from the Tule Springs pollen assemblage (Mehringer, 1967).

No single vegetation proxy supplies sufficient information for a complete 

reconstruction of Pleistocene plant communities. Because of the incomplete information 

provided by each vegetation proxy, 1  used packrat midden analyses and pollen data in 

conjunction with a stepwise regression model based on climate parameters to produce 

estimates of the percent abundance of Q  grasses and other vegetation (Appendix 1). On 

the basis of these analyses I concluded that during the LGM in southern Nevada, Q  grass 

abundance was approximately 4 to 13%, the abundance of non-grass Q  plants (e.g. 

Atriplex spp., Amaranthus) was approximately 5%, and total Q  biomass during the LGM 

ranged from 9 to 18%.
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Previous Study of the Gil crease Ranch Spring Mound

The Gilcrease Ranch spring mound (Cauldron 2; de Narvaez, 1995) is one of the 

fault-bounded springs located along the Gilcrease alignment on the Kyle Canyon fan 

(Haynes, 1967). Cauldron 2 (hereinafter referred to as “the spring mound”) is located at 

36.309°N/115.271°W, on the present site of the Gilcrease Nature Sanctuary, 8103 Racel 

Road, Las Vegas, Nevada. Active spring discharge is reported from historical times and 

ceased in approximately 1955 in response to urban development and groundwater 

extraction in the Las Vegas Valley. Fossil material was initially recovered from the site 

by the property owner, Mr. Bill Gilcrease, in 1985. From 1990 to 1995 the Fossil Club of 

Las Vegas excavated an area approximately 20 m in diameter to a depth of 6.5 m (de 

Narvaez, 1995).

The spring mound is located on a surface of the Kyle Canyon fan that is correlative 

with the Tule Springs Unit D (Quade, 1986). The sedimentology and stratigraphy of 

Cauldron 2 were described during the excavation (de Narvaez, 1995). Several black 

organic-rich mats are interbedded with spring deposits. Radiocarbon ages for the lower 

black mats are 12,727 to 12,178 cal yr BP and 11,801 to 10,963 cal yr BP (de Narvaez,

1995). A black mat from approximately the middle of the spring strata was dated to 9,615 

to 9,582 cal yr BP, and a mat near the top of the spring mound was dated to 1,183 to 939 

cal yr BP (de Narvaez, 1995). The placement of these dates implies that most deposition 

of sediments in the spring occurred during the latest Pleistocene and early Holocene.

An extensive collection of faunal material that consisted almost entirely of teeth from 

extinct large mammals was recovered from the spring mound (de Narvaez, 1995). 

Vigorous spring discharge resulted in a complex depositional pattern, precluding
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stratigraphie age correlation of fossil material (de Narvaez, 1995). The dental assemblage 

recovered from the site consists of Mammuthus columbi, Equus sp. (one large and one 

small morph), Camelops sp., Hemiauchenia sp.. Bison antiquus, and one small and one 

large unidentified carnivore. Seven partial Mammuthus tusks were also recovered, 

although preservation is extremely poor and this material is not well articulated (de 

Narvaez, 1995). Some skeletal material is present but has not been identified and is not 

demonstrably Pleistocene in age; it may instead be from modern fauna, since the spring 

was active into historic time (Haynes, 1967).

The unusual taphonomy of this site is likely a result of high pH in spring water from 

dissolved CaCO, (Paul Koch, 2006 personal comm.). Regional bedrock consists 

primarily of Paleozoic carbonates; aeolian dust is predominantly carbonate material, and 

groundwater also passes through carbonate aquifers, increasing sodium and calcium 

cation concentration and groundwater alkalinity. Deposition in aerobic environments with 

high pH is not conducive to preservation of organic material (e.g., bone collagen) 

(Nicholson, 1998). Tooth apatite is a more robust biogenic mineral and is thus preserved 

in the spring mound.

Radiocarbon ('"*€) Dating

Radiocarbon ('"‘C) is a naturally-occurring cosmogenic isotope of carbon formed by 

interaction of N 2  in the troposphere with incoming cosmic rays. '"‘N undergoes an n,p 

reaction to produce '"‘C, and '"‘C decays by P emission to '"’N with a half-life of 5730 yr 

(Bradley, 1999). Radiocarbon in organic matter from living organisms is equilibrated 

with the environment; when an organism dies, enzymatic equilibration ceases and net
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radiocarbon decay begins. Abundances of radiocarbon in Pleistocene materials are 

measurable using accelerator mass spectrometry (AMS) techniques and provide absolute 

ages up to approximately 50 ka (van der Plicht et al., 2004).

Organic materials are rich in carbon. The high concentration of carbon allows precise 

AMS measurements of trace amounts of '"‘C to produce a radiocarbon age. Soft animal 

tissues are rarely fossilized; radiocarbon ages are typically measured from the collagen- 

rich inner layer of fossil bones. The outer (cortical) bone is a denser, inorganic mineral 

matrix that is less organic rich, and is more difficult to date. Tooth apatite 

|Ca 5 (P 0 4 ,C0 3 ,0 H)3 (F,0 H)l is a phosphatic biogenic mineral with ~4% carbonate in the 

mineral lattice. This inherently low concentration of carbon in apatite leads to difficulty 

and the potential for significant error in measurement of trace amounts of '^C in tooth 

enamel.

Stable Isotope Fractionation

Carbon and oxygen both have multiple naturally occurring stable isotopes. Carbon 

has two stable isotopes, '^C and '^C. On Earth, '^C comprises 98.9% and '^C comprises 

1.1% of all stable carbon (Faure and Mensing, 2005). Oxygen has three stable isotopes: 

'*0, ' O, and ’*0. '*0 and '^O are the two most abundant isotopes: '*’0  accounts for 

99.76%, and '®0 comprises approximately 0.20% (Faure and Mensing, 2005). The 

relative abundances of each of these isotopic species are fixed on the Earth’s surface. 

Since light elements have a relatively high mass difference between isotopes, these 

elements are subject to isotopic mass fractionation by different geochemical processes, 

including evaporation, condensation, photosynthesis, and metabolism. Records of stable
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isotope fluctuations provide key insight into the roles of various processes in biological 

and geochemical systems in the geologic past. Stable isotope abundance is expressed in 

per mil notation, relative to a standard. For example,

\ /&
=

sample
~  —  1

standard

X  1000

/

Carbon isotopic composition and the oxygen isotopic composition of carbonate solids are 

both typically reported with respect to the Vienna Pee Dee Belemnite (VPDB).

Oxygen isotopic values in different materials are primarily influenced by the ô'^O 

value of various water sources. Evaporation is the primary mechanism for isotopic 

differentiation of individual water bodies, although several different effects are observed 

within the realm of evaporative differentiation. The oxygen isotopic value of the modern 

ocean is defined as ô'®0 = 0%o VSMOW (-29.94%o VPDB). Water evaporated from the 

ocean is isotopically lighter (has a lower ô ’®0) with respect to the ocean (Dansgaard, 

1964). Subsequent rainout is isotopically heavy with respect to the producing vapor 

(Dansgaard, 1964). In continental environments with significant topographic relief, the 

“orographic effect” results in isotopically heavier water precipitating on windward sides 

of mountain ranges (Dansgaard, 1964).

The oxygen isotopic composition of modern rainfall in southern Nevada varies from 

about -13 to -l%o (Friedman et al., 2002b). Geographic and temporal variation in ô'*^0 

values of precipitation occurs as along spatial and altitudinal gradients, as well as 

seasonally (Friedman et al., 1992; Friedman et al., 2002b; Smith et al., 1992; Smith et al., 

2002). Oxygen isotopic values of rainfall vary by about 2-3%o from summer to winter 

(Friedman et al., 2002b). Over local changes in altitude >450m, precipitation ô'^O values
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decrease 2-3%o/km (Friedman et al., 2002b). There is little isotopic variation from west to 

east across the Great Basin (Friedman et al., 2002a; Ingraham and Taylor, 1991), 

although a systematic isotopic depletion from south to north occurs regionally; this is 

interpreted as evidence of most precipitation for the region originating in the subtropical 

Pacific (Friedman et al., 2002a). Smith et al. (2002) conclude that the isotopic 

compositions of groundwater and precipitation in southern Nevada do not vary more than 

l-2%o for oxygen isotopes (~20%o, ôD values), and that recharge is rapid on geologic 

timescales. Modern surface water ô ’̂ O values are similar to values from precipitation and 

groundwater, and exhibit similar ranges of variability (Coplen and Kendall, 2000).

Mammalian tooth enamel ô'^O values are equilibrated with environmental signals and 

provide a record of the 0’®0 of ingested water in tooth enamel phosphate (Bryant and 

Froelich, 1995; Kohn, 1996). The ô'^O values of structural carbonate (CO 3 ) in apatite are 

offset from phosphate ô'^O values and also record a faithful signal of environmental ô ' * ^ 0  

(Bryant et al., 1996). Water sources include surface water, groundwater, and leaf water 

from ingested plants; for large mammals, the isotopic signal of leaf water is a negligible 

contributor to tooth enamel ô'®0 (Bryant and Froelich, 1995). Variation in ô'*^0 values in 

tooth enamel structural carbonate thus record environmentally-mediated changes in the 

oxygen isotopic value of water ingested by an animal.

In terrestrial environments, carbon is fractionated by plants during photosynthesis; 

different photosynthetic mechanisms result in different fractionations and resultant ô'^C 

values (O'Leary, 1981). Plants that use the C 3  pathway produce organic matter with ô'^C 

values ranging from -24%o to -31%o (Figure 2; O'Leary, 1988). C4  plants are more 

efficient at photosynthesis and thus fractionate carbon to a lesser extent; typical ô'^C
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values for Q  plants are about -13%o (Figure 2; O'Leary, 1988). Atmospheric ô'^C values 

have varied on glacial/interglacial timescales, producing an offset of +0.5%o for the LGM 

and up to +1.3%o for late glacial times (Marino et al., 1992). However, this offset was 

relatively constant over the span of mineralization time (years) of a single tooth, and is 

small compared to dietary variation. The isotopic composition of vegetation ingested by 

herbivores is recorded in trace carbonate in the tooth enamel with a metabolic offset of 

+13.5%o to +14%o (Bocherens et al., 1996).

Use of Stable Isotopes in Paleoecological Reconstruction

Carbon isotopic values preserved in fossil tooth enamel permit reconstruction of the 

relative proportion of Q  and C4  vegetation in the diets of individual herbivores (DeNiro 

and Epstein, 1978). The same isotopic data in faunal assemblages may be used to 

evaluate different paleoecological questions by interpreting two primary types of 

information: information about paleoenvironment and vegetation as recorded in tooth 

enamel (e.g., Connin et al., 1998; Higgins and MacFadden, 2004), and information about 

the diet and behavior of individual animals and clades (Koch, 1998).

Analyses of ô'^C values from individuals of several different taxa permit dietary 

reconstruction for animals that lived contemporaneously in the same ecosystem (Figure 

2 ); because of the potential range in values between individuals, at least five specimens 

of the same taxon are necessary to provide corroboration of ô'^C values (Clementz and 

Koch, 2001). Niche spaces occupied by different clades of animals in an ancient 

ecosystem can be discerned from clustering of ô'^C and ô'^O values in related individuals 

and taxa. Browsers are identified by lighter, more negative carbon isotopic values, which
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Figure 2. Stable isotope fractionation in C; and plants. Bimodai distribution of 
Ô 'C values is recorded in the organic matter of plants with different photosyn
thetic mechanisms. Herbivores consume Cs plants, C< plants, or a mixture of 
both, and ô‘̂ C values from plants are recorded in the tooth enamel with a 
constant offset o f +14%o.
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correspond with ingestion of Q  browse material. Further isotopic differentiation is 

possible between open, savanna-like habitats with Q  plants (~ -27%o) and closed-canopy 

forests (~ -31%o)(Ehleringer et al., 1987), and in corresponding herbivory and forage 

habits of animals in these habitats (Ambrose and DeNiro, 1986).

Clustering of ô'^C values is usually interpreted as a taxon-specific dietary preference 

for a certain proportion of grass and browse material. Intra-generic ô'^C variation has 

been interpreted in two ways: as an adaptive response to resource limitation, or as an 

indication of variation in the geographic range of unrelated individuals within a fossil 

assemblage. High variability in ô'^C values in mammoths, with respect to 

contemporaneous browsers, is interpreted as ecological generalization and C3 /C4  dietary 

mixing; this anomalous behavior is interpreted as a potential response to resource 

limitation (Koch et al., 1998). Hoppe (2004) found that demonstrable mammoth family 

groups from catastrophic death assemblages exhibited very low variability in ô'^C values 

between individuals. Deposits with time-averaged accumulations of fossils showed 

higher ô'^C value variability between individuals (Hoppe, 2004).

A variety of hypotheses about herbivore diet and resource partitioning in ancient 

ecosystems have been tested using stable isotopic analysis (Feranec and MacFadden, 

2000; Koch et al., 1998; MacFadden, 2000; MacFadden et al., 1996). Examination of 

Cenozoic herbivore assemblages documents a shift in dietary habits in response to the 

evolution of C4  grasses in the Late Miocene (MacFadden et al., 1996). Isotopic studies 

also demonstrate geographic variation in mammalian diet as both ecological adaptations 

to new habitats (Sanchez et al., 2004) and passive response to ecological change in the 

composition of plant communities (Fox and Koch, 2003). Another study of a Late
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Pleistocene assemblage in Florida demonstrated no inter- or intra-generic differences in 

diet and feeding strategy in any herbivore taxa in response to ecological pressure from the 

arrival of Bison, a grazer (Feranec and MacFadden, 2000).

Although most isotopic reconstructions of Pleistocene ecosystems in North America 

focused on the eastern and central United States, Connin et al. (1998) analyzed the ô'^C 

and ô'^O values of several Late Pleistocene herbivore teeth from the American southwest 

and used these values to reconstruct paleovegetation. Some specimens from the Tule 

Springs excavation in the Las Vegas Valley were included in this dataset and provide a 

basis for interpretation of the isotopic values of other Late Pleistocene fossils from this 

area (Table 4; Connin et al., 1998). A qualitative assessment of these data suggests a shift 

from a C^-rich plant community during Bj deposition to a mixed C3 /C 4  vegetation regime 

during E, deposition.

Intra-generic ô'^O values from fossil herbivores often exhibit a higher o than the level 

of variability recorded in modern ecosystems (e.g., Feranec and MacFadden, 2000). In 

modern, non-migrating herbivores, intra-generic variation in ô ’̂ O values does not exceed 

a standard deviation (o) of l.l%o; for grazers, o < 0.9%o, while for browsers o < 1.3%o 

(Bocherens et al., 1996). In fossil assemblages, ô'^O variability and o may be interpreted 

in two ways. The pattern of fossil isotopic data could represent temporal mixing of 

individuals from different time periods that ingested meteoric water with different 

isotopic values; fossil assemblages with poor age constraints could thus be time-averaged 

accumulations (Koch et al., 1998). Alternatively, this intra-generic isotopic variation 

could represent geographic mixing of individuals whose tooth enamel mineralized in 

different contemporaneous climates, with one or more individuals migrating over large
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distances (Koch et al., 1998). Intra-tooth variability in ô'^O values is demonstrated to 

either match the amplitude of local seasonal variation or to be damped due to a time lag 

from a hydrologie process with a longer residence time (Sharp and Cerling, 1998).

Table 4. ô'^C and Ô'^O data for large extinct herbivores from the Tule Springs 
assemblage (Connin et al., 1998).

Taxon Unit Age (ka) Ô'^C VPDB (%o) ô'^O V SM O W  (%o)
A n tilocapridae E, 14.0-11.5 -10.8 29.5
Tetram eryx  spp. E, 14.0-11.5 -10.9 24.2
Tetram eryx  spp. E, 14.0-11.5 -9.9 28.4
Equus spp. E, 14.0-11.5 -6.3 25.1
Equus spp. E, 14.0-11.5 -8.8 24.0
C am elops  spp. E, 14.0-11.5 -9.6 24.8
C am elops  spp. E, 14.0-11.5 -8.0 25.8
M am m uthus spp. E, 14.0-11.5 -8.3 20.6
M am m uthus spp. E, 14.0-11.5 9.0 20.6
M am m uthus spp. D 22.0-17.0 -6.4 22.8
B ison  spp. B. >40.0 -4.9 20.3
B ison  spp. B, >40.0 -3.4 25.0
M am m uthus spp. B . 2:40.0 -6.4 19.3
Equus spp. B, >40.0 -1.6 22.5

Recovery of Isotopic Time-Series from Tooth Enamel 

Isotopic analyses from teeth sampled serially along the primary growth axis produce 

an isotopic record of seasonality (Cerling and Sharp, 1996; Fricke and O'Neil, 1996). 

Mineralization time for tooth enamel varies between taxa, but generally takes 1 to 3 years 

for large ungulates and proboscideans (Kohn et al., 1998). As with bulk isotopic values 

from fossil mammals, serial sampling of fossil mammal teeth is used to address two 

primary types of questions: paleoenvironmental and paleobiological (Fricke and O'Neil,

1996). Paleoenvironmental reconstructions based on serially sampled teeth provide a 

subannual record of climate and vegetation change (Fricke et al., 1998; Fricke and
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O'Neil, 1996; Sharp and Cerling, 1998). Intra-tooth isotopic variation also provides 

insight into subannual cyclicity in the habits of individual animals and may be used to 

infer seasonal or cyclic behavior and other biological aspects of extinct animals (Feranec 

and MacFadden, 2000; Floppe, 2004; Koch et al., 1998). Several serial sampling studies 

have examined seasonal variability in fossil ungulate and proboscidean teeth (Feranec 

and MacFadden, 2000; Fricke et al., 1998; Koch et al., 1998; MacFadden, 2000). For 

example, Koch et al. (1998) identified ô'^O minima concurrent with tightly spaced 

growth structures and interpreted these minima to correspond with a winter season of 

slow growth and drinking water that was less evaporatively enriched in ’̂ O.

Koch et al. (1998) measured intratooth isotopic variation in a mammoth molar and 

showed a ô'^C range of only 0.5%o. They concluded that low within-individual variability 

made bulk samples particularly well-suited to faithfully tracking the average ô'^C value 

of an individual animal. However, Feranec and MacFadden (2000) measured intra-tooth 

variation and found that Ô’̂ C value ranges within individuals varied considerably more. 

Their results show ô'^C ranges of 1.7%o to 1.8 %o for Mammuthus and 0.9%o to 3.1 %o for 

Equus. The range in intratooth ô'^C values for Bison was less than 0.8%o for three 

specimens and 4.8%o for a fourth Bison specimen (Feranec and MacFadden, 2000).

Use of isotopic microsamples to infer paleoenvironmental or paleobiological 

conditions has raised important questions about the validity of isotopic time series 

recovered from a single tooth, and whether these time series faithfully record a true 

environmental signal (Hoppe et al., 2004a; Sharp and Cerling, 1998). Recent studies of 

intra-tooth isotopic variation indicate that the process of enamel mineralization 

(amelogenesis) can take up to two weeks, potentially damping the record of a primary
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environmental signal of isotopic variation (Passey and Cerling, 2002). Other studies 

suggest that total amelogenesis in modern equids may continue for 6  to 1 2  months after 

eruption (Hoppe et al., 2004b). Furthermore, individual enamel layers form at a 5° to 10° 

angle with the enamel-dentine junction (EDJ) and then rotate to become parallel to the 

growth axis (Figure 3b; Hoppe et al., 2004b); sampling methods that bore deeply into the 

outer enamel surface are then perpendicular to the mineralization front and may average 

isotopic signatures. Modeling of attenuation of isotopic signals in ever-growing teeth 

demonstrates a faithful record of intra-tooth isotopic variation, although the primary 

signal is damped (Passey and Cerling, 2002).

Sampling strategy is thus of crucial importance when addressing paleoenvironmental 

and paleobiological questions with serial enamel samples. Initial attempts to recover 

primary isotopic time series from teeth were sampled along the outer surface of the 

enamel at regular intervals (Feranec and MacFadden, 2000; Fricke and O'Neil, 1996; 

MacFadden, 2000). However, this method does not account for averaging of the isotopic 

signal along the outer enamel surface due to rotation of the mineralization front. Zazzo et 

al. (2005) demonstrated that serial sampling along the enamel-dentine junction produced 

the least-attenuated signal with respect to primary isotopic variability (Figure 3a).
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Figure 3. A) Cross-section o f a typical ungulate tooth (box is shown magnified in B). 
B) Cross-section of enamel-dentine junction, showing highest degree of mineraliza
tion where growth lines are most perpendicular to growth direction.
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CHAPTER 3

METHODS 

Radiocarbon Dating 

Six total M. columbi molars were selected for radiocarbon analysis (Table 5). 

Proboscideans grow six deciduous sets of molars over the course of their life spans; at 

any given time, one or two molars are present in each quadrant of the mouth. To avoid 

duplication between individuals, five of the teeth selected for analysis were right 

mandibular molars of M l to M3 designation (fourth through sixth of six deciduous 

molars)(Haynes, 1991). One selected tooth (GIL MT-78) was a left mandibular molar of 

dP3 to Ml designation; this range encompasses the second through fourth of the set of 

deciduous molars, and this individual is thus of a different age (Haynes, 1991). Dentine 

samples were mechanically removed from between enamel plates.

Table 5. Mammuthus columbi molars selected for radiocarbon analysis. GIL numbers are 
from original excavation of the Gilcrease spring mound. Sample numbers correspond to 

numbering for stable isotopic analyses performed in this study.

G IL # Sample # Size Quadrant
MT 65 M AM  1 M 1-M 2 R M andible
MT 72 M A M  2 M 1-M 2 R M andible

M T 8 1 0 3 M AM  3 M l-M 2 R Mandible
MT 73 M AM  4 M3 R Mandible
MT 78 M AM  5 dP 3-M l L M andible
M T 7 — M l R Mandible
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For each specimen, one dentine and two enamel samples were analyzed for 

radiocarbon dates. The dentine samples were prepared using a method developed for 

bone (dos Santos, 2006). Samples were treated with 0.5N HCl for 24 hours. Visual 

inspection indicated that no humic contaminants were present, so an alkali treatment step 

was omitted. Samples were hydrolyzed with 0 .0IN HCl at 70°C for 10 hours; the 

resulting gelatinized solution was then centrifuged through ultra-filters to remove excess 

water. The gelatinized solution was freeze-dried and centrifuged in an evacuated chamber 

for 8  hours. After cryogenic treatment and freeze-drying, no collagen remained for 

further analysis. This is consistent with the taphonomic properties of the Gilcrease site 

and the poor preservation of organic-rich skeletal components.

Enamel samples were leached with 0.01 N HCl at 80°C to remove secondary 

carbonates. Samples were then acidified with 85% H 3 PO4  in vacuum tubes and heated to 

produce CO^. The CO; from each sample was graphitized at 550°C using a hydrogen 

reduction method with Fe powder as a catalyst. Graphite samples were analyzed for 

radiocarbon on an NEC 0.5MV 1.5SDH-2 AMS particle accelerator. Initial enamel 

samples from each specimen consisted of approximately 15 mg of apatite and yielded 

very little CO; after acidification. Additional enamel samples from the same specimens 

were prepared with approximately 50 to 60 mg of initial apatite material. All sample 

preparation and analysis took place at the Keck Carbon Cycle AMS facility at the 

University of California, Irvine. Results are in radiocarbon years (RCyBP); calendar year 

age calibrations were performed using CALIB software version 5.0.1 (Stuiver and 

Reimer, 1993). Calendar year ages are calibrated for post-nuclear testing ages to the 

lntCal04 curve for terrestrial radiocarbon ages 26 ka to present (Reimer et al., 2004).
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Stable Isotope Analysis

Five molars each were selected from four genera: Mammuthus, Equus, Bison, and 

Camelops. Mammuthus molars were selected from the radiocarbon analyses described 

above; for the other three genera, specimens were selected on the basis of disparate size 

to decrease the potential of repeated sampling of the same individual. Each tooth was 

mechanically prepared for serial sampling along the growth axis at the enamel-dentine 

junction (EDJ). Dentine was removed with a Dremel tool and the enamel surface was 

cleaned with alcohol. M. columbi molars were sampled with a Sherline 5410 microdrill at 

5 mm interval along the EDJ. Other ungulate teeth were sampled with a Foredom rotary 

tool and a dental burr along the EDJ at sampling intervals that varied from 2 to 3 mm 

(Figure 4).

From tooth enamel carbonate-apatite |Cag(P0 4 ,C 0 3 ,0 H)3 (F,0 H) |, the carbonate 

component was analyzed for Ô‘̂ C and ô'®0 values. For each sample, 3-5 mg powdered 

enamel was treated with 30% HgO;overnight to remove organic material. Samples were 

rinsed with deionized water and treated with O.IN acetic acid to remove diagenetic 

carbonate, then rinsed with ethanol and air-dried. Apatite samples were then pre-roasted 

in a vacuum at 75°C for 30 minutes. For stable isotope analysis, 400-1000 pg of sample 

were reacted in a phosphoric acid bath at 90°C and analyzed on the directly coupled dual 

inlet of a GV Instruments Optima isotope ratio mass spectrometer at the University of 

California, Davis. Isotopic ratios are reported in VPDB values. One o error is +/- 0.04 per 

mil for ô'^C and +/-0.06 per mil for ô ’®0 .
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Figure 4. Photograph of sampling technique for ungulate teeth. Dentine 
was mechanically removed from interior of tooth; samples were collected 
at 2 to 3 mm intervals along the enamel-dentine junction.
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The mean differences between genera were compared using ANOVA. The Student- 

Newman-Keuls multiple comparisons test was used to compare means between different 

genera. The GraphPad InStat 3 Macintosh version was used to calculate the statistics.

Methods for Vegetation Reconstruction 

Vegetation records are available for the Pleistocene in the form of macroscopic fossils 

(packrat middens) and pollen data (from both sedimentary deposits and packrat middens). 

Packrats usually colonize rocky, upland habitats. Thus, packrat middens preferentially 

record vegetation from high-altitude, mountainous regions, and are less suitable for 

reconstructions of valley vegetation (Finley, 1990). Pollen data are available from 

sediments at the Tule Springs site (Mehringer, 1967) and from low-elevation packrat 

middens at other Mojave Desert localities (Koehler et al., 2005). However, identification 

of grass pollen at the genus level is difficult and rarely attempted, and pollen spectra 

usually only report percent abundance of the grass family (Poaceae or Gramineae). 

Determination of the percent abundance of Q  and Q  grasses is therefore not possible 

from palynological analyses alone.

In addition to some grasses, a few other plants utilize the C4  pathway, and may affect 

the isotopic value of vegetation as a whole. Pollen spectra record the presence of plants in 

the family Chenopodiaceae. In southwestern North America, this group is primarily 

represented by Atriplex spp. (shadscale), a shrub that uses the C4  pathway. Pollen records 

also indicate the presence of Amaranthus (Amaranthaceae), another C4  plant. Isotopic 

reconstructions of the absolute proportion of C3  and C4  plants for this region should also 

account for the presence of these non-grass C4  plants. Interpretations of herbivore diet
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and feeding strategy from isotopic data in this study thus incorporate the estimated 

abundances of Q  and Q  plants of several different functional types.

Plants that utilize the Crassulacean Acid Metabolism (CAM) have ô'^C values 

intermediate between C 3  and C4  plants; these include Yucca spp. and other succulent 

plants common in modern vegetation assemblages in southwestern North America. 

However, palynological records indicate that CAM plants were not present north of 36°N 

latitude in the Mojave Desert during the LGM (Koehler et al., 2005). Furthermore, CAM 

plants are not a demonstrable component of the diets of modern large herbivores; since 

there is little reason to assume that these plants were preferentially selected by 

Pleistocene herbivores, CAM plants are not discussed further here.

Several workers have presented predictive models for C4  abundance. These models 

were formulated by testing the dependence of C 4  abundance on several different climatic 

variables, statistically identifying the variables with the most influence, and then 

producing a model based on these variables. Most of these models were calculated for a 

much lower mean annual temperature (MAT) and much higher mean annual precipitation 

(MAP) than observed in modern-day southern Nevada. Predictive models must be used 

with some caution, although calculations from modern climate data do concur with 

vegetation results for some models.

To estimate the percentage of C4  plants present in the Las Vegas Valley during the 

Last Glacial Maximum, I used a predictive statistical model that calculated an estimate 

using independent paleoclimatic data. First, I present a model commonly used in 

association with isotopic studies of herbivore diet in wetter climates (Teeri and Stowe, 

1976). This method produces an estimate of C4  grasses for the modern climate in
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southern Nevada that is not consistent with modem vegetation assemblages, and is thus a 

poor estimator of C4  grass abundance in the Pleistocene. I then present a second method 

that incorporates different climate parameters, including precipitation, and provides an 

estimate of modern C4  grass abundance consistent with observed vegetation.

The estimate from the Parue!o and Lauenroth (19% ) model is then combined with 

palynological data from the Tule Springs assemblage to estimate the total percentage of 

C4  grass in the Las Vegas Valley during the LGM. In addition, 1 used the Tule Springs 

pollen spectra to calculate percent abundance of plants in the Chenopodiaceae family and 

of the genus Amaranthus, and used this value as an estimate for the abundance of non

grass C4  plants. The combined percentage of C4  grasses and C4  shrubs provide the total C4  

plant biomass for the Las Vegas Valley during the LGM.

Calculation of %C4  Grass from Reconstructed 

Climate Parameters

Teeri and Stowe (1976) used a multiple stepwise regression to determine the roles of 

various climatic variables in determining the relative abundance of C3  and C4  grasses. 

They found that the abundance of C4  grasses in modern ecosystems was dependent on 

three primary climatic variables, all functions of temperature, and produced the following 

equation:

%C4 = ( l .6 0 x T JM ) + (0.0086 xD /i) - (8.98 x log F/i) - 22.44

where Tj^ = normal July minimum temperature (°F)
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= mean annual degree days above 65°F 

F^ = mean annual freeze-free period (days)

Modern climate data for the Las Vegas Valley have values for these variables of = 

73.2°F, = 2968, and F  ̂= 302 days (WRCC, 2007); this produces an estimate of 97%

C4  grass abundance using the Teeri and Stowe (1976) model. Modern vegetation surveys 

do not support the value produced by this model (Quade et al., 1987).

Initial estimates of mean annual temperature (MAT) for the LGM range from 6.5°C to 

7.5°C, a 6  to T C  drop from present MAT values (Spaulding, 1985). These estimates were 

based on data compiled from several packrat midden analyses, using the modern ranges 

of plant taxa observed in the middens. More recent analysis of these data using new 

techniques yields MAT values of 7.9°C to 8.5°C for the LGM, a 4.9 to 5.5°C drop from 

the present MAT value (Thompson et al., 1999). I used both estimates of temperature 

change in my reconstruction of paleoclimatic variables for this exercise to produce a 

range of possible %C4  values (Table 6 ).

Table 6 . Calculated climate variables for the Las Vegas Valley during the LGM using 
estimates of MAT from various datasets, and predicted %C4 values.

Reference Time

Temp.
drop
°C

Temp, 
drop °F

T jm
(°F) %C4

W RCC, 2007 Modern 0 0 73.2 2903 302 97

Thom pson et al., 1999 LGM max 4 .9 8.82 64 .4 1443 238 72
Thom pson et al., 1999 LGM min 5.5 9.9 63.3 1291 231 69

Spaulding, 1985 LGM max 6 10.8 62 .4 1169 227 66
Spaulding, 1985 LGM min 7 12.6 60 .6 948 208 62

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Several studies have used the Teeri and Stowe (1976) model to estimate or calculate 

percent Q  grass abundance. However, this method accounts for only two functional types 

of vegetation; Q  and Q  grasses. In pure grasslands, this model is appropriate and 

applicable (Fox and Koch, 2003); in areas with mixed plant communities, other 

vegetation types may dominate that are not accounted for by this model. In addition, the 

model is based solely on temperature. In the Mojave Desert, where aridity is a substantial 

factor in determining vegetation communities, the predictive power of this model is poor.

Paruelo and Lauenroth (1996) developed a model for the abundance of several plant 

functional types in western North America that predicted percent productivity and 

absolute productivity. They identified five plant functional types: Q  grasses, Q  grasses, 

shrubs, herbaceous plants, and succulents. They then used a multiple stepwise regression 

to determine the relationship between the abundance of each plant functional type and 

several climatic variables. The climatic factors that were most influential were MAT, 

mean annual precipitation (MAP), and the proportion of MAP that occurred during the 

summer months (JJA/MAP). According to this model, Q  grass abundance is determined 

by the following equation:

%C4 = -0.9837 + (0.000594 x MAP) + (1.3528 x JJA/MAP) + (0.2710 x In(MAT)}

where MAP = Mean annual precipitation (mm)

JJA/MAP = Proportion of mean annual precipitation that occurs during 

June, July, and August 

MAT = Mean annual temperature (°C)
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Modem climate data for the Las Vegas Valley have values for these variables of MAT = 

19.2°C, MAP = 125 mm, and JJA/MAP = 0.16 (WRCC, 2007); this produces an estimate 

of 9% C4  grass abundance using the Paruelo and Lauenroth (1996) model. Modern 

vegetation surveys are in approximate agreement with this estimate (Quade et al., 1987). 

To assess a range of possible values for %C4  vegetation, I used a range of estimates of 

MAP, and of net decreases in MAT (Table 7; Spaulding, 1985; Thompson et al., 1999). 

Climate circulation models for the LGM are highly debated, and reconstructions of 

seasonality of precipitation for this interval are controversial (Connin et al., 1998). 1 

estimated the proportion of summer precipitation to be approximately equal to modern 

precipitation (Paruelo and Lauenroth, 1996).

Table 7. Calculated climate variables for the Las Vegas Valley during the LGM using 
estimates of MAT, MAP, and seasonality of precipitation. Predicted %C4 abundance is 

also reported, using the Paruelo and Lauenroth (1996) model.

Reference Interval
MAT
(°C)

MAP
(mm) JJA/MAP %C4

W RCC, 2007 Modern 19.2 125 0.15 9

Thom pson et al., 1999 LGM max T 14.3 266 0.15 10
Thom pson et al., 1999 LGM max T 14.3 321 0.15 13
T hom pson et al., 1999 1.GM min T 13.7 266 0.15 9
T hom pson et al., 1999 LGM min T 13.7 321 0.15 12

Spaulding, 1985 LGM max T 13.2 246 0.15 6
Spaulding, 1985 1.GM max T 13.2 265 0.15 8

Spaulding, 1985 LGM min T 12.2 246 0.15 4
Spaulding, 1985 LGM min T 12.2 265 0.15 5

This model for prediction of vegetation using several plant functional types is more 

inclusive of potential shrub, succulent, and forb components; I therefore use the range of
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% Q  abundance calculated here to estimate the abundance of Q  grasses in the Las Vegas 

Valley during the LGM.

Correlation with Other Vegetation Data

Mehringer (1967) identified pollen types from various stratigraphie levels within the 

Tule Springs excavation that were correlated with radiocarbon dates. Fossil pollen spectra 

were reported for Unit D (31,300 to 22,600 yr BP) and Unit E, (9920 yr BP and 

younger). Spring Mound 4A is correlated between Units D and E,, and also provides a 

pollen spectrum for the interval between the top of Unit D and the base of Unit E,. The 

high volume of Pinus pollen from preferential aerial transport (up to 80% in Unit D and 

60% in Spring Mound 4A) may result in an underrepresentation of other taxa (Solomon 

and Silkworth, 1986). The percent abundance of grass pollen ranged from 0 to 8 % in Unit 

D, had a value of ~10% in Spring Mound 4A, which correlates between Units D and E,, 

and had a value of 8 % at the base of Unit E. These values estimate the total abundance of 

C3  and C4  grasses combined, and may underestimate this abundance. Given the potential 

for underrepresentation of grass abundance from pollen data alone, and since 

palynologically-derived abundance values are approximately equal to C4  abundances 

predicted by the Paruelo and Lauenroth (1996) model, 1 used estimates from the model of 

4 to 13% C4  grass at the LGM.

Modern “Cheno-am” pollen rain (from the family Chenopodiaceae and the genus 

Amaranthus) is approximately 8 % on the Kyle Canyon fan; this value fluctuates in an 

altitudinal transect of the Spring Mountains and reaches a peak abundance of 20% at 

1500 m (Mehringer, 1967). Cheno-am pollen counts ranged from 1 to 6 % in Unit D, had
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a value of ~3% in Spring Mound 4A, and had a value of 5% at the base of Unit E,. 

Cheno-am abundances of 10% are reported from pollen spectra in LGM-age packrat 

middens for other nearby Mojave Desert localities (Koehler et al., 2005). As with all data 

recovered from pollen spectra, the abundances of non-Pinus taxa may be under-reported.

1 used a conservative estimate of 5% abundance of non-grass Q  taxa for the LGM to 

late glacial transition. With the inclusion of estimated abundance of C4  grasses of 4 to 

13%, estimates of total % Q  plant abundance for the LGM therefore range from 9 to 18%. 

These abundances of Q  plants of various functional types are used in conjunction with 

interpretations of feeding habits from dental morphology to interpret Pleistocene mammal 

diet from ô ’̂ C values.
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CHAPTER 4

RESULTS 

Radiocarbon Dates

The radiocarbon ages of mammoth molars from enamel samples are summarized in 

Table 8 . The lack of collagen in pre-treatment of dentine for radiocarbon analysis is 

consistent with the poor or nonexistent preservation of bones in the spring deposit. Two 

samples from each tooth were analyzed, except in cases of sample loss. Radiocarbon ages 

are reported in both '"‘C yr BP and as ranges in thousands of years ago (ka) (Reimer et al., 

2004).

Table 8 . Radiocarbon ages of mammoth molars from analysis of enamel samples. Both 
radiocarbon ages (BP) and calibrated ages (ka) are reported.

Sample UCIAMS # '^C age (BP) lntCal04 CAL range (ka)
M A M  1 28539 1.3960 ± 8 0 1 6 4 2 4 -  16852
M A M  1 28548 15270 ± 3 5 18621 -  18724
M AM  2 28540 1 5 8 8 0 ± 110 18951 -  19176
M A M  2 28549 17630 ± 4 5 20618  -  20 9 5 0
M AM  3 28542 14210 ± 8 0 16730 -  17182
M A M  3 28551 14975 ± 4 0 18113 -  18381
M A M  4 28538 13360 ± 7 0 15654 -  16046
M AM  5 28541 1 5 2 9 0 ± 110 18595 -  18774
M A M  5 28550 15015 ± 3 5 18141 -  18359

M T 7 28537 1 8 3 5 0 ± 160 21572  -  22 1 1 9
M T 7 28547 18200 ± 5 0 21 4 9 9  -  21885

Duplicate samples from the same tooth fail to yield consistent radiocarbon ages 

within one standard deviation; therefore, these data are suspect. Low carbon content in 

tooth enamel carbonate-apatite resulted in significantly lower precision in AMS dates.
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and these data demonstrate that high-resolution dating is difficult if not impossible using 

tooth enamel alone. However, the span of radiocarbon ages from 22.2 ka to 16.4 ka is 

consistent with the hypothesis that these fossils are a time-averaged accumulation, and 

provides a range of ages for context of further paleoenvironmental interpretations.

Mean Ô'^C and ô'^O Values 

Mean isotopic data from tooth enamel analyses are displayed in Table 9 and Figure 5. 

Values displayed are the calculated means of intra-tooth analyses for each individual 

animal, and are reported with respect to VPDB. The ô'^C and ô'^O values of individuals 

from each genus are displayed in Figures 6  through 9 with one o error bars for each 

individual. The average ô ‘̂ C value for Mammuthus is -8.45%o with a standard deviation 

of 0.54%o, and the range of 6 ^C values is -9.18%o to -8.00%o. The average ô'^C value for 

Equus is -8.14%o with a standard deviation of 0.48%o. The range of ô'^C values for Equus 

is-8.83%cto-7.42%o.

Table 9. Mean isotopic values for carbon and oxygen isotopes and percent Q  plants 
in the diet from tooth enamel samples, Gilcrease spring mound.

Las Vegas Valley, Nevada.

Taxon n
ô^C  VPDB (%o) 

Average S.D. Range
0 '%  VPDB (%o) 

Average S.D. Range

M am muthus 5 -844 0 .54
-9 .18  to 

-8 .00 -14 .42 0 .54
-15 .32  to 

-13 .96 1 2 - 2 3

Equus 5 -8 .16 0 .59
-8 .83  to 

-7 .42 -11 .07 0.61
-11.71 to 

-10.08 1 5 - 2 8

Bison 5 -8 J 2 1.70
-10 .22  to 

-5 .97 -13.21 1.56
-15 .42  to 

-11.13 3 - 4 1

Cam e lops 5 -6 .54 1.24
-8 .49  to 

-5 .23 -11.65 0.82
-12 .54  to 

-10 .67 1 8 - 4 8
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Carbon isotope values vary considerably more between individuals for the Bison and 

Camelops specimens analyzed (Figure 5). The average ô'^C value for Bison is -8.72%o 

with a standard deviation of 1.70%o, and the range of ô ’̂ C values for Bison is -10.22%o to 

-5.97%o. The average ô'^C value for Camelops is -6.53%o with a standard deviation of 

1.24%o, and the range of ô'^C values for Camelops is -8.49%o to -5.23%o.

Oxygen isotope values are also reported as the calculated means of all intra-tooth 

analyses for each individual animal; values are reported here with respect to VPDB 

(Table 9). The average ô'*^0 value for Mammuthus is -l4.42%o with a standard deviation 

of 0.54%o; values range from -15.32%o to -13.96%o. The average ô ’̂ O value for Equus is 

-11.07%o with a standard deviation of 0.61%o; values range from -1 1.17%o to -10.08%o. 

The average ô'^O value for Bison is -13.21%o with a standard deviation of 1.56%o; values 

range from -15.42%o to -11.13%o. The average ô'^O value for Camelops is -1 1.65%o with 

a standard deviation of 0.82%o; values range from -12.54%o to -10.67%o.

Statistical Analysis of Bulk Isotopic Data 

Statistical analysis of differences in ô'^C values between genera was performed using 

ANOVA; the Student-Newman-Keuls post-test was used to evaluate differences in ô'^C 

values between individual pairs of genera. Significant differences in ô'^C values are 

observed between genera (P<0.03). Paired comparisons between Mammuthus, Equus, and 

Bison show that there are no significant differences between any two of these taxa. 

Mammuthus, Equus, and Bison all exhibit average ô'^C values that indicate <20% 

proportion of C4  plants in the diet. Individual paired comparisons between Camelops and
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each of these three taxa show significant differences (P<0.05). The carbon isotopic values 

for Camelops indicate that this taxon had the highest proportion of Q  plants in its diet.

Intra-Tooth Variation in Isotopic Values 

Serial tooth enamel samples were collected from five individuals from each genus 

(Tables 10 and 11). Average values from each individual were treated as bulk samples 

and are reported in the Mean ô ’̂ C and ô'^O Values section above. The serial sample 

isotopic data display some intra-tooth cyclicity; this pattern is more pronounced for some 

genera than others (Figures 10 through 29).

Variation in carbon and oxygen isotopes in Mammuthus is displayed in Figures 10 

through 14. All intratooth ô ’̂ C variations in Mammuthus have similar means (Table 10). 

The range of ô'^C values for a single individual varies from 0.85%o to 2.58%o; the average 

range is 1.71%o. The average within-individual standard deviation is 0.49%o. For all 

Mammuthus specimens, ô'^C values show little correlation with values. MAM 4 

shows approximately two cycles of isotopic variation in carbon and oxygen (Figure 13). 

Specimens MAM I, MAM 2, and MAM 5 show two to three cycles of variation (Figures 

10, II , and 14). MAM 3 shows three to four cycles of variation (Figure 12).

Carbon and oxygen isotope variations for Equus are displayed in Figures 15 through 

19. Mean values of intratooth variations are similar between individual Equus specimens 

(Tables 10 and 11). Ranges of ô'^C values for individuals vary from I.27%o to 2.65%o, 

with an average range of I.95%o. The average within-individual standard deviation is 

0.55%o. Most Equus specimens show some inverse correlation between ô'^C and ô'^O 

values. Specimens EQS 2, EQS 4, and EQS 5 all show one to two cycles of variation
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(Figures 16, 18, and 19). EQS 3 shows approximately four complete cycles of isotopic 

variation (Figure 17). Intratooth isotopic data for EQS I follow no particular trend 

(Figure 15).

Intratooth measurements of carbon and oxygen isotope values for Bison are displayed 

in Figures 20 through 24. Mean values of intratooth ô ‘̂ C variation vary considerably 

between individuals, from -10.22%o to -5.97%o (Table 10). The range of ô ’̂ C values in a 

single individual varies from I.44%o to 2.24%o, with an average range of 1.80%o. The 

average intratooth standard deviation is 0.57%o. The total span of ô'^C values between 

individuals is much greater than the ô'^C range for any given individual. All Bison 

specimens show inverse variation between ô'^C and ô'^O values; r̂  values range from 

0.41 to 0.91 for four specimens (BIS 2, BIS 3, BIS 4, and BIS 5). BIS 1 displays two to 

three potential cycles in carbon and oxygen isotope variation (Figure 20). BIS 2, BIS 4, 

and BIS 5 all show one to two cycles (Figures 21,23, and 24). BIS 3 shows less than one 

full cycle of variation (Figure 22).

Variation in carbon and oxygen isotopic values in Camelops is displayed in Figures 

25 through 29. Mean values of intratooth ô'^C variation vary from -8.49%o to -5.23%o, 

although with the exception of CAM 5 (ô'^C„gan= -8.49%o), mean values for Camelops are 

> -7%o. Ranges of 6 ‘̂ C values for individuals vary from 2.35%o to 4.78%o, with an 

average range of 3.30%o. The average within-individual standard deviation is I.I2%o. 

Although the range of intratooth ô'^C values for any given individual is relatively high 

with respect to other taxa in this study, these ranges overlap within the span of mean 

values for each individual (Figure 9). Some Camelops specimens show approximate 

inverse variation between ô'^C and ô'^O values. CAM 1 and CAM 2 display greater than
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one cycle in oxygen and carbon isotope variation (Figures 25 and 26). CAM 4 displays 

one to two cycles (Figure 28); CAM 3 displays two complete cycles (Figure 27). CAM 5 

displays one complete cycle in ô ‘ * * 0  values, but no apparent cyclicity in ô'^C values 

(Figure 29).
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Table 10. Serial sample results for carbon isotope values in tooth enamel of Mammuthus,
Equus, Bison, and Camelops.

ô'"CVPDB(%o)

Averages of 
individual intratooth 

values
Specimen n Mean S.D. Max. Min. Range Mean S.D. Range

M AM  1 21 -8 .00 0 .74 -6.88 -9 .46 258
M AM  2 19 -8 .06 0.43 -7 .34 -8/93 159
M AM  3 21 -8 .09 0.58 -7 .20 -15 .29 1.90 -8.44 0 .49 1.71
M AM  4 22 -9 .18 0.21 -8 .77 -9 .62 0.85
M AM  5 17 -8.85 0.46 -7 .76 -9 .40 1.64
EQS 1 16 -7 .74 0.56 -6 .04 -8 .25 2.21
EQS 2 17 -8 .15 0.63 -7 .36 - 9 1 3 3 1.97
EQS 3 24 -8.83 0 .36 -8 .12 -9 .39 1.27 -8 .16  0.55 1.95
EQS 4 18 -7 .42 0 .70 -5 .84 -8 .49 2.65
EQS 5 15 -8 .64 0.52 -7J83 -9 .49 1.66
BIS 1 18 -8 .94 0.41 -7 .99 -9 .44 1.44
BIS 2 16 -9 .99 0.55 -9 .16 -10 .82 1.66
BIS 3 15 -8 .50 0 .72 -7.78 -10 .03 2 .24 -8 .72  0.57 1.80
BIS 4 15 -5 .97 0 .49 -5.21 -6 .79 1.57
BIS 5 16 -10 .22 0 .69 -9 .47 -11 .57 2.09

C AM  1 15 -6.48 1.16 -4 .92 -7 .9 4 3.01
C AM  2 13 -5.23 1.32 -345 -7.21 3.75
C AM  3 20 -6 .70 0.77 -5 .17 -7 .77 2.60 -6 .54  1.12 350
C AM  4 16 -5 .76 1.42 -3 .16 -7 .94 47%
C AM  5 18 -8 .49 0.95 -7 .20 -9 .55 2.35
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Table 11. Serial sample results for oxygen isotope values in tooth enamel of
Mammuthus, Equus, Bison, and Camelops

Ô '^O VPDB (%o)
Averages o f  individual 

infra to o t h  values
Specimen n Mean S.D. Max. Min. Range Mean S.D. Range

MAM  1 21 13.96 0.65 -11 .86 -15 .07 3.21
M AM  2 19 -14 .32 0 .92 -12 .66 -16 .09 3.44
M AM  3 21 -14 .44 0.41 -13 .68 -15 .29 1.61 -14 .42  0 .67 2.73
M AM  4 22 -15 .32 0 .60 -14.11 -16 .50 2 5 8
M AM  5 17 -14.08 0.73 - 1 2 5 9 -15 .60 3.01
EQS 1 16 -11.38 0.63 -10 .52 -12 .78 2.26
EQS 2 17 -11 .07 0.92 -8 .96 -1 2 .34 3 5 8
EQS 3 24 -10.08 0.65 -9 .02 -11 .32 2 5 9 -11 .07  0 .70 2.55
EQS 4 18 -11.71 0 .66 -10 .67 -12 .79 2.12
EQS 5 15 -11 .10 0 .66 -10 .17 -12 .87 2.71
BIS 1 18 -11.13 1.12 -9 .72 -13 .73 4.01
BIS 2 16 -12.68 2.13 -7 .89 -15.01 7 .12
BIS 3 15 -13 .70 0 .94 -11 .78 -14 .90 3.12 -13.21 1.30 4 .34
BIS 4 15 -15 .42 0.55 -14 .09 -16 .22 2.13
BIS 5 16 -13.11 1.76 -10 .00 -15 .33 5 5 3

CAM  1 15 -12 .54 1.23 -11 .27 -14 .62 3 5 5
CAM  2 13 -11.48 0 .77 -9 .46 -11 .98 2.52
CAM  3 20 -12 .44 1.58 -9 .96 -14 .68 4.72 -11 .65  1.09 3.45
CAM  4 16 -10 .67 0 .86 -9 .22 -11 .94 2.72
CAM  5 18 -11 .14 1.01 -9.01 -12 .94 3 5 5
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Figure 10. Intra-tooth variation in ô' C and ô O values, Mammuthus specimen MAM 1
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Figure 11. Intra-tooth variation in ô C and ô O values, Mammuthus specimen MAM 2
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Figure 13. Intra-tooth variation in ô ’̂ C and ô'^O values, Mammuthus specimen MAM 4.
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Figure 14. Intra-tooth variation in ô C and ô O values, Mammuthus specimen MAM 5.
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Figure 17. Intra-tooth variation in ô'^C and ô'^O values, Equus specimen EQS 3.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-7.0-5.0
r  = 0 .0 4 6

-6 . 0 -8 . 0

-7 .0
-9 .0

2
pp  - 8 . 0

I
U -'> ■0 
&

-1 0 . 0

-1 0 . 0  £

- 12.0
- 11.0

- 12.0 -13 .0

30 600 2 0 40 501 0

Distance from occlusal surface (mm) —  Ô ' ' C V P D B  

*  6 ' “0  V P D B

Figure 18. Intra-tooth variation in ô C and ô O values, Equus specimen EQS 4.
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Figure 19. Intra-tooth variation in ô C and ô O values, Equus specimen EQS 5.
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Figure 20. Intra-tooth variation in ô' C and ô ‘̂ 0 values. Bison specimen BIS 1.
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Figure 21. Intra-tooth variation in ô'^C and ô'^O values. Bison specimen BIS 2.
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Figure 22. Intra-tooth variation in ô C and ô O values. Bison specimen BIS 3.
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Figure 23. Intra-tooth variation in ô C and b O values. Bison specimen BIS 4.
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Figure 24. Intra-tooth variation in ô'^C and ô' O values. Bison specimen BIS 5.
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Figure 25. Intra-tooth variation in ô'^C and ô O values, Camelops specimen CAM
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Figure 26. Intra-tooth variation in ô'^C and ô ‘̂ 0 values, Camelops specimen CAM 2.
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Figure 27. Intra-tooth variation in ô C and ô O values, Camelops specimen CAM 3
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Figure 29. Intra-tooth variation in ô C and ô O values, Camelops specimen CAM 5
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CHAPTER 5

DISCUSSION 

Isotopic Reconstruction of Diet and Range 

The relative proportions of C 3  and C4  plants in the diets of each individual were 

calculated using isotopic end-member values for tooth enamel of pure C3  and pure C4  

feeders. The average ô'^C value for Mammuthus was -8.45%o, which suggests that it was 

primarily a C 3  feeder with an average proportion of 19% C4  plants (Figure 5). Similarly, 

the average ô^C  value for Equus was -8.14%o, which suggests that it was also primarily a 

C, feeder, with an average proportion of 21% C4  plants (Figure 5).

Both Bison and Camelops exhibit a broader range of ô'^C values between individuals 

than Mammuthus or Equus. The ô'^C values for Bison range from -10.22%o to -5.97%o, 

and the calculated proportion of C4  material in the diet is 16%, ranging from 3% to 41% 

(Table 9; Figure 5). Results from Camelops exhibit similar variability: ô^C  values range 

from -8.49%o to -5.23%o, and the calculated proportion of C4  plants in Camelops diet is 

36%, ranging from 18% to 48% (Table 9; Figure 5).

Of all taxa analyzed in this study, bison have the highest preference for grazing, and 

indiscriminately consume Q  and C4  grasses in the proportion in which they occur on the 

landscape (Hoppe et al., 2006). Evaluation of Bison ô'^C values, excluding the outlier 

BIS 4, indicate ingestion of 3 to 18% C4  material. Since Bison is an obligate grazer and a 

passive recorder of the relative C3 /C 4  grass abundance, the results from this study suggest
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an abundance of Q  grasses of 3 to 18% at the LGM in southern Nevada. This value is 

also consistent with estimated abundances of Q  grasses from other vegetation data.

The feeding habits of Bison from the Gilcrease spring mound vary considerably 

between individuals, as inferred from isotopic values (Figure 8 ). Average ô'^C values for 

this taxon generally indicate <20% C4  plants in the diet. The single individual with a 

greater proportion of C4  grasses in its diet (BIS 4; Figure 5) was possibly migrating to 

areas further to the south (e.g., Arizona) where a higher percentage of C4  grasses have 

been documented for the LGM (Connin et al., 1998; Liu et al., 1996). An alternative, 

more likely explanation lies in the intermittent activity of the Gilcrease spring through 

late glacial and Holocene times. A higher percentage of C4  grass has been documented in 

the area for later intervals (Connin et al., 1998; Mehringer, 1967; Spaulding, 1985); BIS 4 

could represent an individual from this later time period. This is also confirmed by 

isotopic data from late glacial herbivores from Unit E, of the Tule Springs assemblage 

(Connin et al., 1998).

The ô'^C values recorded in Camelops tooth enamel indicate that the average 

individual diet contained a higher proportion of C4  plant material than any of the other 

herbivores analyzed (Table 9; Figure 5). Conventional interpretations of camelids place 

them in a browsing or mixed-feeding niche, although they have hypsodont teeth 

(Dompierre and Churcher, 1996). Recent isotopic studies allow more detailed 

reconstruction of diet and suggest ecological generalization in intermediate feeding with 

a preference for browse (Feranec, 2003). Of all taxa analyzed in this study, Camelops has 

the highest preference for browsing, although ô ’̂ C values here indicate the greatest 

consumption of C4  plant material.
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Modem camels are highly adapted for survival in arid environments. Nutritional 

studies of modern camels demonstrate that they show a strong preference for salty plants 

(halophytes) (Farid, 1989; Wardeh, 2004; Wilson, 1989), and identify Atriplex spp. and 

other halophytic taxa among their most preferred browse plants (Farid, 1989; Wilson, 

1989). Atriplex, a Q  shrub, is a member of the Chenopodiaceae family, and is abundant 

in the modern Great Basin in several forms, including A. confertifolia (shadscale) and A. 

canescens (fourwing saltbush) (Mozingo, 1987). Atriplex spp. provides an important 

source of winter browse material for a variety of modern large mammals, including both 

livestock and range animals (Blaisdell and Holmgren, 1984; Cook and Harris, 1968; 

Tipton, 1994). Chenopod pollen is present in sedimentary records from this interval, 

although it is not abundant (Mehringer, 1967). However, other vegetation records from 

the Mojave Desert indicate a high percentage of chenopods (Koehler et al., 2005). 

Because of the browsing feeding habit demonstrated for both modern and fossil camelids 

and the preference of modern Old World camels for the salty browse plant Atriplex, 1 

interpret that the high ô'^C values in Camelops teeth record preferential browsing on the 

C4  shrub Atriplex.

The ô'^C values for each of two grazers, Mammuthus and Equus, are approximately 

consistent with reconstructed abundances of C4  vegetation on the landscape during the 

LGM to late glacial transition. The ô^C  values of Mammuthus and Equus are slightly 

higher than those of Bison from this study, indicating a slightly higher percentage of C4  

plants ingested. Some evidence has suggested a mixed-feeding habit for Mammuthus and 

Equus, in contrast to traditional interpretations of pure grazing (Koch et al., 1998). 1 

interpret that the diets of Mammuthus and Equus were composed primarily of C3  grasses,
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with a preference for a small percentage of browse, composed of the Q  shrub Atriplex. 

This is consistent both with interpretations for Camelops and with newer evidence from 

other studies suggesting facultative grazing in these taxa.

Oxygen isotopic variability between individuals can be used to evaluate whether 

individual fossils accumulated over a short or long time span. In modern large herbivores 

in Africa, the average within-species standard deviation of ô'^O is ±1.3%o for browsers, 

±0.9%o for pure grazers, and ±l.l%o for mixed feeders (Bocherens et al., 1996). Koch et 

al. (1998) concluded that within-species variability exceeding l.l% oto 1.3%o should be 

considered significant, and interpreted as an assemblage composed of individuals from 

different geographic or temporal populations. The within-clade standard deviations of 

ô ’̂ O in Mammuthus (0.54%o), Equus (0.61%o), and Camelops (0.82%o) do not approach 

this critical limit. The ô'^O standard deviation in Bison is 1.56%o, which indicates that in 

this assemblage, individual animals most likely came from different populations.

Low intra-taxon ranges of ô'^O values for both Mammuthus and Equus suggest that 

these individuals did not migrate considerable distances over the time interval of tooth 

growth. It is possible that these individuals represent an accumulation over a long time 

span. However, coincident low variability in ô'^C values for both taxa suggests either an 

accumulation of individuals over a short time span or no change in diet concurrent with 

the increase in C4  plants during the transition to late glacial flora. A broader range of ô'^O 

values in Bison suggests a broader geographic range for individuals, or that Bison 

accumulated in the spring mound over a longer time span than Mammuthus or Equus. A 

wide range of ô'^O values for Camelops suggests a wider range that could reflect either
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geographic or altitudinal variation. The interpretation of preferential feeding on Atriplex 

may have led Camelops to range farther up slopes in search of forage.

Isotopic Records of Seasonal Variations

Intra-tooth variation in ô'^C values for Mammuthus, Equus, and Bison all exhibit 

ranges similar to previously documented ranges in these Pleistocene taxa in other 

locations. The low intra-tooth variability for each individual of these taxa suggests less 

seasonal variation in diet, and little seasonal partitioning of resources discernible from 

isotopic analysis. Instead, individuals consumed grass in the naturally occurring C3 /C 4  

proportion. Mammuthus and Equus may have consumed a small amount of C4  browse, as 

discussed above; this preference for a small amount of browse does not vary notably 

between individuals. The ranges of intra-tooth variation in Camelops are consistently 

higher, suggesting a more seasonally varied diet. A browsing habit with a high proportion 

of seasonally available halophytic C4  species would produce an isotopic pattern with 

higher seasonal variability in ô ’̂ C values.

The high range of ô ’*̂ 0 values in modern seasonal precipitation (Friedman et al., 

2 0 0 2 b) makes distinction of secular or seasonal trends in '^O difficult for any single 

individual. In general, ô ’̂ O values of precipitation are higher in the summer because of 

'^O enrichment through evaporation (Dansgaard, 1964). In the Basin and Range, summer 

ô ' ® 0  values are additionally higher because the dominant source of summer precipitation, 

the summer monsoon, originates in the '®0-enriched Gulf of California (Friedman et al., 

2002a). Over seasonal timescales, ô'^C and ô'^O values should covary: an increase in 

warm-season grasses should correspond to an increase in temperature. In the taxa
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analyzed in this study that do show demonstrable correlation, ô ’̂ C values vary inversely 

with ô ’*̂ 0 values, which is contrary to the expected pattern. Atriplex is a preferred winter 

browse plant for modern rangeland herbivores (Monzigo, 1987; Tipton, 1994) and 

livestock (Blaisdell and Holmgren, 1984; Cook and Harris, 1968). Increased winter 

consumption of nondeciduous browse such as Atriplex may have produced the inverse 

relationship between ô'^C and ô'*0 exhibited by Mammuthus, Equus, Bison, and 

Camelops. The amplitude and pattern of seasonality is strongest in Camelops, which 1 

interpret consumed the highest proportion of Atriplex.

Implications for Interpretation of Isotopic Data

This study underscores the importance of correlating isotopic data with independent 

records of paleovegetation. Isotopic values from tooth enamel have been used to 

reconstruct changes in vegetation through time. Studies of this type often use ô^C values 

from grazers to approximate the percent C^ grass on the landscape, and assume passive 

recording of the naturally-occurring abundance of C, and C  ̂grasses. These results 

demonstrate that isotopic values indicative of C4  plants may not always correlate to the 

grass functional type, depending on the feeding habits of the animal. Reconstructions of 

vegetation in the Mojave Desert and other arid regions should approach interpretation of 

tooth enamel isotopic values with caution, and consider both the abundance of drought- 

tolerant C4  shrubs and the feeding habits of the animal.

High intra-tooth variability is also documented here for the browser Camelops. While 

this provides high-resolution paleobiological information, it calls into question the use of 

bulk tooth enamel samples, rather than a mean of values mineralized over the course of
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one or several years. Interpretation of vegetation regimes from bulk isotopic sampling 

alone should consider potential intra-tooth variability as a significant source of error or 

bias. Intratooth samples provide high-resolution data of subannual variation in vegetation 

and potentially in climate; mean values calculated from intratooth samples provide a 

more accurate representation of the vegetation consumed by an individual.
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CHAPTER 6  

SUMMARY

This study uses stable isotopic methods to reconstruct the paleoecology and resource 

partitioning of megafauna in southern Nevada at the LGM and during the LGM-late 

glacial transition. Radiocarbon data are suspect, but the dates obtained confirm 

stratigraphie placement of the spring mound fossils in the LGM and late glacial intervals. 

These dates corroborate the hypothesis that these fossils accumulated over several 

thousand years during the LGM and late glacial time. High variability in ô'^O values 

further suggests that individual animals preserved at the site lived during different time 

intervals.

Resource partitioning between Late Pleistocene herbivores is demonstrated here 

between grazer taxa and one browsing taxon. Potential resource partitioning between 

obligate grazers (Bison) and facultative grazers (Equus and possibly Mammuthus) is 

demonstrated isotopically through small amounts of seasonal ô'^C variation in Equus 

coupled with more positive mean ô'^C values than the naturally-occurring proportion of 

C3  and C4  grasses would predict. Results indicate that Camelops ingested the highest 

proportion of C 4  plants, interpreted as a preference for browsing on the C4  shrub Atriplex. 

Vegetation records indicate the presence of Atriplex', studies of modern camels indicate a 

strong preference for this plant, here discernible in fossil taxa as well.
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The results of this study highlight the importance of detailed knowledge of the diets 

and feeding preferences of modern herbivores in reconstructions of the paleodiet of 

extinct animals. Isotopic values of herbivore tooth enamel are traditionally interpreted 

with respect to end-member plant functional types. Here, the Q  isotopic signal may come 

from multiple plant functional types; the dietary preferences of each animal provide a 

basis for interpretation of isotopic data from herbivore tooth enamel. The selective 

feeding habits of some animals, such as the preferential grazer Bison, permit the 

naturally-occurring abundance of Q  grasses to be passively recorded in Bison teeth. This 

provides a basis for evaluation of enrichment of Q  plants in the diets of other herbivores, 

which may be interpreted as an indication of feeding on non-grass Q  plants.

Furthermore, selective or preferential herbivory on specific plants may enhance the 

isotopic signal of diet preserved in mammalian tooth enamel, depending on the feeding 

habits of the animal. This may affect interpretations of paleovegetation using herbivore 

tooth enamel alone.

The identification of the isotopic signature of Atriplex, in conjunction with its 

association with arid, alkaline growing conditions, combine into an isotopically distinct 

paleoenvironmental indicator with many potential applications. In arid environments too 

dry and too cold to support Q  grasses, the presence of Atriplex may be discerned through 

isotopic analyses; in areas with a low proportion of Q  grasses, such as southern Nevada 

during the LGM, careful use of isotopic analysis in conjunction with herbivore feeding 

habits may be used to demonstrate the presence of Atriplex and associated alkali desert 

scrub vegetation. Several avenues of future research are possible using this proxy: in 

paleobiological dietary reconstructions, vegetation reconstructions using tooth enamel
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isotopic values, and as potential paleoenvironmental indicators of soil chemistry, aridity, 

and other variables.
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APPENDIX 1

STABLE ISOTOPE DATA

Sample

Dist. from 
occlusal 

surface (mm)

Ô'"C
VPDB

(%o)

ô '"o
VPDB

(%,)

ô '»o
VSMOW

(%o)
MAM I-01 0 - 8  92 - 1 1 . 8 6 18.64
MAM 1-02 5 -7.97 -14.45 15.97
MAM 1-03 1 0 -8.17 -14.59 15.82
MAM 1-04 15 -7.41 -13.92 16.52
MAM 1-05 2 0 -7.44 -14.40 16.02
MAM 1-06 25 -733 -14.44 15.98
MAM 1-07 30 -7.02 -13.88 16.56
MAM 1-08 35 -7.53 -14.22 16.21
MAM 1-09 40 -7.11 -13.91 16.53
MAM 1-10 45 -7.57 -14.52 15.89
MAM 1-11 50 -7.50 -13.78 16.66
MAM 1-12 55 -7.69 -13.47 16.98
MAM 1-13 65 - 6  8 8 -13.86 16.58
MAM 1-14 70 -8.08 -13.36 17.09
MAM 1-15 75 -8 3 9 -13.81 16.63
MAM 1-16 80 -14.02 16.41
MAM 1-17 85 -8.70 -13.37 17.08
MAM 1-18 90 -8.55 -15.07 15.33
MAM 1-19 95 -9.46 -13.62 16.82
MAM 1-20 1 0 0 -8.95 -14.47 15.95
MAM 1-21 105 -8.49 -14.20 16.23
MAM 2-01 5 -7.92 -15.05 15.35
MAM 2-02 1 0 - 8 . 1 0 -16.09 14.27
MAM 2-03 15 -8.49 -15.14 15.25
MAM 2-04 2 0 -7.98 -14.50 15.91
MAM 2-05 25 -7.40 -14.69 15.72
MAM 2-06 30 -7.65 -15.29 15.10
MAM 2-07 35 -8.51 -15.24 15.15
MAM 2-08 40 -833 -14.14 16.28
MAM 2-09 45 - 8  39 -14.92 15.49
MAM 2-10 50 - 8  93 -14.80 15.61
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Sample

Dist. from 
occlusal 

surface (mm)

Ô'^C
VPDB

(%o)

ô'«o
VPDB

(%o)

ô'=o
VSMOW

(%o)
MAM 2-11 55 -8.41 -14.07 16.35
MAM 2-12 60 -7.84 -14.26 16.16
MAM 2-13 65 -7.93 -13.19 17.26
MAM 2-14 70 -7.53 -13.92 16.51
MAM 2-15 75 -7.91 -13.07 17.38
MAM 2-16 80 -8.13 -12.98 17.48
MAM 2-17 85 -7.91 -13.45 16.99
MAM 2-18 90 - 8 IB - 1 2 . 6 6 17.81
MAM 2-19 95 -7.34 -14.60 15.81
MAM 3-01 5 -9.09 -14.01 16.42
MAM 3-02 1 0 -9.05 -14.83 15.57
MAM 3-03 15 -8.55 -14.28 16.14
MAM 3-04 2 0 -9.03 -13.68 16.76
MAM 3-05 25 -8.52 -14.51 15.90
MAM 3-06 30 -8.47 -15.29 15.10
MAM 3-07 35 -8.06 -14.44 15.98
MAM 3-08 40 -7.98 -15.02 15.38
MAM 3-09 45 -8.51 -14.74 15.67
MAM 3-10 50 -8.30 -14.14 16.28
MAM 3-11 55 -7.70 -15.17 15.22
MAM 3-12 60 -7.38 -14.35 16.06
MAM 3-13 65 -7.20 -14.50 15.92
MAM 3-14 70 -7.42 -14.45 15.96
MAM 3-15 75 -8.08 -14.52 15.90
MAM 3-16 80 -7.86 -14.20 16.22
MAM 3-17 85 -7.59 -14.16 16.26
MAM 3-18 90 -8.13 -14.11 16.31
MAM 3-19 95 -7.20 -14.53 15.88
MAM 3-20 1 0 0 -7.87 -14.52 15.89
MAM 3-21 105 -7.86 -13.81 16.63
MAM 4-01 1 0 -9.62 -15.00 15.40
MAM 4-02 15 -9.07 -14.76 15.64
MAM 4-03 2 0 -9.10 -15.82 14.55
MAM 4-04 25 -9.27 -16.03 14.33
MAM 4-05 30 -9.42 -15.28 15.11
MAM 4-06 35 -9.44 -15.27 15.11
MAM 4-07 40 4&38 -15.82 14.55
MAM 4-08 45 -9.09 -14.80 15.60
MAM 4-09 50 - 8 . 8 6 -14.30 16.11
MAM 4-10 55 -8.77 -16.50 13.85
MAM 4-11 60 -&26 -15.89 14.48
MAM 4-12 65 -9.28 -14.91 15.49
MAM 4-13 70 -9.07 -14.98 15.42
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Sample

Dist. from 
occlusal 

surface (mm)

Ô'^C
VPDB

(%o)

ô'«o
VPDB

(%o)

ô '«o
VSMOW

(% )
MAM 4-14 75 -9 36 -14.11 16.31
MAM 4-15 80 -9.02 -15.25 15.14
MAM 4-16 85 -9.40 -15.48 14.90
MAM 4-17 90 -8.94 -14.76 15.65
MAM 4-18 95 -9 J 2 -16.12 14.24
MAM 4-19 1 0 0 -9.06 -15.09 15.30
MAM 4-20 105 -9.16 -15.57 14.81
MAM 4-21 1 1 0 -8.94 -15.54 14.84
MAM 4-22 115 -9.15 -15.82 14.55
MAM 5-01 5 -9.10 -13.68 16.75
MAM 5-02 1 0 -9.27 -13.34 17.11
MAM 5-03 15 -8.77 -14.11 16.31
MAM 5-04 2 0 -8 ^ 9 -13.43 17.01
MAM 5-05 25 -9.16 -12.59 17.88
MAM 5-06 30 -8.94 -14.57 15.84
MAM 5-07 35 -7.76 -13.94 16.49
MAM 5-08 40 -8.70 -13.78 16.66
MAM 5-09 45 -9.14 -13.40 17.05
MAM 5-10 50 -9.13 -13.70 16.73
MAM 5-11 55 -8.53 -14.53 15.88
MAM 5-12 60 -9.21 -14.22 16.20
MAM 5-13 65 -835 -14.54 15.88
MAM 5-14 70 -893 -15.20 15.19
MAM 5-15 75 -7.95 -14.65 15.77
MAM 5-16 80 -9.16 -15.60 14.78
MAM 5-17 85 -9.40 -14.01 16.42
EQS 1-01 3 -7.75 -12.78 17.69
EQS 1-02 6 -7.96 - 1 2 . 2 2 18.26
EQS 1-03 9 -8.05 -11.83 18.67
EQS 1-04 1 2 -7.78 11.90 18.60
EQS 1-05 15 -8.25 -11.63 18.87
EQS 1-06 18 -8.07 -11.44 19.07
EQS 1-07 2 1 -8.07 - 1 1 . 1 1 19.41
EQS 1-08 24 -8.03 -10.81 19.72
EQS 1-09 27 -7.95 -10.96 19.56
EQS 1-10 30 -7.84 - 1 0 . 8 8 19.65
EQS 1-11 33 -7.80 -10.81 19.72
EQS 1-12 36 -7.93 -10.92 19.60
EQS 1-13 39 -6 . 8 6 -10.78 19.75
EQS 1-14 42 -7.34 -11.80 18.70
EQS 1-15 45 -8.08 -10.52 2 0 . 0 2

EQS 1-16 48 -6.04 -11.70 18.81
EQS 2-01 3 -8.49 -11.04 19.48
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Sample

Dist. from 
occlusal 

surface (mm)

0"C
VPDB

(% )

0 %
VPDB

(%o)

ô '«o
VSMOW

(%o)
EQS 2-02 6 -8.31 -11.31 19.20
EQS 2-03 9 -8H3 -11.59 18.92
EQS 2-04 1 2 -7.72 -11.36 19.15
EQS 2-05 15 -7.54 -11.51 18.99
EQS 2-06 18 -T38 -11.80 18.70
EQS 2-07 2 1 -7.36 -11.79 18.71
EQS 2-08 24 -7.75 -11.49 19.02
EQS 2-09 27 -7.84 -11.71 18.79
EQS 2-10 30 -8.43 -11.35 19.16
EQS 2-11 33 -8.88 &99 20.57
EQS 2-12 36 -933 -9.47 2 1 . 1 0

EQS 2-13 39 -932 -8^6 21.63
EQS 2-14 42 -838 - 1 0 . 2 1 20.34
EQS 2-15 45 -7.53 -11.77 18.73
EQS 2-16 48 -7.65 -12.34 18.14
EQS 2-17 51 -8.65 -10.50 20.04
EQS 3-01 3 -838 -10.31 20.24
EQS 3-02 6 -8.52 -10.58 19.96
EQS 3-03 9 -9.19 -10.17 20.38
EQS 3-04 1 2 -939 -9.90 2 0 . 6 6

EQS 3-05 15 -936 -9.94 20.62
EQS 3-06 18 -933 -10.09 20.46
EQS 3-07 2 1 -9.18 -9.95 20.60
EQS 3-08 24 -9.04 -10.26 20.29
EQS 3-09 27 -8 96 -9.96 20.59
EQS 3-10 30 -9.20 -9.57 2 1 . 0 0

EQS 3-11 33 -9.19 -9.26 21.31
EQS 3-12 36 -9.10 -9.02 21.56
EQS 3-13 39 -8.80 -9.49 21.08
EQS 3-14 42 -833 -9.57 2 1 . 0 0

EQS 3-15 45 -8.50 -9.24 21.34
EQS 3-16 48 -9.03 -10.06 20.49
EQS 3-17 51 -8.64 -10.67 19.86
EQS 3-18 54 -8.56 -11.32 19.20
EQS 3-19 57 -8.44 -11.31 19.20
EQS 3-20 60 -8.64 -11.14 19.38
EQS 3-21 63 -8.43 -10.19 20.35
EQS 3-22 6 6 - 8 . 1 2 -10.70 19.83
EQS 3-23 69 -8.81 -10.16 20.39
EQS 3-24 72 -8.84 -9.14 21.44
EQS 4-01 3 -7.44 -11.99 18.50
EQS 4-02 6 -7.19 -12.33 18.15
EQS 4-03 9 -7.11 -12.52 17.96
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Sample

Dist. from 
occlusal 

surface (mm)

ô^C
VPDB

(%c)

0 " 0

VPDB
(% )

ô '»o
VSMOW

(%c)
EQS 4-04 1 2 -7.23 -12.15 18.34
EQS 4-05 15 -7.38 -12.04 18.45
EQS 4-06 18 -7.62 -11.64 18.86
EQS 4-07 2 1 - 8 . 0 0 -11.72 18.78
EQS 4-08 24 -8.40 -11.27 19.25
EQS 4-09 27 - 8 . 0 1 -11.46 19.05
EQS 4-10 30 -8.49 -11.04 19.48
EQS 4-11 33 - 8 . 1 2 -11.19 19.33
EQS 4-12 36 -733 -11.08 19.44
EQS 4-13 39 -6.28 -10.83 19.70
EQS 4-14 42 -5.84 -11.05 19.47
EQS 4-15 45 -6.87 -12.65 19.62
EQS 4-16 48 -6.92 -12.79 17.68
EQS 4-17 51 -738 -12.29 18.19
EQS 4-18 54 - 8 . 0 1 -10.67 19.86
EQS 5-01 2 -7.84 -11.19 19.33
EQS 5-02 4.5 -8.04 -11.49 19.02
EQS 5-03 6.5 8 3 3 -11.31 19.20
EQS 5-04 8.5 -8.59 -11.24 19.28
EQS 5-05 1 0 -8.71 -10.64 19.89
EQS 5-06 1 2 -8.91 -10.70 19.84
EQS 5-07 14 -8.97 -10.55 19.99
EQS 5-08 16 -9.25 -10.17 2038
EQS 5-09 18 -9.49 -10.85 19.68
EQS 5-10 2 0 -9.43 -10.79 19.74
EQS 5-11 2 2 -8.59 - 1 1 . 1 0 19.42
EQS 5-12 24.5 -8.59 -11.71 18.79
EQS 5-13 26.5 - 8 . 6 6 -12.87 17.59
EQS 5-14 29 -8.50 -11.48 19.03
EQS 5-15 31 -7.83 -10.41 20.14
BIS 1-01 3 -8.78 -9.95 20.60
BIS 1-02 6 -9.16 -10.45 20.09
BIS 1-03 9 -9.14 -13.19 17.27
BIS 1-04 1 2 -8.78 -12.84 17.63
BIS 1-05 15 -9.02 -11.38 19.13
BIS 1-06 18 -9.44 -10.07 20.48
BIS 1-07 2 1 -9.20 -11.13 19.40
BIS 1-08 24 -8.92 -10.58 19.95
BIS 1-09 27 -9.42 -13.73 16.70
BIS 1-10 30 -9.16 -10.59 19.95
BIS 1-11 33 -9.02 -10.72 19.81
BIS 1-12 36 -9.13 -10.87 19.66
BIS 1-13 39 -9.30 -9.72 20.84
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Sample

Dist. from 
occlusal 

surface (mm)

Ô'̂ C
VPDB

(%,)

ô'*o
VPDB

(%o)

ô'"o
VSMOW

(% )
BIS 1-14 42 -9.11 -10.26 20.28
BIS 1-15 45 -&95 -11.62 18.88
BIS 1-16 48 -8.18 -11.54 18.97
BIS 1-17 51 -&28 -11.06 19.46
BIS 1-18 54 -7.99 -10.59 19.94
BIS 2-01 0 -10.82 -8.89 21.70
BIS 2-02 2.5 -9.99 -7.89 22.73
BIS 2-03 5 -10.82 -10.27 20.28
BIS 2-04 7.5 -10.75 -12.05 18.44
BIS 2-05 1 0 -10.55 -11.45 19.06
BIS 2-06 12.5 -10.38 -12.85 17.62
BIS 2-07 15 - 1 0 . 1 2 -13.15 17.31
BIS 2-08 17.5 -10.15 -13.81 16.63
BIS 2-09 2 0 -9.83 -13.27 17.19
BIS 2-10 22.5 -9.67 -14.33 16.09
BIS 2-11 25 -9.17 -14.11 16.32
BIS 2-12 27.5 -968 -15.01 15.39
BIS 2-13 30 -9.16 -14.59 15.82
BIS 2-14 32.5 -9j# -14.80 15.61
BIS 2-15 35 -9.60 -14.30 16.12
BIS 2-16 37.5 -9.57 -12.16 18.33
BIS 3-01 1 -10.03 -11.78 18.72
BIS 3-02 3 -9.60 -12.17 18.32
BIS 3-03 5 -9.43 -13.06 17.40
BIS 3-04 7 -9.12 - 1 2 . 6 8 17.79
BIS 3-05 9 -8.79 -13.29 17.17
BIS 3-06 1 1 -8.57 -13.63 16.82
BIS 3-07 13 -8J6 -13.80 16.64
BIS 3-08 15 -7.96 -14.16 16.27
BIS 3-09 17 -7.78 -14.15 16.28
BIS 3-10 19 -7.97 -13.94 16.49
BIS 3-11 2 1 -7.95 -14.31 16.12
BIS 3-12 23 -7.96 -14.59 15.82
BIS 3-13 25 -8.07 -14.90 15.51
BIS 3-14 26.5 -8.03 -14.80 15.61
BIS 3-15 28 -7.88 -14.29 16.13
BIS 4-01 1 -6.67 -14.09 16.34
BIS 4-02 3.5 -6.79 -14.73 15.68
BIS 4-03 6 -5.88 -14.96 15.44
BIS 4-04 8.5 -6 . 1 1 -15.68 14.70
BIS 4-05 1 1 -5.90 -15.92 14.45
BIS 4-06 13.5 -5.63 -15.74 14.64
BIS 4-07 16 -5.76 -15.94 14.43
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Sample

Dist. from 
occlusal 

surface (mm)

Ô'̂ C
VPDB

(%«)

ô'*o
VPDB

(% )

ô'»o
VSMOW

(%o)
BIS 4-08 18.5 -5.40 -15.50 14.89
BIS 4-09 2 1 -6.04 -15.62 14.77
BIS 4-10 23.5 -6.56 -15.45 14.94
BIS 4-11 26 -6.49 -15.25 15.14
BIS 4-12 28.5 -6CG -15.01 15.39
BIS 4-13 31 -5.59 -15.37 15.02
BIS 4-14 332) -5.45 -15.85 14.53
BIS 4-15 36 -5.21 -16.22 14.14
BIS 5-01 0 -11.57 - 1 0 . 0 0 20.56
BIS 5-02 3 -11.24 -10.91 19.62
BIS 5-03 5 -11.13 -10.83 19.70
BIS 5-04 7.5 -10.94 -11.28 19.23
BIS 5-05 1 0 -10.52 - 1 1 . 2 2 19.30
BIS 5-06 12.5 -10.47 -12.76 17.71
BIS 5-07 15 - 1 0 . 1 2 -13.16 17.30
BIS 5-08 17.5 -10.18 -13.08 17.38
BIS 5-09 2 0 -9 9 6 -14.25 16.17
BIS 5-10 22.5 -9.80 -14.45 15.97
BIS 5-11 25 -9.67 -15.33 15.07
BIS 5-12 27.5 -9.54 -14.92 15.48
BIS 5-13 30 -9.47 -15.20 15.19
BIS 5-14 32.5 -9.64 -14.64 15.78
BIS 5-15 35 -9.51 -14.45 15.96
BIS 5-16 37.5 -&69 -13.23 17.23

CAM 1-01 2.5 -6 . 0 1 -13.42 17.02
CAM 1-02 5 -6.95 -12.38 18.10
CAM 1-03 7.5 -7.28 - 1 1 . 6 6 18.84
CAM 1-04 1 0 -7.55 -11.63 18.88
CAM 1-05 12.5 -7.87 -11.51 19.00
CAM 1-06 15 -7.94 -11.27 19.25
CAM 1-07 17.5 -7.87 -11.28 19.23
CAM 1-08 2 0 -7.45 -11.48 19.03
CAM 1-09 22.5 -6.32 -12.37 18.11
CAM 1-10 25 -5.01 -13.45 17.00
CAM 1-11 27.5 -4.92 -14.62 15.79
CAM 1-12 30 -4.94 -14.57 15.84
CAM 1-13 32.5 -5.00 -14.23 16.19
CAM 1-14 35 -5.92 -12.81 17.65
CAM 1-15 37.5 -6 . 2 1 -11.41 19.11
CAM 2-01 2 -3.45 -11.17 19.35
CAM 2-02 4 -3.71 -9.97 20.58
CAM 2-03 6 -4.57 9.88 2 0 . 6 8

CAM 2-04 8 -52# 9.65 20.92
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Sample

Dist. from 
occlusal 

surface (mm)

a " c
VPDB

(%c)

ô '"o
VPDB

(%o)

ô '"o
VSMOW

(%o)
CAM 2-05 1 0 -6.57 -10.06 20.49
CAM 2-06 1 2 -7.21 -9.88 2 0 . 6 8

CAM 2-07 15 -6 . 8 6 -10.41 20.14
CAM 2-08 17 -6.84 -10.24 20.31
CAM 2-09 19 -4#8 -9.85 20.71
CAM 2-10 2 1 -3.61 -9.46 2 1 . 1 1

CAM 2-11 23 -4.26 -11.19 19.33
CAM 2-12 25 -4.93 -11.98 18.51
CAM 2-13 27 -5.44 -11.27 19.25
CAM 3-01 0 -6.27 -12.67 17.80
CAM 3-02 3 -6.25 -13.45 17.00
CAM 3-03 6 -633 -13.60 16.85
CAM 3-04 9 -6.44 -13.92 16.51
CAM 3-05 1 2 -6.84 -13.94 16.50
CAM 3-06 15 -7.45 -12.78 17.69
CAM 3-07 18 -7.77 -11.56 18.94
CAM 3-08 2 1 -7.74 -10.41 20.13
CAM 3-09 24 -7.66 -10.17 20.37
CAM 3-10 27 -7.32 - 1 0 . 0 0 20.56
CAM 3-11 30 -6.29 -11.61 18.89
CAM 3-12 33 -533 -12.87 17.59
CAM 3-13 36 -5.17 -14.36 16.05
CAM 3-14 39 -5.78 -14.68 15.73
CAM 3-15 42 -6.53 -14.11 16.31
CAM 3-16 45 -7.11 -13.24 17.21
CAM 3-17 48 -733 - 1 0 . 8 6 19.67
CAM 3-18 51 -7.34 9 9 6 20.59
CAM 3-19 54 -6.91 -11.09 19.43
CAM 3-20 57 -6 . 2 2 -13.52 16.92
CAM 4-01 2.5 -4.28 -10.96 19.56
CAM 4-02 5 -5.39 -11.81 18.69
CAM 4-03 7.5 -6.05 -11.76 18.73
CAM 4-04 1 0 -6 . 1 2 -11.79 18.71
CAM 4-05 12.5 -5.91 -11.03 19.49
CAM 4-06 15 -6 . 0 0 -10.75 19.78
CAM 4-07 17.5 -6.59 -10.40 20.14
CAM 4-08 2 0 -7.10 -10.18 20.37
CAM 4-09 22.5 -7.57 -10.17 20.38
CAM 4-10 25 -7.94 -9.81 20.75
CAM 4-11 27.5 -7.31 -9.66 20.90
CAM 4-12 30 -5.75 -9.68 2038
CAM 4-13 32.5 -3.51 -9.22 21.36
CAM 4-14 35 -3.16 -10.59 19.95
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Sample

Dist. from 
occlusal 

surface (mm)

Ô'^C
VPDB

(%«)

ô'=o
VPDB

(% )
VSMOW

(%o)
CAM 4-15 37.5 -4.05 -11.94 18.55
CAM 4-16 40 -5.49 -10.96 19.56
CAM 5-01 3 -9.55 -9.01 21.58
CAM 5-02 6 -9.37 -9.67 20.89
CAM 5-03 9 -9.41 -10.82 19.71
CAM 5-04 1 2 -9.34 - 1 1 . 2 2 19.30
CAM 5-05 15 -9.21 -11.81 18.69
CAM 5-06 18 -9.37 -11.42 19.09
CAM 5-07 2 1 -9.35 - 1 1 . 1 1 19.41
CAM 5-08 24 -9.26 -10.73 19.81
CAM 5-09 27 -9.24 -10.16 20.39
CAM 5-10 30 -8.91 -10.16 20.39
CAM 5-11 33 -8.05 -10.92 19.61
CAM 5-12 36 -7.74 - 1 1 . 0 1 19.51
CAM 5-13 39 -7.52 - 1 1 . 2 1 19.31
CAM 5-14 42 -7.20 -11.46 19.05
CAM 5-15 45 -7.30 - 1 1 . 8 6 18.64
CAM 5-16 48 -7.37 -12.53 17.95
CAM 5-17 51 -7.37 -12.94 17.53
CAM 5-18 54 -7.36 -12.56 17.91
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