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ABSTRACT

The Collocation and Meshless Methods 
for Differential Equations in

by

Thamira Abid Jaijees

Dr. Xin Li, Examination Committee Chair 
Associate Professor of Mathematics 

University of Nevada, Las Vegas

In recent years, meshless methods have become popular ones to solve differential

equations. In this thesis, we aim at solving differential equations by using Radial Basis

Functions, collocation methods and fundamental solutions (MFS). These methods are

meshless, easy to understand, and even easier to implement.

Ill
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CHAPTER 1

INTRODUCTION

1.1 Meshless Methods 

In the past several decades, the traditional methods for solving partial differential 

equations (PDEs) in various fields of science and engineering have been subject to the 

finite element methods (FEM), the finite difference methods (FDM), and boundary 

element method (BEM). In general, the FEM and FDM require a regular domain mesh 

generation to solve problems. Consequently, numerical results sometimes impair 

computational accuracy and the convergence rates of the methods. In spite of their great 

success, these conventional numerical methods still have some drawbacks that impair 

their computational efficiency and even limit their applicability to more practical 

problems. Regarding the BEM, even though it only requires mesh generation on the 

boundary of the domain, it involves quite sophisticated mathematics and some difficult 

mesh generation impedes the computational process (making it more labor intensive and 

time consuming) and poses an obstacle to solve more difficult, irregularly shape, and 

high dimensional problems. Hence, meshless methods provide an attractive alternative 

for solving certain problems.

In recent years there is an increasing interest in developing the Meshless Method. 

Most Meshless methods [Atluri and Shen 2002, Belytschko 1996, Duarte and Oden 1996] 

are still based on Finite Element Method (FEM), hence it is still quite complicated.

1
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Meshless methods require the approximations of given differential equations from 

a set of unstructured nodes; i.e., without any pre-defmed connectivity or relationship 

among the nodes. Instead of generating mesh, meshless methods use scattered nodes, 

which can be randomly distributed, throughout the computational domain. In 1990, 

Kansa [Kansa 1990] introduced a collocation method using radial basis function 

(RBFs) for solving PDEs. The advantage of this meshless method over its predecessors 

is the ability to use amorphous nodes that neither need to be a certain shape nor a 

certain pattern. Since there is no meshing required, a few hundred nodes in the 

meshless method would be the same as thousands of nodes required for meshing. In 

comparison, the meshless methods are computationally effective due to its simple 

implementation but with reasonable accuracy [Zerroukat, Power and Chen 1998; Li, 

Cheng and Chen 2003; Cheng 2003]. In this thesis, we will describe certain meshless 

methods and apply them to different problems.

Figure 1.1: The comparison between Mesh Method and Meshless Method

MESH METHOD MESHLESS METHOD
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1.2 Collocation Method 

In mathematics, a collocation method is a method for the numerical solution of 

ordinary differential equations and partial differential equations and integral equations. 

The idea to choose a finite-dimensional space of candidate solutions (usually, 

polynomials up to a certain degree) and a number of points in the domain (called 

collocation points), and to select that solution which satisfies the given equation at the 

collocation points (see figure 1.2).

Figure 1.2: The collocation points and the source points

n points on the boundary 
(COLLOCATION POINTS) 
(MESHLESS)
m points-sonrces 
on the source-set

Consider partial differential equations

Lu{x) = / (x), X e Q 

Bu{x) = g(x), X e ÔO

( 1. 1)

(1.2)

Where L,B are differential operators, and Q is a bounded domain in 

Let M { r ) - M  (||x ||) be a radial basis function. Choose points

X; € Q , 1 < /■ < A, X, e 5 0  , A  +1 < i < « , and form;
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= (1.3)
;=i

We want to determine {orj such that is an approximate solution of (1.1). We use the

collocation method to calculate this solution.

Namely, we set

= (1.4)

Bu„(x.) = g(x.) , A  + l < i < n  (1.5)

Which results in a wen linear system for {crj .Hence [a.] can be solved. Precise 

examples will be given later.

1.3 Thesis Overview 

This thesis focuses on examining the numerical solutions of certain boundary 

value problems by meshless methods in 2D. All numerical results and figures are 

obtained through the mathematical computer software MATLAB. All examples in this 

thesis are limited to second order linear differential equations in 2D. While this thesis 

focuses on solving equations in 2D, the process for solving problems in 3D is 

straightforward and can be generalized.

Chapter 2 serves as an introduction to radial basis functions (RBFs), a meshless 

technique used to approximate multivariate functions or surfaces. And numerical 

examples for solving differential equations by using RBFs are presented.

In Chapter 3, the method of fundamental solutions (MFS) is described with same 

examples being given. In chapter 4 we outline some lines for future directions.
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CHAPTER 2

RADIAL BASIS FUNCTION 

Radial basis functions (RBFs) are primarily used to reconstruct unknown, 

multivariate functions from the given data, by using the Collocation Methods. Such 

functions can be used as solutions of partial differential equations on general domains. 

While other classical methods require the tedious task of generating mesh on the domain 

and the boundary, RBFs do not. Instead, RBFs reduce multivariate functions to scalar 

functions, which allow the computation to be efficient, accurate, stable, easy to 

implement, and truly meshless.

In recent decades, employing RBFs in the fields of numerical mathematics and 

scientific computing has been on the rise. In R.L. Hardy [Hardy 1971], RBFs were used 

for geophysical surface-fitting. R. Frank [Frank 1982] assessed 29 approximation 

methods concerning RBFs. Today the implementation of RBF approximation is 

widespread: computer graphics, surface reconstruction, neural networks, picture 

processing and scratch removal, medical applications, science and engineering problems, 

etc.
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2.1 Definition

A radial basis fimction in R" is expressed by using a univariate real-valued function ç?.

0 (x , y )  =  (p{f) for all x,y e  W ‘ (2.1)

as a symmetric multivariate function 0  : —> R , where O is called the associated

kernel, and r represents the radius (or Euclidean norm) among data points.-

(2.2)

(2.3)

r =||x - y \ \

For convenience, let

<Pi(r) =  <p(\\x-x.\\)

Table 2.1 is a list of commonly used radial basis functions

Table 2.1 : Commonly used radial basis functions

Name (p{r) CPD ORDER m Max. Dimensions d

Thin Plate Spline(TPS) r^ logr 2 00

Cubic Spline r ' 2 00

Multiquadric MQ) \lr^  + c^ 1 00

Inverse Multiquadric l / y j r ^  + c ^ 0 00

Gaussian 0 00

In the table above, CPD is “conditionally positive definite” and c (the shape parameter) 

represents some constant that can be chosen to increase accuracy.
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2.2 Interpolation and Approximation 

Given a 2D finite set of scattered n data points (x ̂ , often known as centers 

{or interpolation points), it is assumed that some function values /  (x, ,3/, ) are given on 

these points. Based on this information, the task is to approximate a ftmction that will fit 

the function values. Using RBFs, one can find a linear combination that closely 

approximates the function f  :

(2.4)

where

^ «
f  ( x ,y  ) = Y,^i<P,{x,y),

1=1

Ç>,(x,y) = +{y-y,Ÿ ,̂

(2.5)

(2.6)

where } are unknown coefficients that are to be determined. There are measurable 

distances among the n centers (see Figure 2.1).

Figure 2.1 : Representation of distances among n center (n=3) in 2D

O U2.X2)
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These distances are then applied to a selected radial basis function (as indicated in Table 

2.1) and written as n linear combination equations. The resulting system is

(2.7)

where A is the nxn coefficient matrix of the linear equations, â  is the vector of 

corresponding unknown coefficients, and /  is a vector of the associated function values. 

Provided that matrix A is nonsingular, the unknown coefficients {a ,} are uniquely

solvable:

(2 .8)

2.3 Solving PDEs by using RBFs 

We next present an example of solving a boundary value problem by using RBFs.

Example 1) Poisson equation in

^  + l:T = 2-e^,(x,y)eQ

u(x, y) = x^ -e^ ,  (x, y) e dO.

where the exact solution is given by u(x, y)= x̂  -  

and let u (x, y) be the approximate solution, given by 

Hx,  T) = Z  Z  y l ( x - x ( i ) Ÿ + i y - y ( j ) Ÿ + c
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where d is the number of mesh points evenly spaced on each axis from -1 to 1, 

(x(i),y(j)) is the chosen test point, then

du x - x ( i )

,=i y=i ^ ( x -  x ( i ) f  + (y -  y ( j ) f  + c

~ y l(x-  x(i)Ÿ + (y -  y ( j ) f  + c —   ̂ p =
=  y (x -x ( i ) )  + i y - y U ) )  +c

dx^ i=i j=i  ̂ (x -  x{i)Ÿ + (y -  y ( j )Ÿ  + c

Ô̂ Ù
A similar equation can be derived for — -.  And then we get

d^û d^û (x -  x(f))^ + (y ~ y{j)Ÿ  + 2c
Ac'

where ^a.j |  are unknown coefficients that are to be determined. To determine the 

approximate value for the function inside the boundary, we set 

y y ( ^  (x(>n)-x(i)Ÿ+ (y (k ) - y ( j ) )  +2c y(t)

if (x(m), y{k)) is inside the square. And for (x(m), y{k)) on the boundary, we set

Z  Z  S V(4/M) -  ̂ (0)̂  + (t(̂ ) - y(i)Ÿ C = (x(m)f  -

The system of above two sets of equations are used to determinate | .

Let

e{x,y) = \u{x,y)-u{x,y)\  (2.9)

be the approximate error, evaluated at 225 points evenly distributed on the square. The 

following table presents the approximation error e for different choices of c and d
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Table 2.2: Test Example 1, absolute maximum errors e

c d=5 d=7 d =10 d =12 d=15

0.25 0.0564 0.0227 0.0070 0.0029 6.449 le-004

0.50 1.66e-004 0.0136 0.0032 0.0011 1.668e-004

0.75 0.0309 0.0019 0.0018 5.1901e-004 5.4779e-005

1.00 0.0077 0.0065 0.0011 2.8126C-004 0.0019

1.25 0.0202 0.0048 7.3823e-004 1.6890C-004 0.0048

1.50 0.0169 0.0037 5.1037C-005 9.3630e-005 0.025

After choosing different values of c and d, we notice that a better result (the maximum 

error to be very small) is achieved when c= 1.25, 1.50 and when d= 10,12.

We notice when we increase c, while increasing d up to d-15 and c=l it does not gives 

us a good error anymore.

10
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Figure 2.2: Uniform distribution of 225 (x,y) pair of points

1- O C, o

O.B
C' O

0.6. o C' O o

0.4' 1 c- o o o

c o r, o
0.2

■;> c;> ■;> o :) c *:*

O » c- c- c< y.l o o

-0.2 - o O o

o <'■
-0.4.

-0.6' o

o

r.

o
•0.8

o o o o o

-1- -0.8 -0.6 -0.4 -6.2^^.. .t . .. ''6 .2 0.4 0.6 0.8 t

Figure 2.3 : Exact solution / (x, y) = x^ -

«xact solution
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Figure 2.4: Approximate solution of / (x, y ) - x ^  -

B(H>rox solution

2

1.5 . 

1 .. 

0.5 , 

0 . 

-0.5 -. 

-1 -, 

-1.5 .

0.5

Figure2.5: Absolute error of approximate solution
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0.5 ,

0 -

-0.5 .

-1  -

-1.5.

- 2 _>
1

erro r plot

-1 -1
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Ex2) Poisson equation with Dirichlet and Neumann conditions on the boundaries

d^u d^u . . _
— Y + —^ = 63^ - 43; sm 2x
ok"

u{x, y ) - y  sin 2x + y^\ (x, y) e LI, L4

dx
= 2y cos 2x; (x, y)  e L2

—  = sin 2x + 2>ŷ  ; (x, y) e L3

where the exact solution is given by w(x, y) = y  sin 2x + y^

Similarly, we use

t )  = Z  Z  ̂ ij -  x(i)Ÿ + ( y -  y { j ) f  + c
1= 1 7 = 1

As an approximate solution if (x(w), y{k)) is inside the square, we have.

d d (x(m) -  x(t))" + {y{k) -  y{ j )Y  + 2c 

<■=1 M ’ ((x(m) -  x(0 )̂  + {y{k) -  y { j ) f  + c)^
= (>y{k) -  ̂ y{k)  sin 2x(m)

For {x{m),y{k)) on L2

d d x{m) -  x{i)
Z  z ^ .
'=> >1 s lx(m)-x( i )Ÿ + i y ( k ) - y { j ) f  +<

Now if (x(m),y(k)) on L3, we have

= 2>’(A:) cos 2x(m)

d d yi . k ) -y{ j )
Z  Z  /
.=1 7=1 ^ l ( x ( m ) - x ( i ) f + ( y ( k ) - y ( j ) Ÿ +c

= sin 2x(m) + 3(y(k)Ÿ for L3

Finally, for {x{m),y{k)) on LI and L4, we have

d d
Z Z or.. 7 (x(m) -  x{i) f  + {y{k) -  y { j ) f  -  y (Æ) sin 2x(^) + (y (A:))̂
(=1 7=1

The coefficient jor-j can be determined hy Aa -  f  ^  a  = A^  f

13
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The error

e = \u{x,y)-ü{x,y)\  (2.10)

where u{x,y)  is the exact solution and ü{x,y) is the approximate solution for u. e is 

calculated at 225 points evenly distributed on the square.

Table 2.3: Test Example 2, absolute maximum error e

c d=5 d—8 d=lO d=13 d=l5 d=l7

0.25 0.66 0.63 0.26 0.25 0.17 0.13

0.50 0.60 0.65 0.32 0.17 0.06 0.03

0.75 0.69 0.27 0.21 0.09 0.03 0.02

1.00 0.69 0.38 0.11 0.03 0.02 1.05

1.25 1.23 0.24 0.09 0.025 0.11 1.5

1.50 1.12 0.18 0.08 0.028 0.14 1.77

Notice that we got the best result when (c=l, d=l 5).

14
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Figure 2.6 : Exact solution of / {x, y) = y  sin 2x + y^

ex ac t solution
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Figure 2.7: Approximate solution of / (x, y) = y  sin 2x + y^
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Figure!.8: Absolute error of approximate solution

error p l^
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2.4 Concluding Remarks 

The only information being manipulated is the distance among centers. Distances 

are effortless to compute. For multidimensional problems, the degree of difficulty to 

compute scalars does not change. This component alone gives RBF approximation a huge 

computational advantage over the classical methods.

Solution stability and computational efficiency should always be considered when 

using RBFs in computation. RBFs can be adequately chosen to ensure a nonsingular 

interpolation matrix. The addition of polynomial terms for CPD RBFs, proper selection 

of the amount of interpolation points, or appropriate choice of compactly supported RBF 

can ensure this condition.

16
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CHAPTER 3

THE METHOD OF FUNDAMENTAL SOLUTIONS 

Lately meshless methods, such as the method of fundamental solutions (MFS) 

have attracted much attention in the engineering literature[Fairweather and Karageorghis 

1998, Golberg and Chen 1994] for more than three decades to solve the boundary value 

problems (BVPs) of differential equations. Many boundary value problems in science or 

engineering involve domains that are irregular in shape. Such problems can be very 

difficult (and relatively expensive) to solve with domain meshing methods like the FEM 

or FDM. Instead, it is prefer to use the less costly BEM, since it only requires boundary 

meshing. However, this method also has its disadvantages: (1) it may involve the 

evaluation of singular integrals; (2) it becomes complicated when meshing surfaces in 

3D; and (3) it has a slow rate of convergence due to the use of low order polynomial 

approximations.

Improving upon the discretization of the domain or boundary, meshless methods 

have evolved as the most advantageous means to solve boundary value problems of any 

shape. As an indirect extension of the BEM, the method o f fundamental solutions (MFS) 

has emerged as a powerful meshless method for solving boundary value problems. In 

1964, the MFS was initially proposed by Kupradze and Aleksidze [Kupradze and 

Aleksidze 1964]. The MFS has been also known as the superposition method, 

desingularized method, and the charge simulation method. Extensively studied by Cheng

17
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[Cheng 1987], Katsurada and Okamoto [Katsurada and Okamoto 1988], Fairweather and 

A. Karageorghis [Fairweather and Karageorghis 1998], Goldberg and Chen [Golberg and 

Chen 1998] in the 1990’s, and [X.Li, 2005] in the 2000’s, the MFS has been established 

as a useful method in solving homogeneous, elliptic PDE’s.

3.1 Methodology and Fundamental Solutions 

The MFS approximates the solution of a PDE by using the linear combinations of 

the fundamental solution of the major differential operator. A generalized homogeneous 

PDE problem with mixed boundary conditions in 2D is

Lu(x,y) = 0, (3.1)

u(x,y) = g f x , y ) ,  x ,y e F , (3.2)

^ u ( x , y )  = g2(x,y), x , y e T 2  (3.3)
on

L is a second order linear differential operator with a known fundamental solution. Q is 

simply connected, bounded and nonempty domain in R‘‘,d  = 2,3. 8 0  is the boundary,

Ôtiwhere dQ and T, n F 2̂ 0 . g, and gj  are known functions and —  is the
dn

outward normal derivative of u to the boundary. A PDE problem having (3.2) as the only

boundary condition on 8Q is called Dirichlet boundary condition. The presence of —
dn

as the only boundary condition is called the Neumann boundary condition. The Robin 

boundary condition has both (3.2) and (3.3).

An approximate solution to the above PDE problem with Dirichlet boundary 

condition is represented by

18
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üix,y) = '^a iG (^^{x -x .Ÿ  + ( y - y f y  (3.4)

where {or,.} are unknown coefficients, G(r)is the associated fundamental solution of the

governing differential operator, and r is the Euclidean norm as defined in (2.2). 

According to the MFS, m collocation points on the boundary 8Q and m source points on 

a fictitious boundary outside of the physical domain (see Figure 3.1) are used to 

approximate (3.4). the rational behind using a fictitious boundary is to ensure that there 

will be no singularities in the linear combinations of the selected fundamental solution. 

The Euclidean distance between a point and itself on the boundary dQ would yield 

r = 0; this may pose a problem for calculations involving the fiindamental solution.

To approximate the solution to the PDE problem with mixed boundary conditions {or,.}

must satisfy the following linear equations:

gi = ^ 0C i G ( ^ l i x - x , f + ( y - y . f ^, (3.5)

2̂ -  X +(y~yif )> (3.6)
i=m+l

where m is the number of collocation points on T, and m is the total number of source 

points, (ef. X. Li [12-14] for details)
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3.2 Numerical Implementation 

Let us consider the following PDE problem with Dirichlet boundary condition: 

Aw = 0, x,yeQ. ,  (3.7)

u = e"‘ sin y, x , y e  dQ, 

defined on domain (a circle):

Q u 8 Q  = |x^ 4-y  < l | .

(3.8)

(3.9)

For this problem, we use 30 uniformly distributed collocation points and 30 uniformly 

distributed source points on a fictitious circle with radius r = 4 (see Figure 3.1). The 

approximation is then tested on 30 uniformly distributed collocation points.

Figure 3.1: Distribution of collocation and source points

For the MFS, the shape of the fictitious boundary can copy the shape of the original 

boundary. However, for irregularly shaped boundaries, it may be difficult to construct a
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fictitious boundary with the same shape. For simplicity in computer coding, it is easier to 

use a circle as a fictitious boundary. Despite their shapes, fictitious boundaries serve the 

same purpose: to cancel out singularities that may occur on the original boundaries. 

Therefore, it is best to use a fictitious circle in 2D and a fictitious sphere in 3D

When the domain and the fictitious boundary are both circles, research by Cheng 

[Cheng 1987] has proven that the accuracy of the MFS improves as the fictitious radius 

enlarges. However, when the domain is not circular, this result is not necessarily 

applicable for many boundary value problems, the condition number of the collocation 

matrix increases exponentially and the MFS equations can become highly ill-conditioned 

as the fictitious radius increases [Golberg and Chen 1998]. When testing for MFS 

accuracy, it appears that there will be a critical fictitious radius that will minimize 

absolute maximum error.

As a result, the more collection/ source points used in the MFS equations, the 

more accurate the approximation. Accuracy will increase with an increase in 

collocation/source points, but there is a critical amount of points after which accuracy 

will no longer improve. Regarding the previous example, accuracy was relatively high for 

as little as 30 Colloeation/source points.

The placement of collocation and source points is another significant factor in the 

accuracy of the MFS. So far, there is no theoretical result regarding the optimal selection 

of these points. In general, we choose uniformly distributed source and collocation 

points. Source points are normally equally spaced on the fictitious circle. Because the 

domain can be oddly-shaped, it may seem tricky to have equally-spaced collocation 

points along the same angles at which source points are placed.
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Example 3) Solving PDE equation with fundamental solution method 

f Am = 0, (x, y ) e  Q
(3.10)

l/(^> T) = e"" sin y, (x, y) e dQ.

where the exaet solution m = e"' sin y , and Q = |||(x, y)|| < r, | , 8 0  = |x^ + = r, |

Let G(x, y) =— ln(x^ + y^ ), where G is the fundamental solution of Am = 0 .
2n

Choose Q = |x^ + < r21, Tj > I]

Choose m points (x,.,ÿ.) on d Q , and w = 20 points (x,,ÿ,) on d Q , which are equally

distributed on d Q , d Q , respectably.

From

«m ( x ,  t ) = Z  - X i Ÿ + ( y - ÿ i Ÿ ) ,  ( 3 .  n  )
1=1

which satisfies Am = 0 in Q 

And the boundary value function

/ (x ,y )  = e’̂ siny . (3.12)

Set

K(Xj ,y j )  = f (Xj , y j ) , l< j < m ,  (3.13)

or

m

ln((xy -x~ f  +{yj  - y ) ^ )  = / (x^, y j ) , \ < j  < m ,  (3.14)
i =1

where [a.] is the coefficient and can be determined by Aa. = f  where A is mxm matrix 

and f  is the function given above.
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Now we can estimate the error in Q by:

e(x,y) = w(x,y)-M„,(x,y) 

Where the maximum error will be determined:

max|e(x,y)|

(3.15)

(3.16)

Table 3.1: Test Example 3, absolute maximum error e (rin= q , the radius of the 
inside circle and rout= , the radius of outside circle (fictitious))

rin=2 rin=3 rin=4 rin=5

rout=4 6.2598e-009 4.2229e-005 NaN 1.499

rout=5 2.7473e-010 2.5560e-007 4.1277e-004 NaN

rout=6 5.8520e-009 1.0965e-008 2.078 le-006 9.1783e-004

rout=7 9.5123e-009 3.7895e-010 1.0784e-007 1.8860e-005

rout=8 1.3209e-007 2.1434e-009 3.6866e-009 3.6866e-009

rout=9 3.8813e-007 1.6973e-008 2.1361e-009 3.1267e-008

rout=10 6.9148e-006 1.3821e-007 1.3553e-010 1.3553e-010

rout^ll 7.3803e-005 4.2323e-007 8.1454e-009 6.5172e-010

rout=12 2.1410e-004 1.1867e-007 2.4174e-007 2.4174e-007

absolute maximum error, which refers to the greatest error among these test points and 

the exact solution u. The best error is when increasing radius of the inside circle and on 

the same time increasing the radius of the outside circle we will get the best result but the 

difference between these two radiuses should not be more than 10.
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Figure 3.2: Exact solution of / (x,y) -  g' sin y

exact solution

3-. 
2 

1 . 

0 - 

-1 . 

- 2  V,

-3>
1

2

1.5

Figure 3.3: Approximate solution of / (x, y) = sin y
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Figure 3.4: Error of / (x , y ) = e’' sin y

error solution

3.3 Concluding Remarks 

From a numerical standpoint, the MFS has many benefits. The MFS is truly 

meshless; neither domain nor boundary discretization is needed. Calculations within this 

method are singularity-free due to the application of fictitious boundary. Requiring no 

numerical integration, the MFS produces low-cost computation and works well for 

irregularly shaped domains or high dimension problems. Furthermore, accuracy for this 

method can be optimized by taking into account the number and placement of collocation 

points and the size of the fictitious radius.
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CHAPTER 4

4.1 CONCLUSION

As we have gone through a few problems, we can see that a lot of the various 

problems can be done using RBFs. We have gone through elliptic, square. In all these 

cases, we can see that the algorithms used can be easily understood and programmed. 

Furthermore, the boundaries of the domains in these problems need not be presented in 

any special way. Because the algorithms only care about how far the points are away 

form each other and not how they are placed, this give this method incredible flexibility. 

Also, when the number of points becomes so large that it will hinder the time to calculate 

the answer, a simple domain splitting technique can be used to reduce that number. So it 

seems that RBFs have massive potential in the field of PDEs.

4.2 Future Research

This thesis serves as a stepping stone toward a more improved solution to a 3D PDE. 

When dealing with Laplace transform for the 3D equation, the main challenge is to 

overcome the sensitivity and ill-posed condition. This subject is an excellent topic for 

future research.
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