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A B STR A CT

U nsupervised  Learning o f  D ocu m en t Im age T ypes

by

Dean Patrick  C urtis

Evangelos Yfantis, Exam ination Com m ittee Chair 
Professor of C om puter Science 

University of Nevada, Las Vegas

In  a system  where medical paper docum ent images have been converted to  a 

digital form at by a scanning operation, understanding  the docum ent types th a t  exists 

in th is system  could provide for v ital d a ta  indexing and retrieval. In a system  where 

millions of docum ent images have been scanned, it is infeasible to  expect a supervised 

based algorithm  or a tedious (hum an based) effort to  discover the docum ent types. 

The m ost sensible and practical way to  do th a t is an unsupervised algorithm . Many 

clustering techniques have been developed for unsupcrvised classification. M any rely 

on all d a ta  being presented a t once, the  num ber of clusters to  be known, or both. 

Presented in this thesis is a clustering scheme th a t  is a two-threshold based technique 

relying on a hierarchical decom position of the  features. On a subset of docum ent 

images, it discovers docum ent types a t an acceptable level and confidently classifies 

unknown docum ent images.

Ill
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C H A PT E R  1

IN TRO D U CTIO N  

Overview of Docum ent Image Analysis 

In docum ent image processing, vast and num erous algorithm s exist which provide 

solutions to  m any of the  problems posed by docum ent analysis. M any papers have 

been w ritten, and m any theses have been done on DIA. M any of the sources of 

research gathered have been derived from the IE E E  Transactions on P a tte rn  Analysis 

and Machine Intelligence(PAM I). In 2000, Nagy [53] published a paper th a t compiles 

ninety-nine articles relevant to  the field of DIA and reports on its evolution in the 

previous twenty years.

Numerous well known applications and algorithm s have been devised for the en

hancem ent, s truc tu ra l analysis, and classification of docum ent image features. Nagy 

et al. [52] describe the  im pact of the  growth of tlie In ternet and its relation to digital 

character recognition, m ost significantly to  the need for archival and retrieval of tech

nical m aterial, as well as the  generation of HTM L code from DIA output. General 

research done in th is area includes [12], [43]. O ther areas of research include the 

works of Saund, Fleet, et al. who have developed algorithm s for the acquisition and 

in terpretation  of inform ation from informal and casual docum ent images [58], [59]. 

Ha provides a comprehensive description of techniques that, can be employed for all 

phases of a docum ent analysis system [36]. W hat follows are algorithm s th a t are

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



closely related  to  the  work of th is thesis, which have set precedents and share new 

ideas on DIA.

Adam ek et al. [1] created an algorithm  which recognizes characters based on 

holistic word recognition in which scalar and profile-based features are taken from 

the entire word image. The contour of a word is utilized to  follow th is approach. Ex

traction  is perform ed by the following: binarization, localization of lower case letters, 

connected com ponents labeling, connecting disconnected letters, and contour tracing. 

Most significantly, the algorithm  uses a m ultiscale convexity/concavity representa

tion in the  process of contour tracing  th a t stores inform ation about the  convexity 

and concavity a t different scale levels for each contour point, stored in a 2D m atrix. 

The algorithm  is capable of word recognition w ithout breaking words into smaller 

segments.

Agarwal e t al. [3] have provided an application for segm entation and classifica

tion based on docum ent struc tu re  through the  au tom ated  analysis of bank checks. 

Recognition of the  courtesy am ount follows a six step model: input image handler, seg

m entation, segm entation critic, preprocessing, neural network recognizer, and post

processing. Strings are created based on the  proxim ity and alignment of characters. 

Then, the correct string  is chosen based on a set of rules, one of which is the currency 

sign. A nother system  w ith the com plete capabilities of extracting features is done by 

Adams in [2].

Diana et al. [24] devised a m ethod for docum ent analysis based on three different 

modules. The first, low-level, processing is comprised of the following three stages: 

acquisition, binarization, and skew detection. The second, docum ent struc tu ra tion ,
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processes the  image to  ex tract features into a  tree structure  for organizational pur

poses. The last module, form class identification, uses a process of graph m atching 

to  compare the  tree of one form to th a t  of another in a list of previously extracted  

forms. Through the  coordination of these modules, the  docum ent can be properly 

modeled and classified.

Hobby and Ho [38] created a preprocessing m ethod of docum ent enhancem ent 

by clustering character images. Image clusters of single symbols are used to com pute 

the average outline from m atching bitm aps, replacing all occurrences of the symbol 

in order to  reduce the overall noise degradation of the  docum ent.

Jain  and Yu [41] describe a m ethod for the  storage of a  paper docum ent as an 

electronic version. Im portan t to  the process are various techniques for finding the 

structu ral and lexical layout. T he au thors use a bottom -up approach based on the 

connected com ponent extraction to  segment regions in a docum ent. Additionally 

they propose a top-down model which can represent a docum ent for editing, storage, 

retrieval, and analysis.

O'Gorman [57] describes an algorithm  for processing docum ent images based on 

layout analysis. The docum ent spectrum , based on bottorn-up analysis, uses a nearest 

neighbor clustering m ethod which m easures skew, line spacing, and text blocks. It is 

independent of skew angle, and tex t spacing, and it is capable of processing different 

tex t orientations in the same image.

Xi and Lee [71] determ ined an algorithm  which extracts table structures from 

skewed docum ent images through the  use of gradient and wavelet analysis. G radient 

calculations are used first to  process the docum ent image and, subsequently, the

3
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vertical and horizon tal lines are obtained through the wavelet decomposition. The 

structu re  of the  form is obtained through the use of a modified wavelet reconstruction 

algorithm . Finally, through Minkowski Subtraction, the tab le  struc tu re  image and 

the deskewed image can be used to  create the  table free image as well as a  table 

structu re  image.

Introduction  to  Issues in Clustering 

C luster analysis is a type of classification in which the s tructu re  of d a ta  is deter

mined w ith only the  observed elem ents being available, whereas the  type of classifica

tion called discrim inant analysis is when groupings of some observations are used to 

categorize others and infer the  struc tu re  of the d a ta  [26]. For example, discrim inant 

analysis would be used for optical character recognition (OCR) where characters or 

digits are used to  tra in  a sta tistical classifier, and th is train ing d a ta  is used to  cate

gorize (recognize) an observation.

Clustering is a technique th a t provides for unsupervised classification. Clustering 

has applications in fields such as the  life sciences, m edical sciences and engineering [5]. 

There are varying types of clustering algorithm s, such as agglom erative clustering [28], 

K-rneans, fuzzy [31], hierarchal and sequential [5,33,66]. O ther algorithm s developed 

include [3,4,14,16,17,47] including an entropy-like A-means algorithm  [65].

C lustering is a technique used in unsupervised learning. Unsupervised learning is 

a classification where the class labeling is not available [66]. The concern becomes to 

reveal the  organization of pa tte rn s  into sensible clusters (groups), which will allow one 

to  discover sim ilarities and differences among pa tte rns and to  derive useful conclusions 

about them  [66]. Unsupervised learning has applications in fields such as life sciences.
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medical sciences, social sciences, earth  sciences, and engineering [66].

Fraley [27] describes cluster analysis as the  the  autom ated search for groups of 

related observations in a d a ta  set and the  identification of groups of observations th a t  

are cohesive and separated  from other groups. C luster analysis gained popularity  

recently due to  quickly advancing technologies th a t  have fueled the rise of several 

prom inent areas of application. They include the  following;

•  D a ta  M ining - which began as a search for custom er and product groupings in 

large retail datasets.

•  Docum ent C lustering and Indexing - where large sets of web-based and image- 

based docum ents are indexed and sorted.

•  Gene expression - which arises from the  desire to  find genes th a t  act together.

•  Image Analysis - where cluster analysis is used for image segm entation and 

quantization [27].

In general, there arc five steps to  a clustering algorithm , as sta ted  by Theodoridis 

. These five steps are listed below as follows;

•  Feature Selection - features m ust be created  th a t  can effectively describe as 

much inform ation concerning the task  w ith m inimum  inform ation redundancy. 

These features are often encoded and represented as vectors x , where x  €  R '

e Proxim ity M easure - These are m easures th a t  quantify how similar or dissimilar 

two feature vectors are.
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•  C lustering Criterion - This is the expert’s decision as to  w hat type of clusters 

will underlie the  d a ta  set. This can be expressed as a cost function or a  set of 

rules.

•  C lustering A lgorithm  - The algorithm  chosen th a t  forms the  clusters using the 

proxim ity m easure and the criterion.

•  C luster V alidation - This is a process of ensuring th a t  the  algorithm  has estab

lished a satisfactory clustering. Techniques include m anual validation or any 

num ber of au tom atic tests.

M any clustering algorithm s require a specified (fixed) num ber of clusters to  be 

defined, but, in dynam ic inform ation system s such as the work done in docum ent 

classification, the  num ber of docum ent types (clusters) is no t known a priori . In [7], 

an algorithm  is presented for an online clustering in a dynamic environm ent.

A classification problem  can be on cither of the  two extrem es th a t one m ay face. 

The first is the  complete sta tistical knowledge of the  underlying jo int d istribution of 

the observation X  and the classes Ü [19].

Banerjee e t al. [9] proposed a class of distortion functions th a t  adm it an iterative 

relocation scheme (such as in A-means) where a global objective function based on 

distortion w ith respect to  cluster centroids is progressively decreased. He proposed 

and analyzed param etric  hard  and soft clustering algorithm s based on Bregm an di

vergences. Nock [56] proposed a m ethod based on the constrained m inim ization of a 

Bregman divergence using a m ethod called boosting and weighting.

Clustering images is an integral part of DIA and com puter vision. Various papers

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



describe viable m ethods for the  problem s and solutions to  clustering. Agarwal et 

al. [3] describe the problem  of clustering in dom ains where affinity relations between 

cluster elements are of a higher order th an  two. The algorithm  first constructs a 

weighted graph and approxim ates a hypergraph. A clustering algorithm  based on a 

normalized Laplacian is used to  partition  the  vertices. Then, based on the  hypergraph 

approxim ation, weights are assigned to  the  edges. Liu et al. [47] describe an algorithm  

for creating d istribu ted  spill trees which can be used for online searches for nearest 

neighboring points in high dimensional spaces, enabling it to  perform  clustering on a 

set of more th an  a billion images. The algorithm  does not depend on object types b u t 

only requires feature vectors in a m etric space. Haim [37] describes a content-based 

approach for web image searching.

Sheikholeslami [60] proposed a m ethod of clustering using the  m ulti-resolution 

properties of wavelets transform s. Using wavelets allows for effecient clustering, the 

detection of clusters of arbitrary shapes, insensitive to  outliers and the order of the 

input of data.

A type of clustering referred to  as spectral clustering performs clustering using 

the  eigenstructure of certain data . Bach [8] used the eigenstructure of a sim ilarity 

m atrix  using a cost function w ith a technicpie called spectral relaxation. Dhillon [23] 

provides a connection between kernel L-means and spectral clustering using a weighted 

kernel A-means objective function witfi normalized cuts. L ittau  [45] uses a technique 

referred to  as PD D P for clustering very large d a ta  sets.

Burl [14] has shown an application of feature extraction and classification in 

response to  the remote exploration of the solar system  and the  vast archive of images

7
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th a t  followed. The algorithm  devised for m ining useful inform ation from these images 

involves various components, the  first of which is the  focus of attention(FO A ) which 

takes, as input, the  images and ou tpu ts  a list of candidate  object locations. The FOA 

can quickly exclude areas th a t  obviously have no relevance to  the  search param eters. 

Subsequently, feature vectors are ex tracted  from the  FOA which are then  integrated 

into a  neural network th a t classifies features based on bo th  positive and negative 

train ing examples.

Cheng et al. [16,17] have proposed an approach to  docum ent segm entation which 

uses bo th  local tex tu re  characteristics and image s tructu re  in order to  segment doc

um ents. The m ethod is based on a  m ultiscale Bayesian probabilistic function which 

allows m odeling of image and s truc tu ra l characteristics. The local tex tu re  character

istics are ex tracted  at each resolution via wavelet decomposition. The docum ent is 

segmented using a line-to-coarse-to-fine procedure.

In [47], a large scale nearest neighbor algorithm  was developed for cluster images 

on the order of a billion, where the features used were ex tracted  directly from images. 

Their algorithm  is a parallel version of the spill tree algorithm  [46]. A dditional works 

in large scale clustering algorithm  development are given in [18,22,51].

C lustering in Docum ent Image D atabases

Docum ent type classification can allow for indexing and docum ent understand

ing, and facilitate the creation of efficient docum ent navigation systems. W ork has 

been done in docum ent image databases in discovering duplicates [25,49,50], and 

im plem enting techniques th a t  are useful to  docum ent image type discovery.

This algorithm  helps in the prediction of an unknown docum ent th a t needs to

8
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be processed or recognized. By searching on the  rn clusters instead of the N  to ta l 

docum ents in the system  where m  N , efficient association of the  docum ent can 

be achieved. By associating this unknown docum ent with a cluster, we can assume 

already ex tracted  inform ation about th a t  docum ent such as the  location of various 

fields (social security num ber, date, name, etc).

It is im portan t to  define w hat is m eant by ’’docum ents” . M uch work has been 

done in indexing of docum ents when docum ents refers to  web pages [15]. This research 

associated docum ents w ith the physical paper document. Much research has been 

accomplished in the  field of indexing paper docum ents based on tex t extracted  using 

OCR m ethods [10,15, 33, 63]. Docum ent retrieval is often the lim itation of these 

OCR based systems. In m any applications, it is desirable to  have a system  th a t 

contains robust classifying schemes th a t  capture docum ent relations and structure. 

In order to  incorporate th is property, a system  m ust be developed th a t  can create 

a classification scheme in which the  structu re  and d a ta  are perm anently  em bedded 

within the  docum ent feature representation.

Hull and Cullen [39] developed an algorithm  for determ ining the  sim ilarity and 

equivalence of docum ent features through visual means. Pass codes are used as feature 

vectors on a docum ent by docum ent basis and used to  locate docum ents th a t contain 

sim ilarities to  the inpu t image. This was determ ined by the  Euclidean distance to  

the arrangem ent of pass codes in subsections of each image. A m ethod perform ing 

recognition using visual sim ilarity is also presented in [61].

Kenairi et al. [42] described a system  which identifies different types of forms, 

using a sta tistical approach, w ithout points of reference. A utom atic form segmenta-

9
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tion was perform ed to  ex tract the struc tu re  of the  docum ent and designate it  as the 

m ain block set. Next, blocks are m atched w ithin each class, thereby calculating block 

attribu tes. Subsequently, the blocks are identified by calculating the  M ahalanobis 

distance and a weighted statistical distance between them , either accepting or reject

ing the results based on whether a minimal distance is achieved and it falls below a 

threshold.

T he structu re  or layout of the docum ent liolds much inform ation th a t  can be used 

for segm entation and classification. Analysis of the  docum ent s truc tu re  is necessary 

to  understand the  type of docum ent which is presented, w hether it be a historical 

docum ent, scientific paper, or free flowing tex t. A ntonacopoulos and Downton [6] 

provide an overview of weaknesses exposed in the  analysis of the  struc tu re  of historical 

docum ents, and new m ethods to  overcome them . Fujihara and Babiker [29] created an 

algorithm  for classifying technical docum ents based on single generic models as well. 

The model is based on a point-interval representation which retains the  a ttribu tes 

of the block regions. Liu-Gong et al. [48] have developed a m ethod for converting 

a docum ent image into its layout struc tu re  through the  use of an analysis system 

and several models. The layout struc tu re  is generic in th a t  it is composed of generic 

objects and can be used as a rule base. Provided w ith various param eters, a general 

model is capable of recognizing different types of docum ents. The general model is 

represented by a hierarchical tree and composed of several class-objects. Class-objects 

contain only a ttribu tes  which describe the characteristics of layout objects and arc 

used for segm entation. The recognition of the  docum ent is achieved by a model 

th a t contains the  docum ent’s inform ation and the  recognition m ethod, allowing the

10
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analysis system  to  be independent on the  document.

Various algorithm s have been developed for hierarchically segmenting a docum ent 

image. Bitlis et al. [11] have w ritten  an algorithm  to  describe and com pare the  content 

and layout of a docum ent, given its image, storing the results in a hierarchical tree for 

classification. N akajim a et al. [54] dealt w ith segmenting m achine-printed docum ents 

recursively, in a process described as the Split D etection M ethod. T hrough the  use of 

field separators, lines, edges, and background separation, a rule base on periodicity 

of occurrence of the  listed features is formed. A fter detection, the  segments are then  

stored in a tree structu re , in which all nodes are traversed in accordance w ith a rule 

base through the  process of reading sequence analysis, allowing for the meaningful 

in terp reta tion  of the  results.

Sivaram akrishnan et al. [62] described an algorithm  for determ ination of the  zone 

type given the  coordinates of the  left m ost-top and rightm ost-bottom  points, and the 

docum ent image. S tatistical p a tte rn  recognition is used to classify each zone on the 

basis of its feature vector which consists of all these properties as fields is formed 

for each zone. Additionally, in the  context of zoning, Taghva et al. [63, 64] address 

retrieval effectiveness and ranking variability when autom atic zoning is applied to  

a docum ent. The paper determ ines a linear relationship between the  rankings of 

m anual zoning and au tom atic  zoning, determ ining them  to  be statistically  equivalent 

processes. A collection of 1055 docum ents were used and ranked according to  the 

m easures of recall and precision. The corresponding rank of each docum ent was found 

in the m anual version and represented as a point, which yielded a scatter p lot from 

which a  least squares fit was determ ined and a regression line found. The difference

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



between average precision for the  two runs is too small to be considered statistically  

significant. Equivalently, the  difference between au tom atic  zoning and m anual zoning 

is statistically  insignificant.

M ethods utilizing docum ent concepts are described in [32]. [21] performs a doc

um ent concept based approach to  organizing business letters into similar concepts 

using docum ent structures.

12
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CHAPTER 2

P R O JE C T  D ESCR IPTIO N  

T he algorithm  developed performs a fiierarchical classification using a decompo

sition of the  features. Bitlis e t al. [11] describes an algorithm  using a hierarchical 

technique. A tree s truc tu re  is created to  represent a docum ent image and docum ent 

sim ilarities are established based on the trees created from the  docum ent images. 

O ther examples of hierarchical based techniques include [20,30,34,35,44,55,69,73]. 

The algorithm  presented in th is thesis produces a clustering of images, bu t can also 

be used as an estim ate of the  num ber of clusters th a t  exists. A work by Tibshi- 

rani [67] introduces a m ethod for estim ating the num ber of clusters using a s ta tis tic  

he developed.

The classification algorithm  is an unconstrained sequential clustering based scheme 

in which (1) the num ber of clusters is unknown, (2) the  num ber of samples to  be clas

sified is unknown and (3) no a priori knowledge is presented. This algorithm  is 

useful for problems in which it is not feasible for the entire d a ta  set to  reside in 

memory and the  supervised train ing  of the  entire set cannot practically be accom

plished w ith a hum an effort. A nother im portan t issue with clustering is the curse of 

dim ensionality [5]. This algorithm  inherently im plem ents a form of dim ensionality 

reduction. The hierarchical algorithm  we have developed incorporates the idea of a 

two-threshold algorithm  presented in [66]. The algorithm  is divided into two m ain

13
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TRAINING SESSION

Data Optimal Feature SelectionFeature Selection

PRODUCTION SESSION

ResultFeature Vector ClassificationFeature Selection

Threshold Determination

Figure 1: The two sessions for unsupervised classification of docum ent images

sessions: the train ing session and the  production session (Figure 1).

The train ing  session involves two m ain stages. The first stage is a feature se

lection step. Fourteen features are able to  be ex tracted  from the  docum ent image 

and an algorithm  is developed th a t  creates a series of configurations, whereby each 

configuration maximizes a criterion. A supervised classification was performed using 

conditional probabilities and the  criterion is the  classification accuracy of a configu

ration.

The second stage of the  tra in ing  session establishes a low er/upper bound thresh

old pair for each feature configuration established in the first stage. A subset of 

document images are divided into their respective types and sta tistical analysis of 

within-class and between-class m easures are used to  establish the  low er/upper bound 

threshold pair.

The production session involves two stages and expects the training session to  be 

completed. The first stage of the  production session is the feature extraction stage. 

This is when a sample image (raw form) is presented to  the system  and the image is

14
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transla ted  from raw d a ta  to  a feature vector.

The second stage of the production session is the classification (clustering) phase. 

The clustering algorithm  uses a tim e series hierarchical approach where, for a sample 

docum ent image, classes (docum ent types) are elim inated as a po ten tia l m atch for 

th a t  docum ent image. E lim ination at each tim e step is based on the  upper/low er 

bound threshold pair for th a t configuration. The classification of an image to  a cluster 

or the creation of a new cluster is performed based on some term ination  condition.

This thesis is organized by the  following chapters. In C hapter 3, a description is 

given of the  features ex tracted  from a docum ent image and how they  are encapsulated 

into a vector form at. C hap ter 4 discusses the  steps taken to  develop the  classifier. 

Section 4.1 discusses the  algorithm  for the construction of the  feature configurations. 

Section 4.2 shows how the thresholds for the  lower and upper bounds are determ ined 

for each configuration constructed. Section 4.3 provides the hierarchical feature de

composition classification algorithm . In C hapter 5, results of the system  are reported 

and then  conclusions and discussions are provided.

15
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C H A PT E R  3

DOCUMENT FEATURE EXTRACTION

The features used to perform  docum ent classification are based prim arily on the 

structu ra l na tu re  of the  form. The focus in th is thesis is on the structu ra l features.

(0,0) w

MFBS

I?
O)
g

Figure 2: The M ajor Form Body Segment (M F B S  ) of a docum ent image (bounding 
box th a t surrounding the actual content of an image)

The M ajor Form Body Segment (M F B S  ) is the  content of interest for the docu

m ent image. E xtraction  of the content of in terest requires the  removal of m argins and 

some positional adjustm ents. In [13], the  algorithm  we developed for M F B S  extrac

tion is described. This feature is represented by th e  4-tuple { x ,y ,v n d th j ie ig h t}  6

16
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M F B S .

The struc tu ra l features, i>, ex tracted  are s truc tu ra l line segments, checkboxes 

and typew ritten  words (location and O CR result).

The two types of lines th a t  are extracted  are horizontal ('0w) and vertical {'i/jyi) 

line segments. The set 4’hi contains line segments where 0 < i < N^i is the 

horizontal line segment. The set xfjyi contains Nyi lines where < i <  Nyi is

the vertical line segment. Each line segment, w hether it is horizontal or vertical, 

is described by six param eters,

.rniriX , .n iinY ,

.c e n te rX , .cen terY

where

< . r n i n X - i i i i u Y  > —» startingpoin t

< . m a x X . m a x Y  > —> end ingpoint

describes the  s tarting  and ending points for each line segment and

r f ?  .eeM erY  =  (3.2)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5
O  R

5  #

o
»! W

Figure 3: The steps taken in extracting the features from a docum ent image
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Processes

Preprocessing M ajor M argin ID/Logo d e tec tio n  
and  rem oval

Line d e te c tio n  and 
rem oval

■Remove large black 
a reas
•Remove noise 
•Deskew image 
•Binaryize image 
•Save (po jm age)

•Find th e  m ajor m argins 
of th e  image 
•Extract th e  image 
bounded by th e  
m argins
•Save (m arg in s jn fo )

•Find th e  Id and logo of 
im age
•Rem ove Id and logo 
from  im age 
•Save (id_rect)
•Save (logo_rect)

•Find th e  vertical and 
horizontal lines of 
im age
•Remove lines from  
im age
•Save ( lin e jn fo )

C h e c k  b o x  d e t e c t io n  

a n d  re m o v a l

H a n d w r i t t e n  /  

t y p e w r i t t e n  w o rd  

s e p a r a t i o n

W o rd  r e c o g n i t io n D o c u m e n t  f ie ld  

z o n in g

•Find th e  checkboxes of 
im age
•Rem ove boxes from  
im age
•Save (b o x jn fo )

•Find th e  w ord island of 
image
•Separates typew ritten  
w ord from  handw ritten 
word
•Perform  word 
segm entation  
•Save (w o rd jis t)

•C haracter 
Segm entation  
•C haracter recognition 
•Save (reco g n ize jis t)

•D etect, zone and 
recognize social 
security  num bers

Definitions

• o jm a g e :  Original image (gray/rgb)
" p p jm a g e :  preprocessed  Image 
•m jm a g e :  im age enclosing only m ajaor m argins 
• lo g o jm a g e : im age with id & logo rem oved 
• lin e jm a g e : image with lines rem oved 
•w o rd jm a g e :  im age consisting of only w ords 
• w o rd jis t :  A list of rectangles w hose coordinates 
d en o te  th e  location of th e  w ord in th e  image

■ p o jm ag e : grayscale version of p p jm a g e  
■ m arg insjn fo : coord inates of th e  m argin location 
•ld_rect /  logo_rect: rectang le  co o rd inates of the  
id /  logo location
• l in e jn fo :  List of horizontal & vertical line 
locations
•b o x jn fo : List of rectangles of box locations 
•w o rd jis t :  List of rectangles of ty pew ritten  word 
locations
•re c o g n iz e jis t: List of strings represen ting  
w ord list

Figure 4; The details of each of the steps taken in the feature extraction process
shown in figure 3
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The m ethod for extracting the  line segments is a gradient-wavelet based approach. 

The param eters for ipu and 'tjjyi are relative to  the M FB S shown in Figure 2 and 

normalized between 0 and 1. W here the  absolute position of a  horizontal line segment, 

in the  original image is given by

m i n X  =  { ip f j .m in X  * M F B S .w id th )  + M F B S .x  

m ir iY  =  .m m Y  * M F B S .h e ig h t )  + M F B S . y

for the  sta rting  point and

m a x X  — .m ,axX  * M F B S .w id th )  + M F B S .x

m a x Y  =  .m a x Y  * M F B S.he igh t)  + M F B S . y

for the  ending point. The same is true  for

Checkboxes are indicated by 'tp̂ , where 0 <  i < N^b is the  checkbox out 

of Nf-b checkboxes. Checkboxes are described using rectangles, so a checkbox, has 

the param eters

20
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where the center point of the rectangle is . c e n t e r X . c e n i e r Y )  and

M .'^ lœ nlerX  =  (3 .3 )

(33 )

A tem plate search based algorithm  was developed for checkbox extraction in [40]. 

The param eters for the  checkboxes are stored relative to  the M F B S . The normalized 

values of a checkbox, are related to  the  absolute position in the  original by

X  =  {if)cl,.X * M F B S .w id tJ i)  + M F B S .x  

y = {'fpcb-V * M  F  B S .he igh t)  +  M F B S . y

for the (x, y) coordinate and

w id th  = '(Jjcb-width * M F B S .w id th  

height = 'ipcb-height * Ad F  BS .he igh t

for the  w idth and height of the  checkbox rectangle.

Once the  typew ritten  words have been separated  from the handw ritten  words 

[68], then b o th  the O CR result of the word and the  location (rectangle) of the type- 

written words, is extracted. The i*'' typewritten word, where
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Wu, is the  num ber of typew ritten  words, has the param eters

ip^\width,tp^pp\height,

center Y, 

'^^\word

where .cen terX ,'ipw \centerY)  represents the center point of the rectangle and is

com puted in the  same way as in Equations (3.3) and (3.4).

S tructu ra l Feature Encapsulation 

Using the features, {V'/iO VAo Vw, extracted from a docum ent image, p, the 

struc tu ra l vector, is constructed, s^ )̂ is the composition of n  feature vectors 

from the  set of vector representations, U, where V  = {vj, V2, . . . ,  v ^ } ,  and =  

{vi, V2, . . . ,  v„} where 1 <  n  <  M  and M  is the maximum num ber of vectors (M  =  

14). Each vector, v ,, is constructed based on a meaningful representation of the 

features extracted , {iphu'4’vuid.bd^%u}■ Each vector, v,; is represented by its symbol 

(shown in figure 1). Following is the  process for constructing each vector, v,;, 1 <  i <  

M.

The sim plest features to  construct are the  count based features, hie, vie, cbc and
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Feature size symbol
Horizontal Line Count 1 h lc
Vertical Line Count 1 v ie
Checkbox Count 1 cb c
Typew ritten  W ord Count 1 tw c
Checkbox Grid 16 cb g
Checkbox Relational Grid 16 c b rg
Horizontal W ord Profile 25 h w p
Llorizontal Island Profile 50 h ip
Horizontal Line Grid 100 h lg
Horizontal Line Profile 50 h ip
Typew ritten  Word Grid 100 tw g
Typew ritten  W ord Relational Grid 100 tw rg
Vertical Line Grid 100 v lg
Vertical Line Profile 25 v lp

Table 1; List of the vector set V  used in the construction of the struc tu ra l vector 
for image p

tw c. They are com puted as follows

hlco = IV'wl

vIco = IV'wl

cbco = [>Pch\

tw C () = 1 Vai) 1

where the  notation  | •  | refers to  the cardinality of the set.

The features h lg , v lg , c b g  and tw g  are based on an Image Grid Decomposi

tion (IGD) of the M F B S  . Figure 5 shows how an image is overlayed by a grid of 

dimension n  x n. This m ethod of transla tion  is sim ilar to  th a t  sta ted  in the Triangle 

Proportionality Theorem . Given the images, p and q of the same type th a t differ by
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N E V A D A  C O R P O R A T IO N

LEAD SCREEN IN G  OCCUPATIONAL AND MEDICAL HISTORY 
PART 11 -  MEDICAL OUESTIONNAIRE
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(a) O riginal Image (b) IGD

Figure 5; (a) Overlaying of the original image (b) with an n  x  n  grid (IGD) 

a scale, 7 , the  features of p, and the  features of q, ip̂ 'h will be related by

= jipii’)

By using the IGD of an image, the grid based features will become equivalent

highd =  hlg('^)

for an image p  and q of the  same type, independent of 7 .

The transition  function for horizontal line segments, /hig, creates a vector, h lg
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where is the count of the number of horizontal line segments passing through

element i of the  p ''' image. Given a  grid dimension w ith r  rows and c columns, the 

element a t (z, y) in the IGD corresponds to  the  f ' '  element in hlg^^^ by

i = {y * columns)  +  x  (3.5)

For example, if the  count of the  horizontal line segments passing through grid element

(5,4) is 10 and the  grid is 10 x 10. Then, i =  45 and hlgj^^ =  10. The transition  

function, /hig, for some image, p, is shown in algorithm  1. It is im portan t to  note 

th a t for some horizontal line segment j ,  the following condition holds

'iplY‘\ m i n Y  =  ipl^Y^maxY

A lg o r ith m  1 : Translation for h lg

In p u t: (p)
hi

O u tp u t : h lg
1 fo r ? — 0 TO N,,i d o
2 staii, : ) +
3 h f g i l
4 end  — {'ip̂ fi'‘\ m a x Y  * columns)
5 : =  h l g ^  +  1
6 fo r J :— start  TO  end. d o
7 hlg^"^ =  hlg|"^ +  1

8 e n d

9 e n d

The transition  function for vertical line segments, ,/vig, is very similar to  the /hig-
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The following condition holds

=  ip^^p^\maxX

and the algorithm  is shown as Algorithm  2 . The increm enting step  from siari  to  end  

m ust take place vertically. In /vig, since the feature is horizontal, increm enting i goes 

from left-to-right. For /vig, going from start  to  end  involves changing i to  be the next 

element vertically by

(y * columns)  +

where iplP’'^ \m inY  < y  < ilM '^\m.axY.

A lg o r ith m  2: T ranslation for v lg

In p u t:  
O u tp u t :  v lg

1 fo r i =  0 TO  N,,i do
2 s =  * coZrrmns) + P r ' -
3 vlg(^) =  vlg(^^ +  1

4
5

e =  {ij^^['''\maxY * columns)  + .rnaxX

6 fo r y = p r ’i \ m i n Y  TO  '(///' \ r n a x Y  do
7 i = (y * columns)  +  '/-If

8 +  1
9 e n d

10 e n d

The transition  functions for typew ritten  word locations, /twg and /twrg, are 

closely related, /twg forms an IGD on the  M F B S  and /twrg forms an IGD rela-
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tive to  only typew ritten  words (as supposed to  the  M F B S ).

T he transla tion  function, /twg, uses a sim ilar process as /hig and /vig. E quation

(3.5) is used to  convert from the  two-dim ensional grid to  the One dimensional vec

tor, tw g. The elem ent twg|^^ represents the num ber of typew ritten  words rectangle 

centers contained in element i of the  image. Equations (3.3) and (3.4) show the 

com putation for the  center point of a rectangle, where [ip!£’''\centerX,'ipw’̂ \cen te rY )  

is the center point of the ?T' typew ritten  word rectangle. The algorithm  for com puting 

ftwg w ith  an IGD of n  x n  is shown as A lgorithm  3.

A lgorithm  3: Translation for tw g  

Input;
O utput: tw g  

1 for 1 =  0 TO do
* =  (T/iw .cenferF * n) -I- i/ i^ ''h cen te rA  

b
4 end
3 t w g j^ ^  =  t w g j^ ^  4- 1

. / t w r g  forms an IGD relative to  only typew ritten  words (as opposed to  the M F B S ) ,  

meaning th a t  bounds for the grid are based on the  spatial proximity am ongst typew rit

ten  words. So, the first step is to  establish a bounding rectangle over all typew ritten  

words by finding the values, {.Xi, ?;i, xg, 1/2}- xq is the m inimum x  coordinate and ;//i 

is the m inimum  y  coordinate and (xq, yi) is the  upper left corner, zg is the m axim um  

x  coordinate and % i* the m axim um  y  coordinate and (zg, y/2 ) is the bo ttom  right 

corner. Then, the bounding rectangle is divided into an n  x n  grid.

The second step is to  decide which grid elem ent each typew ritten  words belongs 

to. This transition  is similar to the  transition  for /twg- The algorithm  for com puting
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/ t w r g  is shown as A lgorithm  4.

A lgorithm  4; Translation for tw rg

sca leX  — ^T2-Z1
1

O u tp u t :  tw rg
1

3 for 7 =  0 TO Nu, do
4 x'  =  {'iJj^’' ' \cen terX  — Zi) * sca leX  * n

5 y' =  -centerY  — yi)  * scaleY  * n
6 i = {y' * n) +  x'
7 twrgj^^ =  tw rgj''^  +  1
8 end

T he translation  function for checkboxes, /cbg and /cbrg, performs the same op

erations on the checkbox rectangles to construct the  vector cbg^^^ and cbrg^'"\

The functions for hip, hip and vlp  construct a projection of the feature de

scribed. The vector, hip, is a projection of th e  islands along the vertical orientation 

of the image, hip and vlp  are the projections of the  features yy,i and respectively.

Before the  algorithm  for constructing hip is discussed, the definition of an island

m ust be provided. Islands are groups of word-location pairs th a t are related by a set 

of rules. Given the set of all islands, T , each island, r , €  T, z =  1 , 2 , . . . ,  M , contains 

a set of word-location pairs where r,- C P,  and

{VjgeT U : T G T  : Tj n  t; =  0 ]

,rj is the F'' element of the island. Each p., 6  Tj.i  =  1 , 2 , . . . ,  Nr^ are related 

their absolute proxim ity to  each other. F irst, they are related by a vertical alignment
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function, vrial ign(pi-i ,pi)  by

{ViGTjP: E Ty : 7 >  1 AU7't(lZ7g7i(TU,Pi)} (3.6)

where v r ta lign{p i- i ,p i)  satisfies a ll  four of the following conditions

1. P i.m in Y  < P i^ i .cen terY  A

2 . Pi_i.ce7rtery < (p i .m n z y ) A

3. p,:_].m/ény < P i .œ n ie r  I\

4. p(.center <  (p^_i.m azy)

where

Pi/in inY + p^ .m axY  
Pi. cent ex =  -----------------------------

T hen each p,: E D, 7 =  1 , 2 , . . . ,  rn satisfies a horizontal relationship expressed by

{ViETjPi E Tj; : 7 >  1 A (P(.777777% -  T,)".777aZ%) <  0 }  (3.7)

where 0  represents a threshold for the inaxiinuin distance (m easured in pixels tor this

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



applications) between two words and r™ is the last elem ent of Tj (which represents 

the rightm ost word of the island).

An island, T,, has the coordinates of rectangle similar to  th a t  of the features for 

and 'ij)w Thus, an island has the  param eters

Tj .̂y

Ti.width, Ti.height,

where {Ti.centerX, Ti.centerY)  is the  center point of the  island rectangle and is com

puted as in equations (3.3) and (3.4).

Having now defined an island, r,; in term s of the rules in (3.6) and (3.7), an island 

builder algorithm  is presented as A lgorithm  5.

The hip forms a profile along the vertical axis of the  image where hip^ is the  num 

ber of islands from, { tj, T2, .. ., r,,,}, for which the  center y, r .c e n te r Y , pass through 

histogram  element i. The image is divided into B  equal sized bins. The algorithm  

for constructing h ip  com putes the num ber of islands th a t are in bin i

h ip , =  Y l  B)
J=0
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(a) Horizontal Word Profile (b) Vertical Line Profile

(d) Horizontal Line Profile(c) Horizontal Island Profile

Figure G: Four different profile features
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A lg o r ith m  5: Translation for island construction
Input: P
Output: T  =  {ti ,T2 , . . . ,Tm}

1 Sort the  set P  by P i{r).m inX
2 create first island, Ti

3 add pi, Ti.add{pi)
4 fo u n d  = fa ls e
5 index  =  — 1
6 2 =  2

7 for i = 1 T O  3 do /*  Run 2 to  3 tim es * /
8 w hile \f o u n d  AND i < n  do
9 for 7 =  1 TO  k  do

10  if  vr ta lign{T l'\p-i) AND {p.j.minX — r f^ .m a x X )  < 0  then
11 index  =  j
12 /  ound = true
13 break
14 end
15 end
16 end
17 if fo u n d  then
18 Pi to
19 else
20 increm ent tlie num ber of islands, /c =  A: +  1
21 create a new tj, and add p.; to  it, T^.addl^Pi)
22 end
23 end

where

A;, B) =  <
1, A: =  O.cenierY  * B

(3.8)

0 , o therw ise

The rem aining profile features, h ip , v lp  and tw p  are constructed the same way 

where f,- is a horizontally based projection function for rectangles, f i  is a liorizontally 

based projection function for struc tu ra l line segm ents and pi is the  vertical based
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projection function for line segments. Thus,

J = 0

where is the  num ber of typew ritten  words, 'pséf'^^ is the j*'' word in the  image, 

and B  is the  num ber of bins in which the  image is divided vertically. Then,

Nhl

1=0

N,,l

i =0

and

A , B ) =
1 , k = 6 .m in Y  * B  

0 , oLherwise

1 , k = O.'ininX * B  

0 , otherwise
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C H A PT E R  4

H IERARCHICAL CLASSIFICATION ALGORITHM  

O ptim al Feature Selection 

The hierarchical clustering scheme relies on an ordering of feature vectors. P re

vious work uses a Fisher class separability m easure [70]. Presented here is a technique 

using conditional probabilities and iterative construction. Let 0̂ -) be an ordered con

figuration of rit vectors a t tim e t where  ̂ specifies the  feature configuration in the 

2̂ '' element of where G R  =  {hlc, vie, cbc,. . . ,  v lp)  (Figure 1) and 1 <  rq <  M .

Then we create a feature vector constructor function, z, th a t creates a vector s 

from an ordered configuration 6^1 from tim e t where

s =  z(gW)

s =  z{{hlc, vie, cbc,. . . ,  vlp]) 

s =  [hlc, v ie , c b c , . . . ,  vlp]

The feature vector constructor function, z, uses the feature transla tion  functions dis

cussed in Section 3.1 to  create the  individual vectors, and then  concatenates features 

in the  order specified by .

As m entioned earlier, the  hierarchical clustering scheme relies on a particu lar 

ordering of the feature vectors. Vector configurations are ordered based on classifi

cation accuracies of a given configuration, 6^1 a t tim e t, 1 < t < K  for K  different
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configurations.

More formally, a subset of docum ent images, S  =  {si, S 2 , . . . ,  S j) are partitioned  

into k  disjoint subsets, {rri, 7:2, . . . ,  tt^}, where each tt,, represents a class of docum ent 

types and s denotes th e  vector representation of a docum ent image. Let Q be the  set 

of docum ent types where

k

k l  =  TTj —  { S j ,  S g ,  . . . , S ( i ] , 7Tj r \  TTi =  (f), j  / .

1 =  1

Let Li be the  event th a t the recognized docum ent is the docum ent type and 

let /fc be the  event th a t the  actual docum ent is the  docum ent type, where i, fc G fi. 

The Conditional P robability  rule states th a t  given two events A  and B  th a t

n A \ B )  =

where P {A \B )  is the  probability for A, if B has happened which gives

=  (4.1)

So, P(Li)  can be expressed as

B (L ,) =  P ( L , n n )

=  P{L,(1  {I1J 2 , ■ ■ ■ J n } )

= P{Li  n  l\) +  P{Li  n  /g) +  . ■. +  P{Li  n  lur)
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and from equation (4.1), we get

B (B ,) =  f(Z ,,|Z i)B (/i) +  B(B,|Z2)f(Z2) (4.2)

+  . . .  +  P{Li\lp})P{lf,f)
N

k=l

For a given 6, the  param eter, 0 ,  is defined as Q{6) =  [r(él),P] where P  —  

{Pi, Pg, • • •, Pfc} and Pi = P{L,i) and Tj{0) is the  m ean of the feature construction 

6 for TTj. Thus, the  conditional probability for an input vector x , and a class tTj is 

P(7Tj|xg 8 (0 ))  and x.̂  is classified to  the  class tTj, if

P(7rj|x^;8(0))>P(7r(|x^;8(0)), (4.3)

Then, a function a is created th a t  describes the accuracy of classification for a 

given 9 where

total correctly cla.ssi f ie d  , ,
n(0) = -------------------------------- , 1 <  ;  <  A (4.4)

where, d is the to ta l num ber of docum ent images classified and k is the to ta l num ber 

of classes. Then a series of configurations, 0 ^ ,  1 < t < K  is created where

o(0W) >  n(0('+P) (4.5)

The algorithm  for selecting an optim al feature construction is based on an algo-
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Individual Feature Classification Accuracy
a

hlc .3285
vie .1991
cbc .1336
tw c .4633
cbg .3515
cbrg .3023
hip .8281
hlg .6533
hip .7838
tw g .8567
tw rg .8221
vlg .5604
vlp .6211
hwp .8925

Table 2: The classification accuracy of each individual feature.

rithm  presented in [66]. The first step is to  establish the m ost accurate individual 

feature. So. a classification is performed using each feature by itself as a configura

tion. The results for each feature of this test are seen in Table 2. As seen, the most 

accurate individual feature is the horizontal word profile [0 = {hwp}). The rem ainder 

of the algorithm  is now presented (Algoritlim  6).

Each step  after the  initialization is the  appending of vectors onto the previous 

winner. For example, after the first step, each possible two-dimensional com bination 

w ith the winner from the initialization step  and each rem aining feature from V  is 

generated, and then  a is com puted for th a t com bination. T hen the feature th a t, 

when added, minimizes a (line 6), is the feature th a t  is added to  the configuration 

for tim e t (line 7).
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A lgorithm  6; O ptim al Feature Selection A lgorithm
Input: X ,  n ,  V
Output: series of configuartions 9 

1 initially 0 =  0
com pute j  where Vj = arg min n(%)

3 «<») =  U
4 remove Vj from V
5 for t — 1 TO |R| do

^ com pute Vj =  arg a ( J

8 remove Vj from V
9 end

10 return 9

Thresholding

The distance function, ^(7, C]9) com putes the distance between an input image 

I  and a cluster C. W here the  param eter, 6 specifies the  feature configuration to  use 

to  com pute the  distance. The distance function, 4>{1,C]9), uses a relative distance 

measure, d(x, y ), between two vectors, x  and y ,com puted by

y)
\

For each OV a t a given tim e /., there  are two bounds for the  distance m easure 

4>{1 ,C \9 V ) .  These bounds correspond to  the  range in which an image I  has mem

bership w ithin a cluster C. T he lower bound for 0(9 is 0(0(9) where 0 ( =  0(0(9). 

The upper bound for 0(9 is T(0(9) where T* =  X(0(9). The bounds were determ ined 

by com puting sta tistics of inner-class and between class relationships.

Recall from Section 4.1 th a t a subset of images S  =  {sj, Sg, . . . ,  Sj} are partitioned 

into k disjoint subsets, {tti, vrg,. . . ,  TTfc}, where each iXi represents a class of docum ent
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types and s denotes the  vector representation of a docum ent image. Let Ü be the  set 

of docum ent types where

k
^  ^  { S 1 , S 2 ,  . . . , S d } ,  TTj n  TT; =  (j), j  ^  I-

i=l

Given a  docum ent type, k, the inner class distances m atrix  for the feature decom

position is com puted where is the  relative distance between s.;

and Sj and

where s,, Sj E Tr*.. The two sta tistics com puted are the  mean, p ( 0(9 r̂*.), and standard  

deviation, cr(0(9 of where

=  (4-6)
m = l  n = l

and

\
d d

'  (4,7)
m = l  n = l

Figure 8 shows the plot for inner distance m easures for hwp  over all clusters 

specified by -^^pgre

k
lj(Oh^vM) — Plhhwrn' ĵ) gj

j = l
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Figure 7; The sorted values of w ith the  corresponding p(0(9
cr(0(*\ 71- ĵ =  .1676 p lotted .

.40 and

The first choice for a 0^ is the mean, p(0(9 Q) where

"  i=i
(4.9)

and 0 i is not varied more th an  one standard  deviation, a{6^^\Cl) from the  m ean 

where

a (0 (*O 2)
\

k Ffcl F t  I

1 =  1 m —1 n ~ l

(4.10)

This analysis allows us to  find values for each, 0 , for each, 0(9 The process for 

determ ining T  is very similar.

The between class m atrix  for the feature decom position 0(9, B(®‘'9 is com puted 

where B - f  is the  relative distance between Ci and c.,-

40
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where Ci and Cj are concept vectors chosen from the  tt̂  =  {si, Sg, . . . ,  spi|}  and ttj =  

{ si,S 2 , . . .  ,spq}- Every cluster, tt^, has a representative, r^, and Ci is chosen by

Ci =  arg min d(s,,T i) (4.12)

where Cj represents the  small of all pair-wise relative distance m easures between a 

m em ber Sj and th e  representative

336539636955758

Figure 8 : The sorted values of w ith the corresponding p{Ohwp) ~  .74 and
(^{(hiwp) =  .1134 plotted.

As for the  m ean /,i(0(9j and standard  deviation <r(0(9j are com puted for

where

(4.13)
m—l 77 = 1

and

a \
k k

771=1 n = l

(4.14)

T hen T j is chosen to  be w ithin one standard  deviation, cr(0(9j of the m ean p(0(9j_
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Classification

T he classification algorithm  is an unconstrained sequential clustering based scheme 

in which (1) the  num ber of clusters is unknown, (2 ) the num ber of samples to  be clas

sified is unknown and (3) no a priori knowledge is presented. This algorithm  is useful 

for problem s in which it is not feasible for the  entire d a ta  set to  reside in memory 

and the  supervised train ing  of the  entire set cannot practically be accomplished with 

a hum an effort.

Let 6 be an ordered set of n  vectors from the  set V  =  {v i, V2 , . . . ,  vm} where 

9i,0j e  {v i, V2, .. ., 'Vm } and 1 < i j  < M, i ^  j  and 1 <  |0| <  M .

The hierarchical algorithm , Algorithm  7 and Figure 9, uses the ordered set 6 and 

the  list of lower and upper bounds, $  and T  respectively.

For an arb itrary  image, / ,  the algorithm  uses each feature, 6, to  essentially 

elim inate those docum ent types (clusters) to  which I could not belong. Then, if after 

populating the  set in S e t  (line 11), the set in S e t  has only one element, then  th a t  is 

a term ination condition th a t  causes I  to  be classified to  th a t cluster (line 22). If the 

set i n S e t  has more th an  one member, then  those clusters belonging to  th a t set are 

placed in currSe t  and set to  be classified for the  next feature in 9 (line 20).

If, after going through each cluster (for loop on line 9), and in S e i  is empty, 

\inSet\ =  0, then  there  are no clusters currently  to which 1 could belong. This 

constitu tes the  creation of a new docum ent type (cluster) where 1 becomes the first 

element of th a t  cluster (line 26-27).

W hen 1 is m arked as unclassified, this m eans th a t I  was neither added to  a 

cluster nor constitu ted  the  creation of a cluster. This occurs, if a t the  end of the
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currSet

types eliminated

^  types eliminated

Feature 1

Feature 2

1

Feature 3

, re tn m  d o c u m a it type 
ïÿ̂ N-f,y==o, create new  d u s te r

îf(Wj6 , re tu rn  docum ent type
î f l [ i ¥ ^ ^ ) = o , oreatc new  d n s tx r

types eiminated

= = a , re tn m  docum ent type 
J ^ = 0  ,fre a le  new  d u s te r

Feature n

,  re tu rn  docum ent type 
, croate new  d u s te r

, re tu rn  unclassified

Figure 9: An execution of the Hierarchical Docum ent Type Classification algorithm  
shows how docum ent types are elim inated a t each feature level. At each phase 
(F e a tu re i , F ea tu re 2 , - - . ,  Feaiuren), potential docum ent types are elim inated based 
upon a distance m easure and a threshold determ ined for th a t distance m easure. At 
the end, if there are more th an  1 potential docum ent types, then  th a t  input image, 
/ ,  is m arked as unclassified.
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A lgorith m  7: Hierarchical Docum ent Type Classification 
Input: 1 , 6 , ^ ,  T , C

1 c la s s i f ie d  =  fa lse ,  i = 1
2 i n S e t  =  0, ou tSe t  =  0, m id S e t  =  0
3 if  \C\ = =  0 th en
4 C .num berO  f  C lus ters  +  +
5 Cji^fyiherO f  Clusters

6 end
7 c u rrS e t  =  C
8 w hile d a s s i / f e d  = =  fa ls e  AND % < |ff| do
9 for j  =  1 T O  IcurriSdl do

10 if  4>{1 ,currSet^]9i) < 0  ̂ then
11 inSet.a,(ld{currSetf)
12 else if  (p(I, currSe t  j] 6 i) >  T j  then
13 autSet.a,dd{currSetj)
14 else
15 m i  dS 'ei. add ( currSe lj  )
16 end
17 end
18 if  \inSet\ > 1 then
19 i+ +
20 cu rrS 'e t ::= m S'et
21 ou tSet  =  0, m id S e t  =  0
22 else  if  \inSet\ = =  1 then
23 add 1 to  cluster represented by in S e i
24 classi f i e d  = true
25 e lse  / /  \inSet\  =  0
26 create new cluster
27 make 1 first member of that cluster
28 du5S2/% ed=:frue
29 end
30 if  c la s s i f ie d  = — fa ls e  then
31 m ark /  as unclassified
32 end

while loop (line 8 ), the  variable c la ss i f ied  is still equal to false, classified. = fa lse .

A utom atic C luster A djustm ent Stage 

T he m ethod described in [72] uses a cluster intensity function to  determ ine 

boundaries and separability of clusters. Presented here are m ethods th a t  not only
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detect these features, b u t determ ine their streng th  and makes decisions w hether or 

not to  merge or split a cluster based on its boundaries and separability. An im portan t 

step in the classification process is a refinement step  referred to  as A utom atic C luster 

A djustm ent (ACA). T hroughout the  process, clusters can grow in unpredictable and 

sometimes undesirable directions. Thus, ACA is im plem ented after a classification 

has occurred on n  docum ent images. ACA is a three step process; 1) the  first step 

is a merging procedure, 2) the  second step  is a splitting  procedure, and 3) the th ird  

step is an a ttem p t to  classify those images m arked as unclassified.

It is possible th a t  two (or more) different clusters can exist th a t actually  repre

sent the same docum ent image type. To handle th is problem, a merging procedure 

was developed th a t  first detects if th is situation  exists, and then  does the  necessary 

work to  merge. The algorithm  for merging is presented as A lgorithm  8 . The input to  

the merging procedure is the specification of w hat feature configuration, 0* ,  to  use 

and the current clustering, C, of the  system . The merging of two clusters is based on 

w h i c h  configuration and the  corresponding threshold, The add{) operation takes 

each individual m em ber of Cj and adds it to  Q . This adding of individual members 

autom atically  updates the representative for the cluster Q .

A lg o r ith m  8 : M erging Procedure
In p u t;  0 9 \C

 ̂ F ind C i,C j{i < j )  where <()(C,;, Cj-; 0̂ *̂ ) =  min  ̂ 0(Cfc, G,.; 0̂ *̂ )

2 if  d{Ci,C.j) < t h e n
3 merge C.j into G, using the add() operation
4 elim inate Cj
5 e n d
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For clusters th a t  grow b u t have low cohesion, a m ethod of sp litting  is employed 

th a t m arks each m em ber of th a t  cluster as tem porarily  unclassified. The difficult 

part is detecting clusters th a t m ust be split. This process uses the  feature vector 

representation of the m em bers and makes a decision based on w hat percentage fall 

w ithin a certain  range. For th e  cluster, C ^ ,  each member, 1 <  j  <  |CW| is 

transla ted  into its vector representation, by the  transla tion  function, z, described 

in Section 4.1. The first step is to  create the moan vector, sb) for where

|CW|

4 "  =  E  s G  (4.15)

and then  create a vector for the  standard  deviation, ub), where

r = .l

The splitting  is presented in A lgorithm  9. The algorithm  first goes through each 

elem ent of cluster i and, if a t least R  elements of th a t  vector are w ithin one standard  

deviation of the m ean vector for th a t cluster, then  th a t element is counted (lines 

9-10). Then if there are less th an  P  members who satisfy the above rule, then  th a t  

cluster is split, otherwise, the  cluster is not split (lines 14-15).

T he final step  of the update  procedure is an a ttem p t to  classify those images 

th a t have been m arked as unclassified. Those images th a t were split in the previous 

step using the cluster sp litting  algorithm , are m arked as tem porarily  unclassified.
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A lg o r ith m  9; C luster Splitting
In p u t :  Cb)

1 in C o u n t =  0
2 m em ber C ount =  0
3 fo r r = 1 T O  |Çb)| j o
4 fo r A: =  1 T O  IsbGl j o

if  - 1  <  < 1 th e n

6 in C o u n t + +
7 e n d
8 e n d
9 if  in C o u n t >  R  th e n

10 rn,em,berCount +  -f
11 e n d
12 in C o u n t =  0
13 e n d
14 if  m em berC oun t < P  t h e n
15 split C luster ( Gb) )
16 e n d

This distinguishes them  from those im ages th a t were already unclassified before the 

update procedures started . The classification of unclassified images is done using the 

hierarchical docum ent type classification shown as A lgorithm  7. After classification 

is complete, then  those images m arked as tem porarily  unclassified are m arked as 

classified.
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C H A PT E R  5 

RESULTS

Since the  class labels of an image I  is not known a priori , exam ining the results 

of a clustering algorithm  is more of a qualitative process. 1647 images were divided 

into tlieir respective types by hand and given a nam e (these nam es were not available 

during the  classification). The algorithm  creates arb itrary  groups of images, which 

are not related  to  the  names given to  each image. So, results are done based on 

looking a t the  members and providing sta tistics based on m em ber names.

The experim ental setup includes four different configurations of thresholds in two 

different environm ents. One environm ent is w ithout the  ACA process and the other 

environm ent is with the  ACA process. The four different threshold configurations 

used in each environm ent are

•  AVG - This configuration uses the  averages of the inner-class distances (fol

lower bounds) and between-class distances (for upper bounds) as described in 

Section 4.2.

• VA Rl - This is the first variation of threshold adjustm ents. A djustm ents are 

m ade w ithin one standard  deviation of the  m ean for inner-class distances (fol

lower bounds) and between-class distances (for upper bounds).

•  VAR2 - This is the  second variation of threshold  adjustm ents. A djustm ents are
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Distribution of Clusters

60

0

C 1 usters

(a) D istribution  w ithout ACA

D i s t r i b u t i o n  of Clusters (with ACA)

(b) D istribution w ith ACA 

10: The d istribu tion  of the  images in clusters.
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Cluster NTC Count PM T
15214 1 88 1.00
15172 2 10 0.90
15173 5 8 0.375
15174 2 92 0.99
15175 2 28 0.96
15177 2 4 0.75
15178 4 88 0.95
15190 3 24 0.54
15179 2 101 0.99
15182 2 28 0.96
15181 2 17 0.94
15211 1 8 1.00
15186 2 135 0.75
15187 1 35 1.00
15192 3 111 0.97
15207 1 58 1.00
15208 1 22 1.00
15212 1 12 1.00
15213 1 13 1.00
15205 2 28 0.71
15204 1 9 1.00
15199 2 12 0.92
15210 1 8 1.00
15201 1 59 1.00

Table 3: C luster Analysis for FUNNEL

m ade within two standard  deviation of the  m ean for inner-class distances (fol

lower bounds) and between-class distances (for upper bounds).

» FUNNEL - Funneling for the  thresholds refers to  the process of making 

the choice for the low er/upper bounds a t the first level of the decomposition 

very lenient and at each level decrease th e  leniency (relative to  the average 

and standard  deviation for the  configuration a t a given level). This funnels the 

images towards the optim al configuration.

One of the im portan t results is how m any different docum ent types there are in
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each cluster (NTC) and the percentage of the  m ajority  type (PM T). Table 3 shows 

the result of a  clustering perform ed using a FUNNEL configuration w ith ACA. M any 

of the  clusters have a PM T  equal to  one or in the  high to low nineties. This m eans 

the  clustering algorithm  is not only finding clusters, it is also classifying w ith high 

accuracy. C luster 15173 is a topic of in terest and future work. The docum ent types 

in th is cluster were closely related based on the features selected. We address work 

being done to  solve th is problem  in our conclusions and discussions.

Figure 10 shows the  d istribu tion  of the  images based on how m any m em bers there 

are in each cluster versus the d istribu tion  of the members in the  true  classification 

for an experim ent performed using no ACA (Figure 10a) and w ith ACA (Figure 

10b). The im portan t aspect of th is result is th a t  the trend  is similar. Even w ithout 

ACA, the  d istribu tion  of the clusters discovered creates a trend  similar to  the true  

classification. W ith  ACA, though, the trend  becomes closer. There are drop offs 

and level areas in the  same relative regions. W ithout ACA, there is a spike in the 

beginning, m eaning th a t  clusters were found th a t  contained m any images, b u t w ith 

ACA, it is seen th a t  there  are no such spikes. This is due to  the splitting  m ethod of 

ACA.

A dditional sta tistics useful in analyzing a clustering experim ent are presented in 

Table 4 and Table 5. The Percent Correct out o f Total tells us how m any images 

arc correctly classified out of all possible images in the experim ent (1647 for this 

particu lar experim ent). Being constitu ted  as correctly classified means an image is 

the same as the  m ajority  type of th a t  cluster. The Percent Correct out o f Classified 

com putes accuracy only on those images th a t  were marked as classified. Then the
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inform ation is provided w ith the  num ber of images th a t  were correct and exactly how 

m any images were left unclassified.

AVG VARl VAR2 FUNNEL

Percent Correct out of Total .3339 .5664 .3333 .7523
Percent Correct O ut of Classified .8607 .7954 .9015 .8806
Num ber of C lusters 75 33 31 44
Images Correct 550 933 549 1239
Image Unclassified 1008 474 1038 240

Table 4: Threshold V ariation Results W ithou t ACA

AVG VARl VAR2 FUNNEL

Percent Correct ou t of Total .23 .2028 .3479 .5616
Percent Correct O ut of Classified .81 .89 .83 .9269
Num ber of Clusters 60 24 17 24

Images Correct 387 334 573 925
Image Unclassified 1171 1270 956 649

Table 5: Threshold Variation R esults W ith  ACA

W hen looking a t whether a  configuration is successful, the m ost im portan t num 

ber is its Percent Correct O ut of Classified. As seen from Table 4 and Table 5, 

accuracies are in the 80’s and 90’s. Upon further observation, it is seen th a t there 

are sometim es many images left unclassified. This is a negative result, along w ith 

the num ber of clusters created. Since we know th a t  the  true  num ber is 30, we want 

to  m itigate the  creation of clusters beyond 30. As seen, the FUNNEL w ithout ACA 

had high accuracy and left little  images unclassified, bu t created 44 clusters. Then 

when run w ith ACA, FUNNEL decreases the num ber of clusters (through merging 

and splitting) and increases accuracy. Although, m ore images are m arked unclassi-
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fied. This result is still positive because the  production session is designed to  never 

term inate, so as m ore inform ation (i.e. more documents are classified) is presented 

to  the  system , clusters will be formed later on th a t  could possibly begin classifying 

these unclassified images.

The key issues w ith the system  are single point of failures. C urrent efforts are 

creating relationships between the size of the m id S e t  and ou tSet in Algorithm  7. This 

would add intelligence on the  natu re  of the relationship between an image I  and the 

current s ta te  of the  clustering. Results show th a t such an algorithm  can be successful 

in au tom atic discovery of classes in a classification, environm ent and classification of 

samples in to  discovered classes.
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C H A PT E R  6

CONCLUSIONS AND DISCUSSIONS

Presented in th is thesis is an algorithm  for clustering th a t  performs unsupervised 

learning on docum ent image types. This algorithm  is useful for problem s in which 

it is not feasible for the entire d a ta  set to reside in memory and the supervised 

train ing of the entire set cannot practically  be accomplished w ith a hum an effort. 

The classification algorithm  is an unconstrained, sequential clustering-based scheme 

in which (1) the num ber of clusters is unknown, (2) the num ber of samples to  be 

classified is unknown and (3) no a priori knowledge is presented. The hierarchical 

feature decomposition allows for an efficient classification of an image I  by elim inating 

at each stage those clusters for which 1 could not belong.

T he algorithm  performed a t an exceptional ra te  and was successful a t learning 

docum ent types autonomously. The FUNNEL m ethod for establishing thresholds was 

the m ost successful threshold configuration, achieving a 92% accuracy of classified 

docum ent images.
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Extract All Fê 3jres j- _1 Beehte Nevada

Preprocess T 
Clean Way {— m Oirvr Qovernmant (Pieaes SoeoV)

Deskew Image j _ TahbbowHBiV...................................................................... .......................

ftrrarea &nage j 

'Wavelet 
Haar Wav'*<et j

“1 0UÇIP.BSS

RaiquKlilaealMfl.......... ........ — —.....BMMm.fûTjtomiflrt;. ......... .................

Document OCR r
....... y.Recogrwza 5SN
:, . Get list of Trypewftten .Wo’ds.... j-

_■ Per»r«‘ViS» - 1] irierrwt L_ keaeardi

W L5-1tei _l 0:hei f^se Speotrf

-
5 .: .Show Feature. , -j!

. Oasrfication . 
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