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ABSTRACT

Development o f In-Cylinder Injection for a Hydrogen-Fueled Internal
Combustion Engine

by

Ronald Fifield

Dr. Robert Boehm, Examination Committee Chair 
Distinguished Professor o f  M echanical Engineering 

University o f Nevada, Las Vegas

Traditional means for converting an engine to operate on hydrogen fuel incorporates 

port injection. The typical method for controlling emissions on a port injection engine is 

to operate the engine lean (typical AFR o f 70:1) and/ or incorporate an EGR system. The 

result o f  utilizing these methods is an appreciable reduction in power output. In-cylinder 

injection o f  an internal combustion engine provides a reliable method for delivering 

hydrogen fuel whereby fuel efficiency, power output and emissions levels are improved. 

Injection o f hydrogen directly into the combustion chamber allows control o f various 

factors such as bum  rate and combustion timing which influence the production o f 

emissions in the form o f NOx. Testing o f the converted engines has also shown an 

increase in power due to an increase in volumetric efficiency and a reduction o f 

emissions at near stoichiometric operation. Details for converting an engine to an in-

m
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cylinder hydrogen injection, computer systems control, emissions testing and 

performance evaluation are given.

IV
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CHAPTER 1 

INTRODUCTION

The Hydrogen Refilling Station Project, located on the grounds o f the Las Vegas 

Valley W ater District (L W W D ), brought about novel design considerations for both 

emissions control as well as advancements in control over the fuel delivery system. 

Traditional means for converting a gasoline engine to operate on gaseous hydrogen fuel 

is to inject the fuel into the intake manifold, otherwise known as port injection. While 

port injection is an effective means for delivering fuel, various parameters pertinent for 

utilizing the full potential o f hydrogen must be ignored. For instance, to eliminate pre­

ignition or backfire through the intake system the air fuel ratio (AFR) is leaned out. It is 

understood that to effectively control hydrogen specific parameters such as bum  rate, 

power density, emissions, etc. an accurate control o f  timing events such as the fuel 

delivery and spark is needed. Because o f the inherent design o f a direct injection system, 

control over fuel delivery is easily accomplished. While direct injection (DI) has been 

around for a number o f  years, the concept utilized for H2ICE S are still in the infancy.

Justification o f  Project 

The converted vehicles developed for this project are to be used at the L W W D  by 

maintenance personal including grounds personal at the Springs Preserve. P roof of 

concept as well as reliability testing will ensure the conversion is suitable for use in this 

environment. The development o f a DI injector provides a suitable platform whereby
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advancements in the computer control were refined as well as innovative designs 

including a sparkplug/ injector were developed; development and testing o f  one such 

sparkplug/ injector is described herein.
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Table 1-1 Nomenclature

Symbol Definition

ABDC After Bottom Dead Center

AFR Air Fuel Ratio

ATDC After Top Dead Center

BDC Bottom Dead Center

BMEP Brake Mean Effective Pressure

BSFC Brake Specific Fuel Consumption

BTDC Before Top Dead Center

CNG Compressed Natural Gas. Methane (CH4 ) for simplicity

CR Compression Ratio

ECM Engine Control Module

EOT Exhaust Gas Temperature

HAZ Heat Affected Zone

ICE Internal Combustion Engine

k Ratio o f  Specific Heats

LED Light Emitting Diodes

LHV Lower Heating Value

MAP Manifold Absolute Pressure

NOx Nitrous Oxide- Can take the form o f  NO or NO 2

ppm Parts Per Million

PRD Pressure Relief Devise

PRV Pressure Relief Valve

0 < 1  ^  Lean
Phi (O) Equivalence Ratio 0  >1 ^  Rich

0  =1 ^  Stoichiometric
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RPM Revolutions Per Minute (Engine speed)

T Final Temperature

TDC Top Dead Center

To Initial Temperature

TPI Throttle-body Port Injection

VDC Volts- Direct Current

WOT Wide Open Throttle
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CHAPTER 2

LITERATURE REVIEW 

Hydrogen Embrittlement 

With the increasing demand for alternative fuel(s), hydrogen as a replacement to 

gasoline has recently come to the forefront o f studies. This particular study involves the 

conversion o f  gasoline powered ICE with emphasis on design o f the injection system and 

controls to operate on hydrogen gas. To examine the effects such a conversion would also 

require a complete understanding o f the impact the new medium would present on the 

system. In particular, it would be worthwhile to know how existing engine components as 

well as the newly designed components would behave in the presence o f  hydrogen gas. 

As will be shown, various environments, such as high moisture content, also contribute to 

accelerated hydrogen embrittlement. The combustion o f hydrogen gas, H2, and air (22% 

O2) yields water, H2O, and energy in the form o f heat.

While it can be shown that metals and alloys, regardless o f  composition, are 

susceptible to hydrogen embrittlement, various alloys behave differently and, to a great 

extent, predictably for a given environmental situation. Depending on the given scenario, 

it is possible to design a system that will limit either the damage created by failure in a 

material due to hydrogen embrittlement or delay the effects. For the conversion o f the 

ICE, various external components could be classified as expendable in comparison to 

internal components such as the crankshaft or piston where failure would result in the
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complete loss o f the entire engine. For this reason, particular interest lies with how 

various alloys, both ferrous and non-ferrous materials, hold up to stresses in the presence 

o f  hydrogen gas. Component materials o f interest in this particular study consist o f 6061 

T6 , 2024 T6 , 4043 steel, 316 and 303 SS.

Theory and Simulation

While various techniques and experiments have been used to describe the process o f 

hydrogen embrittlement, metallurgical models have yet to qualitatively simulate the 

process. W hat is known is stated by Serebrinsky [1]; hydrogen embrittlement occurs by a 

three step process; 1) hydrogen is dissolved into the interstitial lattice, 2 ) the hydrogen 

travels to voids or vacancies whereby the hydrogen propagates the stress around the crack 

tip, and 3) propagation o f stresses and the transportation o f the hydrogen throughout the 

lattice leads to localized failure o f  metal. This process is represented in Figure 2-1.

In a study performed at Chugoku National Industrial Research Institute 0 a single 

crystal o f  iron, on a nanometer scale was examined. A 3-D model, on a microscopic scale 

o f pure iron, was constructed to simulate the molecular dynamics hydrogen would have 

on a single crystal o f iron. Computer simulation showed that plastic deformation occurred 

at 2 1 ,0 0 0  steps for samples without hydrogen; however the hydrogen charged specimen 

indicated fracture in as few as 7,000 steps. With this simulation, they were able to 

quantify inner-atomic action force in the presence o f hydrogen. In a related study by 

Bettis Atomic Power Laboratory 0, a computer simulation to investigate intergranular 

stresses o f Ni-based alloys. Sought was a model for predicting how the presence o f 

hydrogen, through electrochemical reactions and solid-state diffusion affects the 

intergranular bonds. Also seen in the simulations is how the grain orientation greatly
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influences the material’s susceptibility to cracking. Because an alloy was used in these 

sets o f simulations rather than a pure crystal, as shown previously, the question o f  how 

heat treatments, varying alloys composition and material preparations would be affected 

by hydrogen embrittlement.

Reaction steps: Diatomic hydrogen diffuse through ferrous material 
A —> B Diffusion and dissociation
B ^  C Migration
C —> D Solution
D ^  E Lattice diffusion

Figure 2-1 Schematic o f possible reaction steps involved in the embrittlement o f a 
structural alloy by external molecular hydrogen environment [2] [7].

Kimura [5] from the National Institute for Materials Sciences, Japan, hypothesized 

that grain size played a critical role in localized failures o f medium-carbon martensitic 

steels subjected to hydrogen. Through controlled temperature multi-pass bar rolling, a 

consistent 3 pm grain size is achieved for samples to be tested. Furthermore, these 

samples were subjected to various heat treatments resulting in varying diameters o f 

undissolved carbides and grain sizes. Studies show that in the presence o f carbides, 

residual stresses are present, however, when hydrogen is introduced methane is formed
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from the bonding o f the hydrogen to the carbide. This would present as blistering 

resulting in cracks. Samples were then exposed to hydrogen via electrically charging 3% 

NaCl + 0.3% NH4SCN in a O.IN NaOH aqueous solution. Results showed a direct 

correlation to diffusible hydrogen content and time to stress failure; failure time increases 

as the diffusible hydrogen content decreased. Likewise, when comparing samples o f 

differing grain sizes, it was noted that fracture in conventional quenched and tempered 

samples failed at hydrogen contents as low as 0.11  ppm whereas in fme-grain samples, 

failure occurred at concentrations o f 0.24 ppm. Confirmed with studies presented in IEEE 

journal [6 ], it has also been shown that the harder the material or the more organized the 

grain structure the greater tendency to resist hydrogen embrittlement.

1 10 100
Number o f  hydrogen atoms 

C avilyform  ati on  
x-x X c  avity g o w th  and linkage 

Fracture

1 10"

Figure 2-2 The effect o f hydrogen on cavity nucléation, cavity linkage and fracture o f 
the specimen 0 .
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9Cr-l M o Steel 
0.5Cr-0.5M oSteel 
2.25C r-lM oSteel

Figure 2-3 Variation o f preheat temperature with volume % o f hydrogen in the shielding 
gas [7] [8 ],

There are multiple methods for hydrogen to be absorbed into the metal. The most 

recognized method is due to the use o f the metal in a corrosive environment, or any 

environment that would produce hydrogen gas through chemical reactions and/ or pure 

hydrogen gas. Other methods would include formation o f the alloy, various heat 

treatments involving high moisture content as found in quenching, welding, and various 

others. The welding process involves liquefying the metal thus creating a molten pool. It 

is at this point that hydrogen is able to be absorbed. As the metal solidifies, solubility o f 

hydrogen decreases due to the decrease in temperature thus causing the hydrogen 

presently in the weld to become supersaturated and diffuse to areas o f  lower 

concentration. The heat affected zone (HAZ), which is susceptible to regions o f  high 

hardness and low ductility, can undergo cracking in the presence o f hydrogen within 

hours o f  completing the weld [7].
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The various dependent variables o f hydrogen embrittlement are “temperature, 

pressure, level and type(s) o f stress, environment, physical and mechanical properties o f 

bulk materials, type and concentration o f  impurities in the metal, thermo-mechanical 

history, hydrogen diffusion rate and surface conditions [7].” Pressure is attributed to the 

mode o f failure due to diffusion o f  hydrogen into the metal and accumulation within the 

internal defects. The added pressure within the metal contributes as added stress and can 

promote crack growth. The surface conditions are believed to contribute by the lowering 

the free energy for crack growth due to the absorption o f  hydrogen adjacent to the crack 

tip.

Ejfects on Alloys

Hydrogen embrittlement is not confined to material with iron. In fact this 

phenomenon can be found in alloys not containing iron such as aluminum. Experiments 

conducted by Petroyiannis [10] and Lu [11] show aluminum to be extremely susceptible 

to hydrogen embrittlement. The work by Petroyiannis focuses on aircraft aluminum alloy 

2024 T3 with failure due to hydrogen embrittlement in the absence o f mechanical 

loading. L u’s work [11] showed that hydrogen atoms are “trapped at vacancies in 

multiple numbers with rather high binding energies” and contribute to “superabundant 

vacancy formation in a number o f metals, such as Pd, Ni, Cr, etc.” In these types o f 

metals, it is speculated that up to six atoms o f hydrogen can be trapped in a single 

vacancy. However, in aluminum, it is shown, from first principle calculations, that up to 

12 hydrogen atoms can be trapped. Both Lu and Petroyiannis suggest that the 

consequence o f the trapped hydrogen atom is low formation energy o f the vacancy defect 

which in turn results in more formations o f  vacancies. Because hydrogen has the

10
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tendency to collect in vacancies, there is a substantial increase in the solubility o f 

hydrogen thus leading to hydrogen embrittlement which results in work hardening or 

tensile ductility decrease. Petroyiannis further concluded that ultimate and yield stress 

could be restored to the original values by mechanically removing the affected areas, 

however ductility required thermal treatment.

Preventing Hydrogen Embrittlement

Aside from heat treatments, various techniques have been employed to delay the 

effects o f  hydrogen embrittlement. The Institute o f Material Engineering, National Chung 

Hsing University [12] applied electrolytic ZrO: coatings on stainless steel to investigate 

the retardation effects. Conclusions drawn from their experiments indicate that failure in 

the form o f blistering can be significantly delayed through electrolyzing stainless steels 

with ZrOz. Through mathematical models, and experiments to extrapolate various 

constants in the models, it was concluded that the delayed effect is due to relatively low 

concentrations o f  hydrogen in the metal; this too was concluded for materials like AL 

[10][1 1] as well as in mild steels 0 .

Various industry techniques for manufacturing a quality product(s), presented in 

Dayal [7], give reasonable measures to limit the liability o f hydrogen embrittlement. It is 

clearly understood that internal flaws such as blistering, shatter cracks, flakes, fish-eyes 

and porosity promote localized vacancies where hydrogen is allowed to accumulate and 

that in sufficient quantities, hydrogen produces these same flaws. Because the size o f the 

atomic hydrogen limits the depth o f penetration into the metals causing the defects, 

various finishing techniques have been developed to minimize the quantity o f hydrogen 

in steels. Some o f the various techniques utilized are vacuum melting, degassing.

11
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avoidance o f  pickling or acid washing, and minimization o f moisture content. Similarly, 

coatings in the form o f oxides [12] on the finished material, welds and electrodes used in 

the welding or electro plating also help.

Hydrogen M otor Conversions

Hydrogen as a fuel provides an alternative to fossil fuels, however, with the exception 

o f a small number o f car manufactures few vehicles are produced with an H2ICE. An 

alternative to purchasing a vehicle designed for use with hydrogen is to convert the 

engine. Research into the development o f an engine fueled by hydrogen has been 

conducted on both diesel and gasoline engines with diesel preferred due to the relatively 

high compression ratios and a cylinder head design o f  two ports; one for the igniter/ glow 

plug and the other for the injector.

Conversion

Low ignition energies and a relatively high auto-ignition temperature for hydrogen 

coupled with a trend for a decrease in pre-ignition with an increase in the compression 

ratio [13] [14] [15] makes a diesel engine a good candidate for an engine to operate on 

hydrogen. In an experiment at Anna University [16] a diesel engine operating as a hybrid 

diesel/ hydrogen engine was chosen for these specific reasons.

In the experiments performed by Saravanan [16], hydrogen gas was passed to the 

combustion chamber via two methods; 1) carburetor and 2) TPI techniques. While a 

typical diesel engine utilized the compression cycle to raise the temperature sufficiently 

for combustion, a compression ratio o f 16.5:1 and an injection pressure o f 190 bars is not 

sufficient to cause ignition. That is to say the cooling effect o f hydrogen expanding 

combined with and the increase in temperature due to the compression stroke is not

12
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sufficient for the spontaneous combustion o f hydrogen. Secondly, as this experiment used 

diesel as the ignition source and therefore hydrogen is mixed with the diesel; the specific 

heat ratios are much less than 1.41 and would therefore require temperatures above the 

auto-ignition temperature o f  hydrogen to ignite the mixture.

100

I
I

0.01
0.5 2.5 3.5

Equivalence ratio
  M ethand-Air

Hydro gen-Air 
H ep ta n eA ir

Figure 2-4 M inimum ignition energies for various fuels [17] [22].

The engine was initially started on diesel fuel then slowly limited as hydrogen gas 

was introduced. Performance and emissions were then compared to a baseline o f  diesel. 

Use o f hydrogen in diesel motors shows improvements in areas o f brake thermal 

efficiency, lower emissions such as the production o f NOx, smoke, hydrocarbons, carbon 

monoxides and dioxides.

To better understand backfiring, a case study was examined wherein a duel injection 

system was utilized to sort out the causes o f  backfiring. Lee [ 18] performed tests with a

13
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dual injection system (port and direct injection) to determine the advantage o f  utilizing 

both technologies. Port injection is known for relatively high thermal efficiencies, 

however, this is limited to approximately 60% of full load. Direct injection is not 

necessary limited to the same loading issues as port injection as demonstrated in Figure 

2-5. Thermal efficiency, oftentimes called fuel hum  efficiency is a comparison o f  the 

maximum energy within a fuel (LHV) to the output o f the engine. A lean running engine 

or homogeneous fuel/ air mixture tends to have a higher thermal efficiency. This is due to 

the lower flame propagation speed and larger thermal boundary which has a tendency, 

when compared to an engine operating at a lower thermal efficiency, to transfer more 

heat into power rather than wasted heat. The drawback with using direct injection is a 

lower thermal efficiency which is in part due to the short mixing period and higher flame 

front propagation speed. It was shown that early direct injection works better in achieving 

a more homogeneous mixture than late direct injection. This study also showed an 

increase o f  up to 60% higher torque by utilizing a duel injection system. By utilizing a 

dual injection system, this study was able to achieve maximum torque from a direct 

injection engine and high efficiencies from an external mixing engine. This study also 

showed a relationship between port injection pressure, injection timing, and prevalence to 

backfire. In short, optimum timing for port injection was determined to be at TDC. The 

relationship found for injection pressure and backfire occurrence was showed that as the 

injection pressure increases, the engine must be run leaner to minimize backfire. This 

study also showed a relationship between direct injection, thermal efficiency and torque. 

It was shown that injection prior to the closing the intake valve resulted in higher thermal 

efficiencies (due to greater mixing times) however, torque decreased due to a loss o f
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hydrogen into the intake and or the occurrence o f backfiring. The thermal efficiencies 

tends to decrease as the injection occurred later (again due to the shortened mixing time) 

however, torque is essentially unchanged so as long as the intake valve is closed.

30

Backfire

25

20

15

0 6020 40 80 100
% of Load

Intake 100%
Intake 47%, Direct 53% 
Intake 22%, Direct 78% 
Intake 10%, Direct 90% 
Direct 100%

Figure 2-5 Thermal efficiencies and where backfiring occurs for an external mixture and 
direct-cylinder injection with varying percentages from each. [18]

Emissions Characteristics o f  H ydrogen Engines 

Experiments performed by Mohammadi et al. [19] give emissions correlations 

between injection timing, thermal efficiencies, NOx production, BMEP and cylinder

15
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pressure. Also verified in Lee’s [18] experiments is the tendency for an increase in 

volumetric efficiency as the injection timing is retarded up until the intake valve is 

completely closed. Demonstrated in Equations 2-1 and 2-2, by volume hydrogen can 

displace as much as 30% air if  operating under stoichiometric conditions. Equation 2-1 is 

taken from the definition o f AFR where the APR is equal to the mass o f  air divided by 

the mass o f the fuel, ‘n ’ represents the number o f moles in the mixture and ‘m w ’ 

represents the corresponding molecular weight. Equation 2-2 is the mole fraction o f the 

mixture within the combustion chamber. With these two equations, it is clearly deduced 

that if  hydrogen is injected while the intake valve is open, regardless o f port or direct 

injection, the tendency will be to displace air and consequently lower the volumetric 

efficiency. With less oxygen in the combustion process, less power can be made as 

compared to the same AFR but with more oxygen/ fuel.

O
0.7

25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

130degB T D C  
4 -+ ^  SOOdegBTDC

Equivalence ratio

Figure 2-6 Effects o f  injection timing 0j on volumetric efficiency for different 
equivalence ratios. [19]
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Injection just after the intake valve has closed offers various benefits including higher 

thermal efficiency, elimination o f backfires, limited knocks and improved volumetric 

efficiencies- precise timing o f the injection event impacts emissions such as NO*. 

Described by Mohammadi [19] are the effects o f  injection before and after the intake 

valve closes. The general trends noted for production o f NOx showed little production o f 

NOx for equivalence ratios below 0.5 and two orders o f magnitude higher for equivalence 

ratios above 0.5. The thermal efficiencies, regardless o f the injection point show 

maximum values for ignition points o f approximately 10° BTDC. While maximum 

thermal efficiencies are achieved at 10° BTDC which corresponds to an equivalence ratio 

greater than 0.5 and production o f emissions such as NOx are higher at this point, 

consideration must be given when tuning the engine due to an increasing BMEP. 

Tradeoff concerning emissions production, thermal efficiency and maximum power 

output must be considered and ranked accordingly.

Injection System Design  

The design o f an injector is comprised o f two main units; valve to meter the fuel and 

the body. The valve can have several forms such as a check valve coupled to a solenoid 

valve or even a solenoid valve with no check valve. The design o f the solenoid valve 

should be sufficiently fast, accurate, and repeatable to deliver fuel in as short o f time as 3 

ms. Studies carried out by Kajima [20] examined the development o f  high speed
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solenoids including the effect o f switching speeds on armature mass, material types, and 

yoke and plunger designs.

The factor o f most importance in this type o f  application is the switching time. Many 

factors influence switching time including material selection, yoke and plunger design, 

voltage and current levels, and the medium o f operation. W hile theoretically it can be 

shown that a reduction in weight accounting for the skin effect, a condition where the 

magnetic flux localizes at the center o f the material, will reduce switching time, 

experimentally it was shown to have negligible effects for reduction o f mass up to 16%. 

Material selection is a critical factor when calculating switching times, magnetization and 

demagnetization time delays, and mitigation o f eddy currents. In general it is understood 

that a material with a smaller electric conductivity produces a shorter switching time due 

to less eddy currents. The materials studied by Kajima [20] were Kawasaki Steel’s 

RGH023, silicon steel, SIOC, permalloy, and permendur. Through various experiments 

and mathematical models, it was shown that while permalloy has approximately seven 

times the initial permeability and one third conductivity than permendur, permendur has a 

shorter switching time. However, through controlled pre-energized methods, permalloy 

can achieve improved switching times. The final reason given for a preference o f 

permalloy is the better flux density and therefore is therefore better suited for holding 

open operations.

A model which can be represented by both an electrical and mechanical equivalent is 

described by Sung [21]. The design o f the high speed solenoid utilized mathematical 

models to simulate response time, switching time, total force generated and maximum 

power needed to drive the system. The dynamic model used is a first order system

18
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including the inductance ‘L ’, reluctance ‘91’ for accounting for air gaps, and current draw 

‘i ’ as described in Equations 2-3 to 2-5.

=  X2 (2-3)

(2-5)

W here x\ is the plunger position, —  %2 is the
dx2

plunger speed, and X3 is the current.

V(t) is represented in Equation 2-6. Fm, the force o f  magnetism is represented as a 

function o f inductance ‘L ’ but could also be represented by the number o f coils ‘N ’ and 

current ‘i’. Reluctance ‘R ’ is presented in Equations 2-7 and 2-8 as the air gaps shown in 

Figure 2-8 as gi to g3 where ‘R ’ is defined by Equation 2-7 as the length o f the air gap 

divided by the area o f  the gap multiplied by the conductivity o f air ‘po’.

(2-6)
2 dx 

g  =  Length
(2-7)P g -A re a

R(x) = R i + R2  + R3 (2 -8)

V(t) = i(t) R(x) + Ux)-^i( t)  + i-lL(x)Ax (2-9)
dt dx dt

L(x) = n^ /R ( x) (2-10)
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CHAPTER 3

DESIGN CRITERIA 

Engine Modification

To modify an engine to operate on hydrogen, in the manner identified as direct in­

cylinder injection, requires that the fueling system be capable o f delivering fuel directly 

into the combustion chamber regardless o f crank and valve position. For the case o f  the 

425cc Polaris motor, a passage was milled into the cylinder head at the deck thus creating 

a direct passage between the injection unit and the combustion chamber whereas the 

design o f the fuel injection system for the Ford V 8 utilized the sparkplug passage. Both 

methods have advantages and disadvantages. Utilization o f the sparkplug passage has 

three distinct advantages; 1) disassembly o f  the motor and machining o f the cylinder head 

is eliminated, 2 ) a well-proven passage capable o f  withstanding combustion temperatures 

and pressures already exists, and 3) conversion o f most ICEs to operate on hydrogen 

becomes more economically feasible. M illing a passage through to the combustion 

chamber has one distinct advantage namely, the injector is cheaper and easier to purchase 

and/ or manufacture.

The 1999 5.4 liter Ford V 8 engine utilizes a cylinder head configuration called a 

m odular head  (Figure 3-1). The modular head configuration incorporates the camshaft 

into the head rather than in the block and most notably, the sparkplug passage is located 

between the valve cover and the intake manifold extending through the cylinder head to
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the combustion chamber. This is significant when designing an injector/ sparkplug due to 

the long narrow passage which encapsulates the sparkplug (approximately 5 inches in 

length and a maximum o f 0.890 inches in diameter). An in-depth look into the design o f 

this injector/ sparkplug is addressed in Chapter 4. The Polaris engine, which also utilizes 

a long narrow passage for the sparkplug, was used to design and test the function o f  this 

particular injection system. For these reasons, the design o f the sparkplug injector is such 

that it would fit these two particular motors as they would also represent a significant 

portion o f vehicles.

Sparkplug bore

Figure 3-1 Ford modular head showing sparkplug bore extending through valve cover 
to center o f  combustion chamber.

Engine Simulations

Timing o f critical events such as the injection and spark is the single most important 

factor when programming the computer system. The dynamics o f the engine for the 

purpose o f  programming and designing components can be simplified to specifications
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such as the effective compression ratio, bore, stroke, and swept volume. These 

specifications combined with input variables such as the AFR, fuel type, flame front 

propagation speed, ambient temperature, coolant temperature and various others can be 

used to simulate useful data such as emissions output, maximum torque and angle and 

various others. As mentioned previously, the flame front propagation speed is 

considerably faster than that o f gasoline or other liquid fuels. For this reason, simulations 

were conducted to determine the most effective crank angle to ignite the fuel. While 

mathematically it is shown that the crank position, which corresponds to the highest 

torque is 29 ° ATDC; that is not to say that the fuel should be ignited at that exact point as 

well. Factors such as the combustion chamber pressure, temperature, air-to-fuel mixing 

pattern and density o f the fuel directly affect the speed at which the flame front will 

propagate. To achieve maximum torque, it is necessary to have the maximum available 

pressure at the point corresponding to the optimum crank angle thus resulting in the 

maximum torque. For this reason simulations were conducted to determining angle o f 

spark given engine conditions such as ambient temperature, desired AFR and engine 

speed.

Improved emissions o f alternatively fueled vehicles tend to be a selling point. To 

demonstrate theoretical emissions values a simulation was conducted in MathCAD to 

determine production o f NOx, these values can then be correlated to actual emissions 

collected while load testing. The following set o f  data represents the results o f  one such 

simulation. The MathCAD file is found in the APPENDIX II. Figure 3-2 represents 

production o f  NO and varying AFR. It is noteworthy to draw attention to the increasing 

production o f NO at am AFR around 45:1 (slightly lean) where production peaks after
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which production tends to taper off. The tapering off is due to the decrease in combustion 

temperature due to less fuel being combusted. Figure 3-3 also demonstrates the trend for 

less production o f emissions due to a decrease in temperature as the fuel mixture also 

goes lean (seen as an equivalence ratio less than 1).

&
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0 20 40 60 80 100

AFR
PPM NO 
Stoichiom etric

Figure 3-2 Simulation o f emissions for a 425cc single cylinder engine
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Figure 3-3 Simulation o f  adiabatic flame temperature for a 425cc single cylinder engine
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Figure 3-5 Engine timed events superimposed on camshaft cycle
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Computer Modification 

Conversion o f  the computer control system requires specific manipulation o f the 

spark and fuel timing. Control o f the Polaris engine required a new computer capable o f 

controlling both the spark and fuel timing as required for direct injection. The entire 

computer system for the Polaris, including input sensors, programming and analysis 

software was supplied from KAM Products.

For the case o f the Ford, it was necessary to reprogram the original computer (ECM). 

Software was purchased from SCT to completely reprogram the original Ford computer 

system. Simulations described previously for identifying optimum spark were used to 

design tables for spark vs. engine speed. As this is an inexact method refining via test 

driving and dynamometer testing will also need to be performed. For safe operation o f 

the Ford ECM an injector with an internal resistance o f  10 to 16 ohms is necessary. For 

proper control over the solenoid designed for the injection a higher current draw than 

what the ECM is capable o f is necessary. For this reason, a standalone driver board with 

solid-state relays capable o f handling voltages up to 48 VDC and 15 amps was placed in 

series to the injector output wiring scheme.

Table 3-1 Tvpical timing events for hvdrogen engine

Computer controlled timing events
Injection For all RPMs 640 ATDC

Startup 20 ATDC

Spark Timing
Idle 22 BTDC

MAP = 20 iuHg 5 BTDC

MAP = 30 inHg 4 ATDC
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Spark M odifications

The flame front propagation for hydrogen is 5 times faster than that o f gasoline [16] 

and therefore special care should be given to the spark timing o f an engine operating on 

hydrogen fuel. Spark for an engine fueled by gasoline or equivalent fuel is initiated at a 

crank angle o f 10° to 20° BTDC at idle, and up to 37° BTDC at max RPM and load. 

Because o f the nearly instantaneous pressure increase associated with hydrogen [24], 

spark for a hydrogen fueled engine should be initiated at or later than 0° BTDC and will 

be shown experimentally to occur at 10° ATDC as a minimum angle. Failure to 

compensate for the flame speed will result in the engine either rotating backwards or a 

backfire through the intake system. For the case o f  the Polaris engine conversion, the 

initial spark to start the engine occurs at 20° ATDC.

Experimentally it has been shown that typical flame speed for combustion o f 

hydrogen in air, under stoichiometric and standard conditions, is approximately 13 meters 

per second. In a combustion chamber o f  the size found in the Polaris, this corresponds to 

a typical bum  time o f 3.41 ms. As an example for an engine at a speed o f speed 4500 

RPM the crankshaft is rotating at 27° per ms, the fuel must be ignited no more than 92° 

prior to the optimum crank position (angle resulting in the highest torque for the pressure 

generated from the burning fuel). This means that if  the crank position for optimum 

power is at 72° ATDC, the spark can not be initiated before 20° BTDC otherwise peak 

pressure and complete burning o f the fuel occurs before the optimum crank position thus 

resulting in a loss o f  power output.

Computer simulations were conducted to determine the optimum crank angle for a 

particular engine speed that the spark should occur. Variables entered into the simulation
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are the flame propagation speeds [24] and geometry o f  the engine including 

displacement, stroke, and connecting rod length. The following set o f data was derived 

from this simulation shows optimum spark resulting in the highest possible torque.

Table 3-2 Optimized ignition angle for Polaris motor

RPM Crank Speed Complete Burn Calc. Flame Speed Optimized Ign.

(deg/ ms) (degrees) (ft/sec) (ms) Angle (BTDC)

1500 9 37 5.07 3.8 5

2 0 0 0 12 37 6 .2 2 3.1 8

2500 15 38 7.57 2.5 9

3000 18 39 &85 2 .2 10

3500 21 41 9j% 2 .0 12

4000 24 42 10.95 1.8 13

4500 27 43 12.03 1.6 14

Fuel M odifications

Typical aspirated or port injection motors will need for the fuel to be delivered while 

the intake valve is open. For the purpose o f delivering fuel directly into the cylinder, 

there is no need to deliver fuel when the intake valve is open. Delivery o f fuel when the 

intake valve is open will displace as much as 30% by mass o f air, at stoichiometric 

conditions thus lowering power output and volumetric efficiency. Based on the geometry 

o f the engine, optimum crankshaft leverage occurs around 80° ATDC; however, as 

demonstrated in Figure 3-4, optimum pressure resulting in the highest torque occurs 

around 29° ATDC. Regardless o f fuel pressure/ fuel delivery speed, there should be 

significant levels o f  hydrogen in the combustion chamber at the time the spark needs to 

be initiated, and completely fueled at such time the exhaust valve is opened.
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Injector Design

The related timing issues for the injection system, as it pertains to the tum -on signal 

and duration are elements designed into the control system. The injector design should 

meet specific requirements such that the control system is capable o f controlling the 

functions o f the injector. For example, the type o f  solenoid valve (power requirements 

and response time) and overall length o f the injector play important roles when 

determining the exact point at which the control system can/ should turn the injector on.

The injector, as defined for this report, is strictly referred to as a device capable o f 

delivering fuel in a manner consistent with the requirements needed to sustain 

combustion in an internal combustion engine. This device contains, as a complete unit, a 

solenoid valve and check valve. It is not required that the unit be a single device 

containing all parts, but rather the sum o f the parts comprise the injector.

Specific requirements o f  the injector are the solenoid be thermally and electrically 

protected, be fully responsive up to 40 Hz, and deliver a mass flow rate as low as 0.1 

Ibm/hr and at least 2 Ib^/hr. A flow rate o f  0.1 Ibm/hr will ensure adequate control o f  the 

idle and a flow rate o f 2  Ibm/hr will ensure enough fuel is delivered for full power output 

o f  the cylinder.
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CHAPTER 4

COMPONENT DESIGN 

Polaris Engine

Various components were both developed as well as purchased such that when 

combined form a high pressure injector for use as a direct injection unit. A solenoid 

capable o f  withstanding inlet pressures up to 1500 psig and a media temperature o f 0  to 

150 °F was purchased from Peter Paul Electronics Co. Inc. A check valve capable o f 

handling peak combustion pressures and extreme temperatures was developed for the 

purpose o f protecting the fuel solenoid from exposure to excessive temperatures and 

pressures.

Check Valve

The main purpose o f the check valve is to protect the fuel solenoid from exposure to 

flame, excessive temperature, high combustion pressure during ignition, pre-ignition and 

backfires as well as to maintain the correct compression ratio. The check valve functions 

by keeping backflow negligible and opening when the pressure differential is sufficient 

enough to overcome the spring force and combustion chamber pressure. During the 

compression stroke, while fuel is added to the combustion chamber, oxygen can be 

compressed into the fuel nozzle. I f  adequate protection against temperature, flame, 

pressure and backflow is not utilized and spontaneous combustion occurs, a flame can 

freely travel up the fuel line to the solenoid, thus rendering the solenoid inoperable.
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Spontaneous combustion, for hydrogen, can occur at temperatures as low as 1050 °F. 

Exhaust temperatures under heavy loads can average around 1800 °F and an 

instantaneous combustion temperature/ adiabatic flame temperature can be calculated as 

high as 4000 °F. A good rule o f thumb for minimizing the chances o f a spontaneous 

combustion (oftentimes referred to as a pre-ignition) is to minimize the combustion 

chamber and/ or coolant temperature, using cold sparkplugs and by removing hot spots 

such sharp edges within the combustion chamber or lowering the thermostat temperature 

rating. A good approximation for determining the maximum allowable pre-compression 

cylinder temperature is to treat the compression stroke as a polytropic compression 

process as described in Equation 4-1 where ‘T ’ is defined as the auto-ignition 

temperature and ‘T o’ is the pre-compression temperature, ‘CR’ is the compression ratio 

o f the engine and ‘k ’ represents the ratio specific heats for the air/fuel mixture. Table 4-2 

summarizes various methods o f injection for hydrogen and compressed natural gas and 

the corresponding pre-compression combustion chamber temperatures based on Equation 

4-1.

Therefore, it is obvious that hydrogen gas as a fuel has a high probability to pre-ignite 

due to temperature. Furthermore, the walls o f the combustion chamber are cooled by the 

engine coolant (as in the case o f this motor) and thereby provide a means to heat the air 

prior to compression and injection o f the hydrogen gas. It is for this reason that the 

coolant temperature must be minimized in order that ignition o f the hydrogen gas occurs
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due to the spark alone and not the temperature. Experiments on Polaris motor have 

showed that operation with a coolant temperature above 170 °F promotes pre-ignition.

Table 4-1 Combustion chamber temperature due to polvtropic compression

Fuel k o f mix Auto-Ignition 

Temp ("F)

Max temp prior to 

compression (“F)

H2 (Port)

H2 (Direct) 

CNG (Port)

1.41

1.40

1.16

1050

1050

1040

148

161

582

A more accurate method for approximating the temperature o f the gas mixture, 

immediately after the compression stroke, is to account for both the temperature drop due 

to the expanding hydrogen injected into the combustion chamber as well as to use the 

effective compression ratio rather than the published compression ratio. The compression 

ratio is by definition the entire volume o f the combustion chamber including the cylinder 

head volume at BDC divided by the minimum volume at TDC. This calculation however 

does not account for the closing o f the intake valve. The intake valve o f a typical engine 

can close up to 100° after the compression stoke has initiated (100° ABDC). Therefore 

the pressure within the combustion chamber will not begin to increase until after the 

intake valve has nearly closed which in effect has a tendency to decrease the compression 

ratio. For example, the Polaris engine has a published compression ratio o f 9.2:1, 

however when accounting for the closing o f the intake valve, the effective compression 

ratio is decreased to 6.3:1.
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Seat and plunger material selection was critical for the development o f the check 

valve. Typical application for the check valve requires the plunger and assembly 

withstand cyclic loading up to 6000 psi at a frequency o f 45 Hz (5500 RPM). Table 4-2 

represents all the materials used during testing and the results including predicted failure 

time. The pressure-differential operated check valve was developed to meet the above 

operational requirements, material fatigue suitability, as well as the requirements 

presented by the use o f hydrogen (galling from no lubrication and high moisture content 

at the point o f ignition). Figure 4-13 shows the schematic cutaway o f the high pressure 

check valve. The design o f  the check valve took into account the possibility that any part 

may need to be changed especially during the testing portion o f  the project and therefore 

all parts are standardized by dimensions or is able to be purchased.

As part o f the design process, it was necessary to determine materials that would 

function well in an environment in which the temperature is cyclic in nature, may 

experience large impact forces, and is wear resistant with self lubrication properties. Five 

materials were chosen as possible candidates to comprise the check valve assembly. 

Alloy 901 contains between 40% to 45% nickel which under impact conditions has a 

tendency to work harden thus making the sealing surface impervious to wear. Bronze 

materials 673 is a manganese based brass well suited for high pressure and cyclic 

temperatures. This material is commonly used in race engines for the valve seats o f the 

exhaust valve. Bronze material 630 is similar to the 673 in function. The material is more 

commonly referred to as nickel aluminum bronze. The material referred to as C27 

Bronze is a high ferrous bronze well suited for high temperatures and pressures. The 

exact material composition is unknown however, C27 refers to the hardness on the
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Rockwell C scale. Finally, 300 series stainless steels were tested. Due to the fine grain 

lattice structure, good hydrogen embrittlement properties and the high quality finish 

capable o f being machined, this material is well suited for high temperature fluctuations. 

Table 4-2 describes tests performed on the check valve assembly at an engine speed 

between 2500 and 4000 RPM. W hile alloy 901 performed extremely well, manufacturing 

o f a check valve assembly would require extensive work. Alloy 901 is excellent for 

impact resistance, however, lacks the self lubricating properties required. The final choice 

was to use a 316 SS plunger with the C27 Bronze as the seat material.

To insure that the working pressure is within the stress limit o f  the housing hoop 

stress and thermal expansions limits calculations were made at critical points along the 

housing. The critical points o f interested, as depicted in the section view o f the check 

valve, are as follows 1) inlet connector wall thickness, 2) snap-ring grove, and 3) threads. 

Equations 4-2 and 4-3 represent hoop stress for thin and thick walled tubes respectively. 

Where ‘p ’ is the pressure, ‘r ’ is the inner radius, and ‘t ’ is the wall thickness as depicted 

in Figure 4-1.

p r
%  = —  (4-2)t

Ch = P-

/
r  + 1 I OD
  L =

2 , 1  ID
V <

(4-3)
.L - i j  where

E j = a AT L  (4-4)
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Length

Figure 4-1 Stress in the hoop direction for a cylinder

Equations 4-5 and 4-6 represent calculations for torque applied on threads and the 

maximum bearing stress on a thread wherein T  represents the friction o f the threads, 

‘dm’ is the mean diameter, ‘fr’ is the friction o f the collet/ hardened seat, ‘a f  represents 

half the thread angle, ‘dc’ is the diameter is the hardened seat, and ‘L ’ is the lead o f the 

thread.

Load f-7i d jjj+ L  co s |a jjj  Load fg d^
Torque =

^Thread

7t djĵ  c o s (a  J  -  f-L

4 Load pitch

ri d  ̂-  dj^ t

(4-5)

(4-6)

Table 4-3 Safety factor o f critical points o f Polaris check valve

Critical Point Hoop Stress Bearing Stress Temperature S.F. @ 110% o f

(PSI) (PSI) Stress (PSI) working pressure

1) Gas connector 2274 NA 2.99

2) Snap-ring NA 128 9369 3.66

3) Threads NA 834 3.41
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Testing o f the check valve to determine appropriate material selection consisted o f 

construction setups for runs identified in Appendix I, Table AI-3. Each run consisted o f 

operating the engine at 75% to 100% o f full load for varying times between 2 hours and 6 

hours with measurements for impact fatigues occurring every 30 minutes. Data recorded 

were as follows: initial depth as identified in Figure 4-2, maximum and minimum 

temperature at the base o f  check valve assembly, and the final depth as identified in 

Figure 4-2. Determination o f material selection was chosen based on machinability, 

average operating temperature (indication o f the sealing quality-lower temperature 

implies a better seal), and projected longevity based on the acquired measurements found 

in Table A l-3 .

Check V alve fully 
seated ogainst 

dep th  fixture

Plunger is fully 
seated against 

check valve seat

Check valve seat

Plunger

Depth fixture

Figure 4-2 Measurement for check valve impact fatigue diagram
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Timing Components

For simplicity, all moving engine component angular positions are referenced with 

respect to the crankshaft. A four-stroke motor can be identified by four operations 

(intake, compression, combustion, and exhaust) completed every two crankshaft 

revolutions. Valves are opened and closed in sequence to make these four operations 

possible. For the camshaft to operate this sequence o f movements, it is necessary that the 

camshaft rotate at half the speed o f the crankshaft, thus there is one unique position for 

the camshaft and crankshaft such that the piston is considered at top-dead-center (TDC).

Figure 4-5 Camshaft timing components for Polaris motor

Two dual differential Hall-effect sensors are used to determine the position o f  the 

piston with respect to TDC (farthest position o f piston from the center o f the crank shaft
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on the compression stroke); one to verify the camshaft position (Figure 4-5) and one 

referencing the flywheel (Figure 4-6) which defines the instantaneous angle o f the 

crankshaft. W hen combined the computer is able to determine both the exact position o f 

the crankshaft was well which o f the 4 cycles the engine is currently on.

Figure 4-6 Crankshaft timing components for Polaris motor

Ford Engine 

High Pressure Injector 

To individually test and evaluate the design o f the sparkplug injector, the Polaris 

motor was used in lieu o f the Ford engine for the simplicity o f  a single cylinder as well as 

a similar sparkplug passage. The concept behind incorporating the sparkplug and injector 

was to utilize an existing passage that is directly linked to the combustion chamber. The 

design o f the injector consists o f a ceramic insulator spanning the entire length o f the 

injector through which the electrode carrying the high voltage needed for the spark as
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well as the high pressure hydrogen gas are electrically insulated from the rest o f the 

engine. A section view o f the injector is found in Figure 4-7. The internal check valve is 

identical in purpose to that o f the Polaris injection unit which is to protect the internal 

components from excessive pressure and temperature as well as to maintain the 

compression ratio.

/Spark plug wire connector- ceramic shield

Upper houding locking nut
Gas connector

;os connector locking nut

Locking sp ace r

Mid electrode

Upper electrode Mid housing ceram ic shield

heck vak\e  body 
and seat

Plunger- Check valve

Lower electrode

'Banjo Fitting for high pressure gas 

Figure 4-7 Section view o f sparkplug injector with external solenoid valve

M l4x1.25 Spark plug 
threads

High pressure gas outlet

Lower housing ceramic shield

The sparkplug injector is broken into three parts; 1) the electrodes and check valve, 2) 

the high pressure solenoid valve and 3) the gas inlet and sparkplug wire connector. The 

function o f the solenoid valve is to meter the mass flow o f hydrogen into the combustion 

chamber. For testing purposes, the sparkplug injector was designed with a detached high 

pressure solenoid valve attached to the injector via a stainless steel tube. For the purposes 

o f  testing just the solenoid valve, separate test fixtures were designed specifically for the 

solenoid test and therefore did not include any electrodes or ceramic insulators. The
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design o f the injector housing incorporates the capability to operate the injector with or 

without the internal solenoid valve.

/Sparkplug wire c o n n e c to r-c e ra m ic  shield 

(Upper e le c tro d e
G as c o n n e c to r  locking nut bo d y

erom ic  shield for Im pact /

im p a c t  c a s e  

Coil

Coil shield

/P lu n g er c h e c k  valve 

/Lower e le c tro d e

'B anjo fitting for high pressure g a s

Figure 4-8 Section view o f sparkplug injector test module

Ml 4x1.25 Sparkplug 
th read s

High pressure g a s  ou tle t 

Lower housing c e ra m ic  shield

Mid housing c e ra m ic  shield 

Mid e le c tro d e  a n d  valve s e a t

Design o f the injector considered various stresse from the internal high pressure gas, 

temperature and contact o f materials with different thermal expansion coefficients. Table

4-3 summarizes the factor o f safeties for stress at each critical point. The critical points o f 

most interest, as depicted in figures 4-10 and 4-11, are: 1) banjo fitting gas ring, 2) 

section where ceramic is sandwiched between stainless steel, 3) wall o f housing and 4) 

ceramic sandwich at tip o f injector. Equations 4-2 through 4-4 were again used to make 

these calculations.
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Valve
Guides
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Intake 
Port

Camshaft
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Figure 4-9 Polaris cylinder head cutaway

Table 4-4 Safety factor o f  critical point for sparkplug injector

Critical Point Hoop Stress 
(PSD

Temperature 
Stress (PSI)

S.F. @ 110% of 
working pressure

1) Banjo gas ring 14000 NA 2.37

3) Wall o f 5471 10500 2.18
housing

Critical Points 2 and 4 require more calculations than can be simplified in the above 

table. Contact between materials ( if  existent) must be considered as this will contribute to 

the strain in each part. For the case o f critical point 4, the outer portion o f the housing is 

contained within the cylinder head and is considered to be stable at all operating 

temperatures and pressures. Furthermore, there is no initial contact between the inner 

electrode and the ceramic, however due to the limits o f machine ability, contact is
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assumed for this set o f  calculations to make the scenario more realistic. As an example o f 

these two scenario, i f  no contact is assumed, the factor o f safety is roughly 9.11 whereas 

if  initial contact is assumed, stresses are transmitted via thermal expansion and expansion 

due to pressure. The factor o f safety for this scenario is calculated to be 2.91 at 110% of 

working pressure. The same situation applied for critical point #2, if  no contact is 

assumed between parts (as designed) the factor o f safety is 6.73, however, if  a more 

realistic scenario is assumed where all parts are initially in contact, the factor o f safety 

drops to 1.8.

C r i t i c a l  p o i n t  #1

C r i t i c a l  p o i n t  # 2

Figure 4-10 Critical point on gas coupler assembly
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Critical point #3\ Critical point #

X

Figure 4-11 Critical points on housing

Design o f  Internal Valve 

The design o f  a solenoid valve suitable for use with hydrogen was broken into two 

distinct sections; 1) a coil to operate the mechanical sealing mechanism and 2) the sealing 

mechanism or valve. Because this injector will also function as a sparkplug, electrical 

insulation o f the coil is o f utmost importance. With a metallic core running though the 

center o f the coil (electrode for the spark) the high voltage o f  the spark will induce a 

voltage through the solenoid. This high voltage can be electrically isolated from the 

computer control via use o f  a diode in the driver control mentioned previously. If  

however, the coil is in close proximity to the electrode with little to no electrical 

insulation, a high voltage from the electrode will seek the shortest path to ground thus 

shorting the coil wires and rendering the solenoid inoperable. For protection o f the coil 

and to insulate the entire span o f the electrode from an internal short, a ceramic shield 

also spanning the entire length o f the injector was designed o f the same material as used 

in a typical sparkplug; alumina (AI2O3). The material chosen for this injector is 99.6% 

pure with an electrical strength o f 500 volts per mill. The high purity and consequently 

high electrical strength is necessary due to the thickness o f various portions o f the 

ceramic and an expected voltage o f  up to 20,000 volts.
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Design o f the coil comes from basic concepts o f  electromagnetism. Equation 4-2 

describes the magnetomotive force ‘Fm’ as the number o f turns times the current ‘i’ and 

Equation 4-3 describes the force excreted to an iron core having a cross-sectional area o f 

‘A ’ and the total gap between ferrous parts that the magnetic field follows as ‘g ’.

Fm= N-i (4-2)

(4-3)
2g'

(4-4)

To verify working conditions at elevated temperatures it is necessary to determine the 

change in resistance o f  the windings o f  the coil. Equation 4-5 represents, in °F, the 

change in resistance o f  the coil as referenced to standard conditions. ‘Ro’ represents the 

resistance o f  the wire at ‘Ta’, where ‘Ta’ is the ambient temperature.

Ro
R = --------------    (4-5)

l -  0 .0 0 3 9 3 - ( T f - T j

Two variations o f  the solenoid valve were designed and tested for suitability 

including ease o f  access to failed parts, longevity and adequate electromagnetic force to 

open valve at 110% o f working pressure. The first valve assembly tested was an internal 

solenoid. Figure 4 -12a is a section view o f the test apparatus used for testing o f  the 

internal solenoid. The second solenoid setup consisted o f an external eoil with the valve 

moments internal as shown in Figure 4-13 a. Due to the confining nature o f the sparkplug 

passage and limitations o f the plunger design (large cross section and weight), it was
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determined through medium pressure tests (up to 600 psig) the solenoid design as 

configured in Figure 4-12 can not produce the desired electromagnetic force required.

Figure 4- 12a Section view o f text fixture for Figure 4 -12b Test fixture for internal 
internal pressure valve. high pressure valve

To overcome the dimensional limitations, the injector body was lengthened and an 

external coil was designed to operate the internal valve components. This design had two 

distinctive advantages over the internal coil scheme; 1) A larger coil capable o f 

producing adequate electromagnetic force was achievable and 2) sealing issues arising 

from designing a pressurized housing with coil leads extending through the housing were 

eliminated.
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f t

Figure 4-13 a S ection view o f external 
coil, high pressure valve

F igure 4 -13b Test fixture for external 
coil, high pressure valve
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CHAPTER 5

VEHICLE CONVERSION

The conversion o f the vehicles consisted o f three distinct tasks; 1) installation o f the 

plumbing and neeessary mounting hardware, regulators, valves, tanks, and data 

acquisition, 2) conversion o f the engine including injector(s), sensors and sensor braekets, 

and throttle body, 3) programming o f the ECM.

Each type o f vehicle is unique in placement o f key components such as the tanks, 

regulators, etc, but all are similar in the general tasks. The Polaris vehicle required a 

complete computer and harness along with necessary sensors, injection unit, etc. whereas 

the Ford vehicle required reprogramming o f the original ECM and installation o f the 

injection system, plumbing and fuel storage tanks.

Polaris Conversion

Conversion o f this vehicle consisted o f removal o f the cylinder head for milling, 

installation o f the check valve onto the milled head, fabrication o f  the throttle body, 

vacuum chamber, and mound for the injector solenoid. Milling o f the cylinder head 

consisted o f a small passage, measuring 0.062” ID x 1.5” in length, which connected the 

combustion chamber to the check valve/injection unit. Mounting o f the check valve 

assemble was carried out by milling a flat portion o f the cylinder head unto which the 

check valve unit is bolted in place. An air tight seal is made between the mounting 

surface and the check valve through use o f  a high temperature o-ring and bolts. The
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geometry o f  the cylinder head and relations between the injection point, sparkplug and 

valves are depicted in Figure 5-1.

Figure 5-1 Polaris vehicle final conversion

Placement o f  the fuel passage is critical in achieving homogeneous and quick mixing 

o f the air and fuel as well as ensuring a supported flame front. As demonstrated in the 3- 

D representation o f the cylinder head configuration, the fuel passage is directed towards 

the sparkplug slightly towards the intake valve and slightly downward. This specific 

orientation was specified to ensure a rotating cloud o f homogeneous mixture o f fuel and 

air. Position o f  the check valve assembly in relationship to the throttle body and various 

sensors attached to the engine are depicted in Figure 5-2.
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MAP sensor

Throttle body

Check valve 
assembly

Figure 5-2 Engine compartment o f Polaris engine

E lectrical System

Electrical system conversions essentially consisted placement o f additional circuits to 

accommodate new hardware such as relay boxes and sensors. The electrical system on 

the Polaris vehicle is unaltered with the exception o f the addition o f the relay box (Figure

5-4). Contained within the relay box is an automatic shutdown sequencer, relays for 

individual systems such as the injector control, fuel tank solenoids and secondary driver 

systems indicating fuel pressure. The shutdown sequencer is engaged when the ignition 

switch is turned to the o ff position at which time the sequencer will immediately turn o ff 

the tank solenoid. However the computer electronics will remain functioning for an
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additional 5 seconds. The additional time will ensure the engine continues to operate thus 

consuming the remaining fuel from the fuel lines at which point the remaining fuel is not 

sufficient to maintain operation o f the engine. This will occur when the fuel mixture in 

the combustion chamber is below the flammability limits o f hydrogen.
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Figure 5-3 W iring schem e o f  Polaris relay box
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Figure 5-4 Relay box position under hood o f Polaris vehicle

Fuel System

The fuel system conversion required removal o f pre-existing tanks, fuel and 

carburetor. A throttle body was manufactured to replace the carburetor as well as to 

incorporate the throttle position and vacuum port for the MAP sensor. The fuel tank came 

pre-installed with a dispensing solenoid with built-in pressure relief devise and 

thermocouple. To protect the occupants and or pedestrians, a low pressure relief system 

was installed to safely vent hydrogen in the even o f  an over pressurized occurrence due to 

pressure regulator failure, fire damage or mechanical damage or if  the dump valve is
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opened for any reason. Pictured in Figure 5-5 is the plumbing setup for the low pressure 

system.

Fuel Injector Fuel Cut-off

Pressure RegulatorLow Pressure PRV

Dump Valve

Figure 5-5 Polaris fuel cutoff valve, pressure regulator, dump valve and PVD

A standardized filling nozzle from OPW was installed on the passenger side for ease 

o f  filling. In the event that the users had need to fill from a non-standard dispenser such 

as a high pressure bottle, a secondary fill nozzle was also installed in line to the fuel tank. 

Pictured in Figure 5-6 is the mechanical pressure gauge, OPW fill nozzle and secondary 

fill adapter.
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Mechanical 
pressure gauge

Secondary 
fill adapter 

GP2

Primary OPW fill 
nozzle

Figure 5-6 Fill connector and tank pressure gauge on Polaris vehicle

Ford Conversion

The Ford vehicle was originally outfitted to operate on CNG and was equipped with 

tanks, regulators, and plumbing. Because gaseous hydrogen is to be stored at 5500 psig, 

all plumbing, tanks, and regulator systems used for the CNG were removed. To date, all 

tanks (5 in total) have been mounted onto the bed o f  the pickup as well as all fuel lines 

running to both the engine and fuel cell have been installed. Pictured below is the 

unaltered vehicle into which the sparkplug injector fuel system will be installed.

The Ford vehicle, in addition to external sensors for fuel pressure, hydrogen gas 

sensors, relay control box with shutdown sequencer, required modifications for the 

injector wire harness. The injector harness modification consists o f a voltage step-up
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transformer from 12 VDC to 24 VDC and a injector control circuit from K ell’s 

Automotive. The control circuit ensures the collapsing field from the large solenoid will 

not diseharge into the ECM.

Figure 5-7 Ford vehicle to be converted
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CHAPTER 6

TESTING AND ANALYSIS 

Testing o f  the engines eonsisted o f two parts: performance and emissions analysis. 

Performance was measured through the use o f a dynamometer, mass flow meters, EGT 

sensors, and O2 sensors. Testing o f both types o f injection system were conducted on the 

Polaris engine. For the case o f the Ford engine, later studies will be performed to evaluate 

performance and emissions. Testing o f the Polaris motor consisted o f coupling the 

Dynamite dynamometer directly to the crankshaft whereas evaluation o f the Ford will be 

done using a chassis dynamometer. Emissions were collected and evaluated using an 

ECOM Emissions Analyzer measuring CO, NO, and NO2. Various other instruments 

used to evaluate and tune the engines are listed in Table 6-1.

Performance

Tuning o f  the engine involved coupling performance with emissions to ensure a 

power output is not maintained at the expense o f emissions and vice versa. To ensure 

performance was not overly diminished by tuning for emissions requirements, various 

caleulations such as BSFC, fuel bum  efficiency, and brake mean effective pressure were 

used as a guideline. In general terms the performance criteria were defined as the 

maximum torque at a given engine speed and load which had the lowest possible 

emissions while maintaining a BSFC o f 0.20 or better, a fuel bum  efficiency o f  at least 

20% and a BMEP o f at least 100 psi for WOT and max engine speed. Performance was
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evaluated by comparing the BSFC, power and torque curves. Evaluation o f  these 

categories was performed for gasoline, natural gas and hydrogen gas. The BSFC is 

generally used to evaluate the efficiency o f the fuel bum  whereas the torque and power 

curves generally represent engine characteristics such as cam profile, cylinder 

displacement, connecting rod lengths, etc. Table 6-1 represents the baseline testing o f 

gasoline and CNG as compared to direct injection o f hydrogen for near-stoichiometric 

conditions.

b m e p = («., )
Displacment

The second law o f thermodynamics (Equation 6-2) is an idealized case wherein 

friction losses are neglected, a fundamental limit can be calculated for the maximum 

efficiency. Using the adiabatic flame temperature as the ideal case for if  not heat were 

lost via friction, pressure leaks, etc, the calculated engine efficiency is calculated to be 

89%. By using the EGT, which would be closer the real world situation, the maximum 

engine efficiency is calculated to be 73%

^Camot “ y (6-2)
•hot

Using the LHV o f each fuel (Table 6-2), the efficiency o f the fuel bum  is then 

calculated by Equation 6-3. The fuel bum  efficiency is a comparison o f the energy 

contained within a particular fuel and the amount o f energy outputted. Table 6-1 

summarizes this data for hydrogen using direct injection, CNG and Gasoline using port 

injection. Due to the wide flammability limit ranging from 4% to 70% for hydrogen.
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emissions took precedence over performance at idle due to the ability to operate the 

engine extremely lean (AFR o f 344 for a 4% concentration by volume). For this reason, it 

is possible to achieve a BSFC in the low 0.10 to 0.15 range at idle. This is reflected in 

Table 6-3 by a fuel bum  efficiency o f over 40%. As the engine is loaded and the RPM 

increases above the stall limit o f the centrifugal clutch o f the vehicle (1500 to 1600 RPM) 

power output is more critical to get the vehicle moving. For this reason, emissions 

requirements were backed o ff and performance standards mentioned previously were 

reinstated.

lhVBSFC

Table 6-1 BSFC o f various fuels at WOT

RPM Hydrogen CNG Gasoline

1200 0.12 0.30 0.52

2000 0.18 0.31 0.51

2500 0.20 0.30 0.51

3000 0.19 0.32 0.52

3500 0.23 0.31 0.48

4000 0.22 0.30 0.45
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Table 6-2 LHV o f fuels

Fuel Value (Hp*hr/ lb)

CNG 8.621

Gasoline 7.236

Hydrogen 20.208

Table 6-3 Engine efficiency o f various fuels at 
WOT using BSFC and LHV

R PM H ydrogen CN G G asoline

Idle 41.24% 38.66% 26.25%

2000 27.65% 37.42% 26.77%

2500 24.53% 38.66% 26.77%

3000 25.48% 36.25% 27.30%

3500 21.52% 37.42% 28.44%

4000 22.49% 38.66% 30.33%

The volumetric efficiency o f the motor can also be calculated using the BSFC and 

general parameters o f the engine. Equations 6-4 was used to calculate the volumetric 

efficiency as a function o f the AFR, power output, and mass flow o f air through the 

engine.

Hp BSFC t AFR

P A .V o l„ „  («-4)

The following graphs represent the fuel bum  and volumetric efficiency o f each fuel. 

As a general m le, the maximum torque is achieved at the maximum volumetric 

efficiency. This phenomenon can be seen in all tested fuels, but it is more pronounced
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with the hydrogen. The fuel efficiency is dependent upon the A FR whereas the 

volumetric efficiency is dependent upon the geometry o f intake system. This too can be 

seen in the hydrogen test where idle to 2000 RPM operated at an equivalence ratio o f 

approximately 0.75.

The volumetric and fuel bum  efficiencies have also been computed for CNG and 

gasoline as shown in Figures 6-2 and 6-3. An indication o f a poorly designed intake 

system, without positive pressure feed o f the air supply, is a relatively low volumetric 

efficiency. Volumetric efficiencies in this particular motor do not exceed 80%. Fuel bum 

efficiency is a good indication o f the amount o f energy fi-om the fuel that is used to 

produce power, the remaining energy that is unused in assumed to be lost as heat or 

blow-by o f  the compression rings.
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Figure 6-1 Fuel and volumetric efficiencies for hydrogen at WOT
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Figure 6-2 Volumetric and fuel efficiencies for gasoline at WOT, 0 = 1
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Figure 6-3 Volumetric and fuel efficiencies for CNG at WOT, 0 = 1

The power levels o f all fuels and configurations, i.e. port injection for all fuels and 

direct injection o f hydrogen have been computed using SAE J1349 JUN90 correction 

factors. For comparison o f all configurations. Figure 6-4 depicts power levels at W OT for 

varying engine speeds.
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Figure 6-4 Power output o f hydrogen, CNG and gasoline
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Figure 6-5 Power output for direct injection o f hydrogen
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Emissions

As the BSFC was chosen based on fuel efficiency and AFR, two remaining criteria 

for the configuration o f an optimized engine are; 1) maximum power levels at 2 ) lowest 

possible emissions. Baseline testing for the original configuration as well as initial 

computer setup was performed for gasoline. To simulate a baseline for a gaseous fuel, 

natural gas was also tested. To justify the conclusion that maximum power occurs at 

stoichiometric conditions, various tests were performed to show power levels, and the 

effect o f  emissions at varying equivalence ratios.

Baseline Emissions Testing 

Emissions for gasoline were taken in a series o f two runs; the first at 3000 RPM and 

the second at 4000, both at WOT. For comparison these set o f runs were taken at an 

equivalence ratio near 1 .

12.6  ° -

Equivalence Ratio

Figure 6 -6  Emissions for gasoline at WOT, RPM = 3000
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17.6 ï

Equivalence Ratio

Figure 6-7 Emissions for gasoline at WOT, RPM = 4000

Emissions for CNG were taken in a series o f two runs; the first at 3000 RPM and the 

second at 4000 both at WOT. For these series o f runs the equivalence ratio was set to 

0.96, 1.0 and 1.05 in order to verify proper tuning.
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Figure 6 -8  Emissions for CNG at WOT, RPM = 3000
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Figure 6-9 Emissions for CNG at WOT, RPM = 4000

Emissions fo r  D irect Injection o f  Hydrogen  

The following Figures represent data taken from various runs for direct injection o f 

hydrogen. Data were taken at varying manifold pressures (indicating engine loads) at 

nearly constant BSFC values. The exception to the constant BSFC is at idle and up to 

2000 RPM where no power is needed due to the transmission setup. It is recognized that 

emissions for these points take precedence over maximum power output. The procedure 

for taking emissions and power levels was to:

Step 1) Achieve maximum power at a given AFR. Injection timing is set to

2 0 ° after the intake valve closes to give the maximum possible 

mixing time

Step 2) Adjust spark to achieve spark timing range (typically 10° to 15°)

wherein the BSFC criteria is obtained 

Step 3) Adjust spark timing within range set in Step 2 wherein emissions

levels are minimized.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS 

Literature reviews into hydrogen embrittlement, previous types o f engine 

conversions, and different design techniques for solenoids give great insight into a 

development problem that could not be otherwise completed without the aid o f  many 

experiments. By studying hydrogen embrittlement, the mechanism o f failure and 

subsequently the material(s) better suited for use in such application becomes clear.

While major components within the engine are made o f aluminum, and aluminum is 

extremely susceptible to hydrogen embrittlement, it goes without saying that most if  not 

all these parts cannot be substituted, however, planning which material will be used for 

components added such as the injector and check valve is one major step into avoiding 

catastrophic failures. Some failures cannot be avoided and so safety precautions can be 

implemented to help alleviate this problem. In the event o f a failure within the 

combustion chamber, such as ring or piston failure, a blow -off valve as depicted in Figure 

4-5 will purge excess pressure caused from the ignition o f hydrogen within the crankcase. 

Likewise, to prevent damage to the MAP sensor a secondary blow -off valve has been 

installed on the intake system.

A traditional method for converting an engine to operate on hydrogen typically 

utilizes port injection. While port injection tends to have higher thermal efficiencies a 

loss o f  flame control results in pre-ignition and backfires thus resulting in a loss o f power.
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By use o f  direct injection higher volumetric efficiencies, better flame control and power 

densities comparable to that o f  gasoline can be achieved. The design o f two injection 

units capable o f  delivering hydrogen into an ICE by means o f  direct injection have been 

designed, manufactured, tested, and used in the conversion o f two vehicles. While it is 

shown that removal, modification, and reassembly o f a cylinder head for the purpose o f 

insertion o f an injector into the cylinder head is a viable method, use a o f preexisting 

passage such as the sparkplug hole is less labor intensive and has the advantage o f testing 

numerous designs without the need for complete engine disassembly.

Several papers containing the development o f a high speed solenoid were studied in 

order to better grasp the main concepts which ensure a reliable and fast responding 

solenoid capable o f  delivering adequate fuel control to the engine. Better understanding 

o f  reluctance and the important role it plays on the flux density was used in the 

development o f the solenoid valves used in these conversions. Design o f an internal 

solenoid is a possible alternative to mounting an external solenoid, and has been 

experimentally shown in lab settings to produce desired results. However, due to the 

limited space on the engine and time needed for various derivations o f the design, namely 

time needed to condense the size o f  the solenoid valve, use o f  an internal solenoid was 

substituted for a simpler setup. Issues that needed to be addressed for a setup involving an 

external solenoid were response times needed for tum-on and additional time constants to 

ensure complete flow cut off. The external solenoid required an increased effective tube 

length to connect the valve portion o f  the solenoid to the injection point (approximately 

10 inches in total). The increase in length requires additional time needed to deliver fuel. 

This increased time resulted in additional programming to ensure the exact amount o f
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fuel is delivered in the allotted time slot. For example, an engine rotating at 1500 RPM 

has a typical time between the closing o f  the intake valve and TDC o f 11 ms whereas the 

engine rotating at a speed o f  4500 RPM has a time o f 3.7 ms.

Typical methods for reducing emissions can be accomplished by a number o f 

methods. The most successful method is to operate the engine at a lean state (typically 

around 70:1), however this method results in a loss o f power output due to less fuel 

involved in the combustion process. Another method commonly used even in gasoline 

engines is to operate the engine with an EGR system, which in effect lowers the 

combustion temperature thus reducing production o f NOx. This method has a tendency to 

lower the volumetric efficiency by reintroducing exhaust gasses for re-buming thus also 

reducing the maximum possible power output. The method o f choice, given the small 

displacement o f the Polaris engine is to operate the engine at near stoichiometric and to 

utilize a catalytic converter down stream o f the exhaust. The advantage with this setup is 

max power is achieved and emissions are improved via an external device that will not 

effect the power output. By choosing specific regions such as low load for any RPM 

range as well as at idle to operate lean, fuel economy is improved while not at the 

expense o f power output. As evident in Figures 6 -6  through 6-9, emissions were 

generally lowest at a lean state. Maximum power was achieved at stoichiometric for all 

tests with the exception o f gasoline at 3000 RPM. It is not entirely clear as to why power 

continues to increase for gasoline at 3000 RPM. It could be hypothesized that with an 

equivalence ratio greater than one and more fuel consumed led to a cooling o f the 

combustion chamber thus resulting in higher power.
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Programming schemes aimed at emission control for the Ford motor can vary from 

utilization o f  an EGR system, catalytic converter as these systems were factory integrated 

into the vehicle. Operation similar to the Polaris programming scheme is also possible. 

The most effective solution would be to operate the engine at an AFR of 70:1. This is 

only possible due to the significantly higher displacement and the ability o f  aftermarket 

parts such as superchargers. The purpose o f a supercharger is to utilize the mechanical 

advantage o f  the engine to boost the volume and pressure o f the air through the intake 

system. This creates a condition where there is more air within the combustion chamber 

which allows for two scenarios to play out. The first is an increase in power output by 

increasing the amount o f  fuel whereby the AFR remains the same. The second option is 

to keep the amount o f fuel the same allowing a more efficient fuel bum  thus leading to a 

very slight increase in power with operation at a lean state. The most economical, fuel 

saving, lowered emissions method would be to operate at a much leaner fuel mixture. 

This would achieve similar power levels when compared to the same engine operating 

without a supercharger with a fraction o f the fuel needed.
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APPENDIX I

TABLES OF ENGINE PARAMETERS AND Cv TEST RESULTS

Table A I-I Specifications for 425cc Polaris engine

Engine specifications
Platform Fuji 4-stroke, single cylinder

Engine Displacement 425cc

Bore & Stroke (mm) 87.9 X 70

Compression Ratio 9.2:1

Intake Valve Open 310 ATDC

Close 620 ATDC

Exhaust Valve Open 109 ATDC

Close 409 ATDC

Table AI-2 Polaris check valve flow data for air

Inlet Pressure Pressure Drop Mass Flow Rate Cv

(PSIG) (PSIG) (lb/hr)

30 2 1 6 2.72 0.368

40 24.7 4.18 0.415

50 2 6 J 1 2 8 0.407

60 2%8 6 .1 2 0.382

70 28.9 7.05 0.370

80 30.5 7.78 0.348

90 33.1 8.71 0.332

100 35.2 9.53 0.317
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Table AI-3 Check valve seat test data

Run 1 Run 2 Run 3 Run 4 Run 5

Seat material

Alloy

901

Alloy

901
673 673

C27

Bronze

Guide material 630 630 673 673
C27

Bronze

Plunger material 630 303 SS 303 SS 630 303 SS

Start depth (x 1/1000) 92.5 103.5 33.5 19 3&5

End depth (x 1/1000) 92.5 103.5 33.5 18 38

Testing time (hr) 2 2.5 1 1.5 6

Maximum Temp (°F) 160 145 141 175 142

Minimum Temp (°F) 135 110 104 110 99

Average Temp (°F) 145 140 125 115 120

Movement (0.001”/hr) 0 0 0 0.667 0.083

Maximum movement (in) 0.065 0.065 0.065 0.065 0.065

Time to failure (hr) NA NA NA 97.5 780
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APPENDIX II

MATHCAD SIMULATION OF EMISSIONS FOR 425CC ENGINE 

Define Variables:
AFR := 50 C p ^ j^ :=  1.005 C v ^ i r -  0.72

Temp := 90 M.307 Cvp|2 -- 10.18

Define Constants:
mwH2 := 2.0159 (Molscular W eigh t of Hydrogen)

(Moles of Air)

cRgff= 6.33 (Effective Compression Ratio)

mwAir:= 28.8623 (Molocular Weight of Air)

hg JJ2 0  := -241820 (Enthalpy of formation for water)

hg fjQ := 90300 (Enthalpy of formation for NO)

Define table o f Enthalpy and Equilibrium using a 6th order curve fit (R'^2 = 0.999 or 
better) (Tables from Moran Shapiro (A-23, A-25 and A-27)

h N o (T ):=  3.84283638 10“ ''■ t '* -  6.04301031 10“ ^ + 3.58832287-10“ ^ + 2.82756591 10^ T -  8.92931176 10^

1ih 2(T ) := -1.04890056 10“ ' ‘̂  T ^  + 6.75725575 10“ ^ T^ + 3.24569056 10“ ^ T ^  + 2.81780598 l o ’ T  -  8.4492207 10^

hH 2o (T )  := -2.5054243 10“ ' “ ■ t ' '+ 9.23093879 10“ ^ + 4.37092424 10“ ^ + 3.07130235 l o ' T  + 2.2149318 10^

hN2(T ) := -6.19102714 10“ ' k p '* -  3.99919871 10“ ^ + 2.81766583 10“ ^ T ^  + 2.72992673 l o '  l  + 1.82727765 10^

h o 2(T ) := 1.45873502 10“ " ' T '* -  1.34835576 10“ ^ T^ + 5.63128702 10“ ^ + 2.68544143 lo '-T  + 1.08996076 10^

  ,n  .in n704(i‘ilQ.I(l ”  .t L s 77081051 .in ^.t L i 71741085.in

. J .  O A < A 1 f \ M Ü  .1

:= 10

4 .4 9 1 7 0 4 1 8  1 0  T  + 5 .6 5 7 3 8 0 2 1  1 0  T  - 3 . 0 7 0 4 6 5 1 9  1 0  T  + 8 .2 7 0 8 1 9 5 1  1 0  T  - 1 . 2 1 3 4 1 0 8 5 . 1 0  .T  ...

+  9 .4 5 4 7 0 1 7 8  1 0 “ ^  T - 3 . 4 4 6 6 2 2 4 7  l o '  J

_____________   ’ * .T * + 1  5 5 9 8 4 8 1 0 1 0  ' ‘* . 7 ^ 8  1 7 8 9 9 0 1 8 .1 0  "  .7 ^ + 7  7 0 4 7 8 8 1 7  .10  ^ . 7 ^ 7  7 3 7 4 1 3 0 8  .10 *  7 ^  'i

. +  7  5 7 9 7 1 4 5 7  .1 0

■= 10

- 1 . 1 9 5 9 8 4 6 0  1 0  T  + 1 . 5 5 9 8 4 8 1 0  1 0  7  - 8 . 1 7 8 9 9 0 1 8 1 0  7  + 2 . 2 0 4 2 8 8 1 7 1 0  7  - 3 . 2 3 7 4 1 3 0 8  1 0  7  ...

+  2 . 5 2 9 3 1 6 5 7  10“ '  . 7 - 9 . 1 7 2 5 0 8 3 3  l o '  J

Define Equations;
Balanced Chemical Equation

nN2 'N2 = e NO + a H 2 0  +  ̂npj2 — aj -H2 + ^ n ^ 2  -  -N2 + ^ O q 2 — —e — — a ^02nH2'H2 + nQ2'02 -

Dissociation Equations

H 2 0  = H2 + — 02 
2
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— 0 2  + —N2 = NO 
2 2

Calculate moles o fH 2 , O2  and N2  based on AFR and moles o f A ir

"H 2 -  •

n^lj.mwAir

mwH2 AFR

“02 1=
"N2 := n̂ jj.-78.82“/<

1 1

CPMix -  CPAir —  — ------- + CPH2 ,   (Calculate Cp of mixture)
mwAir AFR mwH2 m wAir AFR mwH2

1 1

ĉ Mix := C''Air— j—  ̂ ^  m̂ 2------  (Calculate Cv of mixture)
 +   +------------
mwAir AFR mwH2 mwAir AFR mwH2

k := (Calculate k of mixture based on Cv and Cp of mixture)

Calculate final temperature and pressure based on polytropic process

P= CReff
T f:= (Temp -  32) —  + 273.15 CR

k-1
eff

Energy equations
* ' r 1= "H 2 '*'H2(^f* + " 0 2  *'0 2 (^*^ + "N 2 ' ’’N 2(^f>

hp -  ^■(*'s_NO'* *’N 0<T )) + a (h s _ H 2 0 +  *’H2o ( ^ ) )  + -  a) h jj2 (T ) + (^"n 2 “  '’N 2(T )

+ [ ° 0 2  “  7  ® “  7 '^) ■*'0 2 f*')

Setup solver for 3 equations and 3 unknowns:

Balanced chemical equation Is redefined with coefficients as follows:
n j |2 'H2 + nQ2 '0 2  + ”  e-NO + a-H 20 + c(a) -H2 + d(e) -N2 + b (e ,a )0 2

b (e ,a ) := H q2 -  y e  -  y -a c(a) ;= 11^2 “  ^

d(e) := n^j2 -  - J  ■« N(a) := + " 0 2  + 7  ®

Guess

e ;=  0.001 

a 0.1 

T ;= 2000

Giver
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1 1

c(a) b (e ,a )— r_g_l = K u ,n ( T )  (Equilibrium mixture equation for the dissociation
a V N(a) J

of water)

 !------   = %o(T) (Equilibrium mixture equation for the dissociation

b (e ,a ) ^ d(e) ^

Of NO)

+ "  (*’s_H2G *’H 20*^1) + 4 a )  '% 2(T ) + d(e) h fj2(T ) + b (e ,a ) hQ2(T ) = hj^

Solution := F in d (a ,e ,T )
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APPENDIX III

TEST DATA FOR EXTERNAL COIL OPERATION AT 12, 18, AND 24 VDC

Table AIII-1 External coil at 12 VDC

Temp °F Resistance Current t (min) Voltage P

105.0 10.53 1.14 0 12.05 13.73

146.0 11.62 1.03 5 12.05 12.44

159.6 12.04 1.00 10 12.05 12.01

166.5 12.26 0.98 15 12.05 11.80

172.2 12.44 0.96 2 0 12.04 11.61

177.5 12.62 0.95 25 12.04 11.44

179.1 12.68 0.95 30 12.04 11.39

181.3 12.76 0.94 35 12.03 11.32

182.5 12.80 0.94 40 12.03 11.28

Table AIII-2 External coil at 18 VDC

Temp °F Resistance Current t (min) Voltage Power

132.0 11.23 1.59 0 17.9 28.54

2 0 0 .0 13.45 1.33 5 17.9 23.82

206.4 13.71 1.31 7 17.9 23.37

209.8 13.85 1.29 8 17.9 23.14

215.1 14.07 1.27 10 17.9 22.77

223.5 14.44 1.24 13 17.9 22.19

226.2 14.56 1.23 16 17.9 21.99

230.0 14.74 1.20 19 17.7 21.25

236.0 15.03 1.18 26 17.7 20.84

234.0 14.93 1.08 30 16.2 17.57
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Table AIII-3 External coil at 24 VDC

Temp °F Resistance Current t (min) Voltage Power

107.0 10.58 2.32 0 24.6 57.18

150.0 11.74 2 .1 0 1 24.6 51.54

203.0 13.57 1.81 3 24.6 44.59

236.0 15.03 1.64 5 24.6 40.26

261.8 16.41 1.50 8 24.6 36.88

277.1 17.35 1.42 10 24.6 34.87

282.0 17.68 1.39 14 24.6 34.23

285.4 17.91 1.37 16 24.6 33.79

287.3 18.05 1.36 19 24.6 33.54

289.2 18.18 1.35 21 24.6 33.29

287.1 18.03 1.36 23 24.6 33.56

288.0 18.09 1.36 25 24.6 33.44

288.4 18.12 1.36 27 24.6 33.39
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APPENDIX IV

TEST EQUIPMENT

Table AIV-1 Testing instruments by manufacturer

Instrument M anufacturer Use

Air flow meter Sierra Instruments Mass flow rate o f air 
entering intake manifold

Coriolis meter
Micro Motion Mass flow rate o f
Emerson hydrogen fuel consumed

Air Fuel Meter ECM
Calculated AFR based on 
wide range O2

Emissions Analyzer ECOM M easured CO, NO, and 
NO2 o f  exhaust

M easured torque.
Polaris Dynamometer Dynamite calculated SAE corrected 

horsepower
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