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ABSTRACT

The Relationship Between Project Characteristics 
and the Expert Estimation of Software 

Development and Maintenance
by

John Farrish

Dr. Ken Peffers, Examination Committee Chair 
Professor of Management Information Systems and Department Chair 

University of Nevada Las Vegas

Accurately estimating the amount of time and effort required to complete a 

software development or maintenance project has proven problematic for business. A 

wealth of literature exists exploring each of the methods for estimating software 

development, but very little is devoted to tmderstanding how project characteristics relate 

to estimation accuracy. This research examines expert estimation, the most widely used 

estimation technique, to determine the relationship between software project 

characteristics and estimation accuracy. Implications of the findings for research and 

practice are discussed.
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CHAPTER 1

INTRODUCTION

Estimating the cost in time, effort, and money required to develop software has 

been very problematic for businesses over the years. Early methodologies developed for 

estimating these costs have not improved much in the last twenty years; yet increasing 

estimation accuracy can mitigate risk more than any other cost-related parameter 

(Pfleeger, et. al., 2005). Software development, which involves a great number of related 

factors that have an effect on project outcome and forecasting accurately, has proven 

difficult because many of these relationships are still not well understood (Finnie, et. al., 

1997).

Much research has been devoted to understanding why this is so. For the most 

part, this research has centered on the individual estimation methods and whether they 

produce accurate results. The greater part of current research has not taken into account 

the type of project being developed; it has looked at estimation techniques, irrespective of 

the size and scope of the project being estimated. The author can find little, if any, 

evidence that research has been devoted to determining whether certain project 

characteristics have an effect on software development or maintenance estimation 

accuracy.
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There are four major reasons why software cost estimates are generally inaccurate 

(Kemerer, 1991). The first is that developing an accurate estimate is a quite complex task 

that involves a great deal of effort that most people are not willing to make. The second 

is that most of the people generating the estimates do not have a great deal of experience 

at developing these estimates, especially for larger projects. The third is that there is a 

natural human tendency to underestimate the amount of effort required to complete a 

task. The fourth problem is that managers will often ask for an estimate when what they 

really want is a goal and employees know this. When the third and fourth problems are 

combined, the results can sometimes be disastrous.

This problem is of importance because both underestimating and overestimating 

the time and effort required to develop software have negative implications for an 

organization. If development projects are underestimated, they are often released 

prematurely because a budgetary limit has been exceeded (if indeed they are released at 

all). These projects tend to be rife with errors and omissions and are rarely tested 

properly (Kemerer, 1987). Underestimating can also tie organizations to projects that 

would never have been undertaken had the true costs been known while robbing them of 

functionality while systems are offline.

Overestimating projects also has negative consequences. Inflating the estimated 

cost in either time or money may actually cause the project cost to rise as work expands 

to fill the time or budget allotted to it. Overestimated projects also tend to fall prey to 

scope creep as developers take the extra time and money given them and add unnecessary 

bells and whistles (Kemerer, 1991). Most importantly, overestimation may cause
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projects possessing a real potential for benefit to be rejected as being too expensive 

(Vicinanza, et. al., 1991).

The numbers are well known to anyone involved with information systems; the 

overwhelming majority of software development projects fail to finish on time and within 

budget. As of twenty years ago nearly fifteen percent of all development projects were 

abandoned altogether prior to completion due to cost overruns (Jones, 1986); the numbers 

have not improved significantly since (Briand, 1998 and Jorgensen, 2004).

There are essentially two major types of estimation techniques; model-based and 

expert-based (Menzies, et. al., 2006), each of which can be broken down into smaller 

sub-groups. Of interest to this study are the expert-based techniques. Expert estimation 

was chosen because it enjoys, by far, the most widespread use of any of the major 

estimation techniques (Briand, et. al., 1998). This study will examine expert estimation 

of software development and maintenance projects to see which project characteristics 

have an effect on effort and duration estimation accuracy.

The methodology will involve the examination of one new and two existing data 

sets. The data will be analyzed using linear and logistic regression techniques as well as 

by a comparison of means. The results will extend the current literature by showing 

which project characteristics have a demonstrable effect on effort estimation accuracy, 

duration estimation accuracy, or both. This information will be value to any organization 

involved in the maintenance or development of software systems.
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CHAPTER 2

LITERATURE REVIEW

The literature review surveys the current state of thought about the major 

estimation techniques and their effectiveness. There exist essentially two different types 

of software cost estimation techniques: model-based and expert-based (Menzies, et. al., 

2006). These two techniques can be further broken down into seven distinct subgroups 

(Boehm, 1984). Each of these techniques involves making decisions in conditions of 

uncertainty and each seeks to mitigate the inherent risk through the use of economic 

analysis. Some of these analytic techniques concern themselves with making decisions in 

conditions of complete imcertainty, but are not practical for software engineering 

problems. There are two other analytic processes that can be of value, however, and it 

will be useful to examine them before proceeding further.

The first is the expected value technique which estimates the cost of both success 

and failure and figures the probability of each occurring. The expected value can then be 

determined mathematically in this fashion:

EV = Prob(success) * Payoff (successful OS) + Prob(failure) *

Payoff (unsuccessful OS) (Boehm, 1984)

Expected value techniques are better than estimating in conditions of complete 

uncertainty, but there is still a great deal of risk involved if the probability of failure is
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underestimated as this will consequently lower the cost of failure in the above equation 

(Boehm, 1984).

The second type of economic analysis involves the buying of information. 

Prototyping is the most common form of information buying (Sparling, 2003). 

Prototyping allows a developer to have a greater understanding of high risk elements of a 

development project before getting too deeply involved. The buying of information does 

beg the question, however: how much do you invest and at what point do you have so 

much invested in the buying of information that there is a great deal of pressure generated 

to proceed with an otherwise untenable project?

Each of the seven cost estimation techniques uses one or more of these economic 

assessment tools to a greater or lesser extent. What follows is a brief examination of each 

of these techniques, paying special attention to the expert-based models.

Algorithmic Models

Algorithmic models involve the use of algorithms that generate a cost estimate 

that is determined by identifying tlie variables that are seen as the primary (and 

sometimes secondary) cost drivers (Boehm, 1984). Algorithmic models have the 

advantage of being objective (for the most part) and repeatable (McConnell, 2006). Their 

objectivity is limited, however, by the subjectivity of the inputs. Algorithmic models are 

also efficient and objectively aligned to experience, but experience represents past 

performance which may not be an indication of future results.
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Table 1

Estimation Techniques: Advantages and Limitations

Method Citation Advantages Limitations

Model-based

Lines o f  Code McConnell (2006) 
Boehm (1984)

•  Objective
•  Repeatable

•  LOC estimate 
generated early in 
process

•  N o consideration o f  
CASE tools, etc.

Putnam SLIM Putnam (1978, 1982) •  Can be calibrated to 
past projects

•  Allows for benchmarks, 
cash flow, etc.

•  Asserts trade-off 
between effort and 
time

•  Relies on early 
estimate o f  LOC

COCOMO Boehm (1984) •  Fairly detailed estimate 
with reasonable effort

•  Accounts for 15 cost 
drivers

•  Relies on early 
estimate o f  LOC

Function Point 
Counting

Albrecht (1979, 1984) •  Function points easily 
determined through 
requirements elicitation

•  Easily understood
•  Independent of 

technology

•  Classification o f  
system components 
overly simple

•  May underestimate 
system complexity

Expert-based
Expert
Estimation

Paynter (1996)
Hihn and Habib-Agahi 
(1991)

•  Considered to be as 
accurate as more 
expensive techniques

•  Less time consuming

•  Based on intuition 
rather than fact

•  Relies on 
availability o f  
expert

Analogy Pfleeger, et. al. (2006) 
Vicinanza, et. al. (1991)

•  Compares estimated 
project to known 
quantity

•  Easy to account for 
dissimilarities between 
analogues

•  Requires detailed 
case knowledge and 
expert estimator

•  Compares present- 
day project to past 
development

Work
Breakdown
Structures

Jorgensen (2004) 
NASA (2002)

•  Creates small parts 
easily estimated

•  Easily adaptable

•  Resource intensive
•  Requires detailed 

specifications
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Algorithmic Models -  Lines of Code (LOC)

One of the oldest methods for estimating the amount of effort required to develop 

a piece of software involves determining the number of lines of code required to write the 

software. This is essentially a two step process (Heiat and Heiat, 1997). The first step 

involves estimating the number of lines of code required for the information system. The 

second step requires the calculation of total effort using a formula based on historical data 

from previous projects. This formula is of the form:

EFH = c(LO C f

where EFH is the estimated effort in person-hours, weeks, or months, c and k are 

constants, and LOC is the estimated number of lines of code in the proposed application 

(Boehm, 1984). The limitations of this approach seem obvious.

The first is that the entire process depends on an estimate of the total lines of code 

required that is generated very early in the development process. This estimate is almost 

always based on the experience of expert estimators. A second problem is that the LOC 

model does not consider certain resources available to the development team like CASE 

tools and the experience of the team itself (Jones, 1986). Finally, and most importantly, 

the LOC method does not necessarily provide accurate estimates even if the design 

requirements are specified in detail. Conte, et. al. (1986) provided several experienced 

project managers with detailed design specifications for sixteen already completed 

projects. Each manager was asked to estimate the system size in lines of code; each 

consistently imderestimated the actual system size.
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Algorithmic Models - The Putnam SLIM Model 

The Putnam SLIM model is actually a software application available 

commercially from Quantitative Software Management, Inc. It is based on L. H. 

Putnam’s analysis of the software development life cycle and focuses on the number of 

project personnel and the time allotted to them. The basic mathematical model used in 

SLIM is

where

Ss = number of delivered source instructions 

K = life-cycle effort in person-years 

td = development time in years

Ck= a “technology constant” (Putnam, 1978)

Values for Ck can vary widely, ranging from about 600 to over 57,000, and it can be 

either calibrated to past projects or estimated as a function of modem programming 

practice use, to reflect hardware constraints and/or personnel experience, and certain 

other factors. The SLIM model also contains extensions that allow the estimator to 

determine projections for manpower distribution, cash flow, benchmarks, and 

documentation costs (Putnam, 1982).

SLIM is not without its critics, however. The most contentious assertion SLIM 

makes is that there exists a trade-off relationship between development effort and 

development time (i.e., K is directly related to td). The primary SLIM equation (from 

above) tells us that

K = constant / t"*d-
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According to this equation it would be possible to cut the cost of a software 

development project in half by increasing its development time by 19 percent (Boehm, 

1984). This notion seems counterintuitive. It would seem apparent that the cost of any 

project would increase, not decrease with time. Taken to its logical extreme, this would 

mean that a project of infinite duration would have zero cost.

Algorithmic Models -  COCOMO 

Like LOC and SLIM, the constructive cost model (COCOMO) represents one of 

the earlier attempts to create an algorithmic method for estimating development times, 

and it has enjoyed fairly widespread popularity. Developed by Barry Boehm for TRW, 

COCOMO’s primary motive is to draw a clear connection between management 

decisions in the commissioning and development of software and the consequences of 

those decisions.

COCOMO is actually three different models, each of which generates an 

increasingly detailed estimate and the first and third of which are rarely used. The first, 

which provides a single macro-estimation, does not provide quite enough information to 

be of a great deal of use as it provides an overly generalized picture of the project 

(Boehm, 1984). The third model provides a micro-estimation that includes a three-level 

work breakdown structure and an array of what Boehm calls “cost driver attributes,” each 

of which takes on a different value depending on the phase of the development process. 

This is a very detailed process that requires a great deal of study and expert analysis. 

Because of its unwieldy nature, very few estimators utilize this third approach.
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The second of the three models, however, provides a reasonably detailed estimate 

without requiring too much detailed effort. This model consists of four steps. The first 

step involves estimating a nominal development effort based on the project’s size as 

measured in thousands of delivered source instructions (KDSI). In other words, it begins 

by estimating lines of code.

The second step involves the creation of a set of “effort multipliers” that are based 

on the project’s ratings on Boehm’s set of fifteen cost driver attributes. These attributes 

include product attributes, computer attributes, personnel attributes, and project 

attributes. The next step then generates the estimated development effort by multiplying 

the nominal effort estimate by the project’s effort multipliers. Finally, additional factors 

are used to determine costs, development schedules, labor distributions, maintenance 

costs, and other such sundry estimates.

Each of these algorithmic models shares one serious limitation; they all rely on an 

estimation of lines of code as a starting point for the estimation process. This reliance 

has two drawbacks. First, the estimation of lines of code can only be, at best, an educated 

guess. Like expert estimation, the quality of this guess is dependent upon the abilities of 

the person making the guess (Conte, et. al., 1986). Therefore, an inexperienced project 

manager might very easily make a flawed judgment at the very beginning of the 

estimation process. Second, the idea that lines of code is the best predictor of project 

effort requirements is outdated (Hihn and Habib-Agahi, 1991). There exists an entire 

array of tools available to developers to mitigate the necessity for writing code; not one 

of these algorithmic methods really takes this into account.

10
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Algorithmic Models - Function Point Counting 

In order to address some of the concerns A. J. Albrecht developed an alternate 

methodology for determining the amount of work effort in a given project. Albrecht’s 

approach is to “list and count the number of external user inputs, inquiries, outputs, and 

master files to be delivered by the development project (Albrecht, 1979).” These factors 

represent all the functions of any given application. Each of these functions is then given 

a numerical weight that corresponds to its value to the user. The weighted sum of these 

inputs and outputs is known as function points.

One of the advantages of this approach is that function points are easily 

determined as a result of the requirements elicitation process. Hence, they are uncovered 

at an early stage of development and they are far more easily understood by end users 

(Albrecht and Gaffney, 1983). Each of the different types of function points is ranked as 

simple, average, or complex and is weighted according to a mathematical formula. These 

“unadjusted function points” are then multiplied by a “technical complexity factor” to 

arrive at a final number of function points. This final number has no dimensions; it is 

simply a measure of system size that can be related to other systems that have also been 

measured in terms of function points.

Function points are effective as a measurement of system size because first, the 

measure is based on an external view of the system and is independent of technology. 

Second, the measure is determined early in the SDLC which allows for the use of 

function points in the estimation process. Finally, function points are easily understood, 

even by non-technical users (Albrecht, 1984).

11
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Still, there are drawbacks to the function point approach. The classification of 

system component types as simple, average, or complex seems overly simple (Symons, 

1988). A system component of many hundreds of data elements has, at most, only twice 

the weighted complexity of a simple component. Second, it is possible that the function 

point counting method underestimates the complexity of systems which are complex 

internally and have larger numbers of data elements (Kemerer, 1993).

Despite these drawbacks, function point analysis would seem to have significant 

advantages over methods previously discussed. First, there is very little subjectivity 

involved; very few value judgments have to be made. Inputs and outputs are just that; 

lines of code become almost irrelevant. Hence, the necessity for basing an estimate on an 

educated guess is eliminated. Also, the ease with which function points are understood 

not only brings non-technical people into the development process, it also makes it 

possible for less experienced project managers and developers to make vital 

contributions. It has also been determined that reassessing the function point counts at 

critical junctures in the development process can yield extremely valuable information 

for evaluating design and implementation efficiency (Orr and Reeves, 1999).

It is also critical to note that fimction points can be used to estimate the 

complexity of a given system. It stands to reason that the greater the number of inputs, 

outputs, etc. that a system has to process the more complex that system will be. The fact 

that function points have no units or dimensions also makes them fairly simple to use. 

Closely related to function point counting is widget counting which, instead of 

identifying input, outputs, etc., it identifies repeated characteristics of system 

development (“widgets”) and assigns a complexity factor to each (Kitchenham, 2002).

12
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Experience is used as a guide to determining how much effort will be required to produce 

each widget and all widget estimates are summed. Estimates of effort for supporting 

tasks are then added to the widget sum, and an overall estimate is arrived at.

Expert Estimation

Expert estimation (or judgment) involves an experienced developer making an 

educated guess about the length of time and/or amount of effort necessary for a particular 

development or maintenance project. A significant portion of the estimate must be based 

on intuition. While this might not seem to be the best way of estimating development, 

the overwhelming majority of development projects use this technique. Many studies 

back this up; one study done at the Jet Propulsion Laboratory found that 83% of 

estimators used “informal analogy” as their primary estimation technique (Hihn and 

Habib-Agahi, 1991). An investigation into software development practices in the 

Netherlands found that 62% of organizations that produced development estimates did so 

based on “intuition and experience” (Heemstra and Kusters, 1991). Paynter (1996) 

determined that fully 86% of software development organizations in New Zealand based 

their estimates on expert estimation.

Expert estimation is used quite a bit because the preponderance of opinion is that 

the estimates generated are as good as those generated by other, more expensive and 

time-consuming models. The literature seems to bear this out. Vicinanza, et. al. (1991) 

compared the estimation accuracy of five software professionals with that of estimation 

models using both function points and the constructive cost model (COCOMO) and

13
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found that the expert estimators had both the most and least accurate estimates but were, 

on average, more accurate than the models.

Expert Estimation by Analogy or Case-Based Reasoning

The next estimation method to be discussed involves analogical or case-based 

estimation. Simply put, analogical problem solving involves examining the current 

problem (or target) and relating it to some similar, previously solved problem (the 

source). Both analogy and the next method to be examined, work breakdown structures, 

are really subsets of expert estimation. Expert estimation involves an expert’s 

comparison of a current project with a similar project in his or her own past. Analogy 

simply formalizes this process. The analogy is formalized when the similarities between 

the target and the source are both real and demonstrable within the same problem context. 

The problem solver must retrieve, either from memory or through research, several cases 

similar to the target and analyze them for similarities. The most appropriate one is then 

selected as the source (Pfleeger, et. al., 2005).

The formalized analogical process involves breaking the analysis into five distinct 

parts (Vicinanza, et. al., 1991). The first step requires the acquisition of knowledge and 

the appropriate representation of same. The second step requires the selection of 

candidate analogous cases for examination. The third step is known as source-target 

mapping. During this process both the similarities and differences between the source 

and target are carefully cataloged. Fourth, the solution is transferred based on the chosen 

source. Finally, the solution is adjusted based on the dissimilarities between the source 

and target as noted in the third step.

14
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Vicinanza, et. al. (1991) also identified three distinct classes of knowledge that 

are necessary to develop effective analogical estimates. Case knowledge, which 

represents the estimator’s episodic memory of previously encountered development 

projects, is the first of these. Second, case selection knowledge is the type of knowledge 

which allows the estimator to choose the appropriate source. Finally adjustment 

knowledge allows the estimator to make the proper adjustments to the estimate as noted 

in step five. These three knowledge types point out one of the great limitations of 

analogical estimation, namely, it has to be done by a highly experienced developer for it 

to have any validity. These people are often difficult to locate. Even if they are found, 

they need to have experience in the same type of environment as the target project.

Also, analogical estimation compares a present day project to something that has 

happened in the past and the development environment can change dramatically in a 

short time. Analogies look only at the end product, not the outlying factors involved. 

Advances in programming such as better CASE tools and increases in component usage 

can significantly shorten development time (Sparling, 2000). This could lead to a 

significant overestimation of development time.

Expert Estimation - Work Breakdown Structures 

There are two major types of work breakdown models for software development 

estimation: bottom-up and top-down. The bottom-up method involves the 

decomposition of a project into smaller constituent parts and then estimating each of 

those parts separately (Jorgensen, 2004). Each of these smaller parts may be estimated in 

any of the ways mentioned previously, but the usual practice is to create parts small

15
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enough to be estimated easily by an expert. The individual estimates generated are then 

combined to create one overall estimate for the entire project.

The bottom-up process is essentially a two-step process involving first 

decomposition and then integration or reconstitution. One of the advantages to this 

approach is that it may make explicit many system-level tasks that are often ignored in 

other methods (NASA, 2002). These tasks include integration, documentation, project 

control, and configuration management. Another advantage to this approach is that it can 

be used in conjunction with other engineering tasks, especially those that are hardware- 

related (Briand, 1998). Because of the flexibility allowed by this method, individual 

elements can be estimated independently. If, for instance, a portion of the project is 

closely related to another project recently developed, it can be estimated by analogy 

while other more problematic portions of the project can be estimated in some other 

fashion.

This process, however, is very resource-intensive and demands a very detailed 

specification of requirements (Pfleeger, et. al., 2005). Because requirements often evolve 

throughout the development process quite a bit of this effort may be wasted. Also, by 

isolating individual portions of the project, those doing the estimates lose sight of how 

their individual portions relate to the project as a whole. This can cause estimators to 

ignore considerations that might be apparent if the project were to be estimated as a 

whole.

Closely related to the bottom-up technique is the top-down estimation method. 

This technique also involves the decomposition of the project into its constituent parts, 

but the effort estimation for each part is generated based on overall project traits, instead
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of detailed functional characteristics (Jorgensen, 2004). Under this method the individual 

portions of the project are generally estimated expertly or by analogy and are therefore 

subject to the limitations inherent in those methods (Briand, 1998). The top-down 

method benefits from the same advantages as the bottom-up method as it also involves 

decomposition and integration, but because the estimates are done at a very high level, 

the lack of detail makes the estimate nigh on impossible to document or verify effectively 

(NASA, 2002).

Simulation

Simulation involves the use of software that performs sophisticated statistical 

simulations that predict the scope and outcome of the work to be performed. Estimation 

software of this nature usually accounts for a number of different sources of variability, 

including variations in productivity, program size, and rates of staff expertise and 

turnover (McCormell, 2006). The software will generate a probability matrix that allows 

the estimator to determine to a fairly high level of certainty whether the project will meet 

goals for cost and schedule. Because this technique generates only a set of probabilities, 

it is almost always used to make a go/no-go decision and not for detailed estimations.

Effectiveness of the Various Techniques 

We have seen that there are a number of varied techniques for estimating the 

resources necessary for completing a software development project. Each has its own 

limitations. With the exception of function point counting, each relies to a large extent 

on a certain amount of guesswork. The general rule of thumb seems to be that, the more
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detailed the specifications, the easier it is to forecast the necessary resources. While 

intuition would suggest that the more scientific methods, like function points, would 

produce better results, the evidence suggests that the most intuitive processes generate, if 

not the best outcomes, certainly results that are equal to other more scientific methods.

There have been a multitude of studies performed to determine whether each of 

these techniques is effective. Many of these studies have compared estimation 

techniques to one another to in an attempt to determine whether one yields more accurate 

results. The results of these studies have often conflicted with one another. For instance, 

in 1997 Jsrgensen found that function point estimates were more accurate than expert 

estimates based on a review of 47 industrial projects. Heemstra and Kusters, however, 

found in 1991 in a survey of 597 Dutch companies that expert estimation yielded far 

better results. Similar studies undertaken more recently produced similar conflicting 

results.

Jsrgensen and Sjoberg, for instance found in 2002 that regression (algorithmic) 

techniques produced better results than expert estimations while Kitchenham et. al. found 

in the same year that there was no difference in results generated by experts and 

algorithms.

Lederer and Prasad (2000) surveyed 112 different software organizations and 

found that the algorithmic development methods did not lead to higher accuracy 

compared with “intuition, guessing, and personal memory.” Atkinson and Shepperd 

(1994) studied 21 different software projects and compared expert estimates to a number 

of different techniques including analogy and function points. The expert estimates were 

not as accurate as the analogy-based estimate, but were more accurate than the estimates
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based on function points. Finally, Pengelly (1995) conducted an in-depth study of a 

single development project and found that the expert estimates were more accurate than 

all other types of estimation models, including COCOMO, function points, and SLIM.

Taken individually, none of these studies presents compelling evidence to suggest 

that expert estimation is the best estimation method, but as a body of evidence the trend 

seems to be obvious. Expert estimation provides projections that are, on average, at least 

equivalent to, if not better than, the estimates provided by algorithmic models and 

analogy. In large part this is due to the fact that most of the model-based estimation 

techniques are based on data from past projects; they simply model formally the things 

expert estimators are ostensibly doing (Laird, 2006). When we speak of ex ante estimates 

we know that at some point a human has made a guess as to some quantity or other on 

which a model-based estimation must rely.

Still, as a technique, expert estimation remains problematic. If an organization 

does not have access to experts, it can not use the technique. Further, expert estimation is 

not independent of project type. Someone who is proficient at estimating development 

time in one environment might be completely at a loss in another. Jorgensen (2004) 

compared expert estimation in top-down and bottom-up cases and found that different 

techniques were necessary to generate an accurate projection. For instance, estimators 

following the top-down strategy may be able to provide good estimates at low cost even 

without any sort of technical expertise. To do so, they need only apply high level 

knowledge gained from the completion of other projects. To complete a bottom-up 

estimate, however, an estimator must have both a great deal of expertise and copious
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amounts of time. Obviously, an expert estimator well suited for one task may not be 

competent for the other.

Unfortunately, because so much of expert estimation involves intuition, there is 

not seem a standard set of best practices that tells a developer how to best go about 

coming up with an estimate. Experience in a particular development environment seems 

to be the best predictor of success. For instance, Jorgensen also found that “the 

applicability of the bottom-up estimation strategy is restricted to situations where there 

are estimators with sufficient knowledge about how to construct the software (2004).” If 

there exists a best practice for expert estimation, it would seem to be to select the best 

expert.

It is unreasonable to assume that the results of all of these studies are flawed. At 

the same time, however, there must be some reasonable explanation as to why they have 

produced results that do not allow us to draw any firm conclusions. The most obvious 

explanation is that there is something in the projects themselves that makes them more 

amenable to certain types of estimation techniques. Therefore, the next step will be to 

determine, within the limited scope of this study, whether this is so. It is quite likely that 

certain estimation techniques will work better on certain types of development projects. 

The rest of this paper will concern itself with how this effort will be undertaken.
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CHAPTER 3

RESEARCH MODEL

Estimations are done at many different times during the development life cycle. 

For the purposes of this research, however, we will limit ourselves only to ex ante 

estimates of time, effort, and expenditures. Because of this decision, it is necessary to 

make certain assumptions of the projects estimated as software development and 

maintenance projects that have not begun share certain characteristics. First, they will, in 

all likelihood, have had requirements that are incomplete because requirements evolve 

during the development process (Conte, et. al., 1986). This, in turn, will have required 

that software entities, characteristics, and relationships be translated into their likely -  not 

definite -  size attributes.

The second of these assumptions is that the sizing models used matched the actual 

conditions under which the project was undertaken. The third is that the estimation 

model used was used properly and in the prescribed manner. Finally, it is to be assumed 

that the estimation technique used was tailored to the needs of the organization 

performing the estimate. These final three assumptions are made because to do otherwise 

would be illogical and impractical. Each of these assumptions represents a standard best
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practice and is made because the results and conclusions of this study will be 

generalizable only if the estimation teehnique is being used properly.

The next step is to determine how, exaetly, estimation effeetiveness is to be 

measured. There are essentially three considerations that are of concern to those 

considering the development of anything, software or otherwise. The first is how much 

money it will cost, the second is how long will it take, and finally, how much effort it will 

require. Only by knowing all three of these things ean managers make effeetive 

decisions about the pursuit of individual projects. Hence, this study will eoncem itself 

with initial estimates of person hours required and the projected duration of the project. 

The amount of money a project costs will only be considered as a measure of the size of 

the project as decision makers can derive monetary costs from measures of effort and 

duration. These estimates will be compared to the actual amounts of each used upon 

eompletion of the project. Since it is necessary to eompare estimates to aetuals, only 

completed projects will be considered as unfinished projects do not yet have “actual” 

values.

There are a number of other factors that may have a bearing on the effectiveness 

of the estimation technique being used. Generally speaking, software projects can be 

broken down into two types, development and maintenance. Development projects 

involve the ereation of an entirely new piece of software, one whose requirements, 

functionality, and size all need to be speeified. Maintenance projeets involve making 

adjustments to an existing piece of software. Maintenanee projects are of many types and 

primarily include: preventive maintenance, designed to anticipate problems in systems 

and correet them before they manifest; perfective, designed to increase the performance
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of functioning systems; and corrective, designed to correct problems in systems that 

generate bad output.

Sinee this research will be coneemed with expert estimation, it will also be 

important to know some things about the individuals creating the estimates. Expert 

estimation may be predicated upon the availability of experts, but organizations will still 

quite often generate “expert” estimates even if there is no expert available. Therefore, 

there should be a measure of estimator experience not only as an estimator, but as an 

estimator on a given system as well.

The research model, then, will include measures of project effort, project 

duration, estimation method, estimator experience, projeet type (development or 

maintenanee), and project complexity. The data gathered will then undergo statistical 

analysis to determine whether a relationship exists between or among these data and the 

ability of expert estimation to provide aeeurate assessments of the amount of time and 

effort required to complete a software projeet.

The first hypothesis to be tested will look for a link between project complexity 

and estimation accuraey; in this case, specifieally effort estimations generated using 

expert estimation. Complexity was chosen as a dependent variable for each of the first 

three hypotheses because intuition would suggest that highly complex projects would be 

much more difficult to estimate accurately than simpler ones. Each of the first three 

hypotheses was framed so that if an assoeiation exists between complexity and estimation 

accuracy, either positive or negative, acceptance or rejection of the hypothesis would 

yield worthwhile results.
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H(l): Project complexity is associated positively with the aecuracy of project effort 

expert estimation.

The second hypothesis is essentially the same as the first; however this one will 

test for accuracy of duration estimations.

H(2): Projeet complexity is associated positively with the aecuracy of project duration 

expert estimation.

Since duration and effort estimations are two elements of a total estimate, we will 

also test to see if eomplexity is assoeiated with overall project estimation accuracy.

H(3): Project complexity is associated positively with the overall aceuracy of project 

expert estimation.

The notion that experienced estimators are better able to provide accurate 

estimates will also be tested. If expert estimation is to have any inherent value, then it 

would seem logical to test the notion that more estimation experience would lead to better 

estimates.

H(4): Estimator experience is associated positively with overall project expert estimation 

accuracy.

Because development projects and maintenance projects can differ substantially it 

will be instructive to explore whether one or the other is more apt to be estimated 

accurately. First we will examine project type and effort estimation. As with the first 

four hypotheses, these last two hypotheses were fi-amed in sueh a way so that rejection 

would also yield worthwhile results.

H(5): Project type (development or maintenance) is associated positively with accuraey 

of project effort expert estimation.
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Finally, we will examine whether the same holds true for duration estimation. 

H(6): Project type is associated positively with accuracy of project duration expert 

estimation.

Data

We used three different data sets to perform the analysis for this study. The first 

data set was provided by Kitehenham, Pfleeger, McColl, and Eagan (Kitchenham, et. al., 

2002). It will be referred to as “Kitchenham data.” The second data set was provided by 

Jorgensen and Sjoberg (2002). The authors provided data that were not ineluded with the 

published paper (Jorgensen and Sjoberg, 2002). This data set will be referred to as 

“Jorgensen data.” The final data set was provided by a health maintenanee organization 

located in Las Vegas, Nevada. It will be referred to as “HMO data.”

Kitchenham Data

The Kitehenham data set (Kitehenham, et. al., 2002), available in the referenced 

paper, was generated from observations of 145 maintenanee and development projects 

managed by a single outsoureing eompany. The company’s standard estimation praetice 

is to estimate each project’s effort and duration using at least two different estimation 

teehniques. The techniques included expert estimation, CA-Estimaes (a eommercial 

software package), Delphi (a group decision based on the averages of multiple estimates 

arrived at independently), widget counting, and averaging (the average of two or more 

estimates arrived at by the same estimator(s)). The two (or more) resultant estimates
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would then be presented to a client who would choose the favored one. Only the final 

choice was made available to Kitchenham.

The data to be analyzed as part of this study include:

• Project type (development or maintenance) (dichotomous)

• Actual start and completion dates as a measure of duration (continuous)

• Estimated and actual effort (in person-hours) as a measure of effort (continuous)

• Adjusted function points as a measure of complexity (continuous)

• Estimation method (dichotomous)

The estimation technique variable was broken down into two distinct categories; 

expert estimation and all others. This was done because the focus of this research is 

expert estimation and the other techniques matter only insofar as they are not expert 

estimation. Further, while the Kitchenham data set differentiated among all the different 

maintenance types (preventive, corrective, etc.), maintenance projects are essentially all 

the same insofar as they involve the adjustment of existing systems. Estimating the 

amount of time and effort required to make these adjustments will be a similar process 

regardless of the underlying reason for the changes.

The fact that this data set included estimates and actuals of both effort and 

duration made it possible to assess estimation accuracy for both characteristics. This 

differentiates the Kitchenham data from the Jorgensen in that the Jorgensen data had 

essentially a dichotomous accurate/inaccurate measurement of accuracy
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Jorgensen Data

The Jorgensen data were gathered in an empirieal study of 54 software 

maintainers in the software maintenance department of a Norwegian company in 2001. 

The data set referred to maintenance projects only. The data included measures of other 

essential elements: project effort, projeet duration, estimation method (all projects 

utilized expert estimation), and estimator experience.

The data to be analyzed as part of this study include:

• the number of years of experienee the estimator had both as an estimator and on 

the particular application being maintained (continuous)

• the estimator’s assessment of the eomplexity of the projeet (rated low, medium, or 

high) (eategorieal)

• the oeeurrenee of unexpected problems (dichotomous)

• complexity as measured by the total number of lines of code added, deleted, or 

changed (continuous)

• the size of the application being maintained (continuous)

• a measure of the aeeuraey of the estimate (categorical)

• the amount of effort required to eomplete the projeet measured in person-days 

(continuous)

The measure of estimation accuracy was derived from the measure of estimator 

confidence and whether unexpected problems arose during the maintenance effort. 

Jorgensen rated as “too optimistic” any estimate in which the estimator had confidence, 

but then went on to experience unexpected problems. These optimistic estimates are 

considered to be underestimates for the purposes of this research. If an estimator was not
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confident but did not encounter unexpected problems, the estimate is labeled “too 

pessimistic,” or overestimated. If an estimator was not confident and encountered 

problems or was confident and did not encounter problems, the estimate is considered 

accurate. All other data in the set were measured directly.

It also bears mentioning that Jisrgensen originally asked his respondents to rate 

their confidence on a “yes,” “maybe,” or “no” scale. Respondents were told to answer 

“yes” only if they felt there was a very low risk of unexpected problems. Upon 

examination of the interview results Jorgensen determined there was only a very small 

differenee between the “maybe” and “no” confidence levels. He therefore used only two 

confidence classes as his confidence measure; Y (“yes”) and N (“maybe” and “no”). For 

the purposes of this study the same procedure was followed.

HMO Data

The HMO data set consists of 18 distinct observations of software development 

and maintenanee projects. This data set contains measures of size (in budgeted and 

actual dollars) and duration (in days). All the estimates were generated by expert 

estimation. The projects themselves involved both maintenanee and development. The 

data will be examined for an indication of project duration estimation accuracy.
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CHAPTER 4

ANALYSIS AND RESULTS

Hypotheses one, two, five, and six concern themselves with measures of effort 

and duration estimation accuracy and could, consequently, be explored effectively by 

delving into the Kitchenham data set. Therefore the first step was to explore the basic 

ways in which that data set examines project characteristics relative to effort and duration 

estimation aecuracy. A simple comparison of means (t-test) was the best way to begin. 

Therefore, the Kitchenham data set was sorted by each of the five independent variables 

and broken into categories. Each of the eontinuous variables was broken into high, 

medium, and low ranges and the dichotomous variables were broken into two distinct 

sets; expert and others for estimation teehnique, and development and maintenance for 

projeet type. The mean for eaeh eategory was caleulated and the mean underestimation 

for each category as well. The results appear in Table 2.
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Table 2

Mean Actual Project Effort and Duration and Mean Underestimation 

By Project Characteristic

Effort* Duration^
n Mean

effort
Mean
Underestimate

n Mean
effort

Mean
Underestimate

Complexit

Low 48 964.60 -16.78% 47 164.06 0.71%
Medium 48 1750.67 -6.09% 46 170.91 0.86%
High 48 4315.38 9.52% 48 270.27 21.67%

Difference in means not significant
Difference in means significant at p < 0.05 
for L - M and L - H

Size*
Low 48 623.06 -18.93% 47 144.30 -0.04%
Medium 48 1546.12 -12.74% 46 181.11 8.04%
High 48 4861.46 9.91% 48 279.85 15.62%

Difference in means not significant
Difference in means significant at p < 0.05 
for L - H

Project
Type
Developme
nt 51 2802.84 1.34% 49 199.37 4.46%
Maintenanc
e 93 2091.68 0.69% 92 204.10 12.02%
Difference in means not significant Difference in means not significant

Duration^
Low 50 1064.86 -13.83% 49 96.98 -7.62%
Medium 46 2163.96 -4.66% 44 172.14 7.68%
High 48 3847.62 9.90% 48 337.92 16.39%

Difference in means not significant
Difference in means significant at p < 0.05 
for L - M and L - H

Estimation
Technique
Expert
Estimation 104 2334.23 0.98 101 211.25 7.93%
Other 40 2367.78 0.92 40 180.25 13.61%
Difference in means significant at p < 0.1 Difference in means not significant

1 : Measured in person-hours 
2: Measured in days
3: Low = 0 - 166 Adjusted Function Points, Medium = 167-403 AFP, High = 404 - 2076 AFP
4: Measured in person-hours of effort: Low < 1,000 hrs, M = 1,000 - 2,200 hrs, H > 2,200 hrs
5: Measured in days: L = 0 -  133, M = 134-205,

H>205
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The low and medium order projects all overestimated the amount of effort 

required and estimated fairly accurately the duration required. However, the high order 

projects dramatically underestimated both the effort and duration required for 

eompletion. These observations were consistent throughout the continuous data 

elements.

A test for difference in means revealed that, for the most part, the differences in 

means were not statistically significant when looking at effort estimation. The tests for 

differences in means of estimated duration showed that the mean differences were 

statistically significantly different from zero.

Next, we endeavored to determine if the five independent variables interacted in 

such a way as to have a demonstrable impact on effort estimation accuraey. The way to 

accomplish this was to perform a linear regression analysis. The regression in this case is 

being used to analyze two distinct dependent variables; effort estimation accuracy and 

duration estimation aecuracy. The dependent variables, however, are the same for both. 

Therefore the regression equation is:

Yi, Y2 = po + PiEi+ PzDi + PsCi + P4T1 +  PsMi +

PeEiDi + PyEiCi +  PsEiTi +  PgEiMi-f PioDiCi +  PuDiTi +  PizDiMi -FpisCiTi +  

PuCiMi + PisTjMi 

PiôEiDiCi + PiyEiDiTiT pisEiDiMi + PigEiCiTi + PzoEiCiMi + PziEiTiMif 

PzzDiCiTi + PasDiCiMi + p24DiTjMi + P2sCiTiMi +

P26EiDiCiTi+ P27EiDiCiMi+ P2sEiDiTiMi + P2gEiCiTiMi + psoDiCiTiM, + e

where:
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Y i =  X i - E i / E i  

Y2 — Zi -  Di /  Di

Xi = project i was estimated to require Xi hours to complete

Zi = project i was estimated to require Zi hours to complete

Ei = project i required Ei hours to complete

Di = project i required Di days to complete

Ci = project i contained Ci adjusted function points

Ti = project i was of type Ti (1 = development, 2 = maintenance)

Mi = project i was of type Mi (1 = expert estimation, 0 = other)

The regression equation included 30 different combinations of independent 

variables. The saturated model yielded the following estimated coefficients:
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Table 3

Estimated Coefficients for Saturation Model (1), 

Dependent Variable Effort Estimation Accuracy

P t Significance
Bo 0.580
Single Variables:
E -0.869 -0.392 0.696
C 1.548 0.817 0.416
D -0.036 -0.060 -0.952
T -1.761 -1.544 0.125
M -0.054 -0.206 0.837

Two-way interactions
C * E -3.031 -0.475 0.636
C * D -2.452 -0.747 0.457
C * M -1.669 -0.848 0.398
C * T 0.031 0.016 0.987
E * D 0.044 0.014 0.989
E *M -0.928 -0.405 0.686
E * T 3.177 1.057 0.293
D * M -0.305 -0.453 0.652
D * T 2.536 1.214 0.227
M * T 1.497 1.384 0.169

Three-way interactions
C * E * D 5.638 0.700 0.485
C * E * M 4.704 0.790 0.431
C * E * T 0.235 0.058 0.954
C * D * M 2.533 0.803 0.424
C * D * T -0.874 -0.290 0.772
C * M * T -0.425 -0.234 0.816
E * D * M 2.552 0.803 0.424
E * D * T -6.976 -1.132 0.260
E * M * T -1.165 -0.412 0.681
D * M * T -2.447 -1.253 0.213

Four-way interactions
C * E * D * M -7.956 -1.065 0.289
C * E * D * T 2.262 0.660 0.510
C * E * T * M -2.055 -0.600 0.549
C * D * T * M 1.618 0.577 0.565
E * D * T * M 4.207 0.750 0.455

R square = 0.118, F = 0.499
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The saturated model did not yield any statistically significant estimated 

coefficients. The regression analysis therefore continued in stepwise fashion eliminating 

the least significant variable at each step. After 22 regressions, the model appeared thus:

Table 4

Estimated Coefficients for Model (1) -  22"*' Regression 

Dependent Variable Effort Estimation Accuraey

P t Significance

Po 0.384

Two-way interactions

E* M -0.908 -1.540 0.126
D * M -0.210 -1.522 0.130

Three-way interactions

C * E * D 0.176 0.618 0.537
C * E * M 0.768 0.940 0.349
C * M * T -0.263 -0.951 0.344
E * D * M 1.387 1.580 0.116
E * D * T -0.350 -1.330 0.186

Four-way interactions

C * E* D * M -1.263 -1.179 0.241
C * D * M * T 0.523 1.271 0.206

R square = 0.062, F = 0.985

The 22"** regression did not yield any statistically significant estimated coefficients, 

either. All the significance factors were still well above the acceptance threshold of 0.1. 

Therefore the regression had to continue.
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The regression continued through 29 steps and finally yielded the following 

equation with its associated table:

Yi = Po + PgEi Mi + PigEiMjDi

Table 5

Estimated Coefficients for Model (1) -  29th Regression 

Dependent Variable Effort Estimation Aecuracy

P t Significance

Po 0.299

E * M -0.423 -2.071 0.040
E * M * D 0.381 1.869 0.064
R square = 0.30, F = 2.147

With this final regression, the interaction of size and method was found to be significant 

as well as the interaction among size, method, and duration. Please note that the 

measures of size and duration as well as the estimation method are not significant in and 

of themselves, only as they interact with one another. Therefore, we see that expert- 

estimated large projects generally relate to underestimation, the opposite holds true for 

the same project with increased duration.

The regression of the effort estimation data revealed that, all other things being 

equal, a large project being estimated using expert estimation demonstrated a negative 

association with effort estimation accuracy. However, when duration was added to this 

same mix the association became a positive one. This change in the sign from negative 

to positive means that as projects take longer to complete the ability of expert estimators 

to predict the effort required increases, assuming that the projects are sufficiently large.
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The next step in this process was to test this same data set for duration aceuracy. 

Following the same pattern as with effort estimation, a backwards linear regression was 

run with the same five independent variables, but the dependent variable in this case was 

duration estimation accuraey (Y2).

Again, the regression included 30 different combinations of independent variables 

and the saturated model appears below. This saturation model did not yield any 

statistically significant estimated coefficients. The results of this model estimation are 

shown in Table 6.
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Table 6

Estimated Coefficients for Saturation Model (2) 

Dependent Variable Duration Estimation Accuracy

P t Significance
Bo 0.580
Single Variables:
E -0.432 -0.195 0.846
C -0.632 -0.334 0.739
D -0.618 -1.026 0.307
T 0.184 0.164 0.870
M -0.188 -0.711 0.479

Two-way interactions 1.802 0.282 0.778
C * E 0.849 0.259 0.796
C * D 0.543 0.276 0.783
C * M 1.083 0.558 0.578
C * T 1.052 0.332 0.741
E * D -0.869 -0.378 0.706
E *M -0.152 -0.050 0.960
E * T 0.486 0.720 0.473
D * M -2.110 -1.017 0.311
D * T -0.142 -0.133 0.894
M * T 1.802 0.282 0.778

Three-way interactions
C * E * D -2.513 -0.312 0.756
C * E * M -0.102 -0.017 0.986
C * E * T -8.439 -2.076 0.040
C * D * M -0.758 -0.240 0.811
C * D * T 1.438 0.477 0.634
C * M * T -1.032 -0.566 0.572
E * D * M 0.469 0.147 0.883
E * D * T 5.842 0.947 0.346
E * M * T 1.209 0.427 0.670
D * M * T 1.967 1.017 0.311

Four-way interactions
C * E * D * M 0.595 0.080 0.937
C * E * D * T 1.501 0.436 0.664
C * E * T * M 6.862 2.002 0.048
C * D * T * M -1.298 -0.462 0.645
E * D * T * M -6.740 -1.200 0.233

R square = 0.139, F = 0.588
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This data set underwent 22 regressions before yielding the following equation and 

the attendant Table 7.

Y2= Po+ PzDi + PiiDiTi+ PigCiEiTi + PziCiDjTi + 

PnEiDiTi + p24DjMiTi + p29CiEiMiT,+ 

PaoCiDiMiTi + P2gEiDiMiTi

Table 7

Estimated Coefficients for Model (2) -  22"** Regression 

Dependent Variable Duration Estimation Accuracy

P t Significance
Bo .021
Single variables
D -0.171 -1.891 0.061

Two-way interaetions
D * T -1.217 -2.588 0.011

Three-way interaetions
C * E * T -5.512 -3.257 0.001
C * D * T 1.850 2.683 0.008
E * D * T 4.019 2.742 0.007
D * M * T 1.280 2.793 0.006

Four-way interaetions
C * E * M * T 5.372 3.272 0.001
C * D * M * T -1.842 -2.607 0.010
e * d * m * t -3.805 -2.693 0.008
R  square = 0.108, F = 1.748

The results suggest that project duration has a small negative impact on duration 

estimation accuracy. That is, for higher values of actual project duration, accuracy is 

worse. The two-way interaction suggests that this problem is exacerbated if the project 

is a development project.
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Of the seven three- and four-way interactions four include expert estimation 

(which is part of all the four-way interactions), complexity, duration, and size, and all 

seven involve development projects. Since the development variable is dichotomous, a 

relationship can also be drawn with maintenance projeets simply by switching 

“maintenance” for “development” and changing the P value for the interaction from 

positive to negative, or vice versa.

By looking at the P value, it can also be seen that a large, complex development 

project is very strongly correlated with an inaccurate estimation of duration, but if an 

expert estimator is added to the same interaction, the P value is equally strong in exaetly 

the opposite direction. Interestingly, the exact opposite is the case if the same large 

development project is not complex, but takes a long time. A large long-term 

development project demonstrates a strong relation to an accurate duration estimate, but 

if an expert estimator is added to the mix (rather than using some other estimation 

teehnique), the likelihood of an accurate duration estimate is very low. The exact 

opposite will hold true if the project is a maintenanee project rather than a development 

project.

To test the third and fourth hypotheses the Jorgensen data set was used because 

the dependent variable (overall estimation accuracy) is to be found there. Estimation 

accuracy, as measured by Jorgensen, consists of overestimations (which Jorgensen terms 

“too pessimistic”), underestimations (which Jorgensen terms “too optimistic”) and 

accurate estimations. Because the dependent variable is categorical and not continuous, 

logistic regression was used. The univariate logistic regression requires a dichotomous 

dependent variable, but in this case the dependent variable has three categories.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore three different sets of dichotomous variables were created. The first consisted 

of overestimated and non-overestimated projects, the second consisted of underestimated 

and non-underestimated projects, and the third consisted of accurate and non-accurate 

estimations. It is important to note that the regression equation calculates the log of a 

probability. Unlike a linear regression, logistic regression calculates the likelihood of a 

certain event taking place.

The regression equation for all three was the same and took the form of:

Log (Pe /1  -  Pe) = PiUi + piL; + paMi + P4Hj+ PsA, + PeB; + P?Ci + PgS, + PgEi 

where:

P = probability

0  = underestimated, overestimated or accurate where:

if estimator confidence = Y and unexpected problems = Y 

then project was underestimated 

else if confidence = N and unexpected problems = N 

then project was overestimated 

else project was estimated accurately 

U, = project i experienced unexpected problems (1 = yes, 0 = no)

Li = project i had a low order of complexity (1  = yes, 0  = no)

Mj = project i had a moderate level of complexity (1  = yes, 0  = no)

Hi = project i had a high order of complexity (1  = yes, 0  = no)

Ai = project i had a low number of LOG changed (1 = yes, 0 = no)

Bi = projeet i had a moderate number of LOG changed (1 = yes, 0 = no)

Gi = project i had a high number of LOG changed (1 = yes, 0 = no)
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Si = project i contained S lines of code (including comments)

Ei = the estimator of project i had E years of experience 

It is important to note that the variables L, M, and H are dichotomous and only one of the 

three may have a value of one at any one time. The same holds true for the variables A, 

B,and C.

The first logistic regression generated the estimated saturation model shown in 

Table 8 .

Table 8

Estimated Probability Significance for Saturation Model (3) 

Dependent Variable Development Underestimation

Variable P Significance

U 22.371 0.996
L 0.026
M -3.906 0.008
H -1.962 0.142
A 0.534
B 1.218 0.310
C 1.368 0.352
S 0.0 1.000
E 0.109 0.856

From here we conducted a backwards stepwise regression, eliminating at each 

step the independent variable with the least significance from the model (assuming that 

the variable was not significant at the 0.1 level). Estimation of the final regression 

yielded the results shown in Table 9.
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Table 9

Probability Significance for Reduced Model (3) 

Dependent Variable Development Underestimation

Variable P Significance

L 0.005
M -1.326 0.209
H -1.917 0.002

The regression showed that both low and high complexity projects were consistently 

underestimated. The saturation model correctly predicted 77.1% of the actual outcomes 

while the final regression accurately predicted 92.6% of the actual outcomes.

It should also be noted that Jorgensen data set was tested to include both measures 

of estimator experience, both as single independent variables, and by ineluding the 

additional measure of estimator experience (experience on the particular application 

being maintained) in the saturation model. In no case did estimator experience show a 

significant association with estimation accuracy.

The HMO data set was analyzed to see if it could shed any light on hypothesis 

number two. Therefore, the HMO set was broken down into two subsets based on 

budgeted dollars and duration estimation accuracy was examined. The results are shown 

in Table 10.
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Table 10

Comparison of Means for HMO Data Set

n Mean
Estimated
Budget

Mean
Actual
Budget

%
Difference

Mean
Estimated
Duration

Mean
Actual
Duration

%
Difference

Low
Budget

9 $200,963 $205,230 -2.08% 250.5 249.3 0.48%

High
Budget

9 $1,637,939 $1,514,190 8.17% 480.6 587.1
18.14%

Difference in means not significant

The higher budget projects were overestimated to a fairly large degree whereas the lower budget 

projects were fairly accurately estimated.
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CHAPTER 5

DISCUSSION

The discussion will first focus on the hypotheses to see which are supported or if 

their antitheses are supported. Following that, the discussion will turn to those items 

suggested by the data analysis but not hypothesized. The first hypothesis attempted to 

make a connection between effort estimation accuracy and project complexity. The 

comparison of means test found no significance, nor did the linear regression analysis of 

the Kitchenham data set find any connection between project complexity and effort 

estimation accuracy, either positive or negative. The first hypothesis, therefore, must be 

rejected along with its antithesis.

The second hypothesis poses the same question, but with respect to duration 

estimation accuracy. The comparison of means test does demonstrate an association of 

complexity with underestimation, and the association appears fairly strong. In looking at 

the regression results from the Kitchenham data set, however, a few questions are raised. 

When complexity appears as a factor it appears only in conjunction with project 

type. Because project type is a dichotomous variable, however, if  the project type is 

changed, so is its attendant P value. It is therefore impossible to draw a conclusion about
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complexity, expert estimation, and duration estimation accuracy without taking project 

type into account.

Table 11

Analysis of Support for Hypotheses

Hypothesis Supported? Antithesis

Supported?

Comments

H (l) No No • difference in means not significant
• no statistically significant estimated 

coefficient associates effort estimation 
accuracy with complexity

H(2) No Qualified
Yes

• difference in means significant
• large, complex development projects strongly 

associated with underestimation
H(3) No Yes • both low and high complexity projects 

strongly associated with underestimation
• moderately complex projects not associated 

with underestimation
H(4) No Yes • experience as estimator not associated with 

estimation accuracy
• experience on application not associated with 

estimation accuracy
H(5) No No • difference in means not significant

• no statistically significant estimated 
coefficient associates effort estimation 
accuracy with project type

H(6) No No • difference in means not significant
• project type associated with both accuracy and 

underestimation

Large, complex development projects, for instance, are very strongly associated 

with inaccurate duration estimates. The same project using expert estimation, however, 

is just as strongly associated with an accurate estimate. This would indicate that expert
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estimation is associated with accurate estimates. But that is only the case with 

development projects. Maintenance projects of this type are just as strongly associated 

with inaccurate expert estimates. Therefore, we can only support the antithesis of H(2) 

insofar as the difference of means test indicates that more complex projects are likely to 

be underestimated.

In testing the third hypothesis it is to be supposed that, since the Kitchenham data 

will not support the notion that complexity correlates with either effort estimation or 

duration estimation accuracy, it will not correlate with overall estimation accuracy, either. 

What we find, however, is that complexity is an indicator of inaccuracy in both low and 

high complexity projects, but not in moderate complexity projects. Therefore the third 

hypothesis must he rejected but its antithesis is supported. The Jorgensen data 

demonstrate that as project complexity moves toward either extreme, estimation accuracy 

suffers.

An examination of the data surrounding H(4) produces a very counterintuitive 

result, hut nowhere does the Jorgensen data suggest that estimator experience has any 

kind of effect, positive or negative, on estimation accuracy. Again, the Jorgensen data 

only investigate maintenance projects. There is no conclusion drawn about the effect of 

estimator experience on the estimation of development projects. Still, H(4) and its 

antithesis must be rejected.

Likewise, the fifth hypothesis can be rejected as the Kitchenham data show no 

correlation between project type and effort estimation accuracy. There is, however, a 

correlation between project type and duration estimation accuracy as posited in H(6 ), but 

the correlation needs to he examined closely.
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The only single variable to be correlated with duration estimation accuracy is 

duration itself, and its attendant P value is negative. This means that the longer a project 

takes to be completed the less likely any duration estimate is to be accurate, regardless of 

how it is arrived at; and although the correlation is significant, the p value is not very 

strong. While the P value increases if a high duration project is a development project, 

the results still do not draw any conclusions about expert estimation at this point. That 

same high duration development project, however, becomes positively associated with 

duration estimation accuracy if it is estimated using expert estimation. That would seem 

to indicate that expert estimation leads to better duration estimates.

Looking at the three- and four-way interactions, we can see that project type is 

certainly an indicator of the accuracy of duration estimation, but it is how the other 

independent variables interact that is of greater interest. For instance, an expertly 

estimated development project of substantial duration shows a positive correlation with 

estimation accuracy, but as that project gets larger it is highly likely that the estimation 

will be inaccurate.

The situation becomes even more multifaceted when we remember that whatever 

is said of the interactions involving development projects, the converse is true of 

maintenance projects. Therefore H(6 ) and its converse must ultimately be rejected 

because there can be no definitive statement made regarding project type and duration 

estimation accuracy.

What, then, can be said about expert estimation’s ability to estimate the amount of 

time and effort necessary to complete a software project? One thing we can say is that as 

maintenance projects tend toward the extreme in complexity expert estimation is unlikely
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to provide a good estimate of effort or duration. The HMO data set provides 

corroboration. All projects were estimated fairly well as far as their budgets were 

concerned, but the larger projects were underestimated dramatically as far as duration 

went.

One other thing that can be said is that, development projects of substantial 

duration can be well estimated for duration via expert estimation as long as they do not 

combine more than one of the other independent variables with the duration. With an 

increase in size or complexity, expert estimation loses its ability to predict duration 

outcomes. But if this is so, why would an expert estimated development project of great 

size and high complexity show such a strong correlation with duration estimation 

accuracy? One has to think about a project that is large and complex but does not take a 

long time to complete. This describes a project of high importance. If we recall what 

was mentioned earlier, that oftentimes management will ask for an estimate when what 

they want is a goal, then the answer seems obvious. A highly important project that 

needs to be done within a certain time frame regardless of its size or complexity will be 

done within a certain time frame. If we note that this combination of factors applies only 

to duration estimation and not effort estimation the answer seems clear. This would also 

explain why projects of greater duration (and ostensibly lesser importance) would tend 

not to be estimated correctly.
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CHAPTER 6

IMPLICATIONS, LIMITATIONS, AND SUGGESTIONS

Implications for Business 

The implications of this research suggest some interesting guidelines for business. 

Since we have demonstrated that estimator experience is not an indication of estimation 

accuracy, it would tend to lay to rest the notion that expert estimation requires the 

presence of an expert. In any event, it may very well be necessary to change our idea of 

what constitutes an expert. Certainly businesses should think twice about utilizing expert 

estimation if they are interested in gaining a proper perspective on how much effort -  and 

consequently how much money -  a project will require, especially as projects grow in 

size and scope.

It is outside the purview of this research to make judgments about the efficacy of 

expert estimation compared to other estimation techniques. Certainly expert estimation is 

less costly than algorithmic estimation methods and therein may lie its value. Time and 

money lost because of a poor estimation may be made up for by the low cost of the 

estimation itself. This brings to mind Boehm’s conundrum regarding the buying of 

information. It must be remembered that the estimates studied herein are ex ante and
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therefore may very well suffer from incomplete requirements and all the other problems 

attendant to projects created ex nihilo.

Certainly it will be important for businesses to differentiate between development 

and maintenance projects, which have exactly the opposite effect on duration estimation 

for many types of projects, especially large, complex projects with their attendant high 

cost. Keeping two teams of estimators, one for each type of project, may very well 

increase accuracy significantly.

Limitations and Suggestions for Further Research 

This research was limited, first and foremost, by the data sets it was required to 

use, each of which had its limitations. The Jorgensen data set was limited by the 

categorical nature of its dependent variable and the fact that this categorical variable was 

the only measure of estimation accuracy in the entire data set. It was further hampered 

by the fact that all the observations were only of maintenance projects. The Kitchenham 

data, on the other hand, was actually fairly rich, but less than 30% of the observations 

were of estimation techniques other than expert estimation, and some of those other 

techniques involved the use of expert estimation to a greater or lesser extent. This means 

that the information gleaned about expert estimation exists in a bit of a vacuum as there is 

no information ahout how expert estimation compares to other techniques.

This raises the possibility of further research. First of all, it would be helpful to 

have similar data regarding the abilities of other estimation techniques to provide 

accurate results based on project characteristics. It may or may not be possible to ever 

define a best practice for software development estimation, but if it can be said with some
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certainty that a particular technique will work better in a given situation much will have 

been accomplished. Generating the same sort of data as contained in this research for 

algorithmic estimation techniques would be a good start.

It may also prove fruitful to pursue the notion that projects of greater importance 

and urgency achieve higher rates of estimation accuracy. It would certainly be of great 

interest to examine whether expert estimated development projects that have high 

complexity and size exceed their budgets regularly or require large inputs of effort. This 

research suggests that such a link may exist; it is certainly worthy of exploration.
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APPENDIX

HMO Data Set

Project
Number

Estimated Budget Actual Budget Estimated
Duration

Actual
Duration

1 $80,000 $71,600 116 134
2 $131,700 $96,548 217 234
3 $209,964 $160,200 109 368
4 $218,400 $216,128 159 73
5 $225,100 $217,248 159 83
6 $185,112 $229,295 991 933
7 $134,750 $267,207 75 8 8

8 $225,100 $278,150 119 119
9 $398,540 $311,812 310 2 1 2

1 0 $361,684 $354,370 218 338
11 $395,700 $371,322 1 0 2 1 1091
12 $510,000 $373,622 1 0 2 1 1096
13 $626,702 $607,023 233 199
14 $972,900 $776,849 240 255
15 $972,900 $882,406 240 335
16 $1,889,191 $1,792,777 170 270
17 $4,006,465 $3,801,088 464 834
18 $5,005,912 $4,668,160 718 8 6 6
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Jorgensen Data Set

Identifier Complexity Experience
Overall

Experience
on
Application

Total LOG 
Changed

Estimation
Accuracy

1 .0 0 M 7.00 6 .0 0 250.00 A
2 .0 0 H 7.00 6 .0 0 250.00 P
3.00 L 7.00 6 .0 0 2 .0 0 A
4.00 L 4.00 3.50 4.00 P
5.00 M 4.00 3.50 550.00 0
6 .0 0 M 3.00 2 .0 0 50.00 P
7.00 M 3.00 2 .0 0 16.00 P
8 .0 0 M 3.00 2 .0 0 2 0 .0 0 A
9.00 L 17.00 2 .0 0 15.00 A
1 0 .0 0 L 1 0 .0 0 3.00 7.00 P
1 1 .0 0 L 1 0 .0 0 3.00 6 .0 0 P
1 2 .0 0 L 7.00 5.00 600.00 P
13.00 L 7.00 5.00 1 0 .0 0 A
14.00 M 2 2 .0 0 2 2 .0 0 250.00 A
15.00 L 2 2 .0 0 2 2 .0 0 75.00 P
16.00 H 8 .0 0 .30 1 0 0 0 .0 0 A
17.00 M 8 .0 0 .30 1 2 0 0 .0 0 A
18.00 L 18.00 3.00 1 .0 0 A
19.00 M 18.00 3.00 1 .0 0 A
2 0 .0 0 M 2.50 2.50 2 0 0 .0 0 A
2 1 .0 0 L 2.50 2.50 3.00 A
2 2 .0 0 L 9.00 .50 2 0 0 .0 0 0

23.00 L 9.00 .50 300.00 A
24.00 H 9.00 .50 5.00 P
25.00 H 4.00 1 .0 0 25.00 A
26.00 M 1 .0 0 .50 700.00 A
27.00 M 2 .0 0 .30 2 0 .0 0 0

28.00 M 3.00 3.00 600.00 0

29.00 L 3.00 3.00 .0 0 A
30.00 M 25.00 3.50 2 1 0 0 .0 0 A
31.00 M 25.00 3.50 .0 0 P
32.00 M 1 0 .0 0 1 0 .0 0 29.00 0

33.00 L 1 0 .0 0 1 0 .0 0 1 1 .0 0 A
34.00 L 1 0 .0 0 1 0 .0 0 310.00 A
35.00 L 8 .0 0 5.00 500.00 P
36.00 M 8 .0 0 5.00 36.00 0

37.00 L 5.00 4.50 1 .0 0 A
38.00 M 5.00 4.50 5.00 A
39.00 L 5.00 4.50 1 .0 0 A
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40.00 M 2.50 2 .0 0 1 0 .0 0 P
41.00 H 2.50 2 .0 0 6 .0 0 A
42.00 M 3.00 3.00 40.00 P
43.00 L 3.00 3.00 1 0 0 .0 0 A
44.00 M 6 .0 0 .50 25.00 A
45.00 M 7.00 3.00 140.00 0
46.00 M 8 .0 0 .30 435.00 0
47.00 M 8 .0 0 .30 300.00 0
48.00 L 8 .0 0 .30 6 .0 0 0
49.00 L 4.00 .50 15.00 A
50.00 L 4.00 .50 525.00 A
51.00 M 4.00 .50 400.00 A
52.00 H 4.00 .50 400.00 A
53.00 H 7.00 4.50 1 1 .0 0 P
54.00 M 7.00 4.50 5.00 A
55.00 M 6 .0 0 6 .0 0 900.00 A
56.00 M 3.00 3.00 1 .0 0 A
57.00 M 15.00 4.00 5.00 A
58.00 L 5.00 4.50 1 0 .0 0 A
59.00 H 5.00 4.50 50.00 A
60.00 L 9.00 6 .0 0 15.00 A
61.00 L 13.00 .0 0 5.00 P
62.00 L 6 .0 0 .50 15.00 A
63.00 L 7.00 7.00 30.00 A
64.00 M 7.00 7.00 1500.00 0

65.00 M 7.00 7.00 1 0 0 .0 0 0

6 6 .0 0 L 7.00 7.00 4.00 A
67.00 L 3.00 .2 0 170.00 P
6 8 .0 0 M 3.00 .2 0 2 0 .0 0 P
69.00 M 3.00 .2 0 1 0 .0 0 P
70.00 H 6 .0 0 .30 1600.00 0

71.00 L 6 .0 0 .30 1 0 0 .0 0 A
72.00 M 6 .0 0 .30 50.00 A
73.00 L 6 .0 0 .30 30.00 A
74.00 L 17.00 17.00 1 0 0 .0 0 A
75.00 M 4.00 3.50 150.00 0

76.00 L 4.00 3.50 84.00 A
77.00 M 2 .0 0 1.50 .0 0 0

78.00 L 9.00 7.00 30.00 A
79.00 L 9.00 7.00 2 0 .0 0 A
80.00 L 1 0 .0 0 1.50 4.00 A
81.00 L 1 0 .0 0 1.50 3.00 A
82.00 L 15.00 2 .0 0 5.00 P
83.00 L 15.00 2 .0 0 1 .0 0 A
84.00 M 15.00 2 .0 0 5.00 O
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85.00 L 3.00 3.00 1 .0 0 A
8 6 .0 0 L 16.00 1 .0 0 350.00 A
87.00 L 13.00 4.00 2 0 0 .0 0 A
8 8 .0 0 L 13.00 4.00 400.00 A
89.00 L 13.00 .50 1 .0 0 A
90.00 M 13.00 .50 3.00 P
91.00 M 1 0 .0 0 .30 118.00 P
92.00 M 1 0 .0 0 .30 50.00 0

93.00 L 3.00 .30 1 0 .0 0 A
94.00 H 3.00 .30 .0 0 A
95.00 L 5.50 5.50 1 .0 0 A
96.00 M 5.50 5.50 1600.00 P
97.00 L 5.00 4.50 5.00 A
98.00 L 4.00 4.00 3.00 A
99.00 M 4.00 3.50 900.00 P
1 0 0 .0 0 L 4.00 3.50 75.00 0

1 0 1 .0 0 H 4.00 .0 0 500.00 P
1 0 2 .0 0 L 5.00 3.00 50.00 A
103.00 M 14.00 1 .0 0 2 0 .0 0 A
104.00 M 14.00 5.00 500.00 0

105.00 L 14.00 5.00 400.00 A
106.00 H 1 .0 0 .60 1 0 0 .0 0 A
107.00 H 5.00 2.50 3.00 0

108.00 L 5.00 2.50 1 .0 0 P
109.00 M 5.00 2.50 250.00 A
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