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ABSTRACT

Design and Spectral Analysis of a Six-Axis Shaker System

By

Yasoda Krishna Prasad Dhulipalla

Dr. Georg F. Mauer, Examination Committee Chair 
Professor

Department o f Mechanieal Engineering 
University of Nevada, Las Vegas

Shaker table assemblies can exhibit resonanees within their frequency range of 

operation. The spectral analysis o f a six-axis shaker system permits the identification and 

prediction of resonance frequeneies. In the projeet deseribed here, a small six-axis shaker 

was tested experimentally. In parallel with the experiments. Finite Element (FE) models 

o f the shaker were generated, and their dynamie performance was simulated. Time data 

from experimental test series were eompared with the responses from FE analysis 

obtained for identieal test eonditions. The comparison of the response spectra between 

experiments and simulation permits the assessment and validation o f FE analysis as a 

predictive tool for designing larger multi-axis shakers. The power density and eoherence 

ffequeney response speetra for the entire 6x6 eontrol matrix are computed in Matlab, 

creating a detailed performanee assessment for all aspeets of the 6x6 control matrix.A 

new FE model of a larger 6-axis shaker table has been created. The design seeks to

111
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minimize the inertial table mass, while maintaining platform stiffness such that all 

eigenvalues are above the shaker table’s operational frequency range.

IV
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LIST OF TERMINOLOGY

Acceleration

Aecelerometer

Amplitude 
Angular frequency

Autocorrelation Function

Auto spectral Density 
{power spectral density)

Auxiliary Mass Damper 
(Damped Vibration 
Absorber)

Center-of-Gravity

Coupled Modes

Vector quantity that specifies the time rate o f velocity

A transducer whose output is proportional to the 
acceleration input.

The maximum value o f a sinusoidal quantity
The angular frequency of a periodic quantity, in radians per
unit time, is the frequeney multiplied by 2 f l  •

The autoeorrelation funetion of a signal is the average of 
the produet of the value o f the signal at time t with the 
value at time t + T:R {r) = x{z)x{t + t)
For a stationary random signal o f infinite duration, the 
power spectral density (except for a constant factor) is the 
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tend to reduce vibration by the dissipation o f energy in the 
damper as a result o f relative motion between the mass and 
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CG is the point through which passes the resultant o f the 
weights o f its component particles for all orientations of the 
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gravitational field is uniform, the CG corresponds with the 
Center-of-Mass.
Correlation Funetion: The correlation funetion o f two
variables is the average value o f their product ( (t) (?) )

Modes o f vibration that are not independent but which 
influence one another because o f energy transfer from one 
mode to the other.
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Damper

Degrees-of-Freedom

Deterministic Function 

Displacement

Distortion

Dynamic Vibration 
Absorber (Tuned Damper)

Effective Bandwidth

Effective Mass

Equivalent System

Excitation

The minimum viscous damping that will allow a displaced 
system to return to its initial position without oscillation 
A device used to reduce the magnitude o f a shock or 
vibration by one or more energy dissipation methods.

The number o f degrees-of-freedom of a mechanical system 
is equal to the minimum number o f independent 
coordinates required to define completely the positions o f 
all parts o f the system at any instant o f time. In general, it 
is equal to the number o f independent displacements that 
are possible.

A deterministic function is one whose value at any time 
can be predicted from its value at any other time.

A vector quantity that specifies the change o f position o f a 
body or particle and is usually measured from the mean 
position or position at rest.

An undesirable change in waveform. Noise and certain 
desired changes in waveform, such as those resulting from 
modulation or detection, are not usually classed as 
distortion.

An auxiliary mass-spring system which tends to neutralize 
vibration o f a structure to which it is attached. The basic 
principle o f operation is vibration out-of-phase with the 
vibration of such structure, thereby applying a 
counteracting force.

The effective bandwidth o f a specified transmission system 
is the bandwidth of an ideal system which (1) has a 
uniform transmission in its pass band equal to the 
maximum transmission of the specified system and (2) 
transmits the same power as the specified system when the 
two systems are receiving equal input signals having a 
uniform distribution of energy at all frequencies.

The complex ratio of force to acceleration during simple 
harmonic motion.

An equivalent system is one that may be substituted for 
another system for the purpose o f analysis.

Excitation is an external force (or other input) applied to a 
system that causes the system to respond in some way.
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Filter A device for separating waves on the basis of their 
frequency. It introduces relatively small gain to waves in 
one or more frequency bands and relatively large gain to 
waves o f their frequencies.

Forced Vibration

Foundation

Frequency

Induced Environments

Isolation

Linear System

Mechanical System 

Mode o f Vibration

Multiple Degrees-of- 
Freedom System

Natural Frequency

The oscillation o f a system is forced if  the response is 
imposed by the excitation. If  the excitation is periodic and 
continuing, the oscillation is steady-state.

Is a structure that supports the gravity load of a mechanical 
system. It may be fixed in space, or it may undergo a 
motion that provides excitation for the supported system.

The frequency o f a fimction periodic in time is the 
reciprocal of the period. The unit is the cyele per unit time 
and must be specified: the unit cycle per  see ond is 
called hertz (Hz).

Induced environments are those eonditions generated as a 
result o f the operation o f a strueture or equipment.

A reduetion in the eapacity of a system to respond to an 
excitation, attained by the use o f a resilient support.

A system is linear if  for every element in the system the 
response is proportional to the excitation. This definition 
implies that the dynamic properties of each element in the 
system can be represented by a set of linear differential 
equations with constant coefficients, and that for the 
system as a whole superposition holds.

An aggregate o f matter eomprising a defined eonfiguration 
o f mass, stiffness, and damping.
In a system undergoing vibration, a mode o f vibration is a 
eharacteristic pattern assumed by the system in which the 
motion of every particle is simple harmonie with the same 
frequency. Two or more modes may exist concurrently in a 
multiple degree-of-freedom system.

One for which two or more eoordinates are required to 
define eompletely the position o f the system at any instant.

The frequency o f free vibration o f a system. For a multiple 
degree-of-freedom system, the natural frequencies are the 
frequencies o f the normal modes o f vibration.
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Oscillation

Random Vibration

Resonance

Stiffness

Oscillation is the variation, usually with time, o f the 
magnitude o f a quantity with respect to a specified 
reference when the magnitude is alternately greater and 
smaller than the referenee
The vibration whose instantaneous magnitude is not 
speeified for any given instant o f time. The instantaneous 
magnitude o f a random vibration is speeified only by 
probability distribution funetion giving the probable 
fraction o f the total time the magnitude lies within a 
specified range
Resonanee of a system in forced vibration exists when any 
ehange, however small, in the frequeney o f exeitation 
eauses a decrease in the response o f the system.
The ratio o f change of force (or torque) to the 
eorresponding ehange on translational (or rotational) 
deflection of an elastic element.

Time History 

Transducer

The magnitude of a quantity expressed as a funetion of 
time.

A deviee which converts shock or vibratory motions into 
an optical, a mechanical, or most conunonly to an electrical 
signal that is proportional to a parameter o f the experieneed 
motion.

Transfer Impedanee Transfer impedance between two points is the impedanee 
involving the ratio o f foree to veloeity when force is 
measured at one point and veloeity at the other point. The 
term transfer impedance is also used to denote the ratio of 
force to velocity measured at the same point but in 
different direetions.

Transmissibility The nondimensional ratio o f the response amplitude of a 
system in steady-state forced vibration to the exeitation 
amplitude.

Uneorrelated

Vibration 

Vibration Machine

Two signals or variables (0  and X 2 (0  are said to be
uneorrelated if  the average value o f their product is zero. If 
the eorrelation eoefficient is unity, then the signals are said 
to be completely correlated.

An oscillation wherein the quantity is a parameter that 
defines the motion o f a meehanical system.

A deviee for subjeeting a meehanical system to a eontrolled
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and reproducible meehanical vibration.

Viscous Damping The dissipation of energy that occurs when a particle in a
vibrating system is resisted by a force that has a magnitude 
proportional to the magnitude of the velocity o f the particle 
and direetion opposite to the direetion o f the particle.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition 

The project objective is the design and spectral analysis o f a six-axis shaker system. 

The shaker should meet the following specifications:

1. The Shaker system should be designed to perform six Degrees o f Freedom 

vibration.

2. Accelerations in six directions simultaneously to 20 g pk-pk at maximum pay 

load.

3. Frequency range 10 Hz - 3000 Hz

4. Payload up to 25 pounds

5. We should develop a sufficiently complete Finite Element Model of the Team 

eleetrodynamie shaker so that experiments and FE results match over the range of 

experiments within a narrow error band.

Shakers, vibration and shock testing equipment are foree generators or transducers 

that provide a vibration, shock or modal excitation source for testing and analysis. 

Shakers are used to determine product or component performance under vibration or 

shock loads, detect flaws through modal analysis, verify product designs, measure 

structural fatigue o f a system or material or simulate the shock or vibration conditions 

found in aerospace, transportation or other areas.
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Shakers can operate under various principles. Mechanical shakers use a motor with an 

eeeentric on the shaft to generate vibration. Eleetrodynamie models use an electromagnet 

to create force and vibration. Hydraulic systems are useful when large forces and 

amplitudes are required, such as in testing large aerospace or marine structures or when 

the magnetic fields o f electro dynamic generators eannot be tolerated. Pneumatic 

systems, known as air hammer tables; use pressure air to drive a table. Piezoelectric 

shakers work by applying an electrical charge and voltage to a sensitive piezoelectric 

crystal or ceramic element to generate deformation and motion.

Common features o f shakers consist of an integral slip table and active suspension. 

An integral slip allows horizontal or both horizontal and vertical sample testing. The slip 

table is a large flat plate that rests on an oil film placed on a granite slab or other stable 

base. An active suspension system compensates for environmental or floating platform 

variations.

The most important specifications for shakers are peak sinusoidal force, frequency 

range, displacement, peak acceleration and peak velocity. Some of these specifications 

may be ratings without a load, as the manufacturers cannot always predict how the 

shakers will be used.

The three main test modes shakers can have are random vibration, sine wave 

vibration and shock or pulse mode. In a random vibration test mode, the force and 

velocity o f the table and test sample will vary randomly over time. A sine wave test mode 

varies the force and velocity o f the table and test sample sinusoidal over time. In a 

shock test mode, the test sample is exposed to high amplitude pulses of force.
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1.2 Shaker Sélection

The shaker sélection begins with understanding what is suitable or needed for the test 

being conducted. The three types o f shaker systems that are available include electro 

dynamic, hydraulic and mechanical, which are typically used for random vibration, sine 

vibration and many types o f shock tests. The major specifications to consider are 

frequency range and waveform, displacement and veloeity, the number o f axis to be 

tested, payloads and vibration levels, and force rating. This information is got from 

Referenee [5].

1.2a Frequeney Range 

Shakers can be become unstable or unpredictable at higher frequeneies. Since project 

testing is conducted in a 2 KHz frequency range, we cannot use a hydraulic shaker, 

suitable for the frequeney range o f 500 Hz; instead we use an electro dynamic shaker. 

The electro dynamic shaker can provide reliable and accurate results at up to 3 KHz, 

making it an ideal choice.

1.2b Displacement and Veloeity 

Shakers have definite limits on the vibration levels they can produce. These limits are 

quantified in terms of acceleration, velocity and displacement. With sinusoidal motion, 

simple formulas define the relationship between displacement in inches, velocity in 

inches per seconds, acceleration and frequency in hertz.

1.2c Number o f Axes Tested 

The decision to test in one, two or three axes is application-specific. Many tests are 

performed in only one axis, yet others require two or even three axes o f vibration. Multi­

axis testing can be done sequentially or simultaneously, which can significantly affect the
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sélection o f the shaker system. The main advantage o f this multi-axis shaker is its ability 

to reduce the test time [Ref 6].

1.2d Payloads and Vibration Levels

A certain amount o f foree is required to cause a particular payload and armature to 

vibrate at a given vibration level. This can be stated from Newton’s law, F  = ma = wg. 

The force, F, is required to accelerate the weight, w, at a certain vibration level, g. The 

project at hand will be conducted at a 20 g vibration level. If  a hydraulic shaker were 

selected, we must account for the piston weight in the equation F  = wg, since the piston 

of the hydraulic shaker also vibrates. This excessive force required may cause some 

surprises while running the simulation. Hence we can prefer electro dynamic shaker 

system.

Experimental values can be obtained from this electro dynamic shaker. However, it is 

not possible to conduct the entire experiment every time for the small modifications or 

the results expected. It is highly expensive, time consuming and involves excessive labor. 

The best way to correlate this work is Finite Element Analysis (FEA), which is highly 

reliable and predictable.

The name it self defines as dividing the model in to number o f elements, i.e. finite 

elements. A study for each and individual element is performed to get most reliable 

output. Various software is used in FEA, but here for the projeet at hand MSC.Patran and 

MSC.Patran was used. We generate the same model in FEA and create same boundary 

eonditions that the real modal has. By applying same forces as the real modal has driving 

forces, we will get the output values. Just like we measure aeeeleration values by 

accelerometer for real modal, we can get output acceleration values. Two test series have
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been completed so far, and we are trying to study the results with margin error. Once 

proper results are obtained, FE analysis can be applied for any additional modifications of 

the model.
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CHAPTER 2

COMPONENTS OF THE VIBRATION SYSTEM 

Vibratory motion is a key charaeteristic o f many physical systems. The strueture of 

physical systems can be modeled as mass and spring like elements that are connected 

together. Thus, vibrating system consist o f (1) mass and (2) elasticity components. The 

energy of the system consists of the kinetie energy o f the mass elements and drives the 

spring like elements that possess potential or stored energy. The spring-like elements are 

therefore the elastic part o f the vibration system which determine the strength and 

position of the vibratory motion experieneed. In constant or fluctuating vibration motion, 

the energy is the system eonsistently shifts between potential and kinetic energy. In the 

absence o f any external force, a vibrating system can potentially experience constant 

vibration motion forever; nevertheless, although theoretieally correet, everlasting 

vibration motion is very unlikely to oceur.

The inclusion o f a third key element, damping, dissipates energy in the form of heat. 

For example, a free vibration will eventually have all its internal energy dissipated due to 

the damping and bring the vibration to a halt [Ref 12].

2.1 Simple Harmonie Motion 

Oscillation is the most eommon form of motion exhibited most by simple meehanical 

systems. Such motion is called simple harmonic motion. Simple harmonie motion 

consists o f a particle that begins at rest or equilibrium position and aehieves maximum
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displacement in the opposite direction and starts to switch position from each direction. 

The motion this particle experiences can be described mathematieally as a sinusoidal 

function,

y(?) = 7pSinfti? (2.1)

where,

Yp = maximum displacement amplitude (inches or meters)

0) = angular frequency o f oscillation (radians/second) 

t = time (seconds)

The angular frequency® can be expressed,

® = 2 ; ^ o r /  = ^ ^  (2.2)

where,

Æ =3.141593

/  = frequency (cycles/second or Hz)

The frequeney/  represents the number of complete cycles o f oseillations an object 

makes in one second.

T =  (2.3)

The period of oseillation represents the time it takes an objeet to complete one eycle of 

oseillation.
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2.2 Relationship between Displaeement, Veloeity, and Aeeeleration Signals

It is important to understand the relation between the displaeement, velocity and 

acceleration signals o f the vibration of a simple meehanieal system.

Displaeement is the distanee that a physieal objeet moves with respect to its initial 

position. Static displacement refers to a shift in the physieal position o f an object, for 

example, a car that has moved from one eity to another. Here, displaeement is called 

distance.

Dynamic displacement is the magnitude o f the vibration o f an object or a portion of 

an object, for example, how mueh the wing tips o f an aireraft move up and down during 

flight. Dynamic displacement ean be measured direetly using displaeement transdueers or 

by using accelerometers and double integration of the aeeeleration signal. 

Let the displacement y{t) be described by a cosine funetion:

y{t) = Yco%a)t (2.4)

The velocity o f the system is the time rate o f ehange of displacement.

O r,

v(?) = sin ®? (2.6)

The velocity can be expressed.

ÿ(?) = ®T eos(®? + y )  (2.7)
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Which indicates the velocity leads the displaeement by a phase o f 90° degrees. The 

acceleration is the time rate of ehange of velocity and is the second derivative of the 

displacement signal with respect to time,

or,

y{t) = -ccdY eos cot (2.9)

This indieates the aeeeleration lead the veloeity by a phase 90° and the displacement by a 

phase 180°.

2.3 Damping Elements 

Vibration systems often contain damping elements. If  the damping element is a 

viseous damping element, the force aeting through a translational damper is,

fd  ~ fd  ~ Ox (2.10)

where,

f j  = damping force (Ibf or N)

C = viseous damping coefficient (Ibf-s/in) or N-s/m) o f the damping element 

X = displacement (inches or meters)

V = velocity (in/s or m/s)

2.4 Free Vibration with Coulomb Damping 

Coulomb damping results from the frietion foree associated with two surfaces in 

contaet moving relative to eaeh other. The friction force is equal to the normal foree on 

the sliding surface assoeiated with the weight o f the mass times the surfaee friction
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coefficient. When the mass is starting from a “stopped” position, the friction coefficient 

is the static friction coefficient, Us. When the mass is moving, the friction coefficient is 

the dynamic friction coefficient, U. The friction force always acts in a direction opposite 

the velocity o f the mass and is independent o f the amplitude of the velocity and 

displacement o f the mass.

2.5 Free Vibration with Structural Damping 

All mechanical systems possess mechanisms for dissipating energy although some 

systems may not have damping elements. Many structural materials exhibit a stress-strain 

relationship characterized by a hysteresis loop when subjected to cyclic stresses below 

their elastic limits. The energy dissipated per cycle is associated with the internal friction, 

and is proportional to the area within the hysteresis loop. This type o f damping is referred 

to as hysteresis or structural damping and the corresponding damping force is 

proportional to the elastic or spring force.

2.6 Deterministic and Random Vibration Signals 

Deterministic and random vibration signals are two classes of signals that can excite 

vibration systems. Deterministic signals can be expressed by explicit mathematical 

functions and can be broken down into periodic and non-periodic signals.

Random signals are more complex and are described by statistical functions rather 

than explicit mathematical functions. Random signals can be divided into stationary and 

non-stationary signals.

Periodic signals repeat themselves over specified time intervals, T  such that

/'(,) = ./( ,+  31 (2 11)

10
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Harmonic or sinusoidal and complex periodic or Fourier series signals are the two types 

o f periodic signals that have been discussed in the preceding sections. The response of 

vibration systems to harmonic signals can be more easily described and understood from 

an analytical perspective. Furthermore, the response o f a linear system to many types of 

complex deterministic signals and to some types o f random signals can be described by 

using the principle o f superposition to sum the individual responses of the system to the 

series o f harmonic components that often make up a these signals.

Non-periodic signals can be divided into almost periodic and transient signals. 

Almost periodic signals are very similar to complex periodic signals. Whereas in a 

complex periodic signal all o f the higher harmonics that make up the signal are integral 

multiples of the fundamental or lowest frequency component of the signal, in an almost 

periodic signal there will be at least one and possibly more higher frequency components 

in the signal that will not be an integral multiple o f the lowest frequency component of 

the signal. Transient signals usually occur for a brief period o f time, long or short, and 

then disappear. Transient signals can be described using Fourier and Laplace transforms.

Certain types of signals cannot be described by explicit mathematical functions. For 

example, if  an identical experiment is repeated many times and the measured outputs 

always differ, the process is probably random. Random signals must be described in 

terms of probability statements and statistical functions. Random signals may be either 

stationary or non-stationary. If several sample lengths o f a data record of a process, which 

form an ensemble o f individual data records from the overall record, and if  the results 

have the same statistical properties as other ensembles of data from the same data record, 

then the process is stationary. Otherwise, the process is non-stationary.

11
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Four principal types of statistical functions are generally used to describe the basic 

properties of random signals. They are mean squared values and variances, probability 

and probability density functions, correlation functions, and spectral density functions. 

The mean squared values and variances furnish an elementary statistical description of 

the overall amplitude o f a signal. The probability and probability density functions yield 

more specific information with respect to the statistical properties o f a signal in the 

amplitude domain. The correlation and power spectral density functions furnish 

information concerning the statistical properties o f a signal in the time and frequency 

domains, respectively.

12
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CHAPTER 3

FINITE ELEMENT ANALYSIS 

Finite elements are mainly defined by their shape and their properties. The two shapes 

and properties supported depend on the analysis program that uses in MSC.Patran, as 

defined in Analysis Preferences. This information is got from the basic concepts and 

definitions [Ref 13].

When creating a finite element mesh using the Finite Elements application form, 

elements are defined purely in terms of their topology. Other properties such as materials, 

thickness and behavior types are then defined for these elements in subsequent 

applications. The structural uses column describes typical usage conditions for the 

element shapes.

3.1 Mesh Generation Techniques 

There are four basic mesh generation techniques available in MSC.Patran: IsoMesh, 

Paver Mesh, Auto TetMesh, and 2-1/2D Meshing. This section describes each meshing 

technique. Selecting the right technique for a particular model must be based on 

geometry, model topology, analysis objective, and engineering judgment, [Ref 13]. The 

model shown in Figure 1 is the meshed geometry, using the IsoMesh generation 

technique.

13
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Figure 1: Meshed Geometry

The FE model that used for the simulation was defined with 16,000 elements and 

30,000 degrees-of-freedom. The major difference between the two FE models is in the 

way the contacts have been defined.

The FE model also consists o f 12 small rigid surfaces shown in figure 2. They don’t 

have any mass. The contact between the deformable cruciform and these rigid surfaces is 

defined as sliding contacts with a friction coefficient o f zero. Due to this type o f contact 

definition, the FE model is non-linear and thus a complex system to analyze. We are 

using MSC.Marc along with MSC.Nastran to conduct the non-linear simulations.

The springs are modeled by beam elements. These springs are attached to the center 

of the rigid surfaces. The other ends of these beam elements are attached to another 

smaller beam element. One end of these smaller beam elements is completely fixed to the

14
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ground while the other end has 4 degrees of freedom; three rotational and one 

translational. The spring and the rigid plate are constrained in their respective X-Y plane.

The beam elements are made o f spring-steel material. The length of the beam 

representing the actuators and the preload piston vary slightly so that the difference in 

their volume reflects the difference in their actual mass accurately.

A preload of 90 lbs is applied at the end of each spring element. The sinusoidal 

excitation force is applied at the center o f the surface where the beam is connected.

Beam Element
Rigid Surface

Smaller Beam

Figure 2; Model with Rigid Surfaces and Beam Elements

15
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3.2 Transient Dynamic Analysis 

Transient dynamic analysis solves for the dynamic response (displacements, 

velocities, accelerations, stresses and strains) of a structure subjected to the action o f time 

dependent loads. The basic equation o f the transient dynamic analysis of the dynamic 

equilibrium equation is,

[ K ] U { t ) + [ C ] Û ( t )  +  [ M ] Ü ( t y F ( t )  (3.1)

where,

[K], [M] and [C] the stiffness, mass and damping matrices respectively

U{t)  Ù{t )  and Ü {t) the displacements, velocities and accelerations at time t

F(t) the force vector acting at time t

It is implicitly assumed that the stiffness, mass and damping matrices remain constant 

(linear transient dynamic analysis) [Ref 13].

3.3 Modal Transient Dynamic 

The step-by-step direct integration method of solving the dynamic equilibrium 

equation 3.1 can be very costly for large models, especially if the integration has to be 

carried out for many time steps. In general, at every time step we have to solve the 

resulting n (n = number of model degrees-of-freedom) simultaneous equations. In the 

modal method, we use the modal superposition principle to transform the dynamic 

equilibrium equation 3.1 in terms of the modal coordinates.

Let,

C/(0 = M ^ ( / )  (3.2)

where,.

16
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{<!>] The matrix o f the m (mass-orthonormalized) eigenvectors.

X(t) A vector of m components (generalized displacements).

m The number o f vibration modes (eigenvectors).

Substituting equation 3.2 into equation 3.1 andpre-multiplying by[^]^, we obtain,

l K ] X { , ) ^ [ C , ] X { , ) + [ M ^ ] X ( l )  = F ,{t)  (3.3)

where.

(3.4)

(3.5)

[ C ] = [ r f [ c ] M (3.6)

. (3.7)

The objective o f the transformation is to reduce the order o f the stiffness, mass and 

damping matrices. Usually m is much smaller than n (m «  n). A  special advantage of 

using the normalized mode shapes [<^]as the transformation matrix is that the reduced 

matrices [KJ, [MJ and [CJ are all diagonal. Thus, ignoring damping for the time being,

[M j\ = [ l ] {mxm)  (3.8)

and,

17
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Consequently, the m equations in equation 3.3 are uncoupled. The resulting

uncoupled equations can be solved by using the Newmark beta method, Wilson theta

method, or any other integration scheme.

Having calculated the generalized displacements, velocities and accelerations % ( i ) , 

X  (t) andŸ  ( r ) , we can obtain the response o f the structure U[t ) , Ù  {t) and Ü (t) as,

U{t)^[(l>\X{t)  (3.10)

Ù{t)  = [(f \X{t )  (3.11)

(3.12)

3.4 Solution Type

The main solution types that are available in MSC.Patran are described as follows, 

Static:

This solution requests a linear static analysis.

Modal:

This solution requests a modal vibration analysis using one o f three eigensolvers. 

Bifurcation Buckling:

This solution requests a bifurcation buckling analysis. This can also be run as a restart 

from a linear, static analysis.

Steady-State Heat Transfer:

This solution requests a steady state heat transfer conduction and/or convection analysis 

for constant loads and properties.

Nonlinear State:

18
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This solution requests a material and/or geometric nonlinear, static analysis.

Direct Linear Transient:

This solution requests a linear, transient dynamic structural analysis.

Modal Linear Transient:

This solution requests a linear, transient dynamic structural analysis as a restart from a 

Modal analysis.

Frequency Response:

This solution requests a linear frequency response analysis. This analysis type is always 

run as a restart to a modal analysis.

Shock Spectrum:

This solution requests a linear shock spectrum analysis. This analysis type is always run 

as a restart to a modal analysis.

Design Sensitivity:

This solution requests a design sensitivity structural analysis. This analysis type is always 

run as a restart to a static analysis.

3.5 Free Vibration Analysis 

MSC.Patran FEA can perform free vibration analysis to compute the natural 

frequencies and associated mode shapes o f linear elastic structures. The structure is 

assumed to be initially unstressed. A real eigenvalue analysis is performed, which 

assumes that there is no damping and that the structure is not spinning (i.e., no Coriolis 

force).

19
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3.6 Eigen Solution

MSC.Patran FEA has three eigensolvers: subspace iteration, the Householder-QL 

method (which can be used with or without Irons-Guyan reduction), and the Lanczos 

method for solving problems in free vibration and bifurcation buckling [Ref 13].

The Subspace Iteration Technique

The subspace iteration technique, which is a special form of the Rayleigh-Ritz 

method, is a very efficient eigensolver for cases when a small number o f the system’s 

lowest eigenpairs are sought. The essential steps o f this technique for solving the

generalized eigenvalue problem are as follows:

1. Choose some trial load vectors {P}i

2. Compute a trial displacement vector {X}i for each trial “load” vector {P}i 

by solving

(3.13)

These displacement vectors will be used as trial eigenvectors.

3. Use the trial vectors {X}i to form the reduced eigenvalue problem,

= 0 (3.14)

Where [K*] and [M*] are reduced system stiffness and mass matrices, respectively, 

defined as,

[ r ]  = [x f [X ][2 T ] (3.15)

20
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4. Solve this reduced eigenvalue problem. When the number o f eigenpairs 

sought is much less than the number o f degrees-of-freedom in the model, the 

computer time necessary to solve this reduced problem is significantly less 

than would be required to solve the much larger original problem. 

MSC.Patran FEA uses the QL method to solve the reduced eigenvalue 

problem.

5. If the eigenvalues have converged, then use the eigenvectors o f the reduced 

system to calculate the eigenvectors of the original system:

(3.17)

6. If  further iteration is required, calculate new load vectors {?}. from the 

inertial forces generated by the eigenvectors o f the reduced problem,

{ P ] = [ M ] [ X ] { , ^ 1  (3.18)

steps 2 through 6 repeat until the eigenvalues have converged to the desired accuracy, or 

for a pre-assigned number o f iterations. The convergence tolerance used by MSC.Patran 

FEA is the fi'actional change in eigenvalues in continuous iterations to the next.

21
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CHAPTER 4

SIGNALS

4.1 Random Signals

Random signals occur when the data representing a physical phenomenon cannot be 

predicted or is random and when the future time history record cannot be generated or 

predicted without experimental error. The collection of all time history records can be 

described asx,(r), i = 1, 2, 3..., which is produced by the experiment is considered the 

ensemble that defines a random process {%(/)} describing the phenomenon.

4.2 Statistical Sampling Considerations

The number of time history records that might be available for analysis by ensemble- 

averaging procedures, or the length o f a given sample record available for analysis by 

time-averaging procedures, will always be finite. It follows that the average values o f the 

data can only be estimated and never computed exactly.

4.3 Transient Inputs

Transient data is unique as it is the only type of non-stationary data that results from a 

short duration non-stationary phenomena with defined commencement and ending. 

Using similar techniques o f that for stationary data, we can easily interpret and analyze 

transient data.

22
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4.4 Frequency Response 

Frequency response is the gain and phase response o f a circuit or other unit under test 

at all frequencies of interest. In common usage though, only the magnitude or gain is 

considered important when referring to frequency response. The frequency response, 

H { f ) , is defined as the inverse Fourier Transform of the Impulse Response, h(z), o f a 

system,

(4.1)

Frequency response measurements require the excitation o f the UUT with energy at 

all relevant frequencies. The fastest way to perform the measurement is to use a 

broadband excitation signal that excites all frequencies simultaneous, and use FFT 

techniques to measure at all o f these frequencies at the same time. Noise and non- 

linearity is best minimized by using random noise excitation, but short impulses or rapid 

sweeps may also be used. When a resolution bandwidth of less than about 100 kHz is 

obtained, the fastest way to measure the frequency response functions is to use FFT based 

techniques.

Units: Comparison of Decibel (dB) and/or Velocity/Angular Velocity (V, Radians, or 
Degrees) to Hertz (Hz).

Approach 1 : Sine Generator/Voltmeter

Apply a sine wave to the input o f the system under test and measure the output

voltage and repeat this proeess for eaeh frequency. The gain o f the system is the ratio of

the output voltage to the input voltage.

Approaeh 2: Transient or Noise Exeitation with Cross Spectral Techniques

23
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You can use any signal that contains frequency components in the range of interest. 

The signals aren't required to have the same amplitude. However, all measurements using 

Cross Spectral Techniques require simultaneous measurement of both input and output 

signals, using simultaneously sampling A/D Converters. 

The frequency response, H^y, can be computed as,

(4.2)

where, Gxy is the eross spectrum and Gxx is the auto spectrum of the input.

This technique eomputes the eorrelation between the input and output signals (as a 

function o f frequency) and hence, rejects noise and distortion. The more statistical 

samples that are ineluded in the averaging yields greater noise and distortion rejeetion 

and hence, making the measurement more aecurate. The resulting statistical function, 

called the cross spectrum, is then normalized for the actual amplitude o f the signal at 

each frequency on the input (ealled the auto spectrum, or more commonly, the averaged 

spectrum). This gives the Frequeney Response Function (FRF), which contains both 

magnitude and phase information. The magnitude is typically shown on a logarithmic Y  

axis (in dB), and the phase is often shown on a 0 to 360 degree scale. In systems with 

output noise, the most accurate evaluation o f resonanee peaks is made using the H2 

method of frequency response computation, whereas the H I technique gives the best 

response for anti-resonanees. H2 is also useful when inadequate resolution is used in the 

measurement o f a resonanee. Sinee the phase often shifts thousands of degrees, a 

technique called phase unwrapping is used to remove the discontinuities every time the 

phase jumps from 360 to 0 degrees.

24
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This approach has the advantage o f overcoming noise, distortion, and non correlated 

effects. It also corrects for any loading effects on the input to the system. In addition, the 

technique can be extremely rapid, because it measures all frequencies o f interest 

simultaneously. Its only weakness is that its signal-to-noise ratio ean be lower than the 

swept sine with tracking filter technique.

Approach 3: Naturally Occurring Excitation

Sometimes one cannot insert an excitation signal into the system to be tested. 

However, if  one wants to measure the Frequency Response Funetion o f a shock absorber 

in a car, one can use the naturally oceurring "input signals" eoming from bumps in the 

road as the excitation signals. Using cross spectral techniques, one can measure the input 

signal on the axle of the wheel and cross correlate it with the output signal pieked up on 

the automotive chassis. Since the bumps are transients, they have relatively broad 

frequency components and make a broadband measurement possible. When making this 

measurement, one should take extreme care to account for triggering and windowing 

conditions, and also consider potential time delays between the input and output. Thus, 

this technique is only recommended for experienced professionals with a thorough 

understanding of digital signal processing techniques.

4.5 Gain

Gain is the factor in which a signal is amplified in terms o f decibels, dB and is 

eonsidered the magnitude o f the frequency response function. Measure in dB or decibels 

gain can be written as mathematically function in the form of the logarithmic ratio o f two 

signal amplitudes as shown below:

25
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For signals in volts,

dB = 20 l o g - ^  (4.3)
ref

For power ratios.

û® = 1 0 1 o g -^  (4.4)

Many quantities are expressed in deeibels such as sound pressure level, sound power 

level, sound intensity level, transmission loss, and many more. Although they all have 

“units” o f decibels, they are typieally not interehangeable beeause they use different 

reference levels.

4.6 Phase

The shift o f a periodic signal or phase is often measured with referenee to its zero 

crossing, compared to a reference signal o f the same frequency. One period o f the signal 

is defined as having duration of 360 degree of two pi radians. On oecasion a phase shift 

is often related to as a time delay; however, since phase shifts oecur in both the positive 

and negative direction, great caution should be used in directly relating phase shift to a 

time shift. Many forms of apparent time shift o f a waveform are actually due to a 

distortion o f the waveform. Phase can be described using two units, either radians or 

degrees.

In circuit analysis, the slope of the phase curve, also known as the group delay, is 

used to characterize the delay of a cireuit. Group delay can be measured using the phase 

portion o f the frequency response function.
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4.7 Frequency Spectrum 

The representation of a signal in the frequency domain is called the frequency 

spectrum. A signal is broken into multiple periodic signals each consisting o f a specific 

magnitude and phase. Recognizing repeated is a key aspect of the frequeney speetrurn of 

which the sine wave is the most ideal to use. Frequency spectra are broken into three 

main groups which appropriately define there application.

4.8 Types of Frequency Spectra 

Frequency Spectrum also referred to as Instantaneous Spectra, Fourier Spectra, FFT 

Spectrum, or Complex Spectrum. This spectrum is measured in one black data with no 

averaging and consists of a number o f periodic components (one vector per frequency) 

displayed as magnitude and phase information. The magnitude o f the speetrum is 

measured in volts, V, or power, V2, and the entire spectrum is computed using an FFT, 

the frequency components will have linear spacing.

Averaged Complex Spectrum also referred to as Averaged Fourier Spectrum. The 

primary usage of the averaged complex spectra involves averaging the complex spectra, 

which already accounts for magnitude and phase, for repeated signals. In order to fully 

understand the signal, the averaging is done for both the real and imaginary components 

o f the signal individually. This type o f measurement picks out periodic frequency 

components and is very useful in removing noise that is not correlated to the repeated 

signal.

4.9 Power Spectrum

Power speetrum is also referred to as Auto Spectrum or Auto Power Spectrum.These 

terms refer to an average o f the power o f the individual frequency components over a
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number of instantaneous spectra. When this averaging occurs, the magnitude o f each 

frequency component is squared, and added to the previous sum for that frequency. 

Hence, the phase information is discarded.

The averaging to compute a power spectrum does not reduce the unwanted noise in 

the system. However, it can be extremely useful in getting a reliable statistical estimate of 

the level of random signals being measured. For example, if  one only displays the 

instantaneous spectrum of white noise, the spectrum will be extremely jagged. But after 

computing the power spectrum with adequate averaging, the shape o f the spectrum will 

converge on a flat spectrum. Power spectra can be shown in units of power, or the square 

root o f the averaged result can be taken to give a voltage value (which is the RMS value).

In addition, the power speetrum may be scaled in several different ways depending on 

the type of signal under analysis. They are Power Spectral Density (PSD) and Energy 

Spectral Density (ESD).

• PSD is used when measuring continuous broadband noise, and normalizes the

power to an equivalent bandwidth of 1 Hz, irrespective of the actual bandwidth of 

the filter being used. For example, if  a signal is measured at -93 dB in a 10 Hz 

bandwidth, then the spectral density would be -103 dB (in a 1 Hz bandwidth). 

This makes it possible to compare noise measurements made with different 

bandwidth settings o f the speetrum analyzer.

• ESD is used to measure the energy of transient signals. Since transients also are

spread out over a broad frequency range, they must be normalized to 1 Hz (as

with noise). In addition, the duration o f transients may vary significantly, so their
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duration is also normalized to a standard equivalent duration o f 1 second. This 

makes it possible to eompare the spectra o f different transients.

4.10 Fourier series and Transforms 

The Fourier method is a mathematical technique used to analyze periodic signals. 

Consider any periodic record x{t) o f period T\ then for any value of t,

X{t )  -  x{t ± kT) ,  where k -  1, 2, 3 ... (4.5)

The fundamental frequency,/;, satisfies,/; =

Using the mathematical concept shown, we can expand such periodic data using the 

formula,

x(t) = - ^  + ^  {a(k) X cos(2;r x /  (k)t) x b{k) x sin(2;r x /  (A:)/} (4.6)

where,
f ( k )  = k x f ^ = k / T , k = l , 2 , 3 . . .  (4.7)

Therefore, we can define x(r) as a sinusoidal wave function at discrete frequencies 

spaced d f = f t  apart. The eoefficients o f the function, a{k) saàb{k), can be obtained by

calculating the following integrations over a defined period T, either -  772 to 772 or zero

to T.

a{k) = ^  J{x(r)eos(2;?rx f{ k ) t}d t k  = 0, 1, 2 ... (4.6)
0

b{k) = yÇ^{x{t)sm{2}Tx f{k )t}d t k  = 0, 1, 2 ... (4.7)
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4.11 Spectral Analysis

Periodogram analysis can be a useful way of assessing whether there is a strong 

cyclie component in a time series. However, its most serious fault is that the sampling 

errors assoeiated with estimates of sums of squares are quite large. Spectral analysis 

techniques were developed to reduce this problem of sampling error. A power spectrum 

is a slightly modified version of a periodogram. There are many different versions of 

spectral analysis that involve different ways of modifying the periodogram estimates to 

reduce their sampling error [Ref 4].

The term “smoothing” refers to a process in whieh each periodogram intensity is 

replaced by a weighted average that includes intensity estimates for a few neighboring 

frequencies. Smoothing procedures differ in two ways: First, the width o f the “window”, 

that is, the number of neighboring frequencies that are included in this weighted average, 

can vary. Second, the weights used for this weighted average can be of different forms; 

some smoothing windows give equal weight to all included frequencies, whereas others 

give more weight to frequencies near the eentre o f the window than to frequeneies near 

the edges. When the weighting funetion is graphed, it may have various different shapes: 

for instanee, a Daniell window looks like a reetangle, whereas many o f the other popular 

smoothing windows have a bell shape. Thus, windows ean vary in width and also in 

shape.

A power spectrum is a periodogram that has been smoothed, using one o f many 

possible smoothing functions, or “windows”, to reduce the sampling error. A 

periodogram partitions the variance of the overall time series into a discrete set o f 

frequency components: the sum of squares associated with each frequency was called
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“intensity”. In a spectrum these sums of squares are averaged together across neighboring 

frequeneies to provide a smoother and more reliable estimate o f the distribution of 

varianee eontinuously aeross the entire range o f frequencies from l/V  to 14. The term 

“power” is typically used to refer to the estimated amount o f variance in the time series 

that is accounted for by a particular band o f frequencies.

4.12 An Alternative Approach to Smoothing; The Bartlett Window

The other approach to the estimation o f a speetrum is to ealculate the lagged 

autocorrelation function (ACT) for a time series up to some lag M: then do an FFT or 

periodogram analysis on this lagged ACF. This method is called the Bartlett window. The 

set of Fourier frequencies that is fitted to the data is now based on M, the maximum lag in 

the ACF, instead of A, the number of observations in the original time series. A benefit of 

this approaeh is that the analyst ean ehoose various values o f M  as a means o f fitting 

different sets o f periods to the data. This ean be a way of avoiding the problem of leakage 

when N is not an integer multiple of the cycle length that the analyst is trying to detect, 

making it possible to vary the set of periods or Fourier frequeneies that are fitted to the 

time series, while still making use o f all the data.

This method of obtaining the spectrum (first computing the ACF to lag M, Then 

applying the FFT) is the procedure that Koopmans calls the Bartlett (1) window. For the 

resultant spectral estimates in this case the e d f ^ N / M ,  where N  is the number of

observations in the original time series and M is the maximum lag in the ACF that is used 

as the basis for the FFT.
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4.13 Fourier Transforms 

The use of the Fourier Series was introduced for periodic signals and here will outline 

the use of Fourier Transforms to analyze non-periodie signals obtain from transient data, 

either deterministic or random, or for stationary random data. Consider the Fourier series 

as T  approaches to infinity giving us the following Fourier integral,

X { f )  = dt  -CO < / <  00 (4.8)

The quantity X { f )  is called the Fourier transform or speetrum o fx (t) . Alternatively, 

if  X { f )  is known, the inverse Fourier transform will give you the x{t) using the 

formula,

^ ( / ) =  -o o < r< o o  (4.9)

4.14 Correlation and Spectral Density Functions 

4.14a Cross-Spectral Analysis 

To perform a bi-variate or eross-speetral analysis for a pair o f time series (denoted X 

and Y), it is first neeessary to obtain the univariate spectrum for each of the individual 

time-series variables.

The cross-speetrum is essentially the cross-product o f these two smoothed univariate 

speetra. (An alternative ways of estimating a eross-spectrum is to do a discrete Fourier 

transform of the lagged cross-correlation function (CCF) between X  and Y time series.) 

The complex numbers that result are not directly interpretable but they are converted into 

an estimate of eoherenee, and an estimate o f phase, for eaeh o f the N/2 frequeneies in the 

speetrum. Coherenee, like an R^, indieates the pereentage of shared varianee between the
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two time series at a particular frequency. Phase, like a time lag, indicates the timing of 

peaks in the Y  series relative to peaks in the X  time series at a given frequency 

(however, phase is usually given in terms of fractions of a cycle, whereas time lag is 

usually given as the number o f lagged observations).

A wide range of engineering applications o f random data analysis centers on the 

determination of linear relationships between two or more sets o f data. These linear 

relationships are generally extracted in terms o f a correlation function or its Fourier 

transform, called a spectral density function. Correlation and spectral density functions 

provide basically the same information, but from a historical viewpoint, they evolved 

separately. Correlation functions were a product of mathematicians and statisticians, 

whereas spectral density functions were developed more directly as an engineering tool.

4.14b Correlation Functions 

Often when analyzing a random signal, it is neeessary to know the general 

dependence of the values o f the signal at one instant in time to the values at another 

instant in time. For example, it may be neeessary to identify periodic signals that are 

embedded in random noise. For a stationary random proeess, the autocorrelation funetion 

describes the general dependence o f the values o f the data at one time on the values on 

the other time, reference [12].

The autocorrelation function (T) associated with a time delay T  between %(f) and 

x{t + T)  is obtained by multiplying x{t) by x{t + T) and averaging over the sample 

time T , or.

(0  = l im ( ^ )  j{%(r) X x{t + T))dt (4.10)
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In terms o f expected values, (T) is expressed,

K  (0  = E[x{t) X x{t + r ) ]  (4.11)

The autocorrelation funetion is always a real-valued even function which has a maximum 

at t=0. In equation form,

RXT) = 3 (X -n  (4.12)

The cross-correlation function of two sets of stationary random data describes the 

dependence of one set o f random data upon the other. For stationary random process, the 

cross-correlation between two signals x(t) and y(t) can be determined by multiplying x(t) 

hy y (t + T) and averaging the results over the sample time, T, or,

T

RxyiO = lü n ( /^ )  J w o  X y(t + T)}dt (4.12)
0

in terms of expected values, R (t) is expressed,

Ky(^) = E[x( t )xy( t  + T)] (4.13)

The cross correlation function is always real-valued. However, (T) may not

always be maximum at T  =0 and it is not an even function, as were both the cases for the 

autocorrelation function. Some useful relationships are,

& ( - n = & ( n  (4.14)

4.15 Speetra via Correlation Function 

The spectral density function between two time history records x(t) and y(t) 

representing stationary random processes {x(t)} and {y(t)} may be defined as the Fourier 

transform o f the correlation function between those records as follows.
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S„(J)=\{R„(t)e->^'^^’']dr (4.15)

For the general case where x(t) and_y(%) represent different data, Sxy(f) is called the cross- 

spectral density fiinction, or more simply the cross-spectrum, between x(i) an d y (t).

For the special case where y(t) = x(t),

S J f ) = \ { R J i ) e - ‘^'*''']dT (4.16)

S x x ( j )  is called the auto spectral density function or auto spectrum ofx( t ) ,  or sometimes 

the power spectral density function.

4.16 Coherence

Coherence is the frequency domain correlation between the input and output signals 

of a system. It is defined as the ratio o f the correlated cross spectrum to the uncorrelated 

cross power, which includes all uncorrelated noise. A mathematical model of coherence 

is shown below.

(4.1)

A very useful tool, the coherence function can greatly assist in validating the quality

o f your frequency response measurement. To determine whether the system under test is

being measured accurately, the coherence should slightly deviate above or below one. 

Furthermore, the coherence can also help to you determine measurement flaws and can 

act as a unique tool that keeps the system in check [Ref 12].

Examples of problems that the coherence will detect are:

UUT Problems

• Uncorrelated noise on the output
• Unstable system (Unit Under Test) characteristics
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• Non-linear behavior o f the Unit Under Test (distortion, inter-modulation)
• Loose cables and loose transducers on the output o f the system.

Measurement Problems

• Inadequate frequeney resolution
• Improper delay between channels.
• Incorrect frequency weighting windows
• Computational errors.
• Inadequate averaging time.

For the coherence to be meaningful; more than one measurement must be averaged. If 

only one average is made, the coherence, by definition is unity.

The random error in the gain of the frequency response is given by

From this it can be seen that with a high signal to noise ratio, the error is very low, 

and that averaging will reduce the error.

4.17 Propagation - Path Identification

To produce an accurate overall linear relationship, we must calculate the frequency 

response function within the input and output measurements. However, it will not in 

itself identify the contributions o f individual paths and it will then be required to first 

distinguish clearly between frequency dispersive and non-dispersive propagations. In 

other words, we must determine whether or not the propagation speeds are a function of 

frequency.

4.18 Non-Stationary Data Analysis Techniques

A collection of time history records measured under statistically equivalent conditions 

are theoretically required to allow the time dependent properties o f the data to be 

estimated at specific instants by ensemble-averaging procedures. There is a well-
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developed methodology for the analysis o f non-stationaiy data using higher-order 

spectra.

Figure 3 illustrates the process. It explains each and every step o f input signals and 

out put signals and from then, experimental and FEA values o f out put values. From the 

time-histories from the experiments or FE simulations the auto-correlation, cross­

correlation and the frequency response are computed, and finally the experimental and 

simulation results are compared.
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Figure 3: MATLAB Flowchart
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CHAPTER 5

EXPERIMENTS AND ANALYSIS

5.1 Standard Analysis from 2005 Experiments 

A linear finite element (FE) model was developed for the six-axis shaker system with 

the objective of comparing experimental results from Team Corp Tensor performance 

records with predictive modeling. Experiments were conducted under sinusoidal sweep 

and random multiple forcing function inputs.

Control-
R esponse

O neI rive One'

SIX Output 
(Accelerometer) 
signals recorded by 
data logger

Drive N

Controi-
R esponse

System -under-test 
Number N

System -under-test 
Number One

Temporal sequence of 
SIX Drive signals 
recorded by data loggei

MultiExciter Control 
System

Figure 4: Shaker Experiment
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The Figure 4 represents accelerometer time-domain responses to six drive inputs. 

TEAM Corp six-axis shaker. The controller maintains the signal amplitude within the 

user-specified limits by adjusting the six ‘Drives’ such that the output error 

(accelerometer Freq. Responses -  trapezoidal reference spectra) is minimized.

5.1a Drive Forces on Finite Element Model

Shaker 5

Shakers

Shaker 4

Shaker 6

Shaker 2

Shaken

rep: *10 I

Figure 5: The Input Drive Forces on the Shaker System
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There are six drive forces acting on the shaker system; two forces in each Cartesian 

direction. These drive forces are the input variables to the shaker system. The points 

where these drive forces are acting are shown in Figure 5.

The assignment of drive input forces to three Cartesian directions are shown in the 

transfer function matrix below.

" 4 "

X "0.5 0.5 0 0 0 0 ■
Y = 0 0 0.5 0.5 0 0 Ti (5.1)
Z 0 0 0 0 0.5 0.5 T2

4

_Z2_

The output variables o f the shaker system are recorded accelerations at six distinct 

locations on the table top. The response accelerometers are 14z, 8z, 13z, 13y, 14y, and 

13x these points are shown in figure 6.

Point 8 

Point 12 

Point 13 

Point 14

Table Top Comer 

Table Top Center

Table Top rim midway between comers 

Table Top Comer
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Figure 6: The Input Drive Forces and Output Accelerometers on the Shaker System

The model was excited in all six axes with random input signal without any 

coherence. The resultant input force and output acceleration signals from TEAM 

TENSOR time histories were recorded and stored on the Jaguar System’s Throughput 

Disk (TPD) and this process is shown in figure 4 so clearly [Ref 9]. The recorded six-axis 

force-input time histories were applied to the finite element model.
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5.1b Frequency Response Function Calculations 

Consider a single input/single output system with extraneous noise at the output 

point. The noise represents many practical physical problems where the input 

measurement x(t) is essentially noise-free while the output measurement y(t) consists of 

the sum of the ideal linear output v(t) due to x(t), plus all possible deviations n(t). From 

measurements o f x(t) and the system frequency response function H(f) is calculated 

by,

; / ( / )
G ^ ( / )  
G ^ ( /)

(5.2)

Input  S ig n a l  u
(Random) -̂----------- Auto Correlation

Shaker System  | \  
Nastran Simulationr

Output S igpal y
(Acceleration)

Cross Correlation

.Frequency R esponse  
or
Pow er Density Spectrum  
(PSD) =

Figure 7: Mathematical Concepts for Frequency Response Analysis

The mathematical concepts for frequency response analysis follows the established 

methodology, as described for instance in Bendat and Piersol, 1980. The same 

methodology is implemented in the Jaguar controller’s algorithms for real time analysis 

and shaker control. The auto and cross-spectra referenced in the above equation may be
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obtained either by using correlation methods or by using Discrete Fourier Transform 

techniques (DFT) [Ref 2].

In the following, the terminology of Fig. 7 will be used, which is consistent with that of 

the Jaguar Controller.

We define,

Suu Auto spectral density function of input u(t).

Suy Cross spectral density function (input u, output y).

PSD or Power Density Spectrum = - ^
^uy

The following relationships that exist between recorded signals and the physical 

quantities represent:

Drive Signals: The sensitivity o f the current sensor is57.1m F/ I b f . This conversion 

factor was used in all analyses to compute the drive force magnitudes at each actuator. 

Accelerometers: The sensitivity of the Dytran triaxial accelerometers used in the 

experiments is lOmV/  g  in each Cartesian axis direction. This conversion factor was 

used in all analyses to compute the acceleration magnitudes in each recorded direction 

and location.

In MIMO Random control, the reference is a matrix o f spectral densities. The 

controller minimizes the error by modifying the impedance matrix, Z(f) which is the 

inverse of the system-under-test’s fi’equency response matrix.

The Output Power spectrum (PSD or Frequency Response) o f a signal y  due to an input u 

is found as the cross-correlation, Suy, divided by the input autocorrelation, Suu,

S....PSD  =
S uy
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The graphs below represent the frequency response values for the October 2005 and 

calculating the frequency response values for the output values at point 8 in Z-direction.

8z/z
10

 experiment
 sim ulation

,810

A
10

O)

,210

,010

210

■410
4 0  lom  1200 140] 1600 looo 2000

Frequency in Hz

Figure 8; Frequency Response Acceleration/Force (Output =Acceleration/ Input=Vertical 

Force) o f experimental and FEA simulation at point 8Z (no Coherence) unfiltered.

Physical Interpretation of the Frequency Response plot of Fig. 8: The ordinate, labeled 

‘Magnitude’ and scaled logarithmically, represents the ratio of Suy (PSD  physical units in 

Ib f  /Hz) over Suu (PSD  physical units in f /H z ) .  Thus the ‘Magnitude’ ordinate o f Fig. 8 

has the dimension Ibf/g. In the frequency band from approximately 200 Hz to 1,200 Hz, 

the experimental and FE magnitude in this frequency band is approximately 10 Ibf/g. A 

significant discrepancy between experiment and FE model amplitudes exists around the 

1,600-Hz resonance in all records. Possible reasons for the discrepancies are:
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1. Structural damping in the shaker eenter member is not aeeurately modeled 

in the FE model.

2. Numerieal analysis issues: The frequency response spectra result from the 

ratio of Suy /Suu, therefore, the speetrum eomputed from the experimental 

involves a division o f the Suy spectral values by higher value o f Sm values 

than the FEA 5„„’s. Sinee Suy value is much bigger than the FEA Suy, a 

large inerease in amplitude at the frequeney range o f 1,600 Hz is present. 

This has been explained in section 5.5 in more detail.

The following two graphs. Figure 9 and Figure 10 shows the frequency response at 

two other points, 13Z and 14Z in Z-direetion. The frequency response patterns are 

consistent with those observed in Figure 8.

 experiment
 simulation

I
2

io ' -

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Figure 9: Frequency Response at point 13 in Z direction
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Figure 10: Frequency Response at point 14 in Z direction

5.2 Second Test Series 

New sets of data were collected in order to accomplish the following objectives:

■ To collect time history data that can be analyzed post test to validate the FE 

model o f the system. The purpose was to make the FE model sufficiently 

accurate to make useful predictions o f the capabilities o f future shaker 

designs.

■ Conduct a variety of tests that will illustrate the capability o f the Jaguar 

system to conduct realistic 6 DOF shaker tests.
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Test plan:

The response accelerometers are 14z, 8z, 13z, 13y, 14y, and 13x. The response of 

these accelerometers will he represented by a vector, r = [14z 8z 13z 13y 14y 13x]’. The 

positive sense of each accelerometer shall be in the positive axis direction. The rigid body 

degrees o f freedom, c, will be the control variables. The response o f these rigid body 

degrees of freedom will he represented by the vector, c = [x y z rz ry rz]’, where x, y, z 

are the rigid body translations, and rx, ry, rz are the rigid body rotations about the x, y, z 

axes.

The transformation between the response accelerometers and the rigid body degrees 

o f freedom is given by,

c = Gr (5.3)

0 0 0 1 -1 r 14z

y 0 0 0 1 0 0 8z
z 1/4 1/4 1/2 0 0 0 13z

rx - 1 / 4 - 1 / 4 1/2 0 0 0
ry + 1/2 - 1 / 2 0 0 0 0 14y
rz 0 0 0 1 - 1 0 13%

(5.44

The electrical drives to the actuators are represented by vector, d  = [d l d2 d3 d4 d5 d6] 

System ID tests:

This is essential test to identify the system in the system ID phase. The only 

difference includes recorded data outputs o f drive voltages, the drive currents, and all 

accelerometer response time histories, response channels used for control and auxiliary 

channels, used for later analysis. The system will be driven with all the six electrical 

drives having independent white noise over the control bandwidth and the time histories 

will be recorded as well. The system transfer fimctions as computed by the control
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system, which will also be saved for comparison with the later offline estimates using the 

recorded time histories. This data will be used to validate the FEM model. In all the tests 

the same reference spectrum will be used. The spectrum is shown in Figure 12.

Nominal Random Shape RMS-Acceleration = 5.78 g 

RMS-Velocity = 1.11 inches/seconds

RMS-Displacement -  0.0069 inches

£
3
E
gc.(D

B0)g
'w

,010

■110 1 ,2 ,310 10' 10
Frequency(Hz)

Figure 11 : Random Multi-Axis Control: Reference Spectrum
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5.3 Experiment Series 2 

The frequency response of the shaker system is represented in the graphs below at 

various points represented by 8, 13, 14, all in z direction. The frequency response o f the 

system is obtained by taking the ratio o f the cross correlation and auto correlation o f the 

vibrating system under a frequency range of 0 to 2,000 Hz.

Cross Correlation
Frequency Response

Autocorrelation

The following graphs are from the data of November 2006.

8z/z

 experim ent

sim ulation

300 JKD GOO 800 1000 1:%% 1400 IBM IQOO
Frequency in Hz

Figure 12: Frequency Response at point 8 in Z direction, (output = acceleration/ input : 

vertical force) o f experimental and FEA simulation at point 14Z (Coherence = 0.96)

unfiltered.
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Interpretation o f the Frequency Response plot of Figure 12:

The ordinate, labeled Magnitude and scaled logarithmically, represents the ratio of 

Suy, PSD physical units in lb//H z, over Suu, PSD physical units in g^/Hz. Thus the 

Magnitude ordinate of Figure 12 has the dimension Ibf/g. In the frequency band from 

approximately 200 Hz to 1,200 Hz, the experimental and FE magnitude in this frequency 

band is lOlbf/g.

Figure 13 and 14 display the frequency response at two other points, 13Z and 14Z in 

Z-direetion. The frequency response patterns are consistent with those observed in Figure 

12.
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•2
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■4
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Frequency in Hz

Figure 13: Frequency Response at point 13 in Z direction
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Figure 14; Frequency Response at point 14 in Z direction

From graphs 12 through 14, it can be determined that the experimental and simulation 

values are in reasonable agreement over the frequency range of 0 Hz to 1,000 Hz. Similar 

to the 2005 results, the FE model exhibits lower amplitudes than the experiment in the 

frequency band around the resonance. Again, possible reasons for the discrepancies could 

arise either from an inaccuracy in modeling structural damping within the eenter member, 

or from the numerical analytical process. Both hypotheses are investigated below in 

section 5.5.
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5.4 Structural Damping of the FE Model

Springs

z
External dampers

X

Figure 15: The Forces on the Shaker System through Rigid Threads, FE Model

1. Viscous Damping in the Rotational Joints Linking Actuators and the Center 

Member: The Finite Element model displayed above consists o f actuators or drive 

forces are connected to the shaker model via rigid threads. Since the resulting forces 

act at a single point would produce excessive deformation, the load is distributed over 

an area as shown in Figure 16. To create a slight damping effect in the FEA model 

simulation, an oil film layer between the FE model and acting force was created.
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However, the damping created was very small and did not significantly affect the 

output.

The simulations have been run for FE model for different conditions. The study 

mainly focused at 1,600 Hz frequeney because the model is showing some damping at 

this point. We placed two dampers in each x, y, and z directions respectively. However, 

the final result has not showed much effect.

2. External Dampers between Actuators and Center Member: We sought to add 

structural dampers between the actuators and the center member. Since the model is 

three-dimensional, three dampers would have to be attached from the same point on 

the actuators to the three different points on the model, each one-hundred twenty 

degrees apart. This attempt created difficulties in the FE model which could not be 

resolved.

3. Zero Damping: Figure 15 shows 12 external dampers, 4 in each direction. Similarly, 

there are 12 spring elements through which the drive forces acts. These springs have 

an internal damping coefficient value. By selecting zero damping coefficient values 

for all external dampers and spring elements, the frequeney response o f the shaker 

changes. The results for the points 8, 13, and 14 in Z-direction are shown below.
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Figure 16: Frequency Response at point 8 in Z direction

Interpretation o f the Frequency Response plot o f Figure 16

The ordinate, labeled Magnitude and scaled logarithmically, represents the ratio of 

Suy, PSD physical units in lb//Hz, over Suu, PSD physical units in g^/Hz. Thus the 

Magnitude ordinate o f Figure 16 has the dimension Ibf/g. In the frequency band from 

approximately 200 Hz to 2,000 Hz, the experimental and FE magnitude in this frequency 

agree well. Therefore, internal damping o f the experimental system appears to be 

negligible, and the FE model represents the experimental reality best when assuming no 

viscous damping in the structure.

Figure 17 and 18 display the frequency response at two other points, 13Z and 14Z in 

Z-direction. The frequency response patterns are consistent with those observed in Figure 

16.
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Figure 17; Frequency Response at point 13 in Z direction

10

10

10

10T

10

10

14z/z

■ -experiment 
—  simulation

-I____ I____ I____ i_
200 4 3  8 3  (30 1(30 1200 1 4 3  1 8 3  1(30 2 0 3

Frequency in Hz

Figure 18: Frequency Response at point 14 in Z direction
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4. Non-Linear Analysis:

Figure 19: The actuators connected to the Shaker System on the contact surfaces

The Finite Element model above shows the point forces or drive forces acting on the 

shaker model. As compared to linear analysis, non-linear analysis allows for viscous 

sliding relative motion between two flat surfaces, i.e. the center member and the flat plate 

connecting to the actuator. The contact surfaces, represented by the yellow square boxes 

in Figure 16, were used to incorporate viscous damping into vibrating model. The viscous
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damping consisted o f an oil film between both surfaces. Some tests were performed, but 

they were not conclusive. Computing time increases dramatically with Non-Linear 

Analysis as compared to Linear Simulation; therefore, non-linear simulation was 

conducted for just 1,632 points which took forty eight hours. The frequency responses of 

the Non-Linear Simulation are shown in the graphs 20 through 22 below.

8z/z
10 '

 experim ent
 sim ulation

10
C3)
JO

T3

110
0 500 1000 1500 2000 2500

F requency  in Hz

Figure 20; Frequency Response at point 8 in Z direction, (output = acceleration/ input = 

vertical force) of experimental and FEA simulation at point 14Z unfiltered.

Interpretation o f the Frequency Response plot of Figure 20: The ordinate, labeled 

Magnitude and scaled logarithmically, represents the ratio o f5"̂ ,̂ PSD physical units in

lb//Hz) over 5"̂ ,̂ PSD physical units in g^/Hz. Thus the Magnitude ordinate o f Figure 20 

has the dimension Ib/g. In the frequency band from approximately 200 Hz. to 800 Hz,
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the experimental and FE magnitude in this frequency band is approximately 2 Ibf/g. 

Clearly, the addition of viscous oil film damping in the nonlinear simulation does nothing 

to improve the agreement between experiments and FEA. Similar frequency response 

curves were recorded for coordinate points 13Z and 14Z see Figures 21 and 22.
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Figure 21: Frequeney Response at point 13 in Z direction
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Figure 22: Frequency Response at point 14 in Z direction

5.4 Numerical Analysis of the Frequency Response Computation 

Computation of a Sample PSD

Following the schematic o f Figure 7, the autocorrelation o f the input, and the cross 

correlation of output/input are computed.

The following describes in detail the steps of the analysis on the example of 

Accelerometer 14Z, excited by a rocking input in vertical direction. All computations 

were done in Mat lab.

Source: Data set recorded at Team Corp on November 9, 2006

Data set: Excitation (Drive) force (vertical) time series see Figure 23, and Accelerometer 

14Z time series, see Fig. 25. Both time series are represented in their proper physical 

units, i.e. Ibf and g’s, respectively.
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Figure 23: Excitation force time series (in Ibf)
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Figure 24: Power Density Spectrum (Autocorrelation) of Experimental Force Input signal 

o f Fig. 20 (PSD physical units in Ibf2/Hz), Welch Filtering.
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Figure 25: FEA Accelerometer 14Z time series (in g ’s).
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Figure 26: Power Density Spectrum (Autocorrelation) of FEA Acceleration signal o f Fig. 

7, Welch Filtering (PSD physical units in g2/Hz)
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Figure 28: Power Density Spectra (Autocorrelation) of experimental and FEA 

acceleration signals, Welch Filtering
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In Figure 28, the simulated acceleration PSD’s from the FE analysis and those 

recorded experimentally differ substantially around the resonance region. While the 1,600 

Hz resonance is clearly visible in the experiment, the controller has reduced the drive 

PSD (shown in Figure 28) to almost -5 in the region around 1,600 Hz. Consequently, the 

simulated accelerometer 14Z records about -42 amplitude around the 1,600 Hz 

resonance. The frequency response spectra result from the operation SuylSuu- The speetra 

computed from the experimental and FE records involve a division of the Suy spectral 

values shown in figure 24 by the respeetive Suu values. The resulting input/output spectra 

are presented in Figure 14.

At 1600 Hz, the cross-correlation value o f the experiment is mueh higher, 500, than 

the FEA Suy value, whieh is close to zero. Dividing the larger experimental Suy value by a 

low experimental Suu value yields large frequeney response amplitude. Similarly, when 

dividing the lowest FEA Suy value, elose to zero, by the large magnitude FEA auto 

spectrum, the frequency response magnitude becomes rather small. Clearly, the internal 

damping in the FE model is larger than the aetual struetural damping of the eenter 

member observed in the experiments. In the FE model, the damping parameters are those 

o f Magnesium, which are defined internally by the software.
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CHAPTER 6

SIX-AXIS 25 POUND SHAKER SYSTEM DESIGN 

Design Constraints

Experiments with the TEAM Corp. small eleetro dynamic shaker have shown the 

feasibility of building a six-axis eleetro dynamie shaker with a frequeney range to 2 KHz. 

Design Issues

When sealing up to a larger eenter member, two major design issues will arise,

1. The size of the electro-dynamic actuators will increase considerably. If the 

actuators diameter is larger than % the width of the projected shaker table surface, 

it might become neeessary to inerease the size of the center member so as to 

accommodate the actuators.

I Jç
2. The lowest eigen frequency of the center member is proportional to J — , where m

V m

is the center member mass, and k  the (equivalent) spring elasticity. Thus, as the 

eenter member’s mass inereases, its lowest eigenfrequeney will deerease. While 

designing the new eenter member, great care should be applied to maximize its 

stiffness in all eoordinate direetions. Yet one must expect that eigenfrequencies 

below 2 kHz will exist. The eigenmodes can be eontrolled by the electronic 

controller and to a limited extent by additional viscous damping o f the center 

member.
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3. Thermal Effects: Active Cooling will likely be required for the actuators and for 

the hydraulic fluid. Effective damping of center member resonances can result in 

thermal power dissipated to the hydraulic fluid on the order o f kilowatts.

4. Compression Spring Preload: The compression springs are preloaded in order to 

maintain contact with the center member irrespective of shaker dynamics. The 

preload also contributes to the center member’s viscous damping. Raising the 

spring preloads beyond the shaker dynamics structural requirements would be a 

means to increase viscous damping, If  necessary.

5. Center Member Manufacture: Complex geometries that maximize stiffness while 

reducing weight are easily designed and analyzed. The choiee and eost of a 

manufacturing method will determine the design choice.

Center Member Design Concepts

A. Option 1: Scale center member o f existing electro dynamic shaker up to meet 

requirements for 25-lbs load shaker, see Fig. 29 (shown with single actuators, 

assuming passive springs on opposite sides)

Design needs to accommodate larger voice coil actuators and also by considering,

■ We seek to avoid structural resonances if possible, i.e. first eigenfrequeney 

is greater than 2 KHz.

■ Need to minimize centre member mass while maintaining structural 

stiffness.
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.4» 512:2: S1:Z

Figure 29: Current Electrodynamic Center Member Configuration, the six actuators are

labeled SI through S6

Experience exists with existing design. Shaker table is accessible from all sides. 

Placement of the vertical actuator underneath the platform might impose 

unacceptable height requirements on vertical beam of the center member, 

resulting in reduced center member stiffness.

B. Option 2: Cube-shaped Center Member: Vertical actuators attached to either 

sides. Figure 30, or at opposite diagonal endpoints. Figure 28.

■ A hollow, internally stiffened cube structure would optimize the stiffness 

to weight ratio. Horizontal actuators are located on the sides o f cube 

surface.
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Vertical actuators would restrain the accessibility on the platform, because 

two actuators would have to be placed on the side.

I

Each arrow represents an actuator or reactive spring. The 
diameter of the actuators governs the minimum distance 

between any two lateral actuators, and the minimal standoff of 
the vertical (z-axis) actuators.

X-Axis

Figure 30: Cubic Center Member, Vertical actuators on sides

C. Cylindrical Center Member: Basically a variant of the cube.

■ Better stiffness/weight ratio than cube shape. Plane contact surfaces must 

be created for all actuators on sides o f cylinder surface.

■ Vertical actuators would restrain the accessibility on the platform, because 

two actuators would have to be placed on the side.
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Each arrovB-epresents an ® a to r  or reactive spring. The 
diameter I th e  actuators gl/erns the minimum distance 

between anyBvo lateral actuaire, and the minimal standoff of 
the vertical (zlxis) actuators.

X-Axis

Figure 31 : Cubic Center Member, Vertical actuators on diagonally opposite ends

D. Other Center Member Shapes:

Several variants o f the basic shapes B and C can be devised. The FEA will 

show the optimal design configuration. Some modified center member designs 

were been constructed by using Solid Works, and the MSC-Nastran modal 

analysis module was used to compute the natural fi-equencies o f the FE model. 

Testing was done for many designs, but among all o f them the following 

center member design (see Figure 32) conformed quite well to the 

requirements.
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The modal values o f the model are

TABLE 6.1: The mode values o f the modified center member (Figure 29)

1 1,856

5Z82 2 J2 0

Figure 32: Hollowed-out cube design o f the center member

The sides of the cube are 15 inches and there is a cylindrical hole with the radius o f 6.5 

inches and depth o f 7.5 inches. There is also a semi sphere cap at that end for the cylinder 

with the radius of 6.5 inches.
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CHAPTER 7 

CONCLUSION

The objective of the research effort described here is the design and spectral analysis 

o f a six-axis shaker system. The project focused on analyzing the results at the resonance 

frequency of 1,600 Hz. Finite Element Analysis. Spectral response analysis was used to 

compare FE model predictions and experimental results. The FEA and experimental 

spectra agree with discrepancies at or near the frequency of 1,600 Hz. The design concept 

was validated through two experimental test series. The internal damping assumed by the 

FE model is larger than the actual damping observed during the experiments, resulting in 

the observed larger resonance amplitudes in the experiments. A new center member 

design was developed for a 25-lbs payload shaker system. In spite o f the large mass of 

the new center member, it is possible to optimize its stiffness such that its first 

eigenfi-equency is larger than 2 kHz.
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