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experimentally. The simulation results show that our solutions provide better performance 

in terms of coverage than pre-existing self-stabilizing algorithms.
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ABSTRACT

Self-* D istributed  Query R egion C overing in Sensor N etw orks

by

Ai Yamazaki

Dr. Ajoy K. D atta, Examination Committee Chair 
School of Computer Science 

University of Nevada, Las Vegas

Wireless distributed sensor networks are used to monitor a multitude of environments for 

both civil and military applications. Sensors may be deployed to unreachable or inhospitable 

areas. Thus, they cannot be replaced easily. However, due to various factors, sensors’ 

internal memory, or the sensors themselves, can become corrupted. Hence, there is a need 

for more robust sensor networks. Sensors are most commonly densely deployed, but keeping 

all sensors continually active is not energy efficient. Our aim is to select the minimum 

number of sensors which can entirely cover a particular monitored area, while remaining 

strongly connected. This concept is called a Minimum Connected Cover of a query region 

in a sensor network. In this research, we have designed two fully distributed, robust, self-* 

solutions to the minimum connected cover of query regions that can cope with both transient 

faults and sensor crashes. We considered the most general case in which every sensor has 

a different sensing and communication radius. We have also designed extended versions 

of the algorithms that use multi-hop information to obtain better results utilizing small 

atom icity (i.e., each sensor reads only one of its neighbors’ variables at a time, instead of 

reading all neighbors’ variables). W ith this, we have provensel/-* (se lf — configuration, 

s e l f  — stabilization, and s e lf  — healing) properties of our solutions, both analytically and
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CHAPTER 1 

INTRODUCTION

Recent technological advances in wireless networking, memory, and embedded micro­

processors have made it possible to produce tiny, low-cost, and low-powered sensor nodes. 

A large number of those tiny sensors compose wireless sensor networks which have revolu­

tionized our world. Wireless distributed sensor networks are used to monitor a multitude 

of environments for both civil and military applications, such as traffic monitoring, wildlife 

habitat monitoring, home security, and battlefield awareness. Unlike current Internet in­

formation gathering services, wireless sensor networks provide users more localized and 

application-specific data in a timely manner.

One of the most well-known sensor nodes is the MICA Mote which was initially devel­

oped at the University of California at Berkeley. Today, it is commercially available to the 

public by Crossbow Technology, Inc. [3] and has been widely used by researchers. DARPA 

has initiated a research project called Network Embedded Systems Technology (NEST) [4]. 

Funded by DARPA, the Smart Dust project was also developed at UC Berkeley attem pt­

ing to design a sensor system which could be integrated into a package only a few cubic 

millimeters in size [50]. Top Silicon Valley companies, like Intel Corporation are also in the 

business of manufacturing such devices [5].

Since these network sensors have limited battery power, the life span of sensor networks 

is usually expected to be very short. Thus, they are energy constrained. Also, due to
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various factors, sensors’ internal memory, or the sensors themselves, can become corrupted. 

Unfortunately, as sensors may be deployed in unreachable or inhospitable areas, they cannot 

be replaced easily. Although they are most commonly densely deployed, keeping all sensors 

continually active is not energy efficient due to the above reason.

In addition to energy consumption, the topology of a network may change frequently 

due to malfunctions or environmental situations. Thus, it is impractical to pre-configure 

a network and deploy each sensor in a certain deterministic position for a large number of 

sensors.

Due to all these constraints, there is a need for more fault-tolerant and energy-efficient 

sensor networks which must be self-configuring and self-maintaining or self-healing. The 

term Self-* has been used to describe all these properties like self-organizing, self-configuring, 

self-healing, etc. In this thesis, we will present a self-stabilizing solution to this very chal­

lenging energy saving problem in sensor networks. Then we will show that this solution can 

also be considered as a self-* solution.

A sensor network’s topology can be described using a graph G {V,E), where vertices 

are sensor nodes and edges are communication links between sensors. Every sensor has 

a certain communication range and can communicate with only those sensors which are 

located within its communication range. If two sensors are located within each other’s 

communication range, then there is a bi-directional communication link and they are called 

neighbors. Similarly, every sensor has a certain range it can sense or gather data which is 

called a sensor’s sensing range. A group of sensors is said to cover a specific region when 

the union of the sensing disks of these sensors completely cover this region.

In sensor networks, queries may be sent to “sense” data or events over a particular 

region, called a query region. Our aim is to select the minimum number of sensors which
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can entirely cover a particular query region, while remaining strongly connected. This 

concept is called Minimum Connected Cover of a query region in a sensor network. In its 

general form, this problem is known to be NP-hard [38, 45].

1.1 Contributions

The main goal of our research is to design an energy-efficient query response sensor 

network protocol. Two main topics are considered in this research: the design of wireless 

sensor networks and the design of self-* systems. The first contribution of this thesis is the 

discussion of the wireless sensor networks. We discuss the current trend and solutions to 

many significant problems in this area. The second contribution is the study of the self-* 

systems which includes the properties of self-organizing, self-maintaining, and self-healing 

amongst others.

The most important contribution of our research is to connect the self-* systems and 

wireless sensor networks to design a self-* energy-efficient solution to the minimum con­

nected sensor cover problem. Considering the most general case in which every sensor has a 

different sensing and communication radius, we have designed two fully distributed, robust, 

s e l f  — * solutions to the minimum connected cover of query regions tha t can cope with both 

transient faults and sensor crashes. We have also designed extended versions of the algo­

rithms which use multi-hop information to obtain better results utilizing small atomicity 

(i.e., each sensor reads only one of its neighbors’ variables at a time, instead of reading all 

neighbors’ variables at once).
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1.2 Outline of the Thesis 

In Chapter 2, we discuss mobile wireless networks such as cellular networks and wireless 

ad hoc networks. This chapter also includes the overview of wireless sensor networks. We 

then delve into self-* systems in Chapter 3. Descriptions of many types of fault-tolerant 

systems are presented in the context of self-*. The motivation of this research, previous 

solutions in related areas, the model, and the program used in our solutions are described 

in Chapter 4. The problem of minimum connected sensor cover is formally defined in this 

chapter. Our self-stabilizing solutions for this problem is presented in Chapters 5, 6, and 7. 

We include the proof of correctness for each solution in each chapter. In Chapter 5, the 

single-hop UID based algorithm is introduced. A modified version of that algorithm is given 

in Chapter 6. In Chapter 7, we present multi-hop algorithms. Simulation results for all 

algorithms presented in this paper are included in Chapter 8. Finally, we summarize our 

research, and present further concepts for future research in Chapter 9.
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CHAPTER 2

WIRELESS NETWORKS 

In this chapter, we will give brief descriptions of wireless networks, which include cellular 

wireless networks and ad hoc wireless networks to understand the difference between sensor 

networks and other types of wireless networks. The overview of sensor networks will also 

be presented. Wireless networks have been playing an important role in the development 

of communication technology in the last century and it is still growing rapidly. It is an in­

formation transmission system tha t uses electromagnetic waves such as radio waves instead 

of physical wires. Examples of wireless networks are WLAN (wireless local area networks), 

GSM (Global System for Mobile communications), and D-AMPS (Digital Advanced Mobile 

Phone Service).

2.1 Mobile Wireless Networks 

In recent years, our society has become more information oriented and the demand of 

information accessibility has been growing rapidly. The advantage of using a wireless net­

work is its convenience. Via WLAN, users can access the internet anywhere outside their 

work place such as remote offices or even coffee shops. Also, its expandability removes the 

need of physically rewiring the existing network when a machine is added or removed. W ith 

these advantages, mobile wireless networks have been experiencing a tremendous growth in 

popularity amongst people who want information and connectivity anytime and anywhere. 

This growth has led to many technological advances in this field, and as a result, small, low
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cost, and powerful mobile computing devices such as Personal Digital Assistants (PDAs), 

smart mobile phones, and laptop computers have been developed. Although mobility is one 

of the key factors of these computing devices’ popularity, it makes maintaining communi­

cation among the various types of mobile devices critical and challenging. Recent advances 

in wireless communication technologies have enabled wireless mobile devices to communi­

cate with each other in various ways. Mobile Wireless Networks can be classified into two 

branches; infrastructured (cellular) and infrastructureless (ad hoc) wireless networks [35]. 

Both aim to provide reliable communications and computing environment where users are 

not tethered to their information source.

2.1.1 Infrastructured/ Cellular Wireless Networks 

In an infrastructure/ cellular wireless network, access points (or base stations) are re­

quired which enable the mobile devices to connect to each other. Those access points are 

distributed along a wired backbone and usually connected to a fixed network infrastruc­

ture or to the Internet, and act as routers or gateways to forward packets to other devices. 

Cellular networks are divided into cells and each cell is associated with a base station and 

covered by this base station. W ithin its coverage, a base station can communicate directly 

with mobile hosts by sending and receiving signals. The communication between one mobile 

host to another is established via a base station and point-to-point connections are usually 

not established among mobile hosts. A mobile host is able to move from one cell to another. 

However, to do so, it must cease communication with the old base station and begins com­

munication with the new base station, which is called a handoff. The handoff should not 

disconnect the existing communication and should not be detectable by a user [51].

Examples of this kind of wireless network are Global System for Mobile Communications 

(GSM), Universal Mobile Telecommunication System (UMTS), Wireless Local Loop (WLL),
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and Wireless Local Area Network (WLAN).

Infrastructured wireless networks are commonly used in office buildings, college cam­

puses, or locations where the access points can be easily installed and connected to an 

existing network.

2.1.2 Infrastructureless/Ad Hoc Wireless Networks

There may be a need for efficient and dynamic communication of independent mobile 

users when no fixed wired infrastructure is available. A few examples are emergency/rescue 

operations, disaster recovery, and military networks. In such situations, organized com­

munication networks can not be relied upon. Thus, establishing reliable networks quickly 

among a collection of mobile hosts without any centralized administration is required. As 

such, the development of mobile devices and their networks have been receiving more and 

more interest.

A network which does not rely on any wired backbone, base stations, or a central 

controller is called an ad hoc network. In this type of network, communication between 

mobile hosts is peer-to-peer, so each host has direct communication with another. Hosts 

also act as relay nodes to forward data packets. Such a network is often called a Mobile Ad 

Hoc Network (MANET) [2, 33].

The set of applications for a MANET is diverse, ranging from large scale, mobile, and 

highly dynamic networks, to small and static networks tha t are constrained by power 

sources. Examples of applications arenas are military battlefield, civilian environments, 

and emergency operations.

There are several characteristics of MANET which differ significantly from other types 

of networks: Since hosts are mobile in MANET, the network topology may change dynam­

ically. However, because there is no centralized controller, each host must be able to detect
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this topology change and re-configure the network every time the change occurs in a fully 

distributed manner. Also, multiple hop routing algorithms may be needed as every host may 

not be within the communication range of every other host. Hence, the intermediate nodes 

must serve as routers for other nodes in the network so that data packets can be forwarded 

to their destinations. In addition to these, MANET has a fluctuating link capacity. Factors 

such as link quality, fading, noise, and interference are key issues. Security and interception 

problems are of a concern as well, especially in military applications. Therefore, designing 

the protocol for MANET is very crucial and those issues must be carefully examined before 

widespread commercial deployment.

2.2 Wireless Sensor Networks 

Sensor networks are one of the main topics of research for this thesis. We will present an 

overview of the sensor networks in this next section. Some issues and concepts associated 

with sensor networks are also included.

2.2.1 Overview

Wireless sensor networks have been recognized as one of the most important technologies 

for the future. It allows us to instrument, observe, and respond to phenomena in the 

surrounding environment. A number of sensors spread across a geographic area compose 

sensor networks. Recent technological advancement has enabled the production of small, 

low-cost, low-powered, distributed sensing devices. These devices are called sensor nodes. 

They are very different from traditional desktop and server systems [41]. Each sensor node 

has wireless communication capability and some level of computational ability for signal 

processing and networking of data, but has a limited energy source. Sensor nodes are usually 

static. However, some nodes can be mobile. It seems tha t sensor networks have similarities
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with wireless ad hoc networks such as MANET and mobile cellular networks. However the 

followings characteristics of sensor networks [17] suggest that many recommended protocols 

for the above two platforms may not be well suited for sensor networks.

1. Battery Power/Energy: Sensor nodes have a limited energy supply. Usually, once 

deployed, batteries cannot be replaced or recharged.

2. Communication: The communication (transmission) range of a sensor node is limited. 

Also, the quality of a wireless connection between sensor nodes is limited due to various 

reasons such as latency and bandwidth.

3. Memory: Sensor nodes have limited memory, hence limited computational power.

4. Location sensing: Sensor nodes may or may not be supported by satellite location 

determination system such as GPS.

5. Uncertainty in sensing: Signals detected by physical sensors have an inherent un­

certainty. They may contain environmental noise or may be biased due to sensor 

location.

6. Size: The number of nodes in a sensor network can be several orders of magnitude 

higher than the nodes in other ad hoc networks. The number may be in the thousands 

or millions.

7. Deployment: Sensor nodes are usually densely deployed for the purpose of fault tol­

e ran ces. T yp ica lly , th e y  a re  dep loyed  ran d o m ly . H ow ever, in  som e a p p lic a tio n s , de­

terministic deployment is also available.

8. Unattended operations: Depending on the application, sensor nodes are unattended 

for long periods of time. In most cases, physical maintenance may not be feasible.

9
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9. Topology Changes and Failures: The topology of sensor networks may change dynam­

ically, due to change of position, reachability (e.g., jamming, noise, obstacles, etc.), 

available energy, malfunctioning, etc. Also sensor nodes can fail easily due to the 

low cost in manufacturing or environmental threats such as destruction by animals or 

vehicles. Therefore sensor networks should be self-healing, as well as self-organizing 

(Chapter 3).

Sensors are used as both data generators and routers. Networked sensor nodes can ag­

gregate data to provide a rich, multi-dimensional view of the environment. Source sensors 

detect the event or gather data. Sources are usually located where the environmental activ­

ities of interest are expected to take place. Sink nodes are basically monitoring terminals 

such as mobile PDAs or laptops. They are connected to other networks such as the Internet 

and provide remote access to data from the sensor network.

A rchitecture. Other recent advancements in technology have made common hardware 

platforms, sensors, and radios widely available. Such low-cost, off-the-shelf devices enabled 

the great development in the held of sensor networks.

Sensor nodes are typically composed of on-board sensors, a processor, a small amount 

of memory, a wireless modem, and a limited energy source. Overall prototypes of currently 

available sensor nodes are very similar, but their size and shape come in great varieties, 

from WINS NG 2.0, whose size is more than 5000 cubic centimeters to Smart Dust which 

is a device a cubic millimeter in size. Their diversity is natural due to different types 

of applications. One of the most widely used nodes is MICA Mote [3]. MICA motes 

were originally introduced by US Berkeley research group. It features an Atmega 128L 

processor, 4 KB of RAM, a 916 MHz transceiver. Tiny OS operation system, and runs 

on 2 AA batteries. TinyOS is a small micro-threaded OS and it can provide the system

10
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software support to operate and manage such small smart devices [40]. Five requirements 

for networked sensor systems were given in [41]. They are (a) small physical size and low 

power consumption, (b) concurrency-intensive operation, (c) limited physical parallelism 

and controller hierarchy, (d) diversity in design and usage, and (e) robust operation.

One of the most well-known projects in sensor networks is the aforementioned Smart 

Dust project at Berkeley [50]. The researchers aim was the designing of networked sensors 

with limits on size and power resources, called smart dust with required sensing, communi­

cation, and computing hardware, along with a power supply, within the size of a few cubic 

millimeters.

In [5] the current research on heterogeneous sensor networks at Intel Corporation is 

presented. In this research, a group at Intel is exploring the deployment of heterogeneous 

sensor networks in theme parks. These networks could be used for monitoring water quality, 

providing Internet access to park visitors, or for the overall improvement of park manage­

ment.

DARPA founded a program called Network Embedded Systems Technology (NEST). [4] 

describes many projects under NEST. A fundamental question for the NEST program is 

how should deeply embedded, diffuse sensor networks be programmed? The goal of the 

NEST program is to achieve “fine-grain” fusion of physical and information processes. 

A pplications. Today, there are many different types of sensors such as seismic, infrared, 

acoustic, visual, and radar amongst others. Hence there are a wide variety of conditions 

tha t can be monitored by sensor nodes tha t include temperature, humidity, pressure, noise, 

and vehicular movement. Also, sensor nodes can be used for continuous sensing or event 

detection. Consequently, application fields of sensor networks are limitless. The followings 

are a few examples:

11
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• Military applications: Sensor networks can be used to detect biological and chemical 

attacks and create warning systems. Also they can be used to monitor an ally’s 

condition and status.

• Environmental applications: One interesting example of this area was presented 

in [47]. Sensors were deployed on Great Duck Island in Maine for habitat moni­

toring. Forest fire detection and flood detection systems are also good examples in 

this category.

• Health applications: Doctors can monitor the current condition of patients by using 

sensors which may detect heart rate or blood pressure.

• Commercial applications: There are numerous applications in this field. Inventory 

management, intruder detection, and vehicle tracking use sensor networks to attain  a 

so called smart environment.

Many requirements for the above mentioned application areas may be unique and not 

suitable for traditional ad hoc networks. For instance, in military applications, there is a 

heightened chance tha t nodes will be destroyed by an enemy. Because sensor nodes are 

cheap and disposable, they can be deployed densely to tolerate a node’s fault. Therefore, 

in the future, wireless senor networks will be an integral part of our lives.

Sensor network services. According to [39], several services must be provided by sensor 

networks in addition to low-level networking. Such services are unique to sensor networks. 

The following are some examples described in [39].

• Localization. In many sensor network protocols, nodes are required to know their own 

positions. However, not all sensor nodes are equipped with a GPS system. Therefore,

12
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they must have the ability to compute geographic location automatically. Measur­

ing the distance to neighboring nodes can be done by measuring the receiving signal 

strength (RF-based ranging) or measuring the difference in arrival times of simulta­

neously transm itted radio (acoustic ranging).

Time synchronization. Often, sensors are required to collaborate to detect an event. 

For this purpose, it is essential for sensor networks to have the ability of time syn­

chronization. Typically, this can be implemented by using time-stamped messages. 

Time synchronization can also be used to ensure collision-free communication between 

sensors.

Remote programming. Usually, sensor networks are application specific and their 

tasks are pre-programmed before deployment. It is highly desirable if the tasks are 

re-programmable when environments or targets have changed.

Security. Although the importance of security issues has not been recognized as much 

as other areas of sensor networks have been, recently this issue has gained extensive 

attention. As sensor networks became more and more popular and used in many 

applications, security can become a serious problem, especially in military applica­

tions. Designing a mechanism, such as message encryption or authentication, is quite 

a challenging problem since sensor networks have limited transmission bandwidth and 

limited computational power.

13
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CHAPTER 3 

SELF-* SYSTEMS

One of the main topics of research in this thesis is self-* systems. In the following, 

we start with a brief description of distributed systems which is a computational model 

commonly used in the design of self-stabilizing algorithms. Then we will give an overview 

of self-* systems in Section 3.1. We will describe many terms currently being used in the 

broad area of fault-tolerant computing. Also, an overview of the concept of self-stabilization 

which is currently a very active area of research will be given in Section 3.3.

D istributed  System s. A number of definitions have been proposed in the literature 

to capture the meaning of distributed systems. A distributed system  is a communication 

network, multiprocessor computers, and can be a single multitasking computer [28]. Also, 

the existence of the collection of these nodes must be transparent to the system user. 

Although the processors in distributed systems are autonomous in nature, they may need 

to communicate with each other to coordinate their actions and achieve a reasonable level of 

cooperation [49]. A program composed of executable statements are run by each computer. 

Each execution of a statement changes the computer’s local memory content, hence the 

computer’s state. Consequently, a distributed system is modeled as a set of n state machines 

tha t communicate with each other. There are mainly two models for communications 

between machines; message passing and shared memory. In the message passing model, 

machines communicate with each other by sending and receiving messages. While in the

14
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shared memory model, communication is carried out by writing in and reading from the 

shared memory. This model will be described in detail in Section 4.3.

3.1 Overview

Software systems are used everywhere. Thusly commercially available software systems 

must be able to adjust to different inputs and handle different faults so tha t they can be 

used in many different environments. The different concepts or terms encapsulated in self-* 

have been introduced to characterize different ways of detecting, adjusting, and recovering 

from such changes. Because these terms have not been formally defined, we will informally 

describe them with examples from other sources of literature.

A self-* system should be self-configuring, self-organizing, self-contained, self-healing, 

and self-managing [34]. According to [54], research in self-* systems is “a direct response 

to the shift from needing bigger, faster, stronger computer systems to the need for less 

human-intensive management of the systems currently available. System complexity has 

reached the point where administration generally costs more than hardware and software 

infrastructure.” The goals of the self-* systems are reduction of human administration and 

maintenance, and an increase of reliability, availability, and performance.

A system is considered to be self-configuring if starting from an arbitrary state and an 

arbitrary input, the system will eventually satisfy the specification of an application or start 

behaving properly in finite steps. Therefore, a self-configuring system is the system which 

can configure and reconfigure itself under varying conditions or faults. A similar concept of 

self-organizing was defined in [8]. In this paper, this concept was applied to study peer-to- 

peer systems based on the locality principle. Example applications can be seen in the field 

of robotics [25]. The problem considered in these papers is for a system of multiple mobile
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robots to be able to communicate with each other and form a certain geometric pattern. 

Since each robot can start from any arbitrary position, but eventually converges to a final 

shape, proposed solutions are considered to be self-configuring.

A self-contained system is a system in which only local neighbors are affected by any 

faults or topology change. Thus, if a fault occurs, nodes which are located more than several 

hops away should not be aware of it.

A self-healing system automatically recovers from different perturbations and dynamic 

changes. In [9], a self-healing network (SHN) for supporting scalable and fault-tolerant 

runtime environments was presented. It was designed to support message transmission 

via multiple nodes while protecting against failures. Finally, within a self-maintaining 

system, all tasks in all phases in the life cycle of the system are automatic so th a t it can 

reduce the system adm inistrator’s tasks. As the number of computer devices continue to 

increase exponentially, planned maintenance of computers are becoming more and more of 

an impossible task to manage. As well, the cost of employing network administrators to keep 

these computers up and running has been rising. In [13], the authors defined this concept 

from the system administrators perspective as a system which maintenance will only be 

required at fixed intervals and the required tasks will be clearly defined at maintenance 

time. Autonomic computing is IBM’s solution to the above management problem [1]. On 

October 15th, 2001, Paul Horn, Senior Vice President of IBM Research suggested a solution: 

“Build computer systems tha t regulate themselves much in the same way our autonomic 

nervous system regulates and protects our bodies.”

Another approach which was introduced in [31, 48] was recovery-oriented computing, 

with such systems being called self-repairing computers. This concept can be applied to 

designing highly dependable Internet services.
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3.2 Ubiquitous/Pervasive Computing

“The most profound technologies are those tha t disappear. They weave themselves 

into the fabric of everyday life until they are indistinguishable from it” [59]. These are 

the words of the late Mark Weiser who was the chief technologist at Xerox PARC and 

considered the father of ubiquitous computing. He described this new era as tha t of most 

computers vanishing into the background and being “nearly invisible” from users, but would 

always be available, which was called invisible computing, and one of the key concepts of 

his vision. This invisible tool is one that does not intrude on our consciousness so that 

we can focus on the task. An example of this concept is eyeglasses. We look at the 

world, not the eyeglasses. Computers should be the same. They would be available and 

prevalent throughout the physical environment without users actually having awareness 

of them. Another key concept was presented in [60], known as calm technology. The 

goal of “calm” technology is to send information in a calm manner. Technology such as 

cellphones and TVs are often the antithesis of this concept. However, calm technology 

allows the user to choose what information is needed and what information is peripheral (or 

sensory) to reduce information overload, while still allowing the user to move easily from 

the center of information to periphery and back. This can be performed by giving more 

detail to the periphery. In [60], an example of this calm technology is shown by comparing 

a video conference and a phone conference. The video conference can give participants 

visual knowledge of details such as facial expression or body posture, so tha t participants 

are more confident about what information is important, hence a more “calm” environment 

than tha t of a phone conference.

Ubiquitous computing is about making our lives simpler through digital environments 

tha t are sensitive, adaptive, and responsive to human needs. It is now a framework for
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new and exciting research in the field of computer science, which includes mobile devices, 

sensors, and many smart appliances.

3.3 Self-stabilizing Systems 

In 1973, Dijkstra introduced the term self-stabilization in the world of computer sci­

ence [27, 26], which was a concept of fault-tolerance. Unfortunately, only a handful of 

people had become aware of its importance until Lamport endorsed this as “Dijkstra’s 

most brilliant work” and “a milestone in work on fault-tolerance” in his invited talk at the 

ACM Symposium on Principles of Distributed Computing in 1983. Today, it is one of the 

most active areas of research in the field of computer science.

A system is considered self-stabilizing if starting from any arbitrary state (possibly a 

fault state) it is guaranteed to converge to a legitimate state which satisfies its problem 

specification in a finite number of steps. Once it converges to a legitimate state, it must 

stay in tha t legitimate state thereafter unless a fault occurs. With respect to behavior, it can 

also be defined as a system starting from an arbitrary state, reaching a state in finite time 

from which it starts behaving correctly according to its specification. This self-stabilization 

enables systems to recover from a transient fault automatically.

According to [10, 11], self-stabilization can be defined in terms of two properties; closure 

and convergence. Closure means tha t if a system is in a correct (or legitimate) state, it is 

guaranteed to stay in a correct state, if no fault occurs. On the other hand, convergence 

means tha t starting from any arbitrary state, it is guaranteed tha t the system will eventually 

reach a correct state in finite steps. In order for a system to be self-stabilizing, it must satisfy 

both of these properties.

In the area of network protocols, self-stabilization has been extensively studied. Pro-
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tocols like routing, high-speed networks, sensor networks, and connection management are 

just a part of many applications of self-stabilization. Also, there exist many self-stabilizing 

distributed solutions for graph theory problems, for example, spanning tree constructions, 

maximal matching, search structures, and graph coloring. Many self-stabilizing solutions 

for numerous classical distributed algorithms were proposed as well. Those include mutual 

exclusion, token circulation, leader election, distributed reset, termination detection, and 

propagation of information with feedback [28].

In the study of self-stabilization, several aspects of models have been considered, such 

as the following:

• Interprocess Communication: shared registers or message passing.

• Fairness: weakly fair, strongly fair, or unfair.

• Atomicity: composite or read/write atomicity.

• Types of Daemon: central or distributed.

All together proving stabilization programs are quite challenging. Two techniques 

have been commonly used in research literature: convergence stair [37] and variant func­

tion [43] methods. Furthermore, many general methods of designing self-stabilizing pro­

grams have been proposed which include diffusing computation [12], silent stabilization [29], 

local stabilizer [7],local checking and local correction [14, 56], counter flushing [57], self­

containment [36], snap-stabilization [20], super-stabilization [30], and transient fault detec­

tor [15].

Self-stabilization is a significant concept in the study of sensor networks. Due to the 

dynamic nature of sensor network topology (Section 2.2), the protocols for setting up and 

organizing sensor networks are often required to be self-stabilizing.

19

Reproduced with permission of fhe copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

MINIMUM CONNECTED SENSOR COVER PROBLEM 

Throughout our research, we extensively studied two main fields; wireless sensor net­

works and self-* system, which were discussed in earlier chapters. Using the knowledge 

we acquired by studying those topics, we designed robust, distributed, and self-* protocols 

to solve the minimum connected sensor cover problem tha t is a significant issue in sensor 

networks. The outline of this chapter is as follows; The motivation of this research is first 

stated. Then, we discuss how other issues and topics described in earlier chapters are re­

lated to the minimum connected sensor cover problem. In section 4.2, we describe some 

various results in related areas. The model and the program including its notation used in 

our algorithms are described in section 4.3. Also, a formal definition of self-stabilization 

is given. Finally, we state both an informal explanation and formal specification of the 

problem to be solved in this section.

We report the main results of our research in the next four chapters. In Chapter 5, an 

algorithm to solve the minimum connected sensor cover (Algorithm SHIT>) is presented. 

We discuss the modified versions of this algorithm in Chapters 6 and 7. A detailed informal 

description, formal algorithms, and proof of the algorithms are included in each chapter. 

We also discuss simulation results of all algorithms in Chapter 8.
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4.1 Motivation

Wireless sensor networks are usually composed of a large number of tiny sensor nodes 

with finite energy sources. In many applications, sensors are deployed in an area where 

once deployed it is infeasible to replace or recharge a sensor’s battery or energy supply. 

Therefore sensor networks are usually expected to have a very short life. Also, in a typical 

sensor network, the topology of the network is dynamic due to nodes’ movement, failure, 

energy consumption, or other varying reasons. Hence, designing a robust, energy efficient 

sensor network which will allow uninterrupted operation and can adopt rapid topology 

change is critical. That is, sensor networks should be designed as self-* systems.

In sensor networks, queries are sent to nodes from a few external devices to gather data. 

The information to be gathered by a sensor network may concern only a particular sub-set 

of the monitored area, called a query region. Since the sensors are usually densely deployed, 

considering the energy constrained nature of sensor networks, all sensors inside the query 

region should not be actively participating in sensing the data. To minimize the network 

energy consumption and prolong the network life time, some sensors should be placed in a 

passive mode. However, the active sensors must be able to cover the whole query region 

and maintain network connectivity. Thus, the minimum connected sensor cover problem 

had arisen.

4.2 Related Work

The problem of computing a minimum connected cover of a query region was first 

introduced in [38]. Two self-organizing solutions were also presented in [38]. However, 

both solutions follow a greedy strategy and none of the solutions are localized. The first 

solution is centralized — a fixed leader chooses the nodes to be part of the cover. In the
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second solution, a particular sensor node (which is not always the same node) behaves as 

the coordinator or leader. This special node collects global information in order to select 

the nodes to be included in the final cover set.

The issues of coverage and connectivity, and the relationship between them, were ana­

lyzed in [58]. Since different applications or the degree of fault-tolerance may require dif­

ferent degrees of coverage, a Coverage Configuration Protocol (CCP) was presented in [58]. 

The CCP protocol was designed to maximize the number of sleeping nodes, while main­

taining two conditions: (1) Every point in the query region is covered by at least K sensors 

(K-Cover age), and (2) all nodes are connected via K disjoint paths (K-connectivity).

In [58, 67], it is stated that if the communication range is at least twice the sensing 

range, then complete coverage implies connectivity. A more general form of this theorem 

was proven in [58]. That is, K-coverage implies K-connectivity if the communication range 

is at lease twice the sensing range. When the above condition does not hold, CCP cannot 

guarantee network connectivity. So, CCP was integrated with SPAN [19] to provide both 

coverage and connectivity.

SPAN is a connectivity maintenance protocol in which a node volunteers to be a coordi­

nator when it finds tha t two of its neighbors cannot communicate with each other directly 

or indirectly.To reduce the number of redundant coordinators, after a certain delay, only 

a single node announces its decision to be a coordinator. This protocol, however, cannot 

configure a network to a specific degree of connectivity. It can only preserve the network’s 

original connectivity.

A similar approach was discussed in ASCENT [18]. In this paper, the goal was to 

maintain a certain data delivery ratio. ASCENT nodes locally measure their connectivity 

using a number of active neighbors and message losses to decide if they should be active or
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passive. This protocol can automatically configure the network connectivity. However, it 

does not guarantee complete coverage of the query region.

A number of optimal conditions for coverage were established in [67] which show that 

minimizing the number of working nodes is equivalent to minimizing the overlap of sensing 

areas of all the nodes. The authors defined the optimal positions of the nodes tha t have 

minimal overlap of sensing areas. In this optimal position, any three nodes should form 

an equilateral triangle with side length 3 /r , where r is the sensing radius. Optimal Ge­

ographical Density Control (OGDC) algorithm for coverage was proposed based on those 

optimal conditions. However, the result of this is valid only when complete coverage implies 

connectivity (as discussed above).

A scheduling protocol for coverage was proposed in [55]. The authors here assume a 

circular sensing area and allow a node to turn  off only if its sensing area is completely 

covered by its neighbors. Then, nodes use a random delay to announce their decision to 

turn  off. Unfortunately, the issue of connectivity was not addressed in [55].

The GAF protocol [63] uses GPS to reduce redundant nodes when maintaining routing 

paths in ad-hoc networks. A randomized probing-based density control algorithm was used 

to maintain coverage despite node failures in the PEAS protocol [65]. In this algorithm, a 

node can enter into a working state when there is no other working node within a certain 

distance c. As nodes do not have location information, this can be checked by broadcasting a 

message with a communication range c and receiving a reply. A communication range (also 

called the probing range) can be changed to provide different degrees of coverage. Although 

these solutions are efficient in fault free environments, they are neither fault-tolerant nor 

self-stabilizing. Since this algorithm must be re-executed in order to repair an overlay, in 

this scheme, every member of the network must be notified of any corruption and of the
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need to re-execute the algorithm.

Recent solutions to the connected cover problem address fault-tolerance issues by re­

inforcing the degree of coverage and connectivity. In [6 8 ], the problem of k-coverage was 

addressed; the protocol ensures that any sensor is covered by k other sensors. This work is 

further extended in [69] to the k-coverage and k-connectivity problem. The proposed solu­

tion involves the computation of a Voronoi diagram for independent sensor nodes. However, 

the implementation of local Voronoi diagrams is not addressed, nor are transient faults.

In [23, 24], decentralized, self-stabilizing, and fault-tolerant algorithms for the minimum 

connected covering of a query region in sensor networks were proposed. The first solution 

in [24] uses a greedy strategy. It requires the knowledge of the distance to the center of 

the query region. That is, the region is covered in successive waves from outside to inside. 

The coverage stops once the wave reaches the center of the monitored area. The second 

solution proposed in the same paper uses a pruning strategy. Redundant nodes are removed 

from the final cover if their removal does not disconnect their respective neighborhoods, 

and if their sensing regions are completely covered by their chosen neighbors. In [23] as 

well, another pruning-based algorithm was proposed. Nodes are considered redundant if 

their sensing regions are covered by other chosen nodes, and if their chosen neighbors are 

connected through a connection path. This solution assumes that each node’s sensing 

radius and communication radius are equal, and all sensors have equal sensing (therefore 

equal communication) radii. Algorithms proposed in this thesis are designed based on this 

algorithm, but with a different assumption.

The pruning-based algorithm used in [23] and our algorithms are similar to pruning used 

in the computation of connected dominating sets [16, 21, 42, 44, 46, 61, 62]. A dominating 

set is a set of vertices such tha t every vertex in the graph is either in the dominating set or
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adjacent to a vertex in the dominating set. A connected dominating set is a dominating set 

which is also a connected sub-graph. A node is a dominator of another node if the second 

node is in the transmission range of the first node. Two pruning dominating set rules were 

proposed in [62] and extended in [61]. Rule 1 unmarks a host u if all of its neighbors 

are covered by another marked host, and if its UID is less than another marked host’s 

UID. Rule 2 unmarks a host u if its neighbors are covered by two other directly connected 

marked hosts, and if its UID is less than both of these hosts. However, these rules do not 

ensure if a host u itself is covered before unmarked. In [21], Rule k was proposed. In this 

rule, a host is unmarked if it is covered by k other hosts and if its UID is the least of all 

marked neighbors’ UID’s. A localized algorithm for connected dominating set proposed in 

[46] improved the result of [21]. However, it requires additional message exchanges since 

each node decides whether it should be dominant by using the information received from 

its neighbors. Furthermore the synchronization among nodes is needed, hence it is difficult 

to implement.

4.3 Preliminaries

4.3.1 Model

Sensor Netw ork. Sensor Networks usually consist of a large number of sensor nodes 

which are also referred to as simply sensors or node. In this paper, we use the terms node 

and sensor interchangeably. Since deploying large numbers of sensors in certain positions is 

usually infeasible, most of the time they are randomly deployed in a geographic region. In 

research fields, the sensor network is typically modeled as a directed communication graph 

G {V,E), where V  is the set of vertices (or sensors) and E is the set of directed edges (or 

communication links) between sensors. Thus there is a bi-directional link between sensor i
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and sensor j  if and only if (i, j )  G E  and ( j ,  i) G E.

The communication region, also called the transmission region, of sensor i is the area in 

which sensor i can communicate directly (i.e., in single-hop) with other sensor nodes. The 

maximum distance between node i and any other node j ,  where j  is in the communication 

region of i, is called the communication range (or communication radius) of sensor i. Node 

i can communicate with node j  (i.e., i can send a message to j )  if the Euclidean distance 

between them is less than the communication range of i and sensor j  is called a neighbor 

of sensor i. An edge { i , j )  G E  in the graph G indicates that j  is a neighbor of i. The set 

of neighbors of i is represented by N^. Two nodes i and j  can communicate directly with 

each other only if f  G N j A j  E Ni, i.e., they are neighbors of each other. That is, there is 

a bi-directional link between sensor i and sensor j  and there exist two edges ( i , j )  G E  and 

( j ,  f) G E  in the graph G.

A sensing region of sensor i is the area in which sensor i can detect a given physical 

phenomenon at a desired confidence level. Although the sensing regions can be any convex 

shape, we chose a circular sensing region as the basis for our algorithms. A sensing range or 

sensing radius of sensor i indicates the maximum distance between sensor i and any point 

p  in the sensing region of sensor i. A point p in  a field is said to be covered (or monitored) 

by a sensor i if the Euclidean distance between p  and i is less than the sensing range of 

sensor i.

A communication path from i to j  is a direct path of sensors. Where i  ̂ is a neighbor of 

ix+i for 1 <  X < m — 1 , the sequence of sensors can be expressed as i =  i i , i 2 , ■ ■. ,im =  j- 

The communication distance from sensor i to sensor j  is the number of sensors, or length, 

of the shortest communication path from i to j .
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Program . As a communication model, we assumed tha t the program of every processor 

consists of a set of shared variables as well as local variables and a finite set of actions. This 

model is called the local shared memory model of communication used by Dijkstra [26]. 

Processors (or nodes) communicate with each other by the use of shared variables. Each 

processor can read and write its own shared variables. However, each processor can only 

read the shared variables owned by a neighboring processor. Local variables are local to 

each processor and can be read and updated only by the owner of the local variables.

In the program of p, the guard (or predicate) of an action is a boolean expression 

involving the variables of p  and its neighbors. One or more variables of p  is updated by 

a statement of an action of p. Each action can be expressed with the following structure: 

< label >:: < guard >  — > < sta tem ent  > Only if its guard evaluates to true, can an 

action be executed. By assuming tha t the actions are atomically executed, we used a model 

known as composite atomicity [28]. In other words, when the evaluation of a guard and the 

corresponding statement of an action are executed, they are performed in one atomic step. 

In distributed systems, multiple processors are able to execute an action concurrently as 

long as there is no influence of one action upon another. As an example, within a shared 

memory model, a processor can not write to variable v while another processor is reading 

from it.

The values of a node’s variables define the state of tha t node and the states of all nodes 

determine the state of a system. In this thesis, the state of a node is referred to as (local) 

state and the state of a system is referred to as (global) configuration.

Assume distributed protocol P  is a collection of binary transition relations denoted by 

1-^, on C, where C is the set of all possible configurations of the system. Then, a computation 

of a protocol V  is defined as a maximal sequence of configurations e =  7 0 , 7 1 ,..., 7 i, 7 i+i;
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where * > 0 , 7  ̂ i-> 7 i+i in a single computation step, if 7 i_|_i exists, or j i  is a terminal 

configuration.

If the sequence is either infinite, or it is finite and no action of V  is enabled in the final 

configuration, then the sequence is considered as maximal. We assumed tha t all computa­

tions considered in this paper are maximal.

The notation S is used to define the set of all possible computations of a protocol V  in 

system S.

If a node u has an action A  such tha t the guard of A  is true in 7 , then u is said to be 

enabled or have a privilege in 7  G C. Similarly, an action A  is said to be enabled at u if the 

guard of A  is true at u in 7  G C.

If a node u has been enabled in 7 * and not enabled in 7 j_|_i without executing any action 

between these two configurations, then it is said tha t u has executed a disable action in 

7 i 7 i+i. This is due to at least one neighbor of a node u that has changed its state 

between 7  ̂ and 7 i-(-i, and this change effectively has made the guard of all actions of u false.

We assumed the asynchronous model for the timing model, in which processors execute 

their programs at different speeds. In this model, a scheduler, also know as daemon, de­

termines which processors execute the next step. In this paper, we considered a distributed 

daemon. In each computational step, if there exists at least one node tha t is enabled, the 

distributed daemon selects a non-empty subset of enabled nodes to execute an action. We 

also assumed a weakly fair  daemon, which only ensures that in an infinite execution, each 

processor takes an infinite number of steps. It also means that if a node p  is continuously 

enabled, then p  will be eventually chosen by the daemon to execute an action.

4.3.2 Self-stabilizing Program 

Fault M odel. This research pertains to various types of faults as follows;
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• The program (or code) of the algorithm cannot be corrupted, but the state or config­

uration of the system may be arbitrarily corrupted.

• The faults caused by node crash or malfunction can fail-stop nodes.

• The nodes may recover from the fault or join the network at any time.

• The network topology may change due to faults.

• A rbitrary faults may occur in any finite number, in any order, at any frequency, and 

at any time.

Self-stabilization [28]. Let be a non-empty legitimacy predicate of an algorithm A  

with respect to a specification predicate Spec such that every configuration satisfying 

satisfies Spec. Algorithm A  is self-stabilizing with respect to Spec if and only if the following 

two conditions hold:

Closure: Every computation of A  starting from a configuration satisfying preserves 

£ .4-

C onvergence; Every computation of A  starting from an arbitrary configuration contains 

a configuration tha t satisfies £ ^ .

Informally, closnre property means tha t once the system is in a legitimate configura­

tion, then it stays in a legitimate configuration until a fault occurs. Convergence property 

guarantees that from any arbitrary configuration the system will converge to the legitimate 

configuration in a finite number of steps.

4.3.3 Problem Specification 

In this section, we formally define the problem of Connected Cover of a Query Region 

in sensor networks.
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D efinition 4.1 (C onnected Sensor Cover) Consider a sensor network G with a set of 

n sensors S  =  (Ii, I2 , ■ ■ ■, In); where each sensor £  is assigned a sensing radius Si. Given 

a query region R q  in the sensor network, a set of sensors S C q  =  f q , , - - - ^  called

a connected sensor cover for the query region R q  if the following two conditions hold: 

(a) Coverage: R q  Ç (S'q U U . . .  S i^ ) . (b) C onnectivity: The communication graph 

induced by S C q  is strongly connected such that any two sensors in this set can communicate 

with each other directly or indirectly.

A set of sensors that satisfies only condition (a) above is called a sen so r  cover  for R q  in 

the sensor network.

D efinition 4.2 (M inim um  C onnected  Sensor Coverage Problem ) Given a query re­

gion over a sensor network, the minimum connected sensor coverage problem is to find the 

set of the smallest number of sensors which satisfies the two conditions of the connected 

sensor cover.

Additionally, we require the algorithm (for solving the above problem) to be self- 

organizing, self-stabilizing, and self-healing [28, 6 6 ]. That is, regardless of the initial 

state (wrong initialization of the local variables, memory or program counter corruptions) 

nodes self-configure (self-organize) using only local information in order to make the sys­

tem self-stabilize to a legitimate state. The legitimate state is defined with respect to a 

minimal connected cover formed out of the nodes that can communicate with each other 

either directly or indirectly. Upon stabilization, each sensor in the query region will know 

if it should act as an active or a passive node for the application. If a sensor is in the final 

minimal connected sensor cover set, it will stay active and participate in sensing/gathering 

information in response to a query. If a sensor becomes passive, then it will not participate
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in the sensing and communication role in the application, but instead, enter into the power 

saving mode. However, in the power saving mode, it will still do some local checking to de­

tect faults or network topology changes. Under such perturbations, the minimal connected 

cover should be able to self-heal without any external intervention and the impact should 

be confined within a tightly bound region around the disturbed area. In our proposed 

algorithms, a chosen sensor is an active sensor and an unchosen sensor is a passive sensor.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5

SINGLE-HOP UID-BASED ALGORITHMS

5.1 Description and D ata Structures

In this section, we will present the single-hop, UID based self stabilizing solution to the 

minimum connected cover problem. In this paper, we refer to this algorithm as S H IV .

First, we will state our assumptions and then we will explain the data structures used 

in the algorithm.

Throughout our research, we consider highly dense sensor networks. That is, there 

should always be enough sensors to cover the query region at any time, even if some sensors 

fail. This is stated in the following assumptions we made.

A ssum ption 5.1

(i) There always exists a sufficient number of sensors in the network with sufficient density 

to cover the query region if all of sensors are deployed.

(a) There exist numerous redundant sensors which are either boundary or interior sensors 

with respect to the query region.

Another im portant assumption tha t we must make is regarding each sensor’s sensing 

and communication radius. One of the main goals of our research is to design an algorithm 

which can cope with variable sensing and communication radii of sensors. As mentioned 

in the related work. Section 4.2, most of the previous research has been done by assuming
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fixed sensing and communication radii and all sensors have equal sensing and communica­

tion radii. In [58, 67], the authors assume tha t the sensing radius is twice the size of the 

communication radius. In [23], it is assumed tha t the sensing radius equals the communi­

cation radius for the sensors. However, due to the nature of sensor networks, some sensors 

may consume more energy than others. So, as their energy levels decrease, their sensing 

and communication radii may decrease at varying rates. Also, in a self-stabilizing system, 

which is described in section 3.3, the initial configuration can be arbitrary. From the reasons 

above, it is impractical to assume that all sensors have fixed sensing and communication 

radii. Therefore we made the following assumption:

A ssum ption  5.2

E ach sen so r  has variable sensing and com m u n ication  radii.

This assumption means tha t the communication radius may not be equal to the 

sensing radius of the sensors, and the communication radii and the sensing radii of all 

sensors may not be equal, either. As well, they can be changed over time due to various 

reasons.

D ata Structures. The data structure I n f o  has fields UID, Status, Position, Rc, Rs, S, 

and M in U ID . U ID  represents the unique identifier (UID) of a sensor, which is a positive 

integer. Status  represents the status of a sensor. The status of a sensor may be unchosen, 

undecided, or chosen. A node with the status chosen is part of the connected cover. 

Position  represents a geometric location or coordinate of a sensor. Rc  and Rs  represent 

a communication radius and a sensing radius of a sensor, respectively, and S  represents a 

sensing region of a sensor. Finally, M in U ID  represents the minimum UID amongst all of 

a sensor’s neighbors’ UIDs. All sensors tha t have the minimum UID within a particular
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chosen sensor’s neighborhood are needed to ensure connectivity.

Sensor i has three shared variables: S e l f  . I n f  Oi, Ni and N  J n f o i .  S e l f J n f o i  is a data 

type of I n f o  which contains Sensor f s  own information. TVj is a set of sensors within the 

communication range of Sensor i. Since we assume tha t each sensor has a different com­

munication radius, we include only those sensors which have bi-directional communication 

with Sensor i to be within the neighbor set Vj. Prom this point onward, communication 

neighbors are known by the term neighbors and refers to only those sensors which have 

bi-directional communication. We use the term sensing neighbors to represent the sensors 

tha t are located within each others’ sensing disks. Sensing neighbors may or may not be 

communication neighbors. N J n f o i  is a set of ô I n f o  structures containing S e l f  . I n f  Oj of 

all sensors j  in Ni.

The local variables of Sensor i are 2 N J n fo i ,  which is a set of 5“̂ I n f o  structures 

containing all 2-hop neighbors fis S e l f J n f o i ,  and N N ,  which is a set of Nj for Sensor 

i ’s all neighbors j .  That is, N N i is a set of sensors located, at most, two hops away from 

Sensor i. Although this algorithm uses 2 -hop information to compute the redundant cover, 

messages are exchanged only within a single hop.

M acro. We introduce the macro Read[j)  to gather sensor f s  neighbors’ information using 

small atomicity. That is. Sensor i reads only one of its neighbor’s shared variables in one 

atomic step, instead of reading all neighbors’ shared variables.

When there is a timeout, a timeout action is enabled and the macro Read{j)  reads one 

of Sensor I’s neighbors j ’s variables. Sensor i reads Sensor j ’s S e l f  . I n f  Oj, and includes it 

in its N J n f o i .  If there is a duplicate, (i.e.. Sensor i reads Sensor j  for a second time), then 

S e l f  . I n f  Oj overwrites the old data. Finally, Sensor i needs to gather information from 

sensors located 2-hops away by reading its neighbor j ’s neighbor information N .I n f o j .
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Thus, N N i and 2N .In fo i ,  will be updated. We assume that there is a function F {j ,N N i) ,  

j  G N i,  tha t returns N j .  Then the N ext{N i)  function updates the pointer to the next 

neighbor.

5.2 Predicates

The predicate Q ryRgnIn trsctn{i)  checks if the sensing disk of Sensor i intersects with 

any portion of the query region. If it does, then this predicate is evaluated as true. The 

predicate SnsngNghr{i, j )  returns true if Sensor i and Sensor j  are located within each 

others’ sensing disks. This predicate is needed to ensure the coverage condition since each 

sensor has variable sensing and communication radii, so the communication neighbors may 

not cover each others sensing disks. The predicate CvrSnsngB yC hsn[i)  is true when the 

sensing disk of Sensor i is covered by a subset of chosen sensors tha t are located within 

two communication hops from Sensor i. Similarly, NeighborsConnectivity{i)  is true when 

all pairs of Sensor i ’s chosen neighbors are connected by chosen sensors located within two 

communication from Sensor i. The predicate LstU ID N gbr{i,  j )  evaluates to true if Sensor 

i has the least UID amongst the neighbors of Sensor j .  G rtrL stO rN o tN gbrO fC h sn { i)  is 

true if Sensor i doesn’t have any chosen communication neighbor nor any chosen sensing 

neighbor, otherwise Sensor i has the greater UID than its chosen neighbors, or Sensor i has 

the least UID amongst the neighbors of Sensor j .

The predicate SensorGover{i) evaluates to true if Sensor i ’s status is unchosen, the 

sensing disk of Sensor i intersects with any portion of query region, and the predicate 

G rtrL stO rN otN gbrO fG hsn {i)  is true. M C S C N ode{i)  checks if the predicate G rtrL s tO rN o tN gbrO fC  

is true or a part of the sensing disk of Sensor i is uncovered. In this case, if Sensor i ’s sta­

tus is undecided, then this predicate evaluates to true. When Sensor i ’s status is either
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undecided or chosen, and G rtrL stO rN otN ghrO fC h sn {i)  is false, C vrSnsn gB yC hsn[i)  is 

true, and NeighborsConnectivityifi) is true, then the predicate Redundant[i) evaluates to 

true.

5.3 Normal Execution

The steps of the algorithm are as follows:

1. The algorithm marks an unchosen sensor whose sensing region intersects with any 

portion of the query region (RQ) as undecided, if one of the following is true: 1) The 

sensor does not have a chosen neighbor which is also a sensing neighbor. 2) Its UID is 

greater than a UID of a chosen neighbor which is also a sensing neighbor. 3) Among 

the neighbors of a chosen sensor, it has the minimum UID.

2. M C S C N ode{ i)  checks if Sensor i ’s status is undecided, and if one of the following 

is true: 1) The sensor does not have any chosen neighbors, which are also sensing 

neighbor. 2) Its UID is greater than a chosen neighbor’s UID. 3) It is the minimum 

UID neighbor of a chosen sensor. 4) A part of the sensing disk of Sensor i is not 

covered by a chosen sensor. In this case, the sensing disk of Sensor i is needed in the 

final cover set, so Sensor i changes its status to chosen.

3. Redundant[i) removes any undecided or chosen sensor that has a smaller UID than 

a chosen neighbor’s UID and is not a minimum UID neighbor of a chosen sensor, if 

its entire sensing disk is covered by chosen sensors and all chosen neighbors of this 

sensor are connected through a second path. In this case, the status of such a sensor 

is changed to unchosen (rule A \) .

4. Rule A \  also ensures tha t any sensor whose sensing disk does not intersect with the
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query region has its status changed to unchosen.

5. All chosen sensors are in the final query region connected cover.

5.4 Fault and Recovery

In this section, we explain how the proposed algorithms «SWXPhandles the fault. 

There are seven variables in the I n f o  structure used in the solutions for a Sensor i: U ID ,  

Status, Position, R c ,  R s, S, and M in U ID .  Since the algorithm assumes variable R c  and 

R s  (as well as S) in Assumption 5.2, we do not consider the weakening or changing of a 

sensor’s sensing and communication range as a fault. For the purpose ofthis algorithm, U ID  

cannot be corrupted. However all other variables can be corrupted. So, we need to show 

tha t our solutions can deal with all possible corruptions associated with these variables. In 

the following, we will show how they are handled in the Algorithm SHPD.

1. Wrong initialization of the Status  variable.

All sensors, if properly initialized, start as unchosen.

(a) Sensor i is initialized to undecided. Assume tha t Sensor i is initialized to undecided. 

If i is not a redundant node, then i remains undecided, and subsequently changes 

to chosen (see Actions A 2 and A3 ). That is, no correction is necessary. If i is 

redundant, then it will satisfy the predicate Redundant[i) and will change to 

unchosen.

(b) Sensor i is initialized to chosen. If the sensing disk of Sensor i does not intersect 

with the query region, then, by executing A \,  Sensor i will change to unchosen. 

Thus, no correction is necessary. If Sensor i is redundant, then it will satisfy the 

predicate Redundant{i) , and will change to unchosen. If it is non-redundant,
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then Sensor i is necessary, either to ensure coverage or connectivity, and should 

not be unmarked.

2. Wrong initialization of the Position  variable.

The variable Position  is computed by some other protocols or possibly by an equipped 

GPS. If this variable is not initialized correctly. Algorithm S'HX'Dvn&y produce the 

wrong result. However, we assume the existence of the self-stabilizing protocols to 

compute this value and it will eventually stabilize and produce the correct Position  

value. After that, the algorithm will also stabilize and compute the correct result in 

finite steps.

3. Wrong initialization of the M in U ID  variable.

Each sensor reads one of the neighbors and updates M in U ID  variable upon every 

timeout. So, when a sensor finishes reading all neighbors for the first time, M in U ID  

will contain the correct value. After that, the algorithm will stabilize and compute 

the correct result in finite steps.

5.6 Correctness

In this section, we will show the correctness of Algorithm S T ilD . We will prove that 

the algorithm produces the solution which satisfies the specification of the connected sensor 

cover problem. First, we will give a definition of a legitimacy predicate with respect to the 

specification of the M .C SC  problem. Then, in the following sections, we will prove tha t the 

final set produced by the algorithm when the system is in a legitimate state satisfies the 

coverage and connectivity properties as defined in Section 4.3.3. Also, we will prove that 

the system reaches a legitimate state in finite steps, regardless of the initial configuration or
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A lgorithm  5.5.1 Query Region Connected Sensor Cover Algorithm for Sensor i (S'HI'D).

C onstants:
R q \ \  Query region;

Structure:
7n/o{

U ID  :: Unique user identification number
Status  € {unchosen, undecided, chosen}  S tatus of a sensor
Position :: Geometric location or coordinate of a sensor
R c  :: Communication radius of a  sensor
R s  Sensing radius of a sensor
S  :: Sensing region of a sensor
M in U ID  :: minimum UID amongst all of a sensor’s neighbors’ UIDs

}

Shared Variables:
In fo  S e lf  . I n f  Oi :: One structure th a t contains inform ation for Sensor i 
Set N .I n f o i  :: Set of 6 structures th a t contain all neighbors’ information
Set Ni :: {j e  V \D is t { i , j )  <  Rc,  A D is t [ i , j )  < R c f i

Local Variables:
Set 2 N J n f o i  :: Set of Si +  Y}ôjeNi structures th a t contain all 2-hop neighbors’ information 
Set NNi'.: Set of Nj,  Vj € Ni

M acro:
Read(j)

N . I n f o i  =  N . I n f o i  [J Se l f  . I n f  Oj 
NN i  =  N N i  U Nj  
2N .In fo i  = 2N .In fo i  |J  N .I n f o j  
j  =  Next(Ni)

P redicates:
QryRgnIntrsctn{i)  =  S e l f  . In fo , .S  n  Ttg /  0;

z  sensing disk of Sensor i intersects w ith some portion of query region;

D is t( i , j )  =  R eturns the Euclidean distance between Sensor i and Sensor j;

SnsngN  gbr{i ,j)  =  (Vj : D is t(ij)  <  m in {S e lf  . I n f  Oi.Rs, N  J n f o i .S e l f  . I n f  Oj.Rs))',
=  Sensor i and Sensor j  are located within each others’ sensing disks;

CvrSnsngByChsn{i)  =  (3A : Vj, k G A , j  € Ni A k £ Nj
A N .I n fo i .S e l f  J n fo j .S ta tu s  =  2 N .I n f  Oi.N J n f o j . S e l f  . I n f  Ok-Status =  chosen 
A S e l f  . I n f  Oi.S c  U j jtgA N .I n f o i .S e l f J n f o j .S ,  2 N .I n f o i ,N .I n f o j  .Se lf  Jnfok-S);  
=  Sensing region of Sensor i is covered by a  subset of chosen sensors th a t are 

located no farther th an  two communication hops from Sensor i;

Neighbor sConnectivity{i) =  (Vj, I g N i , N . I n f  Oi.Self . I n f  Oj.Status =  N  J n fO i .S e lf  . I n f  Ot.Status =
chosen,3k i ,2 N  d n f o i . N  . I n f  Oj.Self . I n f  Ok-Status =  ch osenA j,t  6 Nk)\

=  All chosen pairs of neighbors of Sensor i are connected by a chosen node;

LstUIDNgbr{i,  j )  =  i G Nj A (S e lf . In fo i .U ID  =  N .In fO i .S e lf  .In fo j .M in U ID );
=  Sensor i is a neighbor of Sensor j ,  and is also the neighbor of Sensor j  having the 

least UID;
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G rtrL s tO rN o tN gbrOfC h sn[i)  =  (Vj : i £ N j , N J n f o i . S e l f  J n fo j .S ta tu s  chosenM
-^SnsngNgbr{i, j) V S e l f J n f o i .U I D  >  N . I n f  d - S e l f . I n f  Oj.UIDV 
LstU IDN gbr{i,  j) ) \

=  Sensor i is not the communication neighbor, nor the sensing neighbor 
of a  chosen sensor whose UID is greater than  its own unless it is the 
“least UID” neighbor of this chosen sensor;

SensorCoverifi) =  S e l f  . I n f  Oi-Status =  unchosen A QryRgnIntrsctn{i)A  
G rtr  L s tO rN o tN  gbrO f  Chsn{i)  ; 

z  sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion 
of query region, and Sensor i is not the communication neighbor, nor the sensing 
neighbor of a chosen sensor whose UID is greater than  its own unless it is the “least 
UID” neighbor of th is chosen sensor;

M C SC N ode{i)  =  S e l f  . I n f  Oi. Status  =  undecided A (Grtr LstO rN otN gbrO fC hsn{i) \ /  
-nCvrSnsngByChsn(t) ) ; 

s  Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing 
neighbor of a chosen sensor whose UID is greater than  its own unless it is the “least 
UID” neighbor of this chosen sensor, or a part of the sensing disk of Sensor i is not 
covered by a chosen sensor;

Redundant(i) =  (S e lf  . I n f  Oi.Status =  undecided^/ S e l f  . I n f  ot.Status =  chosen)A
-^GrtrLstOrNotNgbrOfChsn(i)  A GvrSnsngByChsn(i)  A NeighborsConnectivity(i)\ 

=  Sensor i is an undecided or a  chosen sensor and is the “lesser” communication and 
sensing neighbor of a chosen sensor, but is not the neighbor of th is sensor th a t has 
the smallest UID, and the entire sensing disk of Sensor i is covered by chosen sensors, 
and chosen neighbors of Sensor i are connected through a second path;

A ctions:
A i  :: - ,QryRgnIntrsctn(i)  V Redundant(i)

— » S e lf  . I n f  Oi.Status =  unchosen;

A 2 :: SensorCover(i)
— > S e lf  . I n f  Oi.Status =  undecided;

A 3  :: M C g C N o d e ( i )

— > S e lf  . I n f  Oi.Status =  chosen;

A i  :: Timeout A j  £ Ni 
— > Read(j);
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type of faults occurring in the system. Finally, these results will be used to prove Algorithm 

SH IV saüsües  self-* properties.

D efin ition  5.1 The system is considered to he in a legitimate state (i.e., satisfies the legit­

imacy predicate C m c s c ) i f  the following conditions are true with respect to a query region: 

i) All non-redundant sensors are marked chosen, 

a) All redundant sensors are marked unchosen.

5.6.1 Proof of Closure 

L em m a 5.1 (C overage) In any legitimate configuration, the chosen set computed by Al­

gorithm 5 . 5 . 1  completely covers the query region R q .

P ro o f. We prove this lemma by contradiction. Suppose the query region is not completely 

covered by the sensing disks of the sensors in the final set chosen by Algorithm 5.5.1.

By the action Ag, a sensor will change to undecided if it is unchosen, if its sensing disk 

intersects with some portion of the query region, and if it is not the communication neigh­

bor, nor the sensing neighbor, of a chosen sensor whose UID is greater than its own, unless, 

amongst all the neighbors of this chosen sensor it has the minimum UID. Since the graph 

is densely populated and all sensors are initially unchosen, there will always exist a set 

of unchosen sensor nodes, whose sensing disks intersect with the query region and that 

is located at an uncovered area. Since any unchosen  sensor which is located at the un­

covered area does not have any chosen sensing neighbors, it will evaluate SensorCover{i) 

to true by the first condition. Therefore by Rule A 2 , it changes its status from unchosen 

to undecided. Any undecided node will either change to chosen by M C SC N ode{i) or 

unchosen by Redundant(i). Since all such undecided nodes are located outside of any 

chosen sensor’s sensing disk, each of them will evaluate Grtr LstO rN otN gbrO  fC hsn{i)  

as true and evaluate Redundant{i) as false because the nodes’ entire sensing disk is not
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covered by chosen sensors. Thus, a node changes its status from undecided to chosen by 

Rule A3 . Therefore, any uncovered area in the query region will be eventually covered by 

all such sensors tha t change their status to  chosen by executing Rule A 3 . Redundant{i) 

will be evaluated to true only if a node evaluates G rtrL s tO rN o tN gbrO fC h sn (i)  as false, 

and if its entire sensing disk is covered by other chosen sensors and the removal of it does 

not disconnect its chosen neighbors. Thusly, once the query region is completely covered, 

Redundant[i) will not unmark the sensor which removal will result in the creation of an 

uncovered area of the query region. The sensing disks of all chosen sensors in the final set 

completely cover the query region. Therefore we arrive at a contradiction. □

Lem m a 5.2 (C onnectiv ity) In any legitimate configuration, the chosen set computed by 

Algorithm 5.5.1 forms a connected graph.

Proof. We also prove this lemma by contradiction. Suppose the sensing disks of the sensors 

in the final chosen set computed by Algorithm 5.5.1 do not form a connected subgraph. 

Hence, there exists a sensor j  in the final chosen set tha t is marked chosen and is not 

adjacent to another chosen sensor. More precisely. Sensor j  is marked chosen and does not 

have any communication chosen neighbor.

Assume SensorCover{i)  and M C S C N ode{i)  did not mark an unchosen Sensor i tha t is 

the minimum UID neighbor of Sensor j ,  as chosen, or Redundant{i) unmarked this sensor. 

Since Sensor i is the minimum UID neighbor of Sensor j .  Sensor j  saves the UID of Sensor i 

in S e l f  N n fo j .M in U ID .  Also, since all sensors can have a status of unchosen, undecided, 

or chosen, and Sensor j  has no chosen neighbors. Sensor f’s status must be either unchosen 

or undecided. If Sensor i ’s status is unchosen. Sensor i evaluates LstU  I  D N  gbrfi, j )  to true 

and thus evaluates G rtrL stO rN otN gbrO fG h sn {i)  to true. Therefore, it changes its status
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from unchosen to undecided after executing Rule A 2 , and then to chosen after executing 

Rule ^ 3 . If Sensor i ’s status is undecided, for the same reason as above, it changes its 

status from undecided to chosen by executing Rule A 3 . Also, Sensor i cannot evaluate 

Redundant{i) as true since it has evaluated G rtrL stO rN o tN gbrO fC h sn { i)  to true.

Once again we arrive at a contradiction. □

Theorem  5.1 ( C m c s c  satisfies specification) Any system configuration satisfying the 

legitimacy predicate C m c s c  (per Definition 5.1) satisfies the specification of the minimal 

connected sensor cover problem (as given by Specification f.2).

Proof. The coverage and connectivity properties have been proven in Lemmas 5.1 and 

5.2, respectively. By Definition 5.1, there exists no redundant chosen sensor in a legitimate 

configuration. That is, all redundant sensors have been identified and marked unchosen. 

Therefore, the connected cover set À 4C SC  computed at this point is the smallest possible 

by Algorithm STiXV. □

P roperty  5.1 The system defined by the legitimacy predicate C m c s c  i s  silent.

Proof. In any configuration satisfying C m c s c ,  all actions of Algorithm STLXDare dis­

abled. □

Lem m a 5.3 (Closure) The legitimacy predicate C m c s c  w closed.

Proof. Property 5.1 asserts the closure of C m c s c -  0

5.6.2 Proof of Convergence 

In this section, we aim to prove that starting from any arbitrary configuration of the 

system, or occurrence of any type of faults in the system. Algorithm 57-fTPguarantees tha t
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in finite steps, the system will reach a configuration tha t satisfies the legitimacy predicate 

C m c s c -

Lemma 5.4 (C onvergence) Starting from an arbitrary configuration, Algorithm STilVreaches  

a configuration that satisfies the legitimacy predicate C m c s c -

P ro o f. We will again prove this lemma by contradiction. Suppose that starting from 

any arbitrary configuration of a system of sensors, Algorithm 5.5.1 does not guarantee that 

in finite steps, the system will reach a configuration that satisfies the legitimacy predicate 

C m c s c -  Hence, there exists a configuration in which, after any finite number of steps, the 

system will never reach a configuration tha t satisfies the legitimacy predicate C m c s c -  That 

is, there exists a configuration in which, after any finite number of steps, the system will 

never reach a configuration in which all non redundant sensors are marked chosen and all 

redundant sensors are marked unchosen. This is described in the following cases.

Case 1: There exists a configuration in which a non redundant unchosen sensor which 

may evaluate G rtrL s tO rN otN gbrO fC h sn { i)  as true, but does not do so and does not 

change its status to chosen. That is, a query region sensor which is unchosen, and does 

not have any sensing neighbor whose UID is greater than its own or it is the minimum UID 

neighbor of a chosen sensor, is not marked as chosen, even if part of its sensing disk is 

not covered by a subset of chosen sensors. Since any query region sensor that is initially 

unchosen, and is non-redundant because it does not have any chosen sensing neighbor whose 

UID is greater than its own or it is the minimum UID neighbor of a chosen sensor, will 

evaluate QryRgnIntrsctn{i), G rtrL s tO rN o tN gbrO fC h sn [i) ,  and then SensorCover{i)  

as true, the query region sensor changes its status to undecided. Also, since this sensor’s 

sensing disk is not completely covered by chosen sensors, it will evaluate M C SG N ode{i)
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as true and change its status to chosen by executing Rule A3.

Hence we arrive at a contradiction.

Case 2: The non-redundant query region sensor is initially marked chosen, but executes 

Redundant{i) and is unmarked. Since this sensor executed Redundant{i) , its entire sensing 

disk must be covered by a set of chosen sensors, it must have a chosen neighbor which has 

a greater UID than its own, and it must not be the minimum UID neighbor of a chosen 

sensor. Therefore this sensor is a redundant sensor.

Hence we arrive at a contradiction.

Case 3: A redundant sensor is marked as chosen or undecided, but Redundant(i) will 

not unmark this sensor. A redundant sensor is the one whose entire sensing disk is covered 

by the sensing disks of other chosen sensors, and it must have a chosen neighbor which 

has a greater UID than its own, and it must not be the minimum UID neighbor of a 

chosen sensor. Subsequently, it will evaluate G rtrL s tO rN otN gbrO fC h sn { i)  as false and 

CvrSnsngB yC hsn{i)  as true. Thus, by executing Rule A \,  any redundant sensors will be 

unmarked.

Hence we arrive at a contradiction. □

5.6.3 Proof of Self-*

5.6.3.1 Self-configuring

Due to the nature of Sensor networks, in most case, sensors are deployed randomly 

and densely distributed. This along with dynamic environmental changes make manual 

configuration of such systems extremely difficult. Therefore in sensor networks, the property 

of self-configuring to establish a topology tha t provide communication and sensing coverage 

gains further needs. From the proofs of closure (Lemma 5.3) and convergence (Lemma 

5.4), it was shown that starting from any initial configuration. Algorithm 5.5.1 forms a
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network topology in which all sensors in the set M .C SC  are connected, and are thus able 

to communicate with each other, either directly or indirectly. Also we have shown tha t 

starting from any arbitrary state, the given query region will eventually be completely 

covered. By executing the rules of Algorithm 5.5.1, network sensors will self-conhgure to 

establish a required topology under stringent energy constraints. Ergo, Algorithm 5.5.1 is 

self-configuring.

5.6 .3.2 Self-healing

Self-healing (also called self-reconfiguration) is another important concept which makes 

the wireless sensor networks more robust systems. Our proposed solution is self-healing 

under various perturbations, such as node joins, failures, and state corruption. We will prove 

this by contradiction. Suppose Algorithm 5.5.1 is not self-healing. Thus, if a non-redundant 

node fails, a redundant node joins the network, or if there is an arbitrary corruption of the 

state variables of nodes, Statusi, then part of the query region may become uncovered, or 

may be covered by a redundant node. These perturbations will be demonstrated in the 

following cases.

Case 1:

If a non-redundant node fails, then part of the query region becomes uncovered. Since 

the graph is densely populated, there is a portion of the graph in which an unchosen sensor 

(that is in this uncovered region), does not execute A 2 and A 3 to become chosen. But since 

this unchosen sensor is not covered by a chosen sensor (i.e. it does not have any chosen 

sensing neighbors), it will evaluate A 2 as true and A 3  as true.

This node will execute A 2 , followed by vlg, and will become chosen.

Hence we arrive at a contradiction.

Case 2:
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If a non-redundant node fails, then part of the query region is covered by a redundant 

node. Since any node which has a UID less than its chosen sensing neighbor, but not a 

minimum UID neighbor of a chosen node, and whose entire transmission disk is covered by 

chosen nodes, is redundant and will not evaluate G rtrLstO rN otN gbrO fC hsn{i) as true. 

This node will not execute A 2  and change to undecided, nor will it execute Az-

Thus, this node cannot change to chosen to cover the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of the state variables Statusi, then part of the query 

region may become uncovered, or may be covered by a redundant node. If the StatuSi 

variable for a node is initially undecided or chosen, then part of the query region may 

become uncovered, or may be covered by a redundant node.

Since M C SC N ode{i) evaluates to true if an undecided sensor is not the sensing neighbor 

of a chosen sensor which has a greater UID than its own, or if it is the minimum UID 

neighbor of a chosen sensor, and if it has part of its sensing disk uncovered, then such an 

arbitrary corruption will still allow an undecided non-redundant node to execute ^ 3  and 

change its status to chosen. Therefore, this sensor will cover the query region.

Hence we arrive at a contradiction.

Alternatively, Redundantij) will unmark a sensor even if it is initially undecided or 

chosen, if it has a smaller UID than a chosen sensing neighbor, it is not the minimum UID 

neighbor of a chosen sensor, and its entire sensing disk is covered by another chosen sensor. 

Therefore, a redundant node will not be included in the set M .C SC  to cover the query 

region.

Hence we arrive at a contradiction.
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S.6.3.3 Self-*

Our solution has been implemented with the self-configuring and self-healing features 

using the concept of self-stabilization. Since the paradigm of self-stabilization includes all 

other self-* properties, our solution is truly fault-tolerant in terms of the self-* feature.
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CHAPTER 6

SINGLE-HOP RS-BASED ALGORITHMS

6.1 Description and D ata Structures

In the previous algorithm, the UID is used to solve the contention of sensors and remove 

the redundant sensors. That is, between two neighboring sensors, the one with the greater 

UID remains in the final cover set, and among the neighbors of a chosen sensor, the one 

with the minimum UID also remains to maintain the connectivity. In this section, we will 

show a modification of Algorithm ShCIV, which uses the sensing region instead of the UID 

for the above purpose, and we refer to this algorithm as 77.5(Algorithm 6.2.1). The idea 

behind this is tha t since every sensor has a different sensing radius, keeping the sensors 

which have a larger coverage region results in a smaller number of sensors in the final set. 

Note tha t although the algorithm uses the sensing region instead of the UID, in the case of 

two or more sensors having the same sensing region, the UID is still needed as a deciding 

factor.

The following are necessary changes.

• The data structure I n fo  includes the variable M a xR sU ID  instead of M inU ID . It 

represents the UID of the sensor with the maximum R s  amongst all of a sensor’s 

neighbors. If several sensors have the same sensing radius, then the one with the 

greatest UID will be selected.

• The predicate L stU ID N gbr{i,j)  changes to G rtstRsNgbr{i, j) .  To maintain connec-
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tivity in Algorithm SHTZS, the predicate G rtstR sN gbr{i, j )  selects the sensor which 

has the greatest Rg  among the neighbors of a chosen sensor.

• The predicate G rtrL stO rN otN gbrO  f  Chsn[i)  changes to G rtrG rts tO rN o tN gbrO  f  Ghsn{i) 

Sensor i evaluates this predicate as true if one of the following is true: 1) Sensor i 

does not have a chosen neighbor which is also a sensing neighbor. 2 ) Sensor i's Rg  is 

greater than a chosen sensing neighbor’s Rg. 3) Sensor i has the greatest Rg  among 

the neighbors of a chosen sensor.

Algorithm SHTZSshows only the modified parts while the rest remain the same.

6.3 Correctness

Even if a sensing radius is used instead of an UID for the redundant deciding factor, 

the proofs for the correctness of Algorithm 6 .2 .1  are very similar to the proofs for Algorithm

5.5.1 and can be referred to in Section 5.6.
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A lgorithm  6.2.1 Query Region Connected Sensor Cover Algorithm for Sensor i {SHTZS).

C hanged  Structure:
In fo {

U ID  Unique user identification number
Status  € {unchosen, undecided, chosen} :: S tatus of a sensor
Position  :: Geometric location or coordinate of a sensor
R c  :: Communication radius of a sensor
R s  :: Sensing radius of a sensor
S  : : Sensing region of a sensor
M a x R sU I D  :: UID of sensor w ith maximum R s  amongst all of a sensor’s neighbors; in case of a 

tie, sensor w ith greatest UID is selected
}

C hanged  P red icates:
G rts tR sN  gbr(i, j )  =  i e N j A  {S e l f - In f  Oi.R =  N - I n f  Oi.Self-Inf Oj.MaxRsUID)-,

=  Sensor i is a neighbor of Sensor j ,  and is also the neighbor of Sensor j  having the 
greatest sensing radius;

G rtrG rts tO rN  o tN  ghrO fC hsn{i)  =  (Vj ; i e  N j , N - I n f  Oi.Self-Inf Oj .Status  ^  chosenV
-^SnsngN ghr{i, j )  V S e l f - I n f  Oi.Rs >  N -In fo i .S e l f -In fo j .R s '^  
G rts tR sN  gbr (i,j));

=  Sensor i is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose sensing radius is greater than  
its own unless it is the ‘MaxR's  neighbor of this chosen sensor;

SensorCover{i) =  Setf-InfO i.S ta tus  =  unchosen A QryRgnIntrsctn{i)A  
GrtrGrtstOrNotNgbrOfChsn{i)-,

=  sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion 
of query region, and Sensor i is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose sensing radius is greater than  its own unless it is 
the "MaxR's neighbor of this chosen sensor;

M C SCN ode{i)  =  S e t f - I n f  Oi.Status =  undecided A {G rtrG rts tO rN otN gbrO fC hsn (i)  V 
- ,CvrSnsngByChsn{i));

=  Sensor i is an undecided  sensor and is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose sensing radius is greater than  its own unless it is 
the "‘MaxR's  neighbor of this chosen sensor, or a part of the sensing disk of Sensor i is 
not covered by a chosen sensor;

Redundant(i)  =  {S e l f - I n f  Oi. S tatus =  undecided V S e l f - I n f  o,.Status  =  chosen) A
-^GrtrGrtstOrNotNgbrO fChsn{i)ACvrSnsngByChsn{i)ANeighborsConnectivity{i)-,  

=  Sensor i is an undecided or a chosen sensor and is the communication and sensing 
neighbor of a chosen sensor th a t has a greater R s  than  its own, but is not the ""MaxR's 
neighbor of this sensor, the entire sensing disk of Sensor i is covered by chosen sensors, 
and chosen neighbors of Sensor i are connected through a second path;
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CHAPTER 7

MULTI-HOP ALGORITHMS

7.1 Description and D ata Structures 

In Algorithms ST-LTVand SHTZS, a sensor uses only 2-hop information to check if its 

entire sensing region is covered by a subset of chosen sensors and if every pair of its chosen 

neighbors has an alternate communication path. If the sensing radius is greater than the 

communication radius, then 2 -hop information is not enough to verify this coverage condi­

tion. Since we did not assume any limitation for the sensing radius, it is possible tha t the 

sensing region of Sensor i is covered by the sensors tha t are located several hops away from 

Sensor i. Similarly, it is possible tha t chosen neighbors are connected to each other via paths 

of more than two hops. Thus, to obtain a better approximation, multi-hop information is 

required. Therefore, in Algorithms A4KIX>(algorithm 7.3.1) and A47T775(algorithm 7.3.2), 

our goal is to further reduce the number of nodes in the final set by increasing the available 

information in exchange for the cost of extra communication. We would like to collect upto 

a maximum of H-hop count information, where H  is a constant. Algorithm M H X V is  a 

modification of Algorithm SH TV,  and similarly. Algorithm MHTZSis a modification of Al­

gorithm SHTZS. Algorithm MHTZSshavjs only the parts which are different from Algorithm 

M H X V .

D ata Structures. The information required to compute the coverage condition is the 

UID , S, and coordinates of all chosen sensors within H-hops of Sensor i. Also, the hop
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count should be recorded. To collect this information, flooding is too expensive, and there 

are many redundant messages. So, we assume tha t there is a self-stabilizing BFS tree 

construction running in the background. Each chosen sensor maintains its own BFS tree, 

with a height of H  rooted to itself. The information of all chosen sensors within H-hops 

from Sensor i will be passed along using these BFS trees which Sensor i receives only from 

its parent sensor. Therefore, each sensor has to maintain a set of parent pointers Pi. The 

number of parent pointers per node is less than or equal to the number of chosen sensors 

within H-hops.

To gather information from chosen sensors located more than 2-hops away, the following 

change has been made in the data structure and the read action of Algorithms STilVaxid  

SHTZS. The data structure Root, which contains the root node’s U ID , S, Position, and 

Hop, was added. Also, there are extra shared variables R oot-In fo i and Q . R o o tJ n fo i  is 

a set of Root structures, and Q  is a set of chosen sensors within H-hop distance. A set of 

parent pointers is kept as a local variable.

M acro. There are two separate read macros dependent upon whether or not Sensor i ’s 

neighbor j  is i ’s parent. If j  is not i ’s parent, then the read action is the same as tha t of 

Algorithms SHID&nd SHTZS. If j  is the parent of i, when timeout occurs, i reads the root 

information, as well as j ’s information and f s  neighbors’ (i’s 2 -hop neighbors’) information. 

After Sensor i reads R o o tJ n fo j  from j ,  i increments Hop count in RootH nfoi.RootR. If 

it is greater than H  — 1, then this data is discarded, and R  is removed from Q .

7.2 Predicates

This multi-hop information is applied to the predicates C vrSnsngB yC hsn(i)  and 

NeighborsConnectivity{i). C vrSnsngB yC hsn{i) is evaluated as true if Sensor i ’s sensing
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disk is covered by a subset of chosen sensors that are located no farther than H  com­

munication hops from Sensor i. For the predicate NeighborsConnectivity{i) to check the 

connectivity of Sensor i ’s chosen neighbors, the new predicate Cycle{x, y) is added, which 

is evaluated as true if there exists a cycle such tha t Sensors x, i, and y are vertices in 

the cycle, and all other vertices in this cycle are chosen sensors. Hence, the predicate 

NeighborsConnectivity[i) is true when all pairs of chosen neighbors of Sensor i are con­

nected by a path of chosen sensors located within H-hops from Sensor i.

7.4 Correctness

The purpose of multi-hop algorithms is to obtain a better approximation of MCSC by 

using the information of sensors which are located several hops away. Such multi-hop in­

formation is used in the predicates C vrSnsngB yC hsn{i) and NeighborsConnectivity{i), 

which are checked in Redundant{i) to remove the redundant sensors. A sensor is redun­

dant and unmarked by Rule A \  if the following criteria are met; if a sensor’s status is either 

chosen or undecided] it has a sensing neighbor which has a greater UID than its own; it 

is not the minimum UID neighbor of a chosen sensor; and both C vrSnsngB yC hsn{i)  and 

NeighborsConnectivity{i) are evaluated as true. In multi-hop algorithms, C vrSnsngB yC hsn(i)  

is evaluated as true if a sensor’s entire sensing disk is covered by a subset of chosen sensors 

which are located within H-hops. Similarly, NeighborsConnectivity{i) is evaluated as true 

if every pair of chosen neighbors of a sensor is able to communicate with each other using 

an alternative path made by chosen sensors within H-hops. Therefore, to prove the cor­

rectness of multi-hop algorithms (Algorithm 7.3.1 and 7.3.2 ), we need to prove multi-hop 

information gathering by Algorithms M HTV& nd MHTZS. The rest of the proofs are the 

same as the proofs of S T ilV ,  and can be referenced in Section 5.6.
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A lg o rith m  7.3.1 Query Region Connected Cover Algorithm for Sensor i {MT-CIV). 
C onstants:

R q :-. Query region;
H:: Hop count

S tructure:
In fo {

U ID  :: Unique user identification number
Status  G {unchosen, undecided, chosen} :: Status of a sensor
Position :: Geometric location or coordinate of a sensor
R c  :: Communication radius of a sensor
R s  :: Sensing radius of a sensor
S  :: Sensing region of a sensor
M in U ID  :: minimum UID amongst all of a sensor’s neighbors’ UIDs

}
Root{

U ID  :: Unique user identification num ber 
Posi t ion :: Geometric location or coordinate of a sensor 
R s  :: Sensing radius of a sensor 
Hop v. Hop count

}

Shared  Variables:
I n fo  S e l f - I n f  Oi :: One structure th a t contains inform ation for Sensor i 
Set Root-Infoi  :: Set of structure Root
Set N -I nfo i  :: Set of ô structures th a t contain all neighbors’ information 
Set Ni :: { j  e  V\Dis t { i , j )  <  Rci  A D is t { i , j )  <  R c j }
Set  Ci :: Set of chosen sensors w ithin n Hops

L ocal Variables:
Set 2N-Info i  :: Set of Si +  f fSj^Ni  structures th a t contain all 2-hop neighbors’ inform ation 
Set NNi'.: Set of Nj,  Vj E iV*
Set Pi '.: Set of parent pointers

M acro:
Read{j)

N -I nfo i  =  N J n f o i  U S e l f - I n f o  j 
N N i  =  N N i { j N j  
2N-Info i  =  2N-Info i  |J  N -I n f o j  
j  =  Nex t  (Ni)

Read-Parent{j )
N -I nfo i  =  N -Info i  (J S e l f - I n f  Oj
NN i  =  NNi  U  Nj

2 N J n f o i  =  2 N - I n f  Oi (J N  J n f o j

Ro o tJ nf o i  =  Root-Infoi  IJ Root-Infoj
AdjustRoot-Infoiand Ci :: Increm ent Root-Infoi .RootR.Hop  by 1. If it becomes >  H - 1, then

discard the d a ta  and remove R  from Ci .
j  =  N ext  (Ni)
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P red icates:
QryRgnIntrsctn{i)  =  S e l f  J n f o i . S  n R q  0;

=  sensing disk of Sensor i intersects w ith some portion of query region;

D is t{ i , j )  =  R eturns the Euclidean distance between Sensor i and Sensor j;

SnsngN gbr{i, j)  =  (Vj : D ist(ij)  <  m in {S e lf  J n f o i . R s , N  J n f o i . S e l f - I n f  Oj . Rs) ) ]
=  Sensor i and Sensor j  are located within each others’ sensing disks;

Cycle{x, y) =  Scycle : { . .. , x , i , y , . . . }  are vertices in the cycle and all other vertices in the cycle are 
elements of Ci {chosen sensors);

=  there exists a cycle such th a t Sensors x, i, and y  are vertices in the cycle, and all other 
vertices in this cycle are chosen sensors;

CvrSnsngByChsn{i)  =  (34 : Vj e 4  A j  6 A S e l f - I n f  Oi.S Ç {[j Root-Infoi.Rootr-S);
=  Sensing region of Sensor i is covered by a subset of chosen sensors th a t are 

located no farther than  H communication hops from Sensor i;

NeighborsConnectivity{i) =  (Vj, t G M ,Cycle(j, t));
=  All chosen pairs of neighbors of Sensor i are connected by a path  of chosen 

nodes;

LstU I D N  gbr{i, j )  =  i e Nj A { S e l f - In f  Oi.UID =  N - I n f  Oi .Self-Inf  Oj.MinUID)-,
=  Sensor i is a neighbor of Sensor j ,  and is also the neighbor of Sensor j  having the 

least UID;

G rtrL stO rN otN gbrO fC h sn{i)  = (Vj : i G N j , N J n f o i - S e l f J n f o j .S ta tu s  ^  chosenV
~tSnsngNgbr{i,j) V S e l f - I n f  Oi . UI D >
N -I n f o i . S e l f - In fo j . U ID  V LstUIDNgbr{ i ,  j));

=  Sensor i is not the communication neighbor, nor the sensing neighbor, 
of a chosen sensor whose UID is greater than  its own unless it is the 
“least UID” neighbor of this chosen sensor;

SensorCover{i) =  S e l f - I n f  Oi. Status =  unchosen A QryRgnIntrsctn{i)A  
G rtr  LstO r N otN gbrO fC hsn{i)  ; 

s  sta tu s  of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion 
of query region, and Sensor i is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose UID is greater than  its own unless it is the “least 
UID” neighbor of this chosen sensor;

M C SG N ode{i)  =  S e l f - I n f  Oi.Status =  undecided A {G r trL stO rN otN  gbrO fC h sn{i)  V 
~’CvrSnsngByChsn{i));

=  Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose UID is greater th an  its own unless it is the “least 
UID” neighbor of this chosen sensor, or a  p art of the sensing disk of Sensor i is not 
covered by a chosen sensor;

Redundant{i) =  { S e l f - I n f  Oi.Status = undecided V S e l f - I n f  Oi.Status =  chosen) A
-^G rtrLstOrNotNgbrOf Chsn{i) A C vrSnsngByChsn{i)  A NeighborsConnectivity{i)-, 

=  Sensor i is an undecided or a chosen sensor and is the “lesser” communication and 
sensing neighbor of a chosen sensor, bu t is not the  neighbor of th is sensor th a t has the 
smallest UID, and the entire sensing disk of Sensor i is covered by chosen sensors, and 
chosen neighbors of Sensor i are connected through a second path;

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ctions:
A l  :: -^QryRgnIntrsctn{i) V Redundant{i)

 > Sel f - Info , .S ta tus  =  unchosen’,
A 2 :: SensorCover{i)

— > S e l f -In fo i .S ta tus =  undecided;

Aa :: MC5:CAode(*)
— > S elf -In fo i .S ta tu s  =  chosen;

A i  Timeout A j  e Ni A -i(j € Pi)
 > Read{j);

As :: Timeout A j  e  Ni A j  e  Pi 
— > Read-Parent{j);

7.4.1 Proof of Multi-hop Information Gathering 

L em m a 7.1 The coverage and connectivity related information of every chosen sensor will 

eventually reach every sensor within H-hops.

P ro o f. We prove this lemma by contradiction. Suppose there exists a sensor which 

never receives the information of chosen sensors located within H-hops from it. Although 

we assume tha t every sensor might have a different communication radius, we limit the 

neighbor set so that neighbors always have a bi-directional communication link. Thus, if 

the distance from Sensor A to Sensor B is n-hops, then the distance from Sensor B to Sensor 

A is also n-hops.

We assume that there is a self-stabilizing BFS tree construction running in the back­

ground, and each chosen sensor maintains its own BFS tree, with a height of H , rooted to 

itself. Since the BFS tree spans all sensors within H-hops, there is always a path from a 

chosen root sensor to every sensor within H-hops from the root. Thus, all information sent 

out from the root along the BFS tree eventually reaches all sensors within H-hops. That is, 

every sensor is able to receive the information of all chosen sensors located within H-hops 

from itself.

Hence we arrive at a contradiction. □
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A lg o rith m  7.3.2 Query Region Connected Cover Algorithm for Sensor i {M TilZS).
C hanged  Structure:

In fo {
Status G {unchosen, undecided, chosen} :: S tatus of a sensor 
Position :: Geometric location or coordinate of a sensor 
R c  :: Communication radius of a sensor 
R s  Sensing radius of a  sensor 
S :: Sensing region of a sensor
M a x R s U I D  :: UID of a sensor w ith the  maxim um  Rs  amongst all of a sensor’s neighbors; 

in case of a tie, the sensor w ith greatest UID is selected
}

Root{
Position :: Geometric location or coordinate of a sensor 
R s  : : Sensing radius of a sensor 
Hop : Hop count

}

C hanged  P red icates;
GrtstRsNgbr{i,  j) =  i G N j  A {S e l f J n fo i - U I D  = N J n f o i .S e l f H n f o j .M a x R s U I D ) ;

=  Sensor i is a neighbor of Sensor j, and is also the neighbor of Sensor j  having the 
greatest sensing radius;

G rtrG rts tO rN  o tN  gbrO fC h sn{i)  = (Vj : i G Nj, N - I n f  Oi.Sel fH n fo j .S ta tu s  A chosen V
-iSnsngNgbr{i, j) V S e lf  J n f o i .R s  >
N - I n f  Oi.Self-Inf Oj .Rs V G rts tR sN  gbr {i, j)) ; 

s  Sensor i is not the communication neighbor, nor the sensing 
neighbor, of a  chosen sensor whose sensing radius is greater than  
its own unless it is the “MaxR's neighbor of this chosen sensor;

SensorCover{i) =  S e l f - I n f  Oi.Status = unchosen A QryRgnIntrsctn{i)  A 
G rtrG r ts tO rN  o tN  gbrO fChsn{i);

=  sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion 
of query region, and Sensor i is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose sensing radius is greater than  its own unless it is 
the “MaxR'g neighbor of th is chosen sensor;

M C SC N ode{i)  =  S e l f - I n f  Oi.Status =  undecided A (G rtrG rts tO rN otN gbrO fC h sn(i)  V 
^CvrSnsngByChsn{i));

=  Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing 
neighbor, of a chosen sensor whose sensing radius is greater than  its own unless it is 
the “MaxR's neighbor of this chosen sensor, or a part of the sensing disk of Sensor i 
is not covered by a chosen sensor;

Redundantii) = (S e l f - I n f  Oi.Status = undecidedV S e l f  - I n f  Oi.Status = chosen) A
^G rtrG rtstOrNotNgbrOfChsn{i)ACvrSnsngByChsn{i)A NeighborsConnectivi ty{i);  

=  Sensor i is an undecided or a  chosen sensor and is the communication and sensing 
neighbor of a  chosen sensor th a t has a greater R s  than  its own, but is not the “MaxR's 
neighbor of this sensor, and the entire sensing disk of Sensor i is covered by chosen 
sensors, and chosen neighbors of Sensor i are connected through a second path;
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CHAPTER 8

SIMULATION AND RESULTS

8.1 Discussion of Result 

Algorithms JT>(Algorithm 5.5.1), 775(Algorithm 6.2.1), A4MT7)(Algorithm 7.3.1),

and A47f775(Algorithm 7.3.2) compute a minimum connected sensor cover for a query re­

gion. Moreover, all algorithms are fault-tolerant in terms of the self-* feature.

In our simulations, we assumed that nodes are randomly deployed on a grid of size 500 

X 500 (350,000 nodes). Similar to [38, 53, 67] we considered the sensing region associated 

with a sensor to be a circular region centered around the sensor itself. We considered a 

network of 350,000 nodes in which sensors had both sensing radii and transmission radii that 

varied in size from 0 to 8  units. However, in some of the cases tested in our simulations, 

we restricted the sizes of sensors’ sensing and transmission radii to be within a certain 

range. For Algorithms M T ilV a n d  MHTZS, we went the query region boundaries for the 

hop count. Specifically, a hop count of 8  was used.

The query region used in our simulations was 15 x 15 square graph units. We measured 

the number of sensors in the final minimum connected cover set, the number of query 

region sensors covered per MCSC sensor, the average number of sensors within a sensor’s 

sensing disk, and the stabilization times for Algorithms S H IV , SHTZS, M H X V , MHTZS, 

Algorithm M C S C  [24], and Rule k [21]. We also computed an approximation ratio for 

each algorithm. This approximation ratio was used as a measure of optimality for each
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algorithm and was computed as the ratio between the number of query region sensors 

covered per MCSC sensor and the average number of sensors within a sensor’s sensing disk. 

The smaller this ratio is, the closer the final cover set chosen by a particular algorithm is 

to an optimal minimum connected cover set.

We used varying relative sizes of R c  and Rg  for our simulations. Cases tested include:

• Rc > Rs (all sensors had the same size of radii of communication).

• R c  > Rg  (all sensors had the same size of sensing radii).

• R c  > Rg  (sensors had different sizes of R c  and Rg).

• R c  > Rg  (all sensors had the same size of radii of communication).

• R c  > Rg  (all sensors had the same size of sensing radii).

• R c  = Rg  (all sensors had the same size of R c  and Rg).

• R c  < Rg  (all sensors had the same size of radii of communication).

• R c  < Rg (all sensors had the same size of sensing radii).

• R c  < Rg (sensors had different sizes of R c  and Rg).

• All sensors had equal sizes of radii of communication but unequal sizes of sensing 

radii.

•  All sensors had equal sizes of sensing radii but unequal sizes of radii of communication.

• All sensors had unequal sizes of radii of communication and unequal sizes of sensing 

radii.
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Figure 8.5 shows simulation screenshots for Algorithms S H IV , SHTZS, M H I V ,  and 

A474775with variable sensing and communication radii. From the simulation screenshots 

we can conclude tha t all these algorithms can produce the final cover set that completely 

cover the query region since there are no black spots inside the query region.

Tables 8.1 and 8 . 2  show the number of M C S C  sensors, query region sensors per M C S C  

sensor, average number of sensors per sensing disk, and stabilization times for these cases. 

These results, excluding stabilization times, are also shown in Figures 8.1, 8.2, and 8.3. 

Tables 8.3 and 8.4, and Figure 8.4, show the approximation ratios for the algorithms tested 

for each of these cases.

As shown in Table 8.1 and Figure 8.1, in all cases tested except all Rg  equal. Algorithm 

A4TfTDproduced a cover set tha t contained fewer, or in some cases nearly the same, number 

of nodes as tha t of Algorithm S H IV .  This implies tha t for a UID based algorithm, multi­

hop coverage and connectivity does significantly reduce the number of nodes in the final 

cover set for nearly all ranges of size of sensing and transmission radii. Also, in more than 

half the cases tested, specifically in all cases tested except R c  > Rg (all Rg equal), R c  = 

Rg  (all R c  and Rg  equal), R c  < Rg  (all R c  equal), R c  < Rg  (all Rg equal), and R c  < 

Rg {Rc and Rg  unequal). Algorithm A474775produced a cover set tha t contained fewer, 

or nearly the same, number of nodes than Algorithm SHTZS. This also implies tha t for 

an algorithm based upon the size of Rg, multi-hop coverage and connectivity does reduce 

the number of nodes in the final cover set for most of the ranges of size of sensing and 

transmission radii.

Tables 8.3, 8.4, and Figure 8.4 show tha t for a UID based algorithm, multi-hop coverage 

does significantly improve the algorithm’s approximation ratio. Also, in most cases tested, 

for a Rg  based algorithm, multi-hop coverage significantly improves the algorithm’s approx-
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imation ratio. This implies tha t an algorithm tha t uses multi-hop coverage and connectivity 

produces a final cover set tha t is closer to an optimal minimum connected cover set.

Algorithm 574775that uses two-hop coverage and connectivity had a better approxi­

mation ratio than the UID based algorithm {S H IV )  th a t uses two-hop coverage and con­

nectivity, when the size of R c  was less than Rg- This is due to the fact tha t when R c  

< Rg, the SnsngNgbr(i,j) predicate will evaluate to true when Sensor j  is a neighbor of 

Sensor i. Thus, -iSnsngNgbr(i,j) will evaluate to false in the predicate GrtrGrtstOrNot- 

NgbrOfChsn(i), and the sensor with the greatest Rg, within Sensor i's neighborhood, will 

evaluate this predicate to true and be marked as chosen by Ag. This allows the query 

region to be covered with fewer nodes. However, in nearly all cases, if R c  is greater than 

or equal to Rg, Algorithm SHTZShas a worse approximation ratio than Algorithm S H IV .  

This is due to the fact tha t a sensor with a sensing radius that is smaller than R c  may be 

able to evaluate ->SnsngNgbr(i,j) to true in GrtrGrtstOrNotNgbrOfChsn(i), even though it 

may have a small Rg. Thus, it can evaluate this predicate as true and change to chosen, 

even though there may be more suitable sensors (those with larger Rg) outside Sensor t ’s 

neighborhood.

As an improvement, as shown in Table 8.3 and Figure 8.4, an Rg  based algorithm using 

multi-hop coverage (Algorithm MHTZS) produced a better cover set than all of our other 

algorithms when R c  > Rg  (all R c  equal) and produced one of the lowest approximation 

ratios obtained by our algorithms (2.4). This is due to CvrSnsngByChsn(i) and Neigh- 

borsConnectivity(i) predicates having a greater chance of being evaluated to true as sensors 

further than 2-hops from Sensor i are considered. Subsequently, as a greater number of sen­

sors are marked as chosen, a sensor tha t may not have been the most suitable to be marked 

may evaluate GrtrGrtstOrNotNgbrOfChsn(i) as false, evaluate Redundant(i) as true, and
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unmark itself. This leads to fewer nodes in the final cover set.

As shown in Table 8.3 and Figure 8.4, the approximation ratio for the multi-hop, Rg 

based algorithm {Rc > Rg  and all R q  equal) is equal to that of Algorithm M C S C  {Rc  

= Rg and all R c  and Rg  equal). However, Algorithm MHTZScan also produce a cover 

set that is connected and tha t completely covers R q  at aM ranges of size of sensing and 

transmission radii.

Also, our AlgorithmA474775produces better approximation ratios than Rule k for most 

cases, when Rc > Rs or Rc > Rg. This improvement may be attributed to a greater 

number of nodes that were unmarked by Algorithm M HTZS's redundancy predicate. Since 

the CvrSnsngByChsn(i) predicate in this algorithm considers nodes tha t can be located 

further than two hops from Sensor i, there is a greater chance tha t a node evaluates this 

predicate to true and becomes unmarked by Redundant(i) in Algorithm MHTZS, than 

a node evaluating the redundancy predicate of Rule k to true. As a result, a greater 

number of nodes will be unmarked by Redundant(i) in Algorithm MHTZS. Algorithm 

M H IV a lso  produces better approximation ratios than Rule k in most cases when R c  > 

Rg  or Rc > Rs- In addition to this, when Rc > Rg  and all Rg  are equal. Algorithm 

S H IV a n d  SHTZSproduce better approximation ratios than Rule k. In contrast to Rule k, 

our algorithms can also produce a cover set tha t is connected and tha t completely covers 

R q  at qM  ranges of size of sensing and transmission radii.

As shown in Table 8.1, for nearly all cases, the stabilization times for Algorithms 

S H IV a u d  SHTZS are less than or equal to  tha t of Rule k. This shows tha t these algo­

rithms outperform Rule k in terms of stabilization time. Although Algorithms M H IV a n d  

MHTZShave a greater stabilization time, in most cases when R c  > Rg  or R c  > Rg, 

these algorithms outperform Rule k in terms of producing a more optimal cover set. Also,
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in most cases, Algorithms STilV& nd  574775outperformed Algorithm M C S C  in terms of 

stabilization time.

Finally, in more than half the cases when Rc > Rs or Rc > Rs, the approximation ratios 

for Algorithm A474775were similar to that of Algorithm M C SC . These results lead us to 

believe that the ability to produce a better approximation to an optimal cover set, combined 

with the ability to completely cover and produce a connected cover set for gM ranges of sizes 

of the radii of communication and sensing radii, justify the increase in stabilization time 

and message complexity required for multi-hop coverage and connectivity.
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R ela tiv e  S ize o f  R c  or R s
R c  >  R s  
all R c  =

R c  > R s  
all R s  =

R c  > R s  
R c  A R s A

R c  >  R s  
all R c  =

R c  > R s  
a ll R s  =

R c  — R s  
all R c , R s

A lg. SHTV N u m b er o f  M C S C  S en sors 158 35 140 163 40 30
A lg. S7HV Qry R g n  S en sors /  M C S C  Sensor 4.2 18.3 4.5 4.1 16.7 21.0
A lg . S H I V A vg  #  o f  Sen sors /  S en sin g  D isk 21.9 58.0 22.2 15.2 41.5 88.9
A lg. S H I V S tab iliza tion  T im e (m in .) 2.7 1.2 1.8 2.7 1.2 1.3
A lg . SHTZS N u m b er o f  M C S C  S en sors 144 40 147 164 35 25
A lg . SHTZS Qry R g n  S en sors /  M C S C  Sensor 4.4 15.6 4.7 4.0 19.3 24.4
A lg . SHTZS A vg  #  o f  S en sors /  S en sin g  D isk 25.6 64.7 26.9 17.0 45.6 88.3
A lg. SHTZS S tab iliza tion  T im e (m in .) 2.2 1.2 3.0 3.3 1.2 1.2
A lg . M H I V N u m b er o f  M C S C  S en sors 75 25 139 126 41 27
A lg . M H I V Qry R g n  S en sors /  M C S C  Sensor 9.6 26.6 4.8 5.2 15.3 24.4
A lg . M H I V A vg  #  o f  Sen sors /  S en sin g  D isk 27.4 63.2 23.8 15.0 36.8 97.1
A lg . M H I V S tab iliza tion  T im e (m in .) 619.5 4.2 94.5 76.5 3.6 2.1
A lg . MHTZS N u m b er o f  M C S C  S en sors 137 38 71 123 42 34
A lg . MHTZS Q ry R g n  S en sors /  M C S C  Sensor 4.9 16.4 9.0 5.3 15.3 19.4
A lg . MHTZS A vg  #  o f  S en sors /  S en sin g  D isk 22.2 55.0 22.0 12.6 38.0 98.0
A lg. MHTZS S tab iliza tion  T im e (m in .) 124.0 8.9 11.2 41.5 7.1 1.7
A lg . M C S C N u m b er o f  M C S C  S en sors 16
A lg . M C S C Qry R g n  S en sors /  M C S C  Sensor 42.9
A lg . M C S C A vg  #  o f  S en sors /  S en sin g  D isk 104.9
A lg . M C S C S tab iliza tion  T im e (m in .) 1.4
R u le  k N u m b er o f  M C S C  S ensors 20
R u le  k Qry R g n  S en sors /  M C S C  Sensor 33.7
R u le  k A vg  #  o f  S en sors /  S en sin g  D isk 101.1
R u le  k S tab iliza tion  T im e (m in .) 2.7

Table 8.1: Number of MCSC Sensors, Query Region Sensors per MCSC Sensor, Average Number of Sensors per Sensing Disk, 
and Stabilization Times for Algorithms SH T V , SHTZS, MHIT>, MHTZS, Algorithm M C S C , and Rule k 
a t Various Sizes of R c  and i?5 .
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R c  <  R s  
all R c  =

R c  <  R s  
all R s —

R c <  R s  
R c  A R s A a ll R c  = all R s = R c  A R s A

A lg. s n x v N u m b er o f  M C SC  Sensors 62 280 332 144 179 227
A lg . S H I V Qry R g n  Sen sors /  M C SC  Sen sor 11.4 2.4 2.0 4.4 3.5 2.7
A lg . S H I V A vg  #  o f  S ensors /  S en sin g  D isk 106.6 97.3 100.9 44.7 37.3 42.2
A lg . S H I V S tab iliza tion  T im e (m in .) 1.3 1.3 1.3 1.3 1.2 1.3
A lg . SH US N u m b er o f  M C SC  Sensors 58 275 310 144 194 235
A lg . SHTIS Qry R g n  S en sors /  M C SC  S en sor 10.9 2.3 2.1 4.2 3.2 2.8
A lg . SHTIS A vg #  o f  S en sors /  S en sin g  D isk 68.3 92.8 104.4 41.7 39.4 45.7
A lg . SHTZS S tab iliza tion  T im e (m in .) 1.2 1.2 1.2 1.3 1.2 1.2
A lg . M H I V N u m b er o f  M C SC  Sensors 62 277 338 92 204 227
A lg . M H I V Qry R g n  Sen sors /  M C SC  Sen sor 10.5 2.4 1.9 6.8 3.1 2.8
A lg . M H I V A vg  #  o f  S ensors /  S en sin g  D isk 95.0 96.6 89.4 41.1 34.7 41.2
A lg . M H I V S tab iliza tion  T im e (m in .) 4.1 11.2 7.3 14.8 83.3 5.6
A lg . MHTZS N u m b er o f  M C S C  Sensors 73 314 361 145 178 237
A lg . MHTZS Qry R g n  S en sors /  M C SC  Sen sor 8.5 2.2 1.9 4.5 3.6 2.5
A lg . MHTZS A vg #  o f  S en sors /  S en sin g  D isk 88.7 104.9 100.6 42.5 37.4 39.3
A lg . MHTZS S tab iliza tion  T im e (m in .) 8.5 2.7 72.9 14.7 4.5 5.5

Table 8.2: Number of MCSC Sensors, Query Region Sensors per MCSC Sensor, Average Number of Sensors per Sensing Disk, 
and Stabilization Times for Algorithms S H IV , SHTZS, M H IV , M HTZS, Algorithm M C S C , and Rule k 
at Various Sizes of R c  and Rg-
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Rc > Rs 
all Rc =

Rc > Rs 
all Rs =

Rc > Rs 
Rc A Rs A

Rc > Rs 
all Rc =

Rc > Rs 
all Rs —

Rc — Rs 
all Rc, Rs

Alg. s m v Approximation Ratio 5.2 3.2 4.9 3.7 2.5 4.2
Alg. s n n s Approximation Ratio 5.8 4.1 5.7 4.3 2.4 3.6
Alg. M H JV Approximation Ratio 2.9 2.4 4.9 2.9 2.4 4.0
Alg. M u n s Approximation Ratio 4.6 3.4 2.4 2.4 2.5 5.1
Alg. M CSC Approximation Ratio 2.4
Rule k Approximation Ratio 3.0

Table 8.3: Approximation Ratios for Algorithms S H IV , SHTZS, M H I V ,  MHTZS, Algorithm M C S C , and Rule k 
at Various Sizes of R c  and Rs-
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Relative Size of Rç  or Rs
Rc < Rs 
all R c  =

R c < Rs 
all Rs =

Rc < Rs 
R c A Rs ^ all Rc all Rs R c A Rs

Aig. s n i v Approximation Ratio 9.4 41.4 4&9 III. 1 111.I) 15.6
Aig. s n n s Approximation Ratio 6.3 40.3 49.7 9.9 12.3 16.3
Alg. M H IV Approximation Ratio 9.0 40.9 47.6 6.1 11.3 14.9
Aig. M r n is Approximation Ratio 10.4 47.7 54.1 9.5 10.4 15.5

CDQ.
Table 8.4: Approximation Ratios for Algorithms S H I V ,  SHTZS, M H I V ,  and MHTZS, a t Various Sizes of R c  and Rs-
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.3 Figures
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Case Number for Relative Size of Rc or Rs
Case Number Key

1. Rc>= Rs (ailRc equal)
2. Rc >= Rs (ail Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (ail Rc equal)

5. Rc > Rs (ail Rs equal)
6. Rc = Rs (ail Rc, Rs equal)
7. Rc < Rs (ail Rc equal)
8. Rc < Rs (ail Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key 
Alg. SHID 0 - o- -0 - o  

7Ug.SMlS <>- 0  ( )  <>

Alg. MHID / \  -̂  / \  /\ 
Alg. MHRS V—V—V—V

Alg.MCSC 0—> > D 
Rulek 0—B—g—□

F ig u re  8.1; N u m b e r  o f  M C S C  S en sors for V ariou s R e la t iv e  S izes  o f  R c  or R s
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Case Number Key
Case Number for Relative Size of Rc or Rs

1. Rc>= Rs (all Rc equal)
2. Rc>= Rs (all Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key 

Alg. SHID 8  -  -O- -.8  -  -O

yUg.stOK 0 - 0  0  o
Alg, MHID / \  / \  / \  / \

Alg. MHRS-------- — 7̂- 7̂—

Alg.M CSC l>-  t> t>"' t> 

Rulek Q— g— H— 9

Figure 8.2; Query Region Sensors per MCSC Sensor for Various Relative Sizes of R c  or R s
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1. Rc>= Rs (all Rc equal)
2. Rc >= Rs (all Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key 

Alg. SHID 8--0 --8 --0

7Ug.SMlS 0 0 0 0
Alg. MHID ^  ^  ^  
Alg. MHRS —V—

Alg.MCSC >- > > >
Rulek a—b—a—a

Figure 8.3: Average Number of Sensors per Sensing Disk for Various Relative Sizes of R c  
or R s
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4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key 
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/Ug. SHRS o  O O O
Alg. MHID ^ ^ — zs 
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Figure 8.4: Approximation Ratios of all Algorithms for Various Relative Sizes of R c  or R s
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8.4 Screenshots

A 3

SimulatLon 1 # StabilixatwA Tim e -  1.22 minute* 
Q veiy TOgten node count: o36 
M CSC node count: 267
Quefy leg ion  «ensora/MGSC tenooit 2 .^2022 
SenfOKf/Sensing d ifk: 94539

(a) Screenshot of Simulation of SHID with various sensing/communication radii

A 2  I A 3 _ J  I A 4

Sbnulation S ^ ii lz a tte n T liB e  -  1 .22m iM tw
Q ueiy le ç o n  node count: o3o
M CSC node count: 253
Q ueiy region tensore/M CSC «enmnn 23%%34
Sensoia/Senfing disk: 45.245

(b) Screenshot of Simulation of SHRS with various sensing/communication radii

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F o i ml

AI A2 A3 A4

—- -— .ion  1 - . - -—.—  — -— ■ 
iiiezy l e ^ n  node count: (

MCSC node count: 237 
Query region fonforc/MCSC reneer: 234M 84  
Senoon/Sensing diifc: 39^563

(c) Screenshot of Simulation of MHID with various sensing/communication radii

A1 I A2 I A3 I I A4

Simulntieip. 1 *• Skdbilizntion Time = 5.6S minute*
Query rep en  node count: oz9
MCSC node count: 227
Query region eensonr/MCSC senfor: 2.779915
Senmoro/Senoing di*k: 41.228

(d) Screenshot of Simulation of MHRS with various sensing/communication radii

Figure 8.5: Screenshots of Simulations of Algorithms SHID, SHRS, MHID and MHRS 
with various sensing and communication radii
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CHAPTER 9

CONCLUSION AND FUTURE RESEARCH 

We started this research by studying wireless networks and self-* systems. Both are very 

active research areas to make ubiquitous computing a reality. Our main focus was wireless 

sensor networks which already have numerous applications in vast and varying fields.

From its nature, sensor networks have various constraints which are well-known. The 

most significant issue within the scope of sensor networks is energy. Designing energy 

efficient, as well as reliable and scalable, sensor network protocols is highly desirable, yet 

very challenging. Considering the size, frequency of topology changes, and energy level 

changes, it is essential for sensor networks to have the properties of self-organizing, self- 

configuring, and self-healing.

The main goal of our research was to design a completely distributed self-* query re­

gion covering sensor network. Assuming the most general cases of nodes’ power limitations, 

we presented two local, and two multi-hop, distributed, scalable, and self-* solutions to 

the minimum query region connected cover problem which can cope with variable sens­

ing and transmission ranges. We demonstrated how these solutions are self-organizing and 

self-healing as well. They are also self-contained because once faults occur, they can be cor­

rected within their neighborhood. Our solutions use 2-hop locality in Algorithms SHXV&nd 

SHTZS, and H-hop locality in Algorithms M.'HXV&vA MHTZS. In Algorithms SHXVaxid 

SHTZS, nodes acquire 2-hop information by reading neighbors’ shared variables. Although
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multi-hop communication is used in Algorithm AdTYTDand MHTZS, it is used only to check 

the coverage and connectivity conditions of chosen nodes, and the entire network topology 

is still unknown to each node. In tha t sense, we can still consider these algorithms as local 

algorithms. In addition, our solutions can easily be transformed to conform to power-aware 

systems by modifying an UID-based to a Ag-based algorithm. Similarly, instead of elim­

inating nodes based on the value of their identifiers or their sensing radius, nodes can be 

eliminated based on the state of their batteries, that is, selecting only nodes with strong 

energetic capabilities in the final cover. However, it is possible tha t competing nodes may 

have equal energy resources, since they may execute the same pattern of actions. Only in 

this case, the identifiers would be used to break the symmetry.

We formally proved the self-* properties of our solutions. Moreover, we have conducted 

extended simulations using the measures of stabilization time, the number of nodes in the 

final cover, the number of query region sensors covered per MCSC sensor, and the average 

number of sensors within a sensor’s sensing disk. Our experiments demonstrated tha t 

under certain conditions, our proposed algorithms perform better than the self-stabilizing 

algorithms proposed in [24, 23]. Furthermore, they also produce a cover set tha t is connected 

and completely covers query regions at all ranges of size of sensing and transmission radii.

The proposed algorithms are also extended studies of the locality, in that multi-hop 

information exchange can be used to produce a better approximation to an optimal cover 

set. Although we proved that multi-hop communications greatly improve the result of the 

minimum connected cover problem, sensors consume the most energy during intercommu­

nication between sensors. Therefore, it is crucial to find an optimal hop count so tha t a 

network life time is prolonged by compromising the optimality of the minimum connected 

cover set. The trade-off between the energy consumption by communication vs. the energy
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saving by reducing the number of active nodes would be an interesting topic for future 

research.

The area of connected coverage in sensor networks still raises a broad class of challenges. 

Since the coverage characterizes the monitoring quality provided by a sensor network, differ­

ent applications may require different degrees of sensing coverage. Similarly, for the purpose 

of fault-tolerance to network failure, such as packet loss, higher degree of connectivity may 

be required. In general, this is known as the k-connected k-coverage problem, and has been 

studied in fault-free environments in [6 8 , 69]. However, an interesting open issue would 

be to address this problem in fault-prone environments, and in its generalized form: self- 

stabilizing k-coverage k-connectivity of query regions. Mobile sensor networks is another 

possible future topic. Assuming tha t sensors have some mobility, finding self-* solutions for 

the minimum connected cover problem would be an interesting area of research. However, 

mobility would probably consume more energy, so it would be quite challenging to design 

energy-efficient protocols in such networks.
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