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ABSTRACT

Characterization of Electronic Board Material Properties Under Impact Loading

By

Ashok Kumar Ayyaswamy

Dr. Mohamed B. Trabia, Examination Committee Chair 
Professor and Chairperson of Mechanical Engineering 

University of Nevada, Las Vegas

Dr. Brendan J. O’Toole, Examination Committee Chair 
Associate Professor of Mechanical Engineering 

University of Nevada, Las Vegas

On-board electronics in advanced military equipment are often subjected to severe 

ballistic shocks and vibrations. Impact and shock to such products can cause significant 

functional and physical damage. Safeguarding on-board electronic sensors from such 

transient shocks due to ballistic impact is of concern. While several studies document 

material characteristics of electronic boards under quasi-static and low impact conditions, 

few researchers addressed the behavior of these boards under severe impact loading. This 

research presents the results of testing electronic boards under different strain rates to 

assess the effects of strain rates on modulus of elasticity of the boards. This work also 

outlines the finite element modeling methodology for these electronic components that 

are subjected to high acceleration loads that occur over extremely short time such as 

impact, gun firing and blast events. The results are used to suggest material models that 

can be used in finite element codes to accurately describe the impact behavior of these 

boards.
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CHAPTER 1

RESEARCH OBJECTIVES 

The objective of this research is to assess the material properties of electronic circuit 

boards under impact and tensile loading. Impact occurs in many commercial and military 

applications. For commercial applications, impact loads may be produced by 

transportation, operation in vehicles, operation in aircraft, dropping an electronic 

assembly and maintenance. In addition to the shock produced by these impact loads that 

are seen in commercial applications, military applications also include gunfire shock, 

missile acceleration, projectile launch shock, and spin-up accelerations. Electronic 

components subjected to high acceleration loads that occur over extremely short period of 

time such as impact, gun firing, and blast events, can be on the order of tens of G’s 

(acceleration of gravity) to thousands of G’s.

To predict failures, a combination of experimental and finite element analysis (FEA) 

results can be used. Experimental testing of electronic circuit boards should be able to 

measure the material properties needed to characterize the performance of boards. 

Considering the application of the electronic circuit board material, impact and tensile 

testing are the right choices to experimentally find out the material properties under 

various loading conditions. It is expected that the results of this research will contribute 

in understanding the survivability of electronic boards subjected to shock environment.
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To achieve the research objectives, the effort is divided into following tasks:

1. Design the experimental set-up for impact and tensile testing of printed circuit 

boards (PCB).

2. Figure out the best possible ways for data acquisition during experiments.

3. Proper selection and installation of strain gages.

4. Conduct a series of experiments to study the response of these boards under 

impact and tensile loading.

5. Figure out a proper method to analyze the experimental data.

6. Identify solid modeling and FEA software packages that will be able to analyze 

this type of problem. This package should either have some programming 

capability or the ability to be used as a subroutine within a programming language 

so that it can be incorporated for future optimization work.

7. Try to model the experiments close to the ideal situation using FEA and carryout 

the simulation for comparing with experimental results.

8. Study sensitivity of board materials to strain rates.

9. Suggest the possibilities to improve the survivability of the material to shock 

environment.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Background Study

According to the first Shock and Vibration Symposium in 1947, mechanical shock 

was defined as "a sudden and violent change in the state of motion of the component 

parts or particles of a body or medium resulting from the sudden application of a 

relatively large external force, such as a blow or impact" [1]. While other definitions 

were proposed since then, the basic meaning of shock remains the same. Most analysts 

understand shock as a transient vibration. No matter how it is described or what source 

produced it, the effects of mechanical shock on structures and equipment produce major 

design problems for a wide variety of applications.

Failures of the external housing, internal electronic components, package-to-board 

interconnects, and liquid crystal display panels may occur as the result of impact or 

shock, which is confirmed by considerable reported evidence. Under these circumstances. 

Printed Wire Boards (PWB’s) will flex significantly during the impact event and 

subsequent clattering. The investigation by Heaslip and Punch [2] illustrates the response 

of a PWB to various shock and impact scenarios through theory, numerical simulation, 

and experimentation. They represented a PWB as a clamped-clamped prismatic beam in a 

drop test scenario which predicts deflection, bending moments and strain at any point 

along the beam length. Their results calculated from this model showed high levels of
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strain at clamped edges. The values were higher than those measured experimentally and 

less than simulated. Their explicit finite element simulation showed high levels of strain 

than those predicted by the theory.

One of the most common causes of failure for portable electronic products is from 

drop impact. Impact and shock to such products can cause significant functional and 

physical damage. Lim and Low [3] examined the drop impact response of portable 

electronic products at different impact orientations and drop heights. These components 

are subjected to very large magnitude of force and aecelerations during impact and are 

dependent on factors such as mass, impact orientation and the surface of impact. The 

drop impact responses examined are the impact force and the strains and level of shock 

induced at a PCB. A better understanding of the shock induced at the electronic 

components and packages in the products can assist manufacturers not only in designing 

better components and electronic packages but also products which are more robust and 

reliable to handle shock and impact loading. Therefore, one has to consider the physical 

ruggedness of the electronic components along with reliability to impact and shock.

Measuring shock loads on electronic boards is an expensive process. Reliability of 

testing under these conditions may not be assured. One of the objectives of this proposed 

research is to develop an FEA methodology which allows a high degree of confidence in 

predicted results by comparing with experimental data. A smart FEA system can allow 

the designer to analyze several design alternatives and various testing scenarios before 

creating a prototype. The proposed system can allow the user to guide and control the 

direction of the modeling process.
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2.2 Literature Review

It is always necessary to conduct a literature review to better understand and use them 

as a reference. Literature related to eleetronie cireuit boards subjected to shock loading, 

tensile testing and their modeling using FEA has been conducted and discussed in detail.

2.2.1 Tensile Testing of Composites

The utilization of composite materials in stmctural applications has prompted the 

need for a characterization of their behavior under quasi-static and dynamic loading 

conditions. To extract the material properties under axial loading, the ASTM tensile 

testing standard [4] is widely followed by engineers in the experimental industry. In the 

present study by Okoli, et al [5], tensile tests were performed on a glass epoxy laminate at 

different rates of strain to determine the effects of strain rate on the Poisson’s ratio of the 

material. The findings from the experimental results suggest that Poisson’s ratio is not 

sensitive to strain rate. Fayad, et al [6] measured the material properties of polymer 

composites using tensile testing and in-tum used them in FEA to predict the material 

behavior.

Thota [7] conducted several tensile tests on the MTS Axial/Torsional Material Test 

System. This machine is used in certifying failure loads of various components, under 

tension, compression and torsion. Conducting tensile experiments using such machine is 

highly desirable.

2.2.2 Test Methodology and Approach for Impact loading of Electronic Circuit Boards. 

Portable electronic devices are often subjected to shock and vibration due to various

types of handling, drop or shipping and, accidental misuse. Military electronic devices 

are often subjected to repetitive shocks (artillery fire), sudden high G loading during
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launching or maneuvering projectiles or ballistic impact. Dynamic loading plays a cmcial 

role in the performance and reliability of electronic devices used in a wide range of 

applications. At present manufacturers of hand-held electronic devices use the JEDEC 

JESD22-B104-B standard for mechanical drop testing [8]. According to this standard the 

drop-durability of portable electronic products is quantified and ranked by the number of 

drops to failure. The product is held in the desired orientation on a drop carriage that is 

allowed to fall onto a fixed target.

Suhir [9] evaluated the nonlinear dynamic response of a flexible printed circuit board 

(PCB) to shock loads acting on its support contour and proposed formulas which can be 

helpful when choosing the appropriate PCB type, dimensions, and the most rational lay­

out of the components on the board.

Varghese, et al. [10] introduced a test methodology to examine the durability of 

surface-mounted interconnects under impact loading when a portable electronic product 

is dropped. This study considers damage accumulated in interconnects in terms of local 

flexural strain, strain rate, acceleration and develops a consistent, accurate and generic 

methodology for ranking the impact durability of different surface mount interconnects 

technologies. Goyal and Buratynski [11] showed that even a single drop event of an 

electronic product can produce a complex multi-modal transient response history.

An understanding of the shock induced at different impact orientations will help in 

the design of more reliable and robust products. Drop test conducted by Lim, et al. [12] 

explains the impact behavior of several electronic devices at various impact orientations 

using an orientation controlled drop tester. Of interest are the strains and shock level 

induced around key electronic packages within each product, and the impact force. They
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concluded PWA strains and accelerations vary with the electronic device for the same 

orientation of drop. Also for the same electronic device, the printed wiring assembly 

(PWA) strains and accelerations vary with drop orientation. Tests conducted by Yu, et al. 

[13] and Juso, et al. [14] indicated that the number of cycles to failure decreases as the 

PWA strain and strain rate increases. In both of the above cases, the failure was in the 

bulk solder. Varghese and Dasgupta [15] ran impact tests on PWA’s in the in-plane and 

out-of-plane orientations and showed that the number of impacts to failure decreased with 

increasing PWA strain. They also demonstrated their approach using by applying a single 

impact loading condition on specimens that are constrained to have no rigid body motion.

Suhir [16] proposed analytical predictive models to show that shock test could 

adequately mimic drop test conditions and a probabilistic approach was used to assess the 

effective drop height during the drop testing. Varghese and Dasgupta [17] subjected 

PWA’s to flexural strain rate ranging from lO'Vsec to lOVsec, and observed a failure site 

transition from the solder to the copper trace beyond a critical PWA strain rate. They 

used commercially available servo-hydraulic bend testing machine (Figure 2.1) and a 

drop tower (Figure 2.2) for their study. Their LVDT has 0mm to 100mm displacement 

range and Omm/sec to 12.5mm/sec. Their drop tower is equipped with steel spheres 

which were dropped on the fixture holding the specimen to conduct high speed bending 

tests. Their sphere mass can be varied from 65 grams to 450 grams and can achieve 0 to 

6m/sec by changing the sphere drop height.
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Figure 2.1: Four point bend test fixture on servo-hydraulic mechanical tester [17]

Movable fixture

Rigid fixtire

Figure 2.2: Schematic Diagram of the Ball Drop Test Setup [17]

2.2.3 Experimental Modeling of Electronic Circuit Boards Subjected to Shock/Impact 

Most shock test standards, [18] and [19], including the JEDEC board-level drop 

impact standard [20] prescribed a half sine acceleration pulse measured on the base. They 

suggest that when the fundamental frequency of the test structures, namely, the base and 

the connectors, are significantly higher than that of the input pulse and the board, the 

same half sine acceleration input pulse will be transmitted to the supports of the PCB

8
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without distortion. In another words, the test structure behaves as a rigid body. In such 

cases, the dynamics of the board-level drop impact can be analyzed simply through 

application of acceleration input directly on the PCB at the supports, where it is 

connected to the test structure.

The dynamics of board-level drop impact can be rather simply modeled using a 

numerical technique, such as finite element method. This can be performed using time- 

integration techniques, which can be either implicit or explicit algorithms or the mode 

superposition technique [21] and [22]. However, the great criticism of the numerical 

technique is that it does not provide a fundamental understanding of the actual mechanics 

or physics. Wong [23] modeled the dynamic response of the PCB in a standard board- 

level drop impact test as a spring-mass system, a beam, and a plate. He developed 

analytical solutions for the time-response and amplification of the deflection, bending 

moment and acceleration at any point on the PCB and validated with FEA. His analysis 

showed that the response of PCB was dominated by the fundamental mode. It also 

depended heavily on the ratio between the frequency of the PCB and the input 

acceleration pulse. This work showed that the bending moment on the PCB is responsible 

for the interconnection stress, and the maximum moment and it can be most effectively 

reduced through reducing the PCB thickness.

Carroll, et al. [24], modeled the bending simulation of BGA SMT (Surface Mount 

Technology) for drop test. They modeled both in static and dynamic environments with 

four point bend fixtures. A known deflection was given as input for the top fixture, while 

the bottom rollers were fixed for the static model. An initial velocity was given to the top 

fixture and a zero velocity boundary condition was applied to the bottom rollers in the
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dynamic case. They observed higher equivalent plastic strains in dynamic bending than in 

static bending for the same amount of strain.

2.2.4 Failure Mechanisms in Electronic Circuit Boards due to Impact/shock loading

Seah, et al. [25] presented the results of experiments aimed at studying the effects of 

drop impact on portable electronics and reproducing these effects in controllable tests. 

They concluded that flexing of an electronic board due to direct impact is the most severe 

response due to the strong strain amplitudes generated. The drop/impact performance is 

one of important concerns in product design. Wu et al. [26] showed that portable 

communication devices suffer impact-induced failure. The analysis was focused at the 

housing break, LCD crack and structural disconnection under drop/impact shock. In this 

study, a finite element analysis (FEA) was also used to prove the importance of rigorous 

test validation. The study of "clattering" motion is important and relevant to shock 

protection. Goyal, et al. [27] and reported that the drop testing of an electronic product 

touches down first and there will be clattering as other comers strike repeatedly due to 

rebounds. Those cause velocity shocks at each impact, which will be several times higher 

than those experienced in standardized testing at a drop-table. He also addressed that 

clattering of the product can lead to alternating shocks that would cause resonance in 

suspended fragile components. Varghese and Dasgupta [28] addressed that when a 

product is dropped, the PWB (Printed Wiring Board) undergoes flexural deformation and 

the components accelerate due to inertial effects. According to them both these factors 

contribute to damage of interconnects. Accelerometer history of impact force alone won’t 

provide all of the parameters required to describe impact damage. It was proposed that 

local flexural strain, flexural strain rate and inertial acceleration be used to describe the

10
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impact damage in interconnects. According to this study, damage is quantified in terms of 

structural response of the specimen, and is independent of geometry, loading and 

boundary conditions. Their observations indicated that for the same acceleration, as the 

strain increases, the damage per impact increases and hence the number of impacts to 

failure decreases. Similarly, damage due to impact loading depends on the rate- 

dependent material properties of the solder ball. Their conclusion states that the number 

of impacts is low for high strain rate impacts. For low strain rate impacts, the damage per 

impact is low, hence number of impacts to failure increases; this is represented in Figure 

23 .

cz

Figure 2.3: Damage as a function of PWB strain and strain rate

Shetty, et al. [29] conducted monotonie bend tests to determine the overstress 

curvature limits for CSP interconnects. His overstress bend test setup is as shown in

11
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Figure 2.4. They found the average moment limit and curvature limit on the CSPs. They 

are considering failure as either cracking of the board or interconnect delaminating from 

the board which ever happens first.

Figure 2.4: Overstress bend test

2.2.5 FEA Modeling References

Electronic boards placed inside the projectile are subjected to extremely severe loads 

during the launching stage. Berman, et al. [30] stated that projectiles are subjected to a 

quasi-static axial load in excess of 15,000 g’s augmented by a transient load of up to 

5000 g’s. Trabia, et al. [31] developed a finite element methodology to predict the shock 

transmitted to electronic components within an artillery shell during the launch phase. 

While FEA programs and their pre-processors and post-processors have reached high 

levels of maturity and sophistication in their analytical capabilities, systems that can 

assist engineers in the critical tasks of modeling and model interpretation are not fully 

developed yet. Current FEA programs cannot easily evaluate the reasonableness of the

12
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assumptions that are used to create a model. They cannot readily suggest strategies for 

model modifications, beyond adaptive meshing. If tools for such needs are developed, 

they can improve the overall efficiency and reliability of analysis.

In [32], Pinfold and Chapman used knowledge-based engineering techniques to 

generate finite element mesh for automotive applications. They developed the 

knowledge-based engineering for common automotive parts. When geometry of the 

automotive body is imported for meshing, knowledge-based engineering simplifies the 

geometry for meshing according to specific rules. The authors concluded that this 

automated system could reduce pre-processing time significantly. Pinfold and Chapman 

[33] described the use of a knowledge-based engineering environment to automate the 

post-processing phase of the analysis. They described the stages of automating the 

feedback of finite element analysis results into the original design model. They selected 

adaptive modeling language (AML) knowledge-based engineering environment as a tool 

that is compatible with PATRAN and NASTRAN. The knowledge-based environment 

was developed to fit a family of mechanical components.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

EXPERIMENTAL PROCEDURE FOR FR4 ELECTRONIC BLANK BOARDS

UNDER TENSILE LOADING

3.1 Introduction to Tensile Testing

One of the most common testing methods, tensile testing, is used to determine the 

behavior of a material while an axial stretching load is applied. Tensile tests are simple, 

relatively inexpensive, and fully standardized. By pulling on something, one can 

determine how the material will react to forces being applied in tension, namely the 

strength and elongation of the specimen. This type of testing may be performed under 

ambient or controlled (heating or cooling) conditions to determine the tensile properties 

of a material. Tensile testing is performed on a variety of materials including metals, 

plastics, elastomers, paper, composites, rubbers, fabrics, adhesives, films, etc.

The objective of the current research is to characterize the behavior of the electronic 

bland boards under shock/impact loading and measure the material properties under 

tensile testing. The research outlined in this thesis is used to develop practical assessment 

methodologies for electronic boards under mechanical shock loading and tensile testing.
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3.2 Material Testing System (MTS)

All the tensile testing experiments are conducted on the MTS Axial/Torsional 

material test system shown in Figure 3.1. Figure 3.2 shows a scheme of the MTS layout 

with its primary components.

Figure 3.1: Material testing system (MTS)
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Components of the MTS Testing System

Hydraulic
Pump

(Outside)

Tem perature 
Controller ’

Load Fram e
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MTS

Hydraulic
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Manifold

Strain G age 
Conditioners

2 .

Com puter

Control Box

C3 3

1.

3.
Pod

/K

□

n n
4.

Grip
Supply

Figure 3.2: Scheme showing the MTS components

3.2.1 Load Frame

The load frame specifications of the MTS are listed in Table3.1. Figure 3.3 portrays a 

scheme of the load frame components in the MTS.

Table 3.1: Load frame specifications of the MTS

Working Dimensions 635 mm wide by 1463 mm high

Axial Load Transducer Limit 250 KN

Torsional Load Transducer Limit 2200 N-m

Linear Actuator Limit ±76 mm, measured with an LVDT

Rotary Actuator Limit
100°static rotation (± 50°), measured with ADT 

90° dynamic rotation (+ 45°)
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Adjustable C rosshead 
(Must be locked while running)

MTS

Axial/Torsional Load Transducers

W edge Grips

C rosshead Controls 
(up/down, lock)

LVDT

Linear Actuator

Rotary Actuator

ADT

Figure 3.3: Scheme showing the load frame of the MTS

3.2.2 Computer and Software

The controlling computer is a PC system running on Windows 2000 operating 

system. TestStar is the main program for operating the MTS, it provides menus for 

activating the hydraulics to move the actuators and grip specimen. It also displays 

information such as displacement, angle, force, torque, strains, etc. while conducting tests 

on the MTS. Even test limits, such as the load limit, can be defined using the TestStar 

software.
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3.2.3 Load Unit Control Panel (POD)

The load unit control panel or the POD is the main interface with the system for 

manually controlling the MTS. Figure 3.4 shows a scheme of the POD and the briefly 

explains the control buttons on it.

Controllers Current Mode LUCP Mode
Axial Length A SG Force A Pod

Torsional Angle .A SG Torque A Pod

Sensors Current Value
Load Cell 0.1240 ktp
Length 0.0023 in

Auto Zero 
Control Mode / \ \ / Next Pane

] [

Test Stop Hold Run Resume
Control 1 = 3  CZZl [ = 1

Interlocks

HPS
Control

HSM
Control

O
a
a Reset 1 1
d

Off Low High

1 1 1 = 1 = 1

Off Low Higli

n z 2 [ = = ]

■Actuator
Positioning

Control

O nO ff

.Actuator
Positioning

Control

OnOff

Emergency Stop

Display (2 windows) which are toggled on off with 
the ’Next Pane' burton.

The ciment control mode is displayed imder 
ciment mode for each actuator. Tire next selected 
control mode is displayed under- LUC? mode.

Display Controls: Middle buttons move cursor up and 
down in the display. Left button Auto zeros the 
selected sensor in the display orselects a new control 
mode imder LUC P.

Test Controls: (Also available on Computer screen.

Interlocks: Must be reset if  lit.

Power Control for Main Pump: Always go from Low to 
High and from High to Low.

Power Control for Service Manifold: Always go 
fromLow to Hisli and from High to Low.

Linear Actuator Control: Clockwise moves the actuator 
down.

Rotaiy Actuator Control: C lockwise rotates actuator to 
the right.

Figure 3.4: Scheme of the POD and the functions of the controls
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3.2.4 Hydraulic Grip Supply

The hydraulic grip supply is used to apply gripping pressure to the specimen during a 

test. Gripping pressure is controlled by a combination of air and hydraulic fluid. The 

maximum gripping pressure of this supply unit is 45 MPa.

Wedge Grips

Figure 3.5: Wedge grips used for tension tests

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.5 Strain Gage Conditioning System

The strain gage conditioning system is used to interpret resistance change across the 

strain gage and convert it into micro-strain. The conditioner system on the MTS can 

monitor up to eight separate strain gages and report continuous strain readings to the 

MTS control program for data processing. But for this tension test, a separate signal 

conditioning amplifier is used to capture the strain signal.

3.2.6 MTS Control Unit

This box houses all the electronic signal conditioners and controllers for the hydraulic 

components.

3.2.7 Hydraulic Service Manifold

This unit regulates the hydraulic supply to the actuators and grip supply unit.

3.2.8 Hydraulic Pump

This is the pump and reservoir for the hydraulic system.

3.3 FR4 Test Specimen

The test specimen of concern is Flame Resistant 4 (FR4) [34] used for making printed 

circuit boards (PCB). FR-4 is a material from the class of epoxy resin bonded glass fabric 

(ERBGF). These boards are ordered as standard service boards that have top and bottom 

copper layers (2 layers) [34]. They do not include solder masks or silkscreen layers. 

Electrically, these boards are first rate with bright shiny tin/lead solder plated traces and 

pads. Because they do not have a green solder mask coating, the boards are the yellowish 

color of the industry standard FR-4 laminate.
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The FR-4 used in PCBs is typically UV stabilized with a tetra functional resin system. 

It is manufactured strictly as an insulator and has self extinguishing flammability 

characteristics more suited for military applications. A PCB needs to be an insulator to 

avoid shorting the circuit, physically strong to protect the copper tracks placed upon it. 

FR-4 is preferred over cheaper alternatives such as synthetic resin bonded paper (SRBP) 

due to several mechanical and electrical properties; absorbs less moisture, has greater 

strength and stiffness and is highly flame resistant. FR-4 is widely used to build high-end 

consumer, industrial, and military electronic equipment. It is also ultra high vacuum 

(UHV) compatible. Test sample size is 228.6mm X 12.7mm X 1.42mm and prepared 

according to ASTM D3039-76 Standards [4] as shown in Figure 3.6.

Is

153

229

End Tab
Dimensions are in mm

Figure 3.6: Schem e o f the designed FR4 blank board specimen
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The FR4 specimens are tested on the MTS machine. As the gripping pressure of the 

MTS machine is high enough to crush the FR4 composite material, end tabs are used to 

prevent this crushing and at the same time transfer the applied load into the test specimen 

from the loading device. Fiber-glass is used as the end tab material. The end tabs are cut 

to size according to the ASTM D3039-76 Standards [4] as shown in Figure 3.6. The end 

tabs are beveled to the required angle at one end with the help of a milling machine tool. 

The Fiber glass end tabs are bonded onto the FR4 blank boards by the use of epoxy. To 

achieve proper alignment of end tabs to the test specimens, a mould is designed with tight 

tolerances as shown in Figure 3.7.

It f

Figure 3.7: Mold for alignment of end tabs with FR4 blank board test specimens

The curing time for the test specimens inside the mold is around 12 hours and got 

ejected using a small pin from behind the mold. The picture of the test specimen with end 

tabs is shown in Figure 3.8.
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Figure 3.8: FR4 blank board test specimens with end tabs

3.4 Strain Gages

Strain gages are bonded to the tension test specimens of FR4 blank boards to compute 

the Poisson’s ratio using standard strain gage application procedures [41]. The 0-90° T- 

Rosette strain gage is used for obtaining the axial and transverse strains in the specimen 

during the test as shown in Figure 3.9. The 0-90° T-Rosette strain gages used in the static 

experiments have a gage factor of 2.02 and can measure strain up to a resistance of 120Q.
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90“ tee rosette
strain gage

Strain gage for 
measuring the 

transverse strain

Strain gage for 
measuring the 

longitudinal strain

Lead wires 
soldered to the 

strain gage

Lead wires

Figure 3.9: Schematic view of the 0-90° T-Rosette strain gage

3.5 Testing

Tension tests are conducted on the FR4 blank boards using the MTS machine. In 

order to characterize the material properties of FR4 blank boards under tension, it is 

decided to test the specimen under different crosshead speeds. Sridharala [35] conducted 

various quasi-static four point bending test on the same material. The strain rate obtained 

by him is used to calculate the crosshead rate of the MTS as shown in Table 3.2. The 

specimen is held by the wedge grips of the MTS at the end tab region as shown in Figure 

3.5. The upper portion of the speeimen is fixed such that it cannot move in any direction 

during the test. Tensile loads are applied by pulling the lower portion of the specimen in 

the longitudinal direction as shown in Figure 3.10.
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D irection of 
Load Application

f-j— Top End T ab Being Held Fixed 
_■ By U pper G rip of MTS

0-90 T-Rosette Strain G ^ e

/;y— Bottom  End Tab Beit%
' /  Pulled in  the  L t^itudinal

Direction by  the Lower G rips of MTS

Figure 3.10: Scheme showing the application of load on FR4 blank board specimen

All specimens are tested to failure. The input crosshead speed is defined in the 

machine template. Lateral and longitudinal strain is measured using a signal-conditioning 

amplifier. The data acquisition system is the same as used for four point bending 

experiments, which is described in detail in Chapter 4. Test specimen after failure is 

shown in Figure 3.11.

Figure 3.11: FR4 blank board specimen after pulled to failure
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3.6 Experimental Results for Tensile Testing

Three samples are tested for each crosshead speed in order to check the repeatability 

of the test. Testing is conducted at various crosshead speeds as described in Table 3.2. 

The force vs. time plots is shown in Figure 3.12 through Figure 3.14. Poisson's ratio plots 

are shown in Figure 3.15 through Figure 3.17. Failure strain and tensile strength are 

found out from stress strain plots from Figure 3.19 through Figure 3.21. Strain gage on 

sample 2 for erosshead speed 0.244 mm/sec did not work so this sample is eliminated 

from material properties calculation.

Table 3.2: Test matrix for FR4 blank board

Description Tensile Testing

Rate of Crosshead 
Motion (mm/sec) 0.0244 0.244 2.44

Number of Blank 
Boards 3 3 3

Predicted Strain 
Rate( 1/sec) 1.6e-4 1.6e-3 1.6e-2

Actual Strain 
Rate(l/sec) 1.34e-4 1.33e-3 l.le-2
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Figure 3.12 FR4 blank boards at crosshead speed of 0.0244 mm/sec
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Figure 3.13 FR4 blank boards at crosshead speed of 0.244 mm/sec
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Figure 3.14 FR4 blank boards at crosshead speed of 2.44 mm/sec

Pokson's Ratio Plot

0.1400

.<.0.1200
• Sam pie 2
• Samples 
Sample 1

5 0.1000

,s 00800

00800

= 0 0400

00200

“ 0 0000 -

00200
2.0001.5001 000

LoiKjUKiiM l S t  Ain % inmvnim)

0500OOOO

Figure 3.15 FR4 blank boards at crosshead speed of 0.0244 mm/sec
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Figure 3.16 FR4 blank boards at crosshead speed of 0.244 mm/sec
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Figure 3.17 FR4 blank boards at crosshead speed of 2.44 mm/sec
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The linear portion of the negative transverse strain vs. longitudinal strain plot shown 

in Figure 3.18 is considered to find the actual Poisson’s ratio. Linear curve is fitted to 

find the slope. The slope found from the fitted curve Figure 3.18 gives the Poisson’s 

ratio. The same procedure is used in all the other samples to calculate Poisson’s ratio and 

average values from the three samples are shown in Table 3.3.

Linear Portion of P o isso n s Ratio Piot jSampie 1)

0.0700 -,
y = 0.10‘BK- 0.0061 

Rr =0.0905
0.0600

I  0.0500

0.0400

0.0300

S 0.0200

0.0100

“  0.0000

- 0.0100
0.70006000.200 0300 0.400

Lon^^Kim i S t  ain % mmi nmy

0.5000600 0.100

Figure 3.18 Typical results for sample 1 at crosshead speed of 0.0244 mm/sec
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Figure 3.19 FR4 blank boards at crosshead speed of 0.0244 mm/sec
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Figure 3.20 FR4 blank boards at crosshead speed of 0.244 mm/sec
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Figure 3.21 FR4 blank boards at crosshead speed 2.44 mm/sec

The linear portion of the stress vs. strain plot is considered to find the tensile modulus 

of elasticity. Linear curve is fitted to find the slope. The slope found from the fitted curve 

gives the tensile modulus of elasticity. Figure 3.22 shows one of the typical results to 

calculate stiffness of the material. The same procedure is used in all other samples and 

average values are shown in Table 3.3.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 3.22 Typical results for sample 1 at crosshead speed of 0.0244 mm/sec

A linear curve is fitted to longitudinal strain vs. time plot as shown in Figure 3.23. 

The slope of the fitted curve yields the strain rate for sample 1. Similarly, strain rate is 

calculated for other samples and the average is listed in Table 3.3.
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Figure 3.23 Typical results for sample 1 at crosshead speed of 0.0244 mm/sec

3.6 Results Discussion

Experimental procedures are developed for tensile testing of FR4 blank boards. Three 

samples are tested under each crosshead speed. The results are summarized in Table 3.3. 

All tested specimens exhibit consistent material properties throughout the test.
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Table 3.3 Summary of Results for Tensile Testing of FR4 Blank Boards

Crosshcad Speed 
(mm/sec) 0.0244 0.244 2.44

Poisson’s Ratio 0.112 0.115 0.114

Tensile Modulus 
(KN/mm^2) 20.7 21.14 21.06

Strain Rate 
Obtained 1.34e-4 1.33e-3 l.le-2

Tensile Strength 
N/mm'^2 273 298.5 306.33

Failure Strain 
(%) 1.62 1.65 1.81

The tensile modulus and tensile strength is found to be in close accordance with related 

research results performed at Montana State University [36]. Failure strain and Poisson’s 

ratio for E-glass/epoxy woven is around 0.14 and 1.9% which matches our results with 

[37].

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

EXPERIMENTAL PROCEDURE FOR FR4 ELECTRONIC BLANK BOARDS

UNDER IMPACT LOADING

4.1 Impact Testing

The term impact means applying a high value of force over a short period of time. 

Impact forces have greater effect than forces with lesser magnitude that is applied over a 

long period of time. In impact testing, an object of certain mass and velocity comes in 

contact with a stationary object at equilibrium which results in deceleration of the impact 

drop assembly by transmitting a force wave on the test specimen. This is a perfect 

example for imparting shock and acceleration onto an item. Mechanical shock loading 

occurs in many commercial and military applications. For commercial applications, 

shock loads may be produced by transportation, operation in vehicles, dropping an 

electronic assembly and during maintenance. In addition to the shock loading seen in 

commercial applications, military applications also have gunfire shock, missile 

acceleration and projectile launch shock.

4.1.1 Fixture Design for Impact Testing

The shock loads produced in the military applications can be on the order o f  tens o f  

G’s (acceleration of gravity) to thousands of G’s. To predict failures due to shock, an 

experimental setup is been developed. In order to subject portion of the board to
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constant moment, a four-point bending approach is used. ASTM (American Society for 

Testing and Materials) Standard D6272 [38], is followed in performing these tests.

To achieve constant bending moment during the test, a configuration of one third 

span of equal lengths between the bending points is achieved as shown in Figure 4.1, ‘L’ 

is the support span and ‘P’ is the applied load. Sridharala S. [35] designed a similar 

fixture for his four-point bending experiments. It consists of three basic components: 

support (Figure 4.2) and impactor (Figure 4.3). Assembled view of these components in 

solid works is as shown in Figure 4.4. 4140 alloy steel is used as a material for all fixture 

components.

173 Load S p a n 173

S u p p o r t  (L)

Figure 4.1: Typical four-point bending set-up
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« 1 * K W f I»'

Figure 4.2: Support used for four point bending experiment

Figure 4.3: Impactor used for four point bending experiment
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L
Impactor

Specimen

Support

Force
Transducer

Figure 4.4: Assembled view of fixture with test specimen

Sridharala [35] conducted several four-point bending experiments at low strain rates 

using quasi-static and dynamic testing. To determine the strain rate dependency on the 

material performance of the boards, it is decided to test the boards at higher strain rates. 

To gain more understanding of the behavior of the boards, tensile testing is conducted to 

characterize the behavior of the boards under axial loading which is discussed in detail in 

Chapter 3.
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4.1.2 Impact Testing Machine

The impact is applied on to the specimen by means of gravity load. To have the 

repeatable and controlled impact, Dynatup Instron 8250 drop weight impact tower is used 

as test equipment for performing the impact tests as shown in Figure 4.5, along with the 

assembly of test fixtures. Drop heights varying from 12.7 mm to 889 mm can be achieved 

in this machine, which can be done by adjusting the magnetic switch located behind the 

machine. Mass of the drop assembly may also be adjusted based on the requirement by 

changing the support plates in the crosshead. The stiffness of the impactor and the 

support are significantly higher than that of the board to reduce the possibility of 

interfering with the results. For this study smallest weight of 23.442 N is used at different 

heights as it yields the desired strain rate. Sridharala [35] used the same machine to 

validate his work. Procedures to operate the Dynatup Instron 8250 in gravity driven 

automatic mode is listed below.

1. Attach the desired weight set to the crosshead.

2. Set the control pendent switches to AUTO GRAV and, if a pneumatic clamp is 

installed, set the clamp ON/OFF switch to ON. When the AUTO switch is 

pressed, the crosshead automatically rises to the height determined by the 

magnetic switch. Set the pneumatic assist air pressure using the regulator on the 

top of the rear motor enclosure.

3. Remove any tools, other foreign objects, and the safety “H” bar from the 

enclosure and close the doors. The “ARM” button illuminates.

4. Press and hold the “ARM” button. The audible alarm sounds While still holding 

the ARM button, press the “FIRE” button. The latch hook opens allowing
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the crosshead to fall and strike the specimen.

5. The latch assembly automatically retrieves the crosshead and raises it back to the 

height of the magnetic switch.

6. Insert safety “H” bar.

7. Remove the specimen..

Inq)actor

Electronic 
Circuit Board

Support

Force
Transducer

Figure 4.5: Dynatup instron 8250 drop weight impact tower and assembly of test fixtures

4.1.3 FR4 Test Specimen

The test specimen of concern is Flame Resistant 4 (FR4) which is used for making 

printed circuit boards (PCB). FR-4 is a material [39] from the class of epoxy resin bonded 

glass fabric (ERBGF). The FR4 material properties are discussed in Chapter 3. FR4
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circuit boards blank (without components) with 50.8 mm by 50.8mm in dimension are 

used as the test specimens shown in Figure 4.6. The thickness of the board is 1.4224 mm.

4.1.4 Strain Gage Installation

Experimental analysis of structural materials sometimes requires testing to complete 

failure. In such cases, particularly with composite materials, failure is often preceded by 

large local strains, the magnitudes of which are of interest to the test engineer. Selection 

of proper strain gages for use in high-elongation testing is based on both anticipated 

strain levels and test temperature. Polyimide (E) backing is normally selected for this 

type of service because it has superior elongation capabilities and an operating 

temperature range suitable for most high-elongation testing. Properly installed and wired 

EA-Series [40] (polyimide-backed constantan foil) strain gages are capable of measuring 

maximum elongations in the range of 3% -  5%. While gage lengths of 1/8 in (3 mm) or 

longer will normally achieve 5% strain, shorter gage lengths may be limited to 3%. Since 

most structural materials (e.g., metals) yield well below this limit, the EA-Series is a 

popular choice for use in obtaining yield point information on these materials. For drop 

heights up to 76.2 mm, EA series type of strain gages is used.

As in the EA-Series, smaller gages will exhibit a lower maximum elongation 

capability. High elongation strain measurements place severe demands on the gage 

installation and necessitate special gage and adhesive selection and surface preparation 

procedures. EP-Series gages are recommended when measurement requirements are 

beyond the 3% -  5% elongation capability of the EA-Series. P-alloy is a fully annealed 

constantan foil processed for very high ductility. A properly bonded and wired EP-Series 

strain gage is capable of strain measurements to 20% (200 000 microstrain) or greater.
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For drop heights varying from 152.4mm to 863.6mm, EP strain gages is used. A 350f2 

resistance EP series strain gage is mounted on the central lower portion of the specimens 

in order to acquire the strain data shown below Figure 4.6.

The selection and implementation of proper surface preparation procedures is equally 

as important as using proper gages and adhesives. High-elongation measurements 

demand closer attention to recommended procedures than do normal elastic strain 

measurements. Vishay Micro-Measurements Instruction [41], surface preparation for 

strain Gage Bonding, outlines steps for surface preparation on a variety of materials. 

These procedures produce a smooth, clean surface, usually having been abraded in single 

direction during preparation.

High-elongation strain measurements place severe demands on the adhesive system. 

The adhesive must be rigid enough to prevent gage relaxation (creep), yet flexible enough 

to permit large deformations without cracking. Vishay Micro-Measurements [42], that 

outlines recommendations for gage installation and adhesive selection, gage bonding and 

wiring, protective coating selection for high elongation strain measurements and common 

installation problems.

Figure 4.6: FR4 test specimen with gages
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4.1.5 Data Acquisition

Data acquisition systems, as the name implies, are products and/or processes used to 

collect information to document or analyze some phenomenon. As technology has 

progressed, this type of process has been simplified and made more accurate, versatile, 

and reliable through electronic equipment. Equipment ranges from simple recorders to 

sophisticated computer systems. Data acquisition products serve as a focal point in a 

system, tying together a wide variety of products, such as sensors that indicate strain, 

flow, level, or pressure.

A PCB Piezotronics force transducer Model; 200M70 (Figure 4.7) is placed below 

the support portion of the fixture from which the force input is acquired by dropping the 

weight. Dynamic force can be measured with piezoelectric force sensors. Measurements 

of dynamic oscillating forces, impactor high speed compression/tension under varying 

conditions may require sensors with special capabilities. Fast response, ruggedness, 

stiffness comparable to solid steel, extended ranges and the ability to also measure quasi­

static forces are standard features associated with PCB quartz force sensors. Hence quartz 

force sensors are recommended for dynamic force applications. They are not used as load 

cells for static applications.

Figure 4.7: PCB piezotronics (model: 200M70) force transducer
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This force transducer is connected to the PCB signal Conditioner (Model: 482A21) as 

shown in Figure 4.8. A signal conditioner is a device that converts one type of electronic 

signal into another type of signal. Its primary use is to convert a signal that may be 

difficult to read by conventional instrumentation into a more easily read format. In 

performing this conversion a number of functions may take place. For example, when a 

signal is amplified, the overall magnitude of the signal is increased. Converting a 0- 

lOmV signal to a 0 -lOV signal is an example of amplification.

g  '
«

Figure 4.8: PCB signal conditioner model: 482A21

Strain gage data is acquired using a 2310A signal conditioning Amplifier. The 

calibration procedure for 2310A signal conditioning amplifier should be done in two 

stages. Each stage is discussed in detail in this section. Figure 4.9 shows the 2310A
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amplifier, it has four identical amplifiers. Figure 4.10 shows the layout of strain gage 

connection terminals to the input slot of the equipment.
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Figure 4.9: 2310 Signal conditioning amplifier 

Strain Gage

350QSIG- 1200EX +

Figure 4.10: Layout of strain gage terminals to input of 2310A conditioner
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Stage 1:

• For most of the dynamic/static testing, AC IN (white button) should not be 

depressed.

• For dynamic testing WB filter should be depressed so that it is operating in wide 

band equivalent to no filter.

• With a strain gage connected to the input, excitation switch still at OFF position, 

depress XlOO gain button, both output lamps at the top of the front panel should 

be completely dark. If not, turn the AMP BAL adjustment below the excitation 

toggle switch using small screwdriver to extinguish the lamps.

• With desired bridge excitation, turn the excitation toggle switch to ON; Just 

below output lamps, momentarily press the AUTO BAL toggle switch all the way 

down to the RESET position, and release. In 1 to 3 seconds the output lamps 

should extinguish, indicating balance, if not repeat from AUTO BAL.

• If the lamps are still bright, turn the TRIM knob to extinguish the lamps.

• Use the following equation to determine your gain 

Excitation X Gain = 2000

And set the gain according to value obtained from above equation.

By now one should see zero reading on your output monitor wherever you are displaying 

the signal.

Stage 2:

There are two calibration switches A and B. ‘A’ switch is for calibration in 200ps 

range, similarly ‘B’ switch is for calibration in lOOOpe range. The following two 

equations relate the cal A or cal B values with the type of strain gage you are using:
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Cal A =
/  r. \

y Gagefactor j
200

CalB: 1000
Gagefactor

For example when using a strain gage with gage factor equal to 2, Cal A switch should be 

turned upwards. A 200mv signal should be read in the digital display wherever the signal 

is output. If it is not displaying 200mv adjust the gain so that the output will be 200mv. 

This calibrates the conditioner in such a way that it gives a one-to-one relation between 

millivolts and micro strain.

—> 1 mv = 1 pe

With the same gain settings try turning Cal A downwards which should give -200mv, 

now turn cal A off and try Cal B upwards and downwards, it should read 4-lOOOmv and - 

lOOOmv respectively. If the stated voltages for corresponding switches are seen, you can 

turn off both Cal A & B, and can start testing. Momentarily check for the output lights, if 

they become bright at any time use trim knob to dim them.

The conditioning amplifier has four separate channels to amplify the data from the 

strain gage. It is limited to output a maximum of ±10V. In order to output voltages more 

than 10, the gain may be adjusted accordingly. For example, if the output voltage is 

30000pe which is 30V (according to conversion factor discussed above). Gain can be 

used to reduce the output voltage by a factor of 10. Now the new output voltage is 3V. 

The same factor should be multiplied later to correct the reduced output voltage.

The output of the conditioner is captured using the DL 750 scopecorder oscilloscope 

as shown in Figure 4.11. An oscilloscope is a type of electronic test equipment that
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allows signal voltages to be viewed, usually as a two-dimensional graph of one or more 

electrical potential differences (vertical axis) plotted as a function of time or of some 

other voltage (horizontal axis). Sampling rate of 500Ks/s is used in all the test cases for 

data acquisition.

Figure 4.11 DL 750 scopecorder oscilloscope

Experimental set-up for this dynamic testing is shown in Figure 4.12. Zoomed view 

of the fixture and specimen along with force transducer is shown in Figure 4.13.

4,1.6 Impact Testing Results

To determine the strain rate dependency on the material performance of the boards, it 

is decided to test the boards at higher strain rates. Testing is conducted at various heights 

to obtain higher strain rates as described in Table 4.1. Three samples are tested for each 

drop height in order to check for the repeatability of the test. The force and strain plots
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obtained from three samples of each drop height are shown from Figure 4.14 through 

Figure 4.16.

Signal Conditioner 
Model: 482A21

Fixture inside Dynatup 
8250 Drop Weight Tower

DL 750 Oscilloscope

Channel

Channel 2

» t

strain gage Signal

2310 A Signal 
Conditioning Amplifier

Figure 4.12 Experimental setup for dynamic testing

C i i 'c u i t  B o a r d

Ti ans due FI

Figure 4.13 Zoomed view of the specimen, fixture, and force transducer
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Table 4.1 Test matrix for 50.8mm x 50.8mm specimens

Description Dynamic Testing

Drop Height (mm) 76.2 152.4 863.6

Number of Blank Boards 3 3 3

25000 T
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15000

10000
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—  S I (Microstrain)

62 (Microstrain)

----- S3 Microsb’ain

- 81 (Force)

82 (Force)

-----S3 Force

T 5000

• 4500

■ • 2500 g

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Time (seci

0.004 0.0045 0.005

Figure 4.14 Blank boards at drop height of 76.2mm
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Figure 4.15 Blank Boards at Drop Height of 152.4mm
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Figure 4.16 Blank Boards at Drop Height of 863.6mm
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4.1.7 Discussion

Experimental procedure for shock testing of electronic circuit boards is developed. In 

dynamic testing, the developed experimental procedures produce repeatable results at 

each height. The following observations are found from experiments.

• Results show that when the impactor hits the circuit board, force and strain 

increase and after reaching a peak they decrease.

• As expected, peak values of force and strain increase when drop height increases.

• Test specimens failed at only 863.6mm drop height.

• For 863.6mm drop height, strain gage measures actual data up to around 0.5 

milliseconds after which the gage fails. The data recorded are not considered 

after this time region. Reasons for gage failure could be attributed to faster 

deformation at higher initial velocity relatively at lesser time. The summary of 

results for impact testing is shown in Table 4.2.

Table 4.2: Summary of Results for impact Testing

Drop
Height
(mm)

50.8mm x 50.8mm
Blank Boards

Peak Force (N) Peak Strain 
(%)

12.7 [35] 800.7 0.85

26.9 [35] 1183 1.36

76.2 2188 2.33
152.4 3185 3.19

863.6 3153 3.50
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CHAPTER 5

ANALYSIS OF EXPERIMENTAL DATA FROM IMPACT TESTING OF FR4

ELECTRONIC BOARDS

5.1 Introduction

Data analysis is the art of transforming data by proper evaluation and exploratory 

procedures to draw conclusions. Gathering data is a frequent part of solving problems and 

understanding the phenomenon. When we look up information to answer a question or to 

formulate new questions, we are gathering and analyzing data. When we conduct surveys 

and draw conclusions from them, we are gathering and analyzing data. This includes a lot 

of work with graphs and leads to mathematical tools like averaging and other 

computations. Depending on the type of data and the question, this might include 

application of statistical methods, curve fitting, selecting or discarding certain subsets 

based on specific criteria, or other techniques.

First step in any experiments is to begin by gathering data and analyzing by 

identifying attributes, sorting, and classifying objects. In our case there are two 

parameters to be identified and appropriate values have to be sorted to reach reasonable 

conclusions for them. The parameters are strain rate and flexural modulus of elasticity, 

which basically defines the behavior, and performance of the material to a major extent. 

Data analysis involving strain and force that are used in the evaluation procedures is 

discussed in detail in the following sections.
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5.2 Data Analysis: Strain Rate Calculations

Strain values are recorded during the experiment by placing the strain gage on the 

bottom surface of the specimen. The deformation observed by the strain gage is measured 

in terms of volts. Later, the output volt is converted into microstrain by using an 

appropriate conversion factor as discussed in the chapter 4. Force values starting from 

zero and strain with positive values are considered to be the cut off point thereby 

avoiding the initial background noises. Since there are three samples used for each drop 

height, average of all these individual samples are considered for data analysis.

The impactor strikes the specimen with an initial velocity and the specimen begins to 

deform in bending. The specimen does not fail at the lower drop heights. Data is recorded 

during the loading and unloading phase of the experiment as the specimen rebounds. At 

76.2mm drop height the strain rate is nearly constant during the first 1.5ms. Slope is 

found at this time region which yields the strain rate. Figure 5.1. There is a small initial 

nonlinear region when the loading starts. The impactor slows to zero velocity at about 

2.3ms. The strain rate is very non-linear from 1.5ms-3.5ms when the specimen slows to 

stop and then gradually begins to rebound. The strain rate is nearly constant again during 

the final unloading phase. The average initial strain rate during the loading phase is equal 

to the slope of the fitted straight line as shown in Figure 5.1 in red color. Strain rates for 

loading and unloading phases are listed in Table 5.1. It is found that unloading strain rate 

is slightly slower because some energy is lost due to friction, specimen heating and 

possibly internal damage.
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Figure 5.1: Fitted microstrain at 76.2mm drop height

The test data for the 152.4mm drop height (Figure 5.2) shows similar trends but 

higher strains are reached because of higher impact energy. Fitted straight line is used to 

calculate strain rate is shown in red color in Figure 5.2. Some internal damage is obtained 

in the specimens tested at this height after the experiment, as shown in Figure 5.3. A 

small kink in the experimental strain is observed at the peak levels, which may be due to 

specimen cracking. Strain rates for loading and unloading phases are listed in Table 5.1 

The strain rate during unloading changes more in this case because there is more internal 

damage in the specimen.
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Figure 5.2: Fitted microstrain at 152.4mm drop height

Figure 5.3: Specimen showing internal damage tested at 152.4mm drop height.
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The strain data for the largest drop height is different when compared to smaller drop 

heights. These specimens are loaded to failure so there is only loading portion as shown 

in Figure 5.4. The curve is almost linear. There is an initial phase up to 0.3ms where the 

strain rate is nearly constant. Then there is a slight shift in the curve and the strain rate 

appears to increase slightly. There is possibly some initial failure which reduces the 

laminate stiffness causing the strain rate to increase. The fitted straight line to calculate 

strain rate is shown in red color in Figure 5.4. The overall average strain rate is listed in 

Table 5.1.

X 10
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2.5

c
2
IÜ

0.5

Time (sec) .-4
X 10

Figure 5.4: Fitted microstrain at 863.6m m  drop height
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5.3 Data Analysis: Flexural Modulus of Elasticity Calculations

Flexural modulus of elasticity for four point bending is calculated using simple beam 

theory. Figure 5.5 shows the four point setup with supporting fixture, crosshead and the 

board.

Q

Board Thickness (t)

Support

<

Load (P)

Crosshead

IV3 k M  
►

Support Span (Ls)

Figure 5.5: Four point bending setup

The cross head or the impact drop assembly transmits the force due to gravity on to 

the specimen. The deflection of the board is modeled as simply supported beam as shown 

in Figure 5.6.
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Figure 5.6: Equivalent simply support beam

The bending moment equation for the middle section of the board (Ignoring the Poisson’s 

ratio effect of a board in bending) is given by.

<J =

f L ^ hU J U J 2 PL
bh^
12

(1)

where, P is the applied load,

L is the length of the board between supports, 

h is the thickness of the board, and 

b is the depth of the board.

The bending stress is calculated from equation 1. Stress strain curves are plotted for 

each drop height to find the slope using a straight fitted line, which yields the flexural 

modulus of elasticity as shown in Figure 5.7 through Figure 5.9. The stress strain curves 

for 76.2mm and 152.4mm drop height (Figure 5.7 and Figure 5.8) has two phases:
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loading and unloading phase of the impactor as indicated by the arrows. Variation in 

strain rate causes the stress strain curve to separate at 152.4mm drop height as shown in 

Figure 5.8. For the higher drop height of 863.6mm (Figure 5.9) there is only loading 

phase as explained in Section 5.2.
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Figure 5.7: Stress strain curve for 76.2mm drop height

0.025
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Figure 5.8: Stress strain curve for 152.4mm drop height
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Figure 5.9: Stress strain curve for 863.6 drop height
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Sridharala [35] performed dynamic four point bending experiments on the same 

material. His results are also shown in Table 5.1 for the purpose of comparing the 

flexural modulus with respect to higher strain rate. A plot comprising of tensile and 

flexural modulus vs. strain rate is shown in Figure 5.10. The strain rate is plotted in 

logarithmic scale for the purpose of showing all ranges of strain rate clearly. Modulus of 

the test material is found to be constant for most of the tested strain rate.

Table 5.1: Results for impact testing

Drop
Heights
(mm)

Peak Force 
(N)

Peak Strain 
(%)

Average Strain Rate 
(mm/mm/s)

Average 
Flexural 

Modulus of 
Elasticity 

(KN/mm^2)
Loading

Phase
Unloading

Phase

12.70 [35] 800 0.85 4.32 -4.31 22.57

26.92 [35] 1183 1.36 7.31 -6.97 20.71

76.2 2189 2.33 12.48 -12.03 22.64

152.4 3140 3.19 18.4 -15.5 22.69

863.6 3154 3.50 60.2 - 18.12
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Figure 5.10: Modulus vs. strain rate for all samples tested

Stress strain curves obtained under uniaxial tensile testing, quasi-static four point 

bending and dynamic four point bending are compared as shown in Figure 5.11. Four 

point bending and tensile testing stress strain curves reasonably match during the initial 

period. Further research is needed to test more samples under higher strain rates to 

understand the behavior of these stress-strain curves for the comparative study.
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Figure 5.11: Stress vs. strain for all experimental cases
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CHAPTER 6

FINITE ELEMENT ANALYSIS OF SHOCK/IMPACT TESTING

6.1 Objective

FEA is performed to simulate the experimental situation and study the material 

behavior under impact loading. FEA for the test cases are modeled in order to compare 

them with the experimental results. FEA setup has three basic components, impactor, 

electronic board and support, similar to experimental fixture. The FEA results are used to 

identify appropriate material models and element types that can be used to model these 

situations accurately. In order to study the Young’s Modulus dependency on strain rate, 

the simulation is done for all the three drop heights used in the experiments.

6.2 System and Software

All the computational analysis is done on a 3 GHz Intel Zeon dual core processor, 

having a 3 GB RAM. Altair HyperMesh v7.0 [44] is used as the pre processor to create 

and mesh the 3D models of impact testing setup. Explicit FE code LS-DYNA v970 [45] 

is used to simulate the structural response of the FE models. LS-POST and Altair Hyper 

View v7.0 are used for post processing the analysis.
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6.3 Element Types

Two basic types of elements are used in meshing the FEA impact test setup. The 

impactor and support are meshed with solid brick elements while the electronic board is 

meshed with shell elements.

6.3.1 Shell Element

The shell elements used in the FE model are 4-noded with bending capabilities. Both 

in-plane and normal loads are permitted. The element have twelve degrees of freedom at 

each node: translations, accelerations and velocities in the nodal x, y and z directions and 

rotations about the x, y and z axes as shown in Figure 6.1. This type of element is used in 

explicit dynamic analysis [46].

BETA

z

(Note -  X and If are in tie  plane of tie  element 

Figure 6.1: Scheme of a shell element [46]

The Belytschko-Lin-Tsay shell type of element formulation is used for this shell 

element. This is the default shell element formulation used in LS-DYNA due to its 

computational efficiency. The Belytschko-Lin-Tsay shell element [46] is based on a

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



combined co-rotational and velocity strain formulation. The efficiency of the element is 

obtained from the mathematical simplifications that result from these two kinematical 

assumptions. The co-rotational portion of the formulation avoids the complexities of 

nonlinear mechanics by embedding a coordinate system in the element. The choice of 

velocity strain, or rate deformation, in the formulation facilitates the constitutive 

evaluation.

6.3.2 Solid Element

Solid element is used in meshing the impactor and support. This type of element 

consists of eight nodes as shown in Figure 6.2.. These elements have nine degrees of 

freedom at each node: translations, accelerations and velocities in the nodal x, y and z 

directions and rotations about the x, y and z axes. This type of element is used in explicit 

dynamic analysis [46].

M

'K

Figure 6.2: Scheme of a solid element [46]
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The geometry, node locations, and the coordinate system for this element are shown in 

Figure 6.2. By default this element uses reduced (one point) integration for faster element 

formulation.

6.4 Model Creation and Meshing

FEA model is created and meshed in Altair HyperMesh. Initially temporary nodes are 

created in HyperMesh. Two dimensional surfaces are drawn for impactor and support 

using these nodes, shown in Figure 6.3. Temporary nodes are joined by lines and arcs 

option, in the geom menu of HyperMesh, to form the skeleton for impactor and support. 

Impactor and support is extruded by using the drag option in the 2D menu of HyperMesh 

as shown in Figure 6.4. In the 2D direction, the model is meshed with hundred and 

fourteen elements and along the drag direction there are forty-eight elements present.
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Figure 6.3: Two dimensional mesh of impactor and support.
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Figure 6.4: Three dimensional mesh of impactor and support.
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Electronic board is meshed using 64 by 48 shell elements. A larger number of 

elements are created in the longitudinal direction to better model bending of the board. 

Meshed model of the board is shown in Figure 6.5. Figure 6.6 shows the complete 

meshed model of the impact testing setup, which has the same dimension as that of the 

experimental setup, except the height of the impactor is reduced to decrease the number 

of elements thereby, decreasing the FEA computational time.

Figure 6.5: Meshed model of the circuit board

Support

Impactor

Board

Figure 6.6: Meshed model of impact testing setup
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6.5 LS-DYNA Input Cards

An input file is created in LS-DYNA after modeling the whole setup. In LS-DYNA 

all the information about the model is written in the form of cards in the input file. Cards 

are the commands, which contain information about various aspects of the model such as 

node and element definitions, materials, loads, boundary conditions etc. The following 

cards are used in the current model.

1. Control cards

2. Database cards

3. Material cards

4. Cards defining the parts and sections

5. Cards defining the nodes, elements

6. Contact cards

7. Cards defining the boundary conditions

8. Cards defining the loads

9. Cards defining box

10. Cards defining output

Detailed descriptions of some of these cards are explained later in this chapter and others 

cards referred to LS-DYNA [45].

6.6 Material Characteristics

In the FE models two types of material models are defined. The type and properties of 

these materials can be defined in the MAT cards available in LS-DYNA. Material type
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MATl is used to define the steel properties for the impactor and support. MAT2 is used 

to represent the material model for the electronic board.

6.6.1 MATl

MATl card is named as *MAT_ ELASTIC in the LS-DYNA input file. This material 

model is used to define the elastic-isotropic behavior of beam, shell and solid elements. 

Below is a sample of MATl card used in the electronic boards.

*MAT_ELASTIC

SHMNAME MATS 3 Impactor & Support

MID RO E PR
37.8500E-06 210 0.3

where,

• MID defines the material identification number. This number is used to assign 

this material to the parts in the model. (Definition is mandatory).

• RO defines the mass density. (Definition is mandatory).

• E defines the Young’s modulus. (Definition is mandatory).

6.6.2 MAT2

MAT2 card is named as *MAT_ORTOTROPIC_ELASTIC in the LS-DYNA input 

file. This material model is used to define the elastic-orthotropic behavior of the 

composite layers. Since the electronic board is an orthotropic material, it is required to 

define the properties in three mutually perpendicular directions shown in Figure 6.7. The 

thickness of the orthotropic material is very small and hence plane-stress condition is 

assumed for these materials. Therefore the properties in the thickness direction (c) are
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assumed to be greater than or equal to those along (a) and aeross (b) the fibers for the 

composite.

Figure 6.7: Element having orthotropic material property [45]

This card can be used for models with solid or shell elements that are orthotropic 

in nature. Below is a sample of MAT2 card used in the electronic boards.

*MAT_ORTHOTROPIC_ELASTIC 
$HMNAME MATS 2Board
$ MID RO EA EB EC PRBA PRCA

21.7300E-07 21926 21926 9101.4 0.12 0.18

$ PRCB GAB GBC GCA AOPT

0.18 3702.6 2902.8 2902.8 2.0

where,

• EA, EB and EC define the young’s modulus in 3 orthogonal directions A, B and

C respectively, which represent the material axes. (Definition is mandatory).

• PRBA, PRCA and PRCB represent the Poisson’s ratios in the planes BA, CA and

CB respectively. (Definition is mandatory).

• GAB, GBC and GCA specify the shear modulus of the material in the planes AB, 

BC and CA. (Definition is mandatory).

• AOPT is the material axes option.
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Since permanent failure is encountered at higher drop height (863.6mm), a material 

card which is orthotropic but non linear in behavior is defined along with failure strain. 

This card is very similar to MAT2 card except it has options for defining the stress strain 

behavior and failure strain. The failure strain obtained from experiments at this drop 

height is used in this card. The material card number is MAT40 and name of the card is 

MAT_NONLINEAR_ORTHOTROPIC.

Material properties used for the components are listed in Table 3 and Table 4. 

Impactor modified density is calculated as shown below.

Mass of the crosshead plates attached to the impact assembly is 2.37 kg 

Mass of other assembly components like threaded neck etc., is 0.72 kg 

Total mass of the impact load assembly is 3.09 kg.

Actual volume of impactor during experiments is 29922.8 mm^

Density = mass/volume 

= 3.09/29922.8 

= 1.03 e-'̂  kg/mm^

The above numerical value represents the density of the entire impact drop assembly 

in experiments. In FE model the entire geometry of the impact assembly are not modeled. 

Instead, the density of the impactor is increased to correspond to the total mass of the 

drop-weight assembly. This change allows simplifying the model without sacrificing 

accuracy as impact is a local phenomenon.

The volume of the impactor is reduced in FE model, hence the adjusted density 

becomes.

Actual volume of the impactor in FE model is 5158.65 mm^
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Volume ratio = (Volume of impactor during experiments) / (Volume of impactor in FE 

model)

= 29922.8/5158.65 

= 5.80

Using the volume ratio the adjusted mass and density is calculated as shown in Table 6.1.

Table 6.1: Adjusted mass and density values for impactor

Cases
Density

(kg/mm^)

Volume

(mm^)

Mass

(kg)

In Experiments 1.03e-4 29922.8 8.04e-3

FE Model 1.03e-4 5158.65 1.38e-3

Adjusted Values 
using the volume 

ratio
1.56e-6 5158.65 8.01e-3

Flexural modulus of elasticity obtained from experiments for each drop height is used 

in FEA. Poisson’s ratio is measured from tensile testing as described in Chapter 2, is used 

in FEA to define the properties in one direction. Other mechanical characteristics, which 

are not measured in this work, are obtained from Berman et al. [30] as shown in Table

6.2. Material properties o f  steel cire defined for impactor and support as shown in Table

6.3.
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Table 6.2 Material properties of the circuit board (ARL)

Density

(kg/mm^)
Poisson’s
Ratio

Flexural
Modulus

(N/mm^)

Modulus of
Rigidity
(N/mm^)

1.763e-7

Yxy = 0.14 Ex=23650 Gxy = 3702.6

YyZ =0.18 Ey=23650 Gyz = 2902.8

Yzx = 0.18 Ez=9101.4 Gxz = 2902.8

Table 6.3: Material properties for impactor and support

Component Density

(kg/mm^)

Young’s Modulus 
(N/mm^)

Poisson’s Ratio

Impactor 1.56e-6 2.1E2 0.3

Support 7.85E-06 2.1E2 0.3

6.7 Contact Algorithms

The FE models comprise of more than one component, hence contact definitions are 

needed to be defined between interfering parts. In the dynamic experiment, there are two 

contacts involved. One contact will be between the lower surface of the board and the 

support, as the board rests on the support. Other contact will be between the upper 

surface of the board and the impactor, as the impactor imparts load to the board. These 

two contacts are incorporated in the FEA using contact definitions in LS-DYNA. 

Relative motion between the three components is allowed.
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Contact between the upper surface of the circuit board and the lower portion of the 

impactor is incorporated using the “CONTACT_SURFACE_TO_SURFACE” card in 

LS-DYNA. The same card is also used for establishing contact properties between lower 

surface of the board and support. Contact between all these components is established 

using part option. Coefficient of friction of 0.3 between the board and the impactor is also 

included in this contact card. The Contact card is shown below:

*CONTACT_SURFACE_TO_SURFACE

SSTYP MSTYP SBOXID MBOXID SPR MPR

DC VC VDC PENCHK BT DT

--1 - -------------------------------2 —
SSID MSID

1 2

FS FD
0.3 0.3

• SSID indicates the slave segment ID representing the slave surface of the part in 

the contact.

• MS ID indicates the master segment ID representing the master surface of the part 

in the contact.

• FS and FD are coefficient of static and dynamic friction respectively [13]. Default 

is 0.0.

There are different methods in which the slave and master surfaces can be defined. 

SET_SEGMENT is one such option in which the nodes and elements which form the 

contact surfaces are defined as set segments and the set segment is given a unique 

identification number. That number is used as SSID or MSID. The other methods by 

which slave and master surfaces can be defined are by defining the part which forms the
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contact surface or by defining a BOXID. Box is a 3 dimensional region defined by X, Y 

and Z coordinates. The defined box is given an ID and it is used in the contact card.

6.8 Boundary Conditions

Two sets of boundary conditions are defined for the FE models. First set deals with 

the constraints applied on the bottom surface nodes of the support and the second set 

comprises of the load definition to the impactor as it is defined to move only in the 

direction normal to the surface of the circuit board.

6.8.1 Constraints

The nodes along the bottom plane of the support are constrained as shown in Figure 

6.8. The LS-DYNA card used to define constraints is *BOUNDARY_SPC_NODE. This 

card has the option of constraining a specified node or a set of nodes along the six 

degrees of freedom (three translational along the three coordinate axes x, y and z, and 

three rotational about these axes). Below is a sample of this card defined in the LS- 

DYNA input file,

* BOUNDARY_S PC_NODE

NID/NSID CID DOFX DOFY DOFZ DOFRX DOFRY DOFRZ
2 2 2 0 0  0 1 1 1 1 1  1

• NlD/NSlD NID is node ID and NSID is node set ID. Hence a specific node or a 

set of nodes can be constrained using this card.
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DOFX is the degree of freedom in direction X .1 means it is constrained in that 

direction and 0 means it is not constrained.

DOFRX is the Rotational degree of freedom in about X axis.

Figure 6.8: FEA model with the base nodes fixed

6.8.2 Load Application

An initial velocity is defined for all nodes of the impactor using 

“INITIAL_VELOCITY” card in LS-DYNA as shown in Figure 6.9. Below is the sample 

of this card defined in Ls-Dyna.
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*INITIAL_VELOCITY 
$HMNAME LOADCOLS 
$HMCOLOR LOADCOLS

$ NSID NSIDEX
1 0

$ VX VY

llnitial Velocity 
1 3

BOXID

VZ
- 1 6 2 . 0 5

- - - 7 -

VXR VYR
----- 9
VZR

Figure 6.9: Impactor model defined for initial velocity

The initial velocity is calculated as follows:

where, g is the gravitational force and h is the drop height of the impactor. The initial 

velocities calculated are listed in Table 6.4.

Table 6.4: Initial velocities defined in FEA

Drop Height 
(mm) 76.2 152.4 863.6

Initial Velocity 
(mm/sec) 1222.72 1729.2 4116.3
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6.9 Model Run Time

As stated in earlier chapters, experimental testing of four-point bending by impact is 

conducted. The test specimen is mounted with gages at the center to measure the strain 

induced in the electronic board due to bending. The strain data reported is limited to 5 ms 

from the start of the experiment and to the end. To compare the FE results the test is 

simulated for 5 ms of run time for the lower drop heights. For the higher drop height, 

simulation automatically stops as soon as the center element reaches the failure strain.

6.10 Results

The three experiments are simulated in LS-DYNA. The FEA of impact problem is 

modeled by incorporating all necessary cards in LS-DYNA to model it close to the real 

experimentation. During the test, the impactor is pushed towards the plate, the force in 

the form of initial velocity is transmitted to the board through the contact between 

impactor and the board. Strain is extracted from the center of the board (corresponding to 

central location in experiment) using the “DATABASE_HISTORY_SHELL” card in LS- 

DYNA. The time interval for output request is maintained same as the corresponding 

time interval for the experiments which is 5ms.

Comparison of experimental results with the corresponding FEA results is shown in 

Figure 6.10 through Figure 6.15. Current models on an average take approximately 3 hrs 

for the simulation. Overall, FEA results closely match experimental ones, especially in 

the first half of the motion.
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Figure 6.10: Comparison of FEA and experimental strain at drop height 76.2mm
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Figure 6.11: Comparison of filtered results at drop height 76.2mm
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Figure 6.12: Comparison of FEA and experimental strain at drop height 152.4mm
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Figure 6.13: Comparison of filtered results at drop height 152.4mm
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Figure 6.14: Comparison of FEA and experimental strain at drop height 863.6mm
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Figure 6.15: Comparison of filtered results at drop height 863.6mm
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CHAPTER 7

SUMMARY AND CONCLUSIONS 

The last chapter of this thesis compiles the summary of the research performed, 

observations from axial testing & impact testing of electronic blank boards and 

recommendations for future work that would build on this research are discussed.

7.1 Research Summary

The objective of this research is to assess the material properties of electronic circuit 

boards under tensile and impact loading. Four point bending fixture based on ASTM 

standards is used to measure the material properties under different strain rates. 

Experiments are conducted in both quasi-static axial and dynamic testing, to study the 

behavior of the board under different strain rates. MTS machine is used for the axial 

testing and Dynatup drop weight tower is used for the dynamic range of experiments. 

Strain gages are used to capture the response of the circuit boards from lower to higher 

strain rates using signal conditioner and oscilloscope. A total of six different strain rates 

are achieved successfully, out of which three are in the quasi-static axial testing and three 

are in dynamic testing. A proper approach for data analysis is proposed to calculate strain 

rate and Young’s modulus of elasticity. Modeling of the four point bending close to the 

experimental situation using FEA is carried out and simulation results are compared with 

experimental results. Impact testing is performed to study sensitivity of board materials to
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strain rates. This research will contribute in understanding the survivability of electronic 

boards subjected to shock environment under real time conditions.

7.2 Observations from Experiments

• Strain in lateral and longitudinal directions is measured using a 0-90 degree tee 

rosette, which is used to calculate Poisson’s ratio.

• Poisson’s ratio does not change with increase in the strain rate during axial testing 

of electronic boards.

• Tensile modulus of elasticity of boards remains constant around 21 KN/mm^2 

under different strain rates tested along the axial direction of electronic boards.

• Tensile strength of electronic boards is found to vary around 290 N/mm'^2 during 

the axial testing which is found from stress strain curve.

• Shock pulses measured in drop weight impact tower are consistent.

• During the impact testing, flexural modulus of elasticity of boards is found to be 

constant under most strain rates except there is decrease in modulus for the 

highest strain rate achieved at maximum drop height.

• Failure of the board is observed at 863.6 mm drop height at a strain rate of 60 

mm/mm/sec.

• Actual mass of the impact assembly is used in FEA to model the experimental 

situations accurately.

• FEA of electronic board exhibit close correlation with experimental results on the 

assumption that electronic board behaves as orthotropic material.
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• Shell elements can be used in modeling the circuit board, which will help in 

reduction of computational time.

7.3 Future Work

• Study behavior of boards at higher drop heights, which yields higher strain rates.

• Study the behavior of boards with different types of electronic components under 

quasi-static and dynamic conditions.

• A bigger test fixture can also be considered to study the material behavior of 

electronic boards of different sizes at varying strain rates.

• Each board is tested for one time shock load; it might be interesting to study the 

behavior under repeated shock loading.

• The sampling size can be increased to have better confidence in the results.

• Flexural modulus of elasticity can be calculated by using 90 degree tee rosette 

gage for impact loading. This may provide better understanding of variation of the 

stiffness in two directions during impact bending. These values can be used in 

defining the orthotropic material properties for electronic board in FEA.

• An approach for modeling of boards with electronic components is presented 

which can be effectively used to understand the stiffness contribution from the 

electronic components placed on the circuit boards.
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APPENDIX A

UNCERTAINTY ANALYSIS OF EXPERIMENTAL DATA 

All experimental measurements are made with a measuring tool or sensor. These 

tools have a limit to their accuracy. Results from some experiments are calculated from 

several different measured values. The strength of a tensile specimen is equal to the 

measured “force” at failure divided by the cross-sectional area of the specimen.. 

Uncertainty Analysis is the procedure used to determine the propagation of uncertainty 

when calculating a value like “strength” from multiple measured values.

Kline and McClintock have presented a precise method of estimating uncertainty in 

experimental results. The method is based on a careful specification of the uncertainties 

in the various primary experimental measurements. When the plus or minus notation is 

used to designate the uncertainty, the person making this designation is stating the degree 

of accuracy with which he or she believes the measurement has been made. It is notable 

that this specification is in itself uncertain because the experiment is naturally uncertain 

about the accuracy of these measurements.

If a careful consideration of an instrument has been performed recently, with 

standards of very high precision, then the experiment will be justified in assigning much 

lower uncertainty to measurements than if they are performed with a gage or instrument 

of unknown calibration history. The uncertainties of the results of the experimental works
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are calculated by using Kline and McClintock Method. The equation used for this method 

is given below.

W ,=
dR

— - W i  

yOX^ J

\2
+ -l- ' ' ' 4" a/? Equation A1

where, W r = the uncertainty in the experimental results,

R = the given function of the independent variables xi, X2 .. .xn 

R = R(xi, X2 ...xn)

wi, W 2 . . .wn = the uncertainty in the independent variables.

A. 1 Uncertainty Calculation for MTS Data

The uncertainty analyses for stress (o), percentage elongation (%E1) are calculated. 

The stress is based on the load (P) and the initial cross-sectional area (A,) of the tested 

specimen. The %E1 is based on the change in length (Al) during the testing. The 

magnitude of P is obtained from the load-cell of the MTS unit. The values for Al and A; 

are calculated based on measurements by a caliper. The uncertainties in load-cell and 

caliper are ± 0.134 % N and ± 0.0254 mm respectively, obtained from the calibration. 

The tensile stress is given by the equation,

a = P/Ai Equation A2

A.1.1 Calculation of Uncertainty in Stress (U J 

U c  — U (p  Ai)

UAi =  (U oi)"

Uncertainty in load-cell = ± 0.134 % N

Uncertainty in caliper = ± 0.0254 mm
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Sample calculation:

The tensile strength and elongation values from the crosshead speed of 0.0244mm/s are 

considered for this uncertainty analysis.

For a tensile strength = 273 N/mm^

The measured load (P) = 4924.2 N

Uncertainty in load (Up) = 4924.2 x 0.00134

= ± 6 . 6 N

Uncertainty in cross-sectional area (Uai) for the tensile specimen:

Uncertainty in measuring width and thickness (U^i = U^) = ± 0.0254 mm. 

Cross-sectional Area (A,) = w * t

= 12.7 X 1 422 mm^

= 18.1 mm^

A i =  w * t

Differentiating with respect to width (w),

dA;— - = t
dWj

= 1.442 mm.

Differentiating with respect to width (w),

dA, : W
dtj

= 12.7 mm

Uncertainty in area, Uai = dAi I
 U w i  I +

dwi dti

= [(1.442 X 0.0254) V  (12.7 x 0.0254)^]
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= ±0.325

Uncertainty in stress, Ua =
d<7
3P

\2
• U p

da
\2

U a , Equation A3

da  1

ap

= 0.0553

d a
dA: A /

= -4924.2/(18.1")

= - 15.03

Now providing all the numerical values in Equation A3 obtained from the calculation, it 

is found that,

Uo = [(0 .0553*6 .6)" + ( - 15.03 *0 .325 )̂  ]2

= 4.89 N/mm^

Therefore, for a tensile strength 273 N/mm^ the uncertainty is 4.89 N/mm^. One example 

of the use of the uncertainty analysis for tensile stress is shown in this section. This can 

be implemented to other experimental results discussed in this thesis.

A. 1.2 Calculation of Uncertainty in Percentage Elongation (U%ei)

Sample calculation:

Gage length (1) = 152.4 mm

Al
%E1

/
100
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Uncertainty in Al (U ai) = ± 0.0254 mm 

Uncertainty in %E1 (U%ei),

U %El = Um
dAl y

Equation A4

d%El 100
dAl I

=  0.66

Providing all the calculated values in Equation A4, it is found that,

U%Ei = [(0.66 * 0.0254)" ]2

U%Ei = ± 0.017

One example of the use of the uncertainty analysis is shown in this section. This can 

be implemented to all experimental results discussed in this thesis.
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APPENDIX B

STATISTICAL ANALYSIS OF EXPERIMENTAL DATA 

Statistics is the science of collection, classifying and interpreting data based on the 

number of samples. As a result, statistics includes the methodology of data analysis. 

Standard deviation is a commonly used statistical method to find the variation of data 

points by keeping mean as a reference. The formula for standard deviation is shown in 

Equation Bl.

SD = [X (x-p) ̂  / n-1 ] Equation B 1

where, x = sample value

p = mean of the sample 

n = sample size.

Sample Calculation: Finding the standard deviation for tensile modulus of elasticity.

X 1= 20. .1 

x 2  = 21.14 

X 3 = 21.06 

p = 20.97 

n = 3

Plugging in these values in equation 1,

SD = 0.05495 

SD = 5.45 %
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Similarly, standard deviation calculated for tensile strength is shown in Table Bl. 

Table Bl: Standard deviations for tensile testing

Experimental
Variables

Crosshead Speed 
(mm/sec)

Standard
Deviation

(%)0.0244 0.244 2.44

Tensile
Modulus

(KN/mm^2)
20.7 21.14 21.06 5.45

Poisson’s Ratio 0.112 0.115 0.114 0.15

One example of the use of the statistical analysis is shown in this section. This can be 

implemented to all experimental results discussed in this thesis.
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