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ABSTRACT

On The Use Of Lognormal Distribution For Environm ental Data
Analysis

by

Devarshi Pant

Dr. A.K. Singh, Examination Committee Chair 
Professor of Statistics 

University of Nevada, Las Vegas

Contaminant concentration data from Superfund sites is quite often 

positively skewed, and the log-normal theory based statistical procedures 

are typically used for such data. Recent work in the environmental 

statistics literature, however, has shown tha t the use of log-normal 

theory based formulas, such as the H-statistic confidence interval, is 

problematic. The performance of the H -  UCL in the presence of non -  

detects in the sample is investigated via simulated examples. When 

comparing mean contam inant concentration a t a site with tha t of the 

background, the 2-sample t-test on log-transformed data is commonly 

used. A part of this thesis deals with investigation of power of the t-test 

on log-transformed data by using Monte Carlo simulation.

Ill
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CHAPTER 1

A BRIEF HISTORY OF THE NORMAL AND LOG-NORMAL

DISTRIBUTIONS

This thesis is primarily concerned with the usage of log-normal 

distribution in environmental applications. Since the normal distribution 

and the log-normal distribution are closely related, a brief history of 

these two probability models is included in the thesis.

Normal distribution:

Abraham De Moivre, an  18th century probabilist and a  consultant to 

gamblers was often called upon to make lengthy computations involving 

binomial probabilities. De Moivre observed tha t when the num ber of 

events (coin flips) increased, the shape of the binomial distribution 

approached a  very smooth curve. Binomial distributions for 2, 4, and 16 

tosses of a  fair coin are shown in Figures 1-3.
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pdfofBIN(2,.S)

Figure 1: Graph of the binomial distribution BIN (n, p) for n  = 2, p = .5

pdfovfBIN(4,.5)

Figure 2: Graph of the binomial distribution BIN (n, p) for n = 4, p = .5
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Figure 3: Graph of the binomial distribution BIN (n, p) for n = 16, p = .5

De Moivre (1733) figured tha t if he could approximate a  mathematical 

expression for this curve, he would be able to solve problems such as 

finding the probability of 80 or more heads out of 200 coin flips much 

more easily. The curve he discovered is now called the normal 

distribution, and forms the basis of a  lai^e majority of statistical 

formulas. De Moivre’s paper was discovered by Karl Pearson in 1924. 

Laplace (1783) used the normal curve to describe the distribution of 

errors. Gauss (1809) used it to analyze astronomical data. Due to the 

Central Limit Theorem, the normal distribution is the most important 

probability model in statistical computations.
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Log-normal distribution;

Francis Galton presented the memoir of D. McAlister to the Royal 

Society of London (1879), according to which the log-normal distribution 

was introduced by D. McAlister, who derived the mean, the median, 

mode and the second moment of the distribution. In this presentation, 

Galton expressed the view tha t in certain situations, the geometric mean 

is a  better m easure of location than the arithmetic mean. Kapetyn 

(1903), the Dutch astronomer, described a  mechanical device for 

generating samples from a  log-normal population, similar to the 

mechanical device of Galton for generating normally distributed samples. 

The log-normal distribution has found applications in various branches 

of science:

Environmental Engineering: The probability distribution of contam inant 

concentrations is often modeled by the log-normal distribution (see, for 

example, Ott, 1978).

Ecology: The abundance of plant and animal species is quite often 

modeled by the log-normal distribution (see, for example, Sugihara, 

1980; Magurran, 1988).

Geology and Mining: The probability distributions of concentrations of 

elements and their radioactivity have been modeled by the log-normal 

distribution (Ahrens, 1954).
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Atmospheric Science: Many atmospheric physical and chemical

properties are modeled by the log-normal distribution (Di Giorgio et at, 

1996).

A random variable X has a lognormal distribution if the random variable 

F = lnX has a  normal (i.e. Gaussian) distribution.

The normal distribution of Y is given by the density function:

/ ( y )  = ^fljrcr
-(y-ftri2cT-

where // is the mean, and cr is the standard deviation (cr̂  is the 

variance).

The density function of a  lognormal distribution then becomes:

/W  =
yflTCi7CCTX

Note tha t the change in variables introduces an additional — term
X

outside of the exponential term. The corresponding complimentary 

cumulative distribution function for a  lognormal distribution is given by:

Pr[X > x]= r  - p i ...
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The log-normal distribution with jx = 0, cr = 1 is called Gibrat’s 

distribution (Mansfield, 1962). It is known that the sum  of two 

independent normal random variables and coming from an

underlying normal distribution with means //, and and variances

andcr^2 » is normal with mean and variance • It follows tha t

the product of two log normally distributed random variables also has a 

lognormal distribution.

Log-normal pdfs for selected parameter values

0 .010-

0.008-

0.006-

I
0.004-

0 .002 -

0. 000 -

0 50 100 150 200 250

Variable
mu = 5, sigma = 0.5) 
mu = 5, sigma = 1 
mu = 5, sigma = 2

Figure 4: Graph of selected log-normal distributions
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The param eters of interest of a  lognormal distribution are given

below:

2. Median :e^

3. Variance : ) + (e* -1)

4. C V : ^  = J ^  -I)
Ml

5. Skewness :
\Mi j

+ 3
\Mij
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1.1 Use of the Log-Normal Distribution in Environmental Statistics

It is clear from the above expressions for CV and skewness tha t the 

log-normal distribution is positively skewed, its skewness is a  function of 

the param eter a alone, and tha t the skewness increases with a.

Contaminant concentration data from Superfund sites is quite often 

positively skewed (Singh et al, 1997) and EPA guidance documents 

recommend using the log-normal distribution based formulas for 

computing the Upper Confidence Limits (UCL) for the mean contaminant 

concentration, or for the determination of num ber of samples for future 

sampling (Stewart, 1994). The log-normal distribution is very commonly 

used in environmental work, since it is very easy to use.

It has been pointed out in the statistical literature (Singh et al, 1997), 

however, tha t (i) a  normally distributed dataset with a  few extreme 

observations on the high side can be incorrectly modeled by the log­

normal distribution, and (ii) data from a  site tha t has both low and high 

contam inant concentrations can also be incorrectly modeled by a  log­

normal distribution. This typically results in unreasonably high UCL 

values when the log-normal theory based H-statistics formula is used.

In this thesis, an  attem pt is made to demonstrate some of the 

problems one encounters by the use of such methods and the

8
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unreasonable behavior of the log-normal theory based statistical 

procedures.
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CHAPTER 2

COMPARISON OF SITE AND BACKGROUND DATA BASED ON THE

LOG-NORMAL DISTRIBUTION

When a  pollutant data set contains values tha t could be potential 

outliers, causing the data set to be skewed, taking the log transform 

m asks those extreme points, which escape analysis when modeled and 

analyzed using lognormal distribution, as demonstrated by Example 2.1.

Example 2.1: Consider a  simulated data set of 5 samples from a  normal 

distribution with mean 50 and standard deviation 1.5 (background 

concentration) and a  data set from a  normal distribution with mean 150 

and standard deviation 95 (contaminant concentration):

50.3499, 50.4863, 47.9185, 48.3566, 48.0776, 198.871, 224.345, 

127.370, 13.8349, 114.570

This mixture of 10 samples has a  mean of 92.4 and standard deviation 

71.5. The data set is tested for normality (Figure 5-a) and then tested for 

log normality (Figure 5-b).

10
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Probability Plot of X
Normal

95-

90-

80-

«e  60-
50- 

«  40-
30-
20 -

§

10 -

-100 0 100 200 300

Mean 92.42
StDev 71.52
N 10
KS 0.321
P-Vakie <0.010

Figure 5-a: KS Test for Normality

The test rejects the null hypothesis of normality for this sample.

Probabillity Plot of ln(x)
Normal

Mean
StDev

4.238
0.8375

95-
KS 0.247
P-Value 0.082

90-

80-
70-
60-
50-
40-
30-
20 -

10 -

5-

h(x)

Figure 5-b: KS Test for Log Normality

11
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Probability Plot of x
Normal

Mean 92.42 
StDev 71.52

95-
AD 0.836 
P-Value 0.020

90-

80-
70-
60-

40-
30-
20 -

10-

-100 100 200 300

Figure 5-c: Anderson Darling Test for Normality

The test rejects the null hypothesis of normality for this sample.

Probabiiity Plot of in(x)
Normal

95-

90-

80-
70-

e  60-
50- 

«  40- 
^  30- 

20 -

§

10-

2 3 4 5 6

Mean 4.238
StDev 0.8375
N 10
AD 0.559
P-Value 0.111

h(x)

Figure 5-d: Anderson Darling Test for Log Normality

12
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Probability Plot of x
Normal

æ-
90-

80-
70-
60-

£
30-

20 -

10 -

5-

-100 0 100 200 300

Mean 92.42
StDev 71.52
N 10
R3 0.914
P-Value 0.046

Figure 5-e: Ryan Joiner (similar to Shapiro Wilk) Test for Normality 

The test rejects the null hypothesis of normality for this sample.

Probability Plot of ln(x)
Normal

4.238
0.8375

Mean
StDev

95-
R3 0.945
P-Value >0.100

90-

80-

«
I “■p  50- 

40- 
30- 
20 -

I

10 -

2 3 4 5 6
h(x)

Figure 5-f: I^ a n  Joiner (similar to Shapiro Wilk) Test for Log Normality

13
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In Example 2.2, two datasets simulating Background and Site conditions 

are generated.

Example 2.2: Background aind Contaminated sites (simulated) data 

illustrating how taking the logarithm can lead to incorrect results:

• 20 data points each are generated from log-normal distributions 

(Background Data with mean = 5 and sd = 2 and Contaminated 

Data with mean = 5 jmd sd = 4). The true population m eans are 

1096.6 (Background) and 442413.4 (Site).

• Their log transforms are taken and probability plots for each one 

of them are plotted (Figures 6-a and 6-d). The data clearly appears 

to be log-normally distributed.

Probability P lotofB (5,2)
Normal

95-

90-

80-
70-
60-

£
30-
20 -

10-

0 5000 10000 15000 20000 25000-10000 -5000

Mean 1531
StDev 5327
N 20
KS 0.422
P-Value <0.010

8(5,2)

Figure 6-a: Test of Normality for Background Data

14
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Probability Riot of Ln(B)
Normal

95-

90-

80-

«Ç 60- 
50- 

»  40- 
30- 
20 -

§

10 -

6 10 120 2 4 8
Ui(B)

Mean 4.714
StDev 2.473
N 20
KS 0.125
P-Value >0.150

Figure 6-b: Test of Log-Normality for Background Data

Probability Plot of C(5,4)
Normal

59747
227681

Mean
StDev

95-
KS 0.454
P-Value <0.010SO­

SO-

70-
I 60-
U 50- 
«  40- 

30- 
2 0 -

10-

5-

-500000 -250000 0 250000 500000 750000 1000000
0(5,4)

Figure 6-c: Test of Normality for Site Data

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Probability Plot of Ln(C)
Normal

95-

90-
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1 ®>* 
g  50-
«  40-

30-
20 -

10 -

55 0 10 15

Mean 5.337
StDev 3.995
N 20
KS 0.139
P-Value >0.150

Ln(C)

Figure 6-d: Test of Log-Normality for Site Data
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Two-sample T-Test for Site vs. Background:

N Mean StDev 

Ln(B) 20 4.71 2.47 

Ln(C) 20 5.34 3.99

T-Test of difference = 0 (vs not =): T-Value = -0.59 P-Value = 0.558 DF = 

31

This dataset was generated with completely different background (B) 

and site (C) means, yet the 2-sample t-test on log-transformed data 

declared the two m eans to be equal in the log scale. In Chapter 3, we use 

Monte Carlo simulation to estimate the power of the 2-sample t-test 

based on the log-transformation of the Background and Site data.

17
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CHAPTER 3

POWER OF THE 2-SAMPLE T-TEST BASED ON THE LOG-

TRANSFORMATION

This section specifically deals with the following problem: 

Environmental engineers quite often use the 2-sample t -  test on log- 

transformed data to compare Background and Site data, and many 

important decisions are made based on the conclusions from these tests. 

A study of the power of the t  -  test on raw as well as the transformed 

data sets has been carried out in this chapter.

In order to show that, when sample sizes are low to moderate 

(between 10 -  45) it is not possible to distinguish between log-normal 

and gamma distributions, the simulation in this chapter was done using 

the gamma distribution. In each instance, it was observed tha t the log­

normal distribution fitted the sample generated from a  gamma 

distribution. One example (Example 3.1) is included in the thesis.

Performing power analysis and sample size estimation is an important 

aspect of experimental design, because without these calculations, 

sample size may be too high or too low. If sample size is too low, the

18
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experiment will lack the precision to provide reliable answers to the 

questions it is investigating. If sample size is too large, time and 

resources will be wasted, often for minimal gain. Therefore power 

calculations with different sample sizes and shape param eters were 

conducted, and for each set of param eters, a  graph was plotted with 

power and difference in means as variables.

The methodology used in the thesis for estimating the power of the t-test 

is outlined below:

• Data sets from Site (Y) and Background (X) conditions were 

simulated from two gamma populations.

• Power of the T - test was estimated using Monte Carlo simulation 

for the raw samples and the log-transformed samples.

The programming for this part of the thesis was done in the 

programming language R.

19
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Example 3.1: In this simulated example, one sample set of size 30 was 

drawn from G (shape = 2.5, scale = 1) representing Background (X), and 

another sample set of same size was drawn from G (shape = 2.0, scale =

1), representing Site (Y). Figures 7a-d show the results of testing 

normality and log-normality on the generated data sets. Both the 

Background and Site data tu rn  out to be non-normal, and pass the test 

of log-normality.

Probability Piotof X (2 .5 ,1)
Normal

Mean
StDev

2.186
1.509

95-
KS 0.166 
P-Vakie 0.04090-

80-
70-
60-

® 40-
30-
20 -

10 -

2 31 0 1 2 4 5 6
X(2.5,1)

Figure 7-a: Test of Normality for Background

20
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Probability Plot of Ln(x)
Normal

0.7492
0.7406

Mean
StDev

95-
KS 0.116
P-Vakie >0.15090-

80- 

I  60-
U 50-

30-
2 0 -

10-

Ui(x)

Figure 7-b: Test of Log-Normality for Background Data

Probability Plotof Y (2.0 ,1)
Normal

1.563
1.135

Mean
StDev

95-
KS 0.181 
P-Value 0.017SO­

SO-

70-
I 60-
O 50-

30-
20 -

10 -

0 2 3 41 1
Y(2.IB, 1)

Figure 7-c: Test of Normality for Site Data
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Probability PiotofLn(Y)
Normal
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Mean 0.1214
StDev 0.9002
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KS 0.120
P-Value >0.150

Ln(Y)

Figure 7-d: Test of Log-Normality for Site Data
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3.1 Comparison of Powers of T-Tests Based On Raw and Log -

Transformed Data 

In order to estimate the power of the 2-sample t-test, 2-sample data 

were generated from the gamma distributions GAM (ai, Pi) and GAM («2 , 

P2 ) with vaiying values of tlie difference in means aiPi - a 2 P2 .

The values of the shape param eter were chosen so tha t skewness for 

the first sample was 1.265, and the skewness for the second sample 

ranged from 0.7727 to 1.265:

2 2Skewness - = 1.265 (Skewness kept at 1.265 throughout under X)

2 2= - ^  = =  0.7727 (Skewness ranges from 1.265 to 0.7727

under Y)

Steps of the simulation experiment to estimate the power are given 

below:

1) Generate xi, X2 , ..., Xn ~ GAM(ai, Pi), yi, y2 , ..., yn ~ GAM(a2 , P2 ).

2) Run the 2-sample t-test for unequal variances on the two samples.

3) Repeat Steps 1-2 N times (N large integer), and count the num ber 

of times the null hypothesis of equal means is rejected.

4) Estimate power as follows:
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Power = # of rejections/N

The generated data and the complete outputs from ProUCL are 

included in Appendix C. Tables 1 - 6  (Appendix A) show the power 

function of the 2 -  sample t -  tests performed on raw and log -  

transformed data, computed in R. Figures 8 - 1 3  show the estimated 

power function of the two t -  test procedures.
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GRAPHS

Scatterpiot of Power Raw, Power Transformed vs Difference In Means
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Figure 8: n = 5, X ~ G (0.5, 10) vs. Y -  G (0.5...3.5, 10)
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Scatterpiot of Power Raw, Power Transformed vs Difference In Means
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Figure 9: n = 10, X ~ G (0.5, 10) vs. Y ~ G (0.5...3.5, 10)

Scatterpiot of Power Raw, Power Transformed vs Difference In Means
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Figure 10; n = 15, X ~ G (0.5, 10) vs. Y -  G (0.5...3.5, 10)
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Scatterpiot of Power Raw, Power Transformed vs Differenœ In Means
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Figure 11: n = 20, X ~ G (0.5, 10) vs. Y ~ G (0.5...2.0, 10)

Scatterpiot of Power Raw, Power Transformed vs Difference In Means
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Figure 12: n = 10, X ~ G (2.5, 1) vs. Y ~ G (2.5...6.7, 1)
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Scatterpiot of Raw Power, Transformed Power vs Difference in means
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Figure 13: n = 40, X ~ G (2.5, 1) vs. Y -  G (2.5...3.6, 1)
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3.2 Discussion of Results

From the above study, it is clearly seen that as the difference in 

means increases, the power of the t-tests based on both the raw and the 

transformed data increases, as expected. It is also observed tha t the 

power of the t-test based on the raw data is nearly the same as the power 

of the t-test based on the log - transformed data.

This shows tha t taking the log transform is not really necessary. Use 

of lognormal distribution in modeling environmental data has come 

under extensive criticism by many authors; Singh and Nocerino (1995) 

have shown tha t when dealing with positively skewed data, non 

parametric methods give more reliable estimates of the population.

As studied by Staudte and Sheather (1990), the tests based on the 

Student’s t are non robust in the presence of outliers. Singh, Singh, and 

Engelhardt (1997) also have shown tha t the log normal distribution could 

be deceptive as it often hides the outliers.
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CHAPTER 4

PERFORMANCE OF H -  UCL IN PRESENCE OF NON DETECTS

Censored data occurs in environmental studies when pollutant levels 

fall below the detection (or reporting) limits of instrumentation. 

Estimation of population param eters or testing hypotheses from censored 

data sets are problematic (see Helsel, 2005, or Hinton, 1993).

The problem of non-detects (also called left censoring) occurs 

commonly in environmental data. A “non-detect” is an observation tha t is 

below the limit of detection of an  analytical method. The limit of detection 

is generally defined as the lowest concentration tha t can be determined 

to be statistically different from a  blank specimen. The limit of detection 

is an imprecise quantity tha t can vary from sample to sample and 

laboratory to laboratory. The most common method of dealing with non- 

detects in environmental samples is the substitution method, in which 

the values below detection limit (DL) are replaced by 0, DL/2, or DL.

As mentioned earlier, contam inant concentration data sets from 

Superfund sites are typically positively skewed, and EPA Guidance 

Documents (such as USEPA, 1987) recommend the use of H-statistic
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based Upper Confidence Limits (UCL) for the mean, which is based upon 

log-normal theory:

where

y I = ln(Xj ) = log - transformed concentration

y = —— ,s =^'
n V n-1 

and values are the upper % - points of Land's 

H - Statistics (Land, 1975 or Gilbert, 1987).

The behavior of the H-statistic based UCL when there are non-detects 

in the sample has not been investigated in environmental statistics 

literature. In this chapter, we simulate samples with varying proportions 

of non-detects, and compute the H-statistic based 95% UCL for the mean 

using the three substitutions. The simulation experiment used in the 

thesis is outlined below:

1. Generate a  sample of size n (n = 10, 50, and 100) from 

LN(ju,a) in MINITAB. The param eters of the log-normal

distribution were chosen so as to simulate datasets with (a) 

low skewness, and (b) high skewness.
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2. A detection limit (DL) was chosen for a  generated (complete) 

sample so tha t p% of the observations are ‘< DL’, for p = 10, 

20, 30, and 40.

3. The software package ProUCL was then used to compute the 

H-UCL of the mean for the full data, and also the datasets 

obtained from the three substitution methods.

Low skewness: p = 2, a  = 0.5 

Mean = 8.37

CV  =  ^exp(cr^ -1 )  

=  0.5329

Skewness = ( C V f + 3 ( C V )  

= 1.75

Data sets of sizes n  = 10, 50, and 100 were generated. These data sets 

are included in Appendix C of this thesis, along with complete outputs 

obtained from ProUCL. The results are summarized in Tables 7 - 1 0  

below.

High skewness: p = 2, o = 2.5
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Mean = 168.17

CV = i/e>5<CT^"  ̂
= 13.805

Skewness = (CVf +3(CV) 
= 2672.105

Data sets of sizes n  = 10, 50, and 100 were generated. These data sets 

are included in Appendix B of this thesis, along with complete outputs 

obtained from ProUCL. The results are summarized in Tables 1 0 - 1 2  

below.
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4.1 Discussion of Results 

It can be seen from Tables 7 - 9  (Appendix B) tha t (i) when skewness 

is low and n is small (10), substitution of ‘<DL’ values by 0 inflates the H- 

UCL quite a  bit, bu t the other two substitution methods work reasonably 

well. When skewness is high (Tables 10 -  12, Appendix B), and sample 

size is low (n = 10), the H-UCL obtained from any of the substitution 

methods is orders of magnitude higher than  the true mean. The situation 

improves a  bit for moderate (n=50) and large (n=100) sample sizes, but 

the H -  UCL of the censored data is still unreasonably high.

It should be kept in mind tha t when an observation in a  sample is 

replaced by a smaller value, the sample mean is going to decrease, yet 

the H-UCL goes sky-high in some of the examples presented here.
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