
UNLV Retrospective Theses & Dissertations

1-1-2007

Self-* distributed query region covering in sensor networks Self-* distributed query region covering in sensor networks

Ai Yamazaki
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds

Repository Citation Repository Citation
Yamazaki, Ai, "Self-* distributed query region covering in sensor networks" (2007). UNLV Retrospective
Theses & Dissertations. 2199.
http://dx.doi.org/10.25669/dr3w-6xca

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized
administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/rtds
https://digitalscholarship.unlv.edu/rtds?utm_source=digitalscholarship.unlv.edu%2Frtds%2F2199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.25669/dr3w-6xca
mailto:digitalscholarship@unlv.edu

SELF-* DISTRIBUTED QUERY REGION COVERING

IN SENSOR NETWORKS

by

Ai Yamazaki

Bachelor of Science
University of Nevada, Las Vegas

2001

Bachelor of Arts
University of Nevada, Las Vegas

2005

A thesis submitted in partial fulfillment
of the requirements for the

M aster o f Science D egree in C om puter Science
School o f Com puter Science

Howard R. H ughes C ollege o f Engineering

G raduate College
U niversity o f N evada, Las Vegas

A ugust 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1448431

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 1448431

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thesis Approval
The Graduate College
University of Nevada, Las Vegas

AUGUST 13

The Thesis prepared by

A I YAMAZAKI

E ntitled

SELF - * DISTRIBUTED QUERY REGION COVERING IN SENSOR NETWORKS

is approved in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Emmination Committee Member

Examination Committee Member

Graâuat^XCollæe Faculty Representative

a :
Examination Committee Chair

Dean of the Graduate College

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experimentally. The simulation results show that our solutions provide better performance

in terms of coverage than pre-existing self-stabilizing algorithms.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Self-* D istributed Query R egion C overing in Sensor N etw orks

by

Ai Yamazaki

Dr. Ajoy K. D atta, Examination Committee Chair
School of Computer Science

University of Nevada, Las Vegas

Wireless distributed sensor networks are used to monitor a multitude of environments for

both civil and military applications. Sensors may be deployed to unreachable or inhospitable

areas. Thus, they cannot be replaced easily. However, due to various factors, sensors’

internal memory, or the sensors themselves, can become corrupted. Hence, there is a need

for more robust sensor networks. Sensors are most commonly densely deployed, but keeping

all sensors continually active is not energy efficient. Our aim is to select the minimum

number of sensors which can entirely cover a particular monitored area, while remaining

strongly connected. This concept is called a Minimum Connected Cover of a query region

in a sensor network. In this research, we have designed two fully distributed, robust, self-*

solutions to the minimum connected cover of query regions that can cope with both transient

faults and sensor crashes. We considered the most general case in which every sensor has

a different sensing and communication radius. We have also designed extended versions

of the algorithms that use multi-hop information to obtain better results utilizing small

atom icity (i.e., each sensor reads only one of its neighbors’ variables at a time, instead of

reading all neighbors’ variables). W ith this, we have provensel/-* (se lf — configuration,

s e l f — stabilization, and s e lf — healing) properties of our solutions, both analytically and

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A B S T R A C T ... iii

ACKNO W LED GM ENTS.. vii

CHAPTER 1 INTRODUCTION .. 1
C ontribu tions.. 3
Outline of the T h es is ... 4

CHAPTER 2 WIRELESS NETWORKS ... 5
Mobile Wireless N etw o rk s.. 5

Infrastructured/Cellular Wireless N e tw o rk s ... 6
Infrastructureless/Ad Hoc Wireless N e tw o rk s .. 7

Wireless Sensor N e tw o rk s .. 8
Overview ... 8

CHAPTER 3 SELF-* SYSTEMS 14
O v e rv ie w ... 15
Ubiquitous/Pervasive C om pu ting ... 17
Self-stabilizing Systems ... 18

CHAPTER 4 MINIMUM CONNECTED SENSOR COVER P R O B L E M 20
Motivation .. 21
Related W o rk ... 21
P re lim in a rie s .. 25

M o d e l .. 25
Self-stabilizing P r o g r a m ... 28
Problem Specification .. 29

CHAPTER 5 SINGLE-HOP UID-BASED A L G O R IT H M S.. 32
Description and D ata S tru c tu r e s ... 32
P red ica tes ... 35
Normal E x e c u tio n ... 36
Fault and Recovery... 37
C orrec tn ess .. 38

Proof of Closure .. 41
Proof of Convergence.. 43
Proof of Self-*... 45

CHAPTER 6 SINGLE-HOP RS-BASED ALGORITHMS .. 49
Description and D ata S tru c tu r e s .. 49
C o rrec tn ess ... 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTE R ? MULTI-HOP ALGORITHMS .. 52
Description and Data S tru ctu res... 52
P red ica tes ... 53
C o rrec tn ess .. 54

Proof of Multi-hop Information G a th e rin g ... 57

CHAPTERS SIMULATION AND R E S U L T S ... 59
Discussion of R e s u l t ... 59
T a b le s ... 65
Figures .. 69
S creensho ts .. . 73

CHAPTER 9 CONCLUSION AND FUTURE RESEARCH 75

B IB L IO G R A P H Y ... 78

V I T A .. 83

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to express sincere appreciation to my thesis advisor, Dr. Ajoy K. D atta for his

guidance, insight, and support for this research. His trust and confidence in my abilities have

truly encouraged me throughout my graduate study. I would like to offer a special thanks

to Dr. Maria Gradinariu at IRISA/Universite Rennes 1, France, for giving us direction for

research. Her advice and contribution was essential in completing this work. Thanks go

to Rajesh Patel for simulating the algorithms, whose comments and suggestions made our

work greatly refined. I am also grateful to Dr. John Minor, Dr. Yoohwan Kim, and Dr.

Venkatesan Muthukumar, for their participation in my committee.

My special gratitude goes to my family. I would like to dedicate this thesis to them

for their understanding, motivation, and patience. I am thankful to all faculty members

and friends who made my stay at the University of Nevada, Las Vegas a memorable and

valuable experience.

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Recent technological advances in wireless networking, memory, and embedded micro­

processors have made it possible to produce tiny, low-cost, and low-powered sensor nodes.

A large number of those tiny sensors compose wireless sensor networks which have revolu­

tionized our world. Wireless distributed sensor networks are used to monitor a multitude

of environments for both civil and military applications, such as traffic monitoring, wildlife

habitat monitoring, home security, and battlefield awareness. Unlike current Internet in­

formation gathering services, wireless sensor networks provide users more localized and

application-specific data in a timely manner.

One of the most well-known sensor nodes is the MICA Mote which was initially devel­

oped at the University of California at Berkeley. Today, it is commercially available to the

public by Crossbow Technology, Inc. [3] and has been widely used by researchers. DARPA

has initiated a research project called Network Embedded Systems Technology (NEST) [4].

Funded by DARPA, the Smart Dust project was also developed at UC Berkeley attem pt­

ing to design a sensor system which could be integrated into a package only a few cubic

millimeters in size [50]. Top Silicon Valley companies, like Intel Corporation are also in the

business of manufacturing such devices [5].

Since these network sensors have limited battery power, the life span of sensor networks

is usually expected to be very short. Thus, they are energy constrained. Also, due to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various factors, sensors’ internal memory, or the sensors themselves, can become corrupted.

Unfortunately, as sensors may be deployed in unreachable or inhospitable areas, they cannot

be replaced easily. Although they are most commonly densely deployed, keeping all sensors

continually active is not energy efficient due to the above reason.

In addition to energy consumption, the topology of a network may change frequently

due to malfunctions or environmental situations. Thus, it is impractical to pre-configure

a network and deploy each sensor in a certain deterministic position for a large number of

sensors.

Due to all these constraints, there is a need for more fault-tolerant and energy-efficient

sensor networks which must be self-configuring and self-maintaining or self-healing. The

term Self-* has been used to describe all these properties like self-organizing, self-configuring,

self-healing, etc. In this thesis, we will present a self-stabilizing solution to this very chal­

lenging energy saving problem in sensor networks. Then we will show that this solution can

also be considered as a self-* solution.

A sensor network’s topology can be described using a graph G {V,E), where vertices

are sensor nodes and edges are communication links between sensors. Every sensor has

a certain communication range and can communicate with only those sensors which are

located within its communication range. If two sensors are located within each other’s

communication range, then there is a bi-directional communication link and they are called

neighbors. Similarly, every sensor has a certain range it can sense or gather data which is

called a sensor’s sensing range. A group of sensors is said to cover a specific region when

the union of the sensing disks of these sensors completely cover this region.

In sensor networks, queries may be sent to “sense” data or events over a particular

region, called a query region. Our aim is to select the minimum number of sensors which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can entirely cover a particular query region, while remaining strongly connected. This

concept is called Minimum Connected Cover of a query region in a sensor network. In its

general form, this problem is known to be NP-hard [38, 45].

1.1 Contributions

The main goal of our research is to design an energy-efficient query response sensor

network protocol. Two main topics are considered in this research: the design of wireless

sensor networks and the design of self-* systems. The first contribution of this thesis is the

discussion of the wireless sensor networks. We discuss the current trend and solutions to

many significant problems in this area. The second contribution is the study of the self-*

systems which includes the properties of self-organizing, self-maintaining, and self-healing

amongst others.

The most important contribution of our research is to connect the self-* systems and

wireless sensor networks to design a self-* energy-efficient solution to the minimum con­

nected sensor cover problem. Considering the most general case in which every sensor has a

different sensing and communication radius, we have designed two fully distributed, robust,

s e l f — * solutions to the minimum connected cover of query regions tha t can cope with both

transient faults and sensor crashes. We have also designed extended versions of the algo­

rithms which use multi-hop information to obtain better results utilizing small atomicity

(i.e., each sensor reads only one of its neighbors’ variables at a time, instead of reading all

neighbors’ variables at once).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Outline of the Thesis

In Chapter 2, we discuss mobile wireless networks such as cellular networks and wireless

ad hoc networks. This chapter also includes the overview of wireless sensor networks. We

then delve into self-* systems in Chapter 3. Descriptions of many types of fault-tolerant

systems are presented in the context of self-*. The motivation of this research, previous

solutions in related areas, the model, and the program used in our solutions are described

in Chapter 4. The problem of minimum connected sensor cover is formally defined in this

chapter. Our self-stabilizing solutions for this problem is presented in Chapters 5, 6, and 7.

We include the proof of correctness for each solution in each chapter. In Chapter 5, the

single-hop UID based algorithm is introduced. A modified version of that algorithm is given

in Chapter 6. In Chapter 7, we present multi-hop algorithms. Simulation results for all

algorithms presented in this paper are included in Chapter 8. Finally, we summarize our

research, and present further concepts for future research in Chapter 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

WIRELESS NETWORKS

In this chapter, we will give brief descriptions of wireless networks, which include cellular

wireless networks and ad hoc wireless networks to understand the difference between sensor

networks and other types of wireless networks. The overview of sensor networks will also

be presented. Wireless networks have been playing an important role in the development

of communication technology in the last century and it is still growing rapidly. It is an in­

formation transmission system tha t uses electromagnetic waves such as radio waves instead

of physical wires. Examples of wireless networks are WLAN (wireless local area networks),

GSM (Global System for Mobile communications), and D-AMPS (Digital Advanced Mobile

Phone Service).

2.1 Mobile Wireless Networks

In recent years, our society has become more information oriented and the demand of

information accessibility has been growing rapidly. The advantage of using a wireless net­

work is its convenience. Via WLAN, users can access the internet anywhere outside their

work place such as remote offices or even coffee shops. Also, its expandability removes the

need of physically rewiring the existing network when a machine is added or removed. W ith

these advantages, mobile wireless networks have been experiencing a tremendous growth in

popularity amongst people who want information and connectivity anytime and anywhere.

This growth has led to many technological advances in this field, and as a result, small, low

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost, and powerful mobile computing devices such as Personal Digital Assistants (PDAs),

smart mobile phones, and laptop computers have been developed. Although mobility is one

of the key factors of these computing devices’ popularity, it makes maintaining communi­

cation among the various types of mobile devices critical and challenging. Recent advances

in wireless communication technologies have enabled wireless mobile devices to communi­

cate with each other in various ways. Mobile Wireless Networks can be classified into two

branches; infrastructured (cellular) and infrastructureless (ad hoc) wireless networks [35].

Both aim to provide reliable communications and computing environment where users are

not tethered to their information source.

2.1.1 Infrastructured/ Cellular Wireless Networks

In an infrastructure/ cellular wireless network, access points (or base stations) are re­

quired which enable the mobile devices to connect to each other. Those access points are

distributed along a wired backbone and usually connected to a fixed network infrastruc­

ture or to the Internet, and act as routers or gateways to forward packets to other devices.

Cellular networks are divided into cells and each cell is associated with a base station and

covered by this base station. W ithin its coverage, a base station can communicate directly

with mobile hosts by sending and receiving signals. The communication between one mobile

host to another is established via a base station and point-to-point connections are usually

not established among mobile hosts. A mobile host is able to move from one cell to another.

However, to do so, it must cease communication with the old base station and begins com­

munication with the new base station, which is called a handoff. The handoff should not

disconnect the existing communication and should not be detectable by a user [51].

Examples of this kind of wireless network are Global System for Mobile Communications

(GSM), Universal Mobile Telecommunication System (UMTS), Wireless Local Loop (WLL),

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Wireless Local Area Network (WLAN).

Infrastructured wireless networks are commonly used in office buildings, college cam­

puses, or locations where the access points can be easily installed and connected to an

existing network.

2.1.2 Infrastructureless/Ad Hoc Wireless Networks

There may be a need for efficient and dynamic communication of independent mobile

users when no fixed wired infrastructure is available. A few examples are emergency/rescue

operations, disaster recovery, and military networks. In such situations, organized com­

munication networks can not be relied upon. Thus, establishing reliable networks quickly

among a collection of mobile hosts without any centralized administration is required. As

such, the development of mobile devices and their networks have been receiving more and

more interest.

A network which does not rely on any wired backbone, base stations, or a central

controller is called an ad hoc network. In this type of network, communication between

mobile hosts is peer-to-peer, so each host has direct communication with another. Hosts

also act as relay nodes to forward data packets. Such a network is often called a Mobile Ad

Hoc Network (MANET) [2, 33].

The set of applications for a MANET is diverse, ranging from large scale, mobile, and

highly dynamic networks, to small and static networks tha t are constrained by power

sources. Examples of applications arenas are military battlefield, civilian environments,

and emergency operations.

There are several characteristics of MANET which differ significantly from other types

of networks: Since hosts are mobile in MANET, the network topology may change dynam­

ically. However, because there is no centralized controller, each host must be able to detect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this topology change and re-configure the network every time the change occurs in a fully

distributed manner. Also, multiple hop routing algorithms may be needed as every host may

not be within the communication range of every other host. Hence, the intermediate nodes

must serve as routers for other nodes in the network so that data packets can be forwarded

to their destinations. In addition to these, MANET has a fluctuating link capacity. Factors

such as link quality, fading, noise, and interference are key issues. Security and interception

problems are of a concern as well, especially in military applications. Therefore, designing

the protocol for MANET is very crucial and those issues must be carefully examined before

widespread commercial deployment.

2.2 Wireless Sensor Networks

Sensor networks are one of the main topics of research for this thesis. We will present an

overview of the sensor networks in this next section. Some issues and concepts associated

with sensor networks are also included.

2.2.1 Overview

Wireless sensor networks have been recognized as one of the most important technologies

for the future. It allows us to instrument, observe, and respond to phenomena in the

surrounding environment. A number of sensors spread across a geographic area compose

sensor networks. Recent technological advancement has enabled the production of small,

low-cost, low-powered, distributed sensing devices. These devices are called sensor nodes.

They are very different from traditional desktop and server systems [41]. Each sensor node

has wireless communication capability and some level of computational ability for signal

processing and networking of data, but has a limited energy source. Sensor nodes are usually

static. However, some nodes can be mobile. It seems tha t sensor networks have similarities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with wireless ad hoc networks such as MANET and mobile cellular networks. However the

followings characteristics of sensor networks [17] suggest that many recommended protocols

for the above two platforms may not be well suited for sensor networks.

1. Battery Power/Energy: Sensor nodes have a limited energy supply. Usually, once

deployed, batteries cannot be replaced or recharged.

2. Communication: The communication (transmission) range of a sensor node is limited.

Also, the quality of a wireless connection between sensor nodes is limited due to various

reasons such as latency and bandwidth.

3. Memory: Sensor nodes have limited memory, hence limited computational power.

4. Location sensing: Sensor nodes may or may not be supported by satellite location

determination system such as GPS.

5. Uncertainty in sensing: Signals detected by physical sensors have an inherent un­

certainty. They may contain environmental noise or may be biased due to sensor

location.

6. Size: The number of nodes in a sensor network can be several orders of magnitude

higher than the nodes in other ad hoc networks. The number may be in the thousands

or millions.

7. Deployment: Sensor nodes are usually densely deployed for the purpose of fault tol­

e ran ces. T yp ica lly , th e y a re dep loyed ran d o m ly . H ow ever, in som e a p p lic a tio n s , de­

terministic deployment is also available.

8. Unattended operations: Depending on the application, sensor nodes are unattended

for long periods of time. In most cases, physical maintenance may not be feasible.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Topology Changes and Failures: The topology of sensor networks may change dynam­

ically, due to change of position, reachability (e.g., jamming, noise, obstacles, etc.),

available energy, malfunctioning, etc. Also sensor nodes can fail easily due to the

low cost in manufacturing or environmental threats such as destruction by animals or

vehicles. Therefore sensor networks should be self-healing, as well as self-organizing

(Chapter 3).

Sensors are used as both data generators and routers. Networked sensor nodes can ag­

gregate data to provide a rich, multi-dimensional view of the environment. Source sensors

detect the event or gather data. Sources are usually located where the environmental activ­

ities of interest are expected to take place. Sink nodes are basically monitoring terminals

such as mobile PDAs or laptops. They are connected to other networks such as the Internet

and provide remote access to data from the sensor network.

A rchitecture. Other recent advancements in technology have made common hardware

platforms, sensors, and radios widely available. Such low-cost, off-the-shelf devices enabled

the great development in the held of sensor networks.

Sensor nodes are typically composed of on-board sensors, a processor, a small amount

of memory, a wireless modem, and a limited energy source. Overall prototypes of currently

available sensor nodes are very similar, but their size and shape come in great varieties,

from WINS NG 2.0, whose size is more than 5000 cubic centimeters to Smart Dust which

is a device a cubic millimeter in size. Their diversity is natural due to different types

of applications. One of the most widely used nodes is MICA Mote [3]. MICA motes

were originally introduced by US Berkeley research group. It features an Atmega 128L

processor, 4 KB of RAM, a 916 MHz transceiver. Tiny OS operation system, and runs

on 2 AA batteries. TinyOS is a small micro-threaded OS and it can provide the system

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software support to operate and manage such small smart devices [40]. Five requirements

for networked sensor systems were given in [41]. They are (a) small physical size and low

power consumption, (b) concurrency-intensive operation, (c) limited physical parallelism

and controller hierarchy, (d) diversity in design and usage, and (e) robust operation.

One of the most well-known projects in sensor networks is the aforementioned Smart

Dust project at Berkeley [50]. The researchers aim was the designing of networked sensors

with limits on size and power resources, called smart dust with required sensing, communi­

cation, and computing hardware, along with a power supply, within the size of a few cubic

millimeters.

In [5] the current research on heterogeneous sensor networks at Intel Corporation is

presented. In this research, a group at Intel is exploring the deployment of heterogeneous

sensor networks in theme parks. These networks could be used for monitoring water quality,

providing Internet access to park visitors, or for the overall improvement of park manage­

ment.

DARPA founded a program called Network Embedded Systems Technology (NEST). [4]

describes many projects under NEST. A fundamental question for the NEST program is

how should deeply embedded, diffuse sensor networks be programmed? The goal of the

NEST program is to achieve “fine-grain” fusion of physical and information processes.

A pplications. Today, there are many different types of sensors such as seismic, infrared,

acoustic, visual, and radar amongst others. Hence there are a wide variety of conditions

tha t can be monitored by sensor nodes tha t include temperature, humidity, pressure, noise,

and vehicular movement. Also, sensor nodes can be used for continuous sensing or event

detection. Consequently, application fields of sensor networks are limitless. The followings

are a few examples:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Military applications: Sensor networks can be used to detect biological and chemical

attacks and create warning systems. Also they can be used to monitor an ally’s

condition and status.

• Environmental applications: One interesting example of this area was presented

in [47]. Sensors were deployed on Great Duck Island in Maine for habitat moni­

toring. Forest fire detection and flood detection systems are also good examples in

this category.

• Health applications: Doctors can monitor the current condition of patients by using

sensors which may detect heart rate or blood pressure.

• Commercial applications: There are numerous applications in this field. Inventory

management, intruder detection, and vehicle tracking use sensor networks to attain a

so called smart environment.

Many requirements for the above mentioned application areas may be unique and not

suitable for traditional ad hoc networks. For instance, in military applications, there is a

heightened chance tha t nodes will be destroyed by an enemy. Because sensor nodes are

cheap and disposable, they can be deployed densely to tolerate a node’s fault. Therefore,

in the future, wireless senor networks will be an integral part of our lives.

Sensor network services. According to [39], several services must be provided by sensor

networks in addition to low-level networking. Such services are unique to sensor networks.

The following are some examples described in [39].

• Localization. In many sensor network protocols, nodes are required to know their own

positions. However, not all sensor nodes are equipped with a GPS system. Therefore,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they must have the ability to compute geographic location automatically. Measur­

ing the distance to neighboring nodes can be done by measuring the receiving signal

strength (RF-based ranging) or measuring the difference in arrival times of simulta­

neously transm itted radio (acoustic ranging).

Time synchronization. Often, sensors are required to collaborate to detect an event.

For this purpose, it is essential for sensor networks to have the ability of time syn­

chronization. Typically, this can be implemented by using time-stamped messages.

Time synchronization can also be used to ensure collision-free communication between

sensors.

Remote programming. Usually, sensor networks are application specific and their

tasks are pre-programmed before deployment. It is highly desirable if the tasks are

re-programmable when environments or targets have changed.

Security. Although the importance of security issues has not been recognized as much

as other areas of sensor networks have been, recently this issue has gained extensive

attention. As sensor networks became more and more popular and used in many

applications, security can become a serious problem, especially in military applica­

tions. Designing a mechanism, such as message encryption or authentication, is quite

a challenging problem since sensor networks have limited transmission bandwidth and

limited computational power.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

SELF-* SYSTEMS

One of the main topics of research in this thesis is self-* systems. In the following,

we start with a brief description of distributed systems which is a computational model

commonly used in the design of self-stabilizing algorithms. Then we will give an overview

of self-* systems in Section 3.1. We will describe many terms currently being used in the

broad area of fault-tolerant computing. Also, an overview of the concept of self-stabilization

which is currently a very active area of research will be given in Section 3.3.

D istributed System s. A number of definitions have been proposed in the literature

to capture the meaning of distributed systems. A distributed system is a communication

network, multiprocessor computers, and can be a single multitasking computer [28]. Also,

the existence of the collection of these nodes must be transparent to the system user.

Although the processors in distributed systems are autonomous in nature, they may need

to communicate with each other to coordinate their actions and achieve a reasonable level of

cooperation [49]. A program composed of executable statements are run by each computer.

Each execution of a statement changes the computer’s local memory content, hence the

computer’s state. Consequently, a distributed system is modeled as a set of n state machines

tha t communicate with each other. There are mainly two models for communications

between machines; message passing and shared memory. In the message passing model,

machines communicate with each other by sending and receiving messages. While in the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shared memory model, communication is carried out by writing in and reading from the

shared memory. This model will be described in detail in Section 4.3.

3.1 Overview

Software systems are used everywhere. Thusly commercially available software systems

must be able to adjust to different inputs and handle different faults so tha t they can be

used in many different environments. The different concepts or terms encapsulated in self-*

have been introduced to characterize different ways of detecting, adjusting, and recovering

from such changes. Because these terms have not been formally defined, we will informally

describe them with examples from other sources of literature.

A self-* system should be self-configuring, self-organizing, self-contained, self-healing,

and self-managing [34]. According to [54], research in self-* systems is “a direct response

to the shift from needing bigger, faster, stronger computer systems to the need for less

human-intensive management of the systems currently available. System complexity has

reached the point where administration generally costs more than hardware and software

infrastructure.” The goals of the self-* systems are reduction of human administration and

maintenance, and an increase of reliability, availability, and performance.

A system is considered to be self-configuring if starting from an arbitrary state and an

arbitrary input, the system will eventually satisfy the specification of an application or start

behaving properly in finite steps. Therefore, a self-configuring system is the system which

can configure and reconfigure itself under varying conditions or faults. A similar concept of

self-organizing was defined in [8]. In this paper, this concept was applied to study peer-to-

peer systems based on the locality principle. Example applications can be seen in the field

of robotics [25]. The problem considered in these papers is for a system of multiple mobile

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robots to be able to communicate with each other and form a certain geometric pattern.

Since each robot can start from any arbitrary position, but eventually converges to a final

shape, proposed solutions are considered to be self-configuring.

A self-contained system is a system in which only local neighbors are affected by any

faults or topology change. Thus, if a fault occurs, nodes which are located more than several

hops away should not be aware of it.

A self-healing system automatically recovers from different perturbations and dynamic

changes. In [9], a self-healing network (SHN) for supporting scalable and fault-tolerant

runtime environments was presented. It was designed to support message transmission

via multiple nodes while protecting against failures. Finally, within a self-maintaining

system, all tasks in all phases in the life cycle of the system are automatic so th a t it can

reduce the system adm inistrator’s tasks. As the number of computer devices continue to

increase exponentially, planned maintenance of computers are becoming more and more of

an impossible task to manage. As well, the cost of employing network administrators to keep

these computers up and running has been rising. In [13], the authors defined this concept

from the system administrators perspective as a system which maintenance will only be

required at fixed intervals and the required tasks will be clearly defined at maintenance

time. Autonomic computing is IBM’s solution to the above management problem [1]. On

October 15th, 2001, Paul Horn, Senior Vice President of IBM Research suggested a solution:

“Build computer systems tha t regulate themselves much in the same way our autonomic

nervous system regulates and protects our bodies.”

Another approach which was introduced in [31, 48] was recovery-oriented computing,

with such systems being called self-repairing computers. This concept can be applied to

designing highly dependable Internet services.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Ubiquitous/Pervasive Computing

“The most profound technologies are those tha t disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it” [59]. These are

the words of the late Mark Weiser who was the chief technologist at Xerox PARC and

considered the father of ubiquitous computing. He described this new era as tha t of most

computers vanishing into the background and being “nearly invisible” from users, but would

always be available, which was called invisible computing, and one of the key concepts of

his vision. This invisible tool is one that does not intrude on our consciousness so that

we can focus on the task. An example of this concept is eyeglasses. We look at the

world, not the eyeglasses. Computers should be the same. They would be available and

prevalent throughout the physical environment without users actually having awareness

of them. Another key concept was presented in [60], known as calm technology. The

goal of “calm” technology is to send information in a calm manner. Technology such as

cellphones and TVs are often the antithesis of this concept. However, calm technology

allows the user to choose what information is needed and what information is peripheral (or

sensory) to reduce information overload, while still allowing the user to move easily from

the center of information to periphery and back. This can be performed by giving more

detail to the periphery. In [60], an example of this calm technology is shown by comparing

a video conference and a phone conference. The video conference can give participants

visual knowledge of details such as facial expression or body posture, so tha t participants

are more confident about what information is important, hence a more “calm” environment

than tha t of a phone conference.

Ubiquitous computing is about making our lives simpler through digital environments

tha t are sensitive, adaptive, and responsive to human needs. It is now a framework for

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new and exciting research in the field of computer science, which includes mobile devices,

sensors, and many smart appliances.

3.3 Self-stabilizing Systems

In 1973, Dijkstra introduced the term self-stabilization in the world of computer sci­

ence [27, 26], which was a concept of fault-tolerance. Unfortunately, only a handful of

people had become aware of its importance until Lamport endorsed this as “Dijkstra’s

most brilliant work” and “a milestone in work on fault-tolerance” in his invited talk at the

ACM Symposium on Principles of Distributed Computing in 1983. Today, it is one of the

most active areas of research in the field of computer science.

A system is considered self-stabilizing if starting from any arbitrary state (possibly a

fault state) it is guaranteed to converge to a legitimate state which satisfies its problem

specification in a finite number of steps. Once it converges to a legitimate state, it must

stay in tha t legitimate state thereafter unless a fault occurs. With respect to behavior, it can

also be defined as a system starting from an arbitrary state, reaching a state in finite time

from which it starts behaving correctly according to its specification. This self-stabilization

enables systems to recover from a transient fault automatically.

According to [10, 11], self-stabilization can be defined in terms of two properties; closure

and convergence. Closure means tha t if a system is in a correct (or legitimate) state, it is

guaranteed to stay in a correct state, if no fault occurs. On the other hand, convergence

means tha t starting from any arbitrary state, it is guaranteed tha t the system will eventually

reach a correct state in finite steps. In order for a system to be self-stabilizing, it must satisfy

both of these properties.

In the area of network protocols, self-stabilization has been extensively studied. Pro-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tocols like routing, high-speed networks, sensor networks, and connection management are

just a part of many applications of self-stabilization. Also, there exist many self-stabilizing

distributed solutions for graph theory problems, for example, spanning tree constructions,

maximal matching, search structures, and graph coloring. Many self-stabilizing solutions

for numerous classical distributed algorithms were proposed as well. Those include mutual

exclusion, token circulation, leader election, distributed reset, termination detection, and

propagation of information with feedback [28].

In the study of self-stabilization, several aspects of models have been considered, such

as the following:

• Interprocess Communication: shared registers or message passing.

• Fairness: weakly fair, strongly fair, or unfair.

• Atomicity: composite or read/write atomicity.

• Types of Daemon: central or distributed.

All together proving stabilization programs are quite challenging. Two techniques

have been commonly used in research literature: convergence stair [37] and variant func­

tion [43] methods. Furthermore, many general methods of designing self-stabilizing pro­

grams have been proposed which include diffusing computation [12], silent stabilization [29],

local stabilizer [7],local checking and local correction [14, 56], counter flushing [57], self­

containment [36], snap-stabilization [20], super-stabilization [30], and transient fault detec­

tor [15].

Self-stabilization is a significant concept in the study of sensor networks. Due to the

dynamic nature of sensor network topology (Section 2.2), the protocols for setting up and

organizing sensor networks are often required to be self-stabilizing.

19

Reproduced with permission of fhe copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

MINIMUM CONNECTED SENSOR COVER PROBLEM

Throughout our research, we extensively studied two main fields; wireless sensor net­

works and self-* system, which were discussed in earlier chapters. Using the knowledge

we acquired by studying those topics, we designed robust, distributed, and self-* protocols

to solve the minimum connected sensor cover problem tha t is a significant issue in sensor

networks. The outline of this chapter is as follows; The motivation of this research is first

stated. Then, we discuss how other issues and topics described in earlier chapters are re­

lated to the minimum connected sensor cover problem. In section 4.2, we describe some

various results in related areas. The model and the program including its notation used in

our algorithms are described in section 4.3. Also, a formal definition of self-stabilization

is given. Finally, we state both an informal explanation and formal specification of the

problem to be solved in this section.

We report the main results of our research in the next four chapters. In Chapter 5, an

algorithm to solve the minimum connected sensor cover (Algorithm SHIT>) is presented.

We discuss the modified versions of this algorithm in Chapters 6 and 7. A detailed informal

description, formal algorithms, and proof of the algorithms are included in each chapter.

We also discuss simulation results of all algorithms in Chapter 8.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Motivation

Wireless sensor networks are usually composed of a large number of tiny sensor nodes

with finite energy sources. In many applications, sensors are deployed in an area where

once deployed it is infeasible to replace or recharge a sensor’s battery or energy supply.

Therefore sensor networks are usually expected to have a very short life. Also, in a typical

sensor network, the topology of the network is dynamic due to nodes’ movement, failure,

energy consumption, or other varying reasons. Hence, designing a robust, energy efficient

sensor network which will allow uninterrupted operation and can adopt rapid topology

change is critical. That is, sensor networks should be designed as self-* systems.

In sensor networks, queries are sent to nodes from a few external devices to gather data.

The information to be gathered by a sensor network may concern only a particular sub-set

of the monitored area, called a query region. Since the sensors are usually densely deployed,

considering the energy constrained nature of sensor networks, all sensors inside the query

region should not be actively participating in sensing the data. To minimize the network

energy consumption and prolong the network life time, some sensors should be placed in a

passive mode. However, the active sensors must be able to cover the whole query region

and maintain network connectivity. Thus, the minimum connected sensor cover problem

had arisen.

4.2 Related Work

The problem of computing a minimum connected cover of a query region was first

introduced in [38]. Two self-organizing solutions were also presented in [38]. However,

both solutions follow a greedy strategy and none of the solutions are localized. The first

solution is centralized — a fixed leader chooses the nodes to be part of the cover. In the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second solution, a particular sensor node (which is not always the same node) behaves as

the coordinator or leader. This special node collects global information in order to select

the nodes to be included in the final cover set.

The issues of coverage and connectivity, and the relationship between them, were ana­

lyzed in [58]. Since different applications or the degree of fault-tolerance may require dif­

ferent degrees of coverage, a Coverage Configuration Protocol (CCP) was presented in [58].

The CCP protocol was designed to maximize the number of sleeping nodes, while main­

taining two conditions: (1) Every point in the query region is covered by at least K sensors

(K-Cover age), and (2) all nodes are connected via K disjoint paths (K-connectivity).

In [58, 67], it is stated that if the communication range is at least twice the sensing

range, then complete coverage implies connectivity. A more general form of this theorem

was proven in [58]. That is, K-coverage implies K-connectivity if the communication range

is at lease twice the sensing range. When the above condition does not hold, CCP cannot

guarantee network connectivity. So, CCP was integrated with SPAN [19] to provide both

coverage and connectivity.

SPAN is a connectivity maintenance protocol in which a node volunteers to be a coordi­

nator when it finds tha t two of its neighbors cannot communicate with each other directly

or indirectly.To reduce the number of redundant coordinators, after a certain delay, only

a single node announces its decision to be a coordinator. This protocol, however, cannot

configure a network to a specific degree of connectivity. It can only preserve the network’s

original connectivity.

A similar approach was discussed in ASCENT [18]. In this paper, the goal was to

maintain a certain data delivery ratio. ASCENT nodes locally measure their connectivity

using a number of active neighbors and message losses to decide if they should be active or

22

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

passive. This protocol can automatically configure the network connectivity. However, it

does not guarantee complete coverage of the query region.

A number of optimal conditions for coverage were established in [67] which show that

minimizing the number of working nodes is equivalent to minimizing the overlap of sensing

areas of all the nodes. The authors defined the optimal positions of the nodes tha t have

minimal overlap of sensing areas. In this optimal position, any three nodes should form

an equilateral triangle with side length 3 /r , where r is the sensing radius. Optimal Ge­

ographical Density Control (OGDC) algorithm for coverage was proposed based on those

optimal conditions. However, the result of this is valid only when complete coverage implies

connectivity (as discussed above).

A scheduling protocol for coverage was proposed in [55]. The authors here assume a

circular sensing area and allow a node to turn off only if its sensing area is completely

covered by its neighbors. Then, nodes use a random delay to announce their decision to

turn off. Unfortunately, the issue of connectivity was not addressed in [55].

The GAF protocol [63] uses GPS to reduce redundant nodes when maintaining routing

paths in ad-hoc networks. A randomized probing-based density control algorithm was used

to maintain coverage despite node failures in the PEAS protocol [65]. In this algorithm, a

node can enter into a working state when there is no other working node within a certain

distance c. As nodes do not have location information, this can be checked by broadcasting a

message with a communication range c and receiving a reply. A communication range (also

called the probing range) can be changed to provide different degrees of coverage. Although

these solutions are efficient in fault free environments, they are neither fault-tolerant nor

self-stabilizing. Since this algorithm must be re-executed in order to repair an overlay, in

this scheme, every member of the network must be notified of any corruption and of the

23

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

need to re-execute the algorithm.

Recent solutions to the connected cover problem address fault-tolerance issues by re­

inforcing the degree of coverage and connectivity. In [6 8], the problem of k-coverage was

addressed; the protocol ensures that any sensor is covered by k other sensors. This work is

further extended in [69] to the k-coverage and k-connectivity problem. The proposed solu­

tion involves the computation of a Voronoi diagram for independent sensor nodes. However,

the implementation of local Voronoi diagrams is not addressed, nor are transient faults.

In [23, 24], decentralized, self-stabilizing, and fault-tolerant algorithms for the minimum

connected covering of a query region in sensor networks were proposed. The first solution

in [24] uses a greedy strategy. It requires the knowledge of the distance to the center of

the query region. That is, the region is covered in successive waves from outside to inside.

The coverage stops once the wave reaches the center of the monitored area. The second

solution proposed in the same paper uses a pruning strategy. Redundant nodes are removed

from the final cover if their removal does not disconnect their respective neighborhoods,

and if their sensing regions are completely covered by their chosen neighbors. In [23] as

well, another pruning-based algorithm was proposed. Nodes are considered redundant if

their sensing regions are covered by other chosen nodes, and if their chosen neighbors are

connected through a connection path. This solution assumes that each node’s sensing

radius and communication radius are equal, and all sensors have equal sensing (therefore

equal communication) radii. Algorithms proposed in this thesis are designed based on this

algorithm, but with a different assumption.

The pruning-based algorithm used in [23] and our algorithms are similar to pruning used

in the computation of connected dominating sets [16, 21, 42, 44, 46, 61, 62]. A dominating

set is a set of vertices such tha t every vertex in the graph is either in the dominating set or

24

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

adjacent to a vertex in the dominating set. A connected dominating set is a dominating set

which is also a connected sub-graph. A node is a dominator of another node if the second

node is in the transmission range of the first node. Two pruning dominating set rules were

proposed in [62] and extended in [61]. Rule 1 unmarks a host u if all of its neighbors

are covered by another marked host, and if its UID is less than another marked host’s

UID. Rule 2 unmarks a host u if its neighbors are covered by two other directly connected

marked hosts, and if its UID is less than both of these hosts. However, these rules do not

ensure if a host u itself is covered before unmarked. In [21], Rule k was proposed. In this

rule, a host is unmarked if it is covered by k other hosts and if its UID is the least of all

marked neighbors’ UID’s. A localized algorithm for connected dominating set proposed in

[46] improved the result of [21]. However, it requires additional message exchanges since

each node decides whether it should be dominant by using the information received from

its neighbors. Furthermore the synchronization among nodes is needed, hence it is difficult

to implement.

4.3 Preliminaries

4.3.1 Model

Sensor Netw ork. Sensor Networks usually consist of a large number of sensor nodes

which are also referred to as simply sensors or node. In this paper, we use the terms node

and sensor interchangeably. Since deploying large numbers of sensors in certain positions is

usually infeasible, most of the time they are randomly deployed in a geographic region. In

research fields, the sensor network is typically modeled as a directed communication graph

G {V,E), where V is the set of vertices (or sensors) and E is the set of directed edges (or

communication links) between sensors. Thus there is a bi-directional link between sensor i

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and sensor j if and only if (i, j) G E and (j , i) G E.

The communication region, also called the transmission region, of sensor i is the area in

which sensor i can communicate directly (i.e., in single-hop) with other sensor nodes. The

maximum distance between node i and any other node j , where j is in the communication

region of i, is called the communication range (or communication radius) of sensor i. Node

i can communicate with node j (i.e., i can send a message to j) if the Euclidean distance

between them is less than the communication range of i and sensor j is called a neighbor

of sensor i. An edge { i , j) G E in the graph G indicates that j is a neighbor of i. The set

of neighbors of i is represented by N^. Two nodes i and j can communicate directly with

each other only if f G N j A j E Ni, i.e., they are neighbors of each other. That is, there is

a bi-directional link between sensor i and sensor j and there exist two edges (i , j) G E and

(j , f) G E in the graph G.

A sensing region of sensor i is the area in which sensor i can detect a given physical

phenomenon at a desired confidence level. Although the sensing regions can be any convex

shape, we chose a circular sensing region as the basis for our algorithms. A sensing range or

sensing radius of sensor i indicates the maximum distance between sensor i and any point

p in the sensing region of sensor i. A point p in a field is said to be covered (or monitored)

by a sensor i if the Euclidean distance between p and i is less than the sensing range of

sensor i.

A communication path from i to j is a direct path of sensors. Where i ̂ is a neighbor of

ix+i for 1 < X < m — 1 , the sequence of sensors can be expressed as i = i i , i 2 , ■ ■. ,im = j-

The communication distance from sensor i to sensor j is the number of sensors, or length,

of the shortest communication path from i to j .

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program . As a communication model, we assumed tha t the program of every processor

consists of a set of shared variables as well as local variables and a finite set of actions. This

model is called the local shared memory model of communication used by Dijkstra [26].

Processors (or nodes) communicate with each other by the use of shared variables. Each

processor can read and write its own shared variables. However, each processor can only

read the shared variables owned by a neighboring processor. Local variables are local to

each processor and can be read and updated only by the owner of the local variables.

In the program of p, the guard (or predicate) of an action is a boolean expression

involving the variables of p and its neighbors. One or more variables of p is updated by

a statement of an action of p. Each action can be expressed with the following structure:

< label >:: < guard > — > < sta tem ent > Only if its guard evaluates to true, can an

action be executed. By assuming tha t the actions are atomically executed, we used a model

known as composite atomicity [28]. In other words, when the evaluation of a guard and the

corresponding statement of an action are executed, they are performed in one atomic step.

In distributed systems, multiple processors are able to execute an action concurrently as

long as there is no influence of one action upon another. As an example, within a shared

memory model, a processor can not write to variable v while another processor is reading

from it.

The values of a node’s variables define the state of tha t node and the states of all nodes

determine the state of a system. In this thesis, the state of a node is referred to as (local)

state and the state of a system is referred to as (global) configuration.

Assume distributed protocol P is a collection of binary transition relations denoted by

1-^, on C, where C is the set of all possible configurations of the system. Then, a computation

of a protocol V is defined as a maximal sequence of configurations e = 7 0 , 7 1 ,..., 7 i, 7 i+i;

27

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

where * > 0 , 7 ̂ i-> 7 i+i in a single computation step, if 7 i_|_i exists, or j i is a terminal

configuration.

If the sequence is either infinite, or it is finite and no action of V is enabled in the final

configuration, then the sequence is considered as maximal. We assumed tha t all computa­

tions considered in this paper are maximal.

The notation S is used to define the set of all possible computations of a protocol V in

system S.

If a node u has an action A such tha t the guard of A is true in 7 , then u is said to be

enabled or have a privilege in 7 G C. Similarly, an action A is said to be enabled at u if the

guard of A is true at u in 7 G C.

If a node u has been enabled in 7 * and not enabled in 7 j_|_i without executing any action

between these two configurations, then it is said tha t u has executed a disable action in

7 i 7 i+i. This is due to at least one neighbor of a node u that has changed its state

between 7 ̂ and 7 i-(-i, and this change effectively has made the guard of all actions of u false.

We assumed the asynchronous model for the timing model, in which processors execute

their programs at different speeds. In this model, a scheduler, also know as daemon, de­

termines which processors execute the next step. In this paper, we considered a distributed

daemon. In each computational step, if there exists at least one node tha t is enabled, the

distributed daemon selects a non-empty subset of enabled nodes to execute an action. We

also assumed a weakly fair daemon, which only ensures that in an infinite execution, each

processor takes an infinite number of steps. It also means that if a node p is continuously

enabled, then p will be eventually chosen by the daemon to execute an action.

4.3.2 Self-stabilizing Program

Fault M odel. This research pertains to various types of faults as follows;

28

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

• The program (or code) of the algorithm cannot be corrupted, but the state or config­

uration of the system may be arbitrarily corrupted.

• The faults caused by node crash or malfunction can fail-stop nodes.

• The nodes may recover from the fault or join the network at any time.

• The network topology may change due to faults.

• A rbitrary faults may occur in any finite number, in any order, at any frequency, and

at any time.

Self-stabilization [28]. Let be a non-empty legitimacy predicate of an algorithm A

with respect to a specification predicate Spec such that every configuration satisfying

satisfies Spec. Algorithm A is self-stabilizing with respect to Spec if and only if the following

two conditions hold:

Closure: Every computation of A starting from a configuration satisfying preserves

£ .4-

C onvergence; Every computation of A starting from an arbitrary configuration contains

a configuration tha t satisfies £ ^ .

Informally, closnre property means tha t once the system is in a legitimate configura­

tion, then it stays in a legitimate configuration until a fault occurs. Convergence property

guarantees that from any arbitrary configuration the system will converge to the legitimate

configuration in a finite number of steps.

4.3.3 Problem Specification

In this section, we formally define the problem of Connected Cover of a Query Region

in sensor networks.

29

Reproduced with permission of fhe copyrighf owner. Further reproduction prohibited without permission.

D efinition 4.1 (C onnected Sensor Cover) Consider a sensor network G with a set of

n sensors S = (Ii, I2 , ■ ■ ■, In); where each sensor £ is assigned a sensing radius Si. Given

a query region R q in the sensor network, a set of sensors S C q = f q , , - - - ^ called

a connected sensor cover for the query region R q if the following two conditions hold:

(a) Coverage: R q Ç (S'q U U . . . S i^) . (b) C onnectivity: The communication graph

induced by S C q is strongly connected such that any two sensors in this set can communicate

with each other directly or indirectly.

A set of sensors that satisfies only condition (a) above is called a sen so r cover for R q in

the sensor network.

D efinition 4.2 (M inim um C onnected Sensor Coverage Problem) Given a query re­

gion over a sensor network, the minimum connected sensor coverage problem is to find the

set of the smallest number of sensors which satisfies the two conditions of the connected

sensor cover.

Additionally, we require the algorithm (for solving the above problem) to be self-

organizing, self-stabilizing, and self-healing [28, 6 6]. That is, regardless of the initial

state (wrong initialization of the local variables, memory or program counter corruptions)

nodes self-configure (self-organize) using only local information in order to make the sys­

tem self-stabilize to a legitimate state. The legitimate state is defined with respect to a

minimal connected cover formed out of the nodes that can communicate with each other

either directly or indirectly. Upon stabilization, each sensor in the query region will know

if it should act as an active or a passive node for the application. If a sensor is in the final

minimal connected sensor cover set, it will stay active and participate in sensing/gathering

information in response to a query. If a sensor becomes passive, then it will not participate

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the sensing and communication role in the application, but instead, enter into the power

saving mode. However, in the power saving mode, it will still do some local checking to de­

tect faults or network topology changes. Under such perturbations, the minimal connected

cover should be able to self-heal without any external intervention and the impact should

be confined within a tightly bound region around the disturbed area. In our proposed

algorithms, a chosen sensor is an active sensor and an unchosen sensor is a passive sensor.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

SINGLE-HOP UID-BASED ALGORITHMS

5.1 Description and D ata Structures

In this section, we will present the single-hop, UID based self stabilizing solution to the

minimum connected cover problem. In this paper, we refer to this algorithm as S H IV .

First, we will state our assumptions and then we will explain the data structures used

in the algorithm.

Throughout our research, we consider highly dense sensor networks. That is, there

should always be enough sensors to cover the query region at any time, even if some sensors

fail. This is stated in the following assumptions we made.

A ssum ption 5.1

(i) There always exists a sufficient number of sensors in the network with sufficient density

to cover the query region if all of sensors are deployed.

(a) There exist numerous redundant sensors which are either boundary or interior sensors

with respect to the query region.

Another im portant assumption tha t we must make is regarding each sensor’s sensing

and communication radius. One of the main goals of our research is to design an algorithm

which can cope with variable sensing and communication radii of sensors. As mentioned

in the related work. Section 4.2, most of the previous research has been done by assuming

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fixed sensing and communication radii and all sensors have equal sensing and communica­

tion radii. In [58, 67], the authors assume tha t the sensing radius is twice the size of the

communication radius. In [23], it is assumed tha t the sensing radius equals the communi­

cation radius for the sensors. However, due to the nature of sensor networks, some sensors

may consume more energy than others. So, as their energy levels decrease, their sensing

and communication radii may decrease at varying rates. Also, in a self-stabilizing system,

which is described in section 3.3, the initial configuration can be arbitrary. From the reasons

above, it is impractical to assume that all sensors have fixed sensing and communication

radii. Therefore we made the following assumption:

A ssum ption 5.2

E ach sen so r has variable sensing and com m u n ication radii.

This assumption means tha t the communication radius may not be equal to the

sensing radius of the sensors, and the communication radii and the sensing radii of all

sensors may not be equal, either. As well, they can be changed over time due to various

reasons.

D ata Structures. The data structure I n f o has fields UID, Status, Position, Rc, Rs, S,

and M in U ID . U ID represents the unique identifier (UID) of a sensor, which is a positive

integer. Status represents the status of a sensor. The status of a sensor may be unchosen,

undecided, or chosen. A node with the status chosen is part of the connected cover.

Position represents a geometric location or coordinate of a sensor. Rc and Rs represent

a communication radius and a sensing radius of a sensor, respectively, and S represents a

sensing region of a sensor. Finally, M in U ID represents the minimum UID amongst all of

a sensor’s neighbors’ UIDs. All sensors tha t have the minimum UID within a particular

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chosen sensor’s neighborhood are needed to ensure connectivity.

Sensor i has three shared variables: S e l f . I n f Oi, Ni and N J n f o i . S e l f J n f o i is a data

type of I n f o which contains Sensor f s own information. TVj is a set of sensors within the

communication range of Sensor i. Since we assume tha t each sensor has a different com­

munication radius, we include only those sensors which have bi-directional communication

with Sensor i to be within the neighbor set Vj. Prom this point onward, communication

neighbors are known by the term neighbors and refers to only those sensors which have

bi-directional communication. We use the term sensing neighbors to represent the sensors

tha t are located within each others’ sensing disks. Sensing neighbors may or may not be

communication neighbors. N J n f o i is a set of ô I n f o structures containing S e l f . I n f Oj of

all sensors j in Ni.

The local variables of Sensor i are 2 N J n fo i , which is a set of 5“̂ I n f o structures

containing all 2-hop neighbors fis S e l f J n f o i , and N N , which is a set of Nj for Sensor

i ’s all neighbors j . That is, N N i is a set of sensors located, at most, two hops away from

Sensor i. Although this algorithm uses 2 -hop information to compute the redundant cover,

messages are exchanged only within a single hop.

M acro. We introduce the macro Read[j) to gather sensor f s neighbors’ information using

small atomicity. That is. Sensor i reads only one of its neighbor’s shared variables in one

atomic step, instead of reading all neighbors’ shared variables.

When there is a timeout, a timeout action is enabled and the macro Read{j) reads one

of Sensor I’s neighbors j ’s variables. Sensor i reads Sensor j ’s S e l f . I n f Oj, and includes it

in its N J n f o i . If there is a duplicate, (i.e.. Sensor i reads Sensor j for a second time), then

S e l f . I n f Oj overwrites the old data. Finally, Sensor i needs to gather information from

sensors located 2-hops away by reading its neighbor j ’s neighbor information N .I n f o j .

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, N N i and 2N .In fo i , will be updated. We assume that there is a function F {j ,N N i) ,

j G N i, tha t returns N j . Then the N ext{N i) function updates the pointer to the next

neighbor.

5.2 Predicates

The predicate Q ryRgnIn trsctn{i) checks if the sensing disk of Sensor i intersects with

any portion of the query region. If it does, then this predicate is evaluated as true. The

predicate SnsngNghr{i, j) returns true if Sensor i and Sensor j are located within each

others’ sensing disks. This predicate is needed to ensure the coverage condition since each

sensor has variable sensing and communication radii, so the communication neighbors may

not cover each others sensing disks. The predicate CvrSnsngB yC hsn[i) is true when the

sensing disk of Sensor i is covered by a subset of chosen sensors tha t are located within

two communication hops from Sensor i. Similarly, NeighborsConnectivity{i) is true when

all pairs of Sensor i ’s chosen neighbors are connected by chosen sensors located within two

communication from Sensor i. The predicate LstU ID N gbr{i, j) evaluates to true if Sensor

i has the least UID amongst the neighbors of Sensor j . G rtrL stO rN o tN gbrO fC h sn { i) is

true if Sensor i doesn’t have any chosen communication neighbor nor any chosen sensing

neighbor, otherwise Sensor i has the greater UID than its chosen neighbors, or Sensor i has

the least UID amongst the neighbors of Sensor j .

The predicate SensorGover{i) evaluates to true if Sensor i ’s status is unchosen, the

sensing disk of Sensor i intersects with any portion of query region, and the predicate

G rtrL stO rN otN gbrO fG hsn {i) is true. M C S C N ode{i) checks if the predicate G rtrL s tO rN o tN gbrO fC

is true or a part of the sensing disk of Sensor i is uncovered. In this case, if Sensor i ’s sta­

tus is undecided, then this predicate evaluates to true. When Sensor i ’s status is either

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

undecided or chosen, and G rtrL stO rN otN ghrO fC h sn {i) is false, C vrSnsn gB yC hsn[i) is

true, and NeighborsConnectivityifi) is true, then the predicate Redundant[i) evaluates to

true.

5.3 Normal Execution

The steps of the algorithm are as follows:

1. The algorithm marks an unchosen sensor whose sensing region intersects with any

portion of the query region (RQ) as undecided, if one of the following is true: 1) The

sensor does not have a chosen neighbor which is also a sensing neighbor. 2) Its UID is

greater than a UID of a chosen neighbor which is also a sensing neighbor. 3) Among

the neighbors of a chosen sensor, it has the minimum UID.

2. M C S C N ode{ i) checks if Sensor i ’s status is undecided, and if one of the following

is true: 1) The sensor does not have any chosen neighbors, which are also sensing

neighbor. 2) Its UID is greater than a chosen neighbor’s UID. 3) It is the minimum

UID neighbor of a chosen sensor. 4) A part of the sensing disk of Sensor i is not

covered by a chosen sensor. In this case, the sensing disk of Sensor i is needed in the

final cover set, so Sensor i changes its status to chosen.

3. Redundant[i) removes any undecided or chosen sensor that has a smaller UID than

a chosen neighbor’s UID and is not a minimum UID neighbor of a chosen sensor, if

its entire sensing disk is covered by chosen sensors and all chosen neighbors of this

sensor are connected through a second path. In this case, the status of such a sensor

is changed to unchosen (rule A \) .

4. Rule A \ also ensures tha t any sensor whose sensing disk does not intersect with the

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query region has its status changed to unchosen.

5. All chosen sensors are in the final query region connected cover.

5.4 Fault and Recovery

In this section, we explain how the proposed algorithms «SWXPhandles the fault.

There are seven variables in the I n f o structure used in the solutions for a Sensor i: U ID ,

Status, Position, R c , R s, S, and M in U ID . Since the algorithm assumes variable R c and

R s (as well as S) in Assumption 5.2, we do not consider the weakening or changing of a

sensor’s sensing and communication range as a fault. For the purpose ofthis algorithm, U ID

cannot be corrupted. However all other variables can be corrupted. So, we need to show

tha t our solutions can deal with all possible corruptions associated with these variables. In

the following, we will show how they are handled in the Algorithm SHPD.

1. Wrong initialization of the Status variable.

All sensors, if properly initialized, start as unchosen.

(a) Sensor i is initialized to undecided. Assume tha t Sensor i is initialized to undecided.

If i is not a redundant node, then i remains undecided, and subsequently changes

to chosen (see Actions A 2 and A3). That is, no correction is necessary. If i is

redundant, then it will satisfy the predicate Redundant[i) and will change to

unchosen.

(b) Sensor i is initialized to chosen. If the sensing disk of Sensor i does not intersect

with the query region, then, by executing A \, Sensor i will change to unchosen.

Thus, no correction is necessary. If Sensor i is redundant, then it will satisfy the

predicate Redundant{i) , and will change to unchosen. If it is non-redundant,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then Sensor i is necessary, either to ensure coverage or connectivity, and should

not be unmarked.

2. Wrong initialization of the Position variable.

The variable Position is computed by some other protocols or possibly by an equipped

GPS. If this variable is not initialized correctly. Algorithm S'HX'Dvn&y produce the

wrong result. However, we assume the existence of the self-stabilizing protocols to

compute this value and it will eventually stabilize and produce the correct Position

value. After that, the algorithm will also stabilize and compute the correct result in

finite steps.

3. Wrong initialization of the M in U ID variable.

Each sensor reads one of the neighbors and updates M in U ID variable upon every

timeout. So, when a sensor finishes reading all neighbors for the first time, M in U ID

will contain the correct value. After that, the algorithm will stabilize and compute

the correct result in finite steps.

5.6 Correctness

In this section, we will show the correctness of Algorithm S T ilD . We will prove that

the algorithm produces the solution which satisfies the specification of the connected sensor

cover problem. First, we will give a definition of a legitimacy predicate with respect to the

specification of the M .C SC problem. Then, in the following sections, we will prove tha t the

final set produced by the algorithm when the system is in a legitimate state satisfies the

coverage and connectivity properties as defined in Section 4.3.3. Also, we will prove that

the system reaches a legitimate state in finite steps, regardless of the initial configuration or

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 5.5.1 Query Region Connected Sensor Cover Algorithm for Sensor i (S'HI'D).

C onstants:
R q \ \ Query region;

Structure:
7n/o{

U ID :: Unique user identification number
Status € {unchosen, undecided, chosen} S tatus of a sensor
Position :: Geometric location or coordinate of a sensor
R c :: Communication radius of a sensor
R s Sensing radius of a sensor
S :: Sensing region of a sensor
M in U ID :: minimum UID amongst all of a sensor’s neighbors’ UIDs

}

Shared Variables:
In fo S e lf . I n f Oi :: One structure th a t contains inform ation for Sensor i
Set N .I n f o i :: Set of 6 structures th a t contain all neighbors’ information
Set Ni :: {j e V \D is t { i , j) < Rc, A D is t [i , j) < R c f i

Local Variables:
Set 2 N J n f o i :: Set of Si + Y}ôjeNi structures th a t contain all 2-hop neighbors’ information
Set NNi'.: Set of Nj, Vj € Ni

M acro:
Read(j)

N . I n f o i = N . I n f o i [J Se l f . I n f Oj
NN i = N N i U Nj
2N .In fo i = 2N .In fo i |J N .I n f o j
j = Next(Ni)

P redicates:
QryRgnIntrsctn{i) = S e l f . In fo , .S n Ttg / 0;

z sensing disk of Sensor i intersects w ith some portion of query region;

D is t(i , j) = R eturns the Euclidean distance between Sensor i and Sensor j;

SnsngN gbr{i ,j) = (Vj : D is t(ij) < m in {S e lf . I n f Oi.Rs, N J n f o i .S e l f . I n f Oj.Rs))',
= Sensor i and Sensor j are located within each others’ sensing disks;

CvrSnsngByChsn{i) = (3A : Vj, k G A , j € Ni A k £ Nj
A N .I n fo i .S e l f J n fo j .S ta tu s = 2 N .I n f Oi.N J n f o j . S e l f . I n f Ok-Status = chosen
A S e l f . I n f Oi.S c U j jtgA N .I n f o i .S e l f J n f o j .S , 2 N .I n f o i ,N .I n f o j .Se lf Jnfok-S);
= Sensing region of Sensor i is covered by a subset of chosen sensors th a t are

located no farther th an two communication hops from Sensor i;

Neighbor sConnectivity{i) = (Vj, I g N i , N . I n f Oi.Self . I n f Oj.Status = N J n fO i .S e lf . I n f Ot.Status =
chosen,3k i ,2 N d n f o i . N . I n f Oj.Self . I n f Ok-Status = ch osenA j,t 6 Nk)\

= All chosen pairs of neighbors of Sensor i are connected by a chosen node;

LstUIDNgbr{i, j) = i G Nj A (S e lf . In fo i .U ID = N .In fO i .S e lf .In fo j .M in U ID);
= Sensor i is a neighbor of Sensor j , and is also the neighbor of Sensor j having the

least UID;

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G rtrL s tO rN o tN gbrOfC h sn[i) = (Vj : i £ N j , N J n f o i . S e l f J n fo j .S ta tu s chosenM
-^SnsngNgbr{i, j) V S e l f J n f o i .U I D > N . I n f d - S e l f . I n f Oj.UIDV
LstU IDN gbr{i, j)) \

= Sensor i is not the communication neighbor, nor the sensing neighbor
of a chosen sensor whose UID is greater than its own unless it is the
“least UID” neighbor of this chosen sensor;

SensorCoverifi) = S e l f . I n f Oi-Status = unchosen A QryRgnIntrsctn{i)A
G rtr L s tO rN o tN gbrO f Chsn{i) ;

z sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion
of query region, and Sensor i is not the communication neighbor, nor the sensing
neighbor of a chosen sensor whose UID is greater than its own unless it is the “least
UID” neighbor of th is chosen sensor;

M C SC N ode{i) = S e l f . I n f Oi. Status = undecided A (Grtr LstO rN otN gbrO fC hsn{i) \ /
-nCvrSnsngByChsn(t)) ;

s Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing
neighbor of a chosen sensor whose UID is greater than its own unless it is the “least
UID” neighbor of this chosen sensor, or a part of the sensing disk of Sensor i is not
covered by a chosen sensor;

Redundant(i) = (S e lf . I n f Oi.Status = undecided^/ S e l f . I n f ot.Status = chosen)A
-^GrtrLstOrNotNgbrOfChsn(i) A GvrSnsngByChsn(i) A NeighborsConnectivity(i)\

= Sensor i is an undecided or a chosen sensor and is the “lesser” communication and
sensing neighbor of a chosen sensor, but is not the neighbor of th is sensor th a t has
the smallest UID, and the entire sensing disk of Sensor i is covered by chosen sensors,
and chosen neighbors of Sensor i are connected through a second path;

A ctions:
A i :: - ,QryRgnIntrsctn(i) V Redundant(i)

— » S e lf . I n f Oi.Status = unchosen;

A 2 :: SensorCover(i)
— > S e lf . I n f Oi.Status = undecided;

A 3 :: M C g C N o d e (i)

— > S e lf . I n f Oi.Status = chosen;

A i :: Timeout A j £ Ni
— > Read(j);

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type of faults occurring in the system. Finally, these results will be used to prove Algorithm

SH IV saüsües self-* properties.

D efin ition 5.1 The system is considered to he in a legitimate state (i.e., satisfies the legit­

imacy predicate C m c s c) i f the following conditions are true with respect to a query region:

i) All non-redundant sensors are marked chosen,

a) All redundant sensors are marked unchosen.

5.6.1 Proof of Closure

L em m a 5.1 (C overage) In any legitimate configuration, the chosen set computed by Al­

gorithm 5 . 5 . 1 completely covers the query region R q .

P ro o f. We prove this lemma by contradiction. Suppose the query region is not completely

covered by the sensing disks of the sensors in the final set chosen by Algorithm 5.5.1.

By the action Ag, a sensor will change to undecided if it is unchosen, if its sensing disk

intersects with some portion of the query region, and if it is not the communication neigh­

bor, nor the sensing neighbor, of a chosen sensor whose UID is greater than its own, unless,

amongst all the neighbors of this chosen sensor it has the minimum UID. Since the graph

is densely populated and all sensors are initially unchosen, there will always exist a set

of unchosen sensor nodes, whose sensing disks intersect with the query region and that

is located at an uncovered area. Since any unchosen sensor which is located at the un­

covered area does not have any chosen sensing neighbors, it will evaluate SensorCover{i)

to true by the first condition. Therefore by Rule A 2 , it changes its status from unchosen

to undecided. Any undecided node will either change to chosen by M C SC N ode{i) or

unchosen by Redundant(i). Since all such undecided nodes are located outside of any

chosen sensor’s sensing disk, each of them will evaluate Grtr LstO rN otN gbrO fC hsn{i)

as true and evaluate Redundant{i) as false because the nodes’ entire sensing disk is not

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

covered by chosen sensors. Thus, a node changes its status from undecided to chosen by

Rule A3 . Therefore, any uncovered area in the query region will be eventually covered by

all such sensors tha t change their status to chosen by executing Rule A 3 . Redundant{i)

will be evaluated to true only if a node evaluates G rtrL s tO rN o tN gbrO fC h sn (i) as false,

and if its entire sensing disk is covered by other chosen sensors and the removal of it does

not disconnect its chosen neighbors. Thusly, once the query region is completely covered,

Redundant[i) will not unmark the sensor which removal will result in the creation of an

uncovered area of the query region. The sensing disks of all chosen sensors in the final set

completely cover the query region. Therefore we arrive at a contradiction. □

Lem m a 5.2 (C onnectiv ity) In any legitimate configuration, the chosen set computed by

Algorithm 5.5.1 forms a connected graph.

Proof. We also prove this lemma by contradiction. Suppose the sensing disks of the sensors

in the final chosen set computed by Algorithm 5.5.1 do not form a connected subgraph.

Hence, there exists a sensor j in the final chosen set tha t is marked chosen and is not

adjacent to another chosen sensor. More precisely. Sensor j is marked chosen and does not

have any communication chosen neighbor.

Assume SensorCover{i) and M C S C N ode{i) did not mark an unchosen Sensor i tha t is

the minimum UID neighbor of Sensor j , as chosen, or Redundant{i) unmarked this sensor.

Since Sensor i is the minimum UID neighbor of Sensor j . Sensor j saves the UID of Sensor i

in S e l f N n fo j .M in U ID . Also, since all sensors can have a status of unchosen, undecided,

or chosen, and Sensor j has no chosen neighbors. Sensor f’s status must be either unchosen

or undecided. If Sensor i ’s status is unchosen. Sensor i evaluates LstU I D N gbrfi, j) to true

and thus evaluates G rtrL stO rN otN gbrO fG h sn {i) to true. Therefore, it changes its status

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from unchosen to undecided after executing Rule A 2 , and then to chosen after executing

Rule ^ 3 . If Sensor i ’s status is undecided, for the same reason as above, it changes its

status from undecided to chosen by executing Rule A 3 . Also, Sensor i cannot evaluate

Redundant{i) as true since it has evaluated G rtrL stO rN o tN gbrO fC h sn { i) to true.

Once again we arrive at a contradiction. □

Theorem 5.1 (C m c s c satisfies specification) Any system configuration satisfying the

legitimacy predicate C m c s c (per Definition 5.1) satisfies the specification of the minimal

connected sensor cover problem (as given by Specification f.2).

Proof. The coverage and connectivity properties have been proven in Lemmas 5.1 and

5.2, respectively. By Definition 5.1, there exists no redundant chosen sensor in a legitimate

configuration. That is, all redundant sensors have been identified and marked unchosen.

Therefore, the connected cover set À 4C SC computed at this point is the smallest possible

by Algorithm STiXV. □

P roperty 5.1 The system defined by the legitimacy predicate C m c s c i s silent.

Proof. In any configuration satisfying C m c s c , all actions of Algorithm STLXDare dis­

abled. □

Lem m a 5.3 (Closure) The legitimacy predicate C m c s c w closed.

Proof. Property 5.1 asserts the closure of C m c s c - 0

5.6.2 Proof of Convergence

In this section, we aim to prove that starting from any arbitrary configuration of the

system, or occurrence of any type of faults in the system. Algorithm 57-fTPguarantees tha t

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in finite steps, the system will reach a configuration tha t satisfies the legitimacy predicate

C m c s c -

Lemma 5.4 (C onvergence) Starting from an arbitrary configuration, Algorithm STilVreaches

a configuration that satisfies the legitimacy predicate C m c s c -

P ro o f. We will again prove this lemma by contradiction. Suppose that starting from

any arbitrary configuration of a system of sensors, Algorithm 5.5.1 does not guarantee that

in finite steps, the system will reach a configuration that satisfies the legitimacy predicate

C m c s c - Hence, there exists a configuration in which, after any finite number of steps, the

system will never reach a configuration tha t satisfies the legitimacy predicate C m c s c - That

is, there exists a configuration in which, after any finite number of steps, the system will

never reach a configuration in which all non redundant sensors are marked chosen and all

redundant sensors are marked unchosen. This is described in the following cases.

Case 1: There exists a configuration in which a non redundant unchosen sensor which

may evaluate G rtrL s tO rN otN gbrO fC h sn { i) as true, but does not do so and does not

change its status to chosen. That is, a query region sensor which is unchosen, and does

not have any sensing neighbor whose UID is greater than its own or it is the minimum UID

neighbor of a chosen sensor, is not marked as chosen, even if part of its sensing disk is

not covered by a subset of chosen sensors. Since any query region sensor that is initially

unchosen, and is non-redundant because it does not have any chosen sensing neighbor whose

UID is greater than its own or it is the minimum UID neighbor of a chosen sensor, will

evaluate QryRgnIntrsctn{i), G rtrL s tO rN o tN gbrO fC h sn [i) , and then SensorCover{i)

as true, the query region sensor changes its status to undecided. Also, since this sensor’s

sensing disk is not completely covered by chosen sensors, it will evaluate M C SG N ode{i)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as true and change its status to chosen by executing Rule A3.

Hence we arrive at a contradiction.

Case 2: The non-redundant query region sensor is initially marked chosen, but executes

Redundant{i) and is unmarked. Since this sensor executed Redundant{i) , its entire sensing

disk must be covered by a set of chosen sensors, it must have a chosen neighbor which has

a greater UID than its own, and it must not be the minimum UID neighbor of a chosen

sensor. Therefore this sensor is a redundant sensor.

Hence we arrive at a contradiction.

Case 3: A redundant sensor is marked as chosen or undecided, but Redundant(i) will

not unmark this sensor. A redundant sensor is the one whose entire sensing disk is covered

by the sensing disks of other chosen sensors, and it must have a chosen neighbor which

has a greater UID than its own, and it must not be the minimum UID neighbor of a

chosen sensor. Subsequently, it will evaluate G rtrL s tO rN otN gbrO fC h sn { i) as false and

CvrSnsngB yC hsn{i) as true. Thus, by executing Rule A \, any redundant sensors will be

unmarked.

Hence we arrive at a contradiction. □

5.6.3 Proof of Self-*

5.6.3.1 Self-configuring

Due to the nature of Sensor networks, in most case, sensors are deployed randomly

and densely distributed. This along with dynamic environmental changes make manual

configuration of such systems extremely difficult. Therefore in sensor networks, the property

of self-configuring to establish a topology tha t provide communication and sensing coverage

gains further needs. From the proofs of closure (Lemma 5.3) and convergence (Lemma

5.4), it was shown that starting from any initial configuration. Algorithm 5.5.1 forms a

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network topology in which all sensors in the set M .C SC are connected, and are thus able

to communicate with each other, either directly or indirectly. Also we have shown tha t

starting from any arbitrary state, the given query region will eventually be completely

covered. By executing the rules of Algorithm 5.5.1, network sensors will self-conhgure to

establish a required topology under stringent energy constraints. Ergo, Algorithm 5.5.1 is

self-configuring.

5.6 .3.2 Self-healing

Self-healing (also called self-reconfiguration) is another important concept which makes

the wireless sensor networks more robust systems. Our proposed solution is self-healing

under various perturbations, such as node joins, failures, and state corruption. We will prove

this by contradiction. Suppose Algorithm 5.5.1 is not self-healing. Thus, if a non-redundant

node fails, a redundant node joins the network, or if there is an arbitrary corruption of the

state variables of nodes, Statusi, then part of the query region may become uncovered, or

may be covered by a redundant node. These perturbations will be demonstrated in the

following cases.

Case 1:

If a non-redundant node fails, then part of the query region becomes uncovered. Since

the graph is densely populated, there is a portion of the graph in which an unchosen sensor

(that is in this uncovered region), does not execute A 2 and A 3 to become chosen. But since

this unchosen sensor is not covered by a chosen sensor (i.e. it does not have any chosen

sensing neighbors), it will evaluate A 2 as true and A 3 as true.

This node will execute A 2 , followed by vlg, and will become chosen.

Hence we arrive at a contradiction.

Case 2:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If a non-redundant node fails, then part of the query region is covered by a redundant

node. Since any node which has a UID less than its chosen sensing neighbor, but not a

minimum UID neighbor of a chosen node, and whose entire transmission disk is covered by

chosen nodes, is redundant and will not evaluate G rtrLstO rN otN gbrO fC hsn{i) as true.

This node will not execute A 2 and change to undecided, nor will it execute Az-

Thus, this node cannot change to chosen to cover the query region.

Hence we arrive at a contradiction.

Case 3:

If there is an arbitrary corruption of the state variables Statusi, then part of the query

region may become uncovered, or may be covered by a redundant node. If the StatuSi

variable for a node is initially undecided or chosen, then part of the query region may

become uncovered, or may be covered by a redundant node.

Since M C SC N ode{i) evaluates to true if an undecided sensor is not the sensing neighbor

of a chosen sensor which has a greater UID than its own, or if it is the minimum UID

neighbor of a chosen sensor, and if it has part of its sensing disk uncovered, then such an

arbitrary corruption will still allow an undecided non-redundant node to execute ^ 3 and

change its status to chosen. Therefore, this sensor will cover the query region.

Hence we arrive at a contradiction.

Alternatively, Redundantij) will unmark a sensor even if it is initially undecided or

chosen, if it has a smaller UID than a chosen sensing neighbor, it is not the minimum UID

neighbor of a chosen sensor, and its entire sensing disk is covered by another chosen sensor.

Therefore, a redundant node will not be included in the set M .C SC to cover the query

region.

Hence we arrive at a contradiction.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S.6.3.3 Self-*

Our solution has been implemented with the self-configuring and self-healing features

using the concept of self-stabilization. Since the paradigm of self-stabilization includes all

other self-* properties, our solution is truly fault-tolerant in terms of the self-* feature.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

SINGLE-HOP RS-BASED ALGORITHMS

6.1 Description and D ata Structures

In the previous algorithm, the UID is used to solve the contention of sensors and remove

the redundant sensors. That is, between two neighboring sensors, the one with the greater

UID remains in the final cover set, and among the neighbors of a chosen sensor, the one

with the minimum UID also remains to maintain the connectivity. In this section, we will

show a modification of Algorithm ShCIV, which uses the sensing region instead of the UID

for the above purpose, and we refer to this algorithm as 77.5(Algorithm 6.2.1). The idea

behind this is tha t since every sensor has a different sensing radius, keeping the sensors

which have a larger coverage region results in a smaller number of sensors in the final set.

Note tha t although the algorithm uses the sensing region instead of the UID, in the case of

two or more sensors having the same sensing region, the UID is still needed as a deciding

factor.

The following are necessary changes.

• The data structure I n fo includes the variable M a xR sU ID instead of M inU ID . It

represents the UID of the sensor with the maximum R s amongst all of a sensor’s

neighbors. If several sensors have the same sensing radius, then the one with the

greatest UID will be selected.

• The predicate L stU ID N gbr{i,j) changes to G rtstRsNgbr{i, j) . To maintain connec-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tivity in Algorithm SHTZS, the predicate G rtstR sN gbr{i, j) selects the sensor which

has the greatest Rg among the neighbors of a chosen sensor.

• The predicate G rtrL stO rN otN gbrO f Chsn[i) changes to G rtrG rts tO rN o tN gbrO f Ghsn{i)

Sensor i evaluates this predicate as true if one of the following is true: 1) Sensor i

does not have a chosen neighbor which is also a sensing neighbor. 2) Sensor i's Rg is

greater than a chosen sensing neighbor’s Rg. 3) Sensor i has the greatest Rg among

the neighbors of a chosen sensor.

Algorithm SHTZSshows only the modified parts while the rest remain the same.

6.3 Correctness

Even if a sensing radius is used instead of an UID for the redundant deciding factor,

the proofs for the correctness of Algorithm 6 .2 .1 are very similar to the proofs for Algorithm

5.5.1 and can be referred to in Section 5.6.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 6.2.1 Query Region Connected Sensor Cover Algorithm for Sensor i {SHTZS).

C hanged Structure:
In fo {

U ID Unique user identification number
Status € {unchosen, undecided, chosen} :: S tatus of a sensor
Position :: Geometric location or coordinate of a sensor
R c :: Communication radius of a sensor
R s :: Sensing radius of a sensor
S : : Sensing region of a sensor
M a x R sU I D :: UID of sensor w ith maximum R s amongst all of a sensor’s neighbors; in case of a

tie, sensor w ith greatest UID is selected
}

C hanged P red icates:
G rts tR sN gbr(i, j) = i e N j A {S e l f - In f Oi.R = N - I n f Oi.Self-Inf Oj.MaxRsUID)-,

= Sensor i is a neighbor of Sensor j , and is also the neighbor of Sensor j having the
greatest sensing radius;

G rtrG rts tO rN o tN ghrO fC hsn{i) = (Vj ; i e N j , N - I n f Oi.Self-Inf Oj .Status ^ chosenV
-^SnsngN ghr{i, j) V S e l f - I n f Oi.Rs > N -In fo i .S e l f -In fo j .R s '^
G rts tR sN gbr (i,j));

= Sensor i is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than
its own unless it is the ‘MaxR's neighbor of this chosen sensor;

SensorCover{i) = Setf-InfO i.S ta tus = unchosen A QryRgnIntrsctn{i)A
GrtrGrtstOrNotNgbrOfChsn{i)-,

= sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion
of query region, and Sensor i is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than its own unless it is
the "MaxR's neighbor of this chosen sensor;

M C SCN ode{i) = S e t f - I n f Oi.Status = undecided A {G rtrG rts tO rN otN gbrO fC hsn (i) V
- ,CvrSnsngByChsn{i));

= Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than its own unless it is
the "‘MaxR's neighbor of this chosen sensor, or a part of the sensing disk of Sensor i is
not covered by a chosen sensor;

Redundant(i) = {S e l f - I n f Oi. S tatus = undecided V S e l f - I n f o,.Status = chosen) A
-^GrtrGrtstOrNotNgbrO fChsn{i)ACvrSnsngByChsn{i)ANeighborsConnectivity{i)-,

= Sensor i is an undecided or a chosen sensor and is the communication and sensing
neighbor of a chosen sensor th a t has a greater R s than its own, but is not the ""MaxR's
neighbor of this sensor, the entire sensing disk of Sensor i is covered by chosen sensors,
and chosen neighbors of Sensor i are connected through a second path;

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

MULTI-HOP ALGORITHMS

7.1 Description and D ata Structures

In Algorithms ST-LTVand SHTZS, a sensor uses only 2-hop information to check if its

entire sensing region is covered by a subset of chosen sensors and if every pair of its chosen

neighbors has an alternate communication path. If the sensing radius is greater than the

communication radius, then 2 -hop information is not enough to verify this coverage condi­

tion. Since we did not assume any limitation for the sensing radius, it is possible tha t the

sensing region of Sensor i is covered by the sensors tha t are located several hops away from

Sensor i. Similarly, it is possible tha t chosen neighbors are connected to each other via paths

of more than two hops. Thus, to obtain a better approximation, multi-hop information is

required. Therefore, in Algorithms A4KIX>(algorithm 7.3.1) and A47T775(algorithm 7.3.2),

our goal is to further reduce the number of nodes in the final set by increasing the available

information in exchange for the cost of extra communication. We would like to collect upto

a maximum of H-hop count information, where H is a constant. Algorithm M H X V is a

modification of Algorithm SH TV, and similarly. Algorithm MHTZSis a modification of Al­

gorithm SHTZS. Algorithm MHTZSshavjs only the parts which are different from Algorithm

M H X V .

D ata Structures. The information required to compute the coverage condition is the

UID , S, and coordinates of all chosen sensors within H-hops of Sensor i. Also, the hop

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

count should be recorded. To collect this information, flooding is too expensive, and there

are many redundant messages. So, we assume tha t there is a self-stabilizing BFS tree

construction running in the background. Each chosen sensor maintains its own BFS tree,

with a height of H rooted to itself. The information of all chosen sensors within H-hops

from Sensor i will be passed along using these BFS trees which Sensor i receives only from

its parent sensor. Therefore, each sensor has to maintain a set of parent pointers Pi. The

number of parent pointers per node is less than or equal to the number of chosen sensors

within H-hops.

To gather information from chosen sensors located more than 2-hops away, the following

change has been made in the data structure and the read action of Algorithms STilVaxid

SHTZS. The data structure Root, which contains the root node’s U ID , S, Position, and

Hop, was added. Also, there are extra shared variables R oot-In fo i and Q . R o o tJ n fo i is

a set of Root structures, and Q is a set of chosen sensors within H-hop distance. A set of

parent pointers is kept as a local variable.

M acro. There are two separate read macros dependent upon whether or not Sensor i ’s

neighbor j is i ’s parent. If j is not i ’s parent, then the read action is the same as tha t of

Algorithms SHID&nd SHTZS. If j is the parent of i, when timeout occurs, i reads the root

information, as well as j ’s information and f s neighbors’ (i’s 2 -hop neighbors’) information.

After Sensor i reads R o o tJ n fo j from j , i increments Hop count in RootH nfoi.RootR. If

it is greater than H — 1, then this data is discarded, and R is removed from Q .

7.2 Predicates

This multi-hop information is applied to the predicates C vrSnsngB yC hsn(i) and

NeighborsConnectivity{i). C vrSnsngB yC hsn{i) is evaluated as true if Sensor i ’s sensing

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disk is covered by a subset of chosen sensors that are located no farther than H com­

munication hops from Sensor i. For the predicate NeighborsConnectivity{i) to check the

connectivity of Sensor i ’s chosen neighbors, the new predicate Cycle{x, y) is added, which

is evaluated as true if there exists a cycle such tha t Sensors x, i, and y are vertices in

the cycle, and all other vertices in this cycle are chosen sensors. Hence, the predicate

NeighborsConnectivity[i) is true when all pairs of chosen neighbors of Sensor i are con­

nected by a path of chosen sensors located within H-hops from Sensor i.

7.4 Correctness

The purpose of multi-hop algorithms is to obtain a better approximation of MCSC by

using the information of sensors which are located several hops away. Such multi-hop in­

formation is used in the predicates C vrSnsngB yC hsn{i) and NeighborsConnectivity{i),

which are checked in Redundant{i) to remove the redundant sensors. A sensor is redun­

dant and unmarked by Rule A \ if the following criteria are met; if a sensor’s status is either

chosen or undecided] it has a sensing neighbor which has a greater UID than its own; it

is not the minimum UID neighbor of a chosen sensor; and both C vrSnsngB yC hsn{i) and

NeighborsConnectivity{i) are evaluated as true. In multi-hop algorithms, C vrSnsngB yC hsn(i)

is evaluated as true if a sensor’s entire sensing disk is covered by a subset of chosen sensors

which are located within H-hops. Similarly, NeighborsConnectivity{i) is evaluated as true

if every pair of chosen neighbors of a sensor is able to communicate with each other using

an alternative path made by chosen sensors within H-hops. Therefore, to prove the cor­

rectness of multi-hop algorithms (Algorithm 7.3.1 and 7.3.2), we need to prove multi-hop

information gathering by Algorithms M HTV& nd MHTZS. The rest of the proofs are the

same as the proofs of S T ilV , and can be referenced in Section 5.6.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 7.3.1 Query Region Connected Cover Algorithm for Sensor i {MT-CIV).
C onstants:

R q :-. Query region;
H:: Hop count

S tructure:
In fo {

U ID :: Unique user identification number
Status G {unchosen, undecided, chosen} :: Status of a sensor
Position :: Geometric location or coordinate of a sensor
R c :: Communication radius of a sensor
R s :: Sensing radius of a sensor
S :: Sensing region of a sensor
M in U ID :: minimum UID amongst all of a sensor’s neighbors’ UIDs

}
Root{

U ID :: Unique user identification num ber
Posi t ion :: Geometric location or coordinate of a sensor
R s :: Sensing radius of a sensor
Hop v. Hop count

}

Shared Variables:
I n fo S e l f - I n f Oi :: One structure th a t contains inform ation for Sensor i
Set Root-Infoi :: Set of structure Root
Set N -I nfo i :: Set of ô structures th a t contain all neighbors’ information
Set Ni :: { j e V\Dis t { i , j) < Rci A D is t { i , j) < R c j }
Set Ci :: Set of chosen sensors w ithin n Hops

L ocal Variables:
Set 2N-Info i :: Set of Si + f fSj^Ni structures th a t contain all 2-hop neighbors’ inform ation
Set NNi'.: Set of Nj, Vj E iV*
Set Pi '.: Set of parent pointers

M acro:
Read{j)

N -I nfo i = N J n f o i U S e l f - I n f o j
N N i = N N i { j N j
2N-Info i = 2N-Info i |J N -I n f o j
j = Nex t (Ni)

Read-Parent{j)
N -I nfo i = N -Info i (J S e l f - I n f Oj
NN i = NNi U Nj

2 N J n f o i = 2 N - I n f Oi (J N J n f o j

Ro o tJ nf o i = Root-Infoi IJ Root-Infoj
AdjustRoot-Infoiand Ci :: Increm ent Root-Infoi .RootR.Hop by 1. If it becomes > H - 1, then

discard the d a ta and remove R from Ci .
j = N ext (Ni)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P red icates:
QryRgnIntrsctn{i) = S e l f J n f o i . S n R q 0;

= sensing disk of Sensor i intersects w ith some portion of query region;

D is t{ i , j) = R eturns the Euclidean distance between Sensor i and Sensor j;

SnsngN gbr{i, j) = (Vj : D ist(ij) < m in {S e lf J n f o i . R s , N J n f o i . S e l f - I n f Oj . Rs))]
= Sensor i and Sensor j are located within each others’ sensing disks;

Cycle{x, y) = Scycle : { . .. , x , i , y , . . . } are vertices in the cycle and all other vertices in the cycle are
elements of Ci {chosen sensors);

= there exists a cycle such th a t Sensors x, i, and y are vertices in the cycle, and all other
vertices in this cycle are chosen sensors;

CvrSnsngByChsn{i) = (34 : Vj e 4 A j 6 A S e l f - I n f Oi.S Ç {[j Root-Infoi.Rootr-S);
= Sensing region of Sensor i is covered by a subset of chosen sensors th a t are

located no farther than H communication hops from Sensor i;

NeighborsConnectivity{i) = (Vj, t G M ,Cycle(j, t));
= All chosen pairs of neighbors of Sensor i are connected by a path of chosen

nodes;

LstU I D N gbr{i, j) = i e Nj A { S e l f - In f Oi.UID = N - I n f Oi .Self-Inf Oj.MinUID)-,
= Sensor i is a neighbor of Sensor j , and is also the neighbor of Sensor j having the

least UID;

G rtrL stO rN otN gbrO fC h sn{i) = (Vj : i G N j , N J n f o i - S e l f J n f o j .S ta tu s ^ chosenV
~tSnsngNgbr{i,j) V S e l f - I n f Oi . UI D >
N -I n f o i . S e l f - In fo j . U ID V LstUIDNgbr{ i , j));

= Sensor i is not the communication neighbor, nor the sensing neighbor,
of a chosen sensor whose UID is greater than its own unless it is the
“least UID” neighbor of this chosen sensor;

SensorCover{i) = S e l f - I n f Oi. Status = unchosen A QryRgnIntrsctn{i)A
G rtr LstO r N otN gbrO fC hsn{i) ;

s sta tu s of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion
of query region, and Sensor i is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose UID is greater than its own unless it is the “least
UID” neighbor of this chosen sensor;

M C SG N ode{i) = S e l f - I n f Oi.Status = undecided A {G r trL stO rN otN gbrO fC h sn{i) V
~’CvrSnsngByChsn{i));

= Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose UID is greater th an its own unless it is the “least
UID” neighbor of this chosen sensor, or a p art of the sensing disk of Sensor i is not
covered by a chosen sensor;

Redundant{i) = { S e l f - I n f Oi.Status = undecided V S e l f - I n f Oi.Status = chosen) A
-^G rtrLstOrNotNgbrOf Chsn{i) A C vrSnsngByChsn{i) A NeighborsConnectivity{i)-,

= Sensor i is an undecided or a chosen sensor and is the “lesser” communication and
sensing neighbor of a chosen sensor, bu t is not the neighbor of th is sensor th a t has the
smallest UID, and the entire sensing disk of Sensor i is covered by chosen sensors, and
chosen neighbors of Sensor i are connected through a second path;

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ctions:
A l :: -^QryRgnIntrsctn{i) V Redundant{i)

 > Sel f - Info , .S ta tus = unchosen’,
A 2 :: SensorCover{i)

— > S e l f -In fo i .S ta tus = undecided;

Aa :: MC5:CAode(*)
— > S elf -In fo i .S ta tu s = chosen;

A i Timeout A j e Ni A -i(j € Pi)
 > Read{j);

As :: Timeout A j e Ni A j e Pi
— > Read-Parent{j);

7.4.1 Proof of Multi-hop Information Gathering

L em m a 7.1 The coverage and connectivity related information of every chosen sensor will

eventually reach every sensor within H-hops.

P ro o f. We prove this lemma by contradiction. Suppose there exists a sensor which

never receives the information of chosen sensors located within H-hops from it. Although

we assume tha t every sensor might have a different communication radius, we limit the

neighbor set so that neighbors always have a bi-directional communication link. Thus, if

the distance from Sensor A to Sensor B is n-hops, then the distance from Sensor B to Sensor

A is also n-hops.

We assume that there is a self-stabilizing BFS tree construction running in the back­

ground, and each chosen sensor maintains its own BFS tree, with a height of H , rooted to

itself. Since the BFS tree spans all sensors within H-hops, there is always a path from a

chosen root sensor to every sensor within H-hops from the root. Thus, all information sent

out from the root along the BFS tree eventually reaches all sensors within H-hops. That is,

every sensor is able to receive the information of all chosen sensors located within H-hops

from itself.

Hence we arrive at a contradiction. □

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 7.3.2 Query Region Connected Cover Algorithm for Sensor i {M TilZS).
C hanged Structure:

In fo {
Status G {unchosen, undecided, chosen} :: S tatus of a sensor
Position :: Geometric location or coordinate of a sensor
R c :: Communication radius of a sensor
R s Sensing radius of a sensor
S :: Sensing region of a sensor
M a x R s U I D :: UID of a sensor w ith the maxim um Rs amongst all of a sensor’s neighbors;

in case of a tie, the sensor w ith greatest UID is selected
}

Root{
Position :: Geometric location or coordinate of a sensor
R s : : Sensing radius of a sensor
Hop : Hop count

}

C hanged P red icates;
GrtstRsNgbr{i, j) = i G N j A {S e l f J n fo i - U I D = N J n f o i .S e l f H n f o j .M a x R s U I D) ;

= Sensor i is a neighbor of Sensor j, and is also the neighbor of Sensor j having the
greatest sensing radius;

G rtrG rts tO rN o tN gbrO fC h sn{i) = (Vj : i G Nj, N - I n f Oi.Sel fH n fo j .S ta tu s A chosen V
-iSnsngNgbr{i, j) V S e lf J n f o i .R s >
N - I n f Oi.Self-Inf Oj .Rs V G rts tR sN gbr {i, j)) ;

s Sensor i is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than
its own unless it is the “MaxR's neighbor of this chosen sensor;

SensorCover{i) = S e l f - I n f Oi.Status = unchosen A QryRgnIntrsctn{i) A
G rtrG r ts tO rN o tN gbrO fChsn{i);

= sta tus of Sensor i is unchosen, sensing disk of Sensor i intersects w ith some portion
of query region, and Sensor i is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than its own unless it is
the “MaxR'g neighbor of th is chosen sensor;

M C SC N ode{i) = S e l f - I n f Oi.Status = undecided A (G rtrG rts tO rN otN gbrO fC h sn(i) V
^CvrSnsngByChsn{i));

= Sensor i is an undecided sensor and is not the communication neighbor, nor the sensing
neighbor, of a chosen sensor whose sensing radius is greater than its own unless it is
the “MaxR's neighbor of this chosen sensor, or a part of the sensing disk of Sensor i
is not covered by a chosen sensor;

Redundantii) = (S e l f - I n f Oi.Status = undecidedV S e l f - I n f Oi.Status = chosen) A
^G rtrG rtstOrNotNgbrOfChsn{i)ACvrSnsngByChsn{i)A NeighborsConnectivi ty{i);

= Sensor i is an undecided or a chosen sensor and is the communication and sensing
neighbor of a chosen sensor th a t has a greater R s than its own, but is not the “MaxR's
neighbor of this sensor, and the entire sensing disk of Sensor i is covered by chosen
sensors, and chosen neighbors of Sensor i are connected through a second path;

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

SIMULATION AND RESULTS

8.1 Discussion of Result

Algorithms JT>(Algorithm 5.5.1), 775(Algorithm 6.2.1), A4MT7)(Algorithm 7.3.1),

and A47f775(Algorithm 7.3.2) compute a minimum connected sensor cover for a query re­

gion. Moreover, all algorithms are fault-tolerant in terms of the self-* feature.

In our simulations, we assumed that nodes are randomly deployed on a grid of size 500

X 500 (350,000 nodes). Similar to [38, 53, 67] we considered the sensing region associated

with a sensor to be a circular region centered around the sensor itself. We considered a

network of 350,000 nodes in which sensors had both sensing radii and transmission radii that

varied in size from 0 to 8 units. However, in some of the cases tested in our simulations,

we restricted the sizes of sensors’ sensing and transmission radii to be within a certain

range. For Algorithms M T ilV a n d MHTZS, we went the query region boundaries for the

hop count. Specifically, a hop count of 8 was used.

The query region used in our simulations was 15 x 15 square graph units. We measured

the number of sensors in the final minimum connected cover set, the number of query

region sensors covered per MCSC sensor, the average number of sensors within a sensor’s

sensing disk, and the stabilization times for Algorithms S H IV , SHTZS, M H X V , MHTZS,

Algorithm M C S C [24], and Rule k [21]. We also computed an approximation ratio for

each algorithm. This approximation ratio was used as a measure of optimality for each

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm and was computed as the ratio between the number of query region sensors

covered per MCSC sensor and the average number of sensors within a sensor’s sensing disk.

The smaller this ratio is, the closer the final cover set chosen by a particular algorithm is

to an optimal minimum connected cover set.

We used varying relative sizes of R c and Rg for our simulations. Cases tested include:

• Rc > Rs (all sensors had the same size of radii of communication).

• R c > Rg (all sensors had the same size of sensing radii).

• R c > Rg (sensors had different sizes of R c and Rg).

• R c > Rg (all sensors had the same size of radii of communication).

• R c > Rg (all sensors had the same size of sensing radii).

• R c = Rg (all sensors had the same size of R c and Rg).

• R c < Rg (all sensors had the same size of radii of communication).

• R c < Rg (all sensors had the same size of sensing radii).

• R c < Rg (sensors had different sizes of R c and Rg).

• All sensors had equal sizes of radii of communication but unequal sizes of sensing

radii.

• All sensors had equal sizes of sensing radii but unequal sizes of radii of communication.

• All sensors had unequal sizes of radii of communication and unequal sizes of sensing

radii.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.5 shows simulation screenshots for Algorithms S H IV , SHTZS, M H I V , and

A474775with variable sensing and communication radii. From the simulation screenshots

we can conclude tha t all these algorithms can produce the final cover set that completely

cover the query region since there are no black spots inside the query region.

Tables 8.1 and 8 . 2 show the number of M C S C sensors, query region sensors per M C S C

sensor, average number of sensors per sensing disk, and stabilization times for these cases.

These results, excluding stabilization times, are also shown in Figures 8.1, 8.2, and 8.3.

Tables 8.3 and 8.4, and Figure 8.4, show the approximation ratios for the algorithms tested

for each of these cases.

As shown in Table 8.1 and Figure 8.1, in all cases tested except all Rg equal. Algorithm

A4TfTDproduced a cover set tha t contained fewer, or in some cases nearly the same, number

of nodes as tha t of Algorithm S H IV . This implies tha t for a UID based algorithm, multi­

hop coverage and connectivity does significantly reduce the number of nodes in the final

cover set for nearly all ranges of size of sensing and transmission radii. Also, in more than

half the cases tested, specifically in all cases tested except R c > Rg (all Rg equal), R c =

Rg (all R c and Rg equal), R c < Rg (all R c equal), R c < Rg (all Rg equal), and R c <

Rg {Rc and Rg unequal). Algorithm A474775produced a cover set tha t contained fewer,

or nearly the same, number of nodes than Algorithm SHTZS. This also implies tha t for

an algorithm based upon the size of Rg, multi-hop coverage and connectivity does reduce

the number of nodes in the final cover set for most of the ranges of size of sensing and

transmission radii.

Tables 8.3, 8.4, and Figure 8.4 show tha t for a UID based algorithm, multi-hop coverage

does significantly improve the algorithm’s approximation ratio. Also, in most cases tested,

for a Rg based algorithm, multi-hop coverage significantly improves the algorithm’s approx-

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imation ratio. This implies tha t an algorithm tha t uses multi-hop coverage and connectivity

produces a final cover set tha t is closer to an optimal minimum connected cover set.

Algorithm 574775that uses two-hop coverage and connectivity had a better approxi­

mation ratio than the UID based algorithm {S H IV) th a t uses two-hop coverage and con­

nectivity, when the size of R c was less than Rg- This is due to the fact tha t when R c

< Rg, the SnsngNgbr(i,j) predicate will evaluate to true when Sensor j is a neighbor of

Sensor i. Thus, -iSnsngNgbr(i,j) will evaluate to false in the predicate GrtrGrtstOrNot-

NgbrOfChsn(i), and the sensor with the greatest Rg, within Sensor i's neighborhood, will

evaluate this predicate to true and be marked as chosen by Ag. This allows the query

region to be covered with fewer nodes. However, in nearly all cases, if R c is greater than

or equal to Rg, Algorithm SHTZShas a worse approximation ratio than Algorithm S H IV .

This is due to the fact tha t a sensor with a sensing radius that is smaller than R c may be

able to evaluate ->SnsngNgbr(i,j) to true in GrtrGrtstOrNotNgbrOfChsn(i), even though it

may have a small Rg. Thus, it can evaluate this predicate as true and change to chosen,

even though there may be more suitable sensors (those with larger Rg) outside Sensor t ’s

neighborhood.

As an improvement, as shown in Table 8.3 and Figure 8.4, an Rg based algorithm using

multi-hop coverage (Algorithm MHTZS) produced a better cover set than all of our other

algorithms when R c > Rg (all R c equal) and produced one of the lowest approximation

ratios obtained by our algorithms (2.4). This is due to CvrSnsngByChsn(i) and Neigh-

borsConnectivity(i) predicates having a greater chance of being evaluated to true as sensors

further than 2-hops from Sensor i are considered. Subsequently, as a greater number of sen­

sors are marked as chosen, a sensor tha t may not have been the most suitable to be marked

may evaluate GrtrGrtstOrNotNgbrOfChsn(i) as false, evaluate Redundant(i) as true, and

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unmark itself. This leads to fewer nodes in the final cover set.

As shown in Table 8.3 and Figure 8.4, the approximation ratio for the multi-hop, Rg

based algorithm {Rc > Rg and all R q equal) is equal to that of Algorithm M C S C {Rc

= Rg and all R c and Rg equal). However, Algorithm MHTZScan also produce a cover

set that is connected and tha t completely covers R q at aM ranges of size of sensing and

transmission radii.

Also, our AlgorithmA474775produces better approximation ratios than Rule k for most

cases, when Rc > Rs or Rc > Rg. This improvement may be attributed to a greater

number of nodes that were unmarked by Algorithm M HTZS's redundancy predicate. Since

the CvrSnsngByChsn(i) predicate in this algorithm considers nodes tha t can be located

further than two hops from Sensor i, there is a greater chance tha t a node evaluates this

predicate to true and becomes unmarked by Redundant(i) in Algorithm MHTZS, than

a node evaluating the redundancy predicate of Rule k to true. As a result, a greater

number of nodes will be unmarked by Redundant(i) in Algorithm MHTZS. Algorithm

M H IV a lso produces better approximation ratios than Rule k in most cases when R c >

Rg or Rc > Rs- In addition to this, when Rc > Rg and all Rg are equal. Algorithm

S H IV a n d SHTZSproduce better approximation ratios than Rule k. In contrast to Rule k,

our algorithms can also produce a cover set tha t is connected and tha t completely covers

R q at qM ranges of size of sensing and transmission radii.

As shown in Table 8.1, for nearly all cases, the stabilization times for Algorithms

S H IV a u d SHTZS are less than or equal to tha t of Rule k. This shows tha t these algo­

rithms outperform Rule k in terms of stabilization time. Although Algorithms M H IV a n d

MHTZShave a greater stabilization time, in most cases when R c > Rg or R c > Rg,

these algorithms outperform Rule k in terms of producing a more optimal cover set. Also,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in most cases, Algorithms STilV& nd 574775outperformed Algorithm M C S C in terms of

stabilization time.

Finally, in more than half the cases when Rc > Rs or Rc > Rs, the approximation ratios

for Algorithm A474775were similar to that of Algorithm M C SC . These results lead us to

believe that the ability to produce a better approximation to an optimal cover set, combined

with the ability to completely cover and produce a connected cover set for gM ranges of sizes

of the radii of communication and sensing radii, justify the increase in stabilization time

and message complexity required for multi-hop coverage and connectivity.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CD■D
OQ.
C

gQ.

■D
CD

C/)
C/)

8

ë '

8.2 Tables

3.
3"
CD

CD■D
O
Q.
C
a
o3
"O
o

CDQ.

"D
CD

C /)
C /)

OiCn

R ela tiv e S ize o f R c or R s
R c > R s
all R c =

R c > R s
all R s =

R c > R s
R c A R s A

R c > R s
all R c =

R c > R s
a ll R s =

R c — R s
all R c , R s

A lg. SHTV N u m b er o f M C S C S en sors 158 35 140 163 40 30
A lg. S7HV Qry R g n S en sors / M C S C Sensor 4.2 18.3 4.5 4.1 16.7 21.0
A lg . S H I V A vg # o f Sen sors / S en sin g D isk 21.9 58.0 22.2 15.2 41.5 88.9
A lg. S H I V S tab iliza tion T im e (m in .) 2.7 1.2 1.8 2.7 1.2 1.3
A lg . SHTZS N u m b er o f M C S C S en sors 144 40 147 164 35 25
A lg . SHTZS Qry R g n S en sors / M C S C Sensor 4.4 15.6 4.7 4.0 19.3 24.4
A lg . SHTZS A vg # o f S en sors / S en sin g D isk 25.6 64.7 26.9 17.0 45.6 88.3
A lg. SHTZS S tab iliza tion T im e (m in .) 2.2 1.2 3.0 3.3 1.2 1.2
A lg . M H I V N u m b er o f M C S C S en sors 75 25 139 126 41 27
A lg . M H I V Qry R g n S en sors / M C S C Sensor 9.6 26.6 4.8 5.2 15.3 24.4
A lg . M H I V A vg # o f Sen sors / S en sin g D isk 27.4 63.2 23.8 15.0 36.8 97.1
A lg . M H I V S tab iliza tion T im e (m in .) 619.5 4.2 94.5 76.5 3.6 2.1
A lg . MHTZS N u m b er o f M C S C S en sors 137 38 71 123 42 34
A lg . MHTZS Q ry R g n S en sors / M C S C Sensor 4.9 16.4 9.0 5.3 15.3 19.4
A lg . MHTZS A vg # o f S en sors / S en sin g D isk 22.2 55.0 22.0 12.6 38.0 98.0
A lg. MHTZS S tab iliza tion T im e (m in .) 124.0 8.9 11.2 41.5 7.1 1.7
A lg . M C S C N u m b er o f M C S C S en sors 16
A lg . M C S C Qry R g n S en sors / M C S C Sensor 42.9
A lg . M C S C A vg # o f S en sors / S en sin g D isk 104.9
A lg . M C S C S tab iliza tion T im e (m in .) 1.4
R u le k N u m b er o f M C S C S ensors 20
R u le k Qry R g n S en sors / M C S C Sensor 33.7
R u le k A vg # o f S en sors / S en sin g D isk 101.1
R u le k S tab iliza tion T im e (m in .) 2.7

Table 8.1: Number of MCSC Sensors, Query Region Sensors per MCSC Sensor, Average Number of Sensors per Sensing Disk,
and Stabilization Times for Algorithms SH T V , SHTZS, MHIT>, MHTZS, Algorithm M C S C , and Rule k
a t Various Sizes of R c and i?5 .

■o
I
I
%

C/)w
o'3

CD

8
c5'

3
CD

Cp.

CD
■o
OÛ.c
a
o
3

■o
o

CDÛ.

Oc
■o
CD

C/)

o'
3

g

R c < R s
all R c =

R c < R s
all R s —

R c < R s
R c A R s A a ll R c = all R s = R c A R s A

A lg. s n x v N u m b er o f M C SC Sensors 62 280 332 144 179 227
A lg . S H I V Qry R g n Sen sors / M C SC Sen sor 11.4 2.4 2.0 4.4 3.5 2.7
A lg . S H I V A vg # o f S ensors / S en sin g D isk 106.6 97.3 100.9 44.7 37.3 42.2
A lg . S H I V S tab iliza tion T im e (m in .) 1.3 1.3 1.3 1.3 1.2 1.3
A lg . SH US N u m b er o f M C SC Sensors 58 275 310 144 194 235
A lg . SHTIS Qry R g n S en sors / M C SC S en sor 10.9 2.3 2.1 4.2 3.2 2.8
A lg . SHTIS A vg # o f S en sors / S en sin g D isk 68.3 92.8 104.4 41.7 39.4 45.7
A lg . SHTZS S tab iliza tion T im e (m in .) 1.2 1.2 1.2 1.3 1.2 1.2
A lg . M H I V N u m b er o f M C SC Sensors 62 277 338 92 204 227
A lg . M H I V Qry R g n Sen sors / M C SC Sen sor 10.5 2.4 1.9 6.8 3.1 2.8
A lg . M H I V A vg # o f S ensors / S en sin g D isk 95.0 96.6 89.4 41.1 34.7 41.2
A lg . M H I V S tab iliza tion T im e (m in .) 4.1 11.2 7.3 14.8 83.3 5.6
A lg . MHTZS N u m b er o f M C S C Sensors 73 314 361 145 178 237
A lg . MHTZS Qry R g n S en sors / M C SC Sen sor 8.5 2.2 1.9 4.5 3.6 2.5
A lg . MHTZS A vg # o f S en sors / S en sin g D isk 88.7 104.9 100.6 42.5 37.4 39.3
A lg . MHTZS S tab iliza tion T im e (m in .) 8.5 2.7 72.9 14.7 4.5 5.5

Table 8.2: Number of MCSC Sensors, Query Region Sensors per MCSC Sensor, Average Number of Sensors per Sensing Disk,
and Stabilization Times for Algorithms S H IV , SHTZS, M H IV , M HTZS, Algorithm M C S C , and Rule k
at Various Sizes of R c and Rg-

::o
CD■D
OQ.
C

8Q.

■D
CD

C/)
C/)

8
(O '

3.
3"
CD

CD"O
OQ.
C
a
o3
"O
o

CDQ.

-J

Rc > Rs
all Rc =

Rc > Rs
all Rs =

Rc > Rs
Rc A Rs A

Rc > Rs
all Rc =

Rc > Rs
all Rs —

Rc — Rs
all Rc, Rs

Alg. s m v Approximation Ratio 5.2 3.2 4.9 3.7 2.5 4.2
Alg. s n n s Approximation Ratio 5.8 4.1 5.7 4.3 2.4 3.6
Alg. M H JV Approximation Ratio 2.9 2.4 4.9 2.9 2.4 4.0
Alg. M u n s Approximation Ratio 4.6 3.4 2.4 2.4 2.5 5.1
Alg. M CSC Approximation Ratio 2.4
Rule k Approximation Ratio 3.0

Table 8.3: Approximation Ratios for Algorithms S H IV , SHTZS, M H I V , MHTZS, Algorithm M C S C , and Rule k
at Various Sizes of R c and Rs-

■D
CD

C /)
C /)

::o
CD■D
OQ.
C

gQ.

■D
CD

C/)
C/)

8
(O '

3.
3"
CD

CD"O
OQ.
C
a
o3
"O
o

Oi
00

Relative Size of Rç or Rs
Rc < Rs
all R c =

R c < Rs
all Rs =

Rc < Rs
R c A Rs ^ all Rc all Rs R c A Rs

Aig. s n i v Approximation Ratio 9.4 41.4 4&9 III. 1 111.I) 15.6
Aig. s n n s Approximation Ratio 6.3 40.3 49.7 9.9 12.3 16.3
Alg. M H IV Approximation Ratio 9.0 40.9 47.6 6.1 11.3 14.9
Aig. M r n is Approximation Ratio 10.4 47.7 54.1 9.5 10.4 15.5

CDQ.
Table 8.4: Approximation Ratios for Algorithms S H I V , SHTZS, M H I V , and MHTZS, a t Various Sizes of R c and Rs-

■D
CD

C /)
C /)

.3 Figures

Y\ 200—

100—

5 0 -----

2 3 4 8 91 5 11 126 7 10

Case Number for Relative Size of Rc or Rs
Case Number Key

1. Rc>= Rs (ailRc equal)
2. Rc >= Rs (ail Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (ail Rc equal)

5. Rc > Rs (ail Rs equal)
6. Rc = Rs (ail Rc, Rs equal)
7. Rc < Rs (ail Rc equal)
8. Rc < Rs (ail Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key
Alg. SHID 0 - o- -0 - o

7Ug.SMlS <>- 0 () <>

Alg. MHID / \ -̂ / \ /\
Alg. MHRS V—V—V—V

Alg.MCSC 0—> > D
Rulek 0—B—g—□

F ig u re 8.1; N u m b e r o f M C S C S en sors for V ariou s R e la t iv e S izes o f R c or R s

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40-----

30-----

25-----

2 0 -----

15-----

1 2 3 4 8 125 6 7 9 10 11

Case Number Key
Case Number for Relative Size of Rc or Rs

1. Rc>= Rs (all Rc equal)
2. Rc>= Rs (all Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key

Alg. SHID 8 - -O- -.8 - -O

yUg.stOK 0 - 0 0 o
Alg, MHID / \ / \ / \ / \

Alg. MHRS-------- — 7̂- 7̂—

Alg.M CSC l>- t> t>"' t>

Rulek Q— g— H— 9

Figure 8.2; Query Region Sensors per MCSC Sensor for Various Relative Sizes of R c or R s

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10—

^ 1 5 ----

1 2

Case Number Key

3 4 5 6 7 8 9
Case Number for Relative Size of Rc or Rs

10 11 12

1. Rc>= Rs (all Rc equal)
2. Rc >= Rs (all Rs equal)
3. Rc>= Rs (Rc, Rs unequal)
4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key

Alg. SHID 8--0 --8 --0

7Ug.SMlS 0 0 0 0
Alg. MHID ^ ^ ^
Alg. MHRS —V—

Alg.MCSC >- > > >
Rulek a—b—a—a

Figure 8.3: Average Number of Sensors per Sensing Disk for Various Relative Sizes of R c
or R s

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 ------

30

.2

o 20-----

10 —

2 3 4 8 91 6 11 125 7 10
Case Number for Relative Size o f Rc or Rs

Case Number Key

1. R c> = Rs (all Rc equal)
2. Rc >= Rs (all Rs equal)
3. R c> = Rs (Rc, Rs unequal)
4. Rc > Rs (all Rc equal)

5. Rc > Rs (all Rs equal)
6. Rc = Rs (all Rc, Rs equal)
7. Rc < Rs (all Rc equal)
8. Rc < Rs (all Rs equal)

9. Rc < Rs (Rc, Rs unequal)
10. all Rc equal
11. all Rs equal
12. Rc and Rs unequal

Algorithm Key

Alg. SHID Q - -o- - 0 - -o

/Ug. SHRS o O O O
Alg. MHID ^ ^ — zs

Alg. MHRS ST ST

A lg.M C SC >---- >---- ^---- >

R ulek B— B— B— □

Figure 8.4: Approximation Ratios of all Algorithms for Various Relative Sizes of R c or R s

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.4 Screenshots

A 3

SimulatLon 1 # StabilixatwA Tim e - 1.22 minute*
Q veiy TOgten node count: o36
M CSC node count: 267
Quefy leg ion «ensora/MGSC tenooit 2 .^2022
SenfOKf/Sensing d ifk: 94539

(a) Screenshot of Simulation of SHID with various sensing/communication radii

A 2 I A 3 _ J I A 4

Sbnulation S ^ ii lz a tte n T liB e - 1 .22m iM tw
Q ueiy le ç o n node count: o3o
M CSC node count: 253
Q ueiy region tensore/M CSC «enmnn 23%%34
Sensoia/Senfing disk: 45.245

(b) Screenshot of Simulation of SHRS with various sensing/communication radii

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F o i ml

AI A2 A3 A4

—- -— .ion 1 - . - -—.— — -— ■
iiiezy l e ^ n node count: (

MCSC node count: 237
Query region fonforc/MCSC reneer: 234M 84
Senoon/Sensing diifc: 39^563

(c) Screenshot of Simulation of MHID with various sensing/communication radii

A1 I A2 I A3 I I A4

Simulntieip. 1 *• Skdbilizntion Time = 5.6S minute*
Query rep en node count: oz9
MCSC node count: 227
Query region eensonr/MCSC senfor: 2.779915
Senmoro/Senoing di*k: 41.228

(d) Screenshot of Simulation of MHRS with various sensing/communication radii

Figure 8.5: Screenshots of Simulations of Algorithms SHID, SHRS, MHID and MHRS
with various sensing and communication radii

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

We started this research by studying wireless networks and self-* systems. Both are very

active research areas to make ubiquitous computing a reality. Our main focus was wireless

sensor networks which already have numerous applications in vast and varying fields.

From its nature, sensor networks have various constraints which are well-known. The

most significant issue within the scope of sensor networks is energy. Designing energy

efficient, as well as reliable and scalable, sensor network protocols is highly desirable, yet

very challenging. Considering the size, frequency of topology changes, and energy level

changes, it is essential for sensor networks to have the properties of self-organizing, self-

configuring, and self-healing.

The main goal of our research was to design a completely distributed self-* query re­

gion covering sensor network. Assuming the most general cases of nodes’ power limitations,

we presented two local, and two multi-hop, distributed, scalable, and self-* solutions to

the minimum query region connected cover problem which can cope with variable sens­

ing and transmission ranges. We demonstrated how these solutions are self-organizing and

self-healing as well. They are also self-contained because once faults occur, they can be cor­

rected within their neighborhood. Our solutions use 2-hop locality in Algorithms SHXV&nd

SHTZS, and H-hop locality in Algorithms M.'HXV&vA MHTZS. In Algorithms SHXVaxid

SHTZS, nodes acquire 2-hop information by reading neighbors’ shared variables. Although

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multi-hop communication is used in Algorithm AdTYTDand MHTZS, it is used only to check

the coverage and connectivity conditions of chosen nodes, and the entire network topology

is still unknown to each node. In tha t sense, we can still consider these algorithms as local

algorithms. In addition, our solutions can easily be transformed to conform to power-aware

systems by modifying an UID-based to a Ag-based algorithm. Similarly, instead of elim­

inating nodes based on the value of their identifiers or their sensing radius, nodes can be

eliminated based on the state of their batteries, that is, selecting only nodes with strong

energetic capabilities in the final cover. However, it is possible tha t competing nodes may

have equal energy resources, since they may execute the same pattern of actions. Only in

this case, the identifiers would be used to break the symmetry.

We formally proved the self-* properties of our solutions. Moreover, we have conducted

extended simulations using the measures of stabilization time, the number of nodes in the

final cover, the number of query region sensors covered per MCSC sensor, and the average

number of sensors within a sensor’s sensing disk. Our experiments demonstrated tha t

under certain conditions, our proposed algorithms perform better than the self-stabilizing

algorithms proposed in [24, 23]. Furthermore, they also produce a cover set tha t is connected

and completely covers query regions at all ranges of size of sensing and transmission radii.

The proposed algorithms are also extended studies of the locality, in that multi-hop

information exchange can be used to produce a better approximation to an optimal cover

set. Although we proved that multi-hop communications greatly improve the result of the

minimum connected cover problem, sensors consume the most energy during intercommu­

nication between sensors. Therefore, it is crucial to find an optimal hop count so tha t a

network life time is prolonged by compromising the optimality of the minimum connected

cover set. The trade-off between the energy consumption by communication vs. the energy

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

saving by reducing the number of active nodes would be an interesting topic for future

research.

The area of connected coverage in sensor networks still raises a broad class of challenges.

Since the coverage characterizes the monitoring quality provided by a sensor network, differ­

ent applications may require different degrees of sensing coverage. Similarly, for the purpose

of fault-tolerance to network failure, such as packet loss, higher degree of connectivity may

be required. In general, this is known as the k-connected k-coverage problem, and has been

studied in fault-free environments in [6 8 , 69]. However, an interesting open issue would

be to address this problem in fault-prone environments, and in its generalized form: self-

stabilizing k-coverage k-connectivity of query regions. Mobile sensor networks is another

possible future topic. Assuming tha t sensors have some mobility, finding self-* solutions for

the minimum connected cover problem would be an interesting area of research. However,

mobility would probably consume more energy, so it would be quite challenging to design

energy-efficient protocols in such networks.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] http://www.research.ibm .com/autonomic/.

[2] le tf working group: Mobile ad-hoc networks (manet).
h ttp ://www.ietf.org/html.charters/manet-charter.html.

[3] Crossbow technology mica2 wireless measurement system datasheet, 2003.
http: / / www.xbow.com/Products/Wireless_Sensor _Networks.htm.

[4] Nest project at berkeley, http://webs.cs.berkeley.edu/nest-index.html.

[5] Hetergeneous Sensor Networks. Intel Corporation,
http: / / WWW .Intel. com/research/exploratory/heterogeneous. h tm .

[6] NT Adams, R Cold, BN Schilit, MM Tso, and R Want. An infrared network for mobile
computers. In USENIX Symposium on Mobile and Location-Independent Computing,
pages 41-51, Aug 1993.

[7] Y Afek and S Dolev. Local stabilizer. In Israel Symposium on Theory of Computing
Systems, pages 74-84, 1997.

[8] E Anceaume, M Cradinariu, and M Roy. Self-organizing systems case study: peer-
to-peer networks. In DISCOS Distributed Computing 17th International Symposium,
Short papers proceedings, pages 1-8, 2003.

[9] T Angskun, C Fagg, C Bosilca, J Pjesivac-Crbovic, and J Dongarra. Self-Healing
Network for Scalable Fault Tolerant Runtime Environments. In D APSYS 2006,
6th Austrian-Hungarian Workshop on Distributed and Parallel Systems, pages 21-23,
September 2006.

[10] A Arora. A foundation of fault-tolerant computing. Ph.D. dissertation. The University
of Texas at Austin, Dec 1992.

[11] A Arora and MC Couda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015-1027, 1993.

[12] A Arora and MC Couda. Distributed reset. IEEE Transactions on Computers,
43(9):1026-1038, 1994.

[13] S Asami, N Talagala, and D Patterson. Designing a self-maintaining storage system.
In Proceedings of the Sixteenth IEEE Symposium on Mass Storage Systems, pages
222-233, March 1999.

[14] B Awerbuch, B Patt-Shamir, and C Varghese. Self-stabilization by local checking
and correction. In F0CS91 Proceedings o f the Thirtyfirst Annual IEEE Symposium
on Foundations of Computer Science, pages 268-277, 1991.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.ibm.com/autonomic/
http://www.ietf.org/html.charters/manet-charter.html
http://www.xbow.com/Products/Wireless_Sensor
http://webs.cs.berkeley.edu/nest-index.html

[15] J Beauquier, S Delaët, S Dolev, and S Tixeuil. Transient fault detectors. In (D ISC’98)
Proceedings of the Twelfth International Symposium on Distributed Computing, num­
ber 1499, pages 62-74. Springer-Verlag, 1998.

[16] J Carle and D Simplot-Ryl. Energy-efficient area monitoring for sensor networks.
IEEE Press, pages 40-46, Feb 2004.

[17] D Carman, P Kruus and B M att. Constraints and Approaches for Distributed Sensor
Network Security. N A I Labs Technical Report, September 1, 2000.

[18] A Cerpa and D Estrin. Ascent: Adaptive self-configuring sensor networks topologies.
In INFOCOM02 Proceedings of the Conference on Computer Communications, Jun
2002 .

[19] B Chen, K Jamieson, H Balakrishnan, and R Morris. Span; An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. In
MobiCom02 Proceedings of the Seventh Annual Inernational Conference on Mobile
Computing and Networking, pages 85-96, Jul 2001.

[20] A Cournier, AK D atta, F Petit, and V Villain. Enabling snap-stabilization. In IEEE
Twentythird International Conference on Distributed Computing Systems (ICDCS
2003), pages 12-19, May 2003. Providence, Rhode Island.

[21] F Dai and J Wu. Distributed dominant pruning in ad hoc networks. Proceedings of
7CCW, 2003.

[22] F Dai and J Wu. On Constructing k-Connected k-Dominating Set in Wireless Net­
works. IPD PS’05 19th IEEE International Parallel and Distributed Processing Sym ­
posium. page 81a, 2005

[23] AK D atta, M Cradinariu, and R Patel. Distributed self-* minimum connected cover­
ing of a query region in sensor networks. In ISPAN ’05, pages 448-453, 2005.

[24] AK D atta, P Linga, M Cradinariu, and P Raipin-Parvedy. Self-* distributed query
region covering in sensor networks. In SRDS05 24th IEEE Symposium on Reliable
Distributed Systems, pages 50-59, Oct 2005.

[25] X Defago and A Konagaya. Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In POMC02 Workshop on Principles of Mobile
Computing, 2002.

[26] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17(ll):643-644, Nov 1974.

[27] EW Dijkstra. Ewd386 the solution to a cyclic relaxation problem. In Selected Writ­
ings on Computing: A Personal Perspective, pages 34-35. Springer-Verlag, 1982.
EWD386’s original date is 1973.

[28] S Dolev. Self-Stabilization. MIT Press, 2000.

[29] S Dolev, MC Couda, and M Schneider. Memory requirements for silent stabilization.
In PODC96 Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 27-34, 1996.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[30] S Dolev and T Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science, 1997.

[31] Armando Fox and David Patterson. Self-repairing computers. Scientific American,
Jun 2003.

[32] Roy Friedman, Maria Cradinariu, and Cwendal Simon. Locating cache proxies in
manets. In MobiHoc, pages 175-186, 2004.

[33] M Frodigh, P Johansson, and P Larsson. Wireless ad hoc networking: the art of
networking without a network. Ericsson Review, (4):248-263, 2000.

[34] CR C anger, JD Strunk, and AJ Klosterman. Self-* storage: Brick-based storage
with automated administration. Technical Report CMU-CS-03-178, Carnegie Mellon
University, Aug 2003.

[35] VK Carg and JE Wilkes. Wireless and personal communications systems. Prentice
Hall, 1996.

[36] S Chosh, A Cupta, T Herman, and SV Pemmaraju. Fault-containing self-stabilizing
algorithms. In PODC96 Proceedings of the Fifteenth Annual ACM Symposium on
Principles o f Distributed Computing, pages 45-54, May 1996.

[37] MC Couda and N Multari. Stabilizing communication protocols. IEEE Transactions
on Computers, 40(4):448-458, 1991.

[38] H Cupta, SR Das, and Q Cu. Connected sensor cover: Self-organization of sensor
networks for efficient query execution. In MobiHocOS Proceedings of the Fourth ACM
International Symposium on Mobile Ad Hoc Networking and Computing, pages 189-
200, 2003.

[39] J Heidemann and R Covindan. An Overview of Embedded Sensor Networks. Techni­
cal Report ISI-TR-200f-594, USC/Information Sciences Institute, November, 2004.
http://ww w .isi.edu/ johnh/PAPERS/Heidemann04a.html.

[40] J Hill, R Szewczyk, and A Woo. Tinyos: Operating system for sensor networks.
http://www.eecs.berkeley.edU/IPRO/Summary/01abstracts/szewczyk.l.html.

[41] J Hill, R Szewczyk, A Woo, S Hollar, D Culler, and K Pister. System architecture
directions for networked sensors. In Architectural Support for Programming Languages
and Operating Systems, pages 93-104, 2000. ASPLOS-IX.

[42] F Ingelrest, D Simplot-Ryl, and I Stojmenovic. Smaller connected dominating sets
in ad hoc and sensor networks based on coverage by two-hop neighbors. Technical
report. Institut National De Recherche En Informatique Et En Automatique, April
2005.

[43] JLW Kessels. An exercise in proving self-stabilization with a variant function. Infor­
mation Processing Letters, 29:39-42, 1988.

[44] F Kuhn, T Moscibroda, and R Wattenhofer. Initializing newly deployed ad hoc and
sensor networks. MobiCom ’04, 2004.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isi.edu/
http://www.eecs.berkeley.edU/IPRO/Summary/01abstracts/szewczyk.l.html

[45] VS A Kumar, S Arya, and H Ramesh. Hardness of set cover with intersection 1. In
ICALPOO Proceedings o f the Twenty seventh International Colloguium on Automata,
Languages and Programming, pages 624-635, 2000.

[46] H Liu, Y Pan, and J Cao. An improved distributed algorithm for connected domi­
nating sets in wireless ad hoc networks. Proceedings of the ISPA ’Of, Dec 2004.

[47] A Mainwaring, J Polastre, R Szewczyk, D Culler, and J Anderson. Wireless sensor
networks for habitat monitoring. WSNA ’02, Sep 2002.

[48] David Patterson. Recovery-oriented computing — overview.
http://roc.cs.berkeley.edu/.

[49] D Peleg. Distributed Computing A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

[50] KSJ Pister. Smart dust, http://robotics.eecs.berkeley.edu/ pister/Sm artD ust.

[51] R Prakash, N Shivaratri, and M Singhal. Distributed dynamic fault tolerant channel
allocation for mobile computing. IEEE Transactions on Vehicular Technology, 48(6),
Nov 1999.

[52] EM Royer and C Toh. A review of current routing protocols for ad hoc mobile wireless
networks. IEEE Personal Communications, Apr 1999.

[53] S Shakkottai, R Srikant, and N Shroff. Unreliable sensor grids: Coverage, connectivity
and diameter. In INFOCOM03 Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 2, pages 1073-1083, Apr 2003.

[54] JD Strunk and GR Ganger. A human organization analogy for self-* systems. Techni­
cal report, FCRC Proceedings of the First Workshop on Algorithms and Architectures
for Self-Managing Systems In conjunction with Federated Computing Research Con­
ference, Jun 2003.

[55] D Tian and ND Georganas. A coverage-preserving node scheduling scheme for large
wireless sensor networks. In WSNA02 Proceedings of the First Workshop on Sensor
Networks and Applications, pages 32-41, Sep 2002.

[56] G Varghese. Self-stabilization by local checking and correction. Ph.D. dissertation,
MIT, 1993.

[57] G Varghese. Self-stabilization by counter flushing. In PODCQf Proceedings o f the
Thirteenth Annual ACM Symposium on Principles of Distributed Computing, pages
244-253,1994.

[58] X Wang, G Xing, Y Zhang, C Lu, R Pless, and C Gill. Integrated coverage and
connectivity configuration in wireless sensor networks. In ACM SenSys03 Proceedings
of the First International Conference on Embedded Networked Sensor Systems, pages
28-39, Nov 2003.

[59] M Weiser. The computer for the 21st century. Scientific American, 265(3):66-75, Sep
1991.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://roc.cs.berkeley.edu/
http://robotics.eecs.berkeley.edu/

[60] M Weiser and JS Brown. The coming age of calm technology. Technical report, Xerox
PARC, Oct 1996.

[61] J Wu. Extended dominating-set-based routing in ad hoc wireless networks with uni­
directional links. IEEE Transactions on Parallel and Distributed Systems, 13(9):866-
881, Sep 2002.

[62] J Wu and H Li. On calculating connected dominating sets for efficient routing in ad
hoc wireless networks. Proceedings of DialM’99, pages 7-14, 1999.

[63] Y Xu, J Heidemann, and D Estrin. Geography-informed energy conservation for ad
hoc routing. In MobiCom02 Proceedings o f the Seventh Annual Inernational Confer­
ence on Mobile Computing and Networking, pages 70-84, 2001.

[64] Y Yao and J Gehrke. Query processing for sensor networks. Proceedings o f the 2003
CIDR Conference, 2003.

[65] F Ye, G Zhong, J Cheng, S Lu, and L Zhang. PEAS: A robust energy conserving pro­
tocol for long-lived sensor networks. In ICDCS03 Proceedings of the 23rd International
Conference on Distributed Computing Systems, pages 1-10, 2003.-

[6 6] H Zhang and A Arora. GS3: Scalable self-configuring and self-healing in wireless
networks. In PODC02 Proceedings o f the Twentyfirst Annual AC M Symposium on
Principles of Distributed Computing, 2002.

[67] H Zhang and JC Hou. Maintaining sensing coverage and connectivity in large sensor
networks. Technical Report UIUCDCS-R-2003-2351, University of Illinois at Urbana
Champaign, Jun 2003.

[6 8] Zongheng Zhou, Samir R. Das, and Himanshu Gupta. Connected k-coverage problem
in sensor networks. In ICCCN, pages 373-378, 2004.

[69] Zongheng Zhou, Samir R. Das, and Himanshu Gupta. Fault tolerant connected sensor
cover with variable sensing and transmission ranges. In SECON, 2005.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Graduate College
University of Nevada, Las Vegas

Ai Yamazaki

Local Address:
4248 Spencer st. apt.230
Las Vegas, NV 89119

Home Address:
296 Yubure Yamakita-machi Ashigarakami-gun
Kanagawa, Japan 258-0123

Degrees:
Bachelor of Science, Hotel Administration, 2001
University of Nevada, Las Vegas

Bachelor of Arts, Computer Science, 2005
University of Nevada, Las Vegas

Thesis Title: Self-* Distributed Query Region Covering in Sensor Networks

Thesis Examination Comittee:
Chairperson, Dr. A joy K. D atta, Ph.D.
Committee Member, Dr. John T. Minor, Ph.D.
Committee Member, Dr. Yoohwan Kim, Ph.D.
Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Self-* distributed query region covering in sensor networks
	Repository Citation

	tmp.1534462568.pdf.TKbmN

