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ABSTRACT

N onlinear Sub optim al and A d ap tive  P ectora l F in  C ontrol o f  A u tonom ous
U nderw ater V ehicle

by

Mugdha S. Naik

Dr. Sahjendra N. Singh, Examination Committee Chair 
Professor of Electrical and Computer Engineering Departm ent 

University of Nevada, Las Vegas

Autonomous underwater vehicles (AUVs) are used for numerous applications in the deep sea; 

such as hydrographic survey, sea bed mining and oceanographic mapping, etc. Presently, signif­

icant amount of effort is being made in developing biorobotic AUVs (BAUVs) with biologically- 

inspired control surfaces. However, the dynamics of AUVs and BAUVs are highly nonlinear and 

the hydrodynamic coefficients are not precisely known. As such the development of nonlinear 

and adaptive control systems is of considerable importance.

We consider the suboptim al dive plane control of AUVs using the state-dependent Riccati 

equation (SDRE) technique. This m ethod provides effective means of designing nonlinear con­

trol systems for minimum as well as nonminimum phase AUV models. Moreover, hard control 

constraints are included in the design process.

We also attem pt to  design adaptive control systems for BAUVs using biologically-inspired 

pectoral-like fins. The fins are assumed to  be oscillating harmonically with a combined linear

iii
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(sway) and angular (yaw) motion. The bias (mean) angle of the angular motion of the fin is 

used as a control input. Using discrete-time state variable representation of the BAUV, adaptive 

sampled-data control systems for the trajectory control are derived using state  feedback as well as 

output feedback. We develop direct as well as indirect adaptive control systems for BAUVs. The 

advantage of the indirect adaptive law lies in its applicability to  minimum as well as nonminimum 

phase systems. Simulation results are presented to  evaluate the performance of each control 

system.

IV
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CH APTER 1 

INTRODUCTION

Aquatic animals are magnificent swimmers and present diverse maneuvering behaviors and hy­

drodynamic mechanism for their locomotion. They propel themselves through rhythmic unsteady 

motions of their body, tails and use of variety of fins (dorsal, caudal, pectoral, etc. as shown in 

Figure. 1.1). Their outstanding agility underwater provides us with new concept and technology 

to significantly enhance the maneuvering ability of the man-made vehicles. This has inspired re­

searchers to  investigate the basic swimming mechanisms of fish, to incorporate resembling control 

surface into man-made vehicles.

1.1 Biological Classification 

Fish are designed to be unstable and are continuously using their control surfaces to  generate 

opposing and balancing forces in addition to  thrust. They are classified into body and /or caudal 

fin (BCF) mode, and median and /o r paired fin (M PF) mode, based on how they utilize the parts 

of their bodies for locomotion.

Body/Caudal Fin Propulsion (BCF propulsion)

In BCF mode the propulsion is achieved by the overall movement of the body and the caudal fin. 

This type of swimming provides great th rust and acceleration. They are further classified into 

undulatory BCF motion involving passage of a wave along the propulsive structure and BCF 

oscillation involving fin movement.

1
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M edian/Paired Fin Propulsion (MPF propulsion)

This propulsion mode makes use of the median and pectoral fins for maneuvering and stabilization 

at slow speeds. They are further classified into undulatory M PF modes and M PF oscillation 

modes. The undulatory M PF modes undulate the fins to  generate the propulsive forces. In M PF 

oscillation modes the dorsal, anal or the pectoral fins oscillate to  provide propulsion.

The M PF oscillation mode identifies two main oscillatory movement types for the pectoral fins:

(i) rowing action and (ii) flapping action. The agility achieved by the use of pectoral fins is very 

striking and intriguing to  the researcher. This form is thus an ideal choice to be modeled.

Now the challenge is to  make a propulsive system mimicking the motion of the median and 

paired fins and to  enhance the propulsive and maneuvering performance of man-made vehicles 

at low speeds.

1.2 Literature Review

Aquatic animals have splendid ability to move smoothly through water using a variety of 

control surfaces for propulsion and maneuvering [1 - 4, 8]. Presently there exists considerable 

interest in designing flapping foils for propulsion and control of BAUVs [5, 6, 11, 15, 34]. These 

biologically-inspired control surfaces can provide AUVs with greater maneuverability as well as 

efficient propulsion. Several studies have been conducted on fish morphology, locomotion, and 

application of biologically inspired control surfaces for the control of AUVs [5, 8, 18, 26, 39]. 

Researchers are developing variety of biomimetic fish robots which utilize oscillating fins for 

propulsion and control [9 - 14]. A robot weever (Blackbass) has been developed in [9], which uses 

pectoral-like fins. A two-joint robotic dolphin has also been designed in [13]. The special issue of 

IEEE Journal of Oceanic Engineering includes several interesting articles on biologically-inspired 

science and technology for autonomous underwater vehicles (AUVs) [4, 5, 7, 8]. Readers may
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refer to  an excellent article [15] which provides recent advances in biorobotic research on biology- 

inspired high lift unsteady hydrodynamics, artificial muscle technology [16] and neuroscience [17] 

based control of BAUVs. Mechanical fins with multiple degree-of-freedom can produce variety of 

control forces. But the fin movements such as lead-lag, feathering, and flapping, can be identified 

as the basic oscillating patterns, which produce large lift and thrust. Laboratory experiments 

have been performed to measure forces and moments produced by oscillating foils [18, 19, 26, 

34, 39]. A ttem pts have also been made to  characterize the forces and moments produced by 

oscillating fins using computational m ethods [20 - 22]. An analytical representation of unsteady 

hydrodynamics of flapping foils has been obtained using Theodorsen theory [35]. These results 

show th a t oscillating foils produce periodic forces and their profile can be changed for the purpose 

of the control by altering the oscillation param eters (such as bias (mean) angle, frequency, relative 

phase angle, rotation angle at the end of stroke, etc.) of the fins. Thus one can develop biorobotic 

AUVs (BAUVs) equipped with biologically inspired control surfaces. However, the dynamics of 

AUVs and BAUVs are highly nonlinear and the hydrodynamic coefficient are not precisely known. 

As such the development of nonlinear control systems for AUVs with uncertain dynamics is of 

considerable importance.

Recently developed state-dependent Riccati equation (SDRE) tecfmiques provide a systematic 

and effective means for the design of control systems for nonlinear dynamical systems [42, 52, 

53]. For simplicity, control laws for AUVs are designed using linearized models [24, 36, 50, 55]. 

Recent designs of dorsal and pectoral fin control systems for BAUVs have also ignored model 

nonlinearities [27, 28, 34]. For nonlinear models of AUVs with known dynamics, control laws 

have been designed using the Lyapunov stability theory, and the backstopping design technique 

[24, 45]. For the control of AUV models in the presence of uncertainties, sliding mode control 

has been considered [36, 40, 43]. Sliding mode control approach requires high-gain feedback for
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the compensation of uncertainties. Adaptive control laws have been also designed for the control 

of AUVs [24, 38, 44, 51, 54]. For adaptive control, dynamic feedback loop is used for generating 

the estimates of unknown controller param eters for compensation. A sliding mode fuzzy control 

law has been proposed by Guo [46]. A digital control system has been also designed in which 

the unknown param eters are estimated using a discrete time param eter identifier [56]. A neural 

network based control system has been developed for AUVs by Ishii [48]. Considerable research 

has been done for controlling AUVs using traditional control surfaces [24]. But the control 

of AUVs using oscillating fins poses considerable difficulty due to  the time-varying nature of 

oscillatory control forces. For simplicity in design, averaging techniciue has been suggested for 

the control of robotic insects using flapping wings and AUVs [25]. Using this approach, the 

time-varying models are approximated by averaged time-invariant systems for the control law 

design. An oscillating fin propulsion control system using neural network has been developed 

and tests have been performed [26]. The guidance and control of a fish robot equipped with 

mechanical pectoral fins has been considered and rule-based fuzzy control system has been tested 

in laboratory experiments [9, 23, 37]. An adaptive control law for the control of undersea vehicles 

using dorsal fins have been considered, in which the control force is generated by cambering the 

fin [54]. The optimal and inverse control laws for the dive and yaw plane maneuvering of BAUVs 

using pectoral fins have been designed [27, 28]. For the derivation of these control laws, a 

parameterization of periodic fin forces using the CFD analysis has been obtained and bias angle 

of fin rotation has been used for the purpose of control. B ut the pectoral fin control laws of

[27] and [28] have been derived on the assum ption th a t the model param eters are completely 

known. This is rather a stringent requirement since, in a real case, the vehicle param eters and 

the hydrodynamic coefficients are not precisely known. Especially the precise knowledge of the 

forces and moments of unsteadily moving foils is not realistic. Furthermore, the parameterization
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of the fin forces using the Fourier series of [27] and [28] depends on the order of truncation of the 

Fourier expansion, and as such different input m atrices are obtained as the additional harmonic 

functions are included in the series representation. Apparently, it is im portant to design control 

systems for the control of AUVs using oscillating foils in the presence of parametric uncertainties.

1.3 Thesis Outline

Biomimetic studies and observations from fish have provided a wealth of information on 

the kinematics, i.e. how these animals employ their flapping tails and several fins to  produce 

propulsive and maneuvering forces. It seems highly desirable to use these principles from fish 

to derive man-made underwater vehicles th a t are capable of emulating the performance of the 

aquatic animals. Such autonomous underwater vehicles (AUVs) are in great demand for variety 

of undersea applications. However, the dynamics of AUVs and BAUVs are highly nonlinear and 

the hydrodynamic coefficient are not precisely known. Thus the development of nonlinear control 

systems for AUVs with uncertain dynamics is extremely important.

The contribution of this thesis lies in the design of control systems for the dive plane and 

yaw plane maneuvering of AUVs and biorobotic AUVs. Chapter 2 provides the model of an 

AUV. In chapter 3, the thesis deals with the design of a robust suboptimal control system for 

the control of AUVs in the dive plane using the state-dependent Riccati equation m ethod using 

traditional control surfaces. The model of the AUV is nonlinear and the state-dependent Riccati 

equation (SDRE) techniques provide a systematic and effective means for the design of control 

systems for nonlinear dynamical systems, which may be minimum or nonminimum phase. For 

a realistic design, a hard constraint on the control surface (control fin) deflection is imposed. It 

is also assumed th a t the hydrodynamic param eters are not known precisely. Simulation results 

for the dive plane control in presence of param eter uncertainty and constraints on the control fin
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deflection is obtained.

The remaining parts of the thesis considers control of AUVs using biologically inspired control 

surfaces. First we consider the design of a state  feedback adaptive control system for the yaw 

plane maneuvering of a biorobotic AUV using biomimetic mechanism resembling the pectoral 

fin of fish, in chapter 4. The pair of fins attached to  the AUV are assumed to undergo combined 

oscillatory linear (sway) and angular (yaw) motion, and consequently generate periodic forces and 

moments. The model of the AUV considered here is similar to  th a t of [27] and [28], in which the 

fin forces and moments are parameterized using computation fluid dynamics (CFD) analysis. For 

the purpose of design, it is assumed th a t the vehicle’s physical param eters, the hydrodynamics 

coefficients, and the fin forces and moments are not known. It may be pointed out th a t the 

control laws of [27] and [28] have been developed by assuming tha t the systems param eters are 

completely known. A discrete-time model of the vehicle is obtained and a sam pled-data adaptive 

control law is derived for the trajectory control of the yaw angle. Unlike the derivation of [27] and

[28], the control law is independent of the number of harmonics retained in the truncated Fourier 

expansion of the fin force and moment. Here the bias (mean) angle of the yaw motion of the fin is 

treated as a control variable. For the purpose of control, the bias angle is switched to  new values 

at the chosen sampling instants which are integer multiple of the fundam ental time period of the 

fin force and moment. In this controller it is essential to measure all the state  variables for the 

synthesis of the control law. From the practical point of view, the synthesis using state  feedback 

is not attractive, because one must use sensors to measure each sta te  variable. Thus an output 

feedback adaptive control system for the control of BAUVs using pectoral fins is preferred.

The control of BAUV using only yaw angle feedback is considered in chapter 5. Simulation 

results for set point, sinusoidal trajectory tracking and turning maneuver are presented and show 

th a t the adaptive control system accomplishes precise yaw angle tra jectory  control in spite of

6
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the param eter uncertainties. These two direct adaptive control design approaches are applicable 

only to minimum phase systems. However, the vehiele model is nonminimum phase (the transfer 

function relating the output and input has unstable zeros) for the choice of most of the location 

of the fins on the vehicle and the oscillation param eters. Therefore one cannot design a direct 

adaptive control system for tracking of the output trajectory. In chapter 6 of the thesis deals 

with the problem of designing a control system for control of BAUVs, which are not necessarily 

minimum phase. It considers the design of a servoregulator for yaw plane maneuvering of BAUVs 

using pectoral fins. Here the mean (bias) of the angular motion of the fin is treated as the control 

input and the yaw angle is the controlled output variable. An indirect sampled-data output 

feedback adaptive control system for the tracking of the constant and ram p yaw angle reference 

trajectories and rejecting constant disturbance inputs is derived. For the derivation of the control 

law, a second-order internal model of the exosignals (reference signals and disturbance inputs) 

is introduced in the control loop. The adaptive control system has a m odular structure, which 

includes a gradient-based identifier and a stabilizer, designed using pole placement technique. 

Simulation results are presented which show th a t in the closed-loop system, output regulation of 

the yaw angle is accomplished in spite of the uncertainties in the system parameters.
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CH APTER 2

MATHEMATICAL AUV MODEL AND CONTROL PROBLEM 

The m athem atical model of BAUV used in chapters 4, 5 and 6 is presented in this chapter, while 

the model of the AUV considered in chapter 3 is presented in tha t chapter itself.

Let the vehicle be moving in the yaw plane [Xj  — Yj plane), where O jX jY j  is an inertial 

coordinate system. O b X b Y b  is body-fixed coordinate system with its origin at the center of 

buoyancy. A g is in the forward direction. Figure. 2.1 shows the schematic of a typical AUV. 

Two fins resembling the pectoral fins of fish are symmetrically attached to  the vehicle. Each fin 

has two degrees of freedom (sway and yaw) and oscillates harmonically.

2.1 Fin Force And Moment 

We assume th a t the combined sway-yaw motion of the fin is described as follows:

J(t) =  5msin{27f f  t)

0y{t) = P + OymSirpl-ïïf  t -h u) (2.1)

where 5 and 6y correspond to  sway and yaw angle of the fin, and 6ym are the amplitudes of 

linear and angular oscillations, /? is the bias (mean) angle, /  (Hz) is the frequency of oscillations, 

and r/ is the phase difference between the sway and yaw motion. Based on the CFD analysis, 

it has been shown in [27] and [28] th a t the periodic lateral force {fy) and yawing moment (m.y)
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generated by the oscillating fin can be described by the Fourier series given by

N

n = 0

N

my{t) =  (/3)sin(nw/t) +  wp{P)cos{nujft)\ (2.2)
n=0

where / “ and m “ , a G {g ,c} are the Fourier coefficients, and N is an arbitrarily large integer

such th a t the neglected harmonics have insignificant effect. (The control law designed does not

depend on N.) The Fourier coefficients are nonlinear functions of the bias angle. Assuming that 

P is small, fin force and moment can be approximated as (k =  1,2,3.....).

< (/3 )  =  < ( 0 )  +  ( - ^ ) / )  (2.3)

where a G {s,c}. Defining a vector p p )  of sinusoidal signals

p{t) = [1, sinujj{t), cosLOfp), , sinNujf{t) ,  cosNu>f{t)]'^ G (2.4)

and using (2.2) - (2.4), one obtains

/,(<) =

m^(() =  +  /9m6) (2.5)

where fa, fb, rria, and are approximate vectors, which can be obtained from (2.2) and (2.3).

2.2 Yaw Plane Dynamics 

We assume that vehicle’s forward speed U is held constant by some control mechanism. The 

equations of motion of a neutrally buoyant vehicle is described by Fossen [24]

m{v + Ur + X c j  — Ycx'^) = +  {Y^v +  Y M  r) +  YyU v + Fy

10
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I^ f  + m { X c v  +  X q U r + Ycvr)  = Nj-f +  {NyV +  NyU r) +  NyU v + My

'tjj = r (2 .6)

where is the heading angle, r = p  is the yaw rate, v is the lateral velocity along the Yg-axis, 

{Xq , Yg ) = {X q , 0) is the coordinate of the center of gravity with respect to Og, m is the mass, 

and Iz is the moment of inertia of the vehicle. Y>, Nj., Y,, etc are the hydrodynamic coefficients, 

and Fy and My are the net fin force and moment. The global position coordinates X and Y of 

the vehicle are described by the kinematic equations

X  = Ucos{p) — vsin{'ip)

Ÿ  = U sinip)) +  vcosip}) 

For small motion of the vehicle, linearizing (2.6) gives

(2.7)

TTi — Yb tuXg  — Yy 0 i)

Tf lXc  -- Ny F  -- X f  0 f =

0 0 1 p 0

V

r

-p

+

F,

My (2 .8)

Defining the state vector x  — E and using (2.8) gives the state variable form

X  —  A x  + By
My

(2.9)

where A  and By are appropriate matrices. The net lateral force and moment due to  two fins is 

given by Fy = 2fy and My = 2{dgj ■ Jy + rn.y), respectively, where dj is the moment arm due to 

the fin location. Then substituting the fin force and moment from (2.5) in (2.9), gives the state
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variable representation

!/(() 0 0 1 x{t) =  Cx{t) (2 .10)

where y —il} is selected as the controlled output variable, B  is an appropriate m atrix satisfying

=  (/J', E -  ( /^ , m^)^ E and

0(f) = (2 .11)

0 <^^(f)

For the purpose of design, we assume that the system matrices A  and B,  and the param eter 

vectors fc and fy  are not known. Let ym{t) be a given yaw angle reference trajectory. We are 

interested in designing an adaptive control law such th a t in the closed-loop system, all the signals 

are bounded, and the yaw angle p  asymptotically tracks ym{i)-

12
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Yaw Angle

P ectoral Fin

Figure 2.1: The AUV model with pectoral fins
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CH APTER 3

STATE-DEPENDENT RICCATI EQUATION-BASED ROBUST DIVE PLANE CONTROL 

This chapter presents the design of robust suboptim al control system for the control of AUVs 

in the dive plane using the state-dependent Riccati equation method. The model of the AUV 

is nonlinear and, for a realistic design, a hard constraint on the control surface (control fin) 

deflection is imposed. Moreover, it is assumed th a t the hydrodynamic param eters are not known 

precisely. The problem of depth control is posed as a robust nonlinear output (depth) regulation 

problem in which the disturbance and reference output are constant exogenous signals. For this 

reason, a first order internal model fed by the output tracking error is constructed. A quadratic 

performance index is chosen for optimization and first a suboptimal control law for the model 

without control fin constraint is derived using the solution of an algebraic Riccati equation. This 

is followed by the design for the AUV with fin angle constraints. The design is accomplished by 

transforming the constrained problem into an unconstrained design problem by the introduction 

of a slack variable. Then a suboptimal control law is derived for the augmented system by the 

optimization of a modified performance index. Using the center manifold theorem [49] it is shown 

that in the closed-loop system, the control system designed using the SDRE method accomplishes 

robust regulation of the trajectories to  a manifold (called output zeroing manifold) on which the 

depth tracking error vanishes and th a t the equilibrium state is asymptotically stable. Simulation 

results show th a t AUV can be effectively controlled in the dive plane in spite of the presence of 

param eter uncertainties and the constraints on the control fin deflection.

14
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The organization of this chapter is as follows. Section 3.1 presents the AUV model and the 

output regulation problem. Suboptimal control laws for the constrained and unconstrained cases 

are derived in Section 3.2 and 3.3, respectively. Then simulation results are presented in Section 

3.4.

3.1 Nonlinear AUV Model And Control Problem 

A schematic of the AUV model with its body-fixed coordinate system is shown the Figure. 

3.1. The earth-fixed frame is treated  as an inertial frame. The motion of the AUV lies in a 

vertical plane. Let (Vg, Lg, Zg) be the coordinates of the center of buoyancy. The origin of 

the body fixed coordinate system is fixed a t the center of buoyancy (i. e. (A g, Vg, Zg) =  0). 

We denote the coordinates of the center of gravity of the vehicle with respect to  the center of 

buoyancy by Ac).

The heave and pitch equations of motion of the vehicle with respect to the body fixed moving 

frame are described by a set of nonlinear differential equations. These equations of motion are 

given by Prcstero [55]

m[w — Uq — X q(i — Zcq^\ = Z^q Z ^ w  +  ZugUq + Zf j^Uw + Zyj^yji^w\w\ + Zq\^g\q\q\+

(yV — Rg) cos 6 -p Zuyôg 

ly y C i  - f  to [ A g ( /7 q  -  w )  +  Z c w q ]  =  M g C i  +  M ^ w  -p M u g U q  +  M u ^ U w  +  M ^ |u , |m |w |p

Afg|g|g[g] — (AgVF — X b B o) cos 9 — {Z(jW  — Z b B o) sin 9 -p MuuV^^s

z — wcos9 — U sin 9 (3.1)

where 9 is the pitch angle, w  is the heave velocity, Ss is the control fin angle, lyy is the moment 

of inertia of the vehicle about the pitch axis, U is the forward velocity , W  denotes the vehicle’s

15
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weight and Bo is the vehicle buoyancy. Although, here {Xb ,Y b , Z b ) — 0, we have retained 

these parameters in (3.1) for generality. Zg, Z^ ,  and Mjjw, etc. are the hydrodynamics

parameters. It is assumed th a t the forward velocity U is held constant by a control mechanism 

and the lateral velocity is zero.

Define the state vector x = [w ,q , z ,6 )^  €  (T denotes matrix transposition). For the 

application of the SDRE method, the nonlinear dynamics (3.1) must be represented by a linear 

structure having state-dependent coefficients matrices. For this purpose, any nonlinear vector 

function of the form f { x)  must be factored as f { x)  = N(x )x ,  where N{x)  is a state-dependent 

coefficient matrix. Now the representation of (3.1) in a linear-like form is considered.

The vehicle model (3.1) has sin# and cos# besides polynomial type nonlinearities. Since 

cos# =  1 at # =  0, in order to express (3.1) in a linear form, we replace cos# and sin# by

cosfl =  ( S 5 ^ ) « + l

.  ̂ , sin r
sm y = )#

Using (3.2) in (3.1), one can easily show th a t

ZuwU +  |m| Zug + Zg|g| |g| -I- m Z ^q  -|- mU

M u y j U  - f  M u , j u , | | ' ( u |  M j j g U  +  M g \ g \ \ q \  —  m { X o U  +  Z q w )

/ \
w

=  M " ’

J
w

+ M -I 0 ( k F - g » ) ( c o s # - l ) # - i

0 (XgBo -  X G lF)(cos# -  l )# - i  -  (ZekF -  sin#

-l-M"
Zuu

-1-

M uu -  XcM^)

( \  / \
w

+  An + Bi^s d\

(3.2)

(3.3)
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/  \ /  \
i cos 9 0 w 0 —O^Us i nO z

= +
0 1 Q 0 0

V ^ )

=

( \
W

+  ^ 4(3;)

I  \
z

V }

(3.4)

M  =
- m X c  ~  Zg

where Ai, i =  1, ....,4  are defined in Eqs. (3.3) and (3.4), and

m “  Ẑ i,

—  m X c  — M w  l y y  — M g

(3.5)

It must be pointed out tha t the representation of the system (3.1) in linear-like form is not 

unique. Indeed one can obtain another representation by factoring the nonlinearity m Zawq  as 

[mZGq\w instead of the factorization [mZGw]q, which has been used in (3.3). Of course the 

control law will not be the same if one uses different form of the system.

It is assumed th a t the system param eters are not precisely known. Let 6 RP {p is the 

dimension of the unknown param eter vector) be the collection of all the unknown param eters in 

the matrices Ai(x)  and Bi,  and / /  and p G Up be the nominal value of Pa and the unknown part ' 

of Pa,  respectively, where Up  C  is a compact set. T hat is

Pa ^ P  + P (3.6)

The nominal value of Pa is obtained if p =  0. Introducing the dependence of matrices A, and 

Bi on the perturbation vector p, one expresses these m atrices as Ai(x ,p)  and Bi{p).  In view of 

(3.3) and (3.4), one obtains a new representation of (3.1) in the desired form given as

x  =
A i(a ;,p ) 712(3;, P)

X  -1-
B i(p )

5s +
d i

4̂3(1 ) 0 0
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c/f 0

^  A {x ,p )x  + B{p)ôs + d (3.7)

where 0 denote null matrices of appropriate dimensions, B{p) = [Bf  (p), 6 and d —
T

6 R' .̂ Here we treat d as a constant disturbance input since it is a function of the 

unknown parameters. The representation (3.7) has the desired linear-like structure with state- 

dependent coefficient matrices for the application of the SDRE method. Since we are interested 

in the dive plane control, consider a controlled output variable ÿc(0 as

3/c(f) =  z{t) = C x  (3.8)

where C  — [0,0,1,0].

Suppose th a t it is desired to  control the AUV to a prescribed depth a given constant. Then 

the output tracking error is

c — z  — Zj- — Cx  — Zj- (3.9)

We are interested in deriving a control law such tha t in the closed-loop system, the tracking

error tends to zero and the state  vector x  converges to an equilibrium state in spite of the

uncertainties in the param eter vector p^ and the disturbance input d. Furthermore the control 

fin angle deflection is assumed to be limited.

3.2 Robust Suboptimal Control Law: Unconstrained Fin Angle 

First, in this section , a control law is derived under the assumption th a t the control fin 

deflection is unconstrained. This is followed by the design of the control law with hard constraint 

on the control fin angle in the next section. The depth control problem for the system (3.7) is 

essentially a robust ou tput regulation (servomechanism) problem. In the following, using the 

robust nonlinear output regulation (servomechanism) theory [47, 49] and the SDRE m ethod a 

suboptimal nonlinear control law is derived.
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We treat the signal v formed by the vector disturbance input di and the command input Zr 

defined as

e U y  c. (3.10)

as an exogenous signal, where Uy is a open neighborhood of u =  0. Of course, v can be generated 

by the exosystem

i , ^ 0 , u ( 0 ) - u o  (3.11)

The cxosystem (3.11) is capable of generating any constant disturbance di and command in­

put Zy. For the design of an output regulator, according to  the nonlinear output regulation

(servomechanism) theory, it is sufficient to  introduce a dynamic system (internal model of the 

exosystem) of tlie form

Tsi = e = z  — Zy = C x  — Zy (3.12)

The signal Xgi{t) is the integral of the depth trajectory tracking error.

Define the augmented state vector as =  (x^,X si)^ E Dai C R^, where Dqi is the open 

neighborhood of the origin. Then the composite system (3.7) and (3.12) can be written as

A (l,p ) Û 4 X 1 X B(p) d

o l  — + 5g +
C  0 :>'si 0 - Z y

A
=  A a l { x , p ) X a i  -I- Bai {p)Sg  -f Ev (3.13)

where

E  =

1 0 0

0 1 0

0 0 0

0 0 0

0 0 - 1
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In the sequel, the regions O^j, D%, and Dp will be allowed to  be sufficiently small so th a t various 

arguments in the derivation of the control laws remain valid.

We are interested in deriving a control law ôg =  such tha t the closed-loop system has

the following properties:

(i) For V =  0, the origin Xai =  0 of the closed-loop system is exponentially stable.

(ii) For u ^  0, the tracking error e converges to  zero as f —> oo.

For the stabilization of the system (3.13) with u =  0, an optimal control problem is formulated. 

Consider the optimal control problem for minimizing the performance index

1 /■°°
=  2 j l  (3.14)

with respect to the state  Xa\ and input 5g subject to  the nominal nonlinear differential equation 

constraint:

Xal ~  Ajiaii^X^Xyi T  Bnal^s (3.15)

where Anai{x) — A a i(x ,0) and Bnai — Bai(O) are the matrices computed at the nominal value 

p* (i.e. p =  0) of the param eter vector Pa, the m atrix Q\{xa\) is a positive definite symmetric 

m atrix (denoted as Q\{xa\) > 0) and Ri  is a positive real number. The weighting m atrix Qi{xai) 

and Ri  are properly selected to  shape the response characteristics in the closed-loop system.

For deriving the optimal control law, one m ust solve the Hamilton-Jacobi-Bellrnan (HJB)

equation which is a nonlinear partial differential equation. Since it is extremely difficult to

solve this equation, instead, for simplicity, a suboptim al control law is designed using the SDRE 

m ethod [41]. This control law is obtained by solving a simplified state-dependent Riccati equation 

given by

+  PlAnalix) — P\Bna\Ri  +  Qli^al) — 0 (3.16)

where Pi(3.qi) >  0. For the existence of solution for Pi of (3.16), the pair {Anai{x), Bnai} has
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to be poiiitwise stabilizable for all Xai G Dui C R^, the domain of interest. For the AUV model, 

the rank of the controllability m atrix

Co =  [E„ai, A„ai(0)B „a i, , (0)i?„ai] (3.17)

is 5, the dimension of Xa\. As such the system is poiritwise controllable in a neighborhood of 

Xal — 0 and the solution for Fi(.Xai) exists. The stabilizing control law is then given by

5, =  (3.18)

Readers may refer to  [41] for the properties of the SDRE method. It is interesting to note 

th a t the suboptim al law satisfies

-  0 (3.19)
uOg

where the Hamiltonian of the nonlinear optimal control problem is

F(Xai, A) — -[x^j(5 i(Xai)Xa +  F l 5 ]̂ +  A^[A„ai (x)Xq1 +  BnalSg] (3.20)

and A G F® is the costate or the Lagrange multiplier.

Substituting the control law (3.18) in (3.13) with u =  0 gives

X a l  =  [Aal {X:P)  ~  Hal P j  ( X a i  ) ] X a i  =  A^i ( x „ i , p ) X a i  (3.21)

Let A„ci(xai) be the nominal m atrix Aci(xai,0)). Then the closed-loop m atrix A„ci(xai) is

guaranteed to be Hurwitz in a neighborhood of the origin from the Riccati equation theory.

Since the closed-loop m atrix (xai, p) is a continuous function of the param eter p, it remains 

Hurwitz for (xai,p) in a sufficiently small region Dai x Dp.

The composite closed-loop system ((3.13) and (3.18)) and the exosystem (3.11) can be written

as

Xal =  Aci(Xai,p)Xai +  Eu
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û =  0 (3.22)

For the composite system, we sta te  the following theorem.

T h e o re m  1. Consider the closed-loop system including the AUV model (3.7), the internal 

model (3.12) and the control law (3.18). Then there exists a region Di  =  Qai x D„ c  F® x 

and a compact set Up such th a t for (Xai(O), u(0)) G Di,  and for p G Up, the trajectory Xai{t,p) 

converges to an equilibrium point, and the depth tracking error e{t) tends to zero as ( —> oo. 

Proof: In view of the Riccati equation theory, A d(xai,p) is Hurwitz in a domain D^i x Up-, and 

therefore, expanding about x^i =  0 gives

Xal 7fci(0,p) E Xal
+

7lr(Xal,p)

V 0 0 V 0

7lcc(p) +
Xal Ay. (Xai, p)

0

where Ay(xai,p) denotes the second and higher order terms in Xa%. In the triangular m atrix Aœ, 

Aci(0,p) is Hurwitz for p G Dp and its remaining eigenvalues are zero. Therefore, according to 

the center manifold theorem [47, 49], there exists a vector function Xai{v,p)  defined for (v,p) 

belonging to  a sufficiently small region D„ x Up, with %ai(0,p) =  0, th a t satisfies

Moreover

=  0 =  Aoi{Xai{v,p) ,p)Xai{v,p)  + E v

l|Xal(f,p) -  X ai(u(f),p )|| <  ae  ^'||Xal(0) -  % ai(u(0),p)||

(3.23)

(3.24)

where Xai{t,p) and v{t) are the solutions of (3.22) and a  and /? are positive real numbers. It 

follows from (3.24) th a t Xai(Lp) — {w ,q , z ,d ,X g iY  converges to Xai{v{t),p)  as t —>oo. Note 

th a t one has Xai{v,p)  = {X'^^{v, p ) , Xs i{v , p))'^, where on the center manifold x =  X{v ,p )  and
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Xsl — Xsi{v,p).  Therefore, the last equation of (3.23) gives

^ X s i { v ,p ) ^  =  0 =  X3{v,p)  -  % (3.25)
av

where % =  Zy, on the center manifold z =  Xz,  and Xk  denotes the &th component of X .  Thus 

on the manifold x^i =  Xa\,  in view of (3.25), the tracking error vanishes; and indeed it is an 

output zeroing manifold. The tracking error is

e = Z  — Z y = Z  — Xai 3 +  Xai 3 ~  Zy  < \\z — XalsW +  — %|| (3.26)

(For simplicity, the arguments of X^i  are suppressed here.) In view of (3.24)-(3.26), one has tha t 

z(t)  —S' Zy. as t ^  DO. Of course the convergence of Xai{t,p) to  an equilibrium point on the center 

manifold follows from (3.24) since the exogenous signal v is some constant. This establishes 

Theorem 1.

The derivation of the control law (3.18) is based on the assumption th a t the control fin angle 

deflection is unlimited. However, this is not a valid assumption, and one must limit the control 

surface deflection to obtain a practical control law. The design of a constrained control law is 

considered in the following section.

3.3 Robust Control Law: Control Fin Constrained 

For the design of a constrained control law, now we introduce a hard constraint on the fin 

angle given by

I 5, |< 5 ^  (3.27)

where 5^^ > 0 is the maximum permissible value of the fin angle. The SDRE methods provides 

means to include the control constraints (3.27) directly in the design process.

According to [41], the design is accomplished by transforming the bounded control problem
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into an equivalent nonlinear regulator problem by introducing a slack variable x ^ 2  th a t satisfies

Xa2 =  U» (3.28)

where u„ is the new control input. The fin angle takes the form of a saturation sin function, 

given by

6s = satsin{6sm, x^s) (3.29)

where one defines

5«m6#n(Xa2) for | X̂ 2 |>  ^ 

5amSiTl(Xa2) for I X,2 |<  ^
(3.30)

According to  the definition (3.30) of the satsin function, fin angle is a function of tfie slack 

variable x,2 and does satisfy the control magnitude constraint for all Xg2 G R. But the new input 

tin is unconstrained and now suboptimal regulator design is possible.

Define an augmented state  vector Xa2 = (x^^,x^g)^ G C F® in an extended state  space, 

where 0,a2 is an open set containing the origin. The composite system (3.13) and (3.28) can be 

w ritten as

Ani(x,p) x^2^Fai(p)5afsfn(5^m,x^2) Osxl E
a2 — X'a2 +

O l x 5  0 1 0

— Aa2(Xa2, P)x’a2 +  Fa2^4i +  Ea^ (3.31)

where Pgg and Ea are defined in (3.31). Consider an optimal control problem, in which for

the system (3.31), the performance index of the form

1 f°°
,/2 =  -  y  k^Q2(Xa2)Xa2 +  FgU^jdf (3.32)

is to be minimized, where F 2 > 0 is a design param eter, and the weigfiting m atrix Q2 is

Q l(x 'a l )  O sxl 

O l x 5  F x 9 s 2 ( X s 2 )
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9,2(3:32)
11.2 |<  =

(3.33)
(5gm/Xg) , I Xs2 |>  2

Note tha t the performance index (3.32) is obtained by substituting (3.29) for 5̂  in the per­

formance index J\ of the unconstrained control problem. The matrix Q2 is a positive definite 

symmetric m atrix for all

For the AUV model, the pair {Aa2(xa2), Fa2} is controllable in a suitably chosen domain Ua2 , 

and similar to the derivation in the previous section, one obtains a suboptimal control law by 

solving the state-dependent algebraic Riccati equation

7i^a2(3''a2)P2 +  ^^<.2(3:02) “  ^2^02^2  +  0 2 (3=02) =  0 (3.34)

where Ano2(Xo2) =  Aa2 (xa2 , 0 ) is the nominal value evaluated at p =  0 and P2 is the positive 

definite symmetric matrix. The new control law is given by

Un =  - ^ ^ ^ ^ ^ 2(3=02)3=02 (3.35)

There exist a region D02 x Dp such th a t the closed-loop matrix Ac2(x„2,p) =  [Ao2(3=o2,p) -  

5 ^2^ 2(3=02)] is pointwise Hurwitz. Since Ac2(0,p) is Hurwitz, according to the center 

manifold theorem, there exists a function Xa2 {v,p) defined in a sufficiently small region D^s x 

üy  X Dp th a t satisfies

a%o2(i;,p)^ -  0 =  A,2(Xy^(u,p),p)X.2(u,p) -b Eoi; (3.36)

Moreover

||3=02(LP) -  ^o2(i;(f),p)|| <  «26 **||Xa2(0) -  %o2(f(0),p)|| (3.37)

where «2 and /?2 are positive numbers, and Xa2 {t,p) and v{t) are the solutions of (3.31) and (3.11).
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Now in view of (3.36) and (3.37), using an argument similar to the unconstrained case, the 

following theorem is obtained.

T h e o re m  2. Consider the closed-loop system including the AUV model (3.7), the internal 

model (3.12), (3.28) for the slack variable, and the control law (3.35). Then there exists a region 

D 2 = Da2 xCiy C X and a compact set Up such tha t for (io2(0),u(0)) G D 2 , and for p  G Up, 

the trajectory Xa2 {i) converges to  an equilibrium point, and the depth tracking error e{t) tends 

to  zero as f —> 00. Moreover the control fin constraint (3.27) is satisfied.

The regulation property of the control systems designed using the SDRE m ethod has been 

established in a sufficiently small region (Xo2,u ,p ) G Ua2 x D„ x Up surrounding the origin. 

However tlie results presented in the next section show th a t indeed the designed controller is 

capable of dive plane control for useful values of command inputs and large uncertainties in the 

system.

3.4 Simulation Results For Dive Plane Maneuvers 

In this section, simulation results using M A T L A B  and SIMULINK  for the depth control are 

presented. For the purpose of illustration, computer simulation is done for the REMUS (Remote 

Environmental Unit) AUV [55]. REMUS is a low-cost, modular vehicle with applications in 

autonomous docking, long-range oceanographic survey, and shallow-water mine reconnaissance. 

The param eters of the dive plane model of the REMUS are collected in the Appendix I. Here 

for the purpose of comparison, simulations are done using the controllers designed for the con­

strained as well as unconstrained fin angle. The performance of the optimal control systems 

depends on the choice of the weighting matrices in the performance index. Here the matrices Qi 

and Ri have been selected by observing the simulated responses. The Initial conditions chosen 

are x(0) =  0. Responses are obtained for different values of U and the reference input Zy.
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C A SE A l .  N om in al A U V  control w ith  unconstrained  input: [7 — 2 m /s , =  0.65 m  

First the closed-loop system (3.13) with the unconstrained control law (3.18) is simulated. The 

vehicle’s param eters are assumed to  be nominal. The performance index has Qi = lOO/jxs and 

III =  1- The vehicle’s velocity is f/ =  2 (rn/s) and it is desired to dive to  a depth of =  0.65 

(m). The responses are shown in Figure. 3.2. We observe th a t for the chosen performance index, 

the desired depth is attained, bu t the control fin angle required for maneuver is extremely large 

(more than 50 (deg)). Simulation results for larger command z^, show even larger fin deflections. 

This shows the limitation of unconstrained input design.

C A SE  A 2. C ontrol o f A U V  w ith  nom in al param eters and saturating  fin angle: U = 2

m /s , Zy = 1.5 m

The AUV model (3.13) with the control law (3.28) is simulated. For an illustration, it is assumed 

th a t |5g(f)| <  Sgyn = 20 deg. Noting th a t the performance index plays a key role in the design, for 

a meaningful comparison with the control system designed without any m agnitude constraint on 

the fin angle, the weighting m atrix Qi  and the scalar param eter Ri  of the performance index Ji 

of the unconstrained case A1 is retained in the performance index J 2. The initial conditions arc 

Xa2 — 0 and Fg — 5 and the command input is z  ̂ =  1.5 (m). We have given a larger command 

{zy— 1.5 instead of 0.65 (m) of Case A l) to show the advantage of the saturating control law 

design. It is assumed th a t the vehicle param eters are known (i.e. p =  0). The responses are 

shown in Figure. 3.3. It is observed th a t the depth trajectory converges to  the target value in 

about 15 seconds. The fin angle saturates over a brief period in the transient phase, but it causes 

no problem in performing the desired maneuver. As expected the state  vector remains bounded 

and converges to an equilibrium state. We observe the pitch angle and w  converge to  nonzero 

values in steady-state. This is because the weight of the vehicle and vehicle buoyancy Bo are not 

equal, and as such the equilibrium state  is not a t the origin. (Later for comparison, responses
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for W  = Bo are presented.)

C A SE  A 3. C ontrol o f A U V  w ith  p ertu rb ed  param eters and saturating  fin angle: 

U = 2 m /s , Zr =  1.5 m

In order to  examine the robustness of the control system, simulation is done using +25% per­

turbation in the hydrodynamics param eters (i.e. pa =  1.25p*, p = 0.25p*) of the AUV, but the 

controller designed using nominal param eter vector p* of case A2 is retained. The responses 

are shown in Figure. 3.4. Wc observe th a t in spite of the uncertainty in the AUV model, the 

controller is effective in regulating the AUV to  the desired depth and the state vector converges 

in about 15 seconds. Again, the control fin saturates in the transient phase.

Simulation is also performed with off-nominal lower values of the hydrodynamic parameters 

(p =  —25%p*, Pa — 0.75p*) of the AUV. Of course the controller designed for the nominal AUV 

model is retained. The response are shown in Figure. 3.5. We observe th a t output regulation is 

accomplished in about 25 seconds. It seems th a t the controller designed using the underestimated 

values of the hydrodynamic parameters of the AUV model is more robust compared to controller 

designed using overestimated values. However, one must note th a t the weighting param eters in 

the performance index play an im portant role in shaping the closed-loop responses.

C A SÉ  A 4. C ontrol o f A U V  w ith  sa tu ratin g  control: U = 1.54 m /s , =  Im  

Simulation is performed for different velocity U — 1.54 (m /s) and Zy = 1 (m) using the nominal 

and off-nominal hydrodynamic param eters (±25% uncertainties). We observed th a t in each 

case, the depth control is accomplished and the sta te  vector converges to an equilibrium state. 

The control fin saturates only for a brief period in the transient phase. In order to save space, 

responses only for the worse off-nominal case (p =  —0.25p*) are shown in Figure. 3.6. As 

expected, we observe th a t controller performs better when the vehicle speed is larger. This is 

due to  the increased control effectiveness of the fins a t higher vehicle’s speed (See, Figure. 3.5
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for comparison).

C A S E  A 5. C o n tro l  o f A U V  w ith  s a tu r a t in g  co n tro l: U = 2 m /s ,  =  1.5 m , W  =  Fq

Simulation results of Case A2 to  A4 have been obtained for the cases of unbalanced weight 

(IV) and vehicle buoyancy (B^) (IV ^  Fo). Now simulation is done for the off-nominal case 

{p = —0.25p*) for F  — 2 (m /s) and Zy = 1.5 (m), bu t unlike the previous cases, one has 

IV =  Bo- The responses are shown in Figure. 3.7. It is observed th a t compared to Figure. 3.5, 

the responses are slightly better. The vehicle attains the desired depth, and in this case the 

state vector converges to the origin. The pitch angle and w tend to zero in the steady-state as 

expected.
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Figure 3.1: The AUV model
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CH APTER 4

STATE FEEDBACK ADAPTIVE PECTORAL-LIKE FIN CONTROL SYSTEM 

In the previous chapter, a nonlinear suboptiinal control system was designed for dive plane 

maneuvering of an AUV using traditional control surfaces. Whereas, in this chapter, adap­

tive control of a biorobotic autonomous underwater vehicle (BAUV) in the yaw plane using 

biologically-inspired pectoral-like fins is designed. The use of biologically-inspired fins makes 

the BAUVs energy efficient and is thus a preferred choice over traditional AUVs. The fins are 

assumed to be oscillating harmonically with a combined linear (sway) and angular (yaw) motion. 

This control system is presented here in this chapter by using the periodic forces and moments 

generated by the pectoral hns. The m athem atical model used here has been presented in the 

second chapter.

Using a discrete-time state variable representation of the BAUV, an adaptive sampled data 

control system for the trajectory control of the yaw angle using state  feedback is derived. The 

bias (mean) angle of the angular motion of the fin is used as a control input. The parameter 

adaptation law is based on the normalized gradient scheme. In the closed-loop system, time- 

varying yaw angle reference trajectories are tracked and all the signals in the closed-loop system 

remain bounded. Simulation results for the set point control, sinusoidal trajectory tracking 

and turning maneuvers are presented, which show th a t the control system accomplishes precise 

trajectory control in spite of the param eter uncertainties, and the inter sample segments of the 

yaw angle trajectory remain close to the discrete-time reference trajectory.
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The organization of the chapter is as follows. The BAUV control problem is presented in 

section 4.1. It is followed by the adaptive controller in section 4.2 and the simulation results in 

section 4.3.

4.1 BAUV Control Problem 

The continuous-time BAUV model considered for design is

x(t) = Cx{t)  (4.1)0 0 1

(see chapter 2.) We assume th a t the vehicle’s physical parameters, the hydrodynamics coef­

ficients, and the fin forces and moments are not known to the designer. The system (4.1) is 

time-varying but periodic. The design of control system for a time-varying unknown system 

is not simple. Moreover, the control law is independent of the number of harmonics retained 

in the truncated Fourier expansion of the fin force and moment. Further, in order to obtain a 

meaningful use of the param eterization of the fin force and moment using the CFD analysis, we 

proceed to design a sarnpled-data adaptive control system.

We assume th a t the bias angle changes a t a regular interval T  — rrioTo, where m.Q is an integer 

and To =  1 / /  is the fundamental period. T ha t is, the bias angle switches after the completion 

of TTio cycles of the oscillation of the fins, and is kept constant between the switching instants. 

The solution of (4.1) is given by

z(f) =  -P /  e^C-")B0(T)[A +  A;8(T)]dT (4.2)
Jto

Taking to =  k T  and i = {k + 1)T, one has

r ( k + l ) T
i[(A: -p 1)T] =  e^^z(/ûT) -P /  (4.3)

J k T
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Let {k + 1)T — T = s. Then, noting th a t

$ ( ( k  +  l ) r - g )  =  $ ( - s )  (4.4)

(4.2) gives
fT

i [ ( k  +  1)T] =  e^:^%(tT) +  /  e ^ 'B 0 (-s ) [ / ,  +  (4.5)
Jo

Thus the discrete dynamic model of the AUV is given by

'x\(k +  1)T] =  Aiix(kT)  +  BdPf; +

3/ ( t T )  =  C%(A:T) (4.6)

where Ad, Bd and du arc constant vectors, pk (a constant) is the bias angle over t e  [kT, { k+ l )T ) ,

and k =  0,1,2,.... We assume th a t the matrices Ad, Bd and du are unknown to the designer. Here

we treat du as a constant disturbance input vector.

In the sequel, z denotes the z-transform  variable or an advance operator (i.e. zq{kT) —  

q[{k +  1)T]). Solving (4.6), the output y(z) can be w ritten as

y[z) = C { z l  — Ad) ^BdPki^) T  C { z l  — Ad) ^d„(z) ■

where n{z) and d{z) are monic polynomials of degree 2 and 3, respectively, and rid{z) is a 

polynomial. For the derivation of the control law, the following assumptions are needed: 

Assumption 1:

(A .l) The discretized system {Ad,Bd,C)  is controllable and observable.

(A.2) The system is minimum phase.

(A.3) The sign of kp is known and the upper bound of \kp\ is known.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the vehicle model n{z) is a stable polynomial ( i.e. its both the roots are strictly within 

the unit disk in the complex plane), but the denominator polynomial d{z) is unstable. Further­

more, n{z) and d{z) are coprime, and therefore, the pair (A^, B^) is controllable and (C, A^) is 

observable. We point out th a t the stability of the polynomial n[z) depends on the choice of 

fin location on the vehicle, and it is found th a t for small df  (distance from point of attachm ent 

of fin to  center of buoyancy) the system is minimum phase. The Assumption 1 can be verified 

by computing A^, B^, kp, n(z)  and d(z) for some nominal values of the parameters. Then the 

assumption remains valid for the perturbations around the nominal condition.

The relative degree of the system is one, therefore we choose a reference model of the form.

VmikT) =^Wm{z)r{kT),  & =  0 ,1 ,2 ,.... (4.8)

where r{kT)  is a discrete-time command input and

^rn{z) — -  (4.9)

is the delay operator (i.e., ym\{k + 1)T] — r[A:T]).

We are interested in the design of an adaptive control law so th a t the yaw angle p{t)  asym ptot­

ically follows the reference trajectories. For synthesis the state vector is fed back.

4.2 Adaptive Controller 

First we consider the existence of the control law assuming tha t the system param eters are 

exactly known. Then this control law is modified for the case when the param eters are not

known. The design of the control law follows the steps described in [30]. Consider a control law

u'(AT) =  e* ^ i(tT ) -b g ;r (tT ) -b g; (4.10)
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where 9\ £ R^, and 02,03 G R  are to be chosen properly. Then in the closed-loop system (4.6) 

and (4.10), solving for y{kT)  gives

i/(A:T) -  C (z / -  Aj)-^Bje;r(AT) +  A (z) +  (4.11)

where

A(z )  = \C{zJ — A^) + C ( z l  — Ad) ^dy]-
z — 1

and 91 is chosen such tha t Ad = {Ad + Bd9l^) has stable eigenvalues.

Now the com putation of 9* for the yaw angle trajectory  control is done. This is accomplished 

by model matching. Let us choose the feedback gains 6* {i =  1,2) such th a t 9^ — and

C (z / -  (4.12)

This is possible because the system (4.6) is controllable and minimum phase. Then in the 

closed-loop system, (4.11) takes the form

i/(tT ) -  W_(z)r(A:T) +  A(z) -h C A A (O ) (4.13)

where A(z) simplifies to

A(z) = =  (4.14)

Note tha t (4.12) has been used to obtain (4.14). Since Ad is a stable matrix, as /c —> oo, (4.14) 

gives

A(oo) =  hm ^^i[(z — 1) A(z)] =  (02) ^03 +  <^(^3x3 “  Ad) ^d,y (4.15)

From (4.15), it follows th a t A(oo) becomes zero if one chooses

0 3  =  —02C(^3x3 “  Ad) ^dy (4.16)

Using these values of 0*, and ignoring the exponentially decaying signals,(4.13) gives

y ( M  =  W 4»r(M  (4.17)
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This implies th a t the tracking error e[kT)  =  y{kT)  — y ^ i k T )  — kkm[0] tends to  zero as A: —> oo.

For the system with unknown parameters, the control law is chosen as

u(A:T) =  0^ (tT )i(A T ) +  02(A:T)r(A;r) +  03(^7 ) (4.18)

where 6\{kT)  G B?, 03(tT ) G R,  and O^kT)  G R  are the time-varying estimates of 0*, % =  1 ,2 ,3. 

We are interested in deriving an adaptation law such th a t the tracking error asymptotically tends 

to zero. W ith the control law (4.18), the closed-loop system takes the form

z [( t  -I- 1)T] =  4ld3;(tT) -I- Bd[0^(tT)3;(tT) -p 02(tT)r(A;T) -p 03(^7 )] -p

-  +  Bd0^^]i(kT) +  gd0;7-(kT) -p Bj0; +  Bd0^(tT)w(A:T) +  4  (4.19)

where

0 '^ [0 ^ ^ ,0 ; ,0 ;r G E ^  

in(A:T) =  [i^(A;r),r(&T), 1]  ̂ G

6{kT) — (0f(A,T), 02(A:T), 0s(fcT))’̂ , and 6{kT) — {6{kT) — 0*) is vector of param eter error. In 

view of (4.11), (4.12) and (4.14), the output computed from (4.16) takes the form

i/(tT ) =  K»T-(tT) -P I^/0(A:T)i,;(A;T) +  A(z) -p C y ï/z (0 )  (4.20)

where p* = kp = 0 g " \ Since A(z) tends to zero as k T  00, ignoring the exponential decaying 

signals, (4.20) yields

e(A;T) =  /W_[0'^(A:T)";(':7')] (4.21)

For the derivation of the adaptation law according to  [30], one needs to  obtain an augmented 

error beginning from (4.21). Define a signal

((AT) =  0^(AT)r/;[(A -  1)T] -  0^[(A -  l)T]u;[(A -  1)T] (4.22)
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and the augmented error

e(AT) =  e(AT) +  /,(AT)((AT) (4.23)

where p{t) is an estimate pf p* — kp. Then substituting the tracking error (4.21) in (4.23) and 

using (4.22) gives

e(AT) =  p'{W,,.(0^(AT)w(AT)) -  0*^ru[(A -  1)T]} +  p(AT)((AT) 

=  p'{0^(AT)rr,[(A -  1)T] -  ((AT) -  0'^tr,[(A -  1)T]} +  p(AT)((AT)

=  p*g:^(AT)m[(A -  1)T] +  p(AT)((AT) ' (4.24)

where p(AT) =  p(AT) — p* is the param eter error. This linearly parameterized augmented error 

equation is im portant for the derivation of the adaptation law.

Now following [30], the normalized gradient based control law is chosen as

sign{p*)Tw[{k — l)T]e(AT)
0[(A +  1)T] -  0(AT)

m2(AT)

A i k  +  1)T] =  P i r n  -  (4 25)

where the symmetric positive definite adaptation gain m atrix F satisfies 0 < F =  F^ <  A /sxs, 

0 < 7 < 2, and

m^(AT) -  1 +  m^[(A -  l)T|w[(A -  1)T] +  (==(AT)

For the stability analysis one chooses the Lyapunov function

F(0,p) =  |p*|0^(AT)F-:'0(AT) +  7"^P (̂A:T) (4.26)

and following [30] shows tha t

F[(A +  1)T] -  y(AT) <  (4.27)

where Oi > 0. This implies th a t 0(AT),p(AT), G L°° (the set of bounded functions), and

, (0[(A: +  1)T] — 9{kT)),  (p[(A +  1)T] — p(AT)) G lA (the set of square summablc functions).
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Furthermore, one can show that e(AT) 0 and all the signals in the closed-loop system are 

bounded. This completes the derivation of the adaptive control law for the yaw plane maneu­

vering. The Figure. 4.1 shows the complete closed-loop system with param eter adaptation law.

4.3 Simulation Results For Yaw Plane Maneuvers 

In this section, simulation results using the MATLAB/SIMULINK for yaw angle control 

are presented. Various time-varying reference trajectories are considered for tracking, and the 

performance of the adaptive controller in the presence of param eter uncertainties is examined.

The param eters of the model are taken from [33]. The AUV is assumed to be moving with a 

constant forward velocity of 0.7 (rii/sec). The vehicle param eters are I = 1.391 (m), mass=18.826 

(kg), A =  1.77 (kgrri^), X q = —0.012, = 0. The hydrodynamic param eters for a forward

velocity of 0.7 m /sec derived from [33] are Yf =  —0.3781, Yy =  —5.6198, =  1.1694,%, =

— 12.0868, Nr = —0.3781, Ny — —0.8967, Ny — —1.0186, and Ny — —4.9587. It is assumed that 

df=0.01 (m) and the fin oscillation frequency is /  =  8Hz.  The vectors /„, /(,, rria, and rrib are 

found to be

=  (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10 .17 , -0.1554,0.6992) 

/b =  (68.9975,0.4451, -16.4704,64.1009, -19.5864, -0.8903, -2.2257,2.2257,4.8966) 

=  (0.0054,0.6037,0.4895,0, -0 .0054,0 , -0 .0925,0 , -0.0054) 

=  (-0.5297, -0.3739, -0.0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0)

It is pointed out th a t these param eters are obtained using the Fourier decomposition of the fin 

force and moment, and arc computed by multiplying the Fourier coefficients by and

kp.Wa.chord.Uoo^, respectively, where Wy is the surface area of the foil. For simulation, the 

initial conditions of the vehicle arc assumed to be x(0) =  0.
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The closed-loop system (4.6) and (4.18) with the update law (4.25) is simulated. The bias 

angle is changed to a new value every T  =  %  seconds, where %  — 1 / /  is the fundamental 

period of fp and rUp. For the set point control, the term inal value of the yaw angle is taken 

as (/'* =  - 5  deg. Thus one desires to  control the BAUV to a heading angle of -5 deg. For 

the update law, the adaptation gains are selected as F =  0.4(2/A°)/5xs and 7 = 1 ,  where 

kp = 0.08 > \kp\. Using the values of AUV model, it is found tha t the actual feedback gains are 

0]' =  (1.2139 -  13.0228 -  104.6334)^,0; =  -104.6334 an d  0; =  0.2122 and  /  =  Ap == -0.0096. 

The open-loop zeros and poles of the discretized system are (-0.8990, 0.4667) and (1.0000, 1.0864, 

0.8715), respectively. Therefore, the transfer function is minimum phase. Simulation results are 

presented for the param eter uncertainty of 50 %.

C ase A l:  A d ap tive  set point control: P aram eter uncerta in ty  50% off-nom inal for 

Yaw angle -5 (deg).

For smooth control, the reference input r{kT)  (in rad) is selected as

'r(kT) — [1 — e.rp(—0.35(A — 1)T')](—57r/180)

where the sampling time is T  =  0.125 (sec). Thus the control law is is updated at the completion 

of each cycle of oscillation. Assuming 50 % uncertainty, the initial estimates 0(0) and p{0) are 

set to  0.500* and 0.50p*. This way the control law gains are 50 % lower than the exact 0*. 

Figure. 4.2 shows the simulated results. It can be seen th a t the adaptive controller achieves 

accurate heading angle control to the target set point in about 15 sec. The control input (bias 

angle) magnitude required is about 15 deg, which can be provided by the pectoral fins. The 

plots of the lateral force and moment produced by the fins are also provided in the figure. In the 

steady-state, the lateral fin force and moment exhibit bounded periodic oscillations. It is found 

th a t the control m agnitude can be reduced by using slower command r(AT) if desired.

C ase A2: A d ap tive  sinusoidal tra jectory  control: P aram eter uncerta in ty  50 % off-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nom inal

In order to examine, time-varying tracking ability of the controller, a sinusoidal reference trajec­

tory is generated using the command input r[kT)  = 3 .5x (tt/180) sin{kT)  (rad). It is assumed 

th a t 0(0) =  0.500* and p(0) =  0.50p* giving 50% uncertainty. The responses are shown in Figure. 

4.3. It is seen that, after the initial transients, the heading angle smoothly tracks the sinusoidal 

command trajectory. The control input (bias angle) m agnitude required is about 20 deg.

C ase A3: A d aptive turn in g m aneuver

The turning maneuver is an im portant practical maneuver th a t BAUVs frequently need to per­

form. For constant turning rate, a smooth trajectory is generated using the command input 

r{kT)  = 4 k T  (tt/180) (rad). As seen in Figure. 4.4. the trajectory tracked by the system is 

almost a circle due to the small m agnitude of the time-varying lateral velocity. This requires a 

control input magnitude of 30 deg and less than  100 sec to make a complete circle. It is possible 

to  have a faster turning rate, however, th a t requires larger control forces.

Simulations for other off-nominal choices of (0(0), p(0)) have been performed. It is found 

th a t although, theoretically, asymptotic tracking can be accomplished for any choice of initial 

estimates of (0(0), p(0)), larger control inputs are required for higher uncertainties. Furthermore, 

the control system performs relatively well for the choice of under-estimated initial values of the 

control gains (0 (0 ),/t(0)). Of course, the responses also depend on the choice of the command 

generator and the adaptation gain m atrix F and 7 of the update law.
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Figure 4.1: The Complete Closed-loop system with State feedback and Param eter Adaptation 

Note: For clarity different time scale is used for  eaeh plot.
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rate (deg/sec) (d) Lateral velocity (m/sec) (e) Lateral force(N) (f) Moment(Nm)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



350

; 200

Time (sec) Time sec

0.1

0.05

0

0 2 8
(c) Time (sec)

0.2

0.1E
0

E
■0.1

I - 0.2

0 2 6 10
Time (sec)

-100

Time (sec)

0.6

0.4

I
c

I5
-0.2

- 0.4

-0.6
Time (sec)(f)

X -D islance (m)
•10 0X -distance  (m) Time (sec)
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CH APTER 5

OUTPUT FEEDBACK ADAPTIVE PECTORAL-LIKE FIN CONTROL SYSTEM 

In the previous chapter, we considered the design of an adaptive control law. However, for the 

synthesis, it was assumed th a t state vector is available for feedback. It was thus essential to 

measure all the state  variables for the synthesis of the control law. But from the practical point 

of view, the synthesis using state-feedback is not attractive, because one must use sensors to 

measure each state  variable.

In this chapter, an output feedback adaptive control system for the yaw plane maneuvering 

of a biorobotic AUV using pectoral fin is derived where only the yaw angle is to be measured for 

feedback. The m athem atical model used here has been presented in the second chapter.

A sainpled-data adaptive control law is obtained for the trajectory control of the yaw angle. 

The adaptation law for tuning the controller param eters is derived using the normalized gradient 

method. In the closed-loop system, the yaw angle asymptotically tracks time-varying reference 

trajectories, and all the signals in the closed-loop system remain bounded. Simulation results for 

the set point and sinusoidal trajectory control as well as for turning maneuvers are presented.

The organization of this chapter is as follows. The control problem is posed in section 5.1. 

T h e  a d a p tiv e  law  for yaw  angle con tro l is derived  in  S ection  5.2, an d  S ection  5.3 p resen ts  th e  

simulation results.
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5.1 Problem Formulation 

The discrete-time BAUV model considered for design is

x\{k +  1)T] =  Adx(kT)  4-

{/(AT) =  Cz(A:T) (5.1)

where Ed and arc constant vectors, (3k (a constant) is the bias angle over t e  [kT, (k + l )T) ,  

and k =  0,1,2,.... We again assume th a t the matrices A^, and are unknown to the designer. 

Here we trea t as a constant disturbance input vector.

In the sequel, z denotes the z-transforrn variable or an advance operator (i.e. zq{kT) — q[{k +

1)T]). Solving (5.1), the output y(z) can be w ritten as

y(z) =  C(z7 -  Ad)-^Bd/)k(z) +  C(z7 -  A j ) - % ( z )

where n(z) and d{z) are monic polynomials of degree 2 and 3, respectively, and Tij(z) is a

polynomial. For the derivation of the control law, the following assumptions are needed;

Assumptions :

(A .l) n{z)  is stable polynomial.

(A.2) The degree n of d{z) is known.

(A.3) The sign of kp and the upper bound k° of \kp\ is known.

(A.4) The relative degree n* — n — m  > 0 is known.

(A.5) The disturbance d{t) is bounded.

Of course, these assumptions were also made for the adaptive state  feedback design. For the 

vehicle model, the stability of the polynomial n(z) depends on the choice of fin location on the 

vehicle. It is seen tha t for small value of dy the system is minimum phase. Here n(z) is a stable
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polynomial but the denominator polynomial d{z) is unstable.

The relative degree of the system is one, therefore we choose a reference model of the form.

t  =  0 ,1 ,2 ,

where r (kT)  is a discrete-time command input and

^

(5.3)

(5.4)

is the delay operator (i.e., ym[{k +  1)T] — r[kT]).

The objective is to design an adaptive control law for the tracking of reference trajectories. It is 

assumed th a t only the yaw angle is needed for feedback.

5.2 Control Law

First we consider the existence of the control law assuming tha t the system param eters are 

exactly known. Then this control law is modified for the case when the param eters are not 

known. The design of the control law follows the steps described in [30]. Consider a control law

«'(/cT) ^  0;"wi(;:T) -b 0% W2.(A:T) +  -b e ;r ( tT )  +  g; (5.5)

where u>i{kT) = aA(z)[u](f) and LJ2a{kT) — ax{z)\y\{t) with ax{z) = ..., n  =  3 and

9\, 02a € B?, and 0g, 0̂ 0 6 R  are to be chosen properly. We note th a t unlike state  feedback

only y  is used for feedback. In the control law (5.5) the gain vectors are such th a t the transfer 

function from r  to  y is equal to Wm{z) and 0% asymptotically cancels the contribution of the 

disturbance du in the output. The signals wi{kT)  and u>2a{kT) in (5.5) are obtained as the states 

of the two filters

0 1 0
mi[(A; +  l)T] = Wi[kT)  -b

0 0 1
u(A:T)

=  AoWi{kT) + bou{kT) 
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W2a[{k + 1)T] = AoW2a{kT) +  h(,y{kT) 

Then the closed loop system (5.1), using (5.6) and (5.7) is given by

(5.7)

x p  +  l)T] Ad + x{kT)

mi[(fc+ 1)T] = 6q02O^ Aq +  hdOf- 6o02a u;i(A:T)

W2a\{k +  1)Y] 1)qC  0 Ao W2a(^T')

+

Bd Bd du

bo g ; r ( M  + bo 01 + 0

0 0 0

=  A .X ,(tT ) +  B.0;T-(tT) +  B.g; +  4  

# T )  =  [C 0 0]%c(A:T) =  C a X # r ) (5.8)

where

Since the system (5.1) is controllable and observable, under assumption (A .l), there exists 6\,

satisfying

such that

g; -  (A:p)-'

e* ax(z)d(z) +  (-z), 1] A:pM(z) =  d(z) -  7%(z)z

C . ( z / - A a ) - i g .g ^ - W ^ ( z )

and in the closed-loop system the output is given by

y(z) -  C .(z /  -  A a)-^B .0 ;r(z) -b Ca(z7 -  A J - i B . 0 ; ( ^ ) - b
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Ca{zl — Aa) ^da{ r )
z — 1

A W _r(z) +  A(z) (5.12)

where p* — kp and

A(z) =  [C .(z; -  A ,)- ig a 0 : +  Q ( z i  -  A . ) - y . ] ( ^ )
Z ~  1

Since m atrix Aa is Schur and da is a constant vector, A {k T )  asymptotically tends to a constant 

value given by

Aoo =  lim A{kT)  =  lim(z — l)A (z)fc—»oo z-^l

=  Ca(-Aa)-^[Ba0: +  4 ]  (5.13)

For canceling the effect of the disturbance vector da on the output, there exists 61 in (5.12) such 

th a t Aoo =  0.

For the system with unknown parameters, the control law is chosen as

u(A:r) =  (tT)wi(kT) +  0^ ( M ^ 2(^T) +  0^ (ikT)r(ikT) +  04 (5.14)

where wg(tT) — 1/]^, 6i{kT) e  fhikT)  — [0^ 020] ,  and 03(tT ), 0 4 {kT) € R- are

time varying estimates of 0*, i = 1, ..,4. Define

w ( M  =  [wf(tT),'^^(m,3/m((A: +  l)T),l]:^

0 (tT ) =  [0r(A:T),0^(&T),03(M,^4]^ 

e(tT ) -  y(^T) -  ym(A:T), 0(tT ) =  0(&T) -  0* (5.15)

Using the control (5.15), the closed-loop system takes the form

%a[(A: -b l ) r |  =  A.%,(A:T) +  B .(0;r (tT ) -b 0 )̂ -b 4  +  B .0:^(^T)m(tT)

y  =  CaXa (5.16)
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and now the output is

y(&T) =  W ^(z)r(tT ) +  A(z) +  /W ^(z)0^(/:T)u;(;cT) (5.17)

Note th a t A{kT)  is an exponentially decaying signal by the choice of 04 . Therefore, ignoring the 

decaying signal in (5.17) yields

e(A:T) =  /M ^(z)0^(tT )w (A :T )

=  - /(0 ':" w (( t  -  1)T)) 0:^((t -  1)T))^((A: -  1)T))) (5.18)

We are interested in deriving an adaptation law such th a t the tracking error asymptotically tends

to zero. We define estimation error

r(tT) =  e(A;T) +  p(tT)((A;T) (5.19)

where p{kT)  is an estim ate of p* — kp and

(̂A:T) =  0^(tT)w((A; -  1)T) -  0 (̂(A: -  l)T)w((A: -  1)T) (5.20)

substituting (5.18) and (5.20) into (5.19), we obtain the error equation

e(kT) =  /0^(A:T)m ((t -  1)T) +  p(A;T) (̂A:T) (5.21)

where p{kT)  =  p{kT)  — p*. This error equation is linear in the param eter errors 0'^{kT) and

p{kT).  This equation is im portant for the derivation of the adaptation law. Now following [30], 

the normalized gradient based control law is chosen as

5%gTi(yru,((A; -  l)T)e(A:T)
0((& +  1)T) =  0(tT )

m2 (AT)

, ,((k  +  l ) r )  =  r {kT ) -  (5.22)

where the symmetric positive definite adaptation gain m atrix F satisfies 0 < F =  F^ < A/yx?, 

0 < 7 < 2, and

m^(AT) =  1 +  in^((A -  l)T)w((A -  1)T) +  ^^(AT) 
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For the stability analysis one chooses the Lyapunov function

y(0 ,p ) =  |/|0^(AT)F-^0(AT) +  (5.23)

and following [30] shows th a t

l / { ( f c + l ) T ) - y ( t r ) < - a . i ^  (5,24)

where >  0. This implies tha t 6{kT), p{kT),  G L°° (the set of bounded functions), and

(0((A +  %o)T) -  0(AT)), (p((A +  fo)T) -  p(AT)) e

(the set of square surnmable functions) for any integer ia > 0. Furthermore, one can show 

th a t e[kT)  —> 0 and all the signals in the closed-loop system are bounded. This completes the 

derivation of the adaptive control law for the yaw plane maneuvering.

The Figure. 5.1 shows the complete closed-loop system with param eter adaptation law. It 

clarifies how the different modules of the control system for BAUV are connected. The command 

input signal is applied to  the reference model. The digital controller provides the discrete bias 

angle control input according to (5.14). The control output from the controller being discrete is 

converted to analog before applying to the BAUV. Further the bias angle along with yaw angle 

and output error is used to tune the param eters of the controller using gradient algorithm (5.22).

Thus the combined system works harmoniously to  provide efficient control system for the BAUV.

5.3 Simulation Results For Yaw Plane Maneuvers 

In this section, simulation results using the MATLAB/SIMULINK for yaw angle control 

are presented. Various time-varying reference trajectories are considered for tracking, and the 

performance of the adaptive controller in the presence of param eter uncertainties is examined. 

The parameters of the model are taken from [33]. The AUV is assumed to be moving with a 

constant forward velocity of 0.7 (m/sec). The vehicle param eters are I = 1.391 (m), mass=18.826
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(kg), Iz— 1.77 (kgm^), X q — —0.012, Yq — 0. The hydrodynamic param eters for a forward 

velocity of 0.7 rn/sec derived from [33] are Yf =  —0.3781, Y^ =  —5.6198, %. =  1.1694,%, =  

—12.0868, Nf  =  —0.3781, Ny — —0.8967, Ny =  —1.0186, and Ny = —4.9587. It is assumed that 

ri/=0.01 (m) and the fin oscillation frequency is /  =  & H z .  The vectors f a ,  f b ,  rr ia , and are 

found to be [28]

A  =  (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10.17, -0.1554,0.6992) 

-  (68.9975,0.4451, -16.4704,64.1009, -19.5864, -0.8903, -2.2257,2.2257,4.8966) 

=  (0.0054,0.6037,0.4895,0, -0 .0054,0 , -0 .0925,0 , -0.0054) 

=  (-0.5297, -0 .3739, -0 .0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0)

It is pointed out th a t these param eters arc obtained using the Fourier decomposition of the fin 

force and moment, and are computed by multiplying the Fourier coefficients by \ p . W a - U o o ^  and 

^ p . W a - c h o r d . U o D ^ , respectively, where 14/, is the surface area of the foil. For simulation, the 

initial conditions of the vehicle are assumed to be z(0) =  0.

The closed-loop system (2.10) and (5.14) with the update law (5.22) is simulated. The bias 

angle is changed to a new value every T  = seconds, where Tg — 1 / /  is the fundamental period 

of fp and rUp. For the set point control, the term inal value of the yaw angle is taken as =  10 

deg.

Thus one desires to  control the BAUV to a heading angle of 10 deg. For the update law, the 

adaptation gains are selected as F =  0.0001(2/A°)7yx7 and 7 =  0.002, where k° =  0.08 >  [ApjUsing 

the values of AUV model, it is found th a t the actual feedback gains are =  (0.4195 —0.4323)^, 

0̂  =  (99.0671 -303.9286 309.4949)^, 0̂  =  -104.6334 an d  0; =  0.0001 an d  /  =  =  -0.0096.

The open-loop zeros and poles of the discretized system are (-0.8990, 0.4667) and (1.0000, 1.0864, 

0.8715), respectively. Therefore, the transfer function is minimum phase. Simulation results are
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presented for the param eter uncertainty of 50 % and 25%.

C ase A l:  A d ap tive  set point control: P aram eter uncerta in ty  25% off-nom inal for 

yaw angle 10 (deg).

For smooth control, the reference input r{kT)  (in rad) is selected as

r{kT)  =  [1 — exp(—0.1(A)T)]l07r/180

where the sampling time is T  =  0.125 (see). Thus the control law is updated at the completion 

of each cycle of oscillation. Assuming 25 % uncertainty, the initial estimates 0(0) and p(0) are 

set to 0.750* and 0.75p*. This way the control law gains are 25 % lower than the exact 0*. 

Figure. 5.2 shows the simulated results. It can be seen th a t the adaptive controller achieves 

accurate heading angle control to the target set point in about 45 sec. The control input (bias 

angle) magnitude required is around 40 deg, which can be provided by the pectoral fins. The 

plots of the lateral force and'mom ent produced by the fins are also provided in the figure. In the 

steady-state, the lateral fin force and moment exhibit bounded periodic oscillations.

C ase A2: A d ap tive  se t point control: P aram eter uncerta in ty  50% off-nom inal for 

yaw  angle 10 (deg).

Simulation result is also provided for param eter uncertainty as high as 50 %. Figure. 5.3 shows 

the simulated results for

r{kT)  =  [1 — exp(—0.2(A:)T)]107r/180

which is little bit faster than  the previous command. It can be seen th a t the controller achieves 

accurate heading angle control to the target set point in about 25 sec. But as one can expect, 

th a t the bias angle required would be high, surprisingly the control input (bias angle) required 

is around 20 deg. Thus due to the nonlinear nature of adaptive time varying system, the control 

required for 50 % param eter uncertainty is less th an  th a t required for 25% param eter uncertainty 

even though a faster reference input is applied to the system with 50% param eter uncertainty
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than th a t applied to the system with 25% param eter uncertainty. It is found th a t the control 

magnitude can be reduced by using slower command r{kT)  if desired.

C ase A3: A d ap tive  se t point control: P aram eter uncerta in ty  50% off-nom inal for 

Yaw angle 10 (deg) b ut for a faster com m and.

For this case the reference input r{kT)  (in rad) is selected as

r{kT)  =  [1 — exp(—0.3(A:)T)]107r/180

which is little bit faster than  the previous command. The simulation are shown in Figure. 5.4. 

It shows tha t the control input required to track a faster command is much more. And due to 

the hn constraints it is better to  provide slower command input.

Case A4: A d ap tive  sinusoidal tra jectory  control: P aram eter uncerta in ty  25 % off- 

nom inal

In order to  examine, time-varying tracking ability of the controller, a sinusoidal reference trajec­

tory is generated using the command input r{kT)  = lOx (tt/180) [1 — exp(—0.2(A)T)] sin{kT)  

frad). It is assumed that 0(0) =  0.750* and p(0) =  0.75/9* giving 25% uncertainty. The responses 

are shown in Figure. 5.5. It is seen that, after the initial transients, the heading angle smoothly 

tracks the sinusoidal command trajectory. The control input (bias angle) magnitude required is 

about 33 deg.

C ase A5: A d ap tive  sinusoidal tra jectory  control: P aram eter uncerta in ty  50 % off- 

nom inal

Tracking ability of the controller is also examined for 50% param eter uncertainty. The results 

are shown in Figure. 5.6. It is seen tha t, after the initial transients, the heading angle smoothly 

tracks the sinusoidal command trajectory. It is observed th a t the control input (bias angle) 

m agnitude required is less than  20 deg, which is far less than  tha t required for lower uncertainty. 

C ase A6: A d ap tive  sinusoidal tra jectory  control: P aram eter uncerta in ty  50 % off-
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nom inal w ith  a faster com m and input

The controller is also simulated for a faster sinusoidal command input r{kT)  =  lOx (tt/ISO) 

[1 — exp{—QA{k)T)] s in{kT)  (rad). The simulations are presented in Figure. 5.7. Similar to step 

input simulations it shows th a t the control input required for a faster command is little more 

than  the slower one. Thus it is better to use slower commands as the pectoral fins can provide 

the required bias angle.

Case A7: A d aptive tu rn in g  m aneuver

For constant turning rate, a smooth trajectory is generated using the command input r (kT)  =  

2kT  ( t t /I S O )  [rad). As seen in Figure. 5.8. the trajectory tracked b y  the system is almost a 

circle, which requires a control input m agnitude of 20 deg and less than 200 sec. It is possible 

to have a faster turning rate, however, th a t requires larger control forces.

Simulations for other off-nominal choices of (0(0),p(0)) have been performed. It is found that 

the control system performs relatively well for the choice of under-estimated initial values of the 

control gains (0(0), p(0)). Of course, the responses also depend on the choice of the command 

generator and the adaptation gain m atrix F and 7 of the update law.
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Figure 5.1: The Complete Closed-loop system with O utput feedback and Param eter Adaptation
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Figure 5.3: Adaptive set, point control: Frequency of flapping 8Hz for ijf — 10 (deg) and param ­
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CH A PTER 6

INDIRECT ADAPTIVE O U TPU T FEEDBACK SERVORECULATION 

In chapter 4 and 5, adaptive control systems have been designed for the control of BAUVs. For 

designing these control laws, the vehicle is required to be minimum phase. Apparently it is an 

interesting problem to- develop a control law, which can be used for minimum and nonminimum 

phase vehicles. This chapter treats the question of servoregulation of autonomous underwater 

vehicles (AUVs) in the yaw plane using pectoral-like fins where the system is not necessarily 

minimum phase.

For the trajectory control of the yaw angle, a sam pled-data indirect adaptive control system 

using output (yaw angle) feedback is derived. The control system has a modular structure, which 

includes a param eter identifier and a stabilizer. For the control law derivation, an internal model 

of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. 

Unlike the direct adaptive control scheme derived in the previous two chapters, the control law 

derived here is applicable to  minimum as well as nonminimum phase biorobotic AUVs (BAUVs). 

This is im portant, because for most of the fin locations on the vehicle, the model is nonminimum 

phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and 

the remaining state  variables remain bounded. Simulation results are presented for set point yaw 

angle control and turning maneuvers in presence of the uncertainties in the system parameters.

The organization of this chapter is as follows. The problem statem ent is specified in section 

6.1. An identifier is designed in Section 6.2. This is followed by the derivation of a stabilizer in
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Section 6.3, and finally, Section 6.4 presents numerical results.

6.1 Problem Statement

The BAUV model is

x[[k +  1)T] =  Adx{kT)  +  Bdfik +  d„

yfkfT) =  C :c(t:r) (6.1)

where and Bd are constant matrices and is a constant disturbance input vector. It is 

assumed th a t the matrices Ad, Bd and the vector are not known.

It will be convenient to  obtain a realization of the system (6.1) in the observable canonical 

form. Since the system (6.1) is observable, one can find a state transform ation q =  M x  such 

th a t the new representation of the system takes the form [32]

-Ü2 1 0 b2 du2

—Ü4 0 1 ^& T ) + h Pk + d'ui

— ÜQ 0 0 bo duO

A A^qikT)  +  Bo/3fc +  D q

3/(&T) ^ i(& T) -  Cg(kT) (6 .2)1 0 0

where M is a nonsingular matrix, Aq =  MAdM~^,  Bq = MBd,  C — CpM~^,  and D q = Md^.

We are interested in the design of an indirect control system for the tracking of yaw angle. 

The indirect adaptive control system has m odular structure which includes an identifier and 

stabilizer.
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6.2 Param eter Identifier 

First we consider the design of identifier. From (6.2), it easily follows th a t the transfer 

function of the BAUV, when D q = 0, is given by

^(z) z3 +  O2z2 +  OiZ +  O0 P(Tlp)

where z is the z-transforrn variable, =  (6q, 61, 62)^ e  B?, and =  (no, Uj, 02)^ E B? are formed 

by the coefficients of the num erator and denominator polynomials of the transfer function g{z). 

(Note that symbols (y, /3) have been used for denoting {y{kT), (3{kT)) as well as their z-transforms

for simplicity in notation.) The system has two zeros and three poles, and its relative degree is

one. The poles and zeros of the transfer function as well as the vector D q are assumed to be 

unknown. Of course, these depend on the param eters of the BAUV model.

For the purpose of param eter identification, first a linearly parameterized output equation is 

derived. Using (6.2), one has

y{{k +  1)T] =  —a2 y{kT)  +  ^(/cT) +  6 g +  d^ 2

y[{k +  2)T] =  —a2 y[{k +  1)T] — aiy[kT)  + q^[kT) +

y\{k +  3)T] =  - a 2 y[{k +  2)T] -  aiy\{k  +  1)T] -  aoy[kT)

+b2Pk+2 +  biPk+1 +  büPk +  d^2 +  dui +  d„o (6.4)

Treating z as the advance operator (i.e. for any signal l{kT), zl{kT)  — l[{k + 1)T]), one can 

write the last equation of (6.4) in the form

z^y{kT)  = (ùgz^ +  hiz +  bo)P{kT) -  (ugz^ +  n^z +  ao)y(kT) + d* (6.5)

where d* — +  d^g +  d^o, is a constant. The param eters 6,, a, and d* are unknown.

Let

A(z) =  z" +  Agz Ajz +  Ag (6.6)
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be a stable polynomial such th a t its zeros are in |z| < 1 (strictly w ithin the unit disk in the 

complex plane). Then operating (6.5) by A“ ^(z) gives

r  (6.7)

Noting that

z^A ^(z) =  1 — (Agz  ̂T  Ajz +  Ag)A ^(z)

(16) gives

y { t T )  = h £ ! ± ^ ^ „ ( t r )  + +  ^  (6.8)

Defining the param eter vector

d* =  [bo, b i ,  bg,  (Ag — ttg) ,  (A]  — Q i ) ,  (Ag — o g ) ,  d*]'  ̂ E

and the regressor vector

=  |W g ( t T ) ,

A -^ z ) l ]^  E  (6.9)

(6.8) can be written as

y(A;T) =  g'^,^p(A:T) (6.10)

The regressor vector (pp{kT) is obtained by filtering the input P{kT),  ou tput y{kT)  and the unit 

step sequence. There exist many param eter identification schemes to obtain an estimate of the

param eter vector 9*. For simplicity, here a normalized gradient algorithm is considered for the

identification of these parameters.

Let the 9{kT)  be an estim ate of 6*. Define the estimation error

e(/ûT) =  0^(tT)9^p(A;T) -  i/(A;T), /c E 0 , 1 ,2, . . .  (6.11)
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Using (6.10) in (6.11) gives

e(A;T) =  0^(A:T),^p(A:T)

where

0(A:T) -  g (tT ) -  g* (6.12)

is the param eter error vector. For the derivation of the identifier [30, 31], a normalized quadratic

cost function

e2 0'^(kT)4, ,{kT)4, l (kT)i(kT)

is minimized, where m  is the normalizing signal. The steepest descent direction of J{6) is 

—( ^ )  =  —{^(f)p{kT)),  which suggests the adaptive update law for 0{kT)  given by

0[{k + 1)T] =  0{kT)
F,^p(tT)f.(tT)

to +  ,^^(tT),^p(tT) 

g ( 0 ) = = e o , t E 0 , l , 2 , . . .  (6.14)

where F is a positive definite symmetric m atrix (denoted as F > 0) satisfying 0 < F <  2./ (7 

denotes an identity m atrix), the normalizing signal m  = [ko + <p̂ {kT)<pp{kT)]^, and to >  0 being 

a design parameter.

The stability analysis of this identifier can be done using a Lyapunov function

y (g ) =  (6.15)

and then showing th a t '

U (g(t +  1)T) -  U (ê(tT )) <  (6.16)

for ay =  (2 — Amaa;(r)) >  0 wherc Amar(.) denotes the maximum eigenvalue of F. Using (6.16), 

one can show th a t the algorithm (6.13) guarantees th a t 0{kT),  G L°° (the set of bounded

sequences) and , {0[{k +  1)T] — 9{kT))  E (the set of square summable sequences). (See 

[30, 31] for the details.)
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The elements of the regressor vector (ppi^T) can be obtained using two filters having state 

variable forms given by

+  1)T] =  AAu;i(tT) +  bAt((A:T),

(6.17)

where w, G

0 1 0 0

Aa = 0 0 1 ,bA = 0

— Aq —Ai —Ag 1

Then it easily follows th a t <f>p{kT) = [w j (k T ) , W2 ( k T ) , A ~ ^ . A simplification in the regres­

sor is possible if one ignores the exponentially decaying signal of A " ^ ( z ) l .  Since A ^ ^ ( z ) l  tends 

to  the constant sequence Xf  = (1 +  Ag +  Ai-|-Ag)'^, one can replace cpp̂  by A / \  where (ppi denotes 

the fth  elements of (pp.

6.3 Adaptive Control Law 

In the previous section, an adaptation law for the estimation of the param eters a,, b, and d* 

has been developed. In this section, the indirect adaptive control approach described in [30] is 

taken for the design of a servorcgulator for the output regulation of the BAUV to follow step and 

ramp yaw angle reference trajectories, despite the presence of the constant disturbance input Dq. 

Apparently, this is a problem of command tracking and disturbance rejection.

For the purpose of design, first it is essential to  obtain an internal model of the exosignals 

(the disturbance and the reference signals). Note th a t the z-transforrns of constant and ramp 

signals are yms{z) =  and Vmriz) — h  (z-iy G R),  respectively; and the least common

denominator of y^.^ and ymr is Qm{z) — (z — 1)^. As such the reference and disturbance inputs
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satisfy

(z -  =  0

(z -  l)^Do -  0 (6.18)

and according to  the internal model principle, the transfer function Qpp{z) must be inserted in 

tandem  with the transfer function (g(z)) of the BAUV for solving the output regulation problem 

[32].

We first consider the design when the param eters of the BAUV (6.2) are known, but the 

disturbance signal Do is not known. Then this control law is modified to  obtain the adaptive law 

using the estimates of the param eters of the model (6.2). Figure. 6.1 shows the unity feedback 

closed-loop system including the controller. In the forward path, the controller includes the 

internal model Q m (z )  of the exosignals. For the solution of the output regulation problem, one 

finds appropriate polynomials C  and D  such th a t the closed-loop system is asymptotically stable 

[32]. Thus the output regulation problem essentially reduces to a stabilization problem. The 

control law is given by

D(z,Tlj)
[C(z,nc)Q m (z)

where the polynomials D  and C  are chosen as

C(z, nP) — -\- C\Z ^  Co

D(z, Tid) = d^z'^ -f- d^z^ -p dgz^ -p djZ -P do (6.20)

and controller param eter vectors and rid are

»c -  (co,Ci)^ G

Ud =  (do,di,...,d4)GR"+"7 =  ;^5
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Note th a t the degree of the rnonic polynomial C  is

=  (n -  1)

where n =  3 is the dimension of the state  vector x  [5 denotes the degree of a polynomial); and 

5{D) =  n +  n , -  1 =  4, where n , =  5{Q^).

Suppose th a t a stable monic polynomial F*{z) with 5{F*) =  2n +  n , — 1 =  7 of the form

F  (z) =  z^ +  foz^ +  ... +  / j z  +  /o (6.22)

is given; tha t is, all its zeros are in |z| < 1. The characteristic polynomial of the closed-loop 

system shown in Figure. 6.1 is

n ( z )  =  C(Z, Tic)Qm('Z)f (Z, Mp) +  D (z , Tlj)Z(z, 71̂ ) (6.23)

The stabilization of the closed-loop system (6.2) (with D q = 0) and the control law (6.19) is 

accomplished if for some choice of C  and D,  one has II(z) =  F*(z), th a t is

C (z , n.c)Q,»(z)F'(z, Tip) -b D (z , n j )Z (z , n,;) =  F *(z) (6 24)

For the given polynomials <5m(z), f(z ,7 ip) and Z (z,n^), there exist polynomials C{z,ric) and 

D{z,nd)  for any F*{z) if and only if Z{z,n^)  and [Qm{z)P{z,np))  arc coprimc. For the BAUV 

model, this condition is satisfied, because the polynomials Z{z, nP) and P (z , Up) are coprime, and 

the zeros of g{z) do not coincide with the zeros of Qm{z). (An explicit solution for the stabilizer 

param eters (c,, d,) of C  and D  are given in the appendix.)

It is easily seen tha t the transfer function relating the tracking error {ym(z) — r/(z)) and the 

input yrn{z) has the polynomial Qm{z) as a factor in its numerator, which cancels the unstable 

poles of ym{z)- This is also true for the transfer function relating the output y{z) and distur­

bance input d* in (6.4). This has been possible due to  the inclusion of the internal model of
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the exosignals in the forward path, and the stability of the closed-loop system guarantees the 

convergence of the tracking error to  zero, despite the presence of the disturbance signal P q.

Now a linearly parameterized form of the control law (6.19) for synthesis is obtained [28]. Let 

Ifp(z) (d(Iïp(z)) =  n -1- — 1 =  4) be a monic stable polynomial of the form

Llp(z) — +  jUgẐ  4- /igZ^ +  jUiZ -b /Tq

M anipulating the control law (6.19) and operating by fl^^(z) gives

(6.25)

,8(/cT) =  (Hp(z) -  C ( z ,n J Q ^ (z ) )^ ^ ^ ( k T )  -b P (z ,n ,)^ ^ [! /^ (A :T )  -  3/(tT)] (6.26)

Since 11̂  and CQj^ are monic polynomials b(Ll^ — CQm) < b(n^). Define

H p(z) - C ( z , n c ) 0 m ( z )  =: [Zo,Zi,f2,Z3]i/(4 =  F : / ( z )

P (z , n d )n ^ \z ) =  d4 -b [doo, 4 i ,  4 g , do3]:/(z) =  4̂ -1- d^r/(z) (6.27)

where i/(z) =  [l,z ,z^ ,z^ ]^  G R^. (The vectors I and d„ are given in the appendix II.) Then 

control law (6.26) takes the form

/3 (A :T ) =  F m ^ ( & T )  -b  f C m ,( A :T )  +  d 4 K ( t T )  -  !/(A ;T )]

where m/j(/cT) and We{kT) satisfy the state equations

m ^ [(A  -b  1 ) T ]  =  A p U ,^ ( / : T )  -b  B p , 9 ( k T )

We[{k +  1)T] == ApWp{kT) +  Bp{ym{kT) -  y[kT))

where

(6.28)

(6.29)

0 1 0 0 0

0 0 1 0 0
B p  —

0 0 0 1 0

— /J'O - m -p 3 1

(6.30)
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The control law is linearly dependent on the param eter vectors I, da and which are functions 

of the compensator parameters. Of course, the compensator parameters Q, d̂  are functions of 

the BAUV model parameters.

Now a modification of the control law is considered, when the param eters of the model are 

unknown. The compensator design is performed, assuming tha t the param eter estimate 6  of 

d* is the true param eter vector of the BAUV (certainty equivalence principle). It is assumed 

that there exists a unique solution of the compensator equation for every value of the param eter 

estimate. Thus the compensator equation

C(Z, Tlc)Qm(z)^(^, "z) =  n (z) (6.31)

using the estimated coefficients of the num erator and denominator polynomials of g(z) is solved 

to obtain the controller gains ric and rid, where = (6q, bi, bg)^, fij, = (âg, &i, ûg) G B? are formed 

by the estimates of the param eters and b,. Using these values of and rid, the vectors I, da 

and d.4 arc computed to  obtain the control law (6.28) at each sampling instant. It can be shown 

according to [30] tha t in the closed-loop system, the tracking error y(kT)  — ym{kT) converges to 

zero and all the signals are bounded. This completes the scrvoregulator design. The complete 

closed-loop system including the identifier and the stabilizer is shown in Figure. 6.2.

For the solvability of the compensator equation (6.31), it is essential th a t the polynomials 

Z{z,nP)  and Q^{z)P{z,f ip)  remain coprime as the param eter adaptation continues. Of course, 

one can use param eter projection to keep the estim ated param eters and fip within a suitable 

set in which the coprimeness condition holds.

R e m a rk  1: For simplicity, the polynomials A(z), F*{z) and II,,(z) can be taken as A(z) =  z^, 

F*{z) = z ’̂ and II,,(z) — z^. For these choices of polynomials, only delayed values of y{kT),  

y^nikT) and P{kT)  are used for the estim ator and the stabilizer.

R e m a rk  2: The derived scrvoregulator rejects any constant disturbance input D q. It is inter-
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esting to note th a t in the closed-loop system, the adaptive law can accomplish output regulation 

despite the action of arbitrary  periodic wave forces on the BAUV, if its period coincides with 

the period of the  oscillation of the fins. This is due to  the fact th a t in the discretized model of 

the BAUV, including the wave forces, a constant disturbance vector appears in (6.1). In other 

words, it is possible to cancel the effect of any periodic wave forces a t the sampling instants by 

the selection of oscillation frequency of the fins. Of course, for this it is necessary to know the 

frequency of the wave forces.

6.4 Simulation Results For Yaw Plane Maneuvers 

In this section, simulation results using the MATLAB/SIMULINK for yaw angle control 

are presented. Various time-varying reference trajectories are considered for tracking, and the 

performance of the adaptive controller in the presence of param eter uncertainties is examined. 

The param eters of the model are taken from [33]. The AUV is assumed to be moving with a 

constant forward velocity of 0.7 (m/sec). The vehicle param eters are I = 1.391 (m), mass=18.826 

(kg), lz=  1.77 (kgm^), X q  — —0.012, Yq = 0. The hydrodynamic param eters for a forward 

velocity of 0.7 m /sec are ¥,■■ ~  —0.3781, Vi, — —5.6198, %. =  1.1694,%, =  —12.0868, =

—0.3781, Ni, — —0.8967, Nr  — —1.0186, and Ny — —4.9587. It is assumed th a t the fin oscillation 

frequency is f  — 8 Hz.  Using CFD analysis, the fin forces and the moments coefficients have 

been obtained in [28]. The param eter vectors fa, fb, and nib used for simulations are

== (0, -40.0893, -43.6632, -0.3885,0.6215,6.2154, -10.17, -0.1554,0.6992) 

=  (68.9975,0.4451, -16.4704,64.1009, -19.5864, -0 .8903, -2.2257,2.2257,4.8966) 

m . == (0.0054,0.6037,0.4895,0, -0 .0054,0 , -0 .0925,0 , -0.0054) 

=  (-0.5297, -0 .3739, -0 .0935, -0.2493,0.1246,0.0312, -0.0312,0.0935,0) 
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(Readers may refer to [28] for the details.) It is pointed out that these param eters are obtained 

using the Fourier decomposition of the fin force and moment, and are computed by multiplying 

the Fourier coefficients by \p-Wa.U^xP and ^p.Wa-chord.Uao^, respectively, where 1%, is the surface 

area of the foil. For simulation, the initial conditions of the vehicle are assumed to be x'(0) — 0.

The closed-loop system (2.10) and (6.28) with the update law (6.14) is simulated. The bias 

angle is changed to a new value every T  = Tg seconds, where To = l / f  is the fundamental period 

of fp and nip. For the set point control, the term inal value of the yaw angle is taken as ijj* =  10 

or 50 deg. Thus one desires to  control the BAUV to a heading angle of 10 or 50 deg. For the 

update law, the adaptation gains are selected as F =  O.Ol/yxr and ko is set to 1. The param eter 

df  is assumed to be 0.03944 (m). The open-loop zeros and poles of the system for the frequency 

of fin oscillation 8 Hz are (6295.5, -0.4) and (1.0000, 1.0864, 0.8715), respectively. The t r ansfer 

function, g{z) is nonminirnurn phase, since one of the zeros (at z =  6295.5) lies far away in the 

unstable region. We point out th a t the adaptive design approach of [29] cannot be applied to 

this nonminimum BAUV model.

For simplicity, the filter param eters of the identifier (A,, f =  0,1,2) and the stabilizer (pi, i  = 

0 ,1 ,..., 3) have been set to zero. We point out th a t response characteristics of the closed-loop 

system arc critically dependent on the zeros of polynomial F*{z) used for pole placement. But 

unfortunately, there does not exist any system atic procedure for its selection. A practical ap­

proach is to  try  different choices of zeros of F*{z), and select an appropriate F*{z) by observing 

the simulated responses. Here we have chosen

f  * (4  =  ('Ẑ )(;ẑ  -  0.5^)(z -  0.6)(z -  0.7)

Certainly, there can be another choice of F*{z) giving better performance.

C ase A l:  A d ap tive  set point control: P aram eter uncertain ty  20% off-nom inal w ith  

frequency o f  fin oscilla tion  8 H z for yaw  angle com m and o f 10 (deg)
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Although theoretically, the derived control law can accomplish set point control of the yaw angle 

to  any target value, it turns out th a t this may require extremely large bias angles. This is 

especially true for nonminimum phase systems. We observed th a t by appropriate command 

shaping, one can accomplish output regulation using smaller bias angles. For this reason, for 

smooth set point control, we have chosen command input of the form

r{kT)  =  [1 — exp(—0.04 x r  x {k)T)\'t]j*

where the term inal value of the yaw angle is rp* = 10(7t/180) radians, the sampling time is 

T  =  0.125 (sec) and r  is incremented in steps of 0.01 from 0 to  1. It is pointed out tha t although 

the controller has been designed to track step and ramp commands, exponentially decaying sig­

nals of the reference inputs r{kT)  cannot cause instability in the closed-loop system.' Assuming 

20% uncertainty, the initial estimates 6(0) is set to 0.800*. This way the control law gains are 

20% lower than the exact vector 6 *. The frequency of fin oscillations is 8 Hz. Fig. 6.3 shows the 

simulated results. It can be seen th a t the adaptive controller achieves accurate heading angle 

control to the target value in about 35 sec. The control input (bias angle) magnitude required 

is less than  30 deg, which can be provided by the pectoral fins. Of course, multiple fins can be 

utilized if faster maneuvers and smaller control inputs (bias angles) are desired. The plots of the 

lateral force and moment produced by the fins are also provided in the figure. In the steady-state, 

the lateral fin force and moment exhibit bounded periodic oscillations. As expected, the bias 

angle tends to zero. We observe tha t the heading angle closely follows the discrete reference 

trajectory, and its intersample oscillations are of tiny amplitudes.

C ase A2: A d ap tive  set point control: P aram eter uncerta in ty  20% off-nom inal w ith  

frequency o f  fin oscilla tion  8 Hz for yaw  angle com m and o f 50 (deg)

In order to examine large angle regulation capability of the controller, a reference trajectory is 

generated using ij)* =  50(7r/180) (rad). Thus it is desired to  change the heading angle to 50 deg.
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Figure. 6.4 shows the simulated results. We observe smooth output regulation. The response 

time remains of the same order (35 sec) as for case A l. Surprisingly the control required is 

less than  30 (deg), which is same as th a t required for a smaller command of 10 (deg). This 

unexpected behavior of tfie designed control system is attributed to the nonlinear time-varying 

nature of the adaptive system. Again the steady-state value of P is zero.

C ase A3: A d ap tive  tu rn in g  m aneuver

For constant turning rate, a srnootfi trajectory  is generated using the command input r[kT)  = 

l .SkT  (ti/ISO) {rad). It is desired to maneuver the BAUV for a 180 (deg) turn. We observe tha t 

the vehicle performs turning maneuver smoothly as seen in Figure. 6.5. The peak bias angle for 

this maneuver is around 30 deg. The vehicle takes less than  140 sec to make a turn  of 180 (deg). 

After the initial transients, only a small nonzero bias angle (less tha t 0.25 (deg)) (not apparent 

from the figure for the chosen scale) is required to  complete the turning maneuver. It is possible 

to have a faster turning rate, however, it requires larger control forces.

Simulations for other off-nominal choices of 0(0) have been performed. It is found th a t the 

control system performs relatively well for the choice of under-estimated initial values of the 

control gains 0(0). The response of the system largely depends on the choice of F*{z). Of 

course, the responses also depend on the choice of the command generator and the adaptation 

gain m atrix F of the update law. Simulations show th a t the controller accomplishes regulation 

for other fin locations as well.
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Figure 6.1: The Closed-loop system including the internal model
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Figure 6.3: Adaptive set point control: Frequency of flapping 8Hz for =  10 (deg) and param ­
eter uncertainty 20%
(a) Yaw angle, '0, (solid) and reference yaw angle (staircase) (deg) (b) Bias angle (deg) (c) Yaw 
rate (deg/sec) (d) Lateral velocity (m/sec) (e) Lateral force (N) (f) Moment (Nm)
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CH APTER 7 

CONCLUSION

The design of control systems for the dive plane and yaw plane maneuvering of autonomous 

underwater vehicles (AUVs) was considered. In chapter 3, the dive plane control of AUVs using 

the state-dependent Riccati equation m ethod was considered. For the design, nonlinearities in 

the AUV model were retained and it was assumed that the parameters of the vehicle were not 

known precisely. Furthermore, hard constraints on tlie control fin angle were imposed for a 

practical design.Using the SDRE method, control systems were designed with the constrained as 

well as unconstrained input (control fin angle). Simulation results were presented which showed 

th a t the SDRE-based control system accomplishes depth control in spite of the control saturation 

and the presence of param eter uncertainties.

In chapter 4, the design of a state feedback adaptive control system for the yaw plane control 

of a BAUV using pectoral-like fins was considered.These fins were assumed to undergo a combined 

oscillatory swaying and yawing motion for generating control forces. The periodic fin force and 

moment were parameterized using CFD analysis, and a discrete-time AUV dynamic model was 

used for control system design. The bias angle was treated as the control input. The systems 

param eters were assumed to be unknown. A sam pled-data adaptive control law was derived for 

the control of the yaw angle using the state variable feedback. In the closed-loop system, it was 

shown th a t the yaw angle asymptotically follows prescribed time-varying yaw angle trajectories 

in the presence of model uncertainties. Further, in chapter. 5, the design of an output feedback
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adaptive control system for the yaw plane control of a BAUV using biologically -inspired pectoral­

like fins was considered. A sampled-data adaptive control law was derived for the control of the 

yaw angle using only the yaw angle feedback. In the closed-loop system, it was shown that the yaw 

angle asymptotically follows prescribed time-varying yaw angle trajectories. The designed output 

feedback adaptive control system was simulated for various types of yaw-plane maneuvers. The 

simulations also showed th a t using pectoral fins, one can perform precise and rapid maneuvers 

in the presence of model uncertainties using a single sensor. Moreover, the designed controller 

is preferable from the view point of simplicity and cost of implementation compared to control 

systems using full state measurement.

In chapter 6, an indirect adaptive control of AUVs in the yaw plane using pectoral-like fins 

was considered. The system param eters were assumed to be unknown, and only the yaw angle 

was measured for feedback. In this study, the param ctrization of the periodic fin forces by 

CFD analysis was used. For output regulation, an internal model of the reference yaw angle 

(constant and ramp) and constant disturbance trajectories was introduced in the control loop. 

The designed adaptive control system has a modular structure and consists of a normalized 

gradient based param eter identifier and a stabilizer designed using pole placement method. It 

was shown th a t in the closed-loop system, asymptotic regulation of the yaw angle is accomplished 

and all the signals in the system remain bounded. Interestingly, the designed control is capable 

of rejecting any constant as well as periodic wave forces acting on the vehicle provided th a t the 

oscillation frequency of the fins coincides with the fundamental frequency of the wave forces. 

Furthermore, unlike the published work, derived control system is applicable to minimum as well 

as nonminimum phase BAUVs.

Even though this thesis provides various ways to control BAUVs, the maneuverability of 

the BAUV is limited. Better maneuverability can be achieved by employing control system for
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simultaneously using variety of fins attached to  a flexible main body. Thus future development 

in the above mentioned areas will provide a new approach for designing control systems for 

BAUVs. Designing nonlinear control laws to control BAUVs using multiple control surfaces for 

maneuverability in various planes simultaneously is an interesting problem for future research.
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APPENDED I

SYSTEM PARAMETERS

1. The Hydrodynamic param eters for the REMUS for simulation are [55] 

Mg = —4.88 kg. m ^/rad. = —1.93 kg. rn.

^w\w\ = 3.18 kg. Mq\g\ = -1 8 8  kg.m^/rad^. =  -6 .1 5  kg./rad 

Mug = —2 kg. m /rad . =  24 kg. Z^, — -35.5 kg.

Zg — -1 .93  kg. m /rad . Z^^^ =  —131 kg/m . Zg\g\ = —0.632 kg. m/rad^. 

Zuw = -28 .6  kg./in. Z^q — -5 .2 2  kg/rad . ZuuS = -6 .15  kg./(m . rad).

2. The Vehicle physical param eters are 

Zcg =  0. ijcg = 0. Zcg =  0.0196 m.

X — 0. yB — 0. zb — 0.

lY =  299 N. Bo =  306A. m == 30.48 kg.

lyy — 3.45 kg. m^.
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APPENDIX II

1. Stabilizer param eters (q,

The compensator equation (6.24) can be further expanded as

+  CiZ  +  Co)(z  ̂ 2z T  l)(z^ T 0 ,2 ^ “̂ T uiz +  Ug) +  (d^z  ̂+  T +  d ^ z  +  dQ')(l>2z'^ +  h-[Z +  6g)

— ^ +  IfiZ +  +  / 4Z'* +  f'iZ'  ̂+  / 2Ẑ  +  /iZ  +  /o

and then converted into m atrix form as follows

Jo 

f i

U 2 — ûq)

(./s — d.! +  2ag) 

{Îa — 0.2 +  2ai — ttg) 

(/s — 1 +  2tt2 — fli)

(./e +  2 — «2) 

where

5  =

Cq do Cl t /j  dg  rig (i^

(7.1)

(7.2)

rig (d'l — 2ag) (fl,2  — 2 a j  T  rig) (1 — 2 0 , 2  +  0,1) (d'2 — 2) 1 0

>̂0 bi b2 0 0 0 0

0 Og (&1 — 20g) (ü2 —  2üi +  ag) (1 — 2(12 +  Ol) (o2 -  2 ) 1

0 bo bi 62 0 0 0

0 0 bo bi 62 0 0

0 0 0 bo bi 0

0 0 0 0 bo bi ^2
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Post multiplying (7.2) by S   ̂ gives the controller parameters (c,, d,).

2. T h e  v e c to rs  I a n d  dg o f c o n tro l law

da = (do — d^/Tg) (d i — d ^ H i )  (dg — d4/i2) (dg — d4^g)

I = ( / i o  —  C o) ( p , i  +  2  Co —  Cl) ( / i ,2 —  Cg +  2Ci — 1 )  ( / I g  — C i +  2)
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