
UNLV Retrospective Theses & Dissertations

1-1-2007

Cluster-based route discovery protocol Cluster-based route discovery protocol

Shashirekha Yellenki
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Yellenki, Shashirekha, "Cluster-based route discovery protocol" (2007). UNLV Retrospective Theses &
Dissertations. 2144.
http://dx.doi.org/10.25669/tu73-dujn

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/tu73-dujn
mailto:digitalscholarship@unlv.edu

CLUSTER-BASED ROUTE DISCOVERY PROTOCOL

by

Shashirekha Yellenki

A thesis submitted in partial fulfillment
O f the requirements for the

Master of Science Degree in Computer Science
School of Computer Science

Howards R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1443793

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1443793

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thesis Approval
The Graduate College
University of N evada, Las Vegas

JANUARY 31ST .2007

The Thesis prepared by

SHASHIREKHA YELLENKI

Entitled

CLUSTER - BASED ROUTE DISCOVERY PROTOCOL

is approved in partial fulfillm ent of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE___________

Excm ination C om m ittee M em ber

 yiination C om m ittee M em ber

H M
Grad uate College F aculty R epresentative

Exam ination C om m ittee Chair

Dean o f the G raduate College

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Cluster-Based Route Discovery Protocol

by

Shashirekha Yellenki

Dr. Ajoy K. Datta, Examination Committee Chair
School o f Computer Science

University o f Nevada, Las Vegas

An ad hoc network is a collection o f wireless mobile hosts forming a network

without the aid o f any established infrastructure or centralized administration. In such an

environment, it may be necessary for one mobile host to enlist the aid o f other hosts in

forwarding a packet to its destination due to the limited range o f each mobile host's

wireless transmissions. M any protocols have been proposed to route packets between the

hosts in such a network.

The on-demand routing protocol is a well-known method. It establishes the routes

and uses them only when a need arises. For wireless communication channels, the

problem is further complicated by the mobility o f the nodes, which induces structural

changes in the routing. So, the mobility management o f mobile nodes is important in

mobile ad hoc networks.

Clustering is a scheme to build a network control structure that increases network

availability, reduces the delay in responding to changes in network state, and improves

data security. It promotes more efficient use o f resources in controlling large dynamic

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

networks. Clustering is crucial for scalability as the performance can be improved by

simply adding more nodes to the cluster.

This thesis presents a protocol for routing in ad hoc networks that uses ad-hoc on-

demand routing and also takes care o f the m obility management. The protocol adapts

quickly to frequent host movement, yet requires little or no overhead during periods in

which hosts move less frequently. Moreover, the protocol routes packets through a

dynamically established and nearly optimal path between two wireless nodes. We

propose a self-organizing clustering protocol to store the routing data in multiple nodes

and to distribute the routing load. It also achieves higher reliability — if a node in a

cluster fails, the data is still accessible via other cluster nodes.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible. It is

difficult to express m y gratitude towards my thesis advisor, Dr. Ajoy K. Datta. It is only

his enthusiasm, inspiration, and explaining things clearly and simply, that made working

on this thesis fun and interesting for me. I would have been lost without him. I would

like to than Dr. Doina Bein for her tremendous help, support, encouragement, and

patience in working with and guiding me throughout this project. I would also like to

thank Dr. Yoohwan Kim, Dr. John Minor, and Dr. Venkatesan M uthukumar for agreeing

to be members o f m y committee, for spending their valuable time in reviewing my

thesis.

Lastly, and most importantly, I wish to thank my parents. They raised me,

supported me, taught me, loved me, and stood behind me all the time. This thesis is

dedicated to them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT... iii

A C K N O W LED G EM EN TS... . v

CHAPTER 1 INTRODUCTION .. 1
C ontributions...2
Outline o f the T h e s is ...2

CHAPTER 2 AD HOC NETW ORK ROUTING PROTOCOLS..3
C luste ring ... 4
Link-Cluster A rch itec tu re ...5

C lusterheads...6
Gateway Nodes ... 6
Node M o b ility ... 7
Routing within a Cluster ...7
Routing between the Clusters ..8
Location Management .. 9

CHAPTER 3 CLUSTER-BASED ROUTE DISCOVERY A L G O R IT H M 11
Model ...11
Data Structures..12

Variables .. 12
T a b le s .. 13

A ssum ptions... 17

CHAPTER 4 CLUSTERHEAD ELECTION ALGORITHM .. IS
Predicates .. 18
Messages ... 19
Algorithm ... 20
Proof o f Correctness ..27

CHAPTER 5 GATEWAY ELECTION A LG O R IT H M .. 34
Predicates ..35
Messages ...35
Algorithm ..35
Proof o f Correctness ..37

CHAPTER 6 ROUTE DISCOVERY ALGORITHM ..42
O verv iew ...42

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M essag es ..43
A lg o rith m ...44
Proof o f Correctness ... 50

CHAPTER 7 CONCLUSION .. 60

B IB LIO G R A PH Y ...61

V IT A .. 63

vn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

A mobile ad-hoc network (MANET) is a self-configuring network o f mobile hosts

connected by wireless links, the union o f which forms an arbitrary topology. The routers

are free to move randomly and organize themselves arbitrarily. Thus, the network's

wireless topology m ay change rapidly and unpredictably. This network transmits from

computer to computer without the use o f a central base station (access point). Such a

network may operate in a stand-alone fashion, or may be connected to the larger Internet.

Minimal configuration and quick deployment make ad hoc networks suitable for

emergency situations like natural or human-induced disasters, military conflicts,

emergency medical situations, etc. The earliest MANETs were called “packet radio”

networks, and were sponsored by DARPA in the early 1970s. It is interesting to note that

these early packet radio systems predated the Internet, and indeed were part o f the

motivation o f the original Internet Protocol suite.

In spite o f the various applications served by the ad-hoc networks, they still have to

overcome the defects such as the limited wireless transmission range, interference caused

due to its broadcast nature, route changes and packet losses induced due to the node

mobility, battery constraints, and potentially frequent network partitions. A major

challenge faced in MAN ET 's is locating the devices for communication, especially with

high node mobility and sparse node density. Present solutions provided by the ad hoc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routing protocols range from flooding [10] the entire network with route requests, to

deploying a separate location management scheme [13] to maintain a device location

database. Nodes make use o f the real life concept o f making acquaintances and keeping

in touch with them regarding each other's current locations.

1.1 Contributions

In this thesis, we design a mobility management based Cluster routing leader election

algorithm for MANET. Every node starts as a clusterhead. Eventually, a set o f nodes is

chosen as the clusterheads. These special nodes maintain the routing tables with shortest

paths for intra-cluster and inter-cluster routing [5, 16]. We use the concept o f mobility

management and on demand routing scheme [6, I I] to design a hnk-cluster routing

protocol. Routing tables can be used to locate the destination while communicating in ad

hoc networks. Such protocols limit the search for a route to only when the need arises,

thus reducing the overhead o f unnecessary data storage. We follow an alternate

clusterhead gateway path to quickly find a route.

1.2 Outline o f the Thesis

In Chapter 2, we present an overview o f the ad-hoc routing algorithms, clustering

schemes for routing efficiency, various location-management schemes and end it with a

b rief description o f the link-cluster architecture. Chapter 3 includes the data structures

used by the proposed algorithm. The main three components o f the algorithm along with

their proof o f correctness are presented in three subsequent chapters. Finally, the thesis

ends with the concluding remarks and suggestions for future research in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

AD HOC NETW ORK ROUTING PROTOCOLS

In a MANET, hosts keep moving, causing frequent network topology eh anges.

Therefore, the task o f finding and maintaining routes is nontrivial. Routing protocols for

ad hoc networks are divided into two classes:

Proactive: Continuously updates reachability information in the network so that

when a route is needed, it is immediately available [15]. Examples: DSDV and OLSR.

Reactive: Route discovery is initiated only when needed, and route maintenance is

needed to provide information about invalid routes [12, 15]. Examples: DSR and AODV.

The conventional routing protocols are insufficient for ad hoc networks, since the

amount o f routing related traffic may waste a large portion o f the wireless bandwidth. A

few demand-driven route-establishing protocols like DSR and AODV have been

proposed. Some zone routing protocols like ZRP and Safari have been proposed that

initiate the route discovery phase on demand, but limit the scope o f proactive procedure

only to the initiator’s loeal neighborhood or the receiver’s neighborhood. The Location

aided routing protocols [13] use location information (obtained using the GPS) to reduce

the search space, resulting in fewer route discovery messages for a desired route.

In our algorithm, we consider a network with link-cluster architeeture and discover an

optimal route for the nodes to communicate with each other [5]. We use the coneept o f

proactive protocols to route the packets within the eluster and the concept o f reactive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocols to route the packets between the clusters. Such combination o f proactive and

reactive protocols used for routing the packets is called a hybrid protocol [15]. We also

use the concept o f location management when a node leaves a cluster to update the

routing tables [16]. We now give a brief description o f all those concepts used in our

algorithm.

2.1 Clustering

The events that affect the structure o f the network as well as the controls applied in

response to such events cause changes in the network state. The task o f controllers is to

detect and respond to such changes by sensing and collecting the local state information

and distributing it to other controllers in the network. The changes in the network state

are more frequent in the mobile neWorlis, where the node movements affect both node

interconnectivity and link quality and the wireless networks, where the links are limited

and highly volatile. Moreover, small changes in the environment may result in large

changes in radio signal propagation, causing them to experience path loss, fading, loss o f

wireless transmissions, and interference, thus constraining the available capacity o f the

wireless links.

Controllers consume storage, transmission, and processing resources whenever they

perform certain tasks. They need not respond to all the changes taking place in the

network which may be trivial. In a highly dynamic network, the response delay o f the

controllers may be greater than the time between the state changes taking place. Hence,

the sensitivity for a network controller depends on the particular control function to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed, the resources available, the volatility o f network state, and the anticipated

magnitude and extent o f the consequences o f a state change.

The cluster-based control structures [5, 8] can significantly reduce the overhead costs

imposed by routing without unduly sacrificing the quality o f the routes produced. In ad

hoc networks, cluster-based control structures contribute to improved efficiency o f

resource use by managing wireless transmissions among multiple nodes to reduce

channel contention, forming routing backbones to reduce network diameter, and

abstraeting network state information to reduce its quantity and variability.

2.2 Link-Cluster Architecture

Link-cluster architecture [1, 2, 7] is a network control structure in which nodes are

partitioned into clusters that are interconnected. The union o f the members o f all the

clusters covers all the nodes in the network. In every cluster, nodes are classified in three

ways: clusterhead, gateway, and ordinary node. A clusterhead schedules the

transmissions and allocates resources within clusters. Gateways connect adjacent

clusters. An ordinary node belongs to a single cluster (has a unique clusterhead).

Clusters are o f two types: overlapping and disjoint. Overlapping: If a gateway node

is a member o f both clusters, then such clusters are termed as the overlapping clusters.

Disjoint: If a gateway node is a member o f exactly one cluster and forms a link to a

member o f another cluster, then such clusters are termed as the disjoint clusters. In this

research, we will consider only the disjoint clusters. In the following sections, we will

describe the clusterheads and gateway nodes in more detail. We will also briefly present

the node mobility and routing ideas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Clusterheads

Each cluster has exactly one clusterhead. A clusterhead schedules the transmissions

and allocates resources within clusters. Discussed below are two clusterhead election

algorithms.

Identifier-based Clustering Algorithm: The identifier-based clustering algorithm [6]

makes use o f the concept o f a unique identifier that differentiates every single node in the

network from the other. The node with the highest or lowest identifier becomes the

clusterhead [4]. Connectivity-based Clustering Algorithm: The connectivity-based

clustering algorithm makes use o f the number o f neighbors a node has. The node with

the highest connectivity is chosen as the clusterhead. If two nodes have the same

connectivity, the identifiers can be used to resolve the conflict.

2.2.2 Gateway Nodes

Gateways connect adjacent clusters. Conferring gateway status to all the members

ensures connectivity between individual gateways. Two types o f clusters are formed

based on whether a single gateway or a gateway pair connects the two clusters. They are

overlapping clusters and disjoint clusters. Overlapping clusters: If a node has two

clusterheads at one hop distanee, then that node becomes the gateway and is said to

connect two overlapping clusters. Here, the gateway is a node with the highest or lowest

identifier. Thus overlapping clusters have a single gateway connecting them. Disjoint

clusters: If a clusterhead in one cluster is a neighbor o f a node and can reach the other

clusterhead in any other cluster in two hops, then it is a candidate gateway linked to

candidate gateway in another cluster. The two gateways selected are linked pair in which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one member has one highest or lowest identifier among all candidates connecting two

clusters. Thus, disjoint clusters are formed with a gateway-pair connecting them.

2.2.3 Node M obility

In the presence o f mobile nodes, a clusterhead needs to update the cluster

membership, and clusterhead and gateway information. A node’s clusterhead is likely to

change more frequently with connectivity-based clustering than with identifier-based

clustering since the connectivity gets affected.

The identifier-based clustering algorithm reduces the number o f changes in

clusterhead status required after node movement. The change in clusterhead occurs only

if two clusterheads move within the range o f each other, where one o f them relinquishes

its role, or i f an ordinary node moves out o f range o f all other nodes, in which case it

becomes the clusterhead o f its own cluster. Cluster maintenance schemes are designed to

minimize the number o f changes in the set o f existing clusters. They do not re-cluster

after every movement, but instead make small adjustment to cluster membership as

necessary, as in only when the most highly connected node in a cluster moves.

2.3 Routing within a Cluster

The algorithm uses a simple link-state routing protocol that uses distance or hop

count as its primary metric for determining the best forwarding path within a cluster. The

clusterhead makes a list o f nodes it can reach, and the number o f hops it will cost. This

table is called a routing table [16]. The nodes within the cluster routinely send the

clusterhead messages to enquire if their clusterhead still is active or not. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clusterheads regularly send messages to the nodes within its two hop neighborhood to

enquire if they still belong to their cluster and to keep the routing tables up-to-date.

Bad routing paths are purged from the routing table. A routing path becomes bad

when the route no longer exists or when the nodes move. If two identical paths to the

same network exist, only the one with the smallest hop-count is kept. Thus, the updated

table is always used for forwarding the messages.

This protocol uses Dijkstra’s Shortest Path First algorithm to construct a list o f nodes

describing the network that represents the minimum delay paths. This list is used in

creating the routing directory consisting o f information about destination node and the

next hop node. This directory is in turn used for forwarding the packets. In short, this

protocol responds quickly and correctly to changes in network topologies, is capable o f

detecting and routing packets, routes traffic on minimum hop paths, and loops do not

exist in the network [12].

2.4 Routing between the Clusters

Our route discovery algorithm makes use o f a protocol that creates routes on an on-

demand basis while routing between the clusters. Such protocols are called reactive

protocols. Traditional proactive protocols find routes between all source-destination

pairs regardless o f the use or need for such routes. The key motivation behind the design

o f on-demand protocols is the reduetion o f the routing load.

Our algorithm mainly uses the AODV protocol for inter cluster routing. AODV uses

a table-driven routing framework and destination sequence numbers. To maintain

routing information, AODV uses traditional routing tables, one per destination and relies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on these tables for routing rather than on source routing. All routing packets carry the

sequence numbers to maintain freshness o f routing information and to prevent routing

loops [12]. A routing table entry is expired if not used recently.

AODV uses an expanding ring search initially to discover routes to an unknown

destination. If the route to a previously known destination is needed, the hop-wise

distance is used for the search. Route discovery in AODV is based on query and reply

cycles. AODV relies on route discovery flood more often [10], which may carry

significant, network overhead. The destination replies only once to the request arriving

first and the routing table maintains at most one entry per destination. In AODV always

fresher routes are considered and the unused route entries are deleted after an expiry time.

2.5 Location Management

As wireless devices become more capable, location will play a key role in the

services offered to the nodes that want to communicate with each other. Location

management [13] forms an essential entity in protocols that use geographic routing. The

nodes periodically select nodes that take on the role o f a location server o f their current

location. All the gateway nodes and the clusterhead node which are present in the cluster

region Cu o f the clusterhead node u act as location servers for all the nodes in the cluster

region Cu. W hen a node moves across two clusterhead regions, the node updates its

hom e region Cu o f the movement by a location update or by sending a leave message.

Discovery o f a node's location: A source node x from outside the cluster that wishes

to communicate with a node y in the cluster region C can now use the clusterhead and

gateway tables to identify the location o f the node y and send a location query packet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

towards region C to obtain the current location o f y. The first location server to receive

the query for u responds with the current location o f y to which data packets are routed.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

CLUSTER-BASED ROUTE DISCOVERY ALGORITHM

The proposed protocol consists o f three main steps: Clusterhead Election, Gateway

Election, and Route discovery that are implemented in three different modules. We will

use asynchronous message passing systems. The algorithm uses cluster-based network

and the concept o f location management [13] to implement an efficient routing

mechanism. In this chapter, we describe the data structures and assumptions used in our

algorithm.

3.1 Model

W e use a conventional message passing model o f communication. Assume that some

node X wants to send a message to node y. The message follows a route that is a

sequence o f communication links in the network (abstracted as a simple path). A routing

algorithm specifies the route by directing each intermediate node on the route which

outgoing edge the message should be sent depending on the destination. We assume that

the network has an error correcting protocol in place that takes care o f necessary re

transmissions in case o f message losses or corruptions.

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Data Structures

In a cluster-based network, the network is divided into clusters. In every cluster,

nodes are divided into three categories: clusterhead, gateway and ordinary node.

Definition 3.1 Routing Table: This table is maintained in every clusterhead and

gateway node. It keeps track o f routes (and in some cases, metrics associated with those

routes) to different destinations.

Definition 3.2 Clusterhead (CH): A clusterhead schedules the transmissions and

allocates resources within clusters.

Definition 3.3 Gateway: Any node with links to more than one cluster is a candidate

for a gateway node connecting these clusters [5]. We will describe the conditions to be

satisfied by these candidates to become gateway nodes.

A gateway node that belongs to the inter-cluster routing table o f the clusterhead is

called a bordering gateway node.

3.2.1 Variables

The algorithm uses a variable Nj’ representing the one-hop neighborhood set o f node

i and a variable Nj^ representing the two-hop neighborhood set o f node i. These two sets

are maintained by an underlying local topology maintenance protocol that adjusts its

value in case o f topological changes in the network due to failures o f nodes or links. The

variable nb is used to identify the neighbor o f the current node from which it received a

message. The variable Highestlndex always points to the last row o f the routing tables.

Node i has a unique ID, ID.i. The variables path and newpath represent a list o f links that

is traversed by messages. For Example, i f a path has a list o f nodes A, B, and C, there are

links from A to B, and B to C that have been traversed by a message. Similarly, when a

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node ID is added to the path or newpath variable, there is a link from the path to the

added node ID. Taking the previous example, i f path = path + D is written, it means that

there are links from A to B, B to C, and C to D.

Every node has four variables (c.i^ d.i, n.i, and g.i) to maintain the status. The variable

c.i has the ID o f the clusterhead o f node i, d.i holds an integer value representing the

distance from node i to its clusterhead, n.i has the ID o f the neighbor o f the node i along

the shortest path towards its clusterhead, and g.i is a boolean value that is T (true) if node

i is a gateway node or F (false) otherwise.

For a clusterhead, c.i = ID.i, d.i = 0, n.i = nil, and g.i = T or F depending on whether

it is a gateway or not.

For a gateway node, c.i = Single ID / array o f IDs o f its clusterhead, d.i = Distance

/ array o f distances from its clusterhead, n.i = Next hop / array o f next hop neighbors on

shortest path to its clusterhead and g.i = T.

3.2.2 Tables

Every node in a network has a sequence table that keeps track o f the messages

already received by the node and makes the routing messages loop-free [3, 12]. Only

gateways and clusterheads maintain the tables used for routing [5]. The clusterhead

routing table contains entries for the nodes in its cluster (or clusterhood). A clusterhead

has another table that is used to route messages outside the cluster. This table has entries

o f all the destination and boundary gateway pairs. The gateway tables contain all the

entries o f the destination-clusterhead pairs o f all the clusters they connect to. The

routing table is updated whenever a new clusterhead is elected or some changes occur

related to paths in the routing table. The ordinary nodes have no routing tables. The only

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routing information they have is a variable indicating the neighbor on the shortest path

towards their clusterhead.

The following is the detailed description o f the tables held by different nodes:

A Clusterhead has 3 tables:

1. Routing table.

2.

3. SEQ TABLE.

ROUTING TABLE

Dest CH Path from
CH to dest

Next-
hop

hops g.i

Routing table contains information for routing within the cluster. It has the following six

columns:

Dest: The ID o f the node within its own cluster.

CH: The node’s own ID.

Path from CH to dest: The entire path from the Clusterhead (itself) to the node in the

Dest field.

Next-hop: The next hop neighbor from the clusterhead to reach the Dest node.

#hops: The distance (in number o f hops) from the Clusterhead to the node in the Dest

field.

g.i: T if the D est node is a gateway; F otherwise.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CG TABLE

Index GW Node Next-hop

CG TABLE or the Clusterhead’s gateway table contains the routing information for inter

cluster routing along with the bordering gateway nodes’ information. It has the following

four columns:

Index: A counter to keep track o f the number o f rows in the table.

GW: ID o f the bordering gateway node that acts as the temporary destination in order to

reach the actual destination in the D est field.

node: ID o f the node whose route has to be found and can be reached through the

gateway node in that row i.e., the GIV field in the same row.

Next-hop: Next hop neighbor from the gateway node to reach the Dest node.

S E Q T A B L E

Sender Seq

SEQ TABLE or sequence table keeps track o f the messages already received and makes

the routing messages loop-free. It has the following two columns:

Sender: ID o f the node that initiated the message.

Seq: Sequence number o f the message sent.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A gateway has two tables:

1. G C T A B L E .

2. SE Q T A B L E .

GC TABLE

Index CH Node Next-hop

GC TABLE or Gatew ay’s clusterhead table contains route information for inter cluster

routing with the bordering clusterheads’ information. It has the following three different

columns when compared to the CG TABLE:

CH: ID o f the bordering clusterhead node that acts as the temporary destination in order

to reach the actual destination in the D est field.

node: ID o f the node whose route has to be found and can be reached through the

clusterhead node in that row i.e., the CH field in the same row.

Next-hop: Next hop neighbor from the clusterhead node to reach the Dest node.

SEQ TABLE

Sender Seq

SEQ TABLE or sequence table keeps track o f the messages already received and

makes the routing messages loop-free. It is similar to the SEQ TABLE o f the clusterhead

node. It has the same two columns.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An ordinary node maintains only one table.

7.

SEQ_TABLE

Sender Seq

SEQ TABLE or sequence table keeps track o f the messages already received and makes

the routing messages loop-free. It is similar to the SEQ TABLE o f the clusterhead node

as well as the gateway node. It has the same two columns.

3.3 Assumptions

The following assumptions have been made to design the proposed algorithm:

Assumption 3.1 : A node knows and can distinguish its immediate neighbors.

Assumption 3.2: Every node knows its next hop neighbor on the shortest path towards its

clusterhead. (Every node knows n.i).

Assumption 3.3: Initially, every node is a clusterhead o f itself, i.e., ID.i = c.i for all

nodes.

Assumption 3.4: Every link is bidireetional.

Assumption 3.5: Every node has a sequence table, SEQ TABLE that makes the routing

messages loop-free [3, 12].

Assumption 3.6: A node can be both a clusterhead and a gateway.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

CLUSTERHEAD ELECTION ALGORITHM

Clusterhead Election Algorithm contains the actions related to selection o f

clusterheads am ong the nodes in the cluster, and creating and/or updating entries in the

routing tables in each clusterhead and regarding intra-cluster routing.

Section 4.1 explains the predicates used in the algorithm. In section 4.2, we give a

b rief deseription o f the messages used for electing a clusterhead. Seetion 4.3 ineludes the

detailed description o f the actions performed on reeeiving the elusterhead election

messages followed by the complete code for the proposed algorithm. The chapter ends

with some proofs to support the module in section 4.5.

4.1 Predicates

Predicate is_CH{\) = (c.i = = ID.i a n.i = = nil a d.i = = 0) is true if i is announced

a clusterhead, the c.i variable has its own ID with the distance from its clusterhead (whieh

is itsell) to itself is equal to zero, and the next hop neighbor on the shortest path to its

clusterhead is equal to nil.

Predicate is_EGi\) = (3 j e A/ ' a c.j c . i) is true if i has at least one neighbor that

belongs to a different cluster. If this predicate is true, then i is an eligible gateway node.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Predicate is_G{i) = {(is_EG{i) a g.i = = T) a -, (3 is_G(j) 6 A / ' a c.j = - c.i a s .J

= = s.i)) is true if i is an eligible gateway node and has no neighboring gateways from its

own cluster that conneets at least the same clusters it connects. If this predicate is true,

then i is a candidate for a gateway node.

Predicate is_BG(\) = (A_G(j) a j e CG_TABLE(/)) is true if j is a gateway node

and is a member o f i ’s intra-eluster table.

Predicate isJ'aulty{\) = (c.i = = nil v n.i ^ A ' v c/.z < 0 v d.i >2) returns true if

there exist no clusterheads within two hop distance from i, or it has no immediate

neighbors that are on the shortest path towards its clusterhead.

4.2 Messages

The clusterhead selection protocol must satisfy three conditions: each non-gateway

node belongs to a single cluster, eaeh non-elusterhead is within two hops from its

clusterhead, and there are no adjacent clusterheads [9].

Messages CL_ANN, and CL REQ contain the following fields: sender (sender ID),

dest (destination ID), path (path from the sender to the eurrent node) and hops (either the

number o f hops the message went or the number o f hops the message went - 1).

Messages CL REJ, CL CHG and leave eontain the following fields: sender, dest and

hops.

Message CL A C C E PT has the following fields: sender, dest, path (path from the

sender to the current node), hops, count (distance in hop count from the sender to the

current node), g.i (true or false based on whether the dest node is a gateway node or not).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message ctable copy contains the following fields: dest, sender, path (path from the

sender to the dest node), nexthop (the next hop neighbor to reach the dest node), hops,

count (distance in hop count from the sender to the current node), g.i (true or false based

on whether the dest node is a gateway node or not).

4.3 Algorithm

A clusterhead will have ID .i = c.i and d.i = 0 and n.i = nil. If any o f the variables

specified have a different value, the node is not a clusterhead. A node can act as a

clusterhead as well as a gateway at the same time. A clusterhead will periodically do the

following: eheeks the eonsisteney o f each variable. Broadcasts CL_ANN messages to all

its neighbors within its two hop distance, checks if any other elusterhead is in its range

and if it finds one whose ID is bigger than itself then it gives up its clusterhead status by

broadcasting CL R E J messages and erases the unused rows from the CG TABLE

periodically.

An ordinary node belongs to a single cluster, i.e., has a unique clusterhead. An

ordinary node periodically checks its clusterhead (alive or not) by sending a CL REQ

message to n.i. In case it has no clusterhead within its two hop distance, it sets its

variables accordingly and waits for a CL AN N message from a node within its two hops

distanee [9]. It becomes a clusterhead if there is no clusterhead within two hops.

A CL REQ message travels at most two hops from the sender. Once the CL REQ

message reaches the right destination but finds that its clusterhead moved from that

loeation, the node in that partieular location or the node which was supposed to be the

one hop neighbor on the shortest path from the sender to the supposed-to-be

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clusterheadN location sends a CL CHG message indicating that the previous clusterhead

no longer exists in that location.

Action E.Ol is responsible for periodically checking the clusterhead o f node i. The

value o f time-period is dependent on the time unit o f the network, and has to be at least

four time units for a message to make a round-trip o f two hops. When a node finds itself

a clusterhead, it sets n.i to nil, d.i to 0, and broadcasts a Œ /1AAmessage to all the nodes

within two hops.

Whenever a node receives a message, it first checks if its own ID matches with that o f

the destination node in the message it receives. If it matches, it acts accordingly and if it

does not match, forwards the message if required.

Upon receiving CL_ANN message (Action E.02): A Clusterhead drops it. A Gateway

drops it. An ordinary node does the following: If the sender is its own Clusterhead, then

it updates its variables d.i and n.i, and forwards the message. If the sender is not its own

Clusterhead and it does not have a Clusterhead, it selects the sender as its own

Clusterhead and sets its c.i, d.i, and n.i appropriately and forwards the message. If the

sender is not his own Clusterhead and it has a Clusterhead, then it drops the message.

Upon receiving a CL RE J message (Action E.03): A clusterhead drops it. A gateway

or an ordinary node does the following: If the sender is its own clusterhead, then it sets

c.i to nil, d.i to + co and n.i to nil, and forwards the message to its immediate neighbors

except the one from whom the message was received. If the sender is not its own

Clusterhead, then it drops the message.

Upon receiving a CL REQ message (Action E.04): A Clusterhead does the following:

If the message is addressed to it, it sends a CL_ANN message to the sender. Otherwise,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it replies to the sender with a CL CHG message to inform the sender that its clusterhead

either has moved or is dead. A gateway or an ordinary node does the following: If the

message is addressed to it, it drops the message. Otherwise, a gateway does the

following: If the addressee is a direct neighbor, then it forwards to the neighbor. If the

addressee is not a direct neighbor, then it sends the CL CHG message since the distance

between the sender and addressee is more than 2.

Upon receiving a CL CHG message (Action E.05): Any node does the following: If

the node gets the message from n.i and is the destination, then it updates its variables c.i,

d.i, and n.i, and then it forwards it to its neighbors i f the hop count is still valid and the

addressee is a direct neighbor. If the addressee is not a direct neighbor, then it drops it.

Upon receiving a CL AC C EPT message (Action E.06): If a clusterhead receives it

and is the destination, then it updates its routing table and sends the updated message to

the bordering gateway nodes. If a node that is not a destination receives it, it forwards

the message to all its neighbors if the hop count is still valid, but drops the message if the

hop count is invalid.

Upon receiving a leave message (Action E.07): I f the clusterhead that is the

destination receives the message, it updates the routing table and sends the updated

message to all its bordering gateways. I f the reeeiving node is not a destination node,

then it forwards the message to all its neighbors if the hop count is still valid, but drops

the message if the hop count is invalid.

Upon receiving a ctable copy message (Action E.08): If the reeeiving clusterhead

node is the destination, then the row is copied into the routing table if it meets the

constraint that the destination node is within two hop distance.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upon receiving a etable_updated message (Action E.09): A gateway node checks if

the message is from a clusterhead whose cluster member is one o f its neighbors. If it is, it

updates its GC TABLE, else the message is ignored.

Predicates:

is_CH{i) = (c.i = ID.i A n.; = nil A d./=0)

is_EG(i) = (3 j e M' A c.j 4 c.i)
/s_G(i) s ((/s_ £ G (i) A g./= = T) A - , (3 /s_G(j) e W, ' a c.j = ==c.i A s.j= = s.i))
/s_SG (i) = (3 j G CG TABLE(0 A /s_G(j))
is ja u ity { \) = (c.i = nil v n.i g Ni' v d.i < 0 v d.i >2)

E.Ol Timeout —>

if (c.i = = ID.i) then
(/'(n.i # nil) then n./=nil
if (d.i 0) then d.i=0
.send CL AN N (ID.i, j, path, 0) V j e M '
//(no_RE04Long FromSender) then

remove row from Ctable and send CL REJ (sender,dest,0) V j e A/, '
else

if (is_fauity(\)) then
i f (no_ANN4Long) then

C.i = ID.i
i f (n.i nil) then n./ =nil
i f (d.i A 0) then d.i =0
send CL_ANN (ID.i, j, path, 0) V j 6 M '

else
i f (c.i 9̂ nil) then

send CL REQ (ID.i,C.i ,0) to n.i

E.02 Receive CL ANN (sender, dest, path, hops) from nb -A

if (hops< 2 A dest = = ID.i a c.nb = = sender) then
i f (sender = = c.i) then

i f (n.i ^ Ni') then
n.i = nb

i f (hops = = 0) then
d.i = 1
if(is_G(\)) then

send CH ACCEPT (ID.i, sender, rpath, 1, 0, 7) to nb
else / / Ord. inaiy node

.send CH ACCEFT(ID.i, sender, rpath, 1, 0, F) to nb
.send CL_ANN(sender,), path, 1) V j e Ni '

else
if (hops = = 1) then

d.i = 2
f/(/S_G(i)) then

send CH ACCEPT (ID.i, sender, rpath, 2, 0, T) to nb

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
send CH ACCEPT {ID.i, sender, rpath, 2, 0, F) to nb

else
i f {is_faulty{i)) then

c.i =sender
n.i =nb
i f {hops = = 0) then

d.i = 1
send CL ANN {sender, j, path, 1) V j e Ni' / nb
if{is_G{i)) then

send CH ACCEPT (ID.i, sender, rpath, 1, 0, 7) to nb
else

send CH ACCEPT(ID.i, sender, rpath, 1, 0, F) to nb
else
if (hops = = 1) then

d.i = 2
i f (/s_G(i)) then

send CH ACCEPT (ID.i, sender, rpath, 2, 0, 7) to nb
else

send CH ACCEPT (ID.i, sender, rpath, 2, 0, F) to nb
else

i f (is_CH(i)) then
i f (ID.i < sender) then

c.i = sender
n.i = nb
newpath = ID.i + path
send ctable copy (dest, sender, newpath, ID.i ,hops+1, 0, g.i) to nb
if (hops = = 0) then

d.i = 1
send CL_REJ(ID.i, dest, 0) V j e M '
send CL_ANN (sender, dest, path, 1) V J e % ' / nb
if(is_G(i)) then

send CL ACCEPT (ID.i, sender, rpath, 1, 0, 7) to nb
else

send CL ACCEPT (ID.i, sender, rpath, 1, 0, F) to nb
else
if (hops = = 1) then

d.i= 2
send CL_REJ(ID.i, dest, 0) V j e M '
if(is_G(i)) then

send CH ACCEPT (ID.i, sender, rpath, 2, 0, I) to nb
else / / Ordinaiy node

send CH ACCEPT (ID.i, sender, rpath, 2, 0, F) to nb
else

if(is_G(i)) then
C.i = sender
n .i = nb

if (hops = = 0) then
d.i= 1
send CH ANN (sender, j, path, 1) V j e Ni' / nb
send CH ACCEPT (ID.i, sender, rpath, 1, 0, T) to nb

else
if (hops = = 1) then

d.i= 2
send CH_ACCEPT(ID.i, sender, rpath, 2, 0, T) to nb

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else / / Ordinary node
i f (C .i < sender) then

send leave (ID.i, c.i, 0) to n.i
c.i = sender
n.i = nb
if (hops = = 0) then

d.i= 1
send C H A N N (sender, j, path, 1) \ /) G N,' / nb
send CH ACCEPT (ID.i, sender, rpath, 1, 0, F) to nb

else
if (hops = = 1) then

d.i= 2
send CH_ACCEPT(ID.i, sender, rpath, 2, 0, F) to nb

else H i f hop count is greater than or equal to 2
drop the message

E.03 Receive CL REJ (sender, dest, hops) from nb ->

i f (hops<2) then
if (sender = = c.i a dest = = ID.i) then

c.i = ID.i
n.i = nil
d./= 0
i f (hops = = 0)

send CL REJ (sender, dest, t) V j e /V, ' / nb
else / / i f hops /= 0 or hops /= 1

drop the message

E .04 Receive CL REQ (sender, dest, path, hops) from nb -A

i f (hops < 2) then
i f (ID.i = = dest) then

if(—, is_CH(i)) then
send CL REQ (ID.i, sender, 0) to nb

else / / i f it is a ClusterHead, then
send CL ANN (ID.i, sender, path, 0) to nb
i f (sender ^ routingtable i) then

if (hops = = 0) then
update (sender, ID.i, rpath, nb, 1, g.i)

else
if (hops = = 1) then

update (sender, ID.i, rpath, nb, 2, g.i)
send ctahle updated (sender, j, ID.i) V j £ is_BG(i)

else / / i f (ID. i 9̂ dest)
i f (hops = = 0) then

i f (dest e N i ') then
send CL REQ (sender, dest, path, 1) V j 6 Ni ' / nb

else
if(hops> 2) A (ID.i = = n.sender) then

send CL CHG (ID.i, d.ist, 0) to nb
else drop the message

E .05 Receive CL CHG (sender, dest, hops) from nb —>

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (hops < 2) then
hops ++
i f ((ID.i= = dest) A (nb = = n.i)) then

c.i = nil
n.i= CO
d.i= nil

send C L C H G (sender, dest, hops) V j e Ni '

else drop the message

E.06 Receive CL ACCEPT (sender, dest, path, hops, count, g.i) from nb

i f (hops < 2) then
i f (dest = = ID.i) then

if (is_CH(i)) then
if (sender^ routingtable i) then

i f (hops = = 0) then
update (sender, ID.i, rpath, nb, 1, g.i)

else
update (sender, ID.i, rpath, nb, 2, g.i)

send ctahle updated (sender, j, ID.i) V i e is BG(i)

send CL REJ (ID.i,sender, 0) to nb
else
i f (dest A ID.i A dest e M ')

i f (hops = = 0) then
send CH ACCEPT (sender, dest, path, 1, 0, g.i) V j e M '

else
send CH ACCEPT (sender, dest, path, 2, 0, g.i) V j e W/ '

else / / ifhops>2
drop the message

E.07 Receive leave (sender, dest, hops) from nb — >

if (hops < 2) then
if (10./ = = c.i) then

if (dest = = c.i) then
remove row from routingtable i where sender e routingtable(desf)_i
send ctahle updated (sender, j, ID.i) V j e is_BG(i)

else // i f the current node is not a clusterhead
send leave (sender, dest, hops) V j e A/, ' / nb

hops++
else

drop the message

E.08 Receive ctahle copy (dest,sender, path, nexthop, hops, count, g.i) from nb -A

i f (count < 2) then
i f (dest = = ID.i) then

if(is_CH) then
if(hops+count <= 2) then

newpath = path + path J ro m jA d C H jo c u rre n tN o d e
copy the row (dest, ID.i, newpath, nb, hops+count, g.i)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else / / if(hops+ count > 2)
drop the row

else / / i f the dest is not a CH any more
drop the message

else // i f the current node is not the destination
i f (count = = I) then

send ctable copy (dest, sender, path, nexthop, hops, count, g f V j e M ' ! nb
count++

else / / i f count > = 2
drop the message

E.09 Receive ctabie updated (node, dest, CH) from nb —>

if (is_CH(\)) then
drop the message

else / / i f the current node is not a clusterhead
if(is_G(\)) then

iy'(CHeGC_TABLE(CH,/ndex) A node e GC TABEE(node, index) A index >=0
A dest = = ID.i A index < = Highestlndex) then

remove row from GC TABLE
Highestlndex <— Highestlndex -1

t/(CH G GC_TABLE(CH,/ndex) A node g GC TABLE(node, index) A Index >=0
A dest = = ID.i A index < = Highestlndex) then

Highestlndex <— Highestlndex + 1
GC TABLE update (Higestlndex, sender, dest, nb)

i f (nb = = CEI) then V j G N i ' / nb
send ctabie updated (node, dest, CH)

else / / Ord. inaiy node
i f (nb = = CH) then

send ctabie updated (node, dest, CH) V j G A// ' / nb
else / / in any other case

drop the message

4.4 Proof o f Correctness

Lemma 4.1 The maximum number o f hops between a clusterhead and a member o f

its own cluster is two.

Proof: In clusterhead election module, Actions E.02 and E.06 ensure that any

clusterhead announcement (CL_ANN) message or the clusterhead aceept (CL ACCEPT)

message can travel at most a distanee o f two hops. For a node to be a member o f a

cluster it has to reeeive the clusterhead announcement message from a clusterhead and

send the clusterhead accept message back to the clusterhead, whieh is possible only if the

node is at a two-hop distance from its clusterhead. Q

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 4.2 No two clusterheads ean be neighbors o f eaeh other.

Proof: W e prove this lemma by contradiction. Suppose there are two clusterheads

that are neighbors. Action E.02 ensures that the clusterhead announcement {CL ANN)

message o f one clusterhead reaehes the other that is at one or two-hop distance from it

(Lemma 4.1). When a elusterhead reeeives a clusterhead announcement message, it

compares its own ID with the sendePs ID. If its ID is less than that o f the sender's ID, it

relinquishes its role as a clusterhead and sends the elusterhead reject {CL REJ) message

to all its two-hop neighbors. Action E.03 ensures that the clusterhead reject message

reaches all the two-hop neighbors. So, it no longer remains a clusterhead which

contradicts our assumption that there can be two clusterheads that can be neighbors. Q

Lemma 4.3 The minimum number o f hops between two clusterheads is three.

1 060

20

I I I

50 40

Figure 4.1. A network with three clusters before the nodes move.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: From Lemma 4.2, no two clusterheads can be neighbors o f each other.

Assume that the distanee between two clusterheads is two hops. But that cancels one o f

the two clusterheads by comparing the IDs because the node between them becomes a

gateway that acts as a common node for both clusters.

Consider a network with nine nodes as shown in Figure 4.1. The nodes with ID 60

(clusterhead o f cluster I), 140 (clusterhead o f cluster II), and 50 (elusterhead o f cluster

III) are clusterheads. After some nodes move, the network looks like the one in Figure

4.2. The distanee between node 60 and node 50 is 2 hops. Now, the intermediate node

with ID 100 that connects the two nodes acts as a gateway that belongs to all the three

clusters and allows the elusterhead announcement message from cluster I to reach cluster

10 60 100

I I I

Figure 4.2. The Network o f Figure 4.1 after the nodes move.

Ill through it. In our elusterhead election module, Action E.02 makes sure that the

two clusterheads’ announcement messages reach eaeh other and the one with the lower

ID relinquishes its role as a elusterhead. Thus, node 50 relinquishes its role as a

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clusterhead and the network now looks as shown in Figure 4.3. Therefore, there cannot

be a clusterhead at a distance o f two hops from another clusterhead. Q

10 10060

50

Figure 4.3. The Final Network o f Figure 4.1 after clustering.

Lemma 4.4 The maximum number o f hops between the clusterheads o f two

neighboring clusters is five.

Proof: We need to prove the following two results;

Case I: Two clusterheads can be at a distance o f five hops from each other.

Proof: In this network, exactly one clusterhead announcement message reaches

every node. So, the cluster structure does not change any more.

4060

Figure 4.4. Two Clusterheads at a distance o f five hops from each other.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider Figure 4.4. There are two clusterheads, 60 and 140 which are at distance o f

five hops from each other. All the nodes are clustered according to the rules o f link-

cluster architecture. Thus, the clusterheads do not change. | |

Figure 4.5. Two Clusterheads at a distance o f six hops from each other.

Case II: Two clusterheads can never be at a distance o f more than five hops from each

other.

Proof: W e can prove this case by contradiction. Let us assume that the maximum

distance between the two clusterheads is six. According to our module. Action E.02

makes sure that the clusterhead announcement message travels at most a distance o f two

hops. Then, there is at least one node that does not receive any clusterhead

announcement message. This node waits for a timeout period {Action E.Ol) and at

timeout, sets itself a clusterhead forming its own cluster.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13960

Figure 4.6. Final Network o f Figure 4.5 after Clustering.

Consider the network as shown in Figure 4.5. The elusterheads 60 and 140 are at a

distance o f six hops from each other. The elusterhead election messages travel at most

two hops. So, no clusterhead announcement messages reach node 6. Node 6 waits for a

timeout interval and elects itse lf as a clusterhead. Now, the network has three clusters as

shown in Figure 4.6. Therefore, there cannot be two elusterheads at a distanee o f six

hops from. Q

Lemma 4.5 All elusterhead election messages follow a loop-free path.

Proof: As ^ qx Assumption 3.4, every link is bi-directional. In the elusterhead election

module, it was made sure that the elusterhead election messages traverse at most one hop

before being discarded (a non-clusterhead node can be at distanee o f at most two hops

from its elusterhead). So, there is a fair chance that a message generated by a node

reaches itself in at most two hops forming a loop. For example, consider a network o f

four nodes as shown in Figure 4.7.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

10 20 '<

" 2 ,4 . 40

Figure 4.7. A four-node Network.

If the loop length is two, then the message would bounce between the two nodes, e.g.,

following the path 1.1 and 1.2. But another constraint, strictly implemented in every

action, states that the message is not sent back to the neighbor that has delivered it. Thus,

the message does not use the path 1.2 after it reaehes node 20 from node 10.

If the loop length is three, then the message would cycle among three nodes, e.g.,

following the path 2.3, 3.4, and 4.2. But since a message ean traverse at most one hop

before being discarded, the node 40 it will not send the message further. So, the path 4.2

will not be used. O

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

GATEWAY ELECTION ALGORITHM

A gateway node must be connected to more than one cluster. This is implemented by

cheeking if the node has at least two neighbors that belong to different clusters. A

gateway updates its routing table according to the changes made in the bordering

elusterhead tables and when it reeeives a message from a node whose entry does not exist

in its table. If a gateway has to play the role o f a elusterhead, it ean do so without making

any changes in its table entries [14]; it will be updated later when new nodes jo in or leave

[16], but the number o f tables it now holds is changed.

Gateway Election Algorithm contains the actions related to selection o f gateways

among the nodes in the cluster, and creating or updating entries in the gateways’ tables

used for inter-eluster routing. Section 5.1 explains the additional predicates used in the

algorithm (that were not used in elusterhead election). In Seetion 5.2, we give a brief

deseription o f the messages used to elect a gateway. Section 5.3 ineludes the detailed

deseription o f the actions performed upon reeeiving the gateway election messages

followed by the complete code o f the proposed algorithm. W e provide proof o f

correctness o f this module in Seetion 5.4.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Predicates

Predicate is_BC{i) = {is_CH(f) a j g GC_TABLE(/)) is true if j is a elusterhead

and is a member o f i’s intra-eluster table. If this predicate is true, then j is a clusterhead

o f a cluster connected to the gateway i.

5.2 Messages

Message GW_ANN contains the following fields: sender, dest, path (path from the

sender to the current node), and hops.

Message G contains the following fields: sender, dest, and hops.

5.3 Algorithm

A gateway node periodically does the following: It cheeks if there exists another

gateway node in its two hop distance that at least conneets the clusters connected by

itself. If one exists, it relinquishes its role as a gateway by updating its g.i variable and

sending a G W REJ message. It checks if there exists another gateway in two hop

distance that conneets the same clusters. If it finds one, it compares its own ID with it. If

it has a smaller ID, then it relinquishes its role as a gateway by updating its g.i variable

and sending a G W RE J message,. In our module. Action G.Ol takes care o f it.

Upon receiving GW _ANN message (Action G.02): I f the node is a clusterhead as well

as the destination node, it updates its inter-eluster table. If the node is a gateway, it

eheeks if there exists another gateway node in its two hop distance that at least connects

the clusters connected by it. If it finds one, it relinquishes its role as a gateway by

updating g.i and sends a G W_REJ message. If there exist another gateway in two hop

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distance that connects the same clusters, it compares its own ID with it, and if it has a

lesser ID value, it relinquishes its role as a gateway by updating g.i and sends a G W REJ

message. If the distance from the sender to its neighbors is within two hops, a node

updates the hop count and forwards the message to all its neighbors.

Upon receiving G W R E J message (Action G.03): If the node is the destination

clusterhead and contains the sender's ID as its bordering gateway node, it removes all

such rows containing the sender's ID in the G W field o f its tables. If the distance from

the sender to its neighbors is within two hops, a node updates the hop count and forwards

the message to all its neighbors.

Predicates:

/s_eC (i) = (/s_CH(j) A j G GC_TABLE(0)

G.Ol Timeout —>

i/(/s_G (i)) then
j / (3 j G N(a 3] g Nf A is_G{i)) then

//(GC_TABLE(i) C GC TABLEÜ)) then
g.i = F
send GW REJilDi, k, 0) \ / k G is_BC{CH)

else
i/(G C TABLE(i) = = GC TABLEÜ)) then

//(ID .i < ID.j) then
g.i = F
send GVJ_REJ(iDi, k. 0) V k e /s_SC(CH)

else
do nothing

G.02 Receive GH/ ANN (sender, dest, path, hops) from nb ->

i f (hops <2) then
if (dest = ~ ID.i A is_CH{i)) then

update CG TABLE (sender, sender, nb)
else // i f the current node is not the destination and a clusterhead
i/(/s_G (i)) then

//(G C TABLE(i) = = GC TABLE(sender)) then
i f (ID.i < sender) then

g.i = F
send GW REJ (ID.i,i,0) Vj e /s_BC(i)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (hops = = 0) then
send GW ANN (sender, j, path, t) V j e n / / nb

else
if (hops = = 1) then

send GW ANN (sender, j, path, 2) V j e n / / nb
hops ++

else // i f hops !=0 or hops !=1
ignore the message

G.03 Receive 6H/ REJ (sender, dest, hops) from nb —>

if (hops <2) then
if (dest = = \D.i A is_CH(i) a sender e is_BC(i)) then

remove rows from CG TABLE
i f (hops = = 0) then

send GW^REJ (sender, j, f) V j e n / / nb
else
i f (hops = = 1) then

send GW REJ (sender, j, 2) V j g N j / nb
hops ++

else H i f hops !=0 or hops !=!
ignore the message

5.4 Proof o f Correctness

Lemma 5.1 A node with at least one neighbor that belongs to a different

cluster becomes an eligible gateway node.

Proof: We prove this lemma by contradiction. Suppose that there exists a gateway

node that has all the neighbors in the same cluster. Then it has connections with the

members o f only one cluster. By definition o f a gateway node, it is clear that a gateway

must connect at least two clusters. I f a node connects two clusters then, it has at least one

neighbor that does not belong to its own cluster.

In Figure 5.1, nodes 10, 20, 30, 40, 50, and 60 are eligible gateway nodes

because all the nodes have at least one neighbor that does not belong to its own

elusterhead. Q

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 60

70

Figure 5.1. Eligible gateway nodes.

Lemma 5.2 If there exist only one link connecting two neighboring clusters then the

eligible gateway nodes on both ends o f the link will he selected as gateway nodes.

Proof: We prove this lemma by contradiction. Suppose the nodes connecting the

clusters are not gateway nodes. But, by the definition o f a gateway and Lemma 5.1, both

the nodes are eligible gateway nodes because both o f them have at least one neighbor that

does not belong to its own cluster. In our module, we eliminate the eligible gateway

nodes becom ing the gateway nodes only if they belong to the same cluster. So, both the

nodes become the gateway nodes that contradict the assumption that they are not the

gateway nodes. Q

Lemma 5.3 If two eligible gateway nodes in a cluster connect the

same set o f clusters, then the node with the higher UID becomes a gateway node.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: An eligible gateway node is allowed to remain a gateway node if and only if it

satisfies the condition that it has no other gateway node in its own cluster connecting the

same clusters it is connecting. This is implemented to avoid the storage o f redundant

data.

50 60

70

Figure 5.2. Eligible gateway nodes after eliminating the gateways connecting the

same clusters.

Considering the network in Figure 5.1, nodes 30 and 40 belong to the same cluster

II and connect the same two clusters: cluster II and cluster 111. In this case, when the

gateway announcement (GW_ANN) message o f node 40 reaehes node 30, it compares its

own ID with that o f node 40 and finds that node 40 has a larger ID and also connects the

same clusters. Then node 30 relinquishes its role as a gateway node and sends the

gateway reject {GW REJ) message to all the clusterheads o f clusters it connects. Actions

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G.Ol, G.02, and G.03 ensure this. Similarly, the eligible gateway nodes 50 and 60 belong

to cluster III and connect the same clusters: cluster II and cluster 111. Following the same

procedure used in cluster II, node 50 relinquishes its role as a gateway node and sends the

gateway reject { G W R E J) message to all the clusterheads o f clusters it connects. Actions

G.Ol, G.02, and G.03 ensure this. Thus, the final gateway nodes are reduced to nodes 10,

20, 40, and 60 as shown in Figure 5.2. Q

Lemma 5.4 Consider two nodes i and j in a cluster c. Assume that Nodes i and j

connect the cluster sets Sj and Sj, respectively. If S, 3 Sj, then i becomes a gateway

node.

Proof: An eligible gateway node is allowed to remain a gateway node if and only if it

satisfies the condition that it has no other gateway node in its own cluster connecting at

least the same clusters it is connecting. This is implemented to avoid the redundant data

storage.

For example, in Figure 5.2, the nodes 20 and 40 belong to the same cluster 11. The

cluster set that the node 20 conneets are: I, II and III where as the cluster set that the node

40 eonnects are: II and III. In this case, when the gateway announcement {GW_ANN)

message o f 20 reaches node 40, it finds that node 20 connects more number o f clusters

including the same clusters it connects. Then node 40 relinquishes its role as a gateway

node and sends the gateway reject {GW REJ) message to all the clusterheads o f clusters

it connects. Action G.Ol, Action G.02 and Action G.03 take care o f this. Thus finally,

nodes 10, 20, and 60 become the gateway nodes as shown in Figure 5.3. Q

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 30

6050

70

Figure 5.3. Final gateway nodes.

Lemma 5.5 All the gateway election messages follow a loop-free path.

Proof: The proof is very similar to that o f lemma 4.5. As per Assumption 3.4, every

link is bi-directional. In the gateway election module, it was made sure that the gateway

election messages traverse at most one hop before being discarded (a gateway node can

be at distance o f at most two hops from its clusterhead). So, there is a fair chance that a

message generated by a node reaches itself in at m ost two hops fonning a loop. Q

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

ROUTE DISCOVERY ALGORITHM

This algorithm is responsible for creating and/or updating entries in the routing tables

in each clusterhead and also the gateways for the inter-cluster routing. Section 6.1

includes an overview o f the algorithm. In section 6.2, we give a brief description o f the

messages used for discovering a route. Section 6.3 includes the detailed description o f

the actions performed on receiving the route discovery messages, followed by the

complete code for the proposed algorithm. The chapter ends with some proofs to support

the module in Section 6.4.

6.1 Overview

Two types o f routing techniques, proactive and reactive, are used to route the packets

within the clusters and between the clusters, respectively.

For routing within the cluster, each clusterhead keeps information in its routing table

about the nodes that belong to its own cluster. This information is collected in the

Module Clusterhead Election (Algorithm) using CL REQ messages. These messages are

periodically sent by a non-clusterhead node to check the status o f its own clusterhead and

the path towards it.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For routing between the clusters, the clusterheads as well as the gateway nodes keep

information o f the gateway-destination and clusterhead-destination pairs, respectively to

reach the temporary destination, which is a milestone in reaching the actual destination.

This data is collected only when there is a need to communicate with the node and stored

in the inter-cluster tables. These tables purge the routes that are unused for a long time

and keep the entries updated. The following subsection explains a step by step flow o f

the algorithm. The step by step flow o f the Algorithm is as follows:

{.Sender checks with its clusterhead if its routing table has an entry for the

destination node that it wants to communicate with. If the clusterhead has an entry,

the sender gets the path from the clusterhead and uses it to communicate.

2.I f the clusterhead's routing table does not have an entry, it checks with the

clusterhead’s gateway table. If it finds an entry, then it uses that route to

communicate.

3. If the clusterhead’s gateway table does not have an entry, then it checks with the

gateway’s cluster tables o f all the bordering gateways for the route. If it finds the

route, it uses that to communicate.

4.The steps 2, 3, and 4 are repeated until the route is found.

6.2 Messages

Message Routedisc has the following fields: sender, dest, tempdest (clusterhead or a

gateway node that might be a milestone in reaching the destination node), path (path

from the sender the message has traveled so far), and seq (sequence number o f the

message that is initiated by the sender).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message me_dest contains the following fields: sender, dest, ch (clusterhead o f the

sender), path (path from the sender to the destination), p a th lch (path from the

destination to the clusterhead o f destination the message has traveled so far), and chd

(clusterhead o f the destination).

Message shortestpath has the following fields: sender, d e s t , ch, and route (path from

the sender to the destination).

Message acA: has the following fields: sender, dest, ch, and path (path from the sender

to the destination).

Message C tablenpda ted has the following fields: node (ID o f the node that can be

communicated with), dest (ID o f the destination gateway node the message is sent to),

and CH (the ID o f the message initiating clusterhead).

Message Gtable updated has the following fields: node (ID o f the node that can be

communicated with), dest (ID o f the destination clusterhead node the message is sent to),

and G W (the ID o f the message initiating gateway node).

6.3 Algorithm

An ordinary node broadcasts a routedisc m essage to all its neighbors in its cluster.

Upon receiving this message, a clusterhead looks in its routing table to see if the entry for

that destination already exists. If it finds one, it immediately acknowledges the sender

with a shortestpath message instead o f waiting for the destination node to respond. If the

routedisc message reaches the destination node, the destination node sends an ack

message to the sender. Once the shortestpath message or the ack message reaches the

sender, it can now start sending data packets following that path. In this module, we

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

followed the clusterhead, gateway, clusterhead path to find the route. W e will now

discuss all the actions in detail.

Upon receiving Routedisc message (Action A.Ol): If the node got the same message

previously, it ignores the message. Else, it updates its sequence table. A clusterhead

does the following: If it is the destination, it sends the ack message back to the sender. If

it is the temporary destination and the destination node belongs to its cluster, it sends the

shortestpath message back to the sender. If the destination as well as the sender does not

belong to its cluster, it updates its inter-cluster table (clusterhead’s gateway table) and

sends the updated message to the bordering gateway nodes. If the destination belongs to

the inter-cluster table, it forwards the message to the corresponding bordering gateway.

I f the destination does not belong to the inter-cluster table, it forwards the message to all

the bordering gateways.

A gateway node does the following: I f it is the destination, it sends the ack message

to the sender and sends a message indicating itself as the destination to its clusterhead. If

it is the temporary destination, it does the following: If the destination belongs to its

inter-cluster table (gateway’s clusterhead table), then it forwards the message to that

particular clusterhead. If the destination is not found in its inter-cluster table, it forwards

the message to all the clusterheads in its inter-cluster table. If the sender is not found in

its inter-cluster table, it updates its table and sends the updated message to all the

bordering clusterheads.

An ordinary node does the following: If it is the destination, it sends the ack message

to the sender and sends a message indicating itself as the destination to its clusterhead. If

it is not the destination, then it forwards the message to all its neighbors.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upon receiving me_dest message (Action A .02): A clusterhead does the following: If

it is the clusterhead o f the destination and the sender does not belong to its inter-cluster

routing table, it updates the table and sends the updated message to all its bordering

clusterheads. A gateway node does the following: If the clusterhead o f the destination is

at one hop distance, it forwards the message. I f the sender does not belong to the inter

cluster routing table, it updates the table and sends the updated message to all its

bordering clusterheads. An ordinary node does the following: If the clusterhead o f the

destination is at one hop distance, it forwards the message.

Upon receiving shortestpath message (Action A .03): A clusterhead does the

following: If the sender does not belong to its inter-cluster routing table, it updates its

table and sends the updated message to all its bordering gateway nodes. If it is not the

destination, then it forwards the message to all the neighboring nodes in the route. A

gateway does the following: I f the sender does not belong to its inter-cluster routing

table, then it updates its table and sends the updated message to all its bordering

clusterheads. I f it is not the destination, then it forwards the message to all the

neighboring nodes in the route. An ordinary node does the following: If it is not the

destination, then it forwards the message to all the neighboring nodes in the route.

Upon receiving ack message (Action A .04): A clusterhead does the following: It

updates its table and sends the updated message to the bordering gateways, and if

required, forwards the message to all its neighbors. A gateway does the following: It

updates its table and sends the updated message to the bordering clusterheads, and if

required, forwards the message to all its neighbors. An Ordinary node does the following:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the clusterhead o f the destination is at one hop distance, it forwards the message to that

particular neighbor.

Upon receiving Ctable u p d a te d message (Action A.05): A clusterhead drops the

message. A gateway does the following: It cheeks if the message is from a clusterhead

whose cluster m em ber is a neighbor. If yes, it updates its inter-cluster routing table. If it

received the message from the sender (if the message’s initiator is its neighbor), then it

forwards the message to all its neighbors. An ordinary node does tbe following: If it got

the message from the sender (if the message’s initiator is its neighbor), then it forwards

the message to all its neighbors. In all other cases, the message is ignored.

Upon receiving Gtable updated message (Action A.06): A clusterhead does the

following: It checks if the message is from a gateway node that is present in its inter

cluster routing table. If yes, it updates its inter-cluster routing table. If it received the

message from the sender (if the m essage’s initiator is its neighbor), then it forwards the

message to all its neighbors. An ordinary node or gateway does the following: If it

received the message from the sender (if the m essage’s initiator is its neighbor), then it

forwards the message to all its neighbors. In all other cases, the message is ignored.

A.Ol Receive Routedisc (sender, dest, tempdest, path, seq) from nb —>

if ({sender, seq) e S EQ T ABLE i)fAg«
drop the message

else
update SEQ TABLE i (sender, seq)

if(is_CH(i)) then
i f (ID. I g path) then

path = path + ID. I
i f (dest = = ID.i) then

send ack (dest, sender, ch, rpath) to nb
else // if the clusterhead is not the destination

i f (ID.i = = tempdest) then
if (dest 6 routingtable i) then

send shortestpath (dest, sender, ch, route) to nb

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else / / i f destination does not belong to the routing table
i f (sender 0 CG TABLE(c/esO) then

update CGtable (latest_GW_in_path, sender, nb)
send Ctable u p d a te d (sender, j, ID.i) V j e is_BG(i) / nb

else
if (dest e CG TABLE) then

send Routedisc (sender, dest, GW(dest), path, seq) to nexthop(dest)
else / / if destination does not belong to the Clusterhead's gateway table

send Routedi.sc (sender, dest, j, path, seq) V j e is_BG(i)
else / / if the current node is not a Clusterhead
if(is_G (i)) then

i f (ID.i 0 path) then
path = path + ID.i

i f (dest = = ID.f) then
send me dest (sender, dest, ch, path, path2ch, chd) to n.i
send ack (dest, sender, ch, rpath) to nb

else //if the current node is not the destination
i f (iD.i = = tempdest) then

if (dest e GC TABLE J) then
send Routedi.sc (sender, dest, CH(dest), path, seq) to nexthop(dest)

else / / i f destination does not belong to the Gateway '.s clusterhead table
send Routedisc (sender, dest, j, path, seq) V j G is_BC(i)

i f (sender g GC TABLE i) then
update GCtahle (latest_CHJn_path, sender, nb)
.send G tablenpdated (sender, j, ID.i) V j e is_BC(i) I nb

else / / Ordinary node
if (ID.i g path) then

path = path + iD.i
i f (dest = = iD.i) then

send me dest (sender, dest, ch, path, path2ch, chd) to n.i
.send ack (dest, sender, ch, rpath) to nb

else
send Routedisc (sender, dest, j, path, seq) V j e n /I nb

A.02 Receive me dest (sender, dest, ch, path, path2ch, chd) from neighbor nb -+

i f (ID.i = = C.i) then / / if the current node is a clusterhead
i f (chd = = ID.i) then / / i f the current node is the clusterhead o f the destination

i f (sender e routingtable i) then
do nothing

else // i f .sender doe.snot belong to its own cluster
i f (sender g CG_TABLE(desf)) then

update CGtable (iatest_GWJnj>ath, sender, nb)
.send C tablenpdated (sender, j, ID.i) V j e is_BG(i) I nb

else // i f the current node is not a clusterhead
if(is_G (i)) then / / i f the current node is a gateway

i f (ID.I g path2eh) then
paM ch = path2ch + ID.I

i f (chd e N /) then / / i f the clusterhead o f the destination is at I hop distance from
the current node

send me dest (sender, dest, ch, path, path2ch,chd) to n.i
i f (sender g GC TABLE i) then

update GCtable (latest_CHJn_path, sender, nb)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

send Gtable updated {sender, j, ID.i) V j e is_BC{i) I nb
else // i f the current node is neither a clusterhead nor a gateway

i f (ID.i g paMch) then
paM ch = paM ch + ID.i

i f {chd G N P then // if the clusterhead o f dest is within one hop from the current node
send me rest {sender, dest, ch, path, paMch,chd) V j e N / l n b

A.03 Receive shortestpath (sender, dest, ch, route) from nb ->

i f (ID.I = = c.i) then / / if the current node is a clusterhead
if (sender g CG TABLE) then

update CGtable (latest_GWJn jrath, sender, nb)
send Ctable updated (sender, j, ID.i) Vj G is_BC(i)

if (dest = = ID.i) then / / if the message is addre.ssed to the current node
do nothing

else H i f the message is not addressed to the current node
send shortestpath (sender, dest, ch, route) V j e (N / A route)/nb

else / / i f the current node is not a clusterhead
if (is_G(i)) then / / i f the current node is a gateway
i f (sender g GC TABLE) then

update GCtahle (latest_CHJn_path, sender, nb)
send Gtable updated (sender, j, ID.i) V j G is_BC(\) / nb

i f (dest - = ID.i) then / / if the message is addre.s.sed to the current node
do nothing

else / / i f the message is not addressed to the current node
.sendshortestpath (sender, dest, ch, route) V j G (# / a route)/nb

else / / i f the current node is neither a clusterhead nor a gateway
if (ID.i ^ dest) then / / if the current node is not the destination

send shorte.stpath (sender, dest, ch, route) V j G (A / A route)/nb
A.04 Receive ack (sender, dest, ch, path) from nb

i f (ID.i = = c.i) then / / i f the current node is a clusterhead
if (dest = = ID.i) then / / if the me.ssage is addre.s.sed to the current node

update CGtable (latest_GW_ln_path, sender, nb)
send Gtable updated (sender, j, ID.i) V j G is_BG(i)

else H i f the message is not addressed to the current node
update CGtable (latest_GW_injpath, sender, nb)
.send Gtable updated (sender, j, ID.i) V j G is_BG(i)
.send ack (sender, dest, ch, path) V j e (N / a route)/nb

else / / i f the current node is not a clu.sterhead
if(is_G(i)) then / / if the current node is a gateway

i f (dest = = ID.i) then / / i f the message is addressed to the current node
update GCtable (latest_CHJnjpath, sender, nb)
send G tablenpdated (sender, j, ID.i) V j G is_BC(i) / nb

else / / i f the message is not addre.ssed to the current node
update GCtable (latest_CHJn_path, sender, nb)
send Gtable updated (sender, j, ID.i) V j G is_BC(i) / nb
.send ack (sender, dest, ch, path) \ / j e (N / A p a t h) / n b

else / / if the current node is neither a clusterhead nor a gateway
if (ID.i ^ dest) then / / if the ciarent node is not the destination

send ack (sender, dest, ch, path) Vj e (N / a path)/nb
A.05 Receive Gtable u p d a ted (node, dest, CH) from nb —>

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i/(/s_C /7(i)) then
drop the message

else / / i f the current node is not a clusterhead
i f (/s_G(i)) then

j/(CH e GC_TABLE(CH,/ncfex) A node e GC_TABLE(node,/ndex) a index >=0
A dest = = ID.i A index < = Highestlndex) then

remove row from GC TABLE
Highestlndex <— Highestlndex - 1

i/(C H e GC_TABLE(CH,/ndex) A node g GC_TABLE(node,/ndex) a index >=0
A dest = = ID.i A index < = Highestlndex) then

Highestlndex <— Highestlndex + 1
GC TABLE update {Higestlndex, sender, dest, nb)

i f (nb = = CH) then
send Ctable updated (node, dest, CH) V j G N / / nb

else / / Ordinary node
if (nb = = CH) then

send Ctable updated (node, dest, CH) V j G n / / nb
else / / in any other case

drop the message

A.06 Receive Gtable updated (node, dest, CW) from nb —>

if(is_CH(i)) then
if(CW G CG TABLE(GI/K index) A (node G CG TABLE(node, index) v node G

routingtable i)) then
remove row from CG TABLE

Highestlndex <— Highestlndex -1
if(CW G CG_TABLE(6M/, index) A node g CG TABLE(node, index) a node g

routingtable i) f/ien
Highestlndex <— Highestlndex + 1
CG TABLE update (Higestlndex, sender, dest, nb)

if(nb = = CW) then
send Gtahle updated (node, dest, CW) V j G A / I nb

else / / Current node is a gateway or an Ordinaiy node
if (nb = = CW) then

send G table updated (node, dest, CW) V j G a / I nb
else / / in any other case

drop the message

6.3 P roof o f Correctness

Lemma 6.1 All messages in the route discovery module follow a loop-free path.

Proof: We will consider the messages individually.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 1 : routedisc message.

Every node has a sequence table that has entries for the sender ID (sender)

and message ID (seq). When a route discovery message arrives, a node checks in its

sequence table for an entry o f the (sender, seq) pair. If it does not find an entry, it copies

the (sender, seq) pair into its sequence table and forwards the message to all its neighbors

except to the neighbor from which it got the message. If it finds an entry, it means the

same message has already been sent to it. So, it discards the message making its traversal

loop-free.

Case 2: me dest messdige.

This message is sent to a node’s own clusterhead and is always sent through

the node that is the next-hop neighbor on the shortest path towards the clusterhead and is

always forwarded to the neighbors from whom it did not get the message from. The

message travels a distance o f at most two hops. So, it can never form a loop.

Case 3 : shortestpath and ack messages.

These messages always follow the reverse o f the routedisc message which is

loop-free as proved in Case 1 above. The reverse o f a loop-free path is always a loop-

free path.

Case 4: Table updation messages.

These messages are always sent to the bordering gateway nodes or clusterhead

nodes and are always sent through the node that is the next-hop neighbor on the shortest

path towards them. These messages are always forwarded to the neighbors from whom it

did not get the message from. The messages travel at most a distance o f two hops. So,

they can never form a loop. Q

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 6.2 If both the sender and destination are in the same eluster, a route

discovery message is always acknowledged.

Proof: When a node generates the route discovery {routedisc) message, it first sends

it to its own clusterhead. Route discovery within a cluster means that the sender and

destination belong to the same cluster. We need to prove the following two results:

Case I: The message reaches the destination before reaching the clusterhead.

Proof: It means that the destination is on the way to the clusterhead from the sender.

In this case, the destination node directly sends the acknowledgement {ack) message to

the sender following the reverse path followed by the route discovery message.

5535

40 45 50

Figure 6.1. M essage reaches the destination node before reaching the clusterhead.

Consider the following example in Figure 6.1. Suppose node 35 is the sender and

node 45 is the destination. Then, when node 35 issues a routedisc message to find the

route to node 45, the message hits the destination node 45 on its way to node 50 which is

the clusterhead. Then node 45 sends the acknowledgement {ack) message to node 35. Q

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case II: The message reaches the clusterhead before the destination.

Proof: All the clusterheads have entries for all the nodes in their intra-cluster table

{routing table as named in our module) that belong to its own cluster. Once the

clusterhead receives the message, it looks in its routing table, attaches the route from

itself to the destination to the path followed by the route discovery message, and sends an

acknowledgement message to the sender using a shortestpath message on the reverse

path followed by the route discovery message.

Consider the following example in Figure 6.2. Suppose node 35 is the sender and

node 45 is the destination. Then, when node 35 issues a routedisc message to find the

route to node 45, the message reaches the node 50 which is the clusterhead. Then node

50 finds an entry in its routing table for node 45 that belongs to its own cluster. It then

sends back the shortestpath message that acts as an acknowledgement message to the

sender node 35 with the complete path from node 35 to node 45. [%]

5535

455040

Figure 6.2. Message reaches the clusterhead before reaching the destination node.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 6.3 For any source and destination (regardless o f their locations), a route

discovery message is always acknowledged.

Proof: The lemma has the following two cases to be proved.

Case I: W hen the sender and destination belong to the same cluster.

Proof: P roof follows from Lemma 6.2. Q

Case II: When the sender and destination belong to two different clusters.

G2 ;

G3 ;

i l l

Figure 6.3. Sender and destination in neighboring clusters.

Proof: W hen a node generates the route discovery (routedise) message, it first sends

it to its own clusterhead. I f the sender and destination do not belong to the same cluster,

the routing information to the destination is not found in the intra-cluster (routing table)

o f the sender'?, clusterhead. Then the clusterhead checks for the destination’s entry in the

inter-cluster table {CG TABLE according to our module). The following two sub-cases

must be proved:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case lia: Sender and destination belong to two neighboring clusters.

Proof: In Figure 6.3, suppose A is the sender and D is the destination node. If the

clusterhead C l, finds the destination’s entry in its inter-cluster table, it forwards the

message to the corresponding gateway G1 that in turn forwards the message to the

clusterhead C2 looking at the entry in its inter-cluster table {GC TABLE according to our

algorithm). C2 then acknowledges the routedisc message by looking at the entry o f

destination in its routing table with the shortestpath message. Q

Case lib: Sender and destination do not belong to neighboring clusters.

Proof: In Figure 6.4, suppose A is the sender and D is the destination node. If the

clusterhead C l, does not find the destination’s entry in its inter-cluster table, it forwards

the message to all the bordering gateway nodes: G1 and G3. These nodes look into the

entry in their inter-cluster table {GC TABLE according to our algorithm) and if no entry

is found, forward the message to all the clusterheads whose clusters are connected by

these gateway nodes. Only C3 receives the message from both the gateway nodes in our

example. The redundant messages are eliminated by Lemma 6.1. C3 in turn ehecks in its

routing table if the entry for the destination exists and finds no entry. It then checks in its

inter-cluster table and if it does not find an entry, forwards the message to all the

bordering gateway nodes except the one from which it got the message. Thus the

message reaches the gateway node G2 and then finally reaches the destination’s

clusterhead node C2 following the same procedure. C2 then finds an entry for the

destination node D in its intra-cluster table. C2 then acknowledges the sender o f the

routedisc message with the shortestpath message. Q

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G 3

Figure 6.4. Sender and destination in non-neighboring clusters.

Lemma 6.4 If a node moves to another cluster, the route discovery algorithm

will be able to find the node in finite time upon a request.

Proof: When a node is in a eluster, it periodically acknowledges a clusterhead that it

is still in the eluster. When the node moves out o f the eluster, the clusterhead waits for a

timeout interval, then removes all the rows with this node as destination from its intra-

and inter-cluster routing tables, and updates the same to its boundary gateway nodes so

that they can remove the rows from their inter-cluster routing tables. Once the node

moves out o f a eluster, the following two cases arise;

Case I: The node joins another eluster.

Proof: It acknowledges the new clusterhead's CL_ANN message with a

CH ACCEPT message that it joined its cluster, and the new clusterhead updates its entry

in its intra-eluster routing table.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Figure 6.5. A two-cluster network before node 100 moves.

Consider Figure 6.5 that shows the nodes in two clusters before the node

mobility occurs. Suppose node 100 moves to cluster I. Assume that the network changes

to the one shown in Figure 6.6 due to this movement. Now, lOO’s routing information is

erased from the intra-cluster routing table o f node 50 and node 200 enters a new row in

its intra-cluster routing table. Suppose node 250 wants to communicate with node 100.

It sends the routedisc message to its clusterhead node 50. Node 50 does not find an entry

in its intra-cluster table for node 100. It then checks its intra-cluster table and finds no

entry for node 100. It then broadcasts the message to all its bordering gateways (in this

case only node 60). Node 60 does not find an entry in its inter-cluster routing table.

10020045

Figure 6.6. The network o f Figure 6.5 after node 100 moves.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It would have purged the rows having node 60 in them after receiving the update

message from the previous clusterhead 50. Node 60 broadcasts the message to all the

clusterheads whose clusters it connects (in this case, only node 200). The message

reaches the destination node 100 on its way to node 200. Then the node 100 sends an

acknowledgement message to node 250 by following the reverse path (similar to Case 2

o f Lemma 6.3). The route is thus discovered. Q

250

100'

Figure 6.7. A single cluster network before node 100 moves.

Case 11: The node itself becomes the clusterhead because it is not in two-hop distance

from any clusterhead.

Proof: Action E.OJ makes sure that the node becomes a clusterhead o f its own.

Figure 6.7 shows the nodes in the network before any node moves. Suppose the network

looks like Figure 6.8 after the node moves. Assume that node 250 wants to communicate

with node 100. It sends a routedisc message to its clusterhead node 50. Node 50 does not

find an entry in its intra-cluster table for node 100. It then checks its intra-cluster table

and finds no entry for node 100. It then broadcasts the message to all its bordering

gateways (in this case, only node 60). Node 60 does not find an entry in its inter-eluster

routing table. It would have purged the rows having node 60 in them after receiving the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

update message from the previous clusterhead 50. Node 60 broadcasts the message to all

the clusterheads whose clusters it connects (in this case, only node 100). Then the node

100 sends an acknowledgement message to node 250 by following the reverse path

(similar to Case II o f Lemma 6.3). The route is thus discovered. | |

250

Figure 6.8. The network o f Figure 6.7 after node 100 moves.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSION

We have presented a route discovery algorithm for MANETs based on link-cluster

architecture. The algorithm selects the clusterheads and gateway nodes, and then builds

routing tables for nodes both inside and outside the cluster. The proposed protocol

guarantees that in a finite number o f steps, the network is divided into clusters. The

algorithm attempts to minimize the number o f clusterheads and gateway nodes to avoid

storing redundant data. For intra-cluster routing, the shortest paths are maintained. For

inter-cluster routing, we implement routing on-demand (the shortest paths are maintained

only for the nodes that need to send packets). The proposed algorithm adapts to arbitrary

movement o f nodes, and joining and/or leaving o f existent nodes.

There are ample opportunities to explore several issues related to the topic o f this

thesis. This work includes the discovery o f a route, forward path set-up, and path

maintenance. One can study the next few steps o f the complete routing that include

reverse path set up and the actual data transmission. This thesis is implemented

considering a single-layered cluster network. Performance can be improved by using a

hierarchical structure.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] D. J. Baker and A. Ephremides, A Distributed Algorithm for Organizing Mobile

Radio Telecommunication Networks. Proceedings o f the Second International

Conference on Distributed Computer Systems, April 1981, 4 7 6 ^ 8 3 .

[2] D. J. Baker and A. Ephremides. The Architectural Organization o f a M obile Radio

Network via a Distributed Algorithm. IEEE Transactions on Communications, C O M -

29(11); 1694-1701, November 1981.

[3] G. G. Chen, J. W. Branch, B. K. Szymanski. Self-selective routing for wireless ad

hoc networks. Wireless And M obile Computing, Networking And Communications, 2005.

(WiMob'2005), W EE International Conference. 22-24 August 2005.

[4] C. C. Chiang. Routing in Clustered Multihop, Mobile Wireless Networks.

Proceedings o f the ICOIN, 11, 1996.

[5] C. C. Chiang, H-K Wu, W inston Liu, and Mario Gerla. Routing in Clustered

Multihop, Mobile W ireless Networks. The IEEE Singapore International Conference on

Networks, pp. 197-211, 1997.

[6] S. R. Das, C. E. Perkins, and E. M. Royer. Performance Comparison o f Two On-

demand Routing Protocols for Ad Hoc Networks. Proceedings o f INFOCOM 2000,

March 2000.

[7] A. Ephremides, J. E. W ieselthier, and D. J. Baker. A Design Concept for Reliable

M obile Radio Networks with Frequency Hopping Signaling. Proceedings o f the IEEE,

75(l):56-73 , January 1987.

[8] M. Gerla and J. T. C. Tsai. M ulticluster, Mobile, M ultimedia Radio Network.

Wireless Networks, l(3):255-265, October 1995.

[9] T. Johansson, L. Carr-Motyckova, Bandwidth-constrained Clustering in Ad Hoc

Networks, Proceedings o f The Third Annual Mediterranean A d Hoe Networking

Workshop, Bodrum, Turkey, 27-30 June 2004, 379-385.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] Y.B. Ko and N.H. Vaidya, Location-aided routing in mobile ad hoc networks.

Technical report 98-012, Texas A&M University (1998).

[11] S. J. Lee, C. K. Toh, and M. Gerla. Perfom iance Evaluation o f Table-Driven and

On-Demand ad hoc routing protocols. Proceedings o /IE E E PIM RC'99, pp. 297-301,

September 1999.

[12] C. E. Perkins and E. M. Royer. Ad-Hoc On-Demand Distance Vector Routing.

Proceedings o f the Second Annual IEEE Workshop on M obile Computing Systems and

Applications, February 1999, 99-100.

[13] S. J. Philip, J. Ghosh, S. Khedekar, and Chunming Qiao. Scalability analysis o f

location management protocols for mobile ad hoc networks. Wireless Communications

and Networking Conference, 2004. WCNC. 2004 IEEE, Department o f Computer science

and Engineering., State University o f New York, Amherst, NY, USA. 21-25 March 2004

[14] R. A. Ponce, Ashok Kumar, J. L. T. Xihuitl, and M. Bayoumi. Autonomous

Decentralized Systems Based Approach to Object Detection in Sensor Clusters*.

lEICE/IEEE Joint Special Section on Autonomous Decentralized Systems. lElCE

Transactions on Communications. E88-B(12):4462-4469, 2005.

[15] E. M. Royer and C. K. Toh. A Review o f Current Routing Protocols for Ad hoc

Mobile Networks. IEEE Personal Communications, 6(2);46-55, April 1999.

[16] Zheng Kai, Wang neng, and Liu Ai-fang. W ireless Communications,

Networking, and MobileComputing. Proceedings 2005 International Conference.

Department o f Computer Science, East China Normal University, Shanghai, China. 23-26

September 2005.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University o f Nevada, Las Vegas

Shashirekha Yellenki

Home Address:
939 E.Flamingo Rd Apt #35
Las Vegas, NV 89119

Degrees;
Bachelor o f Technology, Computer Science, 2004
Jawaharlal Nehru Technological University, India.

Thesis Title; Cluster-Based Route Discovery Protocol

Thesis Examination Committee;
Chairperson, Dr. Ajoy K. Datta, Ph.D.
Committee M ember, Dr. Yoohwan Kim, Ph.D.
Committee Member, Dr. John Minor, Ph.D.
Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Cluster-based route discovery protocol
	Repository Citation

	tmp.1534462568.pdf.QJTHw

